
An Enhanced Application Model for Scheduling in Grid Environments

Christoph Ruffner, Pedro José Marrón, Kurt Rothermel
University of Stuttgart

Institute of Parallel and Distributed Systems (IPVS)
Universitaetsstr. 38

D-70569 Stuttgart, Germany
{Ruffner, Marron, Rothermel}@informatik.uni-stuttgart.de

Abstract

Application scheduling in Grid computing requires
information about tasks in each application, as well as a
description of the available resources that the scheduler
needs, to find an efficient assignment of tasks to
resources. In this context, information about applications
is provided by the application model. Most current
models are restricted to only a few features, but in some
cases, such as simulations, which are an important
example of Grid applications, more detailed information
is available. In this paper, we propose an enhanced
application model based on the concept of task
refinements, which provide the scheduler with fine-
grained information and allow it to determine more
efficient schedules than traditional approaches. We
backup and show the feasibility of our model by means of
experimental evaluations.

1. Introduction

One of the main goals of Grid Computing is to provide
standardized access to a pool of heterogeneous resources
that can be spread around the world [9]. Additionally,
resources are shared among authorized users who want to
run their applications in the Grid.

Resource management in computational Grids provides
the ability to determine whether or not resources are
available, and if so, map the submitted applications to
specific resources [3]. Therefore, a resource manager
needs to be able to perform the following services in an
efficient way: authentication services, information
services (discovery), deployment, monitoring, and
scheduling services. In this paper, we focus on the
efficient implementation of the scheduling service.

More specifically, the functionality of a scheduler
focuses on deriving schedules for applications by mapping
their tasks, i.e. the executable units, to suitable and
available resources [16]. In the general case, the
scheduling problem is known to be NP-complete, so that
the use of heuristics is necessary for its efficient
implementation. Depending on the heuristic, additional,

more detailed information has to be provided from the
application (or the application model) to the scheduler.

Currently used application models [10][11][17] describe
the tasks of an application as a block of instructions to be
executed on resources. The structure of a task is not
further refined, and so, no information is given about the
structure and/or the behavior of the application. Regarding
communication between tasks, only the models defined in
[10][17] make reference to it, although given the system
model where Grid computing is applied, network
operations play a crucial role [14], especially since the
resources are usually located on a heterogeneous network.

As we know from the modeling of simulation
applications [2][15], communication can be defined in
more detail, so as to provide a sufficient level of
granularity to allow the scheduler to make better
decisions. In these models, the concept of alternating
computation and communication blocks within an
application provides a more detailed structure that can be
used by the scheduler to generate a more efficient
resource allocation.

In this paper we show that this particular type of
modeling, used in combination with further refinements
for the description of the tasks involved in an application,
results in a more efficient schedule. If there are cases
where this information is not available, our model adapts
to the amount of information available and is able to
provide as good a schedule as the simpler algorithms
described above.

The paper is structured as follows: Our refined
application model for scheduling in Grid environments is
presented in section 2. Section 3 defines the reservation
model as required by our enhanced application model and
section 4 provides details on the calculation of the
execution time for a given application. Section 5
introduces a new scheduling heuristic for the application
model, which is evaluated in section 6. Section 7
describes related work in the area of application modeling.
Finally, section 8 concludes this paper.

2. Application Model

Our application model consists of a set of components

organized in tasks that perform computations and a set of
relations defined between these components.

2.1 Tasks and components

A task ti defines an executable unit to be scheduled onto
one resource. It consists of at least one component k1 that
contains information about the number of instructions,
denoted by |k1|, that have to be executed to perform task ti

correctly (Figure 1a). If the task does not communicate
with any other task, its execution time is the number of its
instructions divided by the speed of the resource in
millions of instructions per second (MIPS).

In contrast to other application models, we introduce the
concept of components that refine the structure of a task ti.
Therefore, ti can be divided into components {k1, …, kn}
arranged in a sequential total order “→”. Each component
kj has information about the number of instructions |kj| to
be performed, and so, the total number of instructions of a
task can be computed by summing up the number of
instructions of its components. Moreover, the order “→”
in which components are connected with each other
defines the execution order of the instructions executed on
a given resource. In Figure 1b, the order k11→k12, shown
by the arrow, defines that the first instruction of k12 is
executed after the last instruction of k11.

A component kj can contain further subcomponents {kj1,
…, kjm}, also arranged in a sequential total order: kj1→kj2,
kj2→kj3, …, kjm-1→kjm. The sequential total order implies
that if instructions of kj are executed before instructions of
a component ki, where ki is refined by {ki1, …, kin}, then
kjm→ki1 must hold, because the first instruction of ki is
executed after the last instruction of kj. Therefore, we do
not consider intra task parallelism in this paper.

Using the concept of components, a task ti can be
defined by a hierarchy of components, where the leaves of
the hierarchy define the number of instructions to be
executed and the order “→” between components defines
the execution order of their instructions.

The hierarchical model provides the capability to
include as much information about the structure of a task
as the user knows. If there is no information about the
structure, only the instructions are defined for the given
task. As we will show in the evaluation later on, the
refinement of tasks in this way improves the scheduling of
the application.

2.2 Communication Relations

A communication relation is defined between two
components of different tasks, if both components
communicate with each other during execution of their
instructions. This relation needs the following information
(Figure 2):

• Communication direction
• Start time of data transfer for each component
• Type of communication
• Amount of data transmitted

In Figure 2, component k1 sends data to component k2 as
shown by the direction of the arrow.

The start time defines the point in time when both
components start communicating. The exact point in time
cannot be determined in general for an application, since
the execution path is not known in advance. Therefore, we
define a function P(|ki|) = ai ∗ |ki| where ai ∈ [0..1], which
defines the start time where component ki potentially
communicates. We assume that communication can take
place between the point of time defined by function P and
the end of the component, so that a time frame for
communication with a given uncertainty is defined. As
shown in Figure 2, the function P has to be defined for
both components involved in the communication.

As described for different communication platforms
such as MPI [12] or PVM [7], the type of communication
in our model can be asynchronous or synchronous. For
our purposes, synchronous communication assumes send
and receive operations to be blocking. Asynchronous
communication is defined by a non-blocking send
operation, where the data to be sent is buffered and can be
read by the receiver at a later point in time. The receive
operation gets blocked if no data is available in the buffer.

Finally, the amount of data is defined as the number of
bytes that must be transmitted from sender to receiver.
The data can be sent at once or at various times during the
communication interval.

2.3 Example

Figure 3 illustrates an application being composed of
three tasks t1, t2, and t3, each refined by components.

Task t1 is composed of two components k1 and k2. The
number of instructions for k1 is |k1|. During its execution,
it communicates with component k3 of task t2. The starting

Type of comm.

P(|k1|) P(|k2|)k1 k2

Amount of data

Figure 2: Communication relation

a)

Component

Figure 1: Components of tasks

Components

k12:
400 MInstr

k11:
100 MInstrk1:

500 MInstr

b)

time of the communication is defined by P1 for k1, so that
k1 potentially communicates between this time and the end
of k1. After having executed the instructions of k1, the
instructions of the second component k2 will be executed
(since k1→k2). No communication relation is defined for
k2. The components k3, k4, k5 and k6 as well as their
relationships are defined in an analogous way for tasks t2

and t3.

So far, we defined an application model that enables us
to refine the tasks in the model using the concept of
components and to define communication relations
between components. In our example task t2

communicates with task t1 and afterwards with task t3, so
the structure and behavior of task t2 is better understood
using components than without refinement.

3. Reservation Model

The reservation model provides the basis for the
calculation of the reservation time for the application. The
enhanced application model implies a reservation model,
where the refined structure of a task is used to estimate the
reservation time more precisely.

3.1 Formal Definition

The reservation model is defined as an extended graph
G = (P, E, C, γ, δ), where:

P = {p1, p2, …, pn} is a set of vertices that represent
component partitions of the tasks in the application model.
Each leaf component ki in the component hierarchy of a
task is mapped onto exactly one partition pi, iff ki has no
communication relations to other components. A leaf
component ki is mapped onto exactly two partitions pi1

and pi2 iff there exists at least one communication relation
to another component.

E: PxP is the set of directed edges that represents the
order in which component partitions are executed. We
define (pi, pj) ∈ E iff pi represents component ki and pj

represents component kj and ki→kj or iff pi and pj

represent a communicating component partitioned into pi

and pj.
C: PxP is another set of directed edges that represent the

communication relation between components. If a
component ki communicates with component kj, ki is

mapped onto two partitions pi1 and pi2, where (pi1, pi2) ∈
E, and component kj is mapped onto pj1 and pj2, where
(pj1, pj2) ∈ E. Communication is represented by the edge
(pi2, pj2) ∈ C, where pi2 is the sender and pj2 is the
receiver.

γ: V ! instr. is a marking of partitions that represents
the number of instructions a partition pi inherits from
component ki, which it represents. If partition pi represents
one component ki, then pi is marked by the number of
instructions |ki|. If two partitions pi1 and pi2, where (pi1, pi2)
∈ E, represent a component ki, pi1 is marked by the
number of instructions where definitely no communication
takes place. Partition pi2 is marked with the number of
instructions, where ki potentially communicates defined
by the maximum of all functions Pj of all communication
relations, in which ki is involved. By marking pi2 as
described, we make a maximum estimation that allows us
to calculate the reservation time of the corresponding task.

δ: C ! data is the weight of the edges in C. The weight
represents the amount of data defined by the
communication relation between two components ki and
kj. The type of communication is not considered in this
reservation model, so that we currently treat asynchronous
communication like synchronous communication, which is
a more restrictive approach and reduces performance
gains if throughput is to be considered, as the only metric.

3.2 Example

The example of Figure 3 is transformed in the
reservation graph shown in Figure 4.

If we consider task t1 in more detail, the first component
k1 of t1 that communicates with the first component k3 in
t2, is mapped onto two partitions p1 and p2, which are
connected by an edge of E. Partition p1 is marked with
γ(p1), the number of instructions of k1 that are not
involved in communication with t2. Partition p2 is marked
with γ(p2), the number of instructions where
communication potentially takes place. The edge between
p2 and p5 represents the communication between k1 and k3.
The weight of the edge δ[(p2, p5)] is the amount of data to

t2

t3

δ[(p7, p10)]

p4

p5

p6

p7

p8

p9

p10

δ[(p2, p5)]
p2

p1

t1

Figure 4: Example of a reservation graph

p3

Edges in E

Edges in C

Figure 3: Example of an application

t1 t2 t3
data1

type1 data2P3 P4

k5

k6

k3

k2

k1

k4

P2P1

type2

be transferred. The second subcomponent k2 of t1 is
mapped onto partition p3, which is connected to partition
p2 with an edge of E. Partition p3 is marked with the whole
number of instructions |k2| of k2, because k2 has no
communication relation to other components.

We define the rest of the graph in a similar way.

4 Reservation time

Distributed resources in Grid computing are co-
allocated [6] to be available for an application at the same
time. We assume each task of an application to start at the
same time using this co-allocation mechanism.

We consider the longest execution time of each task,
which means that for each task the worst case is taken into
account to estimate the longest execution time for the
application. The execution time of a task is computed
using the reservation graph and the execution times of
component partitions in the graph.

The component partitions of a task in the reservation
graph must be divided in two groups: partitions that have
communication relations to other partitions, represented
by edges in C, and partitions without such a
communication relation.

The reservation time for a partition pi without a
communication relation, is simply computed by the
marking γ[pi] of the partition divided by the MIPS of the
resource the task tj, containing partition pi, is scheduled
on. The reservation time of a partition without a
communication relation is abbreviated as γtj[pi].

To calculate the reservation time of a partition pi that
participates in a communication (an edge in C) with
partition pj, we must consider the markings γ[pi] and γ[pj].
The marking declares the set of instructions, where one of
these instructions is the first send operation (perhaps
followed by further send operations) on the sender side, or
the first receive operation on the receiver side. Two
extreme scenarios are possible, as shown in Figure 5.

In Figure 5 a) the last instruction in pi is a send
operation, whereas the receive operation is the first
operation in pj. The receive operation will be blocked
until the send operation is called, which means pj has to
wait until pi reaches its end. In Figure 5 b) the send
operation is called as the first instruction of pi and the
receive operation is called as the last instruction of pj. The
result will be a blocked sender pi until pj executes the
receive instruction. As both scenarios show, we have to
sum all execution times γtk[pk] of the partitions pk that

have a communication relation to other partitions, because
the represented components can be blocked by the other
components until they call their communication
operations.

Further, we assume blocking communication primitives,
so that pi and pj are blocked while data is transferred.
Therefore, the time for data transfer is added to the
execution time of the instructions. Communication time is
calculated by dividing the marking δ[(pi, pj)] of the edge
in C by the bit rate of the communication channel between
the resources, onto which tasks ti and tj are mapped. The
resulting communication time is shortened by δti,tj[(pi,pj)].
These communication times are added to the execution
time of the instructions. The resulting reservation time is
assigned to each partition.

To compute the reservation of a task tk we must consider
all possible paths ws = (px, … , pi, pj, ... , plast) from each
first partition px of any task of the application to the last
partition plast of task tk using edges in set E or C (Figure
6). Thus, the constraints

¬ (∃ py ∈ P [(py , px) ∈ E]),
¬ (∃ py ∈ P [(plast, py) ∈ E]), and

(pi, pj) ∈ E ∨ (pi, pj) ∈ C
for each pair pi, pj in path ws must hold.
All paths from the first partition of any task in the

application including tk have to be considered, because the
tasks are started at the same time using co-allocation, and,
due to the communication relation, can influence the
execution of task tk.

The reservation time R[wi] of a path wi is computed by
estimating the reservation time for each partition as
described above and summing up all these times. If
partitions in the path are connected by edges in C, only the
estimated time of one partition is taken into account,
because that time already considers the other partition.

The reservation time or total completion time TCT[tk] of
a task tk is computed by the maximum of all reservation
times R[wi] of all paths wi:
TCT[tk] = Max(R[wi]) for all (k ≤ number of tasks),

(i ≤ number of paths)
The total completion time TCT of the application is

computed as the maximum of all completion times TCT[tk]
of tasks tk:
TCT = Max(TCT[tk]) for all (k ≤ number of tasks)

Figure 5: communicating tasks

tim
e

bl
oc

ke
d

b)a)

pi pj pi pj

Figure 6: Paths through the graph

tkti
pi1 = px1

pi2

pi3

pk1 = px2

pk2

pk3 = plast

4.1 Example

If we consider the reservation time of task t3 in Figure 4,
we must compute all paths from each first partition p1, p4,
and p8 of task t1, t2, and t3 to p10, the last partition of task
t3. The resulting three paths using edges in E and set C
are:

w1 = (p1, p2, p5, p6, p7, p10),
w2 = (p4, p5, p6, p7, p10), and
w3 = (p8, p9, p10),
In the computation for these paths, p10 and p7, as well as

p5 and p2 are connected with an edge in C. We must sum
the estimated reservation time of these partitions only
once, because the estimated reservation times are based on
each other, as described above.

In the reservation time of w2, we take γA[p2] and
δA,B[(p2,p5)] into account even though p2 is not explicitly
in w2, because partition p5 has a communication relation
with p2 and therefore can be blocked during execution
time of p2. That applies to γB[p7] and δB,C[(p7,p10)] in the
reservation time of w3 too.

Therefore the reservation time R of each path wi is:
R[w1] = γA[p1] + γA[p2] + γB[p5] + δA,B[(p2,p5)] + γB[p6]

+ γB[p7] + γC[p10] + δB,C[(p7,p10)]
R[w2] = γB[p4] + γB[p5] + γA[p2] + δA,B[(p2,p5)] + γB[p6]

+ γB[p7] + γC[p10] + δB,C[(p7,p10)]
R[w3] = γC[p8] + γC[p9] + γC[p10] + γB[p7] + δB,C[(p7,p10)]
The maximum of these times is the reservation time TCT

of task t3:
TCT[t3] = Max(R[w1], R[w2], R[w3])
To compute the total completion time TCT of the

application we compute the maximum of the completion
times of all tasks:

TCT = Max(TCT[t1], TCT[t2], TCT[t3])
We note that until the tasks are not mapped to resources,

the reservation time cannot result in a specific value. It is
not allowed to sum the instructions of different tasks,
because tasks are scheduled on different resources and the
instructions of tasks are executed on these resources at
different speeds. Although the value is not defined, the
calculation of the reservation time can be done once for an
application, which means that it must not be done during
scheduling.

5. Scheduling Heuristic

The scheduling problem that maps tasks to resources is
known to be NP-complete. To derive an optimal schedule,
all combinations of task-resource pairs for the whole
application must be considered. Thus, heuristics are
examined to find schedules that reach acceptable
performance for a certain class of applications.

We propose a heuristic for the enhanced application
model, which takes advantage of the refined task model

and the known communication dependencies. The
heuristic is embedded into the Greedy algorithm shown in
Figure 7.

The tasks are ordered by decreasing number of
instructions (line 1.), because the largest task should be
mapped to a fast resource first, so that the impact of the
instructions of that task on other tasks due to
communication relations, is minimized.

The algorithm is based on the reservation model and the
resulting total completion time TCT of the application. The
execution time γti[pk] and communication time δti,tj[(pk,pl)]
involved in the computation for TCT are not defined if the
task or tasks are not mapped to a resource. They are
initialized to the value 0.0, so that they have no effect in
the computation of the paths (lines 2. and 3.) until the
corresponding task or tasks are mapped to specific
resources.

Finally, the algorithm iterates over all tasks and
resources (line 5. and 5.1). In each step, the current task is
mapped onto the corresponding current resource and the
execution times γti[vk] and the communication times
δti,tj[(vk,vl)] are recomputed for that configuration. As a
result of the new calculated execution times and
communication times, the total completion time TCT of the
application is computed and compared to the best
previous mapping. If the new mapping is better, the
resource is assumed to be a better configuration for that
particular task.

The algorithm is based on the recomputation of the total
completion time TCT in each step (line 5.1.2). The
elements of TCT are not defined completely until the last

1. order application tasks by decreasing number of
instructions

2. initialize all γti[pk] = 0.0 in TCT

3. initialize all δti,tj [(pk,pl)] = 0.0 in TCT

4. initialize PLACEMENT[ti] = -1 for all tasks ti

5. for each task ti

5.1. for each resource Rk

5.1.1. PLACEMENT[ti] = Rk

5.1.2. compute γti[px] in TCT

5.1.3. compute δtm,tn[(pk,pl)] in TCT, where tn

and tm already mapped
5.1.4. compute TCT

5.1.5. Store best TCT and best associated
resource Rbest

5.2. end for
5.3. PLACEMENT[ti] = Rbest; whereby Rbest is

not further available for other tasks.
6. end for

Figure 7: Enhanced heuristic

task is mapped onto a resource. We only estimate TCT in
each step by assuming that the elements of TCT that are not
computable in this step, have no effect in the calculation.

6. Experimental Results

To evaluate the advantage of the component-based
approach introduced in the application model and the
proposed heuristic, we compare our implementation to
another heuristic that does not use information about the
internal structure of tasks. We decided to compare our
heuristic with the algorithm proposed by Jon Weissman
[17], which uses communicating tasks without further
refinement. We use the category “concurrent” of
communicating task, which means, that tasks are blocked
while data is transferred between them. We do not
compare to the categories “parallel” or “pipeline” of the
model, since our reservation model, as yet, does not
support asynchronous communication. We used our
reservation model to compare the completion time TCT for
both algorithms with the optimum TCT reachable by the
brute-force exponential algorithm.

To compare the results of both heuristics, the values of
our evaluation environment are chosen from the
environment proposed in [17].

6.1 Weissman’s Heuristic

Jon Weissman proposed a Greedy-algorithm, which is
based on the calculation of TCT (Figure 8). The algorithm
iterates the tasks and resources and computes the total
completion time TCT in each step. The calculation of TCT

is based on the total number of instructions of tasks and
the amount of data transferred between them.

To compare the algorithms we transform our application
model into the model of Jon Weissman. Therefore, the
number of instructions of a task is computed by summing
all leaf components in the component hierarchy of a task.
The data transferred between two tasks is computed by

summing the amount of data of all communication
relations between them.

6.2 Evaluation Environment

The evaluation environment for both algorithms is
defined by the parameters used to generate the application
model and the interconnected resources.

As shown in Table 1, the application model covers 3 to
8 tasks (dependent on the results to be evaluated) each
containing 2 to 5 components assuming they are uniformly
distributed. We do not refine a task into further
subcomponents, but show that even the refinement in 2 to
5 components results in better schedules. The number of
instructions of a tasks which is the sum of the number of
instructions of the components, range between 10000 and
100000 instructions chosen randomly from the interval
using a normal distribution. Communication is randomly
generated between components that transfer data between
50000 and 150000 Bytes. The amount of data is also
normally distributed. The parameter ai of function Pi used
in the communication relation is uniformly generated
between 0 and 1.

Table 2 shows the parameters of the resources
generated. We evaluated the algorithms using 3 to 10
resources (dependent on the results to be evaluated). The
speed of the resources range from 1 to 10000 MIPS, also
generated from a normal distribution. The generated
resources are interconnected by links with bit rates
between 100 and 1000 Kbps normally distributed. The
resources are assumed to be fully connected.

The values of the application model and the resources
serve the basic comparison of the algorithms shown in
Figures 7 and 8.

6.3 Results

For each measuring point of the algorithms in the
following diagrams, we computed 10.000 different
environments and compared their schedules.

1. order application tasks by decreasing
comp_amt value

2. initialize PLACEMENT[Ci]=-1 for all tasks Ci

3. for each component Ci

3.1. for each resource Sk

3.1.1. compute TCT with
PLACEMENT[Ci] = Sk, given
PLACEMENT[Cj], i < j, unchanged

3.1.2. remember best TCT and best
associated site Sbest

3.2. end for
3.3. PLACEMENT[Ci] = Sbest

4. end for

Figure 8: Weissman’s algorithm

Description Value range
Tasks 3 … 8
Components 2 … 5
Instructions [10000, 100000]
Data (Bytes) [50000, 150000]

Table 1 – Task settings

Description Value range
Resources 3 … 10
Speed (MIPS) [1, 10000]
Connection (Kbps) [100, 1000]

Table 2 – Resource settings

Our first evaluation is performed with a fixed number of
10 resources and an increasing number of tasks ranging
from 1 to 8. Figure 9 shows the results of the performed
algorithms for these values.

The increasing number of tasks is shown on the x-axis,
while the y-axis shows the percentage relative to the
optimal schedule, assigned to be 100%.

If only one task is considered, both algorithms reach the
best possible schedule. Since we consider only one
application in the system, both algorithms will map the
task of the application onto the best resource. The more
tasks that are added to the application, the more advantage
can be taken from the information about the refined tasks
and the enhanced application model. This is why our
algorithm performs better than that of Weissman. The
refined structure provides information about the
dependencies of one task to the others. If we consider the
reservation model, late communicating tasks are
dependent on earlier communicating tasks if a path in the
reservation model exists from the involved partitions of
the communication to the partitions involved earlier in
communication, which can be proven by the paths through
the graph. Our algorithm takes dependencies into account,
but the algorithm of Weissman cannot, because it has no
information about these dependencies. So our algorithm
results in better schedules for these cases too.

Our second evaluation is performed with a fixed number
of 3 tasks and an increasing number of 3 to 10 resources.
Figure 10 shows the results of that scenario.

The increasing number of resources is shown on the x-
axis, while the y-axis shows the percentage relative to the
optimal schedule, assigned to 100%.

If we consider three resources, both algorithms show
nearly the same performance. As the number of resources
increases, the information about the refined tasks can be
used by the proposed algorithm to compute better
schedules for the application. The enhanced algorithm is
more robust against increasing number of resources in the
system, because the dependencies of the tasks are used to
evaluate the resources in more detail even if new
resources are available in the system.

The following related work delivers insight in currently
used application models in Grid Computing. The
enhanced application model is compared to these models
in short.

7. Related Work

Application models in Grid computing can be classified
as follows:

• Single Task Model
• Directed Acyclic Graph (DAG) Model
• Meta application Model

The single task model [11] defines an application to be a
set of independent tasks that do not communicate with
each other. A task can be executed without taking the
other tasks into account, so it can be scheduled
independently. Each task of the model defines the number
of instructions to be executed, so that the scheduler can
estimate the execution time of that task on a specified
resource. A refined task structure is not given in the model
and communication cannot be modeled. Research in the
area of the single task model focused on the
characteristics of scheduling algorithms for these models
in Grid environments [8] [13]. A special group of single
task models are parameter sweep applications [4] that
define long running tasks, where each task defines a set of
input files containing data to be processed. A single file
might be input to more than one task. A refinement of
tasks is not given in that model, either.

The DAG model [10] uses edges to define the execution
order of tasks. Each task defines the number of
instructions and communication is represented as the
weight of the edges defining the data transferred
asynchronously between tasks. The tasks of the model
cannot be refined in structure and concurrent execution is
not possible between communicating tasks. It is possible
to model the DAG in our proposed application model
using asynchronous communication, but the DAG model
is not as expressive as ours, due to the missing

Figure 9: increasing number of tasks

100

102

104

106

108

1 2 3 4 5 6 7 8

number of tasks

%
o

f
o

p
t.

co
m

p
l.

ti
m

e

Weiss. Enhanced

100
100,5

101
101,5

102

102,5
103

103,5
104

3 4 5 6 7 8 9 10
number of resources

%
o

f
o

p
t.

co
m

p
l.

ti
m

e

Enhanced Weiss.

Figure 10: Increasing number of resources

synchronous communication concept. Research in the
field of DAGs in Grid environments is also focused on
scheduling algorithms [1] [5].

The meta-application model proposed in [17], defines a
set of communicating tasks. Communication dependencies
are divided into three categories: pipeline, concurrent, and
parallel. The category “pipeline” is equivalent to the
relations between tasks in the DAG model. It specifies the
order in which tasks are executed. The category
“concurrent” specifies that tasks synchronize on the data
transfer, and therefore block during transmission. The
category “parallel” specifies that communicating tasks are
not blocked during data transfer, but tasks that
communicate, must run in parallel. Tasks of the model are
defined by the instructions to be executed, but a
refinement of tasks is not possible and the point in time
that defines when communication potentially occurs is not
included in the model. Our model enhances the model by
refining the structure of tasks and defining the
communication relation between components.

8. Conclusion and Future Work

Developers of applications such as simulations can
provide information about the internal structure and the
behavior of the application. We propose an enhanced
application model, where knowledge about the application
can be mapped into components within tasks and
communication primitives. We also propose a reservation
model, including synchronous communication, and a
heuristic thus using this additional information in the
model. Experimental results compared to a heuristic based
on an application model without that information showed
that the new heuristic results in better schedules.

Further research will focus primarily on the reservation
model, where fine-grained knowledge about
communication can further improve the resulting
schedules. We will introduce asynchronous
communication in the model and propose heuristics that
combine the knowledge about synchronous and
asynchronous communication to enhance schedules. This
also implies further research on the heuristic, which
should adapt to the information contained in the
application model.

References

[1] A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra, “A
Unified Resource Scheduling Framework for Heterogeneous
Computing Environments”, Proceedings of the 8th IEEE
Heterogeneous Computing Workshop, Puerto Rico, 1999, pp.
156 - 166.
[2] C. Baillie, J. Michalakes, R. Skalin, “Regional Weather
Modeling on Parallel Computers”, Special Issue of Parallel
Computing, Vol. 23, No. 14, 1997, pp. 2135 – 2142.

[3] R. Buyya, S. Chapin, D. DiNucci, “Architectural Models for
Resource Management in the Grid”, Proceedings of 1st
IEEE/ACM International Workshop on Grid Computing, 2000,
pp. 18 – 35.
[4] H. Casanova, A. Legrand, D. Zagotodnov, F. Barman,
“Heuristic for Scheduling Parameter Sweep Applications in Grid
Environments”, Proceedings of the 9th IEEE Heterogeneous
Computing Workshop, Cancun 2000, pp. 349 – 363.
[5] H. Chen, M. Maheswaran, “Distributed Dynamic Scheduling
of Composite Tasks on Grid Computing Systems”, Proceedings
of the 11th IEEE Heterogeneous Computing Workshop, Fort
Lauderdale, 2002, p. 88b.
[6] K. Czajkowski, I. Foster, K. Kesselman, “Resource Co-
Allocation in the Grid”, 8th IEEE International Symposium on
High Performance Distributed Computing, Redondo Beach,
1999, p. 37.
[7] J. Dongarra, G. Geist, R. Mancheck, V. Sunderam,
“Integrated PVM Framework Supports Heterogeneous Network
Computing”, Computers in Physics, Vol 7, No. 2, 1993, pp. 166
– 174.
[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R.
Yahyapour, A. Streit, “On Advantages of Grid Computing for
Parallel Job Scheduling”, Proceedings of 2nd ISSS International
Symposium on Cluster Computing and the Grid, 2002, pp. 39 –
47.
[9] I. Foster, C. Kesselman, The GRID: Blueprint for a new
Computing Infrastructure, Morgan Kaufmann, San Francisco,
1999.
[10] M. Iverson, F. Özgüner, “Dynamic, Competitive
Scheduling of Multible DAGs in a Distributes Heterogeneous
Environment“, Proceedings of the 7th IEEE Heterogeneous
Computing Workshop, Orlando, 1998, pp. 70 – 78.
[11] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F.
Freund, “Dynamic Matching and Scheduling of a Class of
Independent Tasks onto Heterogeneous Computing Systems“,
Proceedings of the 8th IEEE Heterogeneous Computing
Workshop, Puerto Rico, 1999, pp. 30 - 45.
[12] Message Passing Interface Forum. “MPI: A Message-
Passing Interface standard.” International Journal of
Supercomputer Applications, 8 (3/4), 1994, pp. 165 – 414.
[13] R. Min, M. Maheswaran, “Scheduling Advance
Reservation with Priorities in Grid Computing”, 13th
International Conference on Parallel and Distributed Systems,
Anaheim, 2001.
[14] K. Rangamnathan, I. Foster, “Decoupling Computation and
Data Scheduling in Distributed Data-Intensive Applications”,
11th International Symposium on High Performance Distributed
Computing, Edinburgh, 2002, pp.352 – 359.
[15] J. Weidendorfer, P. Luksch, “A Framework for Transparent
Load Balancing in Parallel Numerical Simulation”, 34th Annual
Simulation Symposium, Seattle, 2001, pp. 125 – 132.
[16] J. Weissman, X. Zhao, “Scheduling Parallel Applications in
Distributed Networks”, Journal of Cluster Computing, Vol. 1,
No.1, 1998, pp. 109 – 118.
[17] J. Weissman, “Scheduling Multi-Component Applications
in Heterogeneous Wide-area Networks”, Proceedings of 9th
IEEE Heterogeneous Computing Workshop, Cancun, 2000, pp.
209 – 215.

