An Enhanced Application Modd for Schedulingin Grid Environments

Christoph Ruffner, Pedro José Marrén, Kurt Rother mel
University of Stuttgart
Institute of Parallel and Distributed Systems (IPVS)
Universitaetsstr. 38
D-70569 Stuttgart, Germany

{Ruffner, Marron, Rothermel} @informatik.uni-stuttgart.de

Abstract

Application scheduling in Grid computing requires
information about tasks in each application, as well as a
description of the available resources that the scheduler
needs, to find an efficient assignment of tasks to
resources. In this context, information about applications
is provided by the application model. Most current
models are restricted to only a few features, but in some
cases, such as simulations, which are an important
example of Grid applications, more detailed information
is available. In this paper, we propose an enhanced
application model based on the concept of task
refinements, which provide the scheduler with fine-
grained information and allow it to determine more
efficient schedules than traditional approaches. We
backup and show the feasibility of our model by means of
experimental evaluations.

1. Introduction

One of the main goals of Grid Computing is to provide
standardized access to a pool of heterogeneous resources
that can be spread around the world [9]. Additionally,
resources are shared among authorized users who want to
run their applicationsin the Grid.

Resource management in computational Grids provides
the ability to determine whether or not resources are
available, and if so, map the submitted applications to
specific resources [3]. Therefore, a resource manager
needs to be able to perform the following services in an
efficient way: authentication services, information
services (discovery), deployment, monitoring, and
scheduling services. In this paper, we focus on the
efficient implementation of the scheduling service.

More specificaly, the functionality of a scheduler
focuses on deriving schedules for applications by mapping
their tasks, i.e. the executable units, to suitable and
available resources [16]. In the general case, the
scheduling problem is known to be NP-complete, so that
the use of heuristics is necessary for its efficient
implementation. Depending on the heuristic, additional,

more detailed information has to be provided from the
application (or the application model) to the scheduler.

Currently used application models [10][11][17] describe
the tasks of an application as a block of instructions to be
executed on resources. The structure of a task is not
further refined, and so, no information is given about the
structure and/or the behavior of the application. Regarding
communication between tasks, only the models defined in
[10][17] make reference to it, although given the system
model where Grid computing is applied, network
operations play a crucial role [14], especialy since the
resources are usually located on a heterogeneous network.

As we know from the modeling of simulation
applications [2][15], communication can be defined in
more detail, so as to provide a sufficient level of
granularity to allow the scheduler to make better
decisions. In these models, the concept of aternating
computation and communication blocks within an
application provides a more detailed structure that can be
used by the scheduler to generate a more efficient
resource allocation.

In this paper we show that this particular type of
modeling, used in combination with further refinements
for the description of the tasks involved in an application,
results in a more efficient schedule. If there are cases
where this information is not available, our model adapts
to the amount of information available and is able to
provide as good a schedule as the simpler algorithms
described above.

The paper is structured as follows. Our refined
application model for scheduling in Grid environments is
presented in section 2. Section 3 defines the reservation
model as required by our enhanced application model and
section 4 provides details on the calculation of the
execution time for a given application. Section 5
introduces a new scheduling heuristic for the application
model, which is evaluated in section 6. Section 7
describes related work in the area of application modeling.
Finally, section 8 concludes this paper.

2. Application Model

Our application model consists of a set of components

organized in tasks that perform computations and a set of
relations defined between these components.

2.1 Tasksand components

A task t; defines an executable unit to be scheduled onto
one resource. It consists of at least one component k; that
contains information about the number of instructions,
denoted by [kq|, that have to be executed to perform task t;
correctly (Figure 1a). If the task does not communicate
with any other task, its execution time is the number of its
instructions divided by the speed of the resource in
millions of instructions per second (MIPS).

] kll: -
— ku 100 Minstr
500 Mlnstr
K12 —_
400 Minstr
Component Components
a) b)

Figure 1: Components of tasks

In contrast to other application models, we introduce the
concept of components that refine the structure of atask t;.
Therefore, t; can be divided into components {ky, ..., k.}
arranged in a sequentia total order “ —”. Each component
ki has information about the number of instructions |kj| to
be performed, and so, the total number of instructions of a
task can be computed by summing up the number of
instructions of its components. Moreover, the order “ -.”
in which components are connected with each other
defines the execution order of the instructions executed on
a given resource. In Figure 1b, the order ki; — kys, shown
by the arrow, defines that the first instruction of ki, is
executed after the last instruction of k.

A component k; can contain further subcomponents { kj;,
..., Kim}, @ls0 arranged in a sequential total order: kj; — ki,
Kiz— Kis, ..., Kim1— Kjm- The sequential total order implies
that if instructions of k; are executed before instructions of
a component k;, where k; is refined by {kiy, ..., ki.}, then
Kim— ki1 must hold, because the first instruction of k; is
executed after the last instruction of k;. Therefore, we do
not consider intratask parallelismin this paper.

Using the concept of components, a task t; can be
defined by a hierarchy of components, where the leaves of
the hierarchy define the number of instructions to be
executed and the order “ - " between components defines
the execution order of their instructions.

The hierarchical model provides the capability to
include as much information about the structure of a task
as the user knows. If there is no information about the
structure, only the instructions are defined for the given
task. As we will show in the evauation later on, the
refinement of tasks in this way improves the scheduling of
the application.

2.2 Communication Relations

A communication relation is defined between two
components of different tasks, if both components
communicate with each other during execution of their
instructions. This relation needs the following information
(Figure 2):

» Communication direction

» Start time of data transfer for each component

* Type of communication

e Amount of datatransmitted

ki P(lkal) P(lkaD) K,

_ _ Amountof data_ _
Type of comm.

Figure 2: Communication relation

In Figure 2, component k, sends data to component k, as
shown by the direction of the arrow.

The dtart time defines the point in time when both
components start communicating. The exact point in time
cannot be determined in general for an application, since
the execution path is not known in advance. Therefore, we
define a function P(lk;]) = a OJk;| where a O [0..1], which
defines the start time where component k; potentially
communicates. We assume that communication can take
place between the point of time defined by function P and
the end of the component, so that a time frame for
communication with a given uncertainty is defined. As
shown in Figure 2, the function P has to be defined for
both components involved in the communication.

As described for different communication platforms
such as MPI [12] or PVM [7], the type of communication
in our model can be asynchronous or synchronous. For
our purposes, synchronous communication assumes send
and receive operations to be blocking. Asynchronous
communication is defined by a non-blocking send
operation, where the data to be sent is buffered and can be
read by the receiver at a later point in time. The receive
operation gets blocked if no datais available in the buffer.

Finally, the amount of data is defined as the number of
bytes that must be transmitted from sender to receiver.
The data can be sent at once or at various times during the
communication interval.

2.3 Example

Figure 3 illustrates an application being composed of
three tasksty, t,, and t, each refined by components.

Task t; is composed of two components k; and k,. The
number of instructions for k; is |k|. During its execution,
it communicates with component k3 of task t,. The starting

time of the communication is defined by P, for k;, so that
k, potentially communicates between this time and the end
of k;. After having executed the instructions of ki, the
instructions of the second component k, will be executed
(since k; —k,). No communication relation is defined for
k,. The components ks, ks, ks and kg as well as their
relationships are defined in an analogous way for tasks t,
and t.

Figure 3: Example of an application

So far, we defined an application model that enables us
to refine the tasks in the model using the concept of
components and to define communication relations
between components. In our example task t,
communicates with task t; and afterwards with task t;, so
the structure and behavior of task t, is better understood
using components than without refinement.

3. Reservation Modd

The reservation model provides the basis for the
calculation of the reservation time for the application. The
enhanced application model implies a reservation model,
where the refined structure of atask is used to estimate the
reservation time more precisely.

3.1 Formal Definition

The reservation model is defined as an extended graph
G=(P,E, C,Yy, d), where:

P ={pws P2 ..., Pn} is a set of vertices that represent
component partitions of the tasks in the application model.
Each leaf component k; in the component hierarchy of a
task is mapped onto exactly one partition p;, iff k; has no
communication relations to other components. A leaf
component k; is mapped onto exactly two partitions p;;
and p;, iff there exists at least one communication relation
to another component.

E: PxP is the set of directed edges that represents the
order in which component partitions are executed. We
define (pi, p;) O E iff p; represents component k; and p;
represents component k; and ki-k; or iff p and p
represent a communicating component partitioned into p
and p.

C E’xP is another set of directed edges that represent the
communication relation between components. If a
component k; communicates with component kj, k; is

mapped onto two partitions pi; and piz, Where (pig, pi2) [
E, and component k; is mapped onto p;; and p;,, where
(P2, P2) O E. Communication is represented by the edge
(pi2; P2) O C, where p;, is the sender and pj, is the
receiver.

Y. V = indr. is a marking of partitions that represents
the number of instructions a partition p; inherits from
component k;, which it represents. If partition p; represents
one component k;, then p; is marked by the number of
instructions [ki|. If two partitions p;; and p;,, where (pi1, pi2)
O E, represent a component k;, pi1 is marked by the
number of instructions where definitely no communication
takes place. Partition p;, is marked with the number of
instructions, where k; potentially communicates defined
by the maximum of al functions P, of all communication
relations, in which k; is involved. By marking p, as
described, we make a maximum estimation that allows us
to calculate the reservation time of the corresponding task.

0: C > data is the weight of the edgesin C. The weight
represents the amount of data defined by the
communication relation between two components k; and
ki. The type of communication is not considered in this
reservation model, so that we currently treat asynchronous
communication like synchronous communication, which is
a more restrictive approach and reduces performance
gainsif throughput is to be considered, as the only metric.

3.2 Example

The example of Figure 3 is transformed in the
reservation graph shown in Figure 4.

¢ > EdgesinE
1 t2
P P4 22> EdgesinC
3[(p2, ps)] fs
P2 (yzzzzzzzis Ps Ps
P3 Ps P9
O[(p7, leO\)]
Pz (xz-zzzoz: P1o

Figure 4: Example of areservation graph

If we consider task t, in more detail, the first component
k, of t; that communicates with the first component ks in
t,, is mapped onto two partitions p; and p,, which are
connected by an edge of E. Partition p; is marked with
v(py), the number of instructions of k; that are not
involved in communication with t,. Partition p, is marked
with y(p,), the number of instructions where
communication potentially takes place. The edge between
p» and ps represents the communication between k; and k.
The weight of the edge d[(p,, ps)] is the amount of data to

be transferred. The second subcomponent k, of t; is
mapped onto partition ps, which is connected to partition
p. with an edge of E. Partition ps is marked with the whole
number of instructions |k, of k, because k, has no
communication relation to other components.

We definethe rest of the graph in asimilar way.

4 Reservation time

Distributed resources in Grid computing are co-
alocated [6] to be available for an application at the same
time. We assume each task of an application to start at the
same time using this co-all ocation mechanism.

We consider the longest execution time of each task,
which means that for each task the worst case istaken into
account to estimate the longest execution time for the
application. The execution time of a task is computed
using the reservation graph and the execution times of
component partitionsin the graph.

The component partitions of a task in the reservation
graph must be divided in two groups: partitions that have
communication relations to other partitions, represented
by edges in C, and partitions without such a
communication relation.

The reservation time for a partition p; without a
communication relation, is simply computed by the
marking y[p;] of the partition divided by the MIPS of the
resource the task t;, containing partition p;, is scheduled
on. The reservation time of a partition without a
communication relation is abbreviated as yi[pj].

I T 7

a) b)
Figure 5: communicating tasks

To calculate the reservation time of a partition p; that
participates in a communication (an edge in C) with
partition p;, we must consider the markings y[p] and y{p;].
The marking declares the set of instructions, where one of
these ingructions is the first send operation (perhaps
followed by further send operations) on the sender side, or
the first receive operation on the receiver side. Two
extreme scenarios are possible, as shown in Figure 5.

In Figure 5 @) the last instruction in p, is a send
operation, whereas the receive operation is the first
operation in p,. The receive operation will be blocked
until the send operation is called, which means p; has to
wait until p; reaches its end. In Figure 5 b) the send
operation is called as the first instruction of p; and the
receive operation is called as the last instruction of ;. The
result will be a blocked sender p; until p; executes the
receive instruction. As both scenarios show, we have to
sum all execution times yu[p.] of the partitions py that

blocked

have a communication relation to other partitions, because
the represented components can be blocked by the other
components until they cal their communication
operations.

Further, we assume blocking communication primitives,
so that p; and p; are blocked while data is transferred.
Therefore, the time for data transfer is added to the
execution time of the instructions. Communication time is
calculated by dividing the marking d[(p;, p)] of the edge
in C by the bit rate of the communication channel between
the resources, onto which tasks t; and t; are mapped. The
resulting communication time is shortened by & 5[(pi,;)]-
These communication times are added to the execution
time of the instructions. The resulting reservation time is
assigned to each partition.

i P = Pe
Pk2
Pk3 = Past

Figure 6: Pathsthrough the graph

To compute the reservation of atask t, we must consider
al possible paths ws = (py, ... , P, B}, -, Piag) from each
first partition p, of any task of the application to the last
partition py Of task t, using edges in set E or C (Figure
6). Thus, the constraints

= (Opy OP[(py, p) O E],

= (Opy OP[(Pres, py) U E]), and

(p.p) DEO(ELp)OC

for each pair p;, p; in path ws must hold.

All paths from the first partition of any task in the
application including t, have to be considered, because the
tasks are started at the same time using co-allocation, and,
due to the communication relation, can influence the
execution of task ty.

The reservation time R[w;] of a path w; is computed by
estimating the reservation time for each partition as
described above and summing up all these times. If
partitionsin the path are connected by edgesin C, only the
estimated time of one partition is taken into account,
because that time already considers the other partition.

The reservation time or total completion time T[t,] of
a task t, is computed by the maximum of all reservation
times R[w] of all pathsw;:
Terltd = Max(R[wi]) for al (k < number of tasks),

(i < number of paths)

The total completion time T¢r of the application is
computed as the maximum of all completion times T[t,]
of tasksty:

Ter = Max(Ter[ty]) for al (k < number of tasks)

4.1 Example

If we consider the reservation time of task t; in Figure 4,
we must compute all paths from each first partition py, pa,
and pg of task ty, t,, and t; to py, the last partition of task
ts. The resulting three paths using edges in E and set C
are

Wi = (P1, P2, Ps: Pes P7, P1o),

W2 = (Pa, Ps, Pes P, Pao), and

W3 = (pSa p91 plo)y
In the computation for these paths, p,o and p,, as well as

ps and p, are connected with an edge in C. We must sum
the estimated reservation time of these partitions only
once, because the estimated reservation times are based on
each other, as described above.

In the reservation time of w,, we take ya[p,] and
Oa gl(P2,Ps)] into account even though p, is not explicitly
in w,, because partition ps has a communication relation
with p, and therefore can be blocked during execution
time of p,. That applies to yg[p;] and dg c[(P7.P10)] iN the
reservation time of ws too.

Therefore the reservation time R of each path w; is:

RIWi] = Ya[pa] + Yalp2] + Ya[Ps] + Oasl(P2Ps)] + YelPel

+Ya[P7] + YelPiol + O c[(P7:P10)]

RIW2] = Va[pa] + Ya[Ps] + YalP2] + Oasl(P2:Ps)] + YelPel

+Ya[p7] + YelPiol + s cl(P7:P10)]

RIws] = Ye[Ps] + YelPal + YclPaol + Ya[P7l + s cl(P7.P10)]

The maximum of these timesis the reservation time Ty
of task ts:

Terlts] = Max(R[wi], R[w,], R[wj])

To compute the total completion time Top of the
application we compute the maximum of the completion
times of all tasks:

Ter = Max(Ter[ty], Terlta], Ter[ts])

We note that until the tasks are not mapped to resources,
the reservation time cannot result in a specific value. It is
not allowed to sum the instructions of different tasks,
because tasks are scheduled on different resources and the
instructions of tasks are executed on these resources at
different speeds. Although the value is not defined, the
calculation of the reservation time can be done once for an
application, which means that it must not be done during
scheduling.

5. Scheduling Heuristic

The scheduling problem that maps tasks to resources is
known to be NP-complete. To derive an optimal schedule,
al combinations of task-resource pairs for the whole
application must be considered. Thus, heuristics are
examined to find schedules that reach acceptable
performance for a certain class of applications.

We propose a heuristic for the enhanced application
model, which takes advantage of the refined task model

and the known communication dependencies. The
heuristic is embedded into the Greedy agorithm shown in
Figure 7.

The tasks are ordered by decreasing number of
instructions (line 1.), because the largest task should be
mapped to a fast resource first, so that the impact of the
ingtructions of that task on other tasks due to
communication relations, is minimized.

1. order application tasks by decreasing number of
instructions
initidlize al yi[p =0.0inTer
initialize al & [(PwP)] =0.0in Ter
initialize PLACEMENT](t;] = -1 for all taskst;
for each task t;
5.1. for each resource Ry
5.1.1. PLACEMENTIt] = Ry
5.1.2. compute yy[py] in Ter
5.1.3. compute &y [(P:P1)] in Ter, wheret,
and t,,, already mapped
5.1.4. compute Tcr
5.1.5. Store best Tt and best associated
resource Ryeq
5.2. endfor
5.3. PLACEMENT(t;] = Ryey; Whereby Ry is
not further available for other tasks.
6. endfor

agrwN

Figure 7: Enhanced heuristic

The algorithm is based on the reservation model and the
resulting total completion time Ty of the application. The
execution time y;[p] and communication time & 4[(P.P1)]
involved in the computation for Ty are not defined if the
task or tasks are not mapped to a resource. They are
initialized to the value 0.0, so that they have no effect in
the computation of the paths (lines 2. and 3.) until the
corresponding task or tasks are mapped to specific
resources.

Finally, the agorithm iterates over al tasks and
resources (line 5. and 5.1). In each step, the current task is
mapped onto the corresponding current resource and the
execution times yi[vi] and the communication times
4l (View))] are recomputed for that configuration. As a
result of the new calculated execution times and
communication times, the total completion time Ty of the
application is computed and compared to the best
previous mapping. If the new mapping is better, the
resource is assumed to be a better configuration for that
particular task.

The algorithm is based on the recomputation of the total
completion time Ter in each step (line 5.1.2). The
elements of T¢r are not defined completely until the last

task is mapped onto a resource. We only estimate Tt in
each step by assuming that the elements of Tt that are not
computable in this step, have no effect in the calculation.

6. Experimental Results

To evaluate the advantage of the component-based
approach introduced in the application model and the
proposed heuristic, we compare our implementation to
another heuristic that does not use information about the
internal structure of tasks. We decided to compare our
heurigtic with the algorithm proposed by Jon Weissman
[17], which uses communicating tasks without further
refinement. We use the category “concurrent” of
communicating task, which means, that tasks are blocked
while data is transferred between them. We do not
compare to the categories “parallel” or “pipeline” of the
model, since our reservation model, as yet, does not
support asynchronous communication. We used our
reservation model to compare the completion time Ty for
both algorithms with the optimum Ty reachable by the
brute-force exponential agorithm.

To compare the results of both heuristics, the values of
our evaluation environment are chosen from the
environment proposed in [17].

6.1 Weissman's Heuristic

Jon Weissman proposed a Greedy-algorithm, which is
based on the calculation of T (Figure 8). The algorithm
iterates the tasks and resources and computes the total
completion time T¢r in each step. The calculation of Ter
is based on the total number of instructions of tasks and
the amount of data transferred between them.

1. order application tasks by decreasing
comp_amt value
2. initialize PLACEMENT[C]=-1 for all tasks C;
3. for each component C,
3.1. for each resource S,

3.1.1. compute Tcr with
PLACEMENT[C] = S, given
PLACEMENT[C], i <j, unchanged

3.1.2. remember best Tt and best

associated site Sy
3.2. endfor
3.3. PLACEMENT[C] = Soeqt

4, endfor

Figure 8: Weissman’salgorithm

To compare the a gorithms we transform our application
model into the model of Jon Weissman. Therefore, the
number of instructions of atask is computed by summing
al leaf components in the component hierarchy of a task.
The data transferred between two tasks is computed by

summing the amount of data of al communication
relations between them.

6.2 Evaluation Environment

The evaluation environment for both algorithms is
defined by the parameters used to generate the application
model and the interconnected resources.

Description Value range
Tasks 3...8
Components 2..5
Instructions [10000, 100000]
Data (Bytes) [50000, 150000]

Table1 - Task settings

As shown in Table 1, the application model covers 3 to
8 tasks (dependent on the results to be evaluated) each
containing 2 to 5 components assuming they are uniformly
distributed. We do not refine a task into further
subcomponents, but show that even the refinement in 2 to
5 components results in better schedules. The number of
instructions of a tasks which is the sum of the number of
instructions of the components, range between 10000 and
100000 instructions chosen randomly from the interval
using a normal distribution. Communication is randomly
generated between components that transfer data between
50000 and 150000 Bytes. The amount of data is also
normally distributed. The parameter g of function P; used
in the communication relation is uniformly generated
between 0 and 1.

Description Value range
Resources 3...10
Speed (MIPS) [1, 10000]
Connection (Kbps) [100, 1000]

Table 2 — Resour ce settings

Table 2 shows the parameters of the resources
generated. We evaluated the algorithms using 3 to 10
resources (dependent on the results to be evaluated). The
speed of the resources range from 1 to 10000 MIPS, also
generated from a normal distribution. The generated
resources are interconnected by links with bit rates
between 100 and 1000 Kbps normally distributed. The
resources are assumed to be fully connected.

The values of the application model and the resources
serve the basic comparison of the algorithms shown in
Figures 7 and 8.

6.3 Results

For each measuring point of the algorithms in the
following diagrams, we computed 10.000 different
environments and compared their schedules.

Our first evaluation is performed with a fixed number of
10 resources and an increasing number of tasks ranging
from 1 to 8. Figure 9 shows the results of the performed
agorithms for these values.

The increasing number of tasks is shown on the x-axis,
while the y-axis shows the percentage relative to the
optimal schedule, assigned to be 100%.

[=

o o

o [¢3)
.

104 -
102

=

o

o
|

% of opt. compl. time

1 2 3 4 5 6 7 8

number of tasks

—m— Weiss. —e— Enhanced

Figure 9: increasing number of tasks

If only one task is considered, both algorithms reach the
best possible schedule. Since we consider only one
application in the system, both algorithms will map the
task of the application onto the best resource. The more
tasks that are added to the application, the more advantage
can be taken from the information about the refined tasks
and the enhanced application model. This is why our
agorithm performs better than that of Weissman. The
refined structure provides information about the
dependencies of one task to the others. If we consider the
reservation model, late communicating tasks are
dependent on earlier communicating tasks if a path in the
reservation model exists from the involved partitions of
the communication to the partitions involved earlier in
communication, which can be proven by the paths through
the graph. Our algorithm takes dependencies into account,
but the algorithm of Weissman cannot, because it has no
information about these dependencies. So our agorithm
resultsin better schedules for these cases too.

104 -
o 103,5
g 103 -
S 102,5 |
E 102
2 1015
g‘ 101 ,%#;
S 100,5 -
S 100 -

3 4 5 6 7 8 9 10
number of resources
—&— Enhanced —8— Weiss.

Figure 10: Increasing number of resources

Our second evaluation is performed with a fixed number
of 3 tasks and an increasing number of 3 to 10 resources.
Figure 10 shows the results of that scenario.

The increasing number of resources is shown on the x-
axis, while the y-axis shows the percentage relative to the
optimal schedule, assigned to 100%.

If we consider three resources, both agorithms show
nearly the same performance. As the number of resources
increases, the information about the refined tasks can be
used by the proposed agorithm to compute better
schedules for the application. The enhanced agorithm is
more robust against increasing number of resourcesin the
system, because the dependencies of the tasks are used to
evaluate the resources in more detaill even if new
resources are available in the system.

The following related work delivers insight in currently
used application models in Grid Computing. The
enhanced application model is compared to these models
in short.

7. Related Work

Application models in Grid computing can be classified
asfollows:
e Single Task Model
» Directed Acyclic Graph (DAG) Model
* Metaapplication Model

The single task model [11] defines an application to be a
set of independent tasks that do not communicate with
each other. A task can be executed without taking the
other tasks into account, so it can be scheduled
independently. Each task of the model defines the number
of instructions to be executed, so that the scheduler can
estimate the execution time of that task on a specified
resource. A refined task structure is not given in the model
and communication cannot be modeled. Research in the
area of the single task model focused on the
characteristics of scheduling algorithms for these models
in Grid environments [8] [13]. A special group of single
task models are parameter sweep applications [4] that
define long running tasks, where each task defines a set of
input files containing data to be processed. A single file
might be input to more than one task. A refinement of
tasksis not given in that model, either.

The DAG model [10] uses edges to define the execution
order of tasks. Each task defines the number of
instructions and communication is represented as the
weight of the edges defining the data transferred
asynchronously between tasks. The tasks of the model
cannot be refined in structure and concurrent execution is
not possible between communicating tasks. It is possible
to model the DAG in our proposed application model
using asynchronous communication, but the DAG model
is not as expressive as ours, due to the missing

synchronous communication concept. Research in the
field of DAGs in Grid environments is also focused on
scheduling algorithms [1] [5].

The meta-application model proposed in [17], defines a
set of communicating tasks. Communication dependencies
are divided into three categories: pipeline, concurrent, and
paralel. The category “pipeling” is equivalent to the
relations between tasks in the DAG model. It specifies the
order in which tasks are executed. The category
“concurrent” specifies that tasks synchronize on the data
transfer, and therefore block during transmission. The
category “paralel” specifies that communicating tasks are
not blocked during data transfer, but tasks that
communicate, must run in parallel. Tasks of the model are
defined by the instructions to be executed, but a
refinement of tasks is not possible and the point in time
that defines when communication potentially occurs is not
included in the model. Our model enhances the model by
refining the structure of tasks and defining the
communication relation between components.

8. Conclusion and Future Work

Developers of applications such as simulations can
provide information about the internal structure and the
behavior of the application. We propose an enhanced
application model, where knowledge about the application
can be mapped into components within tasks and
communication primitives. We aso propose a reservation
model, including synchronous communication, and a
heurigtic thus using this additional information in the
model. Experimental results compared to a heuristic based
on an application model without that information showed
that the new heuristic resultsin better schedules.

Further research will focus primarily on the reservation

model, where finegrained knowledge about
communication can further improve the resulting
schedules. We will introduce asynchronous

communication in the model and propose heuristics that
combine the knowledge about synchronous and
asynchronous communication to enhance schedules. This
also implies further research on the heuristic, which
should adapt to the information contained in the
application model.

References

[1] A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra, “A
Unified Resource Scheduling Framework for Heterogeneous
Computing Environments”, Proceedings of the 8th IEEE
Heterogeneous Computing Workshop, Puerto Rico, 1999, pp.
156 - 166.

[2] C. Baillie, J. Michaakes, R. Skalin, “Regiona Weather
Modeling on Parale Computers’, Special Issue of Parallel
Computing, Vol. 23, No. 14, 1997, pp. 2135 — 2142.

[3] R. Buyya, S. Chapin, D. DiNucci, “Architectural Models for
Resource Management in the Grid”, Proceedings of 1st
IEEE/ACM International Workshop on Grid Computing, 2000,
pp. 18 —35.

[4] H. Casanova, A. Legrand, D. Zagotodnov, F. Barman,
“Heuristic for Scheduling Parameter Sweep Applicationsin Grid
Environments’, Proceedings of the 9th IEEE Heterogeneous
Computing Workshop, Cancun 2000, pp. 349 — 363.

[5] H. Chen, M. Maheswaran, “ Distributed Dynamic Scheduling
of Composite Tasks on Grid Computing Systems’, Proceedings
of the 11th |EEE Heterogeneous Computing Workshop, Fort
Lauderdale, 2002, p. 88b.

[6] K. Czajkowski, I. Foster, K. Kesselman, “Resource Co-
Allocation in the Grid”, 8th IEEE International Symposium on
High Performance Distributed Computing, Redondo Beach,
1999, p. 37.

[71 J. Dongarra, G. Geist, R. Mancheck, V. Sunderam,
“Integrated PVM Framework Supports Heterogeneous Network
Computing”, Computersin Physics, Vol 7, No. 2, 1993, pp. 166
—174.

[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R.
Y ahyapour, A. Streit, “On Advantages of Grid Computing for
Parallel Job Scheduling”, Proceedings of 2nd | SSS International
Symposium on Cluster Computing and the Grid, 2002, pp. 39 —
47.

[9] I. Foster, C. Kesselman, The GRID: Blueprint for a new
Computing Infrastructure, Morgan Kaufmann, San Francisco,
1999.

[10] M. Iverson, F. Ozgiiner, “Dynamic, Competitive
Scheduling of Multible DAGs in a Distributes Heterogeneous
Environment”, Proceedings of the 7th IEEE Heterogeneous
Computing Workshop, Orlando, 1998, pp. 70 — 78.

[11] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F.
Freund, “Dynamic Matching and Scheduling of a Class of
Independent Tasks onto Heterogeneous Computing Systems',
Proceedings of the 8th IEEE Heterogeneous Computing
Workshop, Puerto Rico, 1999, pp. 30 - 45.

[12] Message Passing Interface Forum. “MPl: A Message-
Passing Interfface standard.” International Journal of
Supercomputer Applications, 8 (3/4), 1994, pp. 165 —414.

[13] R. Min, M. Maheswaran, “Scheduling Advance
Reservation with Priorities in Grid Computing”, 13th
International Conference on Parallel and Distributed Systems,
Anaheim, 2001.

[14] K. Rangamnathan, |. Foster, “Decoupling Computation and
Data Scheduling in Distributed Data-Intensive Applications’,
11th International Symposium on High Performance Distributed
Computing, Edinburgh, 2002, pp.352 — 359.

[15] J. Weidendorfer, P. Luksch, “A Framework for Transparent
Load Balancing in Parallel Numerical Simulation”, 34th Annual
Smulation Symposium, Seettle, 2001, pp. 125 — 132.

[16] J. Weissman, X. Zhao, “ Scheduling Parallel Applicationsin
Distributed Networks’, Journal of Cluster Computing, Vol. 1,
No.1, 1998, pp. 109 — 118.

[17] J. Weissman, “Scheduling Multi-Component Applications
in Heterogeneous Wide-area Networks’, Proceedings of Sth
|EEE Heterogeneous Computing Workshop, Cancun, 2000, pp.
209 —215.

