
University of Stuttgart
Faculty of Computer Science

Date: 05.12.02

CR-Classification: C.2.2, D.2.4, D.4.6, I.6.3, I.6.7, K.3.1

Technical Report No. 2002/09

ProDuctivE - A PROMELA driven
constructivist environment to learn

security protocols

Matthias Papesch
Cora Burger

Institute of Parallel
and Distributed Systems
University of Stuttgart
Breitwiesenstraße 20–22

D–70565 Stuttgart

1

Abstract

To overcome problems in understanding security protocols, a constructivist approach is
used. Learners are enabled to experiment with a given protocol, either alone or in a team of
co-learners. This means, to use pre-defined and automatically generated PROMELA build-
ing blocks for all communicating parties and to support students in playing some roles in
an interactive way. To explain these building blocks more detailed, the Needham-Schroeder-
Public-Key authentication protocol is given as an example.

All building blocks were realized by means of the preprocessor. A proper combination of
simulation and visualization components cares for hiding unnecessary details and restricts on
the essentials. The SPIN validator is used to check the correctness of students’ solutions or
generate trail files to give a hint in case of a quandary. To allow collaborative experiments, the
whole facility is embedded into a framework for application sharing. The latter is equipped
with components for annotation and note taking as well as for recording.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

1 INTRODUCTION 2

1 Introduction

When teaching computer networks and distributed systems, security is one big issue since it is
required heavily to protect privacy, identity, autonomy and resources of people in the electronic
world. The challenge behind consists in performing this task in front of hackers where the form of
attack is hard to foresee. Consequently, protocols being meant to achieve security are not under-
stood in a straightforward manner. Learners have to find out about possible flaws and corrections
when trying to comprehend how these protocols work.

With a teacher at hand for explanation and support, this is hard enough. The availability
of teachers being restricted, learners intermittently have to rely on private studies and discus-
sions with others. Hence, three different scenarios have to be coped with: lectures, single learners
and teams without a tutor. For all of them, an environment is wanted which supports teaching
and learning by means of visualization, extensive experiments and investigations either by single
persons or by entire teams.

A similar problem, the one of designing security protocols has already been studied by [5] and
[6]. They used SPIN, a model checking tool based on the specification language PROMELA [4]
to tackle the complexity of such protocols. Due to the similarities between design and teaching
situation, it is obvious to build a learning environment as well on some model checking tool like
SPIN. This tool offers the required functionality for the most part. First of all, for a given protocol,
people can gain an impression of its behavior through guidance of trail files being generated
automatically by the model checker. This can be used for correct working as well as for protocol
flaws. In a next step, learners should be able to examine various paths on their own, maybe
sometimes even by stepping back and forth in one or the other way. With regard to security
protocols, this could mean to confront learners with a simulation of the protocol and, e.g., have
them launch different kinds of attacks on the protocol. This can be achieved by literally turning
them into a process which is part of the simulation. Hence, with suitable support, students can act
on behalf of this process. They may create local variables and have access to all global symbols.
Thus, they may receive messages from or send arbitrary messages to global channels at any instant.
Certainly, this possibility requires access to process-private data to be restricted, since otherwise
the task of breaking the protocol turns into a mere reading assignment without mental effort.

When playing this kind of games in a collaborative manner, where each student controls one
out of multiple processes, this can even come close to being a fun thing to do. As a consequence,
the effectiveness of learning will be augmented. For instance, let three students engage in roles
being typical for security protocols. Following the tradition in literature (cf. [10]), their names be
Alice, Bob, and Eve as well as an already running trusted server acting as a Notary for all of them.
A possible assignment might consist of Alice and Bob having to figure out how to communicate
privately. As always, Eve must try to get hold of their conversation or disturb it. In a more general
sense, learners have to find out solutions to close gaps. The latter have to be checked automatically,
e.g. against correctness requirements defined for this protocol.

To satisfy the demands of teaching in general and of security protocols in particular, it doesn’t
suffice to simply have some add-on to the original concepts of PROMELA and SPIN. In fact, the
whole system has to be embedded into a collaborative learning environment for private studies. The
focus of this report lies on elaborating all these facts more detailed, thus deriving a generic way to
support the scenarios as described above. To facilitate the treatment of PROMELA specification
for students, the next section mainly describes PROMELA building blocks . Their usage will be
concretized in an example in Sect. 3 (the complete specification can be found in appendix 7). After
that, Sect. 4 demonstrates, how the teaching facility around SPIN can be combined with a suitable
visualization facility as well as be integrated into a framework for application sharing to enable
collaborative usage. The report closes with related work, conclusions and outlook.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 3

2 PROMELA Building Blocks for Security Protocols

At first sight, PROMELA is nothing else than a derivative from the C programming language
where main is called init and additional constructs exist for processes (proctypes), connections
(channels), and for the declaration of messages (mtypes). But since it serves the special purpose of
specifying and validating communication protocols, some of its concepts are different from C and
need special treatment. These are, e. g. facilities to describe correctness requirements by means
of assertions and temporal claims (for details to PROMELA, please refer to [4]). Hence, when
designing an environment to support teaching in the area of security protocols, these pecularities
have to be taken into account.

To enable an interactive or even collaborative mode, there is urgent need for on-the-fly usage
of PROMELA commands and for the generation of intruder models. Students have to concentrate
on the security protocol at hand instead of being bothered with PROMELA specifics. As a conse-
quence, these building blocks have to be designed rather carefully. As explained more detailed in
the following, templates are needed for entities, for data and for sessions to be able to complete
message templates. By means of these templates, learners can prepare and execute send and receive
statements in a comfortable way by mouse clicks only, without a single error-prone keyboard input.
More experienced students can even try to specify protocols partially or completely by themselves.
For this case again, they would rely on suitable templates.

In PROMELA, some of these templates can be realized by means of pre-processor macros. All
templates are described more detailed in the following.

2.1 Entities and Data Templates

The entities involved in a security protocol session are typically always the same. An initiator
(Alice), a responder (Bob), an intruder (Eve) and last but not least a trusted Notary (cf. Sect.
1). Since entities are equipped with attributes, it may become handy to have their identification
as an array index, to ease access, e.g., when looking up the public key of an entity. On the other
hand, such identifications appear in messages. Hence, it would be of great help to have a symbolic
constant represent an entity. To this end, a pre-processor macro combines both by allowing the
definition of entities as mtypes as well as their usage as array indices. This is subject to the
condition only, that they must be declared consecutively.

Entities may also comprise certain data. To make sure that all entities have equal data associ-
ated with same names, a template for the entities’ data structure can be defined. Below a minimum
sample for a public key infrastructure is shown, which will be used later in Sect. 2.6.

#define MAX_PROC 4

#define ENTITY_INDEX(e) (e % MAX_PROC)

mtype = {ALICE, BOB, EVE, NOTARY};

typedef entity_data_NSPK {

chan secure; /* the secure channel to the notary */

int sk, pk[MAX_PROC]; /* the secret key / public keys */

};

2.2 Session Templates

All messages being exchanged between two parties, are referred to as a session. By means of
typedef, a data structure is introduced which contains an entry for each message of the session.
The initiator and responder both can store the history and have access to message contents via
the same symbols. To reflect the direction of a certain message in this table, an additional index
is appended to the message name. According to agreement, an odd index represents initiator
→ responder.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 4

Besides this, further data can be specific to a session and may even be necessary to create
messages. A typical example for such session data is a nonce value, which should be present but
different for each session.

While the types of sessions are protocol specific, a limited set of sessions can occur only, namely
initiator-responder, initiator-intruder and intruder-responder. The view of initiator and responder
is restricted to the single session they are involved. In contrast to this, according to its nature, the
intruder has access to any session.

2.3 Templates and Processing of Messages

For interactive games, learners must be able to act on behalf of the above mentioned entities. As
soon as they actively participate in a simulation run, the content of messages must be in a form
which is readable and meaningful (as long as it is not encrypted). On the other hand, for better
treatment during simulation and validation, messages should be represented by integers. To solve
this contradiction, two distinct kinds of mapping are introduced. Both are mapping integer keys
to string messages and vice versa, one for the human readable and the other one for the encrypted
case. This cares for keeping the encryption state consistent.

Also, for interactive simulation, each message field has to be denoted with its meaning to
enable unambiguous completion by learners. This can be achieved by using a data structure for
each message type, which is appended to the necessary fields, which allow selective reception
(message type, sender and receiver). A designated pre-processor macro simplifies these definitions
and even creates the necessary channel at the same time. This does no harm, since only a few
messages are exchanged being in a different format each. Two more useful macros encapsulate the
send and receive action.

#define SND(m, s, r, d) net_##m!m(s, r, d);

#define RCV(m, s, r, d) net_##m?m(s, r, d);

#define MESSAGE(m, d) mtype { m }; typedef msg_##m { d; }; \

chan net_##m = [0] of {mtype, mtype, mtype, msg_##m}

To exchange messages, one has to proceed as follows:

1. Choose the message type.

2. Assign each field of the corresponding structure with a value which is either part of the
entity data or session data. Optionally one of the pre-processor macros may be applied to
any combination of such values.

3. Apply the SND() macro.

4. Apply the RCV() macro.

5. The values of the received message are available in the corresponding structure and should
be transferred into variables for entity data or session data. Again, pre-processor macros may
be applied to any combination of such values.

2.4 Special Validation and Simulation Demands

Looking more detailed at the data involved, leads to a further aspect. Whereas for validation,
the value of a random number is irrelevant, it is crucial for an interactive protocol simulation
which is to be run repeatedly. Otherwise, any subsequent execution becomes somewhat predictive.
Cryptographic keys encounter a similar situation insofar, as they actually have to protect their
value during the simulation. As a consequence, a simple implementation is required during the
validation, while the true functionality has to be realized for the simulation case.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 5

One way to cope with this ambiguity is to provide a small set of pre-processor macro definitions
which are conditionally enabled for the validation but remain undeclared for the simulation. So,
the simulator itself can accomplish the desired functionality for symbols in question. The very
basic set of functionality and their simple implementations are shown below.

#define RND(x) x

#define GEN_KEY_SYM(id) RND(id)

#define ENCRYPT_S(val, key) ((val ^ ((key << 8) & ~255)))

#define DECRYPT_S(val, key) ((val ^ (key << 8)))

#define GEN_KEY_PUB(id) (~id & 255)

#define GEN_KEY_SEC(id) (id & 255)

#define ENCRYPT_A(val, key) ((val | ((key & 255) << 8)))

#define DECRYPT_A(val, key) ((val ^ ((~key & 255) << 8)))

#define SIGN(val, key) ENCRYPT_A(val, key)

#define VRFY(val, key) DECRYPT_A(val, key)

2.5 Model of an Omnipotent Intruder

The mechanisms as described above, mainly support the case of learners playing by themselves.
In contrast to this, intruder models are autmatically generated to take over this functionality in
general. As such, they serve demonstration as well as evaluation purposes to find out about the
correctness of a given protocol or solution as delivered by learners. For the generation of intruders,
a complete solution is available by the work of [6] and [9] who have already examined intruder
models extensively.

As laid out in the subsection about session templates, an intruder is aware of all running
sessions by storing the content of any message received into its table of session data. Hence, it can
either replay captured messages as a whole or use recorded data to produce new messages by itself,
depending on the protocol in question. For the latter, the intruder may pretend any identity.

2.6 The Notary

The notary is needed in any case, for simulations with learners playing interactively as well as with
a generated intruder. It is an unbribable entity whose main task consists in deciding about success
or failure of attacks. To exclude any manipulation from the side of learners acting on behalf of some
entity, the notary cares for avoiding the exposure of global data being critical to its decision. To
this end, it replaces the init process, since it must be the only active process in the specification.
The following two functions are performed by the notary:

Shared Data. Processes which embody the protocol entities must get their initial data from some-
where. In this context, it must be taken into account, that knowledge has to be shared
between the notary and each entity. In specific cases like symmetric keys, sharing is even
needed by other entities. Hence, the Notary takes over this part by creating and initializing
the other processes as well as establishing secrets among them.

Protocol Outcome. The decision about success or failure of an attack is taken upon access to mes-
sages being exchanged within an initiator-responder session. By sharing a private channel
with each process it creates, the notary can be informed about every message, its real origin
and intended destination.

That means, before an initiator actually sends some payload, it tells the Notary about
this plan on the private channel. This plan contains proclaimed sender, intended receiver
and message content. The Notary compares actual and proclaimed sender to determine
authenticity and stores the result as well as all other values for this initiator-responder
combination.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

3 DERIVING AN EXAMPLE 6

Table 1: Derivation of outcome from announcement messages.
Sender Initiator Responder Receiver Outcome
Alice Alice Bob Bob
Alice Alice Eve Eve success
Eve Eve Bob Bob
Eve Alice Bob Bob impersonation
Alice Alice Bob Eve capture

The same procedure is applied in the opposite direction. After a responder has received a pay-
load message, it notifies the Notary on its own private channel. The Notary checks whether
the payload corresponds to the previously announced initiator-responder combination. If so,
it determines the outcome according to Tab. 1.

Depending on the outcome, a jump to the corresponding label is performed in the notary
process. In combination with suitable definitions for outcome and an appropriate never-
claim, trails for each of the four scenarios can be generated easily as shown below.

active proctype notary() {

[...]

success: false;

failure: false;

capture: false;

impersonation: false;

}

never {

do

:: notary[0]@OUTCOME -> break;

:: skip;

od;

}

3 Deriving an example

The simplified Needham-Schroeder-Public-Key authentication protocol (NSPK) (cf. [6]) is a useful
example to demonstrate how a specification can be derived for teaching purposes. A specification of
this protocol is existing already in the PROMELA Database [?] but has to be modified according
to the concepts as explained in the last section. In NSPK, the participating entities Alice and
Bob exchange messages as shown in Tab. 2. Since presenting the entire model, including Eve and
Notary, would waste too much space, we will just focus on the main ideas. The complete version
can be found in appendix 7.

Table 2: Message flow of the NSPK-protocol

Sender Message Name Message Format Receiver

Alice REQUEST 1 {Na, Alice}PKBob Bob
Bob CHALLENGE 2 {Na, Nb}PKAlice Alice
Alice CONFIRM 3 {Nb}PKBob Bob
Alice DATA 5 {∗}Nb Bob

Step 1: Message Flow Based on data involved in the message flow, session members, entity and
session data structures are constructed.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

3 DERIVING AN EXAMPLE 7

MESSAGE(REQUEST_1, int nonce1; \

int party);

MESSAGE(CHALLENGE_2,int nonce1; \

int nonce2);

MESSAGE(CONFIRM_3, int nonce2);

MESSAGE(DATA_5, int message);

typedef session_NSPK {

session_data_NSPK sd;

msg_REQUEST_1 request;

msg_CHALLENGE_2 challenge;

msg_CONFIRM_3 confirm;

msg_DATA_5 data;

};

Step 2: Entity Data. Each NSPK entity needs the necessary data for public key encryption
already indicated in Sec. 2.1.

Step 3: Session Data. A NSPK session is established between an initiator and responder. Since
each party knows its own identity, it needs only to remember its counterpart. During each
session, two nonces and a payload message are exchanged and stored into the session data.

typedef session_data_NSPK {

int party; /* the other party in the session */

int nonce1, nonce2; /* nonces of initiator and responder */

int payload; /* the message to be sent */

};

Step 4: Initiator By convention, the initiator sends messages ending with an odd index and
waits for those with an even index. Message fields are filled with values from entity and
session data after encryption has been applied to them. The sample below shows how an
initiator starts the protocol session by sending a message. It is noteworthy to see, that the
Notary is informed before any other action is taken via the private channel ed.secure.

#define ENC_A(val) ENCRYPT_A(val, ed.pk[ENTITY_INDEX(ini.sd.party)])

proctype alice(chan init_alice) {

msg_ANNOUNCE announce;

entity_data_NSPK ed; session_NSPK ini;

init_alice?ed, ini.sd, scratch_nspk; /* accept initialization */

send_ANNOUNCE: d_step { /* build announcement .. */

announce.receiver = ini.sd.party;

announce.sender = ALICE; announce.data = ini.sd.payload;}

ed.secure!ANNOUNCE(announce); /* .. and send it */

send_REQUEST_1: d_step { /* build the request .. */

ini.request.nonce1 = ENC_A(ini.sd.nonce1);

ini.request.party = ENC_A(ALICE); }

/* .. and send it */

SND(REQUEST_1, ALICE, ini.sd.party, ini.request);

[...]

};

Step 5: Responder For the responder, a piece of code is shown which contains the reception of
a message, a condition check and a notification to the Notary.

proctype bob(chan init_bob) { [...]

init_bob?ed, res.sd, scratch_nspk; /* accept initialization */

[...]

receive_CONFIRM_3: /* .. accept the confirm .. */

RCV(CONFIRM_3, eval(res.sd.party), BOB, res.confirm);

/* .. nonce2 verification */

(DECRYPT_A(res.confirm.nonce2, ed.sk) == res.sd.nonce2);

receive_DATA_5: d_step { /* .. accept the data .. */

RCV(DATA_5, eval(res.sd.party), BOB, res.data);

/* .. and unpack it */

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

3 DERIVING AN EXAMPLE 8

res.sd.payload = DECRYPT_S(res.data.message, res.sd.nonce2); };

send_ANNOUNCE: d_step { announce.sender = res.sd.party;

announce.receiver = BOB; announce.data = res.sd.payload; };

ed.secure!ANNOUNCE(announce);

};

Step 6: Intruder The intruder functionality has already been covered in detail in [6], and is
only slightly modified to fit the data structures used in this paper. Basically, the process
generated for Eve needs to keep up with three sessions. For all messages, the address fields
may be filled with randomly chosen entities and there are three session data to use values
from. Moreover, messages from a captured session may be replayed as a whole. For a complete
implementation see Appendix A. The reader may notice, that there are actually four sessions
defined. The extra one is used temporarily in send/receive statements, so as not to overwrite
any values in a stored session.

Step 7: Notary As explained above, the notary creates and initializes all processes and data
structures at first. After that, it waits for incoming ANNOUNCE-messages. On reception, it
determines the outcome of the simulation according to each message (cf. Tab. 1).

#define I_ALICE ENTITY_INDEX(ALICE)

#define CP_PK(src, dst) ed[dst].pk[src] = ed[src].pk[src];

#define SESSION (ENTITY_INDEX(ann.sender) \

+ (MAX_PROC * ENTITY_INDEX(ann.receiver)));

typedef check { bit s_correct; int data; };

active proctype notary() {

chan secure[MAX_PROC] = [0] of {mtype, msg_ANNOUNCE};

chan ini[MAX_PROC] = [0] of {entity_data_NSPK,

session_data_NSPK,

session_data_NSPK};

entity_data_NSPK ed[MAX_PROC];

session_data_NSPK sd_alice_bob, sd_alice_eve,

sd_bob_alice,

sd_eve_bob, sd_eve_alice ;

/* entity data initialization */

ed[I_ALICE].secure = secure[0]; ed[I_ALICE].sk = GEN_KEY_PUB(5);

ed[I_ALICE].pk[I_ALICE] = GEN_KEY_SEC(5);

CP_PK(I_ALICE, I_BOB); CP_PK(I_ALICE, I_EVE);

[...]

/* session data initialization */

sd_alice_bob.party = BOB; sd_alice_bob.nonce1 = RND(NAB);

sd_alice_bob.payload = 35;

[...]

atomic { run alice(ini[I_ALICE]);

run bob (ini[I_BOB]); run eve (ini[I_EVE]);

ini[I_BOB]!ed[I_BOB], sd_bob_alice, scratch_nspk;

ini[I_EVE]!ed[I_EVE], sd_eve_bob, sd_eve_alice;

if :: ini[I_ALICE]!ed[I_ALICE], sd_alice_bob, scratch_nspk;

:: ini[I_ALICE]!ed[I_ALICE], sd_alice_eve, scratch_nspk;

fi;

[...] /* outcome determination */

check storage[MAX_PROC2]; msg_ANNOUNCE ann;

mtype entity = 0; int session_count = 0;

do :: atomic { if :: ed[I_ALICE].secure?ANNOUNCE(ann)

-> entity = ALICE;

[...]

fi;

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

4 THE ENVIRONMENT 9

-> if :: (ann.data != 0)

-> if :: (storage[SESSION].data == 0 && ann.data != 0)

-> storage[SESSION].s_correct

= (entity == ann.sender);

-> storage[SESSION].data = ann.data

-> session_count++;

:: ((storage[SESSION].data != 0)

&& (storage[SESSION].data == ann.data)

&& (entity != ann.sender))

-> if :: (entity == ann.receiver)

-> if :: (storage[SESSION].s_correct)

-> session_count--;

-> storage[SESSION].data = 0;

-> if :: (session_count == 0)

-> goto success;

:: else -> skip

fi;

:: else -> goto impersonation;

fi;

:: else -> if :: (storage[SESSION].s_correct)

-> goto capture;

:: else -> goto failure;

fi;

fi;

:: else -> goto failure;

fi;

:: else -> goto failure;

fi;

-> entity = 0; };

od;

[...] }

4 The Environment

The PROMELA driven constructivist environment (ProDuctivE) aims at supporting the gener-
ation of PROMELA models to enable an extensive and collaborative investigation of security
protocols. Besides offering a user interface to SPIN, it integrates the existing projects HiSAP and
NUSS (see explanations below).

4.1 Architecture

An architectural overview is given in Fig. 1. The general setup is a client-server one. The server
performs the simulation of the PROMELA model, projects the structure into a simplified view and
invokes the SPIN validator if required. Hence, SPIN compliance can be achieved. The resulting trail
file can then be used to generate a certain execution sequence. Storing events and corresponding
data in a database, is one cornerstone for an undo/redo facility. Two sorts of clients exist. The
first one is a generating client, which supports the implementation of PROMELA models and
their proper configuration. The second one is a constructivist client which allows to investigate
such PROMELA models. All clients have access to the global view provided by the server and
may even duplicate it to move around in the history. Moreover, depending on current access
rights (cf. floor control below), the simulation itself and movements on the global history can be
controlled. Hence, learners can undo and redo actions in the local history at will and in the global
one according to their rights.

While the main components are written in Java, the usage of SPIN with its need for a C

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

4 THE ENVIRONMENT 10

Generation

Client

System −

Wrapper

Intermediate

Model

Simulation

Client
Constructivist

Client
Constructivist

Client
Constructivist

pan

CC

SPIN

pan.c

nspk.prl

impers.trail

DB

Server

success.trail

Archive

Control
Floor

Figure 1: The ProDuctivE architecture

compiler induces system dependencies. Since all components related to SPIN are placed on the
server, clients become independent from the underlying system.

4.2 Visualization issues

The PROMELA model and its simulation produce a lot of information, but only a fraction is
needed to support learners in a proper way. For instance, it is common practice for protocols to
have a separate process serve as a network or a router. It receives messages on one PROMELA
channel and forwards them to a destination process which listens on another one. If it is not
necessary to visualize the network process, both channels can be presented as just one. Hence,
by transforming, filtering and generalizing information, the perception of important issues can be
improved tremendously.

In ProDuctivE, a special interpreter written in Java accepts PROMELA input, and a subset
of the C preprocessor directives. It performs the simulation by using classes which are named
HiProcess, HiChannel and HiMessage. Each simulation class supports the attachment of event lis-
teners for visualization purposes. That means, these listeners propagate simulation events towards
suitable visualization components. As a consequence, these events are mapped into appropriate
visualization actions. The relevant events are summarized in Tab. 3.

Visualization components were drawn from HiSAP (Highly interactive Simulation of Algo-
rithms and Protocols), a toolkit consisting of Java classes for interactive simulation and visualiza-
tion of communication protocols (cf. [2]). Basic visualization components are nodes, connections
and protocols. Two nodes are connected by a connection. A node can send to or receive from a
connection. Each node is associated with a strategy, which decides when such an action should be
taken. The message flow between nodes can be visualized in several ways, like a Message-Sequence-
Diagram or a topological view, where images represent the nodes and connections and animated
messages travel along these connections. All these visualization mechanisms are shown in Fig. 2.

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

5 RELATED WORK 11

Table 3: Emitted events and actions they trigger.
Simulation

BeginSimulation Initialize the views
EndSimulation
AbortSimulation simulation Clean up the views
ChannelCreated channel Add the handlers for the new channel
RuntimeError

Process
ChannelAccessGained Connect the process with the channel
ChannelAccessLost process Disconnect the process from the chan-

nel
ChannelExclusiveRead
ChannelExclusiveWrite

channel Change the view of the connection

StateReached process Adapt visual representation
Message

[Rv]MessageSent Trigger the sending of a message from
the process to the channel

MessageDequeued

process
message
channel Trigger the sending of a message from

the channel to the process

4.3 Distributed Collaboration

With the functionality described so far, only a single person can investigate a certain protocol. The
next step aims toward multi-player mode. To this end, the NUSS (Notebook University Stuttgart)
framework is used (NUSS supersedes the former project SASCIA which was described in [1]). It
provides mechanisms for application sharing in the teaching area. This means especially, to enable
annotation and notetaking on application windows as well as recording of application usage and
annotations. Moreover, a floor control component in combination with a role concept care for
having learners take over different parts in controlling the application. With regard to this paper,
simulation and validation of security protocols is the application in question. In this context, the
following roles are involved: generator of a promela model, initiator of a validation, Alice, Bob,
Eve and the Notary . The integration of the SPIN based teaching facility into NUSS is performed
within [7].

5 Related Work

The application of model checking with SPIN to teaching has been mentioned in [3] and [8]. Since
they restrict on protocols like mutual exclusion and dining philosophers, they have been able to use
PROMELA and SPIN in the original form. Collaboration between learners has not been thought
of yet.

Other approaches aim at offering graphical user interfaces and visualization for SPIN. In the
first place, this holds for XSPIN as described in [4]. During simulation runs, the message sequence
chart as well as time sequence and data value panels are shown. ProDuctivE contains two more
facilities designed especially for teaching purposes: customizable views, e.g. a topology view and
the possibility to step back and forth in the simulation thus exploring various paths.

This paper has drawn profit from the work of [6]. The authors developed a universal intruder
model which unveils a known flaw in the Needham-Schroeder-Public-Key authentication protocol
(cf. [10]). Their model is based on a static analysis of message exchange among the participating
processes. The intruder model itself keeps track of the data available to it and modifies global
variables to indicate success. The derived intruder model completely exploits the results of the

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

7 ACKNOWLEDGEMENT 12

Figure 2: A screenshot of the ProDuctivE prototype.

static analysis, and thus should discover any failure. While this approach keeps the state space
small for an efficient validation, it does not consider the peculiarities needed for teaching sessions
as described above. This holds especially for the integration of learners into simulation runs.

6 Conclusions, outlook

The usage of PROMELA and SPIN for teaching in the area of security protocols was described.
Currently, further security protocols (e. g. protocols for Secure Socket Layer version 2.0 and 3.0)
are going to be specified in PROMELA. An extension to further examples like network protocols
is planned. Moreover, a dialog based security protocol wizard is within reach

With the security protocols at hand, experiments in class will take place during summer term
2003. Only then, one can find out about the acceptance of students as well as advantages and
shortcomings of the environment that is empowered by PROMELA, SPIN and collaboration.

7 Acknowledgement

Our deep gratitude is to Kurt Rothermel, the leader of the department Distributed Systems of
the Institute for Parallel and Distributed Systems at the University of Stuttgart. He contributed
some of the original ideas. Moreover, we thank Stella Papakosta who temporarily was advisor of
the first author.

The work was performed in the project ITO (Information Technology Online) being funded

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 13

by the German Ministry of Education. The second author is holding a Margarethe-von-Wrangell
scholarship by the state Baden-Württemberg in Germany.

References

[1] Cora Burger, Stella Papakosta, and Kurt Rothermel. Application sharing in teach-
ing context with wireless networks. In Proceedings of World Congress NETWORKED
LEARNING IN A GLOBAL ENVIRONMENT - Challenges and Solutions for Virtual Edu-
cation, 2002. URL: http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=

INPROC-2002-04&inst=VS&mod=&engl=.

[2] Cora Burger and Kurt Rothermel. A framework to support teaching in distributed systems. Journal
of Educational Resources in Computing (JERIC), 1(1es):3, 2001. URL: http://doi.acm.org/10.

1145/376697.376698.

[3] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Protocol Verification with Heuristic
Search. In AAAI-Spring Symposium on Model-based Validation of Intelligence, 2001. URL: http:
//www.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf.

[4] Gerard J. Holzmann. The Spin Model Checker. IEEE Transactions on Software Engineering, 23(5),
1997.

[5] Audun Jøsang. Pre-study of: Security Protocol Verification using SPIN. In Proceedings of SPIN95,
the First SPIN Workshop, 1995. URL: http://netlib.bell-labs.com/netlib/spin/ws95/papers.
html#F.

[6] Paolo Maggi and Riccardo Sisto. Using SPIN to Verify Security Properties of Cryptographic Protocols.
In Proceedings of the 9-th SPIN Workshop 2002, 2002.

[7] Matthias Papesch. Constructivist environment for selfstudies in the area of security protocols.
Master’s thesis, Universität Stuttgart, 2003. URL: http://www.informatik.uni-stuttgart.de/

cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=.

[8] John Regehr. Using SPIN to Help Teach Concurrent Programming, 1998. URL: http://citeseer.
nj.nec.com/regehr98using.html.

[9] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. modelling and analysis
of security protocols. Addison-Wesley, 2001.

[10] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 1996.

A PROMELA implementation of the NPSK protocol

1 /∗
2 ∗ File : nspk.prl
3 ∗
4 ∗ Description: This is an implementation of a simplified version of
5 ∗ the Needham−Schroeder−Public−Key authentication protocol. The
6 ∗ simplification is such, that the trusted server which keeps all
7 ∗ public keys is left out.
8 ∗
9 ∗ The goal is to unveil the flaw which inhabits this protocol .

10 ∗ The
11 ∗
12 ∗ 4 proctypes are defined , each with a specific purpose.
13 ∗
14 ∗ Alice : Tries to iniatiate a session with either Bob or Eve.
15 ∗
16 ∗ Bob: Responds to an initiation request from either Alice or Eve.
17 ∗

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=INPROC-2002-04&inst=VS&mod=&engl=
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=INPROC-2002-04&inst=VS&mod=&engl=
http://doi.acm.org/10.1145/376697.376698
http://doi.acm.org/10.1145/376697.376698
http://www.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf
http://www.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf
http://netlib.bell-labs.com/netlib/spin/ws95/papers.html#F
http://netlib.bell-labs.com/netlib/spin/ws95/papers.html#F
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=
http://citeseer.nj.nec.com/regehr98using.html
http://citeseer.nj.nec.com/regehr98using.html

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 14

18 ∗ Eve: Either initiates a session with Bob,
19 ∗ responds to a request from Alice
20 ∗ or tries to interfere with a session between Alice and Bob.
21 ∗
22 ∗ Notary: Initializes the other entities and establishes shared secrets
23 ∗ with them. Also decides the outcome of the protocol.
24 ∗
25 ∗/
26

27 #ifndef HISPIN
28

29 /∗
30 ∗ Random Number Support
31 ∗ −−−−−−−−−−−−−−−−−−−−−
32 ∗
33 ∗ For a validation , a random value can be re−used. Not so for an
34 ∗ interactive simulation . This macro provides a possibility to indicate
35 ∗ that the interpreter should replace the given value with a randomly
36 ∗ generated one. The validator, however, may just replace the value with the
37 ∗ noted default .
38 ∗/
39 #define RND(x) x
40

41 /∗
42 ∗ Symmetric Cryptography
43 ∗ −−−−−−−−−−−−−−−−−−−−−−
44 ∗
45 ∗ To perform symmetric encryption, three macros are defined.
46 ∗ The first creates a key, which can be used for en− and decryption
47 ∗ with the functions implemented by the other two functions, respectively .
48 ∗
49 ∗ ˆ : bitwise exclusive or
50 ∗ << : shift left
51 ∗ ˜ : bitwise negation
52 ∗/
53 #define GEN KEY SYM(id) RND(id)
54 #define ENCRYPT S(val, key) ((val ˆ ((key << 8) & ˜255)))
55 #define DECRYPT S(val, key) ((val ˆ (key << 8)))
56

57 /∗
58 ∗ Asymmetric Cryptography
59 ∗ −−−−−−−−−−−−−−−−−−−−−−−
60 ∗
61 ∗ The difference to symmetric encryption is, that asymetric requires two
62 ∗ different keys . A preliminary solution is to use the default value to
63 ∗ lookup the wanted key. A duplicate key error should be created , when
64 ∗ a key with the same value is created twice .
65 ∗
66 ∗ The additional functionality gained is the possibility to create
67 ∗ signatures and to verify them. The implented signature function simply
68 ∗ returns the encrypted value.
69 ∗/
70 #define GEN KEY PUB(id) (˜id & 255)
71 #define GEN KEY SEC(id) (id & 255)
72 #define ENCRYPT A(val, key) ((val | ((key & 255) << 8)))
73 #define DECRYPT A(val, key) ((val ˆ ((˜key & 255) << 8)))

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 15

74

75 #define SIGN(val, key) ENCRYPT A(val, key)
76 #define VRFY(val, key) DECRYPT A(val, key)
77

78 #endif
79

80 /∗
81 ∗ Improved Message handling
82 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−
83 ∗ These macros provide a more comfortable way to handle messages
84 ∗ interactively . If the entire message content is contained within a
85 ∗ data structures , its components can be accessed by a name. This is
86 ∗ clearly more convenient than the anonymous, positional access ”regular”
87 ∗ channels use.
88 ∗
89 ∗ MESSAGE macro
90 ∗ −−−−−−−−−−−−−
91 ∗ The message maco makes sure, that
92 ∗ − an mtype for the message is created
93 ∗ − each protocol specific message is described by a typedef ’ed structure
94 ∗ − a global channel is created , which takes 4 arguments
95 ∗ 1. the type of the message
96 ∗ 2. the mtype describing the sender
97 ∗ 3. the mtype describing the receiver
98 ∗ 4. a structure of the correct type
99 ∗ Messages can only be blocked according to the sender and the receiver,

100 ∗ but not on the content.
101 ∗
102 ∗ SND/RCV macros
103 ∗ −−−−−−−−−
104 ∗ The SND/RCV macro provide a simple invocation of a send/ receive
105 ∗ operations for a message defined with the MESSAGE macro. They take
106 ∗ − the message type
107 ∗ − the sender
108 ∗ − the receiver
109 ∗ − a data structure
110 ∗ as arguments. They create the correct statement for the channel
111 ∗ created through the MESSAGE macro.
112 ∗
113 ∗ These macros use the concatenation operator ’##’, which merges two
114 ∗ string tokens into a single one. (see man cpp)
115 ∗/
116 #define MESSAGE(s, m, d) \
117 mtype { m }; \
118 typedef msg ##m { d; }; \
119 chan net ##m = [0] of {mtype, mtype, mtype, msg ##m }
120

121 #define SND(m, s, r, d) net ##m!m(s, r, d);
122 #define RCV(m, s, r, d) net ##m?m(s, r, d);
123

124 /∗
125 ∗ Constants
126 ∗/
127 #define OUTCOME capture
128 #define MAX PROC 4
129 #define MAX PROC2 16

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 16

130 #define SESSION (ENTITY INDEX(sender) + MAX PROC ∗ ENTITY INDEX(receiver))
131

132 #define ENTITY INDEX(e) (e % MAX PROC)
133

134 #define I ALICE ENTITY INDEX(ALICE)
135 #define I BOB ENTITY INDEX(BOB)
136 #define I EVE ENTITY INDEX(EVE)
137 #define I NOTARY ENTITY INDEX(NOTARY)
138

139 /∗
140 ∗ Request
141 ∗ −−−−−−−
142 ∗ − nonce1 : a nonce value to identify the initiator
143 ∗ − party : the party to talk to
144 ∗/
145 MESSAGE(NSPK, REQUEST 1, int nonce1; int party);
146

147 /∗
148 ∗ Challenge
149 ∗ −−−−−−−−−
150 ∗ − nonce1 : the original nonce to identify the initiator
151 ∗ − nonce2 : another nonce to identify the responder
152 ∗/
153 MESSAGE(NSPK, CHALLENGE 2, int nonce1; int nonce2);
154

155 /∗
156 ∗ Confirm
157 ∗ −−−−−−−
158 ∗ − nonce2 : the nonce to identify the responder
159 ∗/
160 MESSAGE(NSPK, CONFIRM 3, int nonce2);
161

162 /∗
163 ∗ Data
164 ∗ −−−−
165 ∗ − message: the actual message value
166 ∗
167 ∗/
168 MESSAGE(NSPK, DATA 5, int message);
169

170 mtype = {ALICE, BOB, EVE, NOTARY,
171 ANNOUNCE,
172 NAB, NAE, N2B, NEB, N2E};
173

174 /∗
175 ∗ sesison data NSPK
176 ∗ −−−−−−−−−−−−−−−−−
177 ∗ contains all session specific data.
178 ∗
179 ∗ − party : the other end
180 ∗ − nonce1 , nonce2 : nonces to identify each end
181 ∗ − payload : the actual message
182 ∗/
183 typedef session data NSPK {
184 mtype party;
185 int nonce1, nonce2, payload;

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 17

186 };
187

188 /∗
189 ∗ session NSPK
190 ∗ −−−−−−−−−−−−
191 ∗ contains an instance of each message and one session data.
192 ∗
193 ∗/
194 typedef session NSPK {
195 session data NSPK sd;
196 msg REQUEST 1 request;
197 msg CHALLENGE 2 challenge;
198 msg CONFIRM 3 confirm;
199 msg DATA 5 data;
200 };
201

202 /∗
203 ∗ Announce
204 ∗ −−−−−−−−
205 ∗ − sender : the proclaimed sender
206 ∗ − receiver : the proclaimed receiver
207 ∗ − data : the message of the session
208 ∗/
209 typedef msg ANNOUNCE {
210 mtype sender, receiver;
211 int data;
212 };
213

214 /∗
215 ∗ stores the message and the correctnes of the sender
216 ∗/
217 typedef check {
218 bit s correct ;
219 int data;
220 };
221

222 /∗
223 ∗ entity data NSPK
224 ∗ −−−−−−−−−−−−−−−−
225 ∗ − secure : a private channel shared with the notary
226 ∗ − sk : a secret key
227 ∗ − pk[] : a set of public keys
228 ∗/
229 typedef entity data NSPK {
230 chan secure;
231 int sk , pk[MAX PROC];
232 };
233

234

235 /∗
236 ∗ Alice
237 ∗/
238 proctype alice(chan init alice) {
239 entity data NSPK ed;
240

241 session NSPK nspk;

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 18

242 msg ANNOUNCE announce;
243

244 /∗
245 ∗ just to ignore the empty field
246 ∗ prevents a warning
247 ∗/
248 session data NSPK scratch nspk;
249

250 /∗
251 ∗ receive the initialization from the notary.
252 ∗/
253 init alice ?ed, nspk.sd, scratch nspk;
254

255 /∗
256 ∗ send the announcement on the secure channel to the Notary.
257 ∗/
258 send ANNOUNCE: d step {
259 announce.sender = ALICE;
260 announce.receiver = nspk.sd.party;
261 announce.data = nspk.sd.payload; }
262

263 ed.secure!ANNOUNCE(announce);
264

265 /∗
266 ∗ send the request message, encrypted with the public key of the
267 ∗ other party
268 ∗/
269 send REQUEST 1: d step {
270 nspk.request.nonce1
271 = ENCRYPT A(nspk.sd.nonce1, ed.pk[ENTITY INDEX(nspk.sd.party)]);
272 nspk.request.party
273 = ENCRYPT A(ALICE, ed.pk[ENTITY INDEX(nspk.sd.party)]);
274 }
275 SND(REQUEST 1, ALICE, nspk.sd.party, nspk.request);
276

277 /∗
278 ∗ receive the challenge , which is encrypted with this public key
279 ∗ make sure, that the nonce matches.
280 ∗/
281 receive CHALLENGE 2:
282 RCV(CHALLENGE 2, eval(nspk.sd.party), ALICE, nspk.challenge);
283

284 nspk.sd.nonce2 = DECRYPT A(nspk.challenge.nonce2, ed.sk);
285

286 (DECRYPT A(nspk.challenge.nonce1, ed.sk) == nspk.sd.nonce1);
287

288 /∗
289 ∗ send the confirm message.
290 ∗/
291 send CONFIRM 3:
292 nspk.confirm.nonce2
293 = ENCRYPT A(nspk.sd.nonce2, ed.pk[ENTITY INDEX(nspk.sd.party)]);
294

295 SND(CONFIRM 3, ALICE, nspk.sd.party, nspk.confirm);
296

297 /∗

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 19

298 ∗ send the data message
299 ∗/
300 send DATA 5:
301 nspk.data.message = ENCRYPT S(nspk.sd.payload, nspk.sd.nonce2);
302

303 SND(DATA 5, ALICE, nspk.sd.party, nspk.data);
304 }
305

306 /∗
307 ∗ Bob
308 ∗/
309 proctype bob(chan init bob) {
310 entity data NSPK ed;
311

312 session NSPK nspk;
313 msg ANNOUNCE announce;
314

315 session data NSPK scratch nspk;
316

317 /∗
318 ∗ receive the initialization from the notary.
319 ∗/
320 init bob?ed, nspk.sd, scratch nspk;
321

322 receive REQUEST 1: d step {
323 RCV(REQUEST 1, nspk.sd.party, BOB, nspk.request);
324

325 nspk.sd.nonce1 = DECRYPT A(nspk.request.nonce1, ed.sk);
326 nspk.sd.party = DECRYPT A(nspk.request.party, ed.sk); }
327

328 /∗
329 ∗ send the challenge , encrypted with the other party’ s public key
330 ∗/
331 send CHALLENGE 2: d step {
332 nspk.challenge.nonce1
333 = ENCRYPT A(nspk.sd.nonce1, ed.pk[ENTITY INDEX(nspk.sd.party)]);
334

335 nspk.challenge.nonce2
336 = ENCRYPT A(nspk.sd.nonce2, ed.pk[ENTITY INDEX(nspk.sd.party)]); };
337

338 SND(CHALLENGE 2, BOB, nspk.sd.party, nspk.challenge);
339

340 /∗
341 ∗ receive the confirm message, unpack it and make sure nonce2 is
342 ∗ is the one previously sent
343 ∗/
344 receive CONFIRM 3:
345 RCV(CONFIRM 3, eval(nspk.sd.party), BOB, nspk.confirm);
346

347 (DECRYPT A(nspk.confirm.nonce2, ed.sk) == nspk.sd.nonce2);
348

349 /∗
350 ∗ receive the data message encrypted with nonce2
351 ∗/
352 receive DATA 5: d step {
353 RCV(DATA 5, eval(nspk.sd.party), BOB, nspk.data);

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 20

354

355 nspk.sd.payload = DECRYPT S(nspk.data.message, nspk.sd.nonce2); };
356

357 /∗
358 ∗ announce the reception of the data message to the notary
359 ∗/
360 send respond 3: d step {
361 announce.sender = nspk.sd.party;
362 announce.receiver = BOB;
363 announce.data = nspk.sd.payload; };
364

365 ed.secure!ANNOUNCE(announce);
366

367 }
368

369 /∗
370 ∗ Eve
371 ∗/
372

373 proctype eve(chan init eve) {
374 entity data NSPK ed;
375

376 session NSPK nspk actual, nspk init , nspk respond, nspk capture;
377 msg ANNOUNCE announce;
378

379 mtype initiator, responder;
380

381 /∗
382 ∗ receive the initialization
383 ∗/
384 init eve ?ed, nspk init .sd , nspk respond.sd;
385

386 do
387 :: atomic {
388 /∗
389 ∗ send an arbitrarily created message
390 ∗/
391 if
392 :: initiator = ALICE; responder = BOB;
393 :: initiator = ALICE; responder = EVE;
394 :: initiator = EVE; responder = BOB;
395 fi ;
396

397 if
398 /∗ REQUEST 1(nonce1 , party) ∗/
399 :: if
400 :: nspk actual.request.nonce1 = nspk capture.request.nonce1
401 −> nspk actual.request.party = nspk capture.request.party;
402

403 :: if
404 :: nspk actual.request.party = ENCRYPT A(ALICE, ed.pk[I BOB]);
405 :: nspk actual.request.party = ENCRYPT A(BOB, ed.pk[I BOB]);
406 :: nspk actual.request.party = ENCRYPT A(EVE, ed.pk[I BOB]);
407 fi ;
408

409 if

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 21

410 :: nspk actual.request.nonce1
411 = ENCRYPT A(nspk init.sd.nonce1, ed.pk[I BOB]);
412

413 :: nspk actual.request.nonce1
414 = ENCRYPT A(nspk init.sd.nonce2, ed.pk[I BOB]);
415

416 :: nspk actual.request.nonce1
417 = ENCRYPT A(nspk respond.sd.nonce1, ed.pk[I BOB]);
418

419 :: nspk actual.request.nonce1
420 = ENCRYPT A(nspk respond.sd.nonce2, ed.pk[I BOB]);
421 fi ;
422 fi ;
423

424 SND(REQUEST 1, initiator, responder, nspk actual.request);
425

426 d step {
427 nspk actual.request.party = 0;
428 nspk actual.request.nonce1 = 0; };
429

430 /∗ CHALLENGE 2(nonce1 , nonce2) ∗/
431 :: if
432 :: nspk actual.challenge .nonce1 = nspk capture.challenge.nonce1;
433 −> nspk actual.challenge.nonce2 = nspk capture.challenge.nonce2;
434 :: if
435 :: nspk actual.challenge .nonce1
436 = ENCRYPT A(nspk init.sd.nonce1, ed.pk[I ALICE]);
437

438 :: nspk actual.challenge .nonce1
439 = ENCRYPT A(nspk init.sd.nonce2, ed.pk[I ALICE]);
440

441 :: nspk actual.challenge .nonce1
442 = ENCRYPT A(nspk respond.sd.nonce1, ed.pk[I ALICE]);
443

444 :: nspk actual.challenge .nonce1
445 = ENCRYPT A(nspk respond.sd.nonce2, ed.pk[I ALICE]);
446 fi ;
447

448 if
449 :: nspk actual.challenge .nonce2
450 = ENCRYPT A(nspk init.sd.nonce1, ed.pk[I ALICE]);
451

452 :: nspk actual.challenge .nonce2
453 = ENCRYPT A(nspk init.sd.nonce2, ed.pk[I ALICE]);
454

455 :: nspk actual.challenge .nonce2
456 = ENCRYPT A(nspk respond.sd.nonce1, ed.pk[I ALICE]);
457

458 :: nspk actual.challenge .nonce2
459 = ENCRYPT A(nspk respond.sd.nonce2, ed.pk[I ALICE]);
460 fi ;
461 fi ;
462

463 SND(CHALLENGE 2, responder, initiator, nspk actual.challenge);
464

465 d step {

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 22

466 nspk actual.challenge .nonce1 = 0;
467 nspk actual.challenge .nonce2 = 0; }
468

469 /∗ CONFIRM 3(nonce2) ∗/
470 :: if
471 :: nspk actual.confirm.nonce2 = nspk capture.confirm.nonce2;
472 :: if
473 :: nspk actual.confirm.nonce2
474 = ENCRYPT A(nspk init.sd.nonce1, ed.pk[I BOB]);
475

476 :: nspk actual.confirm.nonce2
477 = ENCRYPT A(nspk init.sd.nonce2, ed.pk[I BOB]);
478

479 :: nspk actual.confirm.nonce2
480 = ENCRYPT A(nspk respond.sd.nonce1, ed.pk[I BOB]);
481

482 :: nspk actual.confirm.nonce2
483 = ENCRYPT A(nspk respond.sd.nonce2, ed.pk[I BOB]);
484 fi ;
485 fi ;
486

487 SND(CONFIRM 3, initiator, responder, nspk actual.confirm);
488 nspk actual.confirm.nonce2 = 0;
489

490 /∗ DATA 5(payload) ∗/
491 :: if
492 :: nspk actual.data.message = nspk capture.data.message
493 :: if
494 :: nspk actual.data.message
495 = ENCRYPT S(nspk init.sd.payload, nspk init .sd.nonce2)
496

497 :: nspk actual.data.message
498 = ENCRYPT S(nspk respond.sd.payload, nspk init.sd.nonce2)
499

500 :: nspk actual.data.message
501 = ENCRYPT S(nspk init.sd.payload, nspk respond.sd.nonce2)
502

503 :: nspk actual.data.message
504 = ENCRYPT S(nspk respond.sd.payload, nspk respond.sd.nonce2)
505 fi ;
506

507 if
508 :: announce.data = nspk init.sd.payload;
509 :: announce.data = nspk respond.sd.payload;
510 fi ;
511

512 announce.sender = initiator ;
513 announce.receiver = responder;
514

515 ed.secure!ANNOUNCE(announce);
516

517 d step {
518 announce.sender = 0;
519 announce.receiver = 0;
520 announce.data = 0; }
521 fi ;

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 23

522

523 SND(DATA 5, initiator, responder, nspk actual.data);
524 nspk actual.data.message = 0;
525

526 fi ;
527 }
528

529 /∗
530 ∗ receive messages of a session eve is involved − decryptable
531 ∗/
532 :: d step { RCV(REQUEST 1, ALICE, EVE, nspk respond.request);
533 −> nspk respond.sd.nonce1 = DECRYPT A(nspk respond.request.nonce1, ed.sk)
534 −> nspk respond.sd.party = DECRYPT A(nspk respond.request.party, ed.sk);};
535

536 :: d step { RCV(CHALLENGE 2, BOB, EVE, nspk init.challenge);
537 −> nspk init.sd.nonce2 = DECRYPT A(nspk init.challenge.nonce2, ed.sk); };
538

539 :: d step { RCV(CONFIRM 3, ALICE, EVE, nspk respond.confirm);
540 −> nspk respond.sd.nonce2 = DECRYPT A(nspk respond.confirm.nonce2, ed.sk);};
541

542 :: d step { RCV(DATA 5, ALICE, EVE, nspk respond.data);
543 −> nspk respond.sd.payload
544 = DECRYPT S(nspk respond.data.message, nspk respond.sd.nonce2);
545

546 −> announce.sender = ALICE;
547 −> announce.receiver = EVE;
548 −> announce.data = nspk respond.sd.payload; }
549

550 ed.secure!ANNOUNCE(announce);
551 d step {
552 announce.sender = 0;
553 announce.receiver = 0;
554 announce.data = 0; };
555

556 /∗
557 ∗ receive messages of a captured session − unreadable
558 ∗/
559 :: RCV(REQUEST 1, ALICE, BOB, nspk capture.request);
560

561 :: RCV(CHALLENGE 2, BOB, ALICE, nspk capture.challenge);
562

563 :: RCV(CONFIRM 3, ALICE, BOB, nspk capture.confirm);
564

565 :: RCV(DATA 5, ALICE, BOB, nspk capture.data);
566

567 od;
568 }
569

570

571 active proctype notary() {
572

573 session data NSPK scratch nspk;
574 chan secure [3] = [0] of {mtype, msg ANNOUNCE};
575 chan ini [3] = [0] of {entity data NSPK,
576 session data NSPK,
577 session data NSPK};

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 24

578

579 entity data NSPK ed[MAX PROC];
580

581 session data NSPK sd alice bob, sd alice eve ,
582 sd bob alice ,
583 sd eve bob, sd eve alice ;
584

585 /∗
586 ∗ initialization
587 ∗/
588 d step {
589 ed[I ALICE].secure = secure [0];
590 ed[I ALICE].sk = GEN KEY PUB(5);
591 ed[I ALICE].pk[I ALICE] = GEN KEY SEC(5);
592

593 ed[I BOB]. pk[I ALICE] = ed[I ALICE].pk[I ALICE];
594 ed[I EVE]. pk[I ALICE] = ed[I ALICE].pk[I ALICE];
595 ed[I NOTARY].pk[I ALICE] = ed[I ALICE].pk[I ALICE];
596

597 ed[I BOB]. secure = secure [1];
598 ed[I BOB]. sk = GEN KEY SEC(7);
599 ed[I BOB]. pk[I BOB] = GEN KEY PUB(7);
600

601 ed[I ALICE].pk[I BOB] = ed[I BOB]. pk[I BOB];
602 ed[I EVE]. pk[I BOB] = ed[I BOB]. pk[I BOB];
603 ed[I NOTARY].pk[I BOB] = ed[I BOB].pk[I BOB];
604

605 ed[I EVE]. secure = secure [2];
606 ed[I EVE]. sk = GEN KEY SEC(11);
607 ed[I EVE]. pk[I EVE] = GEN KEY PUB(11);
608

609 ed[I ALICE].pk[I EVE] = ed[I EVE]. pk[I EVE];
610 ed[I BOB]. pk[I EVE] = ed[I EVE]. pk[I EVE];
611 ed[I NOTARY].pk[I EVE] = ed[I EVE].pk[I EVE];
612

613 ed[I NOTARY].sk = GEN KEY PUB(13);
614 ed[I ALICE].pk[I NOTARY] = ed[I NOTARY].pk[I NOTARY];
615 ed[I EVE]. pk[I NOTARY] = ed[I NOTARY].pk[I NOTARY];
616 ed[I BOB]. pk[I NOTARY] = ed[I NOTARY].pk[I NOTARY];
617

618 sd alice bob .party = BOB;
619 sd alice bob .nonce1 = RND(NAB);
620 sd alice bob .payload = 35;
621

622 sd alice eve .party = EVE;
623 sd alice eve .nonce1 = RND(NAE);
624 sd alice eve .payload = 45;
625

626 sd bob alice .nonce2 = RND(N2B);
627

628 sd eve bob.party = BOB;
629 sd eve bob.nonce1 = RND(NEB);
630 sd eve bob.payload = 77;
631

632 sd eve alice .nonce2 = RND(N2E);
633 }

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 25

634 /∗
635 ∗ create the other processes
636 ∗/
637 atomic {
638 run alice (ini [0]);
639 run bob(ini [1]);
640 run eve(ini [2]);
641

642 ini [1]! ed[I BOB], sd bob alice , scratch nspk;
643 ini [2]! ed[I EVE], sd eve bob, sd eve alice ;
644

645 if
646 :: ini [0]! ed[I ALICE], sd alice bob, scratch nspk ;;
647 :: ini [0]! ed[I ALICE], sd alice eve , scratch nspk;
648 fi ;
649 }
650

651 /∗
652 ∗
653 ∗/
654 check storage[MAX PROC2];
655 msg ANNOUNCE ann;
656 mtype entity = 0;
657 int session count = 0, session = 0;
658

659 do
660 :: atomic {
661 /∗
662 ∗ handle an announcement according to the channel on which it arrives
663 ∗/
664 if
665 :: ed[I ALICE].secure?ANNOUNCE(ann)
666 −> entity = ALICE;
667

668 :: ed[I BOB]. secure?ANNOUNCE(ann);
669 −> entity = BOB;
670

671 :: ed[I EVE]. secure?ANNOUNCE(ann);
672 −> entity = EVE;
673 fi ;
674 −> if
675 :: (ann.data != 0)
676 −> session = (ENTITY INDEX(ann.sender)
677 + (MAX PROC ∗ ENTITY INDEX(ann.receiver)));
678 −> if
679 :: storage[session]. data == 0
680 /∗
681 ∗ the first announcement
682 ∗/
683 −> storage[session]. s correct = (entity == ann.sender);
684 −> storage[session]. data = ann.data
685 −> session count++;
686

687 :: ((storage[session]. data != 0)
688 /∗
689 ∗ the second announcement

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 26

690 ∗/
691 && (storage[session]. data == ann.data)
692 /∗
693 ∗ the correct data
694 ∗/
695 && (entity != ann.sender))
696 −> if
697 :: (entity == ann.receiver)
698 /∗
699 ∗ the receiver is honest
700 ∗/
701 −> if
702 :: (storage[session]. s correct)
703 /∗
704 ∗ the sender was honest
705 ∗/
706 −> session count−−;
707 −> storage[session].data = 0;
708 −> if
709 :: (session count == 0) −> goto success;
710 :: else −> skip
711 fi ;
712

713 :: else
714 /∗
715 ∗ the sender was cheating
716 ∗/
717 −> goto impersonation;
718 fi ;
719

720 :: else
721 /∗
722 ∗ the receiver is cheating
723 ∗/
724 −> if
725 :: (storage[session]. s correct) −> goto capture;
726 :: else −> goto failure;
727 fi ;
728 fi ;
729

730 :: else −> goto failure;
731 fi ;
732

733 :: else −> goto failure;
734 fi ;
735 −> session = 0;
736 −> entity = 0; };
737 od;
738

739 success : false ;
740 failure : false ;
741 capture: false ;
742 impersonation: false ;
743 abort: false ;
744 }
745 #ifndef HISPIN

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 27

746 never {
747 do
748 :: notary[0]@OUTCOME −> break
749 :: skip;
750 od;
751 }
752 #endif

University of Stuttgart
Faculty of Computer Science

Technical Report No. 2002/09

	Introduction
	PROMELA Building Blocks for Security Protocols
	Entities and Data Templates
	Session Templates
	Templates and Processing of Messages
	Special Validation and Simulation Demands
	Model of an Omnipotent Intruder
	The Notary

	Deriving an example
	The Environment
	Architecture
	Visualization issues
	Distributed Collaboration

	Related Work
	Conclusions, outlook
	Acknowledgement
	References
	PROMELA implementation of the NPSK protocol

