
PREPRINT

Parallelizing Sparse Grid Volume Visualization
with Implicit Preview and Load Balancing

Matthias Hopf Thomas Ertl

Visualization and Interactive Systems Group, IfI, University of Stuttgart

Abstract

New algorithms that work entirely on sparse grids can create data
sets that cannot be handled on uniform grids any more due to their
size. On the other hand, most visualization techniques are only
capable of handling uniform grids. As the interpolation on sparse
grids is a complicated and time consuming process, direct volume
visualization is unthinkable for bigger data sets until the underlying
interpolation is accelerated by some orders of magnitude.

On the other hand, quite a number of super computers and PC clus-
ters exist nowadays, providing MPI as the primary communication
API. By streaming the data sets and the resulting images from and
to the end user’s workstation, their processing power can be utilized
without leaving the office.

Parallelizing visualization techniques rises the necessity to balance
the computational load, and for time consuming rendering methods
previews are useful for the user. Both, generating preview images
and load balancing, is performed explicitly in most cases. In this
case study, we approach these problems by applying a special pixel
rendering sequence, which achieves superb results implicitly with-
out generating communication overhead.

Keywords: sparse grids, parallel, volume visualization, preview,
load balancing, MPI

1 Introduction

The ever growing size of data sets resulting from industrial and sci-
entific simulations and measurements have created the need to em-
ploy multi-resolution techniques for both analysis speedup and data
reduction. Among the most sophisticated approaches are wavelets
and sparse grids. Based upon hierarchical tensor product bases, the
sparse grid approach is a very efficient one improving the ratio of
invested storage and computing time to the achieved accuracy for
many problems in the area of numerical solution of partial differen-
tial equations, for instance in numerical fluid mechanics. Recently,
the best of both worlds have been merged by using wavelet bases in
the sparse grid representation of multi-resolution data sets [4]. We
are studying how these grids can be visualized interactively.

There are already several algorithms that are working entirely on
sparse grids [1, 2, 5, 6, 17], creating data sets that cannot be han-
dled on uniform grids in full resolution any more due to their size.

fhopf,ertl g@informatik.uni-stuttgart.de

Institut für Informatik
Breitwiesenstr. 20 – 22
70565 Stuttgart
Germany

Many of these systems work on three dimensional data. One of
the best understood volume visualization techniques for scalar data
is direct volume rendering [3, 7, 8, 16]. Velocity information and
1-forms, on the other hand, can be preprocessed so that direct vol-
ume visualization can be used for this data type as well, e.g. with
three dimensional LIC [11]. The visualization of 2-forms is yet an
unsettled question. As the underlying interpolation is the computa-
tion time dominating algorithmic part, we cannot benefit from hard-
ware accelerated volume visualization techniques. Thus we use ray
casting, which guarantees for the best image quality at little or no
additional cost.

We have already introduced visualization toolkits that are working
directly on sparse grids [12, 13, 14]. By accelerating the sparse
grid interpolation using special graphics hardware we were able to
perform direct volume rendering interactively. However, the graph-
ics hardware acceleration approach is limited to high end graphics
systems with a high pixel depth and to sparse grids of level 10-
11 (which resemble uniform grids of size 10253-20493) and below.
Low end graphics systems have only a pixel depth of 8 bits per
channel, which is far too less for sufficient accuracy. Sparse grids
of level 12 and above have limited accuracy due to a high compo-
nent scaling factor — for details see [13]. Additionally, the graph-
ics hardware approach does not scale with current hardware, as the
days of most high end graphics suppliers seem to be counted, and
no really new systems are available.

2 Sparse Grids

In this section a brief summary of the basic ideas of sparse grids is
given. For a detailed survey of sparse grids we refer to [1, 17].

When talking about volume visualization, the data is usually given
on a uniform grid with trilinear basis functions. Interpolation on
these grids is computationally cheap, as one has only to locate and
evaluate the surrounding 23 = 8 basis functions for one interpola-
tion value. This number does not change with respect to the grid
size.

Now letGi1;i2;i3 be a uniform grid with respective mesh widthshi j =

2�i j , j = 1;2;3 and basis functionsb
i j

k . Let L̂n be the function space
of the piecewise tri-linear functions defined onGn;n;n and vanishing
on the boundary. Additionally, consider the subspacesSi1;i2;i3 of L̂n

with 1� i j � n, j = 1;2;3, which consist of the piecewise tri-linear
functions defined onGi1;i2;i3 and vanishing on the grid points of all
coarser grids, with

L̂n =

nM

i1=1

nM

i2=1

nM

i3=1

Si1;i2;i3 : (1)

PREPRINT

Figure 1: Examples of basis
functionsb1

1 andb2
1

Figure 2: Interpolation on a
sparse grid of level 4

This forms a hierarchical basis decomposition of the function space
L̂n where piecewise tri-linear finite elements are used as basis func-
tions in each subspaceSi1;i2;i3 (compare Fig. 1 for one-dimensional
examples). From now on we will deal with the interpolated func-
tion fi1;i2;i3 on the grids of the above mentioned subspaces. Please
note that the basis functions of these subspaces do not overlap, com-
pared to the basis functions ofL̂n.

When looking at the interpolation error, one finds thatk fi1;i2;i3k has
a contribution of the same order of magnitude, namelyO(2�2�const)

for all subspaces withi1+ i2+ i3 = const.

Additionally, these subspaces have the same number of basis func-
tions, namely 2const�3. Since the number of basis functions is
equivalent to the number of stored grid points and because of the
contribution argument as well, it seems to be a good idea to define
a sparse grid spacẽLn as follows (compare also Fig. 3):

L̃n :=
M

i1+i2+i3�n+2

Si1;i2;i3 : (2)

An estimation of the interpolation error with regard to theL2 or
L∞ norm (compare [1, pp. 23]) shows that the sparse grid inter-
polated functionf̃n is nearly as good as the full grid interpolated
function f̂n.

Now we consider the dimensions of the function spacesL̂n and
L̃n, which correspond to the number of nodes of the underlying
grids. Obviously, the dimension of the full grid space is given by
dim(L̂n) =O

�
23n

�
=O

�
h�3

n
�
. For the sparse grid the following re-

lation holds: dim(L̃n) =O
�
2nn2

�
=O

�
h�1

n
�
log2

�
h�1

n
��2

�
. There-

fore, a tremendous amount of memory can be saved if sparse grids
are used instead of full grids.

Considering the number of basis functions that contribute to the
interpolated function, sparse grids are much more computational
intensive than uniform grids. Fig. 2 shows in an example which
basis functions have to be evaluated to interpolate the sparse grid at
the marked position.

3 Parallelization

A lot of work has been done to implement parallel volume ray-
casting on PC clusters [9, 10]. By using MPI the parallelization pro-
cess itself is relatively straight-forward, spreading the rays across
the available processors. Memory management is not really an is-

S1,1

S3,3S1,3

S1,2

S2,1 S3,1

Figure 3: Two-dimensional hierarchical subspace decomposition

sue, as sparse grids need only very little data space and can thus be
replicated throughout the cluster.

A key problem that is noteworthy is that scientists are often unable
to work at the front-end nodes of the cluster directly. Thus, the
rendered data has to be streamed to the users’ workstations. This
is done by a dedicated communication node (typically not all nodes
have direct internet connection), that collects incoming ray data and
serves the TCP stream. As the pixels delivered by the render nodes
may come in any order, the communication node sends both pixel
position and RGBA values to the workstation, making a total pack-
age size of 8 bytes per pixel. With this information the visualization
process can continuously generate preview images from early ren-
dered rays.

As the clusters are often shielded by firewalls, ssh tunneling may
be required. This seems to be a horrible bottleneck, but in fact the
interpolation process on sparse grids is so computational intensive,
that slow communication is not hindering the visualization process.

4 Implicit Preview and Load Balancing

The remaining freedom in this process is the distribution of rays
among the nodes. Usually, the ’master’ node selects by some
scheme which node shall render which ray and sends new orders,
when a job has been done. However, when several nodes finish
their job at the same time, the lag between delivering rays and get-
ting new job data can be quite annoying.

Implicit assignment of rays as a function of the images sizes=
sx �sy, the number of processorsn, and the rankr (the index of the
current processor) prevents any additionally communication over-
head and reduces the lag between rendered rays to the time needed
to calculate the next ray assignment.

The quality of the ray assignment function has great impact on
equalizing the rendering time of the processors as well as on the
possibility to generate previews from early rendered rays. By pro-
viding previews the user can very often make decisions about the
significance of the rendered images, when only a very small fraction
of the rays have been computed. So the quality of the ray assign-
ment is reflected in three properties:

2

PREPRINT

0

3 1

2 0.0 2.0

1.03.0

0.2 2.2

2.12.30.10.3

3.2

3.3 3.1 1.3 1.1

1.2

Figure 4: Recursive Pattern for total or-
dering scheme

80 2 10

12 4 14 6

91113

15 7 13 5

Figure 5: Final index
pattern

0.0.2
0.0.1
0.0.0

0.0.3

0.1.1
0.1.0

0.1.2
0.1.3

1.0.2
1.0.3

1.0.1
1.0.0

1.1.0
1.1.1

2.0.0
2.0.1

0.2 0.3 1.0

0

0.2.0
0.2.1 ...

0.0 0.1 1.1 1.2 1.3 2.0 2.1 ...

1 2 3

...

... ...

root

0.0.0 1.0.0 2.0.0 3.0.0 0.1.0 1.1.0 2.1.0 3.1.0 0.2.0 ... 0.0.1 1.0.1 2.0.1 ...

Transposed Indices:

Figure 6: Transposed indexing of the index tree

a The distribution of rays for one processor should be evenly
spread in space.

b The distribution of rays should be evenly spread in time.

c Rays that fall in slots of coarser grids should be rendered first.

a) ensures that the load between the processors is stochastically im-
plicitly balanced, while b) and c) ensure that early rendered rays
can be combined to form a preview image.

A very simple scheme assigns the rays
�

p : r s
n � p< (r +1) s

n

	
to

rankr. In order to be able to render early previews, one could index
the rays in both image dimensions. However, the processors will
typically be active for very different times, and the process is only
finished after the last processor is done.

By assigning every nth ray with fp : p modn= rg in an interleav-
ing pattern to the nodes one can overcome this problem. However,
with this pattern no previews can be generated from early rendered
rays.

For ensuring properties b) and c) one can use the pattern in Fig. 4
to generate a total ordering for all rendered rays. The pattern itself
is applied recursively, generating a tree of pixel index leafs (Fig. 6).
The indices are now transposed so that the highest node index runs
fastest. Then continuous numbers are assigned to the leafs, which
results in an pixel ordering scheme that can be seen in Fig. 5. In
practical implementations the pixel order indices can be generated
by a recursive function without explicitly building the tree. For
arbitrary image sizessx;y 6= 2m the pattern has to be cropped and
the indices have to be reordered.

We can now divide the index list intosn slotsSt of sizen:

St := fx : tn� x< (t+1)ng

We will assign the rays of each slot individually to the processor
nodes, so that each processor gets exactly one ray from each slot,
which it will render in the order of increasingt.

One can clearly see, that the firstn := 2i rays fill exactly the pixel
slots of coarser grid resolutions, as can be seen in Fig. 7. This
way we get perfect preview images that can be computed from the
rays rendered on coarser grids. As the fastest running index in this
scheme corresponds to the lowest resolution grid, adjacent indices
are usually not close-by in image space. Thus the temporal distri-
bution of rays is perfectly balanced as well.

Figure 7: The first 64, 128, 256 rendered rays on an 642 image

The selection of ray indices for one processor

xt := tn+ i(t; r) with xt 2 St ; 0� i(t; r)< n

has one more freedom to investigate, the index selection func-
tion i(t; r). As the index selection should make no differences for
the individual processors, we can set

i(t; r) := (ı̃(t)+ r) modn :

This way we easily ensure that the set of rays do not intersect.

In order to spread the rays for one processor evenly in space, ˜ı has
to be selected carefully. The very first thought would be to use
ı̃(t) = const or ˜ı(t) = t. But both trivial functions do not spread
well for all combinations ofs andn. Especially whenn dividessx

or sy, the rays cluster on one part of the image. For values that are
prime, however, good results can be achieved (see Fig. 10 on the
color plate).

Heuristically, we have found an index distribution function that cre-
ates very evenly spaced ray selections for almost all combinations
of s andn, and the worst cases encountered so far are not as prob-
lematic as the ones described above.

Although we do not currently know whether the quality of this in-
dex selection function can be proven somehow, it is still a very us-
able approach in practical implementations as it can be computed
iteratively with very low computational costs. Figure 11 shows sev-
eral distributions created with this approach.

By subdividing the image plane into several tiles, each one a bit
larger thann, one can use an iterative algorithm, that counts how
many times a ray has already been assigned to the processor on a
particular tile, thus ensuring that every tile is at least addressed once
by each processor. The most important aspect of this idea is that
the algorithm can, again, run separately on each processor without
additional communication.

The suggested ray selection method has one drawback that may
make it useless for some types of scenes. Cache coherency will not
be employed at all using this kind of selection pattern, so memory
bound problems may be slower than with tile based approaches.
But this is a problem shared by most non-explicit load balancing
algorithms.

3

PREPRINT

0

25

50

75

100

125

150

175

1 2 4 8 16 32 64 128 192

level 8
level 10
level 12
level 14

Figure 8: Rendering speed in
rays per second and processor
vs. number of processors.

0.9

0.92

0.94

0.96

0.98

1

1 2 4 8 16 32 64 128 192

level 8
level 10
level 12
level 14

Figure 9: Load balancing qual-
ity.

5 Results

The parallelization version has been tested both on a set of worksta-
tions with a TCP/IP implementation of MPI (LAM) and on the new
PC cluster ’Kepler’ [15] of the University of T¨ubingen. This clus-
ter consists of 96 dual PIII nodes connected with Myrinet, and two
additional front-end nodes. The results were streamed to the Uni-
versity of Stuttgart. All rendering times presented here include the
communication lag, which off course affects the rendering speedup
significantly. The visualization of the incoming ray data is per-
formed in a sparse grid visualization toolkit that effectively hides
the parallelization technique from the user.

First, we were interested in the scalability and load balancing qual-
ity of our approach. As one can see in Fig. 8, the system scales
almost perfectly with the number of processors, as long as the prob-
lem is computational bound, and the final TCP streaming is not hin-
dering the rendering process. Load balancing works also extremely
well for a system that does not require any additional communica-
tion at all. The load balancing presented in Fig. 9 is expressed as
the quotient of the rendering time of the fastest and the slowest pro-
cessor. Note that a bad load balancing has immediate influence on
the scaling properties as well.

We found that being able to generate previews completely elimi-
nates the need to reduce the image resolution e.g. for finding good
views of the volume. As soon as one is satisfied with image preci-
sion, the rendering process is interrupted and a new view can be set.
Figure 12 on the color plate shows different stages of this process.

Figures 13 and 14 on the color plate show views of a data set that we
were able to render in interactive rates for the very first time. This
data set and other following data sets have been computed directly
on sparse grids and cannot be expanded to uniform grids due to
their size.

6 Conclusion

Parallelization isthekey feature to create high quality volume vi-
sualization images at interactive rates. Due to the nature of sparse
grids (small data size, high computational complexity), the paral-
lelization itself is relatively straight-forward, and neither memory
consumption nor access times are problematic. In this context im-
plicit load balancing works terrific, and does not imply any addi-
tional communication overhead. By using a specialized ray distri-
bution pattern we can additionally create early preview images with
no additional cost. We are now able to visualize huge data sets com-
puted directly on sparse grids in high quality in acceptable time for
interactive visualization sessions, which was not possible before.

7 Acknowledgements

I would like to thank Vasile Gradinaru from the mathematical in-
stitute of Tübingen for his help and the supplied data sets. Peter
Leinen from the University of T¨ubingen made the timing measure-
ments possible by helping us with the new PC cluster ’Kepler’, on
which our system has been tested.

References

[1] H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adap-
tiven Lösung der dreidimensionalen Poisson-Gleichung. PhD thesis,
Technische Universit¨at München, 1992.

[2] H.-J. Bungartz and T. Dornseifer. Sparse grids: Recent developments
for elliptic partial differential equations. Technical report, TU Munich,
1997.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware. In
Symposium on Volume Visualization, pages 91–98, October 1994.

[4] V. Gradinaru and R. Hiptmair. Whitney Forms on Sparse Grids. Tech-
nical Report 153, University of T¨ubingen, Department of Mathemat-
ics, Tübingen, April 2000.submitted to Numerische Mathematik.

[5] M. Griebel, W. Huber, U. R¨ude, and T. St¨ortkuhl. The combination
technique for parallel sparse-grid-preconditioning or -solution of pde’s
on multiprocessor machines and workstation networks. In L. Boug´e,
M. Cosnard, Y. Robert, and D. Trystram, editors,Second Joint Inter-
national Conference on Vector and Parallel Processing, pages 217–
228, Berlin, 1992. CONPAR/VAPP, Springer-Verlag.

[6] M. Griebel, M. Schneider, and C. Zenger. A combination tech-
nique for the solution of sparse grid problems. In P. de Groen and
R. Beauwens, editors,International Symposium on Iterative Methods
in Linear Algebra, pages 263–281, Amsterdam, 1992. IMACS, Else-
vier.

[7] A. Kaufman. Volume Visualization. IEEE Computer Society Press,
1991.

[8] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. InComputer
Graphics Proceedings, Annual Conference Series, pages 451–457,
Los Angeles, California, July 1994. ACM SIGGRAPH, Addison-
Wesley Publishing Company, Inc.

[9] K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. A Data
Distributed Parallel Algorithm for Ray-Traced Volume Rendering. In
Parallel Rendering Symposium, pages 15–22, New York, 1993. ACM
SIGGRAPH.

[10] M. E. Palmer, S. Taylor, and B. Totty. Exploiting Deep Parallel Mem-
ory Hierarchies for Ray Casting Volume Rendering. InParallel Ren-
dering Symposium, pages 15–22, New York, 1997. ACM SIGGRAPH.

[11] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive Ex-
ploration of Volume Line Integral Convolution Based on 3D–Texture
Mapping. InProc. Visualization ’99, pages 233–240. IEEE, 1999.

[12] C. Teitzel, R. Grosso, and T. Ertl. Particle Tracing on Sparse Grids. In
D. Bartz, editor,Proc. 9th Eurographics Workshop on Visualization in
Scientific Computing, pages 132–142, 1998.

[13] C. Teitzel, M. Hopf, and T. Ertl. Volume Visualization on Sparse
Grids. Computing and Visualization in Science, (2):47–59, 1999.

[14] C. Teitzel, M. Hopf, and T. Ertl. Scientific Visualization on Sparse
Grids. In H. Hagen, G. M. Nielson, and F. Post, editors,Proceedings
of Scientific Visualization - Dagstuhl ’97, pages 284–295, Heidelberg,
2000. IEEE Computer Society, IEEE Computer Society Press.

[15] University of Tübingen. http://kepler.sfb382-zdv.uni-tuebingen.de/,
2000.

[16] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware
in Volume Rendering Applications.Computer Graphics SIGGRAPH
’98, 32(4):169–179, 1998.

[17] C. Zenger. Sparse grids. InParallel Algorithms for Partial Differential
Equations: Proceedings of the Sixth GAMM-Seminar, Kiel, 1990.

4

PREPRINT

Figure 10: Ray distribution for trivial index selection functions,
different processors are encoded with different colors. 642 rays,
ı̃(t) = conston 4 processors, ˜ı(t) = t on 4 and 5 processors.

Figure 11: Ray distribution for the heuristic index selection function,
642 rays on 4 and 5 processors, 652 rays on 5 processors.

Figure 12: Preview images after 0.625%, 3.125%, 6.25%, and 100% of 160000 rays have been rendered.

Figure 13: A sparse grid data set of level 12 (corresponding to a
full grid of size 20473) rendered with an X-ray shading method

Figure 14: The same data set rendered with multiple semitrans-
parent shaded ISO-surfaces

5

