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Abstract

We prove that the existential theory of equations with normalized rational con-

straints in a �xed graph product of �nite monoids, free monoids, and free groups

is PSPACE-complete. Under certain restrictions this result also holds if the

graph product is part of the input. As the second main result we prove that the

positive theory of equations with recognizable constraints in graph products of

�nite and free groups is decidable.



1 Introduction

Since the seminal work of Makanin [19] on equations in free monoids, the decid-

ability of various theories of equations in di�erent monoids and groups has been

studied, and several new decidability and complexity results have been shown.

Let us mention here the results of [25, 27] for free monoids, [6, 15, 20, 21] for

free groups, [8] for free partially commutative monoids (trace monoids), [9] for

free partially commutative groups (graph groups), and [7] for plain groups (free

products of �nite and free groups).

In this paper we continue this stream of research. We will present two main

results. The �rst one concerns existential theories of equations. We start with

the de�nition of a class of monoids, which are constructed from �nite monoids,

free monoids, and free groups using the graph product construction, which is a

well-known construction in mathematics. This class of graph products strictly

covers all classes mentioned above. Then we prove that for such a graph product

the existential theory of equations is PSPACE-complete, where in addition we

are allowed to specify constraints for the variables. These constraints are taken

from a class of sets, called normalized rational sets, which (in general) lies strictly

between the class of recognizable and rational sets. Furthermore under certain

restrictions our PSPACE upper-bound holds also in the case that (a suitable

description) of the graph product is part of the input.

Our second main result concerns positive theories of equations. We prove

that if we restrict our class of graph products to groups, then for each group from

the resulting class the positive theory of equations with recognizable constraints

for the variables is decidable. Under certain restrictions we obtain an elementary

complexity. Up to now only for the class of free groups a decidability result for

the positive theory was known, in particular it was open whether the positive

theory of equations for a free partially commutative group is decidable.

2 Preliminaries

An involution on a set is a mapping such that x = x for all elements x. For an

involution on a monoid we demand in addition that both xy = y x and 1 = 1,

where 1 is the neutral element of the monoid. Taking the inverse in a group

is for instance an involution. In our setting we let � be a �nite alphabet of

constants and � � � such that an involution is de�ned on �. This involution

is extended to �
�
by x1 � � �xn = xn � � �x1. For a monoidM we denote by I(M)

a submonoid of M such that an involution is de�ned on I(M). In many

cases we choose I(M) to be the submonoid of elements having left- and right-

inverses, i.e., I(M) is the group of units of M , but this is not necessarily the

case, for instance for M = �
�
we take I(M) = �

�
. We consider only �nitely

generated monoids. More precisely, we consider monoids M together with a

�xed surjective homomorphism  : �
� ! M such that  �1

(I(M)) = �
�
and

 (x) =  (x) for all x 2 �
�
. Moreover, we assume that there is a normal form

mapping � : M ! �
�
, i.e.,  (�(x)) = x for all x 2 M , such that �(M) is a
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regular subset of �
�
. Note that it is allowed that �(x) 6= �(x) for some x 2M .

A language L �M is called

� recognizable if  �1
(L) � �

�
is regular,

� normalized rational if �(L) � �
�
is regular,

� rational if L =  (L0
) for some regular language L0 � �

�
.

The corresponding classes are denoted by REC(M), NRAT(M), and RAT(M),

respectively. In general we have REC(M) � NRAT(M) � RAT(M). The

classes REC(M) and RAT(M) are classical, see e.g. [4], their de�nitions do

neither depend on � nor on  as can be seen easily. The de�nition of NRAT(M)

is less robust, it depends on the normal form mapping �. The classes REC(M)

and NRAT(M) are Boolean algebras, whereas RAT(M) is not a Boolean algebra

in general. For free monoids we have REC(M) = NRAT(M) = RAT(M). For

the canonical normal form mappings which we will use we have REC(M) 6=
NRAT(M) = RAT(M) for free groups [3], REC(M) = NRAT(M) 6= RAT(M)

for free partially commutative monoids (trace monoids) [24], and REC(M) 6=
NRAT(M) 6= RAT(M) for free partially commutative groups (graph groups).

The later holds for instance in M = Z�Z.

3 The theory of equations with constraints

Let M be a monoid as above and let C be a family of subsets of M such that

I(M) 2 C. Let 
 be a set of variables and 
 = fX j X 2 
g a disjoint copy

of 
. An equation is a pair (U; V ) with U; V 2 (� [ 
 [ 
)�, it is written as

U = V . Equations and constraints of the form X 2 L with X 2 
[
 and L 2 C
are called atomic formulae. From these we construct �rst order formulae using

conjunctions, disjunctions, negations, and universal and existential quanti�ca-

tion over variables from 
. We impose the syntactical restriction that whenever

we use a variable X 2 
, then this goes together with the implicit constraint

X 2 I(M). Given  : �
� ! M , I(M), the involution : I(M) ! I(M), and

a sentence �, i.e., a formula in the sense above without free variables, we can

evaluate � over M in the obvious way with the restriction that if a variable

X evaluates to x 2 M , then X must evaluate to x. The theory of equations

with constraints in C, brie
y Th(M; C), denotes the set of all sentences that

are true in M . A well-known example of a decidable theory of equations is

the Presburger Arithmetic [26]. Translated into our framework this gives the

following proposition.

Proposition 1. Th(Nk ;RAT(Nk )) and Th(Z
k;RAT(Zk

)) are decidable.

Note that RAT(N
k
) and RAT(Z

k
) are the classes of semilinear sets in N

k
and

Zk
, respectively. The following result can be easily deduced from Proposition 1

since the free product Z=2Z� Z=2Z of two copies of Z=2Z is isomorphic to the

semi-direct product of Z by Z=2Z.
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Corollary 2. Th(Z=2Z�Z=2Z; RAT(Z=2Z�Z=2Z)) is decidable.

Proof. Let M = Z=2Z� Z=2Z be given by the generators a; b and the de�ning

relations a2 = b2 = 1. Every x 2M can be represented uniquely as x = (ab)iaj

where i 2 Z and j 2 f0; 1g (note that (ab)�1 = ba in M). The subgroup K of

M generated by ab is isomorphic to Z. Furthermore let Q be the subgroup ofM

generated by the generator a. It is easy to see that M is the semidirect product

of K by Q, thus M ' Zo Z=2Z. An isomorphism � : M ! Zo Z=2Z can

be de�ned by �((ab)iaj) = (i; j), where i 2 Z and j 2 f0; 1g. In the following

let �(x) = (nx; ax). Thus, xy = z in M if and only if nz = nx + (�1)axny ^
ax + ay � az mod 2. Furthermore it is easy to see that if L 2 RAT(M), then

�(L) = S0 � f0g [ S1 � f1g where S0; S1 � Z are semi-linear (and can be

constructed e�ectively).

Now given a �rst-order sentence � we replace every quanti�cation 9X by

9nX 2 Z
W
aX2f0;1g (similarly for 8-quanti�cations). W.l.o.g. all equations

in � have the form xy = z with x; y; z 2 
 [ 
 [ fa; bg. Such an equation is

replaced by (nz = nx + (�1)ayny ^ ax + ay � az mod 2), where nx; ax are

either new variables (if x 2 
 [ 
) or integer constants, similarly for y and

z. A constraint X 2 L with L 2 RAT(M) is replaced by (nX 2 S0 ^ aX =

0) _ (nX 2 S1 ^ aX = 1) where �(L) = S0�f0g[S1�f1g. Occurrences of the
variables nX and aX for X 2 
 can be replaced by (�1)aX+1 � nX and 1� aX ,
respectively. Finally by substituting for the variables aX the values 0 and 1 we

obtain a Presburger formula. Now the corollary follows from Proposition 1.

The positive theory of equations with constraints in C is the set of all sentences
in Th(M; C) that do not use negations. The existential theory of equations with

constraints in C is the set of all sentences in Th(M; C) that are in prenex normal
form without universal quanti�ers. We will need the following result, which is

a decomposition lemma in the style of the Feferman Vaught theorem [13]. Its

proof is due to Yuri Matiyasevich (personal communication).

Proposition 3. Let M1 and M2 be monoids with classes C1 � 2
M1 and C2 �

2
M2 . Let C be a class of subsets of M1 �M2 such that each L 2 C is a �nite

union of sets of the form L1�L2 with L1 2 C1 and L2 2 C2. If both Th(M1; C1)
and Th(M2; C2) are decidable, then Th(M1�M2; C) is decidable, too. The same

implication also holds for positive theories.

Proof. Since M = M1 �M2 is generated by �, we may assume that � is the

disjoint union of �1 and �2, where Mi is generated by �i. Let � be a formula

with free variables whose atomic subformulae are all of the form U = V with

U; V 2 (� [ 
 [ 
)�, or X 2 L, where X 2 
 [ 
 and L 2 C. Now for each

X 2 
 that appears in � let X1 and X2 be new variables. Furthermore for a 2 �
and i 2 f1; 2g let ai = a if a 2 �i and ai = 1 otherwise. Then we replace each

quanti�cation 9X (resp. 8X) in � by 9X1; X2 (resp. 8X1; X2). Furthermore

each equations U = V is replaced by the conjunction U1 = V1 ^U2 = V2, where

Ui and Vi result from U and V , respectively, by replacing every occurrence of

X 2 
, X 2 
, and a 2 � by Xi, Xi, and ai, respectively. Finally given a

3



constraint X 2 L in �, where L =

Sn

i=1 Li;1�Li;2 with Li;1 2 C1 and Li;2 2 C2,
we replace this constraint by

Wn

i=1(X1 2 Li;1 ^ X2 2 Li;2). Let us call the

resulting formula '. If we let the variables with index i 2 f1; 2g only range

over Mi, then in the case that � does not contain free variables, the truth

value of ' and � are the same. We claim that ' is logically equivalent to a

formula of the form

Wm

j=1('j;1 ^'j;2), where for i 2 f1; 2g the formula 'j;i only
contains variables with index i. Note that this proves the proposition. The

claim above can be shown by an induction on the quanti�er rank of �. The

case that � is quanti�er free is clear. Assume that � � 9X �0. Hence, ' is

of the form ' � 9X1; X2 '
0
. By induction we can assume that '0

is logically

equivalent to a formula

Wm

j=1('j;1 ^ 'j;2), where for i 2 f1; 2g the formula

'j;i only contains variables with index i. Thus, 9X1; X2 '
0
is equivalent toWm

j=1(9X1 'j;1 ^ 9X2 'j;2). In the case of an universal quanti�cation we can

conclude similarly, but we �rst have to transform the formula

Wm

j=1 'j;1 ^ 'j;2

into a formula of the form

Vm0

j=1 '
0
j;1 _ '

0
j;2 where '0

j;i only contains variables

with index i. This is of course possible with a possible exponential size increase.

Finally note that the construction above does not introduce negations and thus

can be also used for positive formulae.

4 Graph products

Let (V;E) be a �nite undirected graph with vertex set V and edge set E �
�
V

2

�
.

Every node n 2 V is labeled with a monoidMn which is either a free monoid, a

free group, or a �nite monoid. In fact, it is enough (and convenient) to assume

that Mn is either isomorphic to N or to Z, or Mn is �nite. If Mn = N, then we

let �n = fang and �n = ;. IfMn = Z, then we let �n = �n = fan; ang. Finally
if Mn is �nite, then we let �n = Mnnf1g and �n = I(Mn)nf1g, where I(Mn)

is the subgroup of units of Mn, i.e., I(Mn) = fa 2 Mn j 9b : ab = ba = 1g.
Thus, for each n 2 V we have a canonical homomorphism  n : �

�
n ! Mn with

 �1
n (I(Mn)) = �

�
n. To see this note that if uv 2 I(Mn) and if Mn is �nite,

then u; v 2 I(Mn), too. The graph product de�ned by (V;E) is the free product

of the monoids Mn, n 2 V , modulo commutation relations xy = yx for all

x 2 Mm, y 2 Mn with (m;n) 62 E. Graph products of arbitrary groups and

monoids were investigated in [5, 14]. Note that we have de�ned a commutation,

if there is no edge, so an edge corresponds to a rigid ordering. The choice for

this convention is due to the representation of elements which is best based on

dependence graphs, see e.g. [10]. Before we make our de�nition more formal let

us mention some examples.

If allMn are equal to N, then we obtain free partially commutative monoids,

which are also known as trace monoids, see [10] for more details. Extreme cases

are free monoids (if E =

�
V
2

�
) and free commutative monoids (if E = ;). If all

Mn are equal to Z, we obtain free partially commutative groups, which are also

known as graph groups [11]. Again free groups and free commutative groups

arise as the extreme cases. If E =

�
V
2

�
and all Mn are groups, then we obtain
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plain groups in the sense of Haring-Smith [16].

Let us proceed with an explicit de�nition of the graph product using gener-

ators and relations. First we may assume that all the alphabets �n are pairwise

disjoint. Let � =

S
n2V �n and � =

S
n2V �n. There is a natural involu-

tion on � and this involution has �xed points as soon as some Mn contains

an element of order two. We de�ne an independence relation I � � � � by

I = f(a; b) 2 � � � j a 2 �m; b 2 �n;m 6= n; (m;n) 62 Eg, which is irre
exive

and symmetric. The basic reference monoid for the following consideration is

the trace monoid M = �
�=fab = ba j (a; b) 2 Ig, it is equipped with a partially

de�ned involution. More precisely, since I is compatible with the involution in

the sense that (a; b) 2 I if (a; b) 2 I and b 2 �, we can lift : � ! � to an

involution on the recognizable subset �
�
= I(M ) of M . We now de�ne a trace

rewriting system S, i.e., a subset of M � M , by

S = f(aa; 1) j a 2 �g [ f(ab; c) j 9n 2 V : a; b; c 2 �n; ab = c in Mng.

The graph product G P of the monoids Mn, n 2 V , over the graph (V;E)

is de�ned as the quotient monoid G P = M = f` = r j (`; r) 2 Sg. Clearly

G P = �
�=(fab = ba j (a; b) 2 Ig [ f` = r j (`; r) 2 Sg). Elements of G P can

be represented as words from �
�
or as traces from M . It will be always clear

from the context, which representation is chosen. Furthermore the canonical

homomorphism  : �
� ! G P factorizes as  =  1 Æ  2, where  1 : �

� ! M

and  2 : M ! G P. Note that the trace monoid M itself is a graph product,

where the vertex set is � and the edges are given by the complement of I . The

example of a trace monoid shows that rational constraints are too strong in

order to obtain decidability results. Since it is undecidable whether L1\L2 = ;
for L1; L2 2 RAT(N � fa; bg

�
), see [1], the following result holds:

Proposition 4. Let M = N � fa; bg�. Then for M the existential positive

theory of equations with constraints in RAT(M) is undecidable.

Thus, we have to restrict the class of constraints. We shall consider normalized

rational constraints. In order to de�ne a suitable normal form mapping � :

G P ! �
�
we de�ne analogously to string rewriting systems the one-step rewrite

relation !S � M � M of the trace rewriting system S by s !S t if s = u ` v

and t = u r v for some (`; r) 2 S and u; v 2 M . Its transitive re
exive closure is

�
!S . The following lemma is fundamental for the following.

Lemma 5. S is a con
uent trace rewriting system, i.e., for all s; t; u 2 M with

s
�
!S t and s

�
!S u there exists v 2 M with t

�
!S v and u

�
!S v.

Proof. We use Lemma 2.3. from [18].
1

According to this lemma it suÆces

to consider for all rules (ab; d); (bc; e) from S and all traces w 2 M such that

(b; w) 2 I the following situation: dwc  abwc = awbc ! awe. We have to

show that there exists an s 2 M such that dwc
�
! s and awe

�
! s. Note that

1One can argue also directly by an application of Lemma 10 similarly to the proof of

Lemma 14.
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a; b; c 2 �n for some n 2 V . Since (b; w) 2 I , also each of the traces a; c; d, and

e is independent from w. Thus, it suÆces to show that dc
�
!S s and ae

�
!S s

for some s (then also dwc = wdc
�
!S ws and awe = wae

�
!S ws). But this is

easy. Let us consider for instance the case that b = a, d = 1, and e 2 �n. Thus,
ac = e, i.e., c = ae in Mn, and (ae; c) is a rule of S. Hence, we can choose

s = c.

Let RED(S) = fu ` v j u; v 2 M ; 9r : (`; r) 2 Sg and IRR(S) = M nRED(S).
Thus, IRR(S) is the set of traces that are irreducible with respect to S. Since

REC(M ) is closed under complement and concatenation, see e.g. [10, Chap. 6],

IRR(S) is recognizable. Since !S is a Noetherian relation, Lemma 5 implies

that for each x 2 G P there exists a unique �(x) 2 M \ IRR(S) with x =

 2(�(x)). The trace �(x) is the shortest trace representing x. Now let us �x a

linear order on � and let lnf(t) 2 �� for t 2 M be the lexicographical �rst word

from �
�
that represents the trace t, see also [2]. Then for x 2 G P we de�ne

�(x) = lnf(�(x)). Since L 2 REC(M ) if and only if lnf(L) � �
�
is regular [24],

we obtain:

Lemma 6. We have L 2 NRAT(G P) if and only if �(L) 2 REC(M ) if and

only if  �1
1 (�(L)) 2 REC(��).

In particular we see that NRAT(G P) does not depend on the chosen lexico-

graphical ordering. It is really a canonical class depending only on the natural

trace rewriting system S.

5 Existential theories of equations in graph prod-

ucts

In this section we prove that for the graph product G P the existential theory of

equations with constraints in NRAT(G P) is decidable. Since we will also deal

with complexity issues, we have to de�ne the input length of a formula. We

assume some standard binary coding of formulae, where a constraint X 2 L is

represented by some �nite non-deterministic automaton that accepts  �1
1 (�(L)).

The input length of a formula is the length of this description. In order to obtain

existing results for free monoids as special cases, we will put a description of the

graph product G P into the input, too. This description contains the adjacency

matrix of (V;E), and for each node either the multiplication table of Mn if Mn

is �nite or a bit indicating whether Mn = N or Mn = Z. In order to obtain

convenient complexity bounds we will restrict to graphs (V;E) with a bounded

number of complete thin clans, see [9] for the de�nition. It is easy to see that

the number of complete thin clans of (V;E) is at most jV j, furthermore it is 0
for a complete graph.

Theorem 7. The following problem is PSPACE-complete for every k � 0.

INPUT: A graph product G P whose underlying graph (V;E) has at most k

complete thin clans and an existential formula � with constraints in NRAT(G P).

6



QUESTION: Does � belong to Th(G P;NRAT(G P)) ?

If the number of complete thin clans of (V;E) is not bounded, then the problem

above is in EXPSPACE.

Remark 8. Formally, Theorem 7 generalizes results of [6, 7, 8, 9, 15, 19, 20,

25]. For this it is enough to give a reduction to the main result of [9].

The next lemma is the main technical tool for proving the theorem above. First

we need some further de�nitions concerning traces. The set IC � M \ IRR(S)
consists of all traces a1 � � � an, ai 2 �, such that (ai; aj) 2 I if i 6= j. Thus,

traces in IC correspond to independence cliques of (�; I). Note that if u 2 IC,

then the length of u is at most j�j. We identify u 2 IC with the set of symbols

that occur in u. For instance for s 2 M the set of maximal symbols max(s) =

fa 2 � j s = tag of s and the set of minimal symbols min(s) = fa 2 � j s = atg
of s belong to IC.

Lemma 9. Let x; y; z 2 M \ IRR(S). Then xy
�
!S z if and only if there exist

p; s; t; w 2 IRR(S) and u; v 2 IC such that

u v
�
!S w; x = s u p; y = p v t; z = sw t. (1)

Note that since u; v 2 IC, there exist only �nitely many possibilities for w

in (1). The proof of Lemma 9 as well as other proofs in rest of this paper are

best carried out by an application of the following factorization lemma, which

is well-known as Levi's lemma for traces, see e.g. [10, p 74]. For two traces

s; t 2 M we write (s; t) 2 I if for all a; b 2 � such that a occurs in s and b occurs

in t it holds (a; b) 2 I .

Lemma 10. Let u1; : : : ; um; v1; : : : ; vn 2 M . Then it holds

u1u2 � � �um = v1v2 � � � vn

if and only if there exist wi;j 2 M (1 � i � m, 1 � j � n) such that

� ui = wi;1wi;2 � � �wi;n for every 1 � i � m,

� vj = w1;jw2;j � � �wm;j for every 1 � j � n, and

� (wi;j ; wk;l) 2 I if 1 � i < k � m and 1 � l < j � n.

The situation in the lemma will be visualized by a diagram of the following kind,

where n = m = 4. The i{th column corresponds to ui, the j{th row corresponds

to vj and the intersection of the i{th column and the j{th row represents wi;j .

Furthermore wi;j and wk;l are independent if one of them is right-above the

other one.

v4 w1;4 w2;4 w3;4 w4;4

v3 w1;3 w2;3 w3;3 w4;3

v2 w1;2 w2;2 w3;2 w4;2

v1 w1;1 w2;1 w3;1 w4;1

u1 u2 u3 u4

7



Proof of Lemma 9. Let x; y; z 2 IRR(S). If (1) from Lemma 9 holds, then of

course xy
�
!S z. Now assume that xy

�
!S z. We can choose p 2 M of maximal

length such that x = x0p and y = py0. Let u = max(x0) 2 IC, v = min(y0) 2 IC,

and uv
�
!S w 2 IRR(S). Hence, x = sup, y = pvt, and xy

�
!S swt. Note that

s; t; u; v; p 2 IRR(S). Due to the choice of p, only rules of the form (ab; c), where

a 2 u, b 2 v, and a; b; c 2 �n for some �nite monoid Mn, can be applied to the

trace uv. In particular if (d; w) 2 I for d 2 �, then also (d; u) 2 I . We claim

that swt 2 IRR(S) which implies z = swt. Assume that there exist a left-hand

side ab of a rule in S and traces q; r such that swt = qabr. By Lemma 10 we

obtain up to symmetry one of the following two diagrams.

r s2 w2 t2
ab a 1 b

q s1 w1 t1

s w t

r s2 w2 t2
ab a b 1

q s1 w1 t1

s w t

Let n 2 V such that a; b 2 �n. Let us �rst consider the left diagram. Since

(a; w1) 2 I and (b; w2) 2 I we obtain (a; w) 2 I and thus (a; u) 2 I . Furthermore
from the diagram we obtain (b; s2) 2 I . Thus, (a; s2) 2 I which implies a 2
max(s). Together with (a; u) 2 I it follows that a 2 max(su) = u which is

a contradiction. Now let us consider the right diagram. Again we have a 2
max(s). Furthermore since b 2 min(w), there are two possibilities. Either there
exists a d 2 u \ �n. But then su would contain the factor ad which contradicts

x = sup 2 IRR(S). The second possibility is that b 2 v and (b; u) 2 I . But

then (a; u) 2 I , which implies a 2 max(su) = u, a contradiction.

Proof of Theorem 7. PSPACE-hardness follows from the fact that for fa; bg� the
existential theory of equations with constraints in REC(fa; bg�) is PSPACE-
hard, see [17, Lem. 3.2.3] and [25, Thm. 1]. Membership in PSPACE will

be shown by a reduction to the following problem, which was shown to be in

PSPACE for every k � 0 in [9]:

INPUT: A trace monoid M , speci�ed by an independence relation I � ��
� such that the graph (�; (� � �)nI) has at most k complete thin clans, a

completely de�ned involution : �! � that is compatible with I (i.e. (a; b) 2 I
if (a; b) 2 I), and an existential formula � with constraints in REC(M ).

QUESTION: Is � true in M with the lifting : M ! M of : �! �?

In this problem a set L 2 REC(M ) is speci�ed via an automaton for  �1
1 (L).

Now let k be a �xed bound for the number of complete thin clans, and let

G P be a graph product, speci�ed by a graph (V;E) with at most k complete

thin clans. Furthermore let � be an existential formula with constraints in

NRAT(G P). Using standard methods, see e.g. [6], we may assume that � is

an existentially quanti�ed conjunction of equations of the form xy = z, where

x; y; z 2 � [ 
 [ 
, and of constraints X 2 L or X 62 L, where X 2 
 [ 

and L 2 NRAT(G P). Next we will move from the graph product G P to its

underlying trace monoid M (it is easy to see that the number of complete

thin clans of (�; (� � �)nI) is also at most k). We replace syntactically every

8



subformula xy = z (resp. X 2 L) by  2(xy) =  2(z) (resp. X 2 �(L)) and

add the negated constraint X 62 RED(S) for every variable X .
2
We obtain

an existential formula which evaluates to true in M if and only if the original

formula evaluates to true in G P. Note also that the automaton used to specify

�(L) is the same as the one for L. It remains to eliminate all occurrences of

 2 from equations. Since � � IRR(S) and S is con
uent, we can replace an

equation  2(xy) =  2(z) by xy
�
!S z, which by Lemma 9 is equivalent to an

existentially quanti�ed conjunction of equations.

Now we can almost apply the result of [9] cited above. The only remaining

problem is that due to the presence of non-invertible generators in G P, the

involution may only be partially de�ned on �. But this can be resolved by

introducing a new dummy symbol a for every a 2 �n� and by adding the

constraint X 2 �
�
for every variable X . This shows the �rst statement from

Theorem 7.

For the case that the number of complete thin clans is not bounded, an

EXPSPACE-algorithm can be deduced from the proof in [9].

6 Positive theories of equations in graph prod-

ucts

The aim of this section is to prove our second main result. In the following

we throughout assume that all generators in � have inverses, i.e, � = �. In

particular G P is a graph product of �nite and free groups, and hence itself a

group.

Theorem 11. The following problem is decidable.

INPUT: A graph product G P which is a group and a closed positive formula

� with constraints in REC(G P).

QUESTION: Is � true in G P?

Complexity issues will be postponed to the end of this section. Note that The-

orem 11 cannot be extended to the full class of graph products considered in

the previous section. Already for a free monoid fa; bg� the 893-theory of equa-
tions is undecidable [12, 22]. Similarly Theorem 11 cannot be extended to the

case of normalized rational constraint, since for a free group F of rank 2 a free

submonoid fa; bg� belongs to NRAT(F ).
We will prove Theorem 11 by reducing the positive theory of equations with

constraints in REC(G P) to the existential theory of equations with normal-

ized rational constraints in a free extension of G P, which allows us to apply

Theorem 7. Our proof strategy will follow a technique developed in [21, 23]

2Of course this constraint is equivalent toX 2 IRR(S), but we prefer the negated constraint

X 62 RED(S) since an automaton for  
�1

1
(RED(S)) can be easily constructed in polynomial

time, whereas the construction of an automaton for  
�1

1
(IRR(S)) would involve an additional

complementation with a possible exponential blow-up.

9



by Merzlyakov, but the presence of partial commutation and recognizable con-

straints makes the construction more involved.

In a �rst step we may assume that none of the �nite groupsMn, n 2 V , is a
direct product of two �nite non-trivial groups since otherwise we could replace n

by two non-connected nodes. In particular, if Mn is not Z=2Z, then there must

exist a 2 �n such that a 6= a in G P. Next assume that the graph (V;E) consists

of two non-empty disjoint components (V1; E1) and (V2; E2), which de�ne graph

products G P1 and G P2, respectively. Then G P = G P1 � G P2. Furthermore by
Mezei's Theorem, see e.g. [4], every L 2 REC(G P) is a �nite union of sets of

the form L1�L2 with Li 2 REC(G Pi). Thus, we may apply Proposition 3 and
proceed with the two graphs (V1; E1) and (V2; E2). Hence, for the rest of the

proof we may assume that the graph (V;E) is connected. Furthermore since

by Proposition 1 the (positive) theory of equations with rational constraints

in Z is decidable and the same holds for �nite monoids for trivial reasons, we

may assume that jV j > 1. By Corollary 2 we can also exclude the case that

V contains exactly two adjacent nodes which are both labeled by Z=2Z. Thus,

we may assume that either the graph (V;E) contains a path consisting of three

di�erent nodes or one of the groups labeling the nodes has a generator x 2 �

with x 6= x. Hence, there exist three generators a; b; c;2 � such that a and b

belong to E-adjacent (and hence di�erent) nodes from V , b and c also belong to

E-adjacent nodes from V , and �nally either a and c belong to di�erent nodes

from V or a 6= a = c. In particular (a; b); (b; c) 62 I , i.e., the dependency between
a, b, and c being used is a ��b��c. For the rest of the proof we will �x these

three symbols a, b, and c.

Since L 2 REC(G P) if and only if there exists a homomorphism � : G P ! H

onto a �nite group H such that L = ��1(�(L)), see e.g. [4], we may �x for the

further consideration such a homomorphism � and assume that all recognizable

constraints are given in the form �(X) = g for X 2 
 [ 
 and g 2 H .

We proceed with the de�nition of a trace rewriting system R
(h)

N , where N �
N and h 2 H . This trace rewriting system will be de�ned over some free

extension of M . First we need some preliminaries. A chain is a trace a1 � � � am 2
M , where a1; : : : ; am 2 �, and ai and ai+1 belong to E-adjacent (and hence

di�erent) nodes from V , 1 � i � n� 1. Note that a chain belongs to IRR(S).

Lemma 12. For all h 2 H there exists a trace Ch 2 M \ IRR(S) such that

min(Ch) = max(Ch) = c and �(Ch) = h.

Proof. First for every x 2 � we construct a trace tx 2 IRR(S) with min(tx) = x,

max(tx) = x, and �(tx) = 1. First assume that a 6= a = c, i.e., a2 = a0 2 � in

G P. Let xx1 � � �xk a be a chain, which exists since (V;E) is connected. Then

we can de�ne

tx = xx1 � � �xk a (b a
0
)
jHj�1 b a xk � � �x1 x;

which is in G P equal to xx1 � � �xk (a b a)
jHj xk � � �x1 x. Now assume that a, b,

and c belong two pairwise di�erent alphabets �n. Let xx1 � � �xk b be a chain.

Then we can de�ne

tx = xx1 � � �xk (b a)
jHj

(c b)jHj xk � � �x1 x.

10



Now for a given h 2 H , we construct Ch as follows:

� Select a trace s = b1b2 � � � bn 2 IRR(S), bi 2 �, such that �(b1 � � � bn) = h.

� If (bi; bi+1) 2 I , then choose a chain bi c1 � � � ck bi+1 and insert into s

between bi and bi+1 the trace tc1 � � � tck .

� Similarly let c c1 � � � ck b1 be a chain and append on the left end of s the

trace tc tc1 � � � tck . Proceed analogously for the right end of s.

It is easy to see that the trace constructed in this way has the desired properties.

We will use the traces Ch in order to glue irreducible traces together such

that the resulting trace is again irreducible. Let C be a chain with min(C) =

max(C) = c and jCj > jChj for all h 2 H such that for every node n 2 V

at least one symbol from �n occurs in C. Since (V;E) is connected, such a C

exists. Let � be such that jb(ab)�j > jCj+ 2. Then let

p = b(ab)�C(ba)�b

and for i � 1 and h 2 H let

`i(h) = (ab)i�jHjCh(ba)
2�i�jHj

.

Note that p `i(h) p 2 IRR(S) and �(`i(h)) = h. In the following lemmas, for

s 2 M we denote by s�1 the trace s and by s+1 the trace s. The following

lemma collects some important facts about the traces p and `i, i 2 N.

Lemma 13. Let �; � 2 f�1;+1g.

1. (p; x) 62 I for all x 2 �

2. If u (resp. v) is a non-empty pre�x or suÆx of p� (resp. p�), then (u; v) 62
I.

3. If `�i = `
�
j , then i = j and � = �.

4. If (p `i p)
�
= s p� t, then s = 1 or t = 1, i.e., the only potential occurrences

of p� in (p `i p)
� are its suÆx and pre�x, respectively, of length jpj.

The last point in the previous lemma implies that the only non-trivial overlap-

pings between two traces (p `i p)
�
and (p `j p)

�
happens in their p-parts.

Proof of Lemma 13. Note that by the construction of p and `i the trace p `i p is

almost a chain. Commutations may only occur inside the factor Ch of `i. The

following �gure visualizes this almost-chain p `i p and the relationship between

the lengths of it's factors.

b a b � � �a b c c

C

b a b � � �a b a b � � � a b

p `i

c c

Ch

b a � � � b a b a b � � �a b c c

C

b a b � � �a b

p

11



The properties (1) and (2) follow immediately from the construction of p. For

(3) note that j`�i j 6= j`
�
j j if i 6= j. Furthermore `i 6= `i since `i is of the

form (ab)mc � � � c(ba)2m. For (4) �rst note that from min(C) = max(C) = c,

jCj > jChj, and the choice of � in the de�nition of `i it follows that the factor C

of p occurs in the trace p`ip only in the pre�x p and the suÆx p. Thus, p cannot

occur properly in p `i p. For the same reason p cannot occur properly in p `i p

in the case that a, b, and c belong to pairwise di�erent nodes (note that in this

case the worst case happens if a = a, b = b, and c = c). Finally if a 6= a = c,

then even the pre�x b(cb)� of p cannot occur in p `i p due to the choice of � in

the de�nition of the trace p.

For every i 2 N let us take two new constants ki; ki 62 � and set ki = ki. For

every N � N and every h 2 H we de�ne over the trace monoid M � fki; ki j
i 2 Ng�, i.e., the free product of our trace monoid M and the free monoid

fki; ki j i 2 Ng
�
, the trace rewriting system R

(h)

N by

R
(h)

N = f(p `i(h) p; p ki p); (p `i(h) p; p ki p) j i 2 Ng.

Note that R
(h)

N is length-reducing and thus, !
R
(h)

N

is Noetherian. Let us �x

h 2 H for the rest of this section We write RN and `i instead of R
(h)

N and `i(h),

respectively. We write s!i t if the trace t can be obtained from the trace s by

an application of one of the rules (p `i p; p ki p) or (p `i p; p ki p).

For the following lemmas and proofs let us �x a set N � N. If not stated

otherwise, all traces will range over the trace monoid M � fki; ki j i 2 Ng�,
which is the trace monoid over which the trace rewriting system RN is de�ned,

and i; j 2 N .

Lemma 14. If s !i t and s !j u, then either t = u or there exists a trace v

such that t!j v and u!i v.

Proof. Assume that s!i t and s!j u. We assume that the rules (p `i p; p ki p)

and (p `j p; p kj p), respectively, are applied in these rewrite steps, the other

three cases can be dealt analogously. There exist traces t1; t2; u1, and u2 such

that

s = t1(p `i p)t2 = u1(p `j p)u2 and t = t1(p ki p)t2, u = u1(p kj p)u2.

Now we apply Lemma 10 to the identity t1(p `i p)t2 = u1(p `j p)u2. Since non-

empty pre�xes (resp. suÆxes) of p are dependent (Lemma 13(2)) and every

symbol of � is dependent from p (Lemma 13(1)), we obtain up to symmetry one

of the following diagrams:

u2 1 s2 w2

p `j p 1 p `j p 1

u1 w1 s1 1

t1 p `i p t2

u2 1 1 w2

p `j p 1 s s2
u1 w1 s1 w

t1 p `i p t2

12



In the �rst case, Lemma 13(4) implies s1 = 1 = s2 and thus t1 = u1 and t2 = u2.

Hence, p `i p = p `j p which implies i = j by Lemma 13(3). It follows t = u. In

the second case we may assume that s1 6= 1 6= s2, since otherwise we obtain a

special case of the �rst diagram. Furthermore if s = 1, then obviously t
�
!S v

and u
�
!S v for some v. Thus, assume that also s 6= 1. Since p `i p = s1 s and

p `j p = s s2. Lemma 13(4) implies that that there exist traces p1; p2; p3 such

that s1 = p `i p1, s = p2, s2 = p3 `j p, and p = p1 p2 = p2 p3. Since (w; p2) 2 I
we obtain

t = t1(p ki p)t2 = w1 p ki p1 p2 w p3 `j pw2

= w1 p ki p1 w p2 p3 `j pw2 !j w1 p ki p1 w p2 p3 kj pw2

and similarly

u = u1(p kj p)u2 = w1 p `i p1 w p2 p3 kj pw2

= w1 p `i p1 p2 w p3 kj pw2

!i w1 p ki p1 p2 w p3 kj pw2 = w1 p ki p1 w p2 p3 kj pw2.

In particular, RN is con
uent. Since RN is also Noetherian, for every s 2 M
there exists a unique trace �N (s) 2 M � fki; ki j i 2 Ng \ IRR(RN ) with

s
�
!RN �N (s).

Lemma 15. If s !i t !j u, then there exist �; � 2 f�1;+1g and traces

s1; s2; s3; p1; p2; p3 such that

� p� = p1p2, p
�
= p2p3,

� (p2; s2) 2 I,

� (s = s1 p
� `�i p1 p2 s2 p3 `

�
j p

� s3 and u = s1 p
� k�i p1 p2 s2 p3 k

�
j p

� s3) or

(s = s1 p
� `�j p1 p2 s2 p3 `

�
i p

� s3 and u = s1 p
� k�j p1 p2 s2 p3 k

�
i p

� s3).

Proof. Assume that s !i t !j u. We assume that the rules (p `i p; p ki p) and

(p `j p; p kj p), respectively, are applied in these rewrite steps, the other three

cases can be dealt analogously. We obtain traces s1; v; u1, and u2 such that

s = s1 p `i p v, t = s1 p ki p v = u1 p `j p u2, and u = u1 p kj p u2. Next we apply

Lemma 10 to the identity s1 p ki p v = u1 p `j p u2. Since the symbol ki does not

occur in p `j p and is furthermore dependent from all other symbols, we obtain

the following diagram (or a symmetric one where ki occurs in u2, which can be

dealt analogously).

v s2 w s3
p p1 p2 p0

ki ki 1 1

p p 1 1

s1 s1 1 1

u1 p `j p u2

13



Since p `j p = p2w and jp2j � jpj, we must have w = p3 `j p and p = p2p3. Thus,

(w; p0) 2 I implies p0 = 1 by Lemma 13(2). Thus p = p1p2 and the lemma

follows.

The next lemma is an immediate consequence of Lemma 15.

Lemma 16. If s!i t!j u, then there exists a trace v such that s!j v !i u.

Lemma 17. For all s; t 2 M there exists an A � N with jAj � 2 such that for

every N 0 � NnA it holds �N 0(st) = �N 0(s)�N 0(t).

Proof. First we claim that if s; t 2 IRR(RN ) and s t !i!j u, then u 2

IRR(RN ). By Lemma 15 we can assume that s t = s1 p
� `�i p1 p2 s2 p3 `

�
j p

� s3

and u = s1 p
� k�i p1 p2 s2 p3 k

�
j p

� s3 where p
�
= p1 p2, p

�
= p2 p3 and (p2; s2) 2

I . We only consider the case � = � = 1, the other cases are analogous.

Case 1. p2 = 1: Thus, s t = s1 p `i p s2 p `j p s3 It is easy to see that either

p `i p is a factor of s or p `j p is a factor of t, which is a contradiction.

Case 2. p2 6= 1: First we show that s1 p; p s3 2 IRR(RN ). Lemma 10

applied to the identity s t = s1 p `i p1 p2 s2 p3 `j p s3 gives the following diagram.

t s1;2 q2 `i;2 p1;2 p2;2 s2;2 p3;2 `j;2 q4 s3;2
s s1;1 q1 `i;1 p1;1 p2;1 s2;1 p3;1 `j;1 q3 s3;1

s1 p `i p1 p2 s2 p3 `j p s3

Assume that q2 6= 1, i.e., q2 is a non-empty suÆx of p. Then p1;1p2;1, which is

a pre�x of p = p1p2, must be empty. Thus, p = p1;2 p2;2 and (p; p3;1`j;1q3) 2 I .
Hence, p3;1`j;1q3 = 1 by Lemma 13(1) and thus, p `j p is a factor of t, which is

a contradiction. Thus, q2 = 1 and analogously q3 = 1. Hence, q1 = p = q4 and

therefore s1;2 = 1 = s3;1 by Lemma 13(1). It follows that s1 p (resp. p s3) is a

pre�x (resp. suÆx) of s (resp. t) and therefore is irreducible. Now assume that

u 62 IRR(S), i.e,
s1 p ki p1 p2 s2 p3 kj p s3 = t1(p ` p)


t2 (2)

where ` 2 f`i j i 2 Ng and 
 2 f�1;+1g. We have to deduce a contradiction.

We only consider the case 
 = 1. Let us apply Lemma 10 to the identity (2).

Since s1 p; p s3 2 IRR(RN ) and ki; kj do not occur in p ` p and are dependent

from all other symbols, we obtain the following diagram.

t2 1 1 1 p1;3 s2;3 p2;3 p3;3 kj p s3
p ` p 1 1 1 p1;2 s2;2 p2;2 p3;2 1 1 1

t1 s1 p ki p1;1 s2;1 p2;1 p3;1 1 1 1

s1 p ki p1 s2 p2 p3 kj p s3

Note that jp1;2p2;2p3;2j � jp1p2p3j < 2 � jpj. Thus, js2;2j > j`j. Since s2;2 is a

factor of p ` p, the trace s2;2 starts with a non-empty suÆx of p or ends with a

non-empty pre�x of p. But by Lemma 13(2) this contradicts (s2; p2) 2 I and

p2 6= 1. Thus, u 2 IRR(RN ) is shown also for case 2.
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It follows that for all s; t 2 M either �N (s)�N (t)!i �N (st) for some i 2 N
or �N (s)�N (t) !i u !j �N (st) for i; j 2 N . Assume that the later holds and

let A = fi; jg, N 0 � NnA, and N = N 0 [ N 00
with N 0 \ N 00

= ;. Note that

by Lemma 16 we can arbitrarily reorder the applications of rewrite rules from

RN in derivations. In particular we have �N 0(s)
�
!R

N00
�N(s) and similarly

for t. Thus, �N 0(s)�N 0(t)
�
!R

N00
�N (s)�N (t)

�
!R

N00
�N(s t). If we would have

�N 0(s)�N 0(t) 6= �N 0(s t), then a rule from RN 0 could be applied to �N 0(s)�N 0(t).

Since �N 0(s)�N 0(t)
�
!R

N00
�N (s t), Lemma 14 implies that this rule could be also

applied to �N (s t), which is a contradiction.

6.1 Reduction to the existential theory

In the following symbols with a tilde like ~x will denote sequences of arbitrary

length over some set, which will be always clear form the context. If say ~x =

x1 � � �xi, then ~x 2 A means x1 2 A; : : : ; xi 2 A and f(~x) for some function f

denotes the sequence f(x1) � � � f(xi).
For the rest of the paper let us take some subset K = fk1; : : : ; kng of our

new constants and let K = fk1; : : : ; kng. Let k; k 62 �[K[K be two additional

constants, as usual let k = k. The following lemma will be the key for reducing

the positive theory to the existential theory, it allows the elimination of one

universal quanti�er. In this lemma we have to deal with formulae � that are

interpreted over the free product G P�F (K) of the graph product G P and the free

group F (K) generated (as a group) by K. Furthermore di�erent recognizable

constraints in � are given by di�erent extensions % : G P � F (K) ! H of our

�xed morphism � : G P ! H . For h 2 H we denote by �h the formula that

results from � by replacing every constraint %(X) = g by %h(X) = g, where %h
is the canonical extension of % : G P � F (K) ! H to G P � F (K [ fkg) which is

de�ned by %h(k) = h. Note that  2 : M ! G P can be extended to a canonical

morphism from M � (K [K)
�
to G P �F (K), which will be also denoted by  2.

Lemma 18. Let �(X;Y1; : : : ; Ym; ~Z) be a positive Boolean formula with con-

straints of the form %(Y ) = g for (possibly di�erent) extensions % : G P�F (K)!
H of � : G P ! H. Let Ki � K. Then for all ~z 2 G P we have

8X 2 G P 9Y1; : : : ; Ym

8><
>:

�(X;Y1; : : : ; Ym; ~z) ^
m̂

i=1

Yi 2 G P � F (Ki)

9>=
>;

in G P � F (K) (3)

if and only if

^
h2H

9Y1; : : : ; Ym

8><
>:

�h(k; Y1; : : : ; Ym; ~z) ^
m̂

i=1

Yi 2 G P � F (Ki [ fkg)

9>=
>;

in G P � F (K [ fkg). (4)

Proof. First assume that (4) holds for ~z 2 G P. In order to prove (3), let us

choose an arbitrary s 2 G P and let h = �(s). Then there exist ti 2 G P �F (Ki[

15



fkg), 1 � i � m, such that �h(k; t1; : : : ; tm; ~z) holds in G P � F (K [ fkg). Let
us de�ne a homomorphism � : G P � F (K [ fkg)! G P � F (K) by �(k) = s and

�(x) = x for x 2 G P � F (K). Since �(s) = h and �h is positive, the sentence

�(s; �(t1); : : : ; �(tm); ~z) holds in G P � F (K) (note that �(~z) = ~z). Thus, (3)

holds.

For the other direction assume that (3) holds for ~z 2 G P. De�ne a trace

rewriting system T over M � (K [K)
�
by T = S [ fxx ! 1; xx! 1 j x 2 Kg.

Completely analogously to the proof of Theorem 7 we can now change into the

trace monoid M � (K [K)
�
. We obtain a sentence of the form

8X 2 IRR(S) 9Y1; : : : ; Ym; ~Y 2 IRR(T )

8><
>:

'(X;Y1; : : : ; Ym; ~Y ; ~u) ^
m̂

i=1

Yi 2 M � (Ki [Ki)
�

9>=
>;

(5)

which evaluates to true in M � (K [ K)
�
. Here ~u = �(~z) 2 IRR(S), and the

positive Boolean formula ' results from the original positive Boolean formula

� by applications of Lemma 9 to equations xy = z. These transformations

only introduce new existentially quanti�ed variables, which correspond to ~Y

in (5). The constraints in (5) are the same as in (3) (formally we identify a

homomorphism % : G P � F (K) ! H with  2 Æ % : M � (K [ K)
� ! H). Let

M� M consist all traces in ~u plus �. W.l.o.g we assume that all equations in

(5) have the form xy = z for x; y; z 2 
 [ 
 [M[M. Let � be the maximum

of n (the largest index of the constants in K) and the maximal length of the

traces in ~u. Let d be the number of equations in (5). Fix an h 2 H in (4) and

let s 2 M be the trace

s = Cg p `�+1(h) p c p `�+2(h) p c � � � p `�+2d+1(h) p 2 IRR(S), (6)

where g 2 H is chosen such that �(s) = h. Then by (5) there exist traces

t1; : : : ; tm; ~t 2 IRR(T ) with ti 2 M � (Ki [Ki)
�
and

'(s; t1; : : : ; tm; ~t; ~u) in M � (K [K)
�
. (7)

LetN = f�+1; : : : ; �+2d+1g and add toM all traces from fs; t1; : : : ; tmg. Then
'(s; t1; : : : ; tm; ~t; ~u) is a true statement, which contains d atomic statements of

the form xy = z with x; y; z 2M[M plus recognizable constraints. Of course

some of these atomic statements may be false. But since there are only d

equations in (7), we have to remove from N by Lemma 17 at most 2d numbers

such that for the resulting set N 0
we have �N 0(x)�N 0 (y) = �N 0(z) (x; y; z 2

M[M) whenever xy = z is a true atomic statement in (7). Since jN j = 2d+1,

we have N 0 6= ;, let i 2 N 0
. Note that ki 62 K since � � n. We rename

the constant ki into k and abbreviate �fig(x) by �(x). Again by Lemma 17

we have �(x)�(y) = �(z) for every true statement xy = z (x; y; z 2 M [M)

in (7). Furthermore if one of the constraints %(x) = g in (7) is true, where

% is an extension of �, then also %h(�(x)) = g holds (note that %(`i(h)) =

�(`i(h)) = h = %h(k)). Finally �(~u) = ~u since � was chosen big enough in (6).

16



Altogether it follows that the statement 'h(�(s); �(t1); : : : ; �(tm); �(~t); ~u) is true

in M � (K[K[fk; kg)�. Next we can write �(s) = s1ks2 for s1; s2 2 M . Let us

de�ne a homomorphism � : M � (K [K [ fk; kg)� ! M � (K [K [ fk; kg)� by
�(k) = s1ks2, �(k) = s2ks1, and �(x) = x otherwise. Note that �(s1)h�(s2) =

�(s) = h and hence, %h(s1ks2) = �(s1)
�1h�(s2)

�1
= h for every extension %

of �. Thus, the statement 'h(�(�(s)); �(�(t1)); : : : ; �(�(tm)); �(�(~t)); ~u) is true

in M � (K [ K [ fk; kg)�, hence, it is also true in G P � F (K [ fkg). But in

this group �(�(s)) = �(s1ks2) = s1s1ks2s2 = k. Since furthermore �(�(ti)) 2
M � (Ki [Ki [ fk; kg)

�
, the sentence 9Y1; : : : ; Ym; ~Y : 'h(k; Y1; : : : ; Ym; ~Y ; ~z) ^

m̂

i=1

Yi 2 G P �F (Ki [fkg) is true in G P �F (K [fkg) for every h 2 H . But then

also (4) holds, since if (1) from Lemma 9 holds in G P � F (K [ fkg), then also

xy = z in G P � F (K [ fkg).

Let us now �x a formula

�( ~Z) � 8X19Y1 � � � 8Xn9Yn �(X1; : : : ; Xn; Y1; : : : ; Yn; ~Z),

where � is a positive Boolean formula with constraints of the form �(X) = g. For

h1; : : : ; hn 2 H we denote by �h1;:::;hn : G P �F (K)! H the canonical extension

of � with �h1;:::;hn(ki) = hi for 1 � i � n. With �h1;:::;hn we denote the formula,

where every constraint �(X) = g in � is replaced by �h1;:::;hn(X) = g. The

following theorem is the main result of this section, it can be easily deduced

from Lemma 18 by an induction on n.

Theorem 19. For all ~z 2 G P we have �(~z) in G P if and only if

^
h12H

9Y1 � � �
^

hn2H

9Yn

8><
>:

�h1;:::;hn(k1; : : : ; kn; Y1; : : : ; Yn; ~z)

^

n̂

i=1

Yi 2 G P � F (fk1; : : : ; kig)

9>=
>;

in G P � F (K).

Proof. We prove the theorem by an induction on n. The case n = 0 is clear. If

n > 0, then inductively we can assume that for all x1; y1; ~z 2 G P we have

8X29Y2 � � � 8Xn9Yn �(x1; X2; : : : ; Xn; y1; Y2; : : : ; Yn; ~z) in G P

if and only if

^
h22H

9Y2 � � �
^

hn2H

9Yn

8><
>:

�h2;:::;hn(x1; k2; : : : ; kn; y1; Y2; : : : ; Yn; ~z)

^

n̂

i=2

Yi 2 G P � F (fk2; : : : ; kig)

9>=
>;

(8)

is true in G P � F (fk2; : : : ; kn). Thus, for all ~z 2 G P we have

8X19Y1 � � � 8Xn9Yn �(X1; : : : ; Xn; Y1; : : : ; Yn; ~z) in G P
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if and only if

8X1 2 G P 9Y1
^

h22H

9Y1 � � �
^

hn2H

9Yn

8><
>:

�h2;:::;hn(X1; k2; : : : ; kn; Y1; : : : ; Yn; ~z)

^

n̂

i=1

Yi 2 G P � F (fk2; : : : ; kig)

9>=
>;

is true in G P � F (fk2; : : : ; kng). Note that if we transform this formula into

prenex normalform, in the resulting existential formula the constraints are given

by di�erent extensions of the morphism �. Hence, by Lemma 18 this formula is

true in G P � F (fk2; : : : ; kng) if and only if

^
h12H

9Y1
^

h22H

9Y1 � � �
^

hn2H

9Yn

8><
>:

�h1;h2;:::;hn(k1; k2; : : : ; kn; Y1; : : : ; Yn; ~z)

^

n̂

i=1

Yi 2 G P � F (fk1; k2; : : : ; kig)

9>=
>;

is true in G P � F (fk1; : : : ; kng) = G P � F (K).

Since G P � F (fk1; : : : ; kig) 2 NRAT(G P � F (K)), Theorem 11 is a consequence

of Theorem 7 and Theorem 19. Concerning the complexity, it can be shown

that in general our proof of Theorem 11 gives us a non-elementary algorithm

due to the construction in our proof of Proposition 3. If we restrict to connected

graphs (V;E), then we obtain an elementary algorithm. For this we have to use

the fact that Presburger arithmetic (without negations), which occurs for the

cases G P = Z=2Z and G P = Z=2Z�Z=2Z as a special case, is elementary.
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