A Context-Aware Hoarding Mechanism for

Location-Dependent

Abstract

When used in an outdoor environment, mobile infor-
mation systems often suffer from the disadvantages of
wireless WANS, especially low bandwidth, high delay,
and frequent disconnections. Hoarding is an effective
method to overcome these disadvantages by transfer-
ring information which is probably needed by the user
in advance.

In this paper we propose a generic, context-aware
hoarding mechanism. When selecting the information
to hoard, it considers the user’s future location as well
as the expected speed of movement. In contrast to ex-
isting hoarding mechanisms it is universally applica-
ble for different types of location-dependent, mobile
information systems. Its flexibility allows it to rely
on different knowledge sources in order to get infor-
mation about a user’s context.

Keywords: Wireless Communication, Mobile Infor-
mation Access, Context-Awareness, Hoarding, Info-
Station

1 Introduction

With the increasing pervasiveness of mobile comput-
ing devices the need for mobile information access
grows continuously. A large variety of mobile informa-
tion systems already exists, e.g. map/navigation sys-
tems (Ye et al., 1998) or mobile tourist guides (Davies
et al., 1998), (Abowd et al., 1997). Many of these sys-
tems are location-aware, i.e. they take into account
the user’s location when presenting information. The
location information, which is gathered by a sensor
such as a GPS sensor or an Active Badge (Want et al.,
1992) is often used to determine which information is
probably of interest for the user. Since the same basic

Information Systems

functionalities are useful in almost all location-aware
information systems, we currently develop an infras-
tructure for such systems at our department, which
provides these functionalities (Hohl et al., 1999). One
of these functionalities is the context-aware hoarding
mechanism described in this paper.

Hoarding is an efficient method to overcome the
drawbacks of wireless WANSs, especially low band-
width, high delay, and frequent disconnections. The
idea is to transfer information, which is probably
needed by the user in the near future, in advance,
so that it is already stored on the user’s mobile device
when it is actually accessed. It is even possible to ac-
cess hoarded information in areas where no network
is available at all, e.g. within a building or a tunnel.
The problem with hoarding is to predict, which in-
formation the user will need. In our mechanism the
decision about what information to hoard (hoarding
decision) is based on knowledge about a user’s future
location and speed of movement.

The prediction is necessary since in most cases it is
not possible to transfer all the information available
in an information system to the user’s device, due to
storage space limitations or restrictions in the time the
user is willing to wait for the hoarding process. Since
the prediction can not always be correct, some infor-
mation items the user requests may not be hoarded
on the mobile device. To rate hoarding algorithms
usually the hit-ratio is used. It states the part of a
user’s information requests that can be answered with
hoarded information. An efficient hoarding algorithm
is valuable in two ways: Firstly, if a given hit-ratio has
to be achieved, it minimizes the time, bandwidth and
storage space required for the hoarding. Secondly, if
there are restrictions in the time, bandwidth or stor-
age space available for the hoarding, it maximizes the
achievable hit-ratio.

As communication infrastructure we use the info-
station concept proposed in (Badrinath et al., 1996).
There, a number of high-bandwidth wireless local
LANs with a low range, so called info-stations, are

placed in an area otherwise only covered by a wireless
WAN (see Figure 1).

[wireless LAN
[] wireless WAN

Figure 1: Info-station infrastructure.

When a user arrives at an info-station our mecha-
nism aims to hoard as much as possible of the infor-
mation he/she will probably need before reaching the
subsequent info-station while meeting the restrictions
in transfer time and storage space. If the user is not
in an area covered by an info-station, no hoarding is
performed at all. So the users only suffer from the dis-
advantages of wireless WAN connections, when they
need information that was not hoarded at an info-
station. Ideally, they do not need the wireless WAN
at all. In systems where there is no crucial informa-
tion, i.e. information that has always to be available,
when a user accesses it, we can even rely exclusively
on the info-stations and can completely renounce to
wireless WAN technology.

Because LAN technology will always be cheaper
and faster than WAN technology, the advantages of
our info-station based hoarding mechanism will hold
for the future, although new wireless WAN technolo-
gies will provide higher bandwidths.

In contrast to existing approaches our mechanism
is designed as a platform mechanism, i.e. it has to
support all the different types of information systems
running on this platform. These systems may differ
strongly in the degree of knowledge available about
the user’s future behavior. For example, a system
navigating a user to a known destination can usually
provide much more information about the user’s fu-
ture movement than a tourist guide system supporting
a roaming tourist can do. Since the hoarding decision
is based on the knowledge about a user’s future move-

ment, the mechanism has to adapt to different degrees
of knowledge in order to exploit the available knowl-
edge always as far as possible.

The remainder of this paper is structured as follows:
In Section 2 we make some preliminary definitions and
state the design requirements of our hoarding mech-
anism. Afterwards, in Section 3, the mechanism is
explained in detail. Section 4 provides an analysis of
the mechanism’s efficiency. Before concluding the pa-
per in Section 6, we reflect the related work in Section
d.

2 Preliminaries

In the following, we introduce the system model that
we use in the remainder of the paper, and explain
which requirements our mechanism has to fulfill.

2.1 System Model

We consider an information system as a system which
provides access to a set of discrete information items.
It consists of a stationary server component on which
the information items are stored and one or more
client applications which run on the users’ mobile de-
vices and through which the users access the informa-
tion stored on the server component.

Our mechanism is focused on location-dependent in-
formation systems. This means that it depends on
the users’ geographic position which information they
are interested in. An example for a strongly location-
dependent information system is a map application
that always presents a map of the area surrounding
its user.

The area supported by the hoarding mechanism is
logically separated into equally sized squares. Al-
though, other shapes would be possible as well, we
chose squares as a canonical way of logically separat-
ing an area. Every info-station supports a fixed area,
for which information can be downloaded at the info-
station. This area is called the info-station’s hoarding
area. In reasonable installations the hoarding area
should be bigger than the area covered by the info-
station’s LAN itself and smaller than the whole area
supported by the hoarding mechanism.

2.2 Requirements

As we already pointed out the overall objective of our
hoarding mechanism is to efficiently support different

types of location-dependent information systems. In
the following, we describe the basic requirements the
mechanism has to meet in order to achieve this objec-
tive.

e Consider the users’ context: In location-depen-
dent information systems the user’s future lo-
cation is obviously the most important hint on
the information items he/she will probably need.
Therefore, the hoarding mechanism should use
visit probabilities for the decision about what
items to hoard. This means, it should consider
the probabilities with which a user will visit each
square of the hoarding area after leaving the info-
station.

A further important aspect, which has to be
taken into account, is the user’s expected speed
of movement. The reason for this is that a user
moving through an area at high speed will prob-
ably need less information about this area than
a user crossing it at a low speed. In (Ye et al.,
1998) the benefits of considering the users’ move-
ment speeds for the hoarding decision have been
shown.

o FExploit different knowledge types: We want our
hoarding mechanism to use two different types
of knowledge. The first one is knowledge which
the mechanism has gained itself by observation of
the users. We call this kind of knowledge internal
knowledge. Due to privacy reasons the internal
knowledge has to be stored anonymously. An ex-
ample for internal knowledge are rankings of the
most requested information items within a cer-
tain square.

The second type, which we call external knowl-
edge, is knowledge that is provided by the user
or the client application of the information sys-
tem. A navigation application, for example, can
usually provide exact information about its user’s
future location.

o Adaptivity: Because of the large heterogeneity
of information systems, we want to support, the
hoarding mechanism has to be highly adaptive.
A first aspect of this adaptivity is that it must
be able to distinguish the different interests of
the users. If an information system is accessed
through various applications the information ac-
cessed from the users of the different applications
will differ. But even the interests of users of the

same application may differ strongly. For exam-
ple, a business man using a mobile city guide usu-
ally has other interests than a tourist using the
same system.

The mechanism also has to adapt to different de-
grees of knowledge about the users’ future move-
ment, in order to exploit the available knowledge
always as far as possible. This degree of knowl-
edge depends on many factors, e.g. whether the
user’s destination is known or not, or whether
the movement is bound to a given infrastructure,
e.g. rails or roads, or not.

3 Hoarding Mechanism

In this section we explain the general idea of our mech-
anism together with the basic problems we had to
solve when realizing this idea. We show how differ-
ent types of knowledge can be gathered and used for
the solution of these problems. We also present the
components of a prototype architecture implementing
the mechanism and give a detailed description of the
overall functionality.

3.1 Basic Idea

Basically, our mechanism works as follows: Every
time a user reaches an info-station a hoarding process
is initiated. During this process the most popular
information items belonging to those squares of the
info-station’s hoarding area that the user will prob-
ably visit before reaching the next info-station are
hoarded. In order to determine which the most pop-
ular items are, the requirements mentioned above de-
mand to consider different categories of users and ap-
plications. To realize this idea three problems have to
be solved:

e Correlation Problem: The Correlation Problem
is to find out which information items actually
belong to each square, i.e. to relate information
items to squares. The objective is to know for
each square which information items the users lo-
cated at that square need most frequently. Some-
times this is implicitly clear. For example, in a
map application displaying a map of the user’s
environment it is obvious which parts of the map
belong to each square. If this is not the case,
the mapping of information items to squares has

to be explicitly specified by the information sys-
tem’s administrator through manual configura-
tion or it has to be gained by observation of
the users’ behavior, e.g. by counting the number
of requests of every information item originating
from users located at a certain square.

e Prediction Problem: As we only want to hoard in-
formation items belonging to squares the user will
probably visit, we have to make a prediction on
what squares this will be. One possible solution
to this problem would be to use existing predic-
tion algorithms, such as described in (Chim et al.,
1998), (Liu and Maguire Jr., 1995), which often
base their prediction on the users’ previous move-
ment, or movement patterns. However, a predic-
tion based on a user’s previous movement fails if
the movement changes unexpectedly. Therefore,
we do not rely exclusively on this kind of algo-
rithms. We only use them as one possible source
of knowledge. Further knowledge sources are the
applications themselves, e.g. a navigation appli-
cation might be able to specify the whole path
along which a user will move. Finally, observa-
tion of the users can also help to solve the predic-
tion problem. By counting the number of users
visiting a certain square, we can determine the
probability with which a user visits this square.

As mentioned in Section 2 the expected speed
is an important hint on how much information
should be hoarded for a certain square. To pre-
dict a user’s speed, we consider observation as
the most important source of knowledge. From
an observation of the users’ speed within a cer-
tain square, we can derive the average speed at
which the users cross this square. As with the
prediction of visit probabilities we can imagine
the applications as external knowledge sources.

o Selection Problem: Based on the predicted user
behavior and the correlation knowledge, a deci-
sion has to be made on what information items
should finally be hoarded. Such a selection is
necessary, since in most cases not all informa-
tion items correlated to probably visited squares
can be hoarded, due to the restrictions mentioned
above.

In a generalized form these three problems appear
in every context-aware hoarding system.

3.2

In our mechanism we use so called hoarding profiles
to manage the internal knowledge, which is gained
through observation of the users or manual configura-
tion. For every application that accesses a certain in-
formation system exists at least one specific hoarding
profile, which reflects the behavior of all the applica-
tion’s users. If an application is used by different cat-
egories of users a separate hoarding profile for every
category can be maintained, which then reflects the
specific behavior of the according user category. This
is especially useful, if the users differ in their informa-
tion needs and movement behavior, i.e. the places they
visit and the speed at which they cross certain areas.
Every specific hoarding profile can recursively be re-
fined to further more specific sub-profiles. Finally, we
get a hierarchy of hoarding profiles, where every pro-
file reflects the behavior of all users belonging to one
of its sub-profiles or to the category represented by the
profile itself. In Figure 2 a part of such a hierarchy
of profiles for a mobile tourist guide is depicted. To
which profile a user belongs has to be specified by the
application or the user himself/herself. For simplicity,
we assume that every user is assigned to exactly one
profile. Technically, it would be no problem to assign
a user to more than one profile and to take into ac-
count all these profiles when selecting the information
to hoard.

Internal Knowledge

city guide
user
. business
tourist man/woman
sport ‘ ’culture ‘ ’history ‘ = = = m

Figure 2: A part of a hoarding profile hierarchy.

Every hoarding profile consists of the following
three components:

o correlation table: This table stores the internal
knowledge about relationships between squares
and information items. For every square in the
hoarding area it holds a list of information items

that users located at the square access most fre-
quently. We get this list by counting the number
of requests to every information item. To adapt
the list to changes in the users’ access behavior
the request counters are decreased periodically.
We can also use more sophisticated methods to
determine the users’ access patterns within a cer-
tain square, e.g. the methods used in broadcast
dissemination systems, such as described in (Hu
et al., 1999). Sometimes, e.g. with the mentioned
map application, the determination of the access
patterns is not necessary, since it is obvious which
are the most popular information items for a cer-
tain square.

visit map: In the visit map the knowledge about
the probabilities with which the squares are vis-
ited is kept. Formally, the visit map is a func-
tion v : S + [0, 1], where S is the set of squares
located in the hoarding area. v assigns to ev-
ery square ¢ in the hoarding area the probability
with which the square is visited. This time the
knowledge is gathered by counting the number of
users of the according category visiting a certain
square. Again, the counters are decreased peri-
odically to adapt the knowledge to changes in the
users’ behavior. In this way we get the visit fre-
quency of every square. From these frequencies
the probability with which each square is visited
can be derived. Figure 3 shows a graphical rep-
resentation of such a map, which we might get if
we consider the visit probabilities of a part of a
city’s streets. The brighter a square is the higher
its visit probability.

Figure 3: Visit probabilities of different roads.

e speed map: Analogous to the visit map the speed

map indicates the average speed of the users
in every square. The speed map is a function
sp : S — R that assigns to every square i in
the hoarding area the average speed at which
the users cross the square. The information is
again gathered by observation of the users. To
be aware of changes in the users’ behavior only
observations within a specific time window are
considered.

3.3 External Knowledge

If available external knowledge, i.e. knowledge pro-
vided by the users and the applications themselves, is
primarily used for the hoarding decision. We prefer
external knowledge, since it is specified for one sin-
gle user instead of a user category or all users of an
application as it is the case with the internal knowl-
edge. Therefore, the external knowledge will mostly
be more specific and accurate than the internal knowl-
edge. The users are not directly asked for external
knowledge, since we consider it more suitable, if the
application interacts with them in order to get the
information they can offer.

To specify the external knowledge the applications
also use visit and speed maps. In contrast to the
maps representing the internal knowledge, these maps
do not have to specify the visit probability respec-
tively the average speed for every square in the hoard-
ing area. We also allow that an application specifies
more than one visit or speed map, since it might have
knowledge about separate sub-areas of the hoarding
area. Formally, the applications specify their external
knowledge in a number of visit maps vy, ...,v, and a
number of speed maps spi,...,Spm. A visit map v;
is a function v; : S; — [0,1], where S; is a subset of
the squares located in the hoarding area. We assume
that S; N S; =0, if i # j. Analogously a speed map
sp; is a function sp; : S; — R.

To avoid that the users or higher application lev-
els have to specify the visit and speed maps square
by square, we propose so called hoarding patterns to
ease this specification process. Hoarding patterns are
constructs which are transferred into maps by lower
application levels or the hoarding mechanism itself.
Each hoarding pattern is specified through four com-
ponents:

e its name

e a set of parameters

3 paths

area

cloud

Figure 4: Visit probability maps derived from various hoarding patterns.

e the subset S; of squares within the hoarding area,
for which the resulting map specifies the visit
probabilities or average speed.

e the visit probability or expected speed for the
area covered by the hoarding pattern

The number of squares specified by the resulting
map can be bigger than the number of squares ac-
tually covered by the pattern. In this case the visit
probability and/or the expected speed of all uncov-
ered squares is set to 0.

Some generic patterns, which are useful in many
applications, are directly supported by the hoarding
mechanism, i.e. it transfers them itself into visit or
speed maps. However, there will also be application-
specific patterns which have to be transformed into
maps by lower application levels. In some cases it
might not be possible to describe the maps with any
pattern at all. Then the user or the higher application
levels have to specify the maps directly. Examples of
generic patterns, which should be supported directly
by the mechanism are the following ones:

e path: A path is the shortest connection between
two squares. The set of parameters belonging to
this pattern exists of the start and end point of
the path. This pattern is well suited to specify
knowledge about a user moving along a road or
walkway.

e area: We also allow to specify the visit proba-
bility or the expected speed for a complete area,
e.g. a rectangle or a circle. This hoarding pat-
tern is, for example, especially useful to describe
the visit probabilities of buildings. The required
parameters have to describe the geometry of the
covered area.

e cloud: The cloud pattern can only be used to
specify visit probabilities. With this pattern the

application has to specify the probabilities with
which its user moves to the north, east, south
and west. Furthermore, the starting point of
the movement and the probability with which
the user reaches this starting point are required.
The application also has to specify the number of
squares the user will visit while moving according
to this pattern. The motivation for this pattern is
that applications can easily determine by obser-
vation the probabilities with which a user moves
to a certain direction, even if they do not have
any other hint on the user’s future movement.

Figure 4 illustrates maps resulting from the spec-
ification of different hoarding patterns. The width
and height of the specified maps is always 20 squares.
With the cloud pattern we chose a probability of % for
movements to the east and % for all other directions.
The number of visited squares was set to 10.

3.4 Architecture and Algorithm

In the following we introduce a prototype architecture
and the algorithm that realizes our mechanism. An
overview of the architecture is given in Figure 5. It
consists of two components: the mobile component,
which runs on every mobile device and the stationary
component, which runs on a stationary system, e.g.
the information system server.

The observer gathers the internal knowledge about
the users’ movement behavior and preferred infor-
mation items. It is responsible for maintaining all
the hoarding profiles, which are stored in the inter-
nal knowledge database. If the hoarding profiles are
maintained manually the observer component can be
omitted.

If a user with his/her mobile device arrives at
an info-station the coordinator initiates the hoarding
process. Firstly, it requests the mobile component for

Application

external
knowledge

mobile hoarding
component

v

Coord@—b ;
4

stationary hoarding
component

Observer

internal
knowledge

<>
—>» report

request - reply

Figure 5: Prototype architecture.

external knowledge. From this component it receives,
if available, various maps and hoarding patterns de-
scribing visit probabilities and expected speeds. If
some hoarding patterns have been received they have
to be transformed into the according maps. After-
wards, the coordinator requests the visit and speed
map of the hoarding profile belonging to the user’s
category from the stationary component. Finally, the
coordinator ends up with a number of external visit
maps vi,...,Un, a number of external speed maps
Sp1, .-, SPm, the visit map v of the hoarding profile,
and the speed map sp of the hoarding profile. All visit
maps are combined to one final visit map p : S — [0, 1]
according to the following definition:

p(i) = {

Figure 6 gives an overview of the different maps in-

’l}j(’i), 1€ Sj
’U(i)a ZngJSk

volved in the assembly of the final visit map. In the
same way the available speed maps are combined to
a final speed map e : S — R:

e(i) = {

‘ application/user ‘ ‘

hoarding patterns H

I v
‘ visitmaps v, ...,v L_u ‘ visit map v
: .

|

‘ visit map p ‘

spj(i), 1€ Sj
sp(i), i ¢ LkJSk

hoarding profile

Figure 6: Assembly of the visit map p

With the final maps the coordinator calculates a
hoarding score s(i) for every square i in the hoarding
area. Therefore, it firstly determines for every square
i the relative visit probability p(i) and the relative
expected speed €(i):

(i) = 20

€maz

(i) = p(i) and
pmaw

where pe. = I?Easxp(z), and e = I?Easx e(i). Now
the hoarding score s(i) can be calculated according to
the following formula

o _ P(i) + (i)
o A A) 1
sti) = L2, (1)

where c is a constant, which allows to control the in-
fluence the expected speed has on a square’s hoarding
score. We suppose that in most cases the visit prob-
ability is more important than the expected speed.
In these cases ¢ has to be smaller than 1. Next the
relative hoarding score 5(i) for every square i is de-
termined:

(2)

Afterwards, the coordinator calculates the maxi-
mum amount of data T that can be transferred with-
out exceeding any of the storage space or transfer time

City Map
Guide Application
primary knowledge internal external
source (user’s destination)
correlation observation implicit
initial: manual configuration
profiles >1 1

Table 1: Characteristics of different instantiations of the hoarding mechanism.

constraints. If there are no such constraints, T is set
to a default value. Now the amount of data (i) to be
hoarded for square i can be calculated as follows:

t(i) =5(i) - T (3)

Finally, the coordinator initiates for every square ¢
the transfer of the top ranked information items re-
lated to the square. The information transfer from the
information system to the hoard memory for square
i is stopped when the amount of data transferred for
square 7 reaches t().

We have not assigned the coordinator statically to
the mobile or the stationary component, since it de-
pends on the available knowledge which is the better
place. If there’s more external knowledge than inter-
nal it will be better if the coordinator belongs to the
mobile component with respect to the communication
costs. However, if more internal knowledge is used,
the stationary component will be the better place for
it.

3.5 Examples

To illustrate the adaptivity of our mechanism we sum-
marized the characteristics of two possible instantia-
tions of it in Table 1. The first instantiation is de-
signed for a mobile city guide and the second one for
the map application mentioned in Subsection 3.1.

For the mobile city guide the primary sources of
knowledge used to predict the users’ future movement
are the visit and speed maps of the hoarding profiles.
External knowledge will not often be available, since
we expect that tourists roaming around in a city can
mostly not give any hints on their movement destina-
tions. With the map application things are different.
Here, the application is used to navigate a user to
a specified destination. So the mechanism can rely
on external knowledge in order to predict the future
movement.

The two instantiations also differ in their correla-
tion tables. With the tourist guide application the
correlation information is gathered by observing the
users’ access patterns. Initially, a manually config-
ured correlation table has to be used, until enough
users have been observed to make reasonable state-
ments on the access patterns. In the map application
it is implicitly clear, which information items belong
to each square.

Since all users access the same map, we do not
have to maintain specific profiles for different user
categories of the map application. However, when
supporting the mobile tourist guide, different profiles
might be useful to represent the interests of different
user categories.

4 Analysis

We now analyze the benefit we get from considering
visit probabilities and expected speeds. Therefore,
we compare our hoarding mechanism to a simple one,
which does not use visit or speed profiles. However,
this simple algorithm also knows which information
items are related to each square.

The simple algorithm works as follows: If there are
n squares in the hoarding area and a total of m infor-
mation items can be hoarded, the simple algorithm
transfers || items for each square. Afterwards, it
randomly chooses m — || - n squares for which it
will transfer one further item. Consequently, with this
simple mechanism the number of information items
hoarded for every square in the hoarding area is inde-
pendent of its visit probability or the expected speed
in it.

4.1 Metric

The metric we use to compare the hoarding mech-
anisms is the average hit-ratio a user experiences

when crossing a hoarding area. To determine this
hit-ratio we first determine for every square in the
hoarding area the average hit-ratio the users achieve
while staying in this square. Afterwards, we calcu-
late a weighted average of all these local average hit-
ratios, in order to get the overall average hit-ratio for
the whole hoarding area. The weights of the local hit-
ratios have to be chosen accordingly to the probability
with which a user visits the corresponding square and
the average number of information items requested by
a user in this square.

The basic term of the metric is the average local
hit-ratio H (i) achieved with the hoarding mechanism
in a square i. It is defined as follows:

H(i) = {

where r(4) is the average total number of information
items requested by the users while staying in square
i. b(7) is the average number of items which are both
found among the items hoarded for square i and re-
quested from the users in square 3.

From the local hit-ratios the average hit-ratio H for
a hoarding area can be calculated as follows:

H= > wi)-H(),

Vi:i€S

°()
(i)’

00,

r(i) >0
r(i) =0

; (4)

(5)

where S is the set of squares located in the hoard-
ing area and w(i) is the weight of square i, which is
defined as follows:

> r(d)-p()’

vjeS

(6)

where p(i) is the probability with which a users visits
square 1.

Since with every hoarding mechanism high hit-
ratios are achievable as long as the number of informa-
tion items hoarded on the mobile device is big enough,
we always have to take into account the number of in-
formation items that have been hoarded in order to
achieve a certain hit-ratio. So if we want to compare
the hit-ratios of two different hoarding mechanisms,
we have to assure that the hit-ratios are achieved with
the same amount of hoarded data.

4.2 Assumptions

Initially, we assume that the average total number
(i) of information items requested from a user while

staying at a certain square 7 is the same for all squares
and denote it with r. A further assumption is that the
sets of information items related to different squares
do not overlap. We also assume that the users request
exactly the items they are expected to request accord-
ing to the correlation table. If this assumption should
not hold true in real scenarios, only the absolute hit-
ratios will decrease, but the qualitative results of the
comparisons between the simple mechanism and our
mechanism will stay the same.

For the average number b(i) of information items
requested at square ¢ and found among the items
hoarded for square ¢ this means:

r > h(i)
r < h(i)

where h(i) is the number of items hoarded for square
i. Unless otherwise specified we used the following
parameter settings for our analyses: The size of the
considered hoarding area was set to 100 squares, the
maximum amount of hoarded data to T" = 4000k B,
and the size s of an information to s = 40kB. For r
we chose a default of 5 requests per square.

We also assumed that the expected speed e is the
same in all squares and the visit probabilities of the
squares are distributed according to a Gaussian dis-
tribution. So, we can calculate the visit probability
p(i) of square i as:

1 G—m)?
'L.:—'e_ 202 ,1<'L<100
p(i) o <i <

Initially, we chose ¢ = 10 and px = 50. The case
where both visit probability and expected speed are
randomly distributed is considered separately later on
in this section. In Subsection 4.4 we also give up the
assumption that the number of requested items 7(3) is
the same for all squares 7. In Table 2 we summarized
our default parameter settings.

4.3 Constant Speed

The results presented in this section are all based on
the assumption that the average speed of the users’
movement is the same in all squares. We set the con-
stant ¢ in formula (1) for the determination of the
hoarding scores to 0. This means the expected speeds
have not been considered, when the hoarding scores
were calculated.

According to equations (1) and (2) we can deter-
mine the relative hoarding score 5(i) of square i as

Parameter

Value

size of hoarding area

100 squares

amount of hoarded data T 4000 kB
size of information item s 40 kB
requested items per square r 5

distribution of visit probabilities

Gaussian o = 10, p = 50

Table 2: Parameter settings.

follows:
p(i)+-c-e(d) p(4)
50) = g —— = - = ()
S p(i)+c-e(d) p(j)
4 c+1 4 Pmaz
Jj=1 Jj=1

With (3) we can calculate the number h(i) of items
our mechanisms hoards for square i:

h(i) = round (@) = round (E(”TT>

Figure 7 shows the values of h(i) we get for the 100

considered squares. With the simple algorithm one
4 T T T T T T T T
(2}
£ 3t .
e
°
5]
S
]
2 2r 1
ks
@
Qo
g 1} .
[=
0 1 1 Il Il Il 1 1
0 10 20 30 40 50 60 70 80 90 100

square number
Figure 7: Number of items hoarded for each square.

item is transferred for each square, since the maxi-
mum amount of data 7' allows to transfer a total of
L =100 items or one item per square.

With (4), (5), (6), and the assumption that r(i) = r
for every square i, we get for the average hit-ratio H
achieved with our mechanism in the considered hoard-

ing area:
100 . 100 .
m=y | n | = X (- 12)

=1 r. ;p(j)

In contrast, we get for the simple algorithm:

% <p(i)-%> :%

Number of requested items: In our first analysis we
varied the number r of requested items within each
square ¢. The plot in Figure 8 shows the average hit-
ratios H we got for both our proposed mechanism and
the simple mechanism. The hit-ratios show that it is
highly beneficial to consider the user’s context, since
our proposed algorithm outperforms the simple ap-
proach, except for r = 1. For this small number of re-
quests the simple algorithm is better, since it transfers
one item for every square. Therefore, the requested
item can always be found in the hoard. Our mech-
anism, however, does not transfer any item for some
seldom visited squares. If the users visit such a square,
they will suffer from a hoard miss. Therefore, we get
a slightly smaller hit-ratio with our mechanism in this
special case of only one request per square.

1y proposed algorithm ¢
o simple algorithm ©
0.8 © R
o
.% 0.6 [o i
04 o R .
H o
[m]
0.2 o O ; -
o o d
0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
number of requested items

Figure 8: Achieved hit-ratios for different numbers of
information items requested in each square.

10

Number of hoarded items: We also examined the
effect that the total number of information items
transferred between server and mobile device has on
the hit-ratios. In other words we varied the value of
%. Thereby, it does not matter, if we vary the size s
of an information item or the amount 7T of data trans-
ferred. The results for our proposed mechanism and
the simple mechanism are depicted in Figure 9.

0.9

0.8 proposed algorithm ——

simple algorithm -+--
0.7
0.6
0.5

0.4

hit-ratio

0.3
0.2

0.1

O/KT/ 1 1 1 1 1 1 1

0O 20 40 60 80 100 120 140 160 180 200
total number of hoarded items

Figure 9: Hit-ratios for different numbers of hoarded
information items.

Distribution of visit probabilities: Since we do not
know, according to which distribution the visit prob-
abilities in a real environment will be distributed, we
were interested in the stability of our results when
the type of the distribution of the visit probabilities
changes. Therefore, we repeated our first analysis
with different distributions. The results in Figure 10
show that the performance of our mechanism is always
better than that of the simple algorithm independent
of the type of distribution used for the visit probabil-
ities.

Since, our mechanism relies on exploiting differ-
ences in the visit probabilities of different squares, the
hit-ratio becomes worse when the differences in the
visit probabilities decrease. Figure 11 illustrates this
effect. It shows the hit-ratios for a Gaussian distribu-
tion with different standard deviations. In scenarios
where the users have clear preferences in the visited
squares, i.e. the standard deviation of the Gaussian
distribution is low, our algorithm achieves its best re-
sults. But even for high standard deviations, i.e. when
the visit probabilities do almost not differ, our algo-
rithm does not perform worse than the simple algo-
rithm.

11

0.9
0.8]
0.7
0.6
0.5
0.4
0.3
0.2
0.1

simple algorithm
zipf

lognormal
Gaussian

X O+ <

hit-ratio
K+

&

2

3

4 5 6 7
number of requested items

[ee)

10

Figure 10: Hit-ratios for different distribution types.

1

proposed algorithm —-—
simple algorithm

0.8

0.6

hit-ratio

0.4

0.2

20

10 15 25
standard deviation

Figure 11: Hit-ratios for different standard deviations.

4.4 Variable Speed

We also analyzed the effect a random distribution of a
user’s expected speeds within the squares has on our
mechanism. To assure that the mechanism considers
the expected speeds, we set the constant ¢ in formula
(1) for the hoarding scores to 1. We assumed that the
expected relative speed e(i) of a user in square i can
be calculated as follows:

p(i)

p(p)

where v,,4, 1S the maximum and v,,,;, the minimum
speed. The motivation for this assumption is that
the users will probably stay longer in the popular, of-
ten visited squares than in seldom visited ones. Fur-
thermore, we assume that the number of information
items r(7) requested in square i depends on the ex-

e(i) = Vin + () - (Vmaz — Vmin)),

pected relative speed in this square:

p(i)

r(i) = R — round ((1 -

)#).

where R is the maximum number of items requested
in a square. If a user crosses a square fast, only a
few items will be requested. If the square is crossed
slowly, many items will be requested. Although the
assumptions about the distribution of the user’s ex-
pected speeds and the number of requested items are
somehow speculative, we can use them to show the
potential benefit we can get from considering a user’s
future context. Figure 12 shows the hit-ratios we get
for different values of R.

D S simple algorithm ¢
09 I proposed algorithm +
0.8 | + —
0.7 N 4
o
= &
$ 0.6 | N 4
E osf + .
N
04 | © -
<
03 o —
<&
0.2 © o . E
01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
maximum number of requested items
Figure 12: Hit-ratios for different maximum numbers

of requested items.

Finally, we determined the number of items that
have to be transferred to achieve a given hit-ratio.
For this analysis we set the maximum number R of
items requested in a single square to 5. The results
illustrated in Figure 13 show again the high potential
benefit of considering the users’ context.

Note, that in this paper we have only analyzed the
potential benefits we can get, if the visit probabilities
and expected speeds are distributed according to our
assumptions. To analyze the efficiency of our mech-
anism in a real scenario, we would have to verify if
these assumptions are correct. But therefore, we need
statistics about the behavior of real users, which we
do not have so far. However, we showed that even if
there are only small preferences in the visited squares,
we already get benefits from considering the users’ fu-
ture context.

12

500

450 I proposed algorithm —~— a
simple algorithm -+--- y
400 | e
v
350 |- p N
g 300} |
o o
° 250 | /*/ |
2 ¥
c 200 /7]
=}
c

150
100
50

30

40 50 60

hit-ratio in %

70 80 90 100

Figure 13: Number of items needed to achieve a given
hit-ratio.

5 Related Work

In this section we reflect the work on mobile infor-
mation access done so far. We evaluate the usability
of the existing approaches in the context of location-
dependent information systems and compare them to
our solution.

In (Chang et al., 1997) an asynchronous informa-
tion access is proposed, i.e. if an information request
occurs while no or only a low bandwidth is available,
it is delayed until a high bandwidth network connec-
tion is available. The problem with this approach is
that the users might then not be interested in the
requested information anymore, as in the meantime
they moved on to another location.

Other approaches, like (Davies et al., 1999) or (Hu
et al., 1999), are based on broadcast dissemination
of information. Their primary focus is to reduce the
response time and to increase the scalability of the
system. If they are location-aware, they are designed
to support the users with the information items they
need at their current location, e.g. within the cov-
erage area of one cell of the dissemination system.
Therefore, broadcast-based dissemination mechanism
do not make any predictions on the information items
the users will need after leaving for another location.
Furthermore, they are usually based only on the users’
access patterns and do not use any available external
knowledge. If the access patterns of the users differ
strongly the efficiency of these approaches decreases.
However, a broadcast based information dissemina-
tion might be useful in our approach to decrease the
bandwidth required for the hoarding processes at the
info-stations.

The first hoarding approaches that were espe-
cially designed to support users during disconnections,
e.g. (Satyanarayanan et al., 1990), relied on user in-
teractions and required a list of the user’s preferred
information items. This is not applicable in our sce-
nario, because the users do not know in advance which
information items they will access. In (Kuenning and
Popek, 1997) an automated hoarding mechanism is
proposed, which uses semantic distances between files
in order to predict which files a user will need. In con-
trast to our approach the user’s location is not con-
sidered there. The hoarding tool described in (Tait
et al., 1995) also relies only on file access patterns.

In (Ye et al., 1998) the user’s position and move-
ment pattern is considered for the determination of
the items to be hoarded. This approach is focused
on a map application for people driving on roads and
can not be used as a generic mechanism for differ-
ent types of location-dependent information systems.
For example, the considered request patterns are re-
stricted to the driving scenario. It is also assumed
that the start and end point of the users’ trips are
known. With our mechanism this is not necessary,
since it can rely on the internal knowledge to deter-
mine the direction a user will probably follow.

In (de Nitto Persone et al., 1998) it is assumed,
like in our approach, that information items can be
mapped to certain areas. This work provides a valu-
able analysis of the effectiveness of location-aware
hoarding. However, it is again focused on response
time reduction and not on disconnected operations.
Knowledge about the users’ future movements is only
used in the case of a linear movement, e.g. along a
road. Then, more information belonging to the area
in the users preferred direction is hoarded than for the
area in the opposite direction.

6 Conclusion

In this paper we presented a generic, context-aware
hoarding mechanism. The main advantage of it is
that it can be deployed in any location-dependent in-
formation system. It is not restricted to a certain ap-
plication or user category. Furthermore, it uses both
external and internal sources of information about a
user’s context. In this way it is able to use all avail-
able knowledge about a user’s future behavior to the
maximum extend in order to make precise hoarding
decisions.

We explained the three basic problems in develop-

13

ing our mechanism. Afterwards, we identified the dif-
ferent types of internal knowledge that can be used
for the hoarding decision and showed how this knowl-
edge can be gathered and stored in hoarding profiles.
We also introduced hoarding patterns as a means for
a client application or user to specify external knowl-
edge. We finished the explanation of our mechanism
with the illustration of a prototype architecture and
the overall functionality of the mechanism.

Finally, we analyzed the potential benefits of us-
ing information about a user’s future location and/or
speed of movement for the hoarding decision. The
results showed that even if there are only small pref-
erences in the visited squares, we already get benefits
from considering a user’s future context.

In the near future we plan to integrate our mech-
anism in a platform for context-aware applications
currently developed at our department (Hohl et al.,
1999). We also want to install an info-station infras-
tructure in order to test our mechanism in a real sce-
nario. We will then be able to fine tune our prototype
architecture and to examine the effect that different
parameters, e.g. the size of a square, have on the effi-
ciency of our mechanism.

References

Abowd, G., Atkeson, C. G., Hong, J., Long, S.,
Kooper, R., and Pinkerton, M. (1997). Cyber-
guide: a mobile context-aware tour guide. Wire-
less Networks, 3(5):421-433.

Badrinath, B. R., Imielinski, T., Frenkiel, R., and
Goodman, D. (1996). Nimble: Many-time, many-
where communication support for information
systems in highly mobile and wireless environ-
ments.
http://www.cs.rutgers.edu/~badri/dataman/nimble/ .

Chang, H., Tait, C., Cohen, N., Shapiro, M., Mas-
trianni, S., Floyd, R., Housel, B., and Lindquist,
D. (1997). Web browsing in a wireless environ-
ment: Disconnected and asynchronous operation
in artour web express. In Proceedings of the
Third Annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking (Mo-
biCom ’97), pages 260—269, Budapest, Hungary.

Chim, J., Green, M., Lau, R., Leong, H., and Si, A.
(1998). On caching and prefetching of virtual ob-
jects in distribued virtual environments. In Pro-

ceedings of the 6th ACM International Confer-
ence on Multimedia, pages 171-180.

Davies, N., Cheverst, K., Mitchell, K., and Friday, A.
(1999). Caches in the air: Disseminating infor-
mation in the guide system. In Proceedings of
the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA ’99), New
Orleans, USA.

Davies, N., Mitchell, K., Cheverst, K., and Blair, G.
(1998). Developing a context sensitive tourist
guide. In Proceedings of the First Workshop on
Human Computer Interaction with Mobile De-
vices, pages 64—68, University of Glasgow, Scot-
land, U.K.

de Nitto Persone, V., Grassi, V., and Morlupi, A.
(1998). Modeling and evaluation of prefetching
policies for context-aware information services. In
Proceedings of the Fourth Annual International
Conference on Mobile Computing and Network-
ing (MobiCom ’98), pages 55—64, Dallas, Texas,
USA.

Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K.,
and Schwehm, M. (1999). Next century chal-
lenges: Nexus — an open global infrastructure for
spatial-aware applications. In Proceedings of the
Fifth Annual International Conference on Mo-
bile Computing and Networking (MobiCom ’99),
pages 249-255, Seattle, WA, USA.

Hu, Q., Lee, D. L., and Lee, W.-C. (1999). Per-
formance evaluation of a wireless hierarchical
data dissemination system. In Proceedings of the
Fifth Annual International Conference on Mo-
bile Computing and Networking (MobiCom ’99),

pages 163—-173, Seattle, WA, USA.

Kuenning, G. and Popek, G. (1997). Automated
hoarding for mobile computers. In Proceedings
of the 16th ACM Symposium on Operating Sys-
tems Principles (SOSP ’97), pages 264-275, St.
Malo, France.

Liu, G. and Maguire Jr., G. (1995). Efficient mobility
management support for wireless data services.
In Proceedings of the 45th Annual IEEE Vehic-
ular Technology Conference (VTC ’95), pages
902-906, Chicago, IL, USA.

Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki,
M., Siegel, E., and Steere, D. (1990). Coda:

14

A highly available file system for a distributed
workstation environment. IEEFE Transactions on
Computers, 39(4):447-459.

Tait, C. D., Lei, H., Acharya, S., and Chang, H.

(1995). Intelligent file hoarding for mobile com-
puters. In Proceedings of the First International
Conference on Mobile Computing and Network-
ing (MobiCom’95), pages 119-125, Berkeley, CA,
USA.

Want, R., Hopper, A., Falcao, V., and Gibbons, J.

(1992). The active badge location system. ACM
Transactions on Information Systems, 10(1):91-
102.

Ye, T., Jacobsen, H-A., and Katz, R. (1998). Mo-

bile awareness in a wide area wireless network of
info-stations. In Proceedings of the Fourth Inter-
national Conference on Mobile Computing and
Networking (MobiCom ’98), pages 109-120, Dal-
las, TX, USA.

