PREPRINT

Parallelizing Sparse Grid Volume Visualization
with Implicit Preview and Load Balancing

Matthias Hopf Thomas Ertl

Visualization and Interactive Systems Group, Ifl, University of Stuttgart

Abstract Many of these systems work on three dimensional data. One of
the best understood volume visualization techniques for scalar data

New algorithms that work entirely on sparse grids can create datais direct volume rendering [3, 7, 8, 16]. Velocity information and

sets that cannot be handled on uniform grids any more due to their1-forms, on the other hand, can be preprocessed so that direct vol-

size. On the other hand, most visualization techniques are only yme yisualization can be used for this data type as well, e.g. with

capable of handling uniform grids. As the interpolation on sparse . . . - .
grigs is a complicagt}ed and tingle consuming progess, direct VF(;Mmethree dimensional LIC [11]. The visualization of 2-forms is yet an

visualization is unthinkable for bigger data sets until the underlying unsettled question. As the underlying interpolation is the computa-
interpolation is accelerated by some orders of magnitude. tion time dominating algorithmic part, we cannot benefit from hard-
On the other hand, quite a number of super computers and PC clusWare accelerated volume visualization techniques. Thus we use ray
ters exist nowadays, providing MPI as the primary communication casting, which guarantees for the best image quality at little or no
API. By streaming the data sets and the resulting images from and gdditional cost.

to the end user’s workstation, their processing power can be utilized

without leaving the office. We have already introduced visualization toolkits that are working

Parallelizing visualization techniques rises the necessity to balancedirectly on sparse grids [12, 13, 14]. By accelerating the sparse
the computational load, and for time consuming rendering methods grid interpolation using special graphics hardware we were able to
previews are useful for the user. Both, generating preview images perform direct volume rendering interactively. However, the graph-

and load balancing, is performed explicitly in most cases. In this fcs hardware acceleration approach is limited to high end graphics
case study, we approach these problems by applying a special pixe

rendering sequence, which achieves superb results implicitly with- Systems with a high pixel depth and to sparse grids of level 10-
out generating communication overhead. 11 (which resemble uniform grids of size 182804%) and below.

Low end graphics systems have only a pixel depth of 8 bits per

channel, which is far too less for sufficient accuracy. Sparse grids

of level 12 and above have limited accuracy due to a high compo-

nent scaling factor — for details see [13]. Additionally, the graph-

ics hardware approach does not scale with current hardware, as the

1 Introduction days of most high end graphics suppliers seem to be counted, and
no really new systems are available.

Keywords: sparse grids, parallel, volume visualization, preview,
load balancing, MPI

The ever growing size of data sets resulting from industrial and sci-

entific simulations and measurements have created the need to em- .
ploy multi-resolution techniques for both analysis speedup and data2 ~ Sparse Grids
reduction. Among the most sophisticated approaches are wavelets

and sparse grids. Based upon hierarchical tensor product bases, thg, this section a brief summary of the basic ideas of sparse grids is

sparse grid approach is a very efficient one improving the ratio of given. For a detailed survey of sparse grids we refer to [1, 17].
invested storage and computing time to the achieved accuracy for

many problems in the area of numerical solution of partial differen- When talking about volume visualization, the data is usually given
tial equations, for instance in numerical fluid mechanics. Recently, N @ uniform grid with trilinear basis functions. Interpolation on
the best of both worlds have been merged by using wavelet bases irfhese grids is computationally cheap, as one has only to locate and
the sparse grid representation of multi-resolution data sets [4]. We €valuate the surrounding’ 2- 8 basis functions for one interpola-
are studying how these grids can be visualized interactively. tion value. This number does not change with respect to the grid

size
There are already several algorithms that are working entirely on _ o _ _
sparse grids [1, 2, 5, 6, 17], creating data sets that cannot be hanNow letG;, , i, be a uniform grid with respective mesh widtis=

dled on uniform grids in full resolution any more due to their size. 2-ij, j=1,2,3 and basis functiorbLi. LetL,, be the function space
of the piecewise tri-linear functions defined Gapnn and vanishjng
{hopfertl }@informatik.uni-stuttgart.de on the boundary. Additionally, consider the subsp&aggs;i, of Ln
Institut fiir Informatik with 1 <ij <n, j = 1,2,3, which consist of the piecewise tri-linear
Breitwiesenstr. 20 — 22 functions defined o, j, i, and vanishing on the grid points of all
70565 Stuttgart coarser grids, with
Germany
n n n

L= P PS.iis - (1)

i1=1i,=1i3=1

PREPRINT

*eooce -------
o ° o \ . [v[e][e] [e][e]le][e]
[] o [] [] 2 o o o [] ‘ hd ‘ : ‘ hd H hd ‘ EEEE
$ XS i $ [e Jv[e]fe] [e]le][s][¢]
° \ . oo e 1 [e][e][e][e]
000000000000 000E® S13 L, . S33
o g o : I
o) L] L] L] 1 L] L] L] L]
o o o o o o o LI S | B | |
o Y
[e] [e] [e] L] L] L] : ° L] L] L]
o | T I |
Lam on 2 @ Sl,2 |_7_;—;_7_-.
1
Figure 1: Examples of basisFigure 2: Interpolation on a :
functionsb! andb? sparse grid of level 4 . e Il o ellollolle]
1
1
This forms a hierarchical basis decomposition of the function space S11 S21 Sa

Ln where piecewise tri-linear finite elements are used as basis func-
tions in each subspa& j, i, (compare Fig. 1 for one-dimensional
examples). From now on we will deal with the interpolated func-
tion fj, i, i, on the grids of the above mentioned subspaces. Please
note that the basis functions of these subspaces do not overlap, com
pared to the basis functions bf.

Figure 3: Two-dimensional hierarchical subspace decomposition

sue, as sparse grids need only very little data space and can thus be
replicated throughout the cluster.

A key problem that is noteworthy is that scientists are often unable
to work at the front-end nodes of the cluster directly. Thus, the
rendered data has to be streamed to the users’ workstations. This
is done by a dedicated communication node (typically not all nodes
Additionally, these subspaces have the same number of basis funchave direct internet connection), that collects incoming ray data and
tions, namely 2"S*3. Since the number of basis functions is serves the TCP stream. As the pixels delivered by the render nodes
equivalent to the number of stored grid points and because of themay come in any order, the communication node sends both pixel
contribution argument as well, it seems to be a good idea to define position and RGBA values to the workstation, making a total pack-

When looking at the interpolation error, one finds théf i, i, || has
a contribution of the same order of magnitude, nanG{g—2consh
for all subspaces with +i,+i3 = const

a sparse grid spade as follows (compare also Fig. 3): age size of 8 bytes per pixel. With this information the visualization
. process can continuously generate preview images from early ren-
L= @D Siiis) dered rays.
i1Hip+iz<n+2

As the clusters are often shielded by firewalls, ssh tunneling may
An estimation of the interpolation error with regard to it or be required. This seems to be a horrible bottleneck, but in fact the
L*® norm (compare [1, pp. 23]) shows that the sparse grid inter- interpolation process on sparse grids is so computational intensive,
polated functionf, is nearly as good as the full grid interpolated that slow communication is not hindering the visualization process.
function fp.

Now we consider the dimensions of the function spaf:.esand g ; :
Ln, which correspond to the number of nodes of the underlying 4 |mp|ICIt Preview and Load Balancmg

grids. Obviously, the dimension of the full grid space is given by o . . . o
dim(I:n) _ 0(23n) _ O(h;3). For the sparse grid the following re- The remaining freedom in this process is the distribution of rays

. s - 1 12 among the nodes. Usually, the 'master’ node selects by some
lation holds: dinLn) = O (2"?) = O(hn (logz (h;)) There- scheme which node shall render which ray and sends new orders,

fore, a tremendous amount of memory can be saved if sparse gridsyhen a job has been done. However, when several nodes finish

are used instead of full grids. their job at the same time, the lag between delivering rays and get-

Considering the number of basis functions that contribute to the ting new job data can be quite annoying.

interpolated function, sparse grids are much more computational |mplicit assignment of rays as a function of the images size

intensive than uniform grids. Fig. 2 shows in an example which x-Sy, the number of processons and the rank (the index of the

basis functions have to be evaluated to interpolate the sparse grid aturrent processor) prevents any additionally communication over-

the marked position. head and reduces the lag between rendered rays to the time needed
to calculate the next ray assignment.

. . The quality of the ray assignment function has great impact on

3 Parallelization equalizing the rendering time of the processors as well as on the

possibility to generate previews from early rendered rays. By pro-

A lot of work has been done to implement parallel volume ray- viding previews the user can very often make decisions about the

casting on PC clusters [9, 10]. By using MPI the parallelization pro- significance of the rendered images, when only a very small fraction

cess itself is relatively straight-forward, spreading the rays across of the rays have been computed. So the quality of the ray assign-
the available processors. Memory management is not really an is-ment is reflected in three properties:

PREPRINT

We will assign the rays of each slot individually to the processor
nodes, so that each processor gets exactly one ray from each slot,
which it will render in the order of increasirig

One can clearly see, that the first= 2' rays fill exactly the pixel
slots of coarser grid resolutions, as can be seen in Fig. 7. This
way we get perfect preview images that can be computed from the
rays rendered on coarser grids. As the fastest running index in this
Figure 4: Recursive Pattern for total or-Figure 5: Final index scheme corresponds to the lowest resolution grid, adjacent indices
dering scheme pattern are usually not close-by in image space. Thus the temporal distri-
bution of rays is perfectly balanced as well.
root

VAN S

157135

/\\3 //\\// oo

1.0 11

SN R

0000 0000 0O [N

0000 RiRRE NN .. cobo Pk

oMW okNw Ok okhw ok

Figure 7: The first 64, 128, 256 rendered rays on ahisrage

The selection of ray indices for one processor
Transposed Indices: . . .
0.0.0 1.0.0 200 300 0.1.0 1.1.0 210 310 020 .. 001 101 201 .. ¥ =t+itr) with x e, 0<itr)<n
has one more freedom to investigate, the index selection func-
tioni(t,r). As the index selection should make no differences for
the individual processors, we can set

Figure 6: Transposed indexing of the index tree

a The distribution of rays for one processor should be evenly i(t,r) ;= (T(t)+r) modn

spread in space.]))
This way we easily ensure that the set of rays do not intersect.

b The distribution of rays should be evenly spread in time. In order to spread the rays for one processor evenly in sphes, ~

to be selected carefully. The very first thought would be to use
i(t) = const ori{t) =t. But both trivial functions do not spread
well for all combinations of andn. Especially whem divides s,

a) ensures that the load between the processors is stochastically imgy Sy, the rays cluster on one part of the image. For values that are

plicitly balanced, while b) and c) ensure that early rendered rays prime, however, good results can be achieved (see Fig. 10 on the
can be combined to form a preview image. color plate).

A very simple scheme assigns the rdys: rz < p<(r+1)3} to Heuristically, we have found an index distribution function that cre-
rankr. In order to be able to render early previews, one could index ates very evenly spaced ray selections for almost all combinations

the rays in both image dimensions. However, the processors will of s andn, and the worst cases encountered so far are not as prob-
typically be active for very different times, and the process is only |ematic as the ones described above.

finished after the last processor is done.

¢ Rays that fall in slots of coarser grids should be rendered first.

Although we do not currently know whether the quality of this in-
By assigning every'fi ray with {p: pmodn=r} inaninterleav- dex selection function can be proven somehow, it is still a very us-
ing pattern to the nodes one can overcome this problem. However,able approach in practical implementations as it can be computed
with this pattern no previews can be generated from early renderediteratively with very low computational costs. Figure 11 shows sev-
rays. eral distributions created with this approach.

For ensuring properties b) and c) one can use the pattern in Fig. 4By subdividing the image plane into several tiles, each one a bit
to generate a total ordering for all rendered rays. The pattern itself larger thann, one can use an iterative algorithm, that counts how

is applied recursively, generating a tree of pixel index leafs (Fig. 6). many times a ray has already been assigned to the processor on a
The indices are now transposed so that the highest node index rungarticular tile, thus ensuring that every tile is at least addressed once
fastest. Then continuous numbers are assigned to the leafs, whictby each processor. The most important aspect of this idea is that
results in an pixel ordering scheme that can be seen in Fig. 5. Inthe algorithm can, again, run separately on each processor without
practical implementations the pixel order indices can be generatedadditional communication.

by a recursive function without explicitly building the tree. For
arbitrary image sizes,y # 2™ the pattern has to be cropped and
the indices have to be reordered.

The suggested ray selection method has one drawback that may
make it useless for some types of scenes. Cache coherency will not
be employed at all using this kind of selection pattern, so memory

We can now divide the index list intd slots§ of sizen: bound problems may be slower than with tile based approaches.
But this is a problem shared by most non-explicit load balancing
Si={x:tn<x< (t+1)n} algorithms.

PREPRINT

175 — 1 7
level 8 ——
150 | level 10 ---- 098 | "
125 level 12 -----] - :
level 14 |
100 os f f
X
7S e 1 omp |
50 Feo i
oy 092 £

8 16 32 64 128192 1 2 4 8 16 32 64 128192
Figure 8: Rendering speed inFigure 9: Load balancing qual-
rays per second and processaty.

vs. number of processors. 0

5 Results 2
The parallelization version has been tested both on a set of worksta-
tions with a TCP/IP implementation of MPI (LAM) and on the new
PC cluster 'Kepler’' [15] of the University of dbingen. This clus-

ter consists of 96 dual Plll nodes connected with Myrinet, and two
additional front-end nodes. The results were streamed to the Uni- [4]
versity of Stuttgart. All rendering times presented here include the
communication lag, which off course affects the rendering speedup [5]
significantly. The visualization of the incoming ray data is per-
formed in a sparse grid visualization toolkit that effectively hides

the parallelization technique from the user.

(3]

First, we were interested in the scalability and load balancing qual-
ity of our approach. As one can see in Fig. 8, the system scales
almost perfectly with the number of processors, as long as the prob-
lem is computational bound, and the final TCP streaming is not hin-
dering the rendering process. Load balancing works also extremely
well for a system that does not require any additional communica- 7]
tion at all. The load balancing presented in Fig. 9 is expressed as
the quotient of the rendering time of the fastest and the slowest pro- 8]
cessor. Note that a bad load balancing has immediate influence on
the scaling properties as well.

(6]

We found that being able to generate previews completely elimi-
nates the need to reduce the image resolution e.g. for finding good [g]
views of the volume. As soon as one is satisfied with image preci-
sion, the rendering process is interrupted and a new view can be set.
Figure 12 on the color plate shows different stages of this process. L

Figures 13 and 14 on the color plate show views of a data set that we
were able to render in interactive rates for the very first time. This
data set and other following data sets have been computed directly[11]
on sparse grids and cannot be expanded to uniform grids due to

their size.
[12]

6 Conclusion

[13]
Parallelization ighe key feature to create high quality volume vi- 14]
sualization images at interactive rates. Due to the nature of sparse[
grids (small data size, high computational complexity), the paral-
lelization itself is relatively straight-forward, and neither memory
consumption nor access times are problematic. In this context im- [15]
plicit load balancing works terrific, and does not imply any addi-
tional communication overhead. By using a specialized ray distri- [16]
bution pattern we can additionally create early preview images with
no additional cost. We are now able to visualize huge data sets com-
puted directly on sparse grids in high quality in acceptable time for
interactive visualization sessions, which was not possible before.

[17]

Acknowledgements

I would like to thank Vasile Gradinaru from the mathematical in-
stitute of Tubingen for his help and the supplied data sets. Peter
Leinen from the University of ibingen made the timing measure-
ments possible by helping us with the new PC cluster 'Kepler’, on
which our system has been tested.

References

H.-J. Bungartz. Dunne Gitter und deren Anwendung bei der adap-
tiven Losung der dreidimensionalen Poisson-GleichuhD thesis,
Technische Universit'Milinchen, 1992.

H.-J. Bungartz and T. Dornseifer. Sparse grids: Recent developments
for elliptic partial differential equations. Technical report, TU Munich,
1997.

B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware. In
Symposium on Volume Visualizatigrages 91-98, October 1994.

V. Gradinaru and R. Hiptmair. Whitney Forms on Sparse Grids. Tech-
nical Report 153, University of dbingen, Department of Mathemat-
ics, Tuibingen, April 2000.submitted to Numerische Mathematik

M. Griebel, W. Huber, U. Rde, and T. Stitkuhl. The combination
technique for parallel sparse-grid-preconditioning or -solution of pde’s
on multiprocessor machines and workstation networks. In L. Bpug”
M. Cosnard, Y. Robert, and D. Trystram, edito8gcond Joint Inter-
national Conference on Vector and Parallel Processipgges 217—
228, Berlin, 1992. CONPAR/VAPP, Springer-Verlag.

M. Griebel, M. Schneider, and C. Zenger. A combination tech-
nique for the solution of sparse grid problems. In P. de Groen and
R. Beauwens, editorénternational Symposium on Iterative Methods
in Linear Algebra pages 263-281, Amsterdam, 1992. IMACS, Else-
vier.

A. Kaufman. Volume Visualization IEEE Computer Society Press,
1991.

P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. Gomputer
Graphics ProceedingsAnnual Conference Series, pages 451-457,
Los Angeles, California, July 1994. ACM SIGGRAPH, Addison-
Wesley Publishing Company, Inc.

K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. A Data
Distributed Parallel Algorithm for Ray-Traced Volume Rendering. In
Parallel Rendering Symposiyrpages 15-22, New York, 1993. ACM
SIGGRAPH.

M. E. Palmer, S. Taylor, and B. Totty. Exploiting Deep Parallel Mem-
ory Hierarchies for Ray Casting Volume Rendering.Parallel Ren-
dering Symposiunpages 15-22, New York, 1997. ACM SIGGRAPH.

C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive Ex-
ploration of Volume Line Integral Convolution Based on 3D-Texture
Mapping. InProc. Visualization '99pages 233-240. |IEEE, 1999.

C. Teitzel, R. Grosso, and T. Ertl. Particle Tracing on Sparse Grids. In
D. Bartz, editorProc. 9th Eurographics Workshop on Visualization in
Scientific Computingpages 132-142, 1998.

C. Teitzel, M. Hopf, and T. Ertl. Volume Visualization on Sparse
Grids. Computing and Visualization in Sciend@):47-59, 1999.

C. Teitzel, M. Hopf, and T. Ertl. Scientific Visualization on Sparse
Grids. In H. Hagen, G. M. Nielson, and F. Post, editétgmceedings
of Scientific Visualization - Dagstuhl '9pages 284—295, Heidelberg,
2000. IEEE Computer Society, IEEE Computer Society Press.

University of Tubingen. http://kepler.sfb382-zdv.uni-tuebingen.de/
2000.

R. Westermann and T. Ertl. Efficiently Using Graphics Hardware
in Volume Rendering ApplicationsComputer Graphics SIGGRAPH
'98, 32(4):169-179, 1998.

C. Zenger. Sparse grids. Rarallel Algorithms for Partial Differential
Equations: Proceedings of the Sixth GAMM-Semirkael, 1990.

PREPRINT

Figure 10: Ray distribution for trivial index selection functions, Figure 11: Ray distribution for the heuristic index selection function,
different processors are encoded with different colors2 B4s, 64° rays on 4 and 5 processors,264ys on 5 processors.
i(t) = conston 4 processors(t) =t on 4 and 5 processors.

Figure 12: Preview images after 0.625%, 3.125%, 6.25%, and 100% of 160000 rays have been rendered.

- -

Figure 13: A sparse grid data set of level 12 (corresponding to a Figure 14: The same data set rendered with multiple semitrans-
full grid of size 204?) rendered with an X-ray shading method parent shaded ISO-surfaces

