,,,,::%ﬁ:{:& University of Stuttgart

* Faculty of Computer Science
-y *"'*i-*"' *""_ -

Date: 05.12.02

CR-Classification: C.22,D.24,D.46,16.3,1.6.7, K.3.1

Technical Report No. 2002/09

ProDuctivE - A PROMELA driven
constructivist environment to learn

security protocols

Matthias Papesch
Cora Burger

Institute of Parallel
and Distributed Systems
University of Stuttgart
Breitwiesenstrafle 20—22

D-70565 Stuttgart

Abstract

To overcome problems in understanding security protocols, a constructivist approach is
used. Learners are enabled to experiment with a given protocol, either alone or in a team of
co-learners. This means, to use pre-defined and automatically generated PROMELA build-
ing blocks for all communicating parties and to support students in playing some roles in
an interactive way. To explain these building blocks more detailed, the Needham-Schroeder-
Public-Key authentication protocol is given as an example.

All building blocks were realized by means of the preprocessor. A proper combination of
simulation and visualization components cares for hiding unnecessary details and restricts on
the essentials. The SPIN validator is used to check the correctness of students’ solutions or
generate trail files to give a hint in case of a quandary. To allow collaborative experiments, the
whole facility is embedded into a framework for application sharing. The latter is equipped
with components for annotation and note taking as well as for recording.

Has University of Stuttgart Technical Report No. 2002/09

i Faculty of Computer Science
e ¢4

1 INTRODUCTION 2

1 Introduction

When teaching computer networks and distributed systems, security is one big issue since it is
required heavily to protect privacy, identity, autonomy and resources of people in the electronic
world. The challenge behind consists in performing this task in front of hackers where the form of
attack is hard to foresee. Consequently, protocols being meant to achieve security are not under-
stood in a straightforward manner. Learners have to find out about possible flaws and corrections
when trying to comprehend how these protocols work.

With a teacher at hand for explanation and support, this is hard enough. The availability
of teachers being restricted, learners intermittently have to rely on private studies and discus-
sions with others. Hence, three different scenarios have to be coped with: lectures, single learners
and teams without a tutor. For all of them, an environment is wanted which supports teaching
and learning by means of visualization, extensive experiments and investigations either by single
persons or by entire teams.

A similar problem, the one of designing security protocols has already been studied by [5] and
[6]. They used SPIN, a model checking tool based on the specification language PROMELA [4]
to tackle the complexity of such protocols. Due to the similarities between design and teaching
situation, it is obvious to build a learning environment as well on some model checking tool like
SPIN. This tool offers the required functionality for the most part. First of all, for a given protocol,
people can gain an impression of its behavior through guidance of trail files being generated
automatically by the model checker. This can be used for correct working as well as for protocol
flaws. In a next step, learners should be able to examine various paths on their own, maybe
sometimes even by stepping back and forth in one or the other way. With regard to security
protocols, this could mean to confront learners with a simulation of the protocol and, e.g., have
them launch different kinds of attacks on the protocol. This can be achieved by literally turning
them into a process which is part of the simulation. Hence, with suitable support, students can act
on behalf of this process. They may create local variables and have access to all global symbols.
Thus, they may receive messages from or send arbitrary messages to global channels at any instant.
Certainly, this possibility requires access to process-private data to be restricted, since otherwise
the task of breaking the protocol turns into a mere reading assignment without mental effort.

When playing this kind of games in a collaborative manner, where each student controls one
out of multiple processes, this can even come close to being a fun thing to do. As a consequence,
the effectiveness of learning will be augmented. For instance, let three students engage in roles
being typical for security protocols. Following the tradition in literature (cf. [10]), their names be
Alice, Bob, and Fve as well as an already running trusted server acting as a Notary for all of them.
A possible assignment might consist of Alice and Bob having to figure out how to communicate
privately. As always, Eve must try to get hold of their conversation or disturb it. In a more general
sense, learners have to find out solutions to close gaps. The latter have to be checked automatically,
e.g. against correctness requirements defined for this protocol.

To satisfy the demands of teaching in general and of security protocols in particular, it doesn’t
suffice to simply have some add-on to the original concepts of PROMELA and SPIN. In fact, the
whole system has to be embedded into a collaborative learning environment for private studies. The
focus of this report lies on elaborating all these facts more detailed, thus deriving a generic way to
support the scenarios as described above. To facilitate the treatment of PROMELA specification
for students, the next section mainly describes PROMELA building blocks . Their usage will be
concretized in an example in Sect. 3 (the complete specification can be found in appendix 7). After
that, Sect. 4 demonstrates, how the teaching facility around SPIN can be combined with a suitable
visualization facility as well as be integrated into a framework for application sharing to enable
collaborative usage. The report closes with related work, conclusions and outlook.

.
S,

XA
St

Hgg University of Stuttgart Technical Report No. 2002/09

‘.....'.:'::, Faculty of Computer Science

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 3

2 PROMELA Building Blocks for Security Protocols

At first sight, PROMELA is nothing else than a derivative from the C programming language
where main is called init and additional constructs exist for processes (proctypes), connections
(channels), and for the declaration of messages (mtypes). But since it serves the special purpose of
specifying and validating communication protocols, some of its concepts are different from C and
need special treatment. These are, e. g. facilities to describe correctness requirements by means
of assertions and temporal claims (for details to PROMELA, please refer to [4]). Hence, when
designing an environment to support teaching in the area of security protocols, these pecularities
have to be taken into account.

To enable an interactive or even collaborative mode, there is urgent need for on-the-fly usage
of PROMELA commands and for the generation of intruder models. Students have to concentrate
on the security protocol at hand instead of being bothered with PROMELA specifics. As a conse-
quence, these building blocks have to be designed rather carefully. As explained more detailed in
the following, templates are needed for entities, for data and for sessions to be able to complete
message templates. By means of these templates, learners can prepare and execute send and receive
statements in a comfortable way by mouse clicks only, without a single error-prone keyboard input.
More experienced students can even try to specify protocols partially or completely by themselves.
For this case again, they would rely on suitable templates.

In PROMELA, some of these templates can be realized by means of pre-processor macros. All
templates are described more detailed in the following.

2.1 Entities and Data Templates

The entities involved in a security protocol session are typically always the same. An initiator
(Alice), a responder (Bob), an intruder (Eve) and last but not least a trusted Notary (cf. Sect.
1). Since entities are equipped with attributes, it may become handy to have their identification
as an array index, to ease access, e.g., when looking up the public key of an entity. On the other
hand, such identifications appear in messages. Hence, it would be of great help to have a symbolic
constant represent an entity. To this end, a pre-processor macro combines both by allowing the
definition of entities as mtypes as well as their usage as array indices. This is subject to the
condition only, that they must be declared consecutively.

Entities may also comprise certain data. To make sure that all entities have equal data associ-
ated with same names, a template for the entities’ data structure can be defined. Below a minimum
sample for a public key infrastructure is shown, which will be used later in Sect. 2.6.

#define MAX_PROC 4
#define ENTITY_INDEX(e) (e % MAX_PROC)
mtype = {ALICE, BOB, EVE, NOTARY};

typedef entity_data_NSPK {
chan secure; /* the secure channel to the notary */
int sk, pk[MAX_PROC]; /* the secret key / public keys x/
};

2.2 Session Templates

All messages being exchanged between two parties, are referred to as a session. By means of
typedef, a data structure is introduced which contains an entry for each message of the session.
The initiator and responder both can store the history and have access to message contents via
the same symbols. To reflect the direction of a certain message in this table, an additional index
is appended to the message name. According to agreement, an odd index represents initiator
— responder.

.
Loty

" *

CRRIAXXS
DAY
et

ZEgEs University of Stuttgart Technical Report No. 2002/09

SRR Faculty of Computer Science
¥

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 4

Besides this, further data can be specific to a session and may even be necessary to create
messages. A typical example for such session data is a nonce value, which should be present but
different for each session.

While the types of sessions are protocol specific, a limited set of sessions can occur only, namely
initiator-responder, initiator-intruder and intruder-responder. The view of initiator and responder
is restricted to the single session they are involved. In contrast to this, according to its nature, the
intruder has access to any session.

2.3 Templates and Processing of Messages

For interactive games, learners must be able to act on behalf of the above mentioned entities. As
soon as they actively participate in a simulation run, the content of messages must be in a form
which is readable and meaningful (as long as it is not encrypted). On the other hand, for better
treatment during simulation and validation, messages should be represented by integers. To solve
this contradiction, two distinct kinds of mapping are introduced. Both are mapping integer keys
to string messages and vice versa, one for the human readable and the other one for the encrypted
case. This cares for keeping the encryption state consistent.

Also, for interactive simulation, each message field has to be denoted with its meaning to
enable unambiguous completion by learners. This can be achieved by using a data structure for
each message type, which is appended to the necessary fields, which allow selective reception
(message type, sender and receiver). A designated pre-processor macro simplifies these definitions
and even creates the necessary channel at the same time. This does no harm, since only a few
messages are exchanged being in a different format each. Two more useful macros encapsulate the
send and receive action.

#define SND(m, s, r, d) net_##m'!'m(s, r, d);

#define RCV(m, s, r, d) net_##m?m(s, r, d);

#define MESSAGE(m, d) mtype { m }; typedef msg_##m { d; }; \
chan net_##m = [0] of {mtype, mtype, mtype, msg_##m}

To exchange messages, one has to proceed as follows:
1. Choose the message type.

2. Assign each field of the corresponding structure with a value which is either part of the
entity data or session data. Optionally one of the pre-processor macros may be applied to
any combination of such values.

3. Apply the SND() macro.
4. Apply the RCV() macro.

5. The values of the received message are available in the corresponding structure and should
be transferred into variables for entity data or session data. Again, pre-processor macros may
be applied to any combination of such values.

2.4 Special Validation and Simulation Demands

Looking more detailed at the data involved, leads to a further aspect. Whereas for validation,
the value of a random number is irrelevant, it is crucial for an interactive protocol simulation
which is to be run repeatedly. Otherwise, any subsequent execution becomes somewhat predictive.
Cryptographic keys encounter a similar situation insofar, as they actually have to protect their
value during the simulation. As a consequence, a simple implementation is required during the
validation, while the true functionality has to be realized for the simulation case.

fagms University of Stuttgart Technical Report No. 2002/09

SRz Faculty of Computer Science
3

2 PROMELA BUILDING BLOCKS FOR SECURITY PROTOCOLS 5

One way to cope with this ambiguity is to provide a small set of pre-processor macro definitions
which are conditionally enabled for the validation but remain undeclared for the simulation. So,
the simulator itself can accomplish the desired functionality for symbols in question. The very
basic set of functionality and their simple implementations are shown below.

#define RND(x) x

#define GEN_KEY_SYM(id) RND (id)

#define ENCRYPT_S(val, key) ((val ~ ((key << 8) & 7255)))
#define DECRYPT_S(val, key) ((val = (key << 8)))

#define GEN_KEY_PUB(id) ("id & 255)

#define GEN_KEY_SEC(id) (id & 255)

#define ENCRYPT_A(val, key) ((val | ((key & 255) << 8)))
#define DECRYPT_A(val, key) ((val ~ (("key & 255) << 8)))
#define SIGN(val, key) ENCRYPT_A(val, key)

#define VRFY(val, key) DECRYPT_A(val, key)

2.5 Model of an Omnipotent Intruder

The mechanisms as described above, mainly support the case of learners playing by themselves.
In contrast to this, intruder models are autmatically generated to take over this functionality in
general. As such, they serve demonstration as well as evaluation purposes to find out about the
correctness of a given protocol or solution as delivered by learners. For the generation of intruders,
a complete solution is available by the work of [6] and [9] who have already examined intruder
models extensively.

As laid out in the subsection about session templates, an intruder is aware of all running
sessions by storing the content of any message received into its table of session data. Hence, it can
either replay captured messages as a whole or use recorded data to produce new messages by itself,
depending on the protocol in question. For the latter, the intruder may pretend any identity.

2.6 The Notary

The notary is needed in any case, for simulations with learners playing interactively as well as with
a generated intruder. It is an unbribable entity whose main task consists in deciding about success
or failure of attacks. To exclude any manipulation from the side of learners acting on behalf of some
entity, the notary cares for avoiding the exposure of global data being critical to its decision. To
this end, it replaces the init process, since it must be the only active process in the specification.
The following two functions are performed by the notary:

Shared Data. Processes which embody the protocol entities must get their initial data from some-
where. In this context, it must be taken into account, that knowledge has to be shared
between the notary and each entity. In specific cases like symmetric keys, sharing is even
needed by other entities. Hence, the Notary takes over this part by creating and initializing
the other processes as well as establishing secrets among them.

Protocol Outcome. The decision about success or failure of an attack is taken upon access to mes-
sages being exchanged within an initiator-responder session. By sharing a private channel
with each process it creates, the notary can be informed about every message, its real origin
and intended destination.

That means, before an initiator actually sends some payload, it tells the Notary about
this plan on the private channel. This plan contains proclaimed sender, intended receiver
and message content. The Notary compares actual and proclaimed sender to determine
authenticity and stores the result as well as all other values for this initiator-responder
combination.

.
Loty

XA
s,

P L
Hgg University of Stuttgart Technical Report No. 2002/09

SRR Faculty of Computer Science
¥

3 DERIVING AN EXAMPLE 6

Table 1: Derivation of outcome from announcement messages.
Sender Initiator =~ Responder Receiver = Outcome

Alice Alice Bob Bob

Alice Alice Eve Eve success

Fve Fve Bob Bob

Eve Alice Bob Bob impersonation
Alice Alice Bob Eve capture

The same procedure is applied in the opposite direction. After a responder has received a pay-
load message, it notifies the Notary on its own private channel. The Notary checks whether
the payload corresponds to the previously announced initiator-responder combination. If so,
it determines the outcome according to Tab. 1.

Depending on the outcome, a jump to the corresponding label is performed in the notary
process. In combination with suitable definitions for outcome and an appropriate never-
claim, trails for each of the four scenarios can be generated easily as shown below.

active proctype notary() { never {

[...] do

success: false; :: notary[0]@OUTCOME -> break;
failure: false; :: skip;

capture: false; od;

impersonation: false; }

¥

3 Deriving an example

The simplified Needham-Schroeder-Public-Key authentication protocol (NSPK) (cf. [6]) is a useful
example to demonstrate how a specification can be derived for teaching purposes. A specification of
this protocol is existing already in the PROMELA Database [?] but has to be modified according
to the concepts as explained in the last section. In NSPK, the participating entities Alice and
Bob exchange messages as shown in Tab. 2. Since presenting the entire model, including Eve and
Notary, would waste too much space, we will just focus on the main ideas. The complete version
can be found in appendix 7.

Table 2: Message flow of the NSPK-protocol

Sender Message Name Message Format Receiver
Alice REQUEST_1 {N,, Alice}Ksob Bob
Bob CHALLENGE_2 {Ngy, Ny P Eavice Alice
Alice CONFIRM 3 { Ny} PEBob Bob
Alice DATA_5 {10V Bob

Step 1: Message Flow Based on data involved in the message flow, session members, entity and
session data structures are constructed.

.
Loty

" *

CRRIAXXS
DAY
et

#EgEs University of Stuttgart Technical Report No. 2002/09

SRR Faculty of Computer Science
¥

3 DERIVING AN EXAMPLE 7

typedef session_NSPK {
session_data_NSPK sd;
msg_REQUEST_1 request;
msg_CHALLENGE_2 challenge;
msg_CONFIRM_3 confirm;
msg_DATA_5 data;

};

Step 2: Entity Data. Each NSPK entity needs the necessary data for public key encryption
already indicated in Sec. 2.1.

MESSAGE(REQUEST_1, int noncel; \
int party);
MESSAGE (CHALLENGE_2,int noncel; \
int nonce2);
MESSAGE(CONFIRM_3, int nonce2);
MESSAGE (DATA_S, int message);

Step 3: Session Data. A NSPK session is established between an initiator and responder. Since
each party knows its own identity, it needs only to remember its counterpart. During each
session, two nonces and a payload message are exchanged and stored into the session data.

typedef session_data_NSPK {

int party; /* the other party in the session */
int noncel, nonce2; /* nonces of initiator and responder */

int payload; /* the message to be sent */

})

Step 4: Initiator By convention, the initiator sends messages ending with an odd index and
waits for those with an even index. Message fields are filled with values from entity and
session data after encryption has been applied to them. The sample below shows how an
initiator starts the protocol session by sending a message. It is noteworthy to see, that the
Notary is informed before any other action is taken via the private channel ed.secure.

#define ENC_A(val) ENCRYPT_A(val, ed.pk[ENTITY_INDEX(ini.sd.party)])
proctype alice(chan init_alice) {

msg_ANNOUNCE announce;
entity_data_NSPK ed; session_NSPK ini;
init_alice?ed, ini.sd, scratch_nspk; /* accept initialization */
send_ANNOUNCE: d_step { /* build announcement .. x/
announce.receiver = ini.sd.party;
announce.sender = ALICE; announce.data = ini.sd.payload;}
ed.secure! ANNOUNCE (announce) ; /* .. and send it */
send_REQUEST_1: d_step { /* build the request .. */
ini.request.noncel = ENC_A(ini.sd.noncel);
ini.request.party = ENC_A(ALICE); }
/* .. and send it x/
SND(REQUEST_1, ALICE, ini.sd.party, ini.request);

[...]
};

Step 5: Responder For the responder, a piece of code is shown which contains the reception of
a message, a condition check and a notification to the Notary.

proctype bob(chan init_bob) { [...]

init_bob?7ed, res.sd, scratch_nspk; /* accept initialization */
[...]
receive_CONFIRM_3: /* .. accept the confirm .. */
RCV(CONFIRM_3, eval(res.sd.party), BOB, res.confirm);
/* .. nonce2 verification */
(DECRYPT_A(res.confirm.nonce2, ed.sk) == res.sd.nonce2);
receive_DATA_5: d_step { /* .. accept the data .. */
RCV(DATA_5, eval(res.sd.party), BOB, res.data);
/* .. and unpack it */

fmagdi University of Stuttgart Technical Report No. 2002/09

'0.,‘:0..'.0:::' Faculty of Computer Science
e ¢4

3 DERIVING AN EXAMPLE 8

res.sd.payload = DECRYPT_S(res.data.message, res.sd.nonce2); };

send_ANNOUNCE: d_step { announce.sender = res.sd.party;
announce.receiver = BOB; announce.data = res.sd.payload; };
ed.secure ! ANNOUNCE (announce) ;

};

Step 6: Intruder The intruder functionality has already been covered in detail in [6], and is
only slightly modified to fit the data structures used in this paper. Basically, the process
generated for Eve needs to keep up with three sessions. For all messages, the address fields
may be filled with randomly chosen entities and there are three session_data to use values
from. Moreover, messages from a captured session may be replayed as a whole. For a complete
implementation see Appendix A. The reader may notice, that there are actually four sessions
defined. The extra one is used temporarily in send/receive statements, so as not to overwrite
any values in a stored session.

Step 7: Notary As explained above, the notary creates and initializes all processes and data
structures at first. After that, it waits for incoming ANNOUNCE-messages. On reception, it
determines the outcome of the simulation according to each message (cf. Tab. 1).

#define I_ALICE ENTITY_INDEX(ALICE)

#define CP_PK(src, dst) ed[dst].pk[src] = ed[srcl.pklsrc];

#define SESSION (ENTITY_INDEX(ann.sender) \
+ (MAX_PROC * ENTITY_INDEX(ann.receiver)));

typedef check { bit s_correct; int data; };

active proctype notary() {
chan secure[MAX_PROC]
chan ini[MAX_PROC]

[0] of {mtype, msg_ANNOUNCE};

[0] of {entity_data_NSPK,
session_data_NSPK,
session_data_NSPK};

entity_data_NSPK ed[MAX_PROC];
session_data_NSPK sd_alice_bob, sd_alice_eve,
sd_bob_alice,
sd_eve_bob, sd_eve_alice ;
/* entity data initialization */
ed[I_ALICE].secure = secure[0]; ed[I_ALICE].sk = GEN_KEY_PUB(5);
ed[I_ALICE].pk[I_ALICE] = GEN_KEY_SEC(5);
CP_PK(I_ALICE, I_BOB); CP_PK(I_ALICE, I_EVE);

[...]
/* session data initialization */
sd_alice_bob.party = BOB; sd_alice_bob.noncel = RND(NAB);
sd_alice_bob.payload = 35;
[...]
atomic { run alice(ini[I_ALICE]);

run bob (ini[I_BOB]); run eve (ini[I_EVE 1]);
ini[I_BOB]!ed[I_BOB], sd_bob_alice, scratch_nspk;
ini[I_EVE]'ed[I_EVE], sd_eve_bob, sd_eve_alice;
if :: ini[I_ALICE]'ed[I_ALICE], sd_alice_bob, scratch_nspk;
ini[I_ALICE]!ed[I_ALICE], sd_alice_eve, scratch_nspk;
fi;
[...] /* outcome determination */
check storage[MAX_PROC2]; msg_ANNOUNCE ann;
mtype entity = 0; int session_count = 0;
do :: atomic { if :: ed[I_ALICE].secure?ANNOUNCE (ann)
-> entity = ALICE;
[...]
fi;

Hgg University of Stuttgart Technical Report No. 2002/09
st

Faculty of Computer Science

4 THE ENVIRONMENT 9

-> if :: (ann.data != 0)
-> if :: (storage[SESSION].data == O && ann.data != 0)
-> storage[SESSION].s_correct
= (entity == ann.sender);
-> storage[SESSION] .data = ann.data
-> session_count++;
((storage[SESSION] .data != 0)
&& (storage[SESSION].data == ann.data)
&& (entity != ann.sender))
-> if :: (entity == ann.receiver)
-> if :: (storage[SESSION].s_correct)
-> session_count--;
-> storage [SESSION] .data = 0;
-> if :: (session_count == 0)
-> goto success;
:: else —> skip
fi;
:: else -> goto impersonation;
fi;
: else -> if :: (storage[SESSION].s_correct)
-> goto capture;
:: else -> goto failure;

fi;
fi;
:: else —-> goto failure;
fi;
: else —> goto failure;
fi;
-> entity = 0; };

od;
...7 %

4 The Environment

The PROMELA driven constructivist environment (ProDuctivE) aims at supporting the gener-
ation of PROMELA models to enable an extensive and collaborative investigation of security
protocols. Besides offering a user interface to SPIN, it integrates the existing projects HISAP and
NUSS (see explanations below).

4.1 Architecture

An architectural overview is given in Fig. 1. The general setup is a client-server one. The server
performs the simulation of the PROMELA model, projects the structure into a simplified view and
invokes the SPIN validator if required. Hence, SPIN compliance can be achieved. The resulting trail
file can then be used to generate a certain execution sequence. Storing events and corresponding
data in a database, is one cornerstone for an undo/redo facility. Two sorts of clients exist. The
first one is a generating client, which supports the implementation of PROMELA models and
their proper configuration. The second one is a constructivist client which allows to investigate
such PROMELA models. All clients have access to the global view provided by the server and
may even duplicate it to move around in the history. Moreover, depending on current access
rights (cf. floor control below), the simulation itself and movements on the global history can be
controlled. Hence, learners can undo and redo actions in the local history at will and in the global
one according to their rights.

While the main components are written in Java, the usage of SPIN with its need for a C

#ggas University of Stuttgart Technical Report No. 2002/09

.:,‘g......:'::: Faculty of Computer Science
3

4 THE ENVIRONMENT 10

Archive

nspk.prl Constructivist
Client

Constructivist
@ Client
Constructivist
DB = Client

Server

cc Simulation Floor -
Control

1

Intermediate

Model
System — Generation
‘Wrapper Client

Figure 1: The ProDuctivE architecture

SPIN

R

compiler induces system dependencies. Since all components related to SPIN are placed on the
server, clients become independent from the underlying system.

4.2 Visualization issues

The PROMELA model and its simulation produce a lot of information, but only a fraction is
needed to support learners in a proper way. For instance, it is common practice for protocols to
have a separate process serve as a network or a router. It receives messages on one PROMELA
channel and forwards them to a destination process which listens on another one. If it is not
necessary to visualize the network process, both channels can be presented as just one. Hence,
by transforming, filtering and generalizing information, the perception of important issues can be
improved tremendously.

In ProDuctivE, a special interpreter written in Java accepts PROMELA input, and a subset
of the C preprocessor directives. It performs the simulation by using classes which are named
HiProcess, HiChannel and HiMessage. Each simulation class supports the attachment of event lis-
teners for visualization purposes. That means, these listeners propagate simulation events towards
suitable visualization components. As a consequence, these events are mapped into appropriate
visualization actions. The relevant events are summarized in Tab. 3.

Visualization components were drawn from HiSAP (Highly interactive Simulation of Algo-
rithms and Protocols), a toolkit consisting of Java classes for interactive simulation and visualiza-
tion of communication protocols (cf. [2]). Basic visualization components are nodes, connections
and protocols. Two nodes are connected by a connection. A node can send to or receive from a
connection. Each node is associated with a strategy, which decides when such an action should be
taken. The message flow between nodes can be visualized in several ways, like a Message-Sequence-
Diagram or a topological view, where images represent the nodes and connections and animated
messages travel along these connections. All these visualization mechanisms are shown in Fig. 2.

s, . .
Hga University of Stuttgart Technical Report No. 2002/09

SRR Faculty of Computer Science
¥

5 RELATED WORK 11

Table 3: Emitted events and actions they trigger.

Simulation
BeginSimulation Initialize the views
EndSimulation
AbortSimulation simulation Clean up the views
ChannelCreated channel Add the handlers for the new channel
RuntimeError
Process
ChannelAccessGained Connect the process with the channel
Channel AccessLost process Disconnect the process from the chan-
nel

ChannelExclusiveRead channel

. . Change the view of the connection
ChannelExclusiveWrite

StateReached process Adapt visual representation
Message
[Rv]MessageSent . Trigger the sending of a message from
process
message the process to the channel
MessageDequeued channel Trigger the sending of a message from

the channel to the process

4.3 Distributed Collaboration

With the functionality described so far, only a single person can investigate a certain protocol. The
next step aims toward multi-player mode. To this end, the NUSS (Notebook University Stuttgart)
framework is used (NUSS supersedes the former project SASCIA which was described in [1]). It
provides mechanisms for application sharing in the teaching area. This means especially, to enable
annotation and notetaking on application windows as well as recording of application usage and
annotations. Moreover, a floor control component in combination with a role concept care for
having learners take over different parts in controlling the application. With regard to this paper,
simulation and validation of security protocols is the application in question. In this context, the
following roles are involved: generator of a promela model, initiator of a validation, Alice, Bob,
Eve and the Notary. The integration of the SPIN based teaching facility into NUSS is performed
within [7].

5 Related Work

The application of model checking with SPIN to teaching has been mentioned in [3] and [8]. Since
they restrict on protocols like mutual exclusion and dining philosophers, they have been able to use
PROMELA and SPIN in the original form. Collaboration between learners has not been thought
of yet.

Other approaches aim at offering graphical user interfaces and visualization for SPIN. In the
first place, this holds for XSPIN as described in [4]. During simulation runs, the message sequence
chart as well as time sequence and data value panels are shown. ProDuctivE contains two more
facilities designed especially for teaching purposes: customizable views, e.g. a topology view and
the possibility to step back and forth in the simulation thus exploring various paths.

This paper has drawn profit from the work of [6]. The authors developed a universal intruder
model which unveils a known flaw in the Needham-Schroeder-Public-Key authentication protocol
(cf. [10]). Their model is based on a static analysis of message exchange among the participating
processes. The intruder model itself keeps track of the data available to it and modifies global
variables to indicate success. The derived intruder model completely exploits the results of the

.
Loty

" *

CRRIAXXS
DAY
et

#EgEs University of Stuttgart Technical Report No. 2002/09

SRR Faculty of Computer Science
¥

7 ACKNOWLEDGEMENT 12

The Promela Drive structivist Environment - ProDuctivE-0.2.0 (§Name: §) - ta

File Edit Promela Simulation Events Help

] S N -
SE &0 B oexB #5n
((Editor_ [Specification | Simulation |
§ [alice[1] S AT notary alice bab eie {2y = imsg7:
@ [:children: 5) <3 = msgd:
o-%init_alice (‘channeld:) @) = msg -
-t |51 = 1msgl2:
:Szgmm'nspk n EG% = :msglz:
@ Cnspk |) = msgld: [ANNOUMCE]
& Jsd |(8) = :msgld: [AMNNOUNCE]
§ O request 4 =] (9 = :msg16: [REQUEST 1)
D MONCEL = G407 || ot

D party = 63492
&] challenge
@] confirm
& Jdata
@ [Jannounce
& O bon[2]
@ [:children:
@ [Jinit_bob ¢channels:)
@ [scratch_nspk
& [Hed
e
& sd
@ [request
[y nonce1 = o

Cypany =0

Current State: alice[1] party= ALICE|qpK[qparty3D]&255) < <8N (PC: 0 dl
(' notary[0] ¢datal=0) PC: 20T

e

[ExecutedOptionEvent] test |

[ExecutableOptionsEvent] test | ® alice[1] net REQUEST_1 IREQUEST_1, ALICE, party, request (°C: 10)
[IntegerChangedEvent] test :runlist alice.nspk request party | Integer walue change
[ExecutedOptionEvent] test.: runlist:.alice | 0 eve[3] responder=EOB (PC: 42)

[ExecutedOptionEvent] test |
[ExecutableOptionsEvent] test |

Continue | step | Pause | Abort Simulation | [Confirm each Step
—

Figure 2: A screenshot of the ProDuctivE prototype.

static analysis, and thus should discover any failure. While this approach keeps the state space
small for an efficient validation, it does not consider the peculiarities needed for teaching sessions
as described above. This holds especially for the integration of learners into simulation runs.

6 Conclusions, outlook

The usage of PROMELA and SPIN for teaching in the area of security protocols was described.
Currently, further security protocols (e. g. protocols for Secure Socket Layer version 2.0 and 3.0)
are going to be specified in PROMELA. An extension to further examples like network protocols
is planned. Moreover, a dialog based security protocol wizard is within reach

With the security protocols at hand, experiments in class will take place during summer term
2003. Only then, one can find out about the acceptance of students as well as advantages and
shortcomings of the environment that is empowered by PROMELA, SPIN and collaboration.

7 Acknowledgement

Our deep gratitude is to Kurt Rothermel, the leader of the department Distributed Systems of
the Institute for Parallel and Distributed Systems at the University of Stuttgart. He contributed
some of the original ideas. Moreover, we thank Stella Papakosta who temporarily was advisor of
the first author.

The work was performed in the project ITO (Information Technology Online) being funded

Hggs University of Stuttgart Technical Report No. 2002/09

i Faculty of Computer Science
e ¢4

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 13

by the German Ministry of Education. The second author is holding a Margarethe-von-Wrangell
scholarship by the state Baden-Wiirttemberg in Germany.

References

[1] Cora Burger, Stella Papakosta, and Kurt Rothermel. Application sharing in teach-
ing context with wireless networks. In Proceedings of World Congress NETWORKED
LEARNING IN A GLOBAL ENVIRONMENT - Challenges and Solutions for Virtual Edu-
cation, 2002. URL: http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=
INPROC-2002-04&inst=VS&mod=&engl=.

[2] Cora Burger and Kurt Rothermel. A framework to support teaching in distributed systems. Journal
of Educational Resources in Computing (JERIC), 1(1les):3, 2001. URL: http://doi.acm.org/10.
1145/376697.376698

[3] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Protocol Verification with Heuristic
Search. In AAAI-Spring Symposium on Model-based Validation of Intelligence, 2001. URL: http:
//wuw.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf.

[4] Gerard J. Holzmann. The Spin Model Checker. IEEE Transactions on Software Engineering, 23(5),
1997.

[5] Audun Jgsang. Pre-study of: Security Protocol Verification using SPIN. In Proceedings of SPIN95,
the First SPIN Workshop, 1995. URL: http://netlib.bell-1labs.com/netlib/spin/ws95/papers.
html#F.

[6] Paolo Maggi and Riccardo Sisto. Using SPIN to Verify Security Properties of Cryptographic Protocols.
In Proceedings of the 9-th SPIN Workshop 2002, 2002.

[7] Matthias Papesch. Constructivist environment for selfstudies in the area of security protocols.
Master’s thesis, Universitat Stuttgart, 2003. URL: http://www.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=.

[8] John Regehr. Using SPIN to Help Teach Concurrent Programming, 1998. URL: http://citeseer.
nj.nec.com/regehr98using.html.

[9] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. modelling and analysis
of security protocols. Addison-Wesley, 2001.

[10] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 1996.

A PROMELA implementation of the NPSK protocol

1 /x
2« File: nspk.prl
3 %
1+ * Description: This is an implementation of a simplified version of
5 % the Needham—Schroeder— Public—Key authentication protocol. The
6 * simplification is such, that the trusted server which keeps all
7 % public keys is left out.
8k
o * The goal is to wunveil the flaw which inhabits this protocol .
10 x The
1%
12 % 4 proctypes are defined, each with a specific purpose.
13 *
14 Alice: Tries to iniatiate a session with either Bob or Ewve.
15 *
16 * Bob: Responds to an initiation request from either Alice or Eve.
17 %
B Universiy of Suttgan Technical Report No. 2002/09

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=INPROC-2002-04&inst=VS&mod=&engl=
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=INPROC-2002-04&inst=VS&mod=&engl=
http://doi.acm.org/10.1145/376697.376698
http://doi.acm.org/10.1145/376697.376698
http://www.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf
http://www.informatik.uni-freiburg.de/~edelkamp/publications/protocol.pdf
http://netlib.bell-labs.com/netlib/spin/ws95/papers.html#F
http://netlib.bell-labs.com/netlib/spin/ws95/papers.html#F
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL_view.pl?id=DIP-2033&inst=VS&mod=&engl=
http://citeseer.nj.nec.com/regehr98using.html
http://citeseer.nj.nec.com/regehr98using.html

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 14

18 x Fve: Either initiates a session with Bob,

19 % responds to a request from Alice

20 % or tries to interfere with a session between Alice and Bob.

21 *

22 * Notary: Initializes the other entities and establishes shared secrets
23k with them. Also decides the outcome of the protocol.

24 *

5 x/

26

27 #ifndef HISPIN
28

20 /%

30 * Random Number Support

31 ¥ —-—- —— — — — — — —

32 *

33 * For a wvalidation, a random value can be re—used. Not so for an

34 * interactive simulation. This macro provides a possibility to indicate
35+ that the interpreter should replace the given wvalue with a randomly

36 * generated one. The validator, however, may just replace the value with the
37 * noted default.

38 %/
39 Ftdefine RND(x) x

40

a1 fx

42

*

Symmetric Cryptography

*

43
44
To perform symmetric encryption, three macros are defined.

The first creates a key, which can be used for en— and decryption
with the functions implemented by the other two functions, respectively .

45

46

: bitwise exclusive or
<< : shift left
T . bitwise negation

¥ K X X X ¥ X ¥

2 %/

53 #define GEN_KEY_SYM(id) RND(id)

sa #define ENCRYPT_S(val, key) ((val ~ ((key << 8) & 7255)))
55 #define DECRYPT_S(val, key) ((val * (key << 8)))

57 /%
s x Asymmetric Cryptography

o
©
*

The difference to symmetric encryption is, that asymetric requires two
different keys. A preliminary solution is to use the default value to
lookup the wanted key. A duplicate key error should be created, when
a key with the same value is created twice.

The additional functionality gained is the possibility to create
signatures and to verify them. The implented signature function simply
returns the encrypted value.

o
'S
o R T O A S

60 *x/

w0 #define GEN_KEY_PUB(id) (“id & 255)

1 #define GEN_KEY_SEC(id) (id & 255)

72 #define ENCRYPT_A(val, key) ((val | ((key & 255) << 8)))
73 #define DECRYPT_A(val, key) ((val ~ (("key & 255) << 8)))

.
p AR XY
Hagaa

#EgEs University of Stuttgart Technical Report No. 2002/09
Sl Faculty of Computer Science
‘0’.'.‘.'.'0’

29
oed
¢s

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 15

74

75 #define SIGN(val, key) ENCRYPT_A(val, key)
76 #define VRFY (val, key) DECRYPT_A(val, key)
7

78 #endif

79

»

80

*

81

Improved Message handling

*

82
These macros provide a more comfortable way to handle messages
interactively . If the entire message content is contained within a

data structures, its components can be accessed by a mame. This is
clearly more convenient than the anonymous, positional access ”reqular”
channels use.

83

84

85

86

87

88

S S T R

MESSAGE macro

89

*

90
The message maco makes sure, that
— an mitype for the message is created
— each protocol specific message is described by a typedef’ed structure
— a global channel is created , which takes 4 arguments
1. the type of the message
2. the mtype describing the sender
3. the mitype describing the receiver
4. a structure of the correct type
Messages can only be blocked according to the sender and the receiver,
but not on the content.

91

92

93

94

95

96

¥ K K K K X XK X X X X ¥

SND/RCV macros

=
o
w
*

The SND/RCV macro provide a simple invocation of a send/receive
operations for a message defined with the MESSAGE macro. They take
— the message type

— the sender

— the receiver

— a data structure

as arguments. They create the correct statement for the channel

created through the MESSAGE macro.

These macros use the concatenation operator '##’, which merges two
string tokens into a single one. (see man cpp)

¥ ¥ K K X X ¥ X X X X %
\

116 #define MESSAGE(s, m, d) \
117 mtype { m }; \
118 typedef msg ##m { d; }; \
119 chan net_##m = [0] of {mtype, mtype, mtype, msg_##m }

121 #define SND(m, s, r, d) net_##m!m(s, r, d);
122 #define RCV(m, s, r, d) net_##m?m(s, r, d);

124k

125 * Constants

126 */

127 #define OUTCOME capture
128 #define MAX_PROC 4

120 #define MAX_PROC?2 16

.
p AR XY
Hagaa

FEgEs University of Stuttgart Technical Report No. 2002/09
Sl Faculty of Computer Science
‘0’.'.‘.'.'0’

29
oed
¢s

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 16

145

151

154

157

175

#define SESSION (ENTITY_INDEX(sender) + MAX_PROC x

#define ENTITY_INDEX(e) (e % MAX_PROC)

#define . ALICE ENTITY_INDEX(ALICE)
#define . BOB ENTITY_INDEX(BOB)
#define L EVE ENTITY_INDEX(EVE)
#define INOTARY ENTITY_INDEX(NOTARY)

/%

* Request

* — noncel : a nonce value to identify the initiator
* — party : the party to talk to
*/

MESSAGE(NSPK, REQUEST_1, int noncel; int party);

Ve
* Challenge

x — noncel : the original nonce to identify the initiator

* — nonce? : another nonce to identify the responder

*/

MESSAGE(NSPK, CHALLENGE_2, int noncel; int nonce2);

* — nonce? : the nonce to identify the responder

*/
MESSAGE(NSPK, CONFIRM_3, int nonce2);

Ve
*
*
* — message: the actual message value
*
*

MESSAGE(NSPK, DATA_5, int message);

mtype = {ALICE, BOB, EVE, NOTARY,
ANNOUNCE,
NAB, NAE, N2B, NEB, N2E};

Ve
* sesison_data_NSPK
o

contains all session specific data.

— noncel, nonce2 : nonces to identify each end
— payload : the actual message
*/
typedef session_data_NSPK {
mtype party;
int noncel, nonce2, payload;

*
*
* — party : the other end
*
*

ENTITY_INDEX (receiver))

#3 University of Stuttgart

Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL

17

186
187

188

191

192

193

195

196

197

198

200

201

202

204

205

206

207

209

210

211

214

215

216

218

219

220

223

224

225

227

228

229

231

232

233

234

236

237

238

239

240

b

Ve
* session_.NSPK

* contains an instance of each message and one session_data.
*
*/
typedef session NSPK {
session_data_NSPK sd;
msg REQUEST_1 request;
msg_CHALLENGE_2 challenge;
msg_CONFIRM_3 confirm;
msg_DATA 5 data;

};
J*

* Announce

$ ————
* — sender : the proclaimed sender

* — recetver : the proclaimed receiver

* — data : the message of the session

*/
typedef msg_ ANNOUNCE {
mtype sender, receiver;
int data;

};
J*

x stores the message and the correctnes of the sender
*/
typedef check {

bit s_correct ;

int data;

};
/%

*

entity_-data_NSPK

* — secure : a private channel shared with the notary
* — sk :a secret key

— pk[] : a set of public keys

*/

typedef entity_data_NSPK {

chan secure;

int sk, pk[MAX_PROC];

}’

*

J*

* Alice

*/
proctype alice(chan init_alice) {
entity_data_NSPK ed;

session NSPK nspk;

' University of Stuttgart

Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 18
242 msg ANNOUNCE announce;
243
244 /*
245 * just to ignore the empty field
246 *x prevents a warning
247 */
248 session_data_NSPK scratch_nspk;
249
250 /*
251 * receive the initialization from the notary.
252 */
253 init_alice 7ed, nspk.sd, scratch_nspk;
254
255 /*
256 * send the announcement on the secure channel to the Notary.
257 */
258 send_ ANNOUNCE: d_step {
259 announce.sender = ALICE;
260 announce.receiver = nspk.sd.party;
261 announce.data = nspk.sd.payload; }
262
263 ed.secure! ANNOUNCE (announce);
264
265 /*
266 * send the request message, encrypted with the public key of the
267 x other party
268 */
260 send_ REQUEST_1: d_step {
270 nspk.request.noncel
271 = ENCRYPT_A (nspk.sd.noncel, ed.pk[ENTITY_INDEX (nspk.sd.party)]);
272 nspk.request. party
273 = ENCRYPT_A(ALICE, ed.pk[ENTITY _INDEX (nspk.sd.party)]);
274
275 SND(REQUEST_1, ALICE, nspk.sd.party, nspk.request);
276
277 /*
278 * receive the challenge, which is encrypted with this public key
279 * make sure, that the nonce matches.
280 */
281 receive. CHALLENGE_2:
282 RCV(CHALLENGE_2, eval(nspk.sd.party), ALICE, nspk.challenge);
283
284 nspk.sd.nonce2 = DECRYPT_A (nspk.challenge.nonce2, ed.sk);
285
286 (DECRYPT_A(nspk.challenge.noncel, ed.sk) == nspk.sd.noncel);
287
288 /*
289 * send the confirm message.
290 */
2091 send_CONFIRM_3:
292 nspk.confirm.nonce2
203 = ENCRYPT_A (nspk.sd.nonce2, ed.pk[ENTITY_INDEX (nspk.sd.party)]);
294
295 SND(CONFIRM_3, ALICE, nspk.sd.party, nspk.confirm);
296
297 /*
HgEs University of Stuttgart Technical Report No. 2002/09

SRz Faculty of Computer Science
%

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL

19

298

325

* send the data message
*/
send_DATA_5:
nspk.data.message = ENCRYPT_S(nspk.sd.payload, nspk.sd.nonce2);

SND(DATA_5, ALICE, nspk.sd.party, nspk.data);
}

Jx
x Bob
*/
proctype bob(chan init_bob) {
entity_data_NSPK ed;

session NSPK nspk;
msg_ ANNOUNCE announce;

session_data_NSPK scratch_nspk;

/%
x recetve the initialization from the notary.
*/

init_bob?7ed, nspk.sd, scratch_nspk;

receive_. REQUEST_1: d_step {
RCV(REQUEST_1, nspk.sd.party, BOB, nspk.request);

nspk.sd.noncel = DECRYPT_A (nspk.request.noncel, ed.sk);
nspk.sd.party = DECRYPT_A (nspk.request.party, ed.sk); }

/*
x send the challenge, encrypted with the other party’s public key
*/
send_ CHALLENGE_2: d_step {
nspk.challenge.noncel
= ENCRYPT_A (nspk.sd.noncel, ed.pk|[ENTITY_INDEX (nspk.sd.party)]);

nspk.challenge . nonce2
= ENCRYPT_A (nspk.sd.nonce2, ed.pk|[ENTITY_INDEX (nspk.sd.party)]); };

SND(CHALLENGE_2, BOB, nspk.sd.party, nspk.challenge);

/*
x recetve the confirm message, unpack it and make sure nonce2 is
* 15 the one previously sent
*/
receive_.CONFIRM_3:
RCV(CONFIRM._3, eval(nspk.sd.party), BOB, nspk.confirm);

(DECRYPT_A (nspk.confirm.nonce2, ed.sk) == nspk.sd.nonce2);

/*
x receive the data message encrypted with nonce2
*/
receive_ DATA 5: d_step {
RCV(DATA5, eval(nspk.sd.party), BOB, nspk.data);

#3 University of Stuttgart Technical Report No

Faculty of Computer Science

. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 20
354
355 nspk.sd.payload = DECRYPT_S(nspk.data.message, nspk.sd.nonce2); };
356
357 /*
358 * announce the reception of the data message to the notary
359 */
sso send_respond_3: d_step {
361 announce.sender = nspk.sd.party;
362 announce.receiver = BOB;
363 announce.data = nspk.sd.payload; };
364
365 ed.secure! ANNOUNCE (announce);
366
367 }
368
360 /%
30 *x Fve
371 */
372
373 proctype eve(chan init_eve) {
374 entity_data_NSPK ed;
375
376 session NSPK nspk_actual, nspk_init , nspk_respond, nspk_capture;
377 msg_ ANNOUNCE announce;
378
379 mtype initiator, responder;
380
381 /*
382 x recetve the initialization
383 */
384 init_eve 7ed, nspk_init.sd, nspk_respond.sd;
385
386 dO
387 :: atomic {
388 /*
389 * send an arbitrarily created message
390 */
391 if
392 :: initiator = ALICE; responder = BOB;
393 :: initiator = ALICE; responder = EVE;
394 :: initiator = EVE; responder = BOB;
395 fi;
396
397 if
398 /% REQUEST_1(noncel, party) x/
399 i if
400 :: nspk_actual.request.noncel = nspk_capture.request.noncel
401 —> nspk_actual.request.party = nspk_capture.request.party;
402
403 o if
404 :: nspk_actual.request.party = ENCRYPT_A(ALICE, ed.pk[I_.BOB]);
405 :: nspk_actual.request.party = ENCRYPT_A(BOB, ed.pk[I.BOB]));
106 :: nspk-actual.request.party = ENCRYPT_A(EVE, ed.pk[I.BOB]));
107 fi;
408
409 if
B Universiy of Suttgan Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 21
410 :: nspk_actual.request.noncel
411 = ENCRYPT_A (nspk_init.sd.noncel, ed.pk[I_BOB]);
412
413 :: nspk_actual.request.noncel
414 = ENCRYPT_A (nspk_init.sd.nonce2, ed.pk[I_BOB]);
415
416 : nspk_actual.request.noncel
a17 = ENCRYPT_A (nspk_respond.sd.noncel, ed.pk[I_BOB]));
418
419 :: nspk_actual.request.noncel
420 = ENCRYPT_A (nspk_respond.sd.nonce2, ed.pk[I_ BOB]));
421 fi;
422 fi;
423
424 SND(REQUEST_1, initiator, responder, nspk-actual.request);
425
426 d_step {
427 nspk_actual.request . party = 0;
428 nspk_actual.request.noncel = 0; };
429
430 /x CHALLENGE_2 (noncel, nonce2) */
431 b if
432 :: nspk_actual.challenge.noncel = nspk_capture.challenge.noncel;
433 —> nspk-actual.challenge.nonce2 = nspk_capture.challenge.nonce2;
434 b if
435 :» nspk_actual.challenge .noncel
436 = ENCRYPT_A (nspk-init.sd.noncel, ed.pk[I_ALICE]);
437
438 :: nspk_actual.challenge .noncel
439 = ENCRYPT_A (nspk-init.sd.nonce2, ed.pk[I_ALICE]);
440
441 :: nspk_actual.challenge .noncel
442 = ENCRYPT_A (nspk_respond.sd.noncel, ed.pk[[_ ALICE]);
443
444 : nspk_actual.challenge.noncel
445 = ENCRYPT_A (nspk_respond.sd.nonce2, ed.pk[[_ ALICE]);
446 fi;
447
448 if
449 :: nspk_actual.challenge .nonce2
450 = ENCRYPT_A (nspk-init.sd.noncel, ed.pk[I_ALICE]);
451
452 :: nspk_actual.challenge .nonce2
453 = ENCRYPT_A (nspk-init.sd.nonce2, ed.pk[I_ALICE]);
454
455 :: nspk_actual.challenge.nonce2
456 = ENCRYPT_A (nspk_respond.sd.noncel, ed.pk[I_ALICE]);
457
458 :: nspk_actual.challenge.nonce2
459 = ENCRYPT_A (nspk_respond.sd.nonce2, ed.pk[I_ALICE]);
460 fi;
461 fi;
462
463 SND(CHALLENGE_2, responder, initiator, nspk-actual.challenge);
464
465 d_step {
g University of Stuttgart Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 22

466 nspk_actual.challenge .noncel = 0;
467 nspk_actual.challenge .nonce2 = 0; }
468
469 /* CONFIRM_3 (nonce2) x/
470 i if
am1 :: nspk_actual.confirm.nonce2 = nspk_capture.confirm.nonce2;
472 ;o if
473 :: nspk_actual.confirm.nonce2
474 = ENCRYPT_A (nspk-init.sd.noncel, ed.pk[I_BOB]);
475
476 :: nspk_actual.confirm.nonce2
a77 = ENCRYPT_A (nspk-init.sd.nonce2, ed.pk[I_ BOB]);
478
479 :: nspk_actual.confirm.nonce2
480 = ENCRYPT_A (nspk_respond.sd.noncel, ed.pk[I_-BOB]));
481
482 :: nspk_actual.confirm.nonce2
483 = ENCRYPT_A (nspk_respond.sd.nonce2, ed.pk[[_ BOB]);
484 fi;
485 fi;
486
487 SND(CONFIRM._3, initiator, responder, nspk_actual.confirm);
188 nspk_actual.confirm.nonce2 = 0;
489
490 /* DATA_5 (payload) */
191 o if
492 :: nspk_actual.data.message = nspk_capture.data.message
493 o if
494 :: nspk_actual.data.message
195 = ENCRYPT_S(nspk-init.sd.payload, nspk-init.sd.nonce2)
496
497 :: nspk_actual.data.message
198 = ENCRYPT_S(nspk_respond.sd.payload, nspk-init.sd.nonce2)
499
500 :: nspk_actual.data.message
501 = ENCRYPT_S(nspk-init.sd.payload, nspk_respond.sd.nonce2)
502
503 :: nspk_actual.data.message
504 = ENCRYPT_S(nspk_respond.sd.payload, nspk_respond.sd.nonce2)
505 fi;
506
507 if
508 :: announce.data = nspk_init.sd.payload;
509 :: announce.data = nspk_respond.sd.payload;
510 fi;
511
512 announce.sender = initiator ;
513 announce.receiver = responder;
514
515 ed.secure! ANNOUNCE (announce);
516
517 d_step {
518 announce.sender = 0;
519 announce.receiver = 0;
520 announce.data =0;
521 fi;
#gss University of Stuttgart Technical Report No. 2002/09

e Faculty of Computer Science
Wt
XA

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL

23

575

SND(DATA_5, initiator, responder, nspk_actual.data);
nspk_actual.data.message = 0;

fi;
}

Jx
* receive messages of a session eve is involved — decryptable
*/
: d_step { RCV(REQUEST_1, ALICE, EVE, nspk_respond.request);
—> nspk.respond.sd.noncel = DECRYPT_A (nspk_respond.request.noncel, ed.sk)
—> nspk._respond.sd.party = DECRYPT_A (nspk_respond.request.party, ed.sk);};

:: d_step { RCV(CHALLENGE_2, BOB, EVE, nspk-init.challenge);
—> nspk.init.sd.nonce2 = DECRYPT_A (nspk-init.challenge.nonce2, ed.sk); };

: d_step { RCV(CONFIRM._3, ALICE, EVE, nspk._respond.confirm);
—> nspk._respond.sd.nonce2 = DECRYPT_A (nspk_respond.confirm.nonce2, ed.sk);};

:: d_step { RCV(DATA_5, ALICE, EVE, nspk_respond.data);
—> nspk_respond.sd.payload
= DECRYPT_S(nspk_respond.data.message, nspk_respond.sd.nonce2);

—> announce.sender = ALICE;
—> announce.receiver = EVE;
—> announce.data = nspk._respond.sd.payload; }

ed.secure! ANNOUNCE (announce);
d_step {
announce.sender = 0;
announce.receiver = (;
announce.data =0; };

/%
* receive messages of a captured session — unreadable
*/

: RCV(REQUEST.1, ALICE, BOB, nspk-_capture.request);

:: RCV(CHALLENGE_2, BOB, ALICE, nspk_capture.challenge);
:: RCV(CONFIRM_3, ALICE, BOB, nspk_capture.confirm);
:: RCV(DATA.5, ALICE, BOB, nspk_capture.data);

od;

active proctype notary() {

session_data_NSPK scratch_nspk;

chan secure [3] = [0] of {mtype, msg_ ANNOUNCE};

chan ini[3] = [0] of {entity_data_NSPK,
session_data_NSPK,
session_data_NSPK};

Faculty of Computer Science

#t University of Stuttgart Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 24

579 entity_data NSPK ed[MAX_PROC];

581 session_data_NSPK sd_alice_bob, sd_alice_eve,
582 sd_bob_alice,
583 sd_eve_bob, sd_eve_alice ;
584
585 /*
586 * anitialization
587 */
588 d_step {
589 ed[I_ALICE].secure = secure [0];
500 ed[I_ALICE].sk = GEN_KEY_PUB(5);
591 ed[[_LALICE].pk[I_ALICE] = GEN_KEY _SEC(5);
592
503 ed[I.BOB | pk[I_ALICE | = ed[I_ALICE].pk[I_ALICE |;
594 ed[[.LEVE].pk[[_LALICE | = ed[I_ALICE].pk[I_ALICE J;
595 ed[I_.NOTARY].pk[I_ALICE | = ed[I_ALICE].pk[I_ALICE J;
596
597 ed[I.BOB |.secure = secure[1];
598 ed[I.BOB].sk = GEN_KEY_SEC(7);
599 ed[I.BOB |.pk[I.BOB | = GEN_KEY_PUB(7);
600
601 ed[I_ALICE].pk[[.BOB | = ed[I.BOB].pk[I.BOB |;
c02 ed[ILEVE |.pk[I.BOB | = ed[I.LBOB].pk[I.BOB |;
603 ed[[.NOTARY].pk[I.BOB] = ed[I.BOB].pk[[.LBOB J;
604
605 ed[I.EVE |.secure = secure [2];
606 ed[[.LEVE].sk = GEN_KEY_SEC(11);
607 ed[I.LEVE].pk[I[.LEVE] = GEN_KEY_PUB(11);
608
609 ed[[_LALICE |.pk[I_LEVE | = ed[I.LEVE |.pk[[.EVE J;
610 ed[I.BOB].pk[I.LEVE | = ed[[.LEVE].pk[I.LEVE [;
o11 ed[I.LNOTARY].pk[I.EVE | = ed[I.EVE |.pk[L.LEVE |;
612
613 ed[I_NOTARY].sk = GEN_KEY_PUB(13);
o14 ed[I_ALICE].pk[I.NOTARY] = ed[I.NOTARY].pk[LNOTARY];
615 ed[[.LEVE].pk[[.ZNOTARY] = ed[I-NOTARY].pk[I_.NOTARY];
616 ed[I.BOB].pk[I.NOTARY] = ed[[.LNOTARY].pk[I_.NOTARY];
617
618 sd_alice_bob .party = BOB;
619 sd-alice_bob .noncel = RND(NAB);
620 sd_alice_bob .payload = 35;
621
622 sd_alice_eve .party = EVE;
623 sd.alice_eve .noncel = RND(NAE);
624 sd.alice_eve .payload = 45;
625
626 sd_bob_alice .nonce2 = RND(N2B);
627
628 sd_eve_bob.party = BOB;
629 sd_eve_bob.noncel = RND(NEB);
630 sd_eve_bob.payload = 77;
631
632 sd_eve_alice .nonce2 = RND(N2E);
633
}

Hgg University of Stuttgart Technical Report No. 2002/09

‘.....'.:'::, Faculty of Computer Science

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL

25

634 /*

635 x create the other processes

636 */

637 atomic {

638 run alice (ini [0]);

639 run bob(ini [1]);

640 run eve(ini [2]);

641

642 ini [1]! ed[I.BOB], sd_bob_alice, scratch_nspk;
643 ini [2]! ed[I.LEVE], sd_eve_bob, sd_eve_alice ;

644

645 if

646 :: ini [0]! ed[I_ALICE], sd-alice_bob, scratch_nspk;;
647 ;0 ini [0]! ed[I_ALICE], sd.alice_eve , scratch_nspk;
648 fi;

649 }

650

651 /*

652 *

653 */

654 check storage [MAX_PROC2];

655 msg ANNOUNCE ann;

656 mtype entity = 0;

657 int session_count = 0, session = 0;

658

659 dO

660 :: atomic {

661 /*

662 * handle an announcement according to the channel on which it arrives
663 */

664 if

665 it ed[I_ALICE].secure?’ ANNOUNCE(ann)

666 —> entity = ALICE;

667

668 2 ed[I.BOB].secure? ANNOUNCE (ann);

669 —> entity = BOB;

670

671 2 ed[I_LEVE].secure? ANNOUNCE(ann);

672 —> entity = EVE;

673 fi;

674 —> if

675 :: (ann.data != 0)

676 —> session = (ENTITY_INDEX (ann.sender)
677 + (MAX_PROC * ENTITY_INDEX (ann.receiver)));
678 —> if

679 :: storage[session |. data == 0

680 /*

681 * the first announcement

682 */

683 —> storage[session]. s_correct = (entity == ann.sender);
684 —> storage[session]. data = ann.data
685 —> session_count++;

686

687 :: ((storage[session |.data 1= 0)

688 /%

689 * the second announcement

University of Stuttgart

Faculty of Computer Science

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 26

690

691

692

693

695

696

697

699

700

701

702

704

706

708

709

710

711

713

714

715

717

718

719

720

722

723

724

726

727

728

729

731

732

733

734

735

736

737

738

740

741

742

743

744

745

*/

&& (storage[session |. data == ann.data)

Jx

* the correct data

*/
&& (entity != ann.sender))
—> if

:: (entity == ann.receiver)

Jx
* the receiver is honest
*/
—> if
:: (storage[session |. s_correct)
J*
* the sender was honest

*/

—> session_count——;

—> storage[session].data = 0;

—> if
: (' session_count == 0) —> goto success;
: else —> skip
fi;

:: else

/*
x the sender was cheating
*/
—> goto impersonation;
fi;

:: else

Jx

x the receiver s cheating
*/

—> if

:: (storage[session |. s_correct) —> goto capture;

:: else —> goto failure;

fi;
fi;

: else —> goto failure;
fi;

:: else —> goto failure;
fi;
—> session = 0;

—> entity = 0; };
od;
success : false ;
failure : false ;
capture: false ;
impersonation: false ;
abort: false ;
}
#ifndef HISPIN

'3

o,
"
oy

At
330
sherdy

e

ol
el

o0

ey
.
3

:.:.;:,g,:::-,., University of Stuttgart

A Faculty of Computer Science

o
3%

FAXS
A0
X

+.
34

et le
i
W

Technical Report No. 2002/09

A PROMELA IMPLEMENTATION OF THE NPSK PROTOCOL 27

726 never {

747 dO

748 :: notary [)]J@OUTCOME —> break
749 :: skip;

750 od;

751 }
752 #endif

o
::':.'5:%;‘:;-,‘., University of Stuttgart

25 ..:'::: Faculty of Computer Science

Technical Report No. 2002/09

	Introduction
	PROMELA Building Blocks for Security Protocols
	Entities and Data Templates
	Session Templates
	Templates and Processing of Messages
	Special Validation and Simulation Demands
	Model of an Omnipotent Intruder
	The Notary

	Deriving an example
	The Environment
	Architecture
	Visualization issues
	Distributed Collaboration

	Related Work
	Conclusions, outlook
	Acknowledgement
	References
	PROMELA implementation of the NPSK protocol

