

)

Bericht Nr. 2004/02

Martin Bauer
Fakultät Elektrotechnik, Informatik,
Informationstechnik
Universität Stuttgart
Institut für Institut für Parallele und
Verteilte Systeme, Abteilung Verteilte Systeme
Event Management for
Mobile Users
Universität Stuttgart
CR-Klassifikation:
C.2.4 (Distributed Systems)
C.4 (Performance of Systems)
E.1 (Data Structures)
H.3.3 (Information Search and Retrieval)
H.3.4 (Information Storage and Retrieval Systems and Software

Report 2004/02 Event Management for Mobile Users Martin Bauer

Abstract
This technical report presents the results of the project “Event Management for Mobile Users”, a

research cooperation between Universität Stuttgart and Microsoft.

In Vienna, Microsoft chief executive Bill Gates recently expressed his vision of a seamless inter-
action of different computing devices, from PC to mobile phone, that proactively support the users
wherever they go. Among other things, he said: “For example, if you want to be notified about some-
thing that's changing, that's important to you, software should know which device you have with you
and should know what you're doing, know the context to understand if interrupting you with this new
information is appropriate or not.” (Bill Gates, January 28, 2004, [Los Angeles Times 2004])

This project may present one step towards realizing his vision. It is about event support for mobile
users. Depending on their current context, they want to be informed about events that occur in the
world around them – the physical as well as the virtual world of digital information systems. So, to
optimally support its users, future generations of web services will need information about the real-
world context of the user, especially their spatial context.

This project was carried out in close cooperation with the Nexus project at Universität Stuttgart,
whose goal is to support mobile context-aware applications based on a distributed spatial world model.
Events of special interest in this context are spatial events, i.e. events that occur when a certain spatial
constellation of objects is reached, e.g. when two people meet or when a customer enters a shopping
mall. As the underlying world model is distributed, the events have to be observed on a distributed
model.

The number of potential spatial events is not restricted, e.g. the event that a user enters an area
could be of interest for arbitrary areas. Also, as the spatial world model is distributed over many serv-
ers, a local observation is no longer sufficient. Therefore, the well-known publish-subscribe paradigm,
in which the observation occurs implicitly within local observers, has to be extended. We propose an
observation-notification paradigm, in which the observation of events has to be explicitly initiated by
interested clients. The event service that conforms to the new paradigm consists of two components:
an observation service, which observes events through a distributed model, and a notification service,
which efficiently delivers event notifications. This paradigm applies to all scenarios in which the data
needed for the observation of events is distributed over multiple sources.

The user wants the specification of events to be as simple and easy as possible. He only wants to
specify what event is to be observed, not how the observation of the event is realized. Therefore the
distribution aspects should be transparent to the user. However, these aspects have a strong influence
on the accuracy of the model and thereby directly affect the accuracy of event observation. We pro-
pose that the user specifies an event as a predicate, which becomes true when the event has occurred,
plus a threshold probability. If the probability that the event has occurred is above the threshold prob-
ability, the event is considered to have occurred and an event notification is sent.

The above sketched solution requires calculating the probability with which an event has occurred.
We first show which parameters influence the accuracy of the data. We then present update protocols
that guarantee a certain accuracy of data in the observer model, i.e. the model where the event is actu-
ally observed. Finally we show, how the occurrence probability can be calculated. Based on the identi-
fied parameters, the placement of the observation in the system can also be optimized with regard to
the accuracy of the data.

We have implemented the event service and integrated it into the Nexus platform. As the Nexus
platform is intended as an open platform with possibly world-wide scale, scalability, efficiency and
interoperability have been important requirements for the design of the components. To support inter-
operability, we have built on standard technologies like XML, HTTP and SOAP.

The evaluation of the event service within the Nexus context shows the feasibility of the approach.
We were able to show that the event service performs adequately in certain example scenarios. Ex-
periments with a large-scale scenario are the next steps on our agenda.

 - i -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - ii -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Table of Contents
Abstract ... i
Table of Contents ..iii
Chapter 1 Introduction.. 1
Chapter 2 Related Work.. 3

2.1 Characteristics of Event Systems... 3
2.2 Overview of Related Work .. 4
2.3 Active Databases.. 4
2.4 Distributed Event Services and Publish-Subscribe Services 5
2.5 Global Predicates ... 7
2.6 Spatial Events... 8
2.7 Summary .. 9

Chapter 3 Nexus ... 11
3.1 Nexus Vision.. 11
3.2 Nexus Project Organization ... 12
3.3 Nexus Platform Architecture ... 12
3.4 Location Service .. 13
3.5 Communication in Nexus... 15

Chapter 4 Definitions and Requirements... 17
4.1 User View .. 17
4.2 System View .. 19
4.3 Summary .. 21

Chapter 5 System Architecture... 23
Chapter 6 Event Model.. 25

6.1 Observation of Global Events vs. Composite Events 25
6.2 General Event Classification.. 26
6.2.1 Event Observation Hierarchy... 26
6.2.2 Event Triggers.. 28
6.2.3 Number of Dynamic Parameters.. 28
6.2.4 Specific and Variable Parameters .. 28
6.2.5 Efficient Observation ... 28
6.3 Classification of Spatial Events ... 29
6.3.1 Basic Spatial Events... 29
6.3.2 Event Triggers.. 30
6.3.3 Number of Dynamic Parameters.. 30
6.3.4 Specific and Variable Parameters .. 31
6.3.5 Efficient Observation ... 31
6.4 Utilization of Spatial Events in Nexus Scenarios 32
6.4.1 Office Scenario .. 32
6.4.2 Shopping Mall Scenario... 33
6.4.3 City Scenario.. 33
6.4.4 Parameters of Interest... 34
6.4.5 Parameter Values for the Scenarios ... 34
6.4.6 Comparison with Other Notification/Publish - Subscribe Services........... 35

Chapter 7 Event Specification... 37
7.1 Event Specification Based on Exact Data.. 37
7.2 Event Specification based on Data with Limited Accuracy 38
7.2.1 Setting the Threshold Probability .. 39

Chapter 8 Concepts and Realization of Event Observation.................................. 41
8.1 System Parameters Relevant for the Observation...................................... 41

 - iii -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.2 Event Domains... 43
8.3 Model Properties Relevant for the Observation... 43
8.3.1 Accuracy .. 44
8.3.2 Update Interval... 44
8.3.3 Change of Value over Time ... 45
8.3.4 Resulting Model... 45
8.4 Update Protocols .. 46
8.4.1 Value-based Update Protocols ... 46
8.4.2 Time-based Update Protocols .. 47
8.4.3 Other Protocols .. 48
8.5 Event Observation.. 48
8.5.1 Update in the Exact Case ... 48
8.5.2 Update with the Value Given as an Accuracy Interval 49
8.5.3 Update with the Value Given as a Probability Density Distribution 50
8.5.4 Update over a Time Interval without Any Interleaving Updates............... 50
8.5.5 Update over a Time Interval with Interleaving Updates............................ 50
8.5.6 General Case .. 52
8.6 Realization Issues... 52

Chapter 9 Observer Placement... 55
Chapter 10 Integration of Events into Event Sources .. 57

10.1 Specialized Event Component for a Leaf Location Server........................ 57
10.2 Event Notification Format ... 60
10.3 Generic Event Registration .. 62
10.4 Generic Event Component with Plug-In Triggers 64

Chapter 11 Observation Service ... 67
11.1 Requirements ... 67
11.2 Overview.. 68
11.3 Observation Nodes & Observation Modules ... 68
11.4 Observation Management .. 70

Chapter 12 Notification Service .. 73
12.1 First Prototype.. 73
12.1.1 Requirements ... 73
12.1.2 Design .. 73
12.1.3 Evaluation .. 74
12.2 Second Prototype ... 74
12.2.1 Requirements ... 74
12.2.2 Design .. 75
12.2.3 Distributed Advertisement Register based on Pastry................................. 78
12.3 .NET-based Implementation .. 78

Chapter 13 Evaluation ... 81
13.1 Leaf Location Server As Event Source.. 81
13.1.1 Evaluation of Specialized Event Component... 81
13.1.2 Evaluation of Generic Event Component with Plug-in Triggers 86
13.2 Notification Service ... 87
13.3 Observation Service ... 88
13.3.1 Performance Measurements for a Single Observation Node 88
13.3.2 Event Observation for a Distributed Location Service 90
13.4 Integration in Nexus.. 92
13.4.1 Conceptual Integration... 92
13.4.2 Use of Spatial Events in Nexus Applications .. 93
13.5 Summary .. 93

 - iv -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 14 Conclusion & Outlook ... 95
Appendix: Event Notification.. 97

XML-Schema ... 97
Example for onMeeting Event ... 98
Example for contAreaUpdate Event .. 98

Appendix: Event Registration Language... 101
XML-Schema ... 101
Example for onEnterArea Event .. 105

References .. 107
Project-Related Publications .. 107
Diploma and Student Thesis .. 107
Related Work.. 108

 - v -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - vi -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 1 Introduction
The term event describes a natural concept of everyday life. Something happens, we ob-

serve it and react to it. For example, when the traffic lights turn from green to yellow and
eventually to red, the driver of an approaching car will observe this event or rather this se-
quence of events, and might react to it by hitting the breaks. Another example of an event
occurrence in a real-world context is the ringing of a telephone. Usually we react by picking
up the receiver to answer the call.

In the world of distributed computing, the event concept also plays an important role.
Event services or publish-subscribe services, as they are also often called, are used in areas
such as information dissemination services, alerting services, network and distributed sys-
tems management, or enterprise application integration. Often the term event is used for both
an occurrence and the message informing about the occurrence. This may be due to the fact
that the purpose of these event services is to efficiently deliver event notification messages.
The observation of events is the task of the event sources or publishers. As our focus is on the
observation of events, we want to distinguish between the two. We use the term event for the
occurrence or change, and the term event notification for the message that informs about the
event occurrence.

With the proliferation of sensor systems, large amounts of dynamic data become avail-
able. At the same time more and more information is processed and generated in information
system. Often, the user just wants to be notified when the data indicates that an event of inter-
est has occurred.

If we look at application scenarios in the domains of ubiquitous, pervasive and mobile
computing, users walk around with mobile computing devices. An important difference in the
way desktop and mobile computers are used is the user’s focus. A user at a desktop computer
is typically working on a task that is to be solved almost exclusively with the help of the com-
puter, e.g. the user is writing a text with a word processing application. With a mobile com-
puter, however, the main task of the user may be something completely different. He or she
may be walking around performing other tasks, and the mobile computer supports the user by
helping him or her with subtasks. For example, the mobile computer may help the user to re-
member certain tasks, to navigate, or to support maintenance staff.

The Nexus project at Universität Stuttgart aims at supporting such mobile users. The goal
is to provide a platform for mobile, context-aware applications based on a distributed spatial
world model. The spatial world model provides a model of the physical world augmented
with additional virtual information, e.g. web pages that can be placed at a location where they
are relevant. The spatial world model is distributed over many servers. The distribution is
according to the geographic area, but also according to the type of object, e.g. the position
data of mobile objects is stored by the Nexus location service, whereas the data of stationary
objects is stored by spatial model servers.

Events are well suited for the interaction of the mobile platform and the user. The user can
specify the situations he is interested in ahead of time. Then, when he is walking around, the
platform can detect if the current situation corresponds to a specified one and the user can be
informed about this proactively.

Observing events on the side of the platform also has the advantage that the limited re-
sources of the mobile computing device are not wasted. Mobile computing devices have lim-
ited battery power. They also have a wireless network connection that has a lower bandwidth
and higher delays than infrastructure-based connections. In the case of events, communication
only takes place when necessary, i.e. when an event has occurred. As we will see, observing

 - 1 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

events in the infrastructure, “close” to the source also provides a better event semantics than
trying to observe events on the mobile device itself by constantly “polling” the information
sources.

Events of special interest in the context of the Nexus platform are spatial events, i.e.
events that occur when a certain spatial constellation of mobile (or mobile and stationary)
objects is reached. Examples of why the user could be interested in certain spatial events are
the following:

• If the user is walking past a shoe shop in a shopping mall, he may want to be reminded
that he wanted to buy shoes.

• If there are more than 5 people in the meeting room, the user may want to be informed
so that he does not miss an important meeting.

• If a user enters the room, the light and temperature could be adjusted to the user’s
preferences.

The last example is from a different setting. Here events are used to realize an “intelligent
environment”.

The overall goal of the project was to investigate scalable event services with a special fo-
cus on the area of mobile and ubiquitous computing. The Nexus project provided the envi-
ronment, both as a source for requirements and as the context for the evaluation of the event
service.

In this report we present the results of our research. We put our focus on the observation
of events through a distributed world model, as this seemed to be the most interesting aspect
from a research perspective, without neglecting the other aspects.

We present an approach that allows the specification of events by the user, the observation
of events through a distributed model and the efficient delivery of event notifications to inter-
ested clients. We have implemented a prototype of the event service to show the feasibility of
the approach and to evaluate it regarding the requirements that we have set ourselves.

The structure of the report is as follows: In Chapter 2 we discuss the related work. In
Chapter 3 we present those aspects of the Nexus project that are relevant for our work. The
overall requirements are defined in Chapter 4, before the system architecture is presented in
Chapter 5. The theoretical part begins with the event model in Chapter 6 that provides an
event classification according to parameters that are relevant for event observation. A uniform
approach for specifying events is presented in Chapter 7. In Chapter 8 we show how the
specified events can be observed through the distributed model and discuss realization issues.
The optimal placement of the observation within the system is the topic of Chapter 9. In
Chapter 10, Chapter 11 and Chapter 12 the design and implementation of the integration of
events into the location service, the observation service and the notification service are pre-
sented. In Chapter 13 we evaluate the integrated system, before concluding the report with a
summary and an outlook on future work in Chapter 14.

 - 2 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 2 Related Work
Events and event-based communication play an important role in many areas of computer

sciences: There is an event-based programming paradigm, e.g. graphical user interfaces are
typically programmed on that basis. Events are used in active databases, e.g. to trigger further
changes when the data in one table has changed. In information dissemination systems, the
concept of events can be found, as well as in distributed systems and network management
applications. In the first section we look at some of the characteristics of event systems. In the
second section, we identify those areas that are more closely related to our work. In the fol-
lowing sections we look at these areas in detail.

2.1 Characteristics of Event Systems
In the following, we first discuss a number of characteristics that are often associated with

event systems:

• Push Communication
Event-based communication is typically source-initiated. Clients (or subscribers) can
subscribe for events and receive event notifications when an event has occurred. The
information is actually pushed onto interested clients. Therefore, this style of com-
munication is also called push communication.

Push communication is in contrast to the request-response style of communication, e.g. in
client-server applications, where the initiative is on the side of the client. There the client
pulls the information and therefore we also talk about pull communication.

The use of push communication can help to reduce the communication overhead, because
communication only takes place when something has actually happened. In the alternative
case, the client would have to poll the server for the same information regularly. If multiple
clients are interested in the same events, the use of a multicast notification service can help to
reduce communication overhead even further, because the same event notification has to go
over the same link only once. Overall, event-based communication can improve scalability by
reducing communication overhead.

• Asynchronous Communication
Event-based communication is often asynchronous. The event source (or publisher)
does not need to wait for acknowledgements. It can continue its execution.

• Anonymous Communication
The event sources (or publishers) and interested clients do not have to know about
each other. The communication can be completely anonymous. The event notification
mechanism just needs to know how to deliver the event notifications.

• n:m Communication
With event-based communication an n:m communication can be realized, i.e. there
can be n event sources (or publishers) and m clients.

These characteristics make event-based communication ideally suited for the loose cou-
pling of software components. The software components do not need to know anything about
each other, they just have to provide the information that an event has occurred, so that inter-
ested components can be informed.

 - 3 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The characteristics also fit very well into our application domain, as push-based commu-
nication reduces the load on mobile devices and their wireless communication access. Asyn-
chronous communication is important for the decoupling of the event sources, e.g. servers that
are part of the infrastructure, from the mobile clients and anonymity of the event sources fits
very well with the idea that the mobile clients should not need to know about the details of the
distributed infrastructure.

2.2 Overview of Related Work
In the following we look at those research areas that are closely related to our work. Since

our focus is on event observation through a distributed model, we are primarily interested in
events in distributed systems. However, we will also look at centralized systems in which
events based on complex relations between objects can be specified and at centralized systems
that fall into our application domain.

Figure 1 shows four research areas that overlap with our research focus:

• Active Databases – support the specification of triggers that initiate further actions
when a certain event occurs.

• Distributed Event Services – focus on the efficient delivery of event notifications to
interested clients.

• Global Predicates – allow the specification of predicates on distributed global state.

• Spatial Events – occur when a certain spatial constellation of objects is reached.

These four areas will be discussed in more detail in the following sections.

Active
Databases

Global
Predicates

Event Observation

Distributed
Event-Based

Systems

centralized

distributed

Spatial
Events

Active
Databases

Global
Predicates

Event Observation

Distributed
Event-Based

Systems

centralized

distributed

Spatial
Events

Figure 1: Related Work

2.3 Active Databases
Traditional databases store data persistently and provide efficient access to the data. Ac-

tive databases extend this functionality through triggers. The triggers are activated by events,
e.g. a data update in a certain table. Triggers are typically defined in form of Event-
Condition-Action-Rules (ECA). Based on the occurrence of a simple event, a condition is

 - 4 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

checked, and if that condition is fulfilled, an action is carried out. The condition can be a
method or procedure that returns true or false.

Currently the trigger concept is part of SQL 99 [Matthiessen & Unterstein 2000], which
knows data manipulation operations, i.e. insert, update, and delete, as possible events. The
standard is supported by DB2 and Sybase [Schmidt & Demmig 2001], Informix additionally
supports trigger for select statements and Oracle also provides triggers for changes in database
schemas (i.e. create, alter, and drop), user login/logout, database shutdown and server errors.

There has been some research on the composition of simple events in active databases.

[Gehani et al. 1992] [Chakravarty et al. 1993] [Dittrich & Gatziu 2000] and others have
proposed event algebras with a number of predicate constructors. The expressiveness of these
language is usually restricted to either that of regular expressions or propositional logic ex-
tended by operators expressing temporal relationships. These constructors may be sufficient
for combining events in active databases, but cannot express the events we want to observe.
However, active databases can serve as a basis for implementing event sources on which more
complex events can be observed.

2.4 Distributed Event Services and Publish-Subscribe Services
Distributed event services and publish-subscribe systems are often used as synonyms de-

scribing the same concepts. Event service may be the more general term, whereas publish-
subscribe service describes how the system works.

Publisher Subscriber

Event Notification Service

Publish-/Subscribe-Service

publish subscribe
notifyadvertise

Publisher Subscriber

Event Notification Service

Publish-/Subscribe-Service

publish subscribe
notifyadvertise

Figure 2: Event Service Architecture in Publish-Subscribe Systems

 - 5 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Figure 2 shows the underlying event architecture. There are publishers who publish event
notifications and there are subscribers who subscribe to certain kinds of event notifications.
When an event notification is published the publish-subscribe service is responsible for deliv-
ering the event notification to all interested subscribers. Some systems require that before
publishers start publishing event notifications of a certain type, they have to advertise this, so
that the structure for efficiently delivering event notifications can be set up.

Publish-subscribe systems can be classified according to the communication mechanism,
which can be unicast-based or multicast-based, the underlying distribution structure, which
can be hierarchical or peer-to-peer, and the filtering mechanism, which can be id-based, sub-
ject-based or content-based. Id-based filtering means that clients can specify an event id they
are interested in and they receive only event notifications with this specific id. Subject-based
filtering allows the specification of a subject, possibly with wildcards. Finally, with content-
based addressing, the client can specify the content of event notifications he is interested in,
which is typically done in form of attribute-value pairs.

Whereas filtering applies to the content of a singe event notification, event composition
concerns the relation between multiple different event notifications. With the available opera-
tors event patterns can be specified.

As there are too many different event services to discuss them all, we will only provide a
number of examples:

The CORBA Event Service Specification [OMG 2001] describes an event service based
on an information channel with multiple suppliers and consumers. With the event channel a
decoupling between suppliers and consumers is realized. Event channels have to be set up
explicitly. The specification does not give any details how the event channel has to be imple-
mented. Composite events can only be realized through building a tree with multiple channels
and the composition takes place at intermediate supplier/consumer nodes.

TIBCO is a commercial product that is used in financial services likes stock information.
It is based on a hierarchical system and provides reliable delivery of event notification. The
filtering is subject-based.

The CORBA Notification Service [OMG 2002] goes a step further and allows content-
based filtering. However there is only one filter object per channel and the filter constraint
language is based on Boolean expressions, so it has a relatively limited expressive power.

The READY [Gruber et al. 1999] Event Service allows the same filtering expressions as
the CORBA Notification Service, but additionally supports different composition operators
like AND, OR and SEQUENCE. The WHERE operator allows the analysis of relationships
between sub-events. For efficiency reasons, the event specification is moved towards the pub-
lishers.

JEDI [Cugola et al. 1998] is an object-oriented infrastructure that supports the develop-
ment and execution of event-based systems. Events in the sense of the JEDI system are spe-
cial kinds of messages consisting of strings, with the first string being the event name and the
following strings the event parameters. JEDI provides filtering with regular expressions over
the strings.

Herald [Cabrera et al. 2001] is an event service developed by Microsoft Research in Red-
mond. The event distribution is based on different rendez-vous points. A special focus has
been on the scalability of the service and resilience against failure. The basic service provides
no service for finding rendez-vous points, no complex specification and no composition of
events. The idea is that such functionality can be layered on top.

 - 6 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The goal of the Siena Project [Carzaniga et al. 1998] is to develop an Internet-scale event
service. It supports content-based filtering and event patterns.

Gryphon is a research project at the IBM, Watson Research Center. The goal of the Gry-
phon event service is to distribute large amounts of data in real-time, e.g. news distribution at
large-scale “events” like Olympic games. It supports topic-based and content-based address-
ing, and addresses security and privacy aspects, but not event composition.

The Overcast service [Janotti et al. 2000] is based on a reliable multicast protocol on an
application-layer overlay network. Its goal is the efficient use of bandwidth and it is targeted
at content distribution, supporting only 1:m communication.

Scribe [Rowstron et al. 2001] is an event notification infrastructure based on the Pastry
[Rowstron & Druschel 2001] framework. Both systems have been developed as part of a co-
operation between Microsoft Research in Cambridge, Rice University, Purdue University, the
University of Washington and Microsoft Research in Redmond.

Pastry provides a basic structure for peer-to-peer applications. It is based on an overlay
network and the routing is done according to node ID. The node with the closest ID can be
used as a rendez-vous point. We have used Pastry as a basis to implement a distributed regis-
ter in the notification service (see Subsection 12.2.3).

The goal of the Hermes project [Pietzuch et al. 2003] at the University of Cambridge is to
develop a content-based publish-subscribe system with composite events. Event composition
is based on regular expressions extended by operators expressing temporal relationships. The
observation is realized by mobile detection objects that are optimally placed in an overlay
distribution network.

Overall we can see that there are a huge number of different event services. Their main
focus is on the efficient delivery of event notifications in different scenarios. Some services
provide the functionality to observe composite events. However the expressiveness of the
respective event algebras is usually limited to regular expressions [Pietzuch et al. 2003] or
propositional logic with temporal extensions [Hinze & Voisard 2002]. In general, filtering and
pattern recognition are strongly intertwined with the delivery of event notification.

The supported composition operators allow the combination of arbitrary event notifica-
tions. In contrast to these composite events, we want to observe arbitrarily complex events on
the state of a distributed model. This requires a much more complex language for describing
events. In our case, the number of possible events is infinite, so they cannot be automatically
be provided by publishers; the observation of events has to be explicitly initiated. An addi-
tional issue is the limited accuracy of the available data that has to be taken into account. So
the existing event services do not provide a solution to our goal of observing events on a dis-
tributed model.

2.5 Global Predicates
Global predicates describe global properties in distributed systems and are defined over

global state. A typical application area for global predicates is the debugging of distributed
applications, where the question of interest is, if the property holds during the distributed exe-
cution or in other words, if the predicate is satisfied at runtime. As there cannot be an omnis-
cient observer who can put all local events into a global order, only the causality of events can
be taken into account, i.e. the effect must not be considered before its cause.

Causality can be fully characterized using vector timestamps [Schwarz & Mattern 1994].
The vector timestamp includes an element with a logical time for each process. This requires
that the number of processes is fixed and known beforehand. Each process updates its logical

 - 7 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

time in each step and sends its vector with every message. On receiving a message, the local
vector is updated taking the maximum for each vector element of the previous local vector
and the vector that came with the message. With this information it can be determined if two
events are causally dependent or concurrent.

The approach suggested by Cooper and Marzullo [Cooper & Marzullo 1991] (and others),
constructs a lattice of global states. A lattice of global states describes all possible sequences
of local states that are consistent with causality. This corresponds to all the sequences of
events that could in principle have been observed by an observer. A path through this lattice
corresponds to one possible observation. Cooper and Marzullo define three different predicate
qualifiers, possibly Φ, definitely Φ and currently Φ and provide algorithms for determining if
they hold. Possibly Φ holds, if there exists a path through the lattice of states so that Φ holds
for some global state on the path. This means that there is one possible observation of the dis-
tributed computation for which Φ holds. Definitely Φ holds, if all possible paths through the
state lattice contain a state for which Φ holds. This means that Φ holds for all possible obser-
vations. Currently Φ holds, if Φ holds at the current point in the computation. For determining
if currently Φ holds, it is necessary to temporarily block processes. However, it is guaranteed
that there is a logical execution of the unblocked system so that Φ holds. Unfortunately, it can
be shown [Schwarz & Mattern 1994] that while blocking a valid Φ can go undetected.

A general problem of possibly Φ and definitely Φ is that the whole lattice of states has to
be considered, a computation which can be prohibitively expensive, because there may be
O(mn) global states, where n is the total number of processes and m the maximum number of
relevant execution steps of a single process.

The problem of applying this approach to our problem is that in a lot of cases causality be-
tween different (sub-)events may exist in the real world, but this is not necessarily represented
in the model. In addition, the model may be distributed over a large and possibly changing
number of servers, which would make the use of vector timestamps problematic.

This means that we have to rely on real time for ordering the events. Then, we do not have
a lattice of discrete states to determine if the event has occurred. The accuracy of the data may
be limited which has to be taken into account for the event observation, i.e. it may only be
possible to determine that an event has occurred with a certain probability. Possibly φ only
says that the probability of event occurrence is greater than 0 and definitely φ that the prob-
ability is 100%, which may not correspond to what the user wants to know. Also, we have to
detect the occurrence for an event at runtime, not after an algorithm has finished and blocking
the system is not possible.

Therefore we cannot rely on the algorithms that have been presented for evaluating global
predicates.

2.6 Spatial Events
A number of systems support location events or spatial events, i.e. events that occur when

a certain constellation of mobile objects or a constellation of mobile objects with regard to
their environment is reached. A number of groups from the University of Cambridge and the
Olivetti Research Laboratory (ORL) that later became the AT & T Laboratories in Cambridge
have conducted research in this area.

The ORL has developed two different kinds of indoor positioning systems, the Active
Badge system [Want et al. 1992] and the Active Bat system [Harter et al. 1999]. The Active
Badge system is based on infrared (IR) technology and can locate badges that are in range of a

 - 8 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

receiver. The Active Bat system uses ultrasonic signals to locate an active bat. The accuracy is
in the range of 10 cm.

Based on these positioning systems a number of location-aware systems have been built.

In [Hayton et al. 1996] composite spatial events are discussed that are all based on the Ac-
tive Badge event that a certain mobile object was seen at a certain location. The composition
operators are:

• WITHOUT (A-B): an event A has occurred without a previous B

• SEQUENCE (A;B): event A has occurred before event B

• OR (A|B): event A or event B has occurred

• WHENEVER ($A): whenever allows multiple independent evaluations. For each oc-
currence of A a new environment is created and the variables are instantiated accord-
ingly, e.g. $enters(x);leaves(x) would only be true, if the same person had entered and
later left the room.

The presented application has been realized specifically for the Active Badge system. It is
targeted at a building-sized environment with a centralized location service and the expres-
siveness of the composition operators is limited.

The CALAIS system was implemented by Giles J. Nelson and presented in his PhD thesis
[Nelson 1998]. The system is based on a location service with an in-memory location data-
base and different location sensors, e.g. active badges or active bats, that transmit readings to
the location service. The service supports standing queries for monitoring a given region, but
does not provide support for more complex spatial events involving multiple mobile objects.
The location service is a centralized system that does not scale to larger environments.

The Active Bat system [Harter et al. 1999] allows the efficient monitoring of spatial
events. The application can register callbacks with a spatial monitor. The spatial monitor
checks for the overlap and containment of areas. Both the location of mobile objects and sta-
tionary locations e.g. rooms or the space in front of a computer, are modeled as areas. By
modeling locations of mobile objects as areas, the limited accuracy of the sensor information
can be taken into account. All possible overlap and containment events are constantly ob-
served. This scales to building scenarios, but not to larger areas. The events that can be regis-
tered are limited to areas that already exist within the system. Arbitrary areas are not sup-
ported.

QoSDream/FLAME [Naguib 2001] is a middleware for distributed multimedia applica-
tions. Position information from different sensor systems are aggregated and provided in a
uniform format.

Similar to the original active bat system, locations of mobile objects and stationary loca-
tions are modeled as areas. The spatial relations manager observes all overlaps of regions.
Filters provide higher-level events for which applications can registers. Again, the scalability
beyond the size of buildings is questionable.

Overall it can be said that support for simple spatial events in centralized location services
exists. The problem is the limited scalability and the limitations of the event specification lan-
guages that make the approaches unsuitable for our purposes.

2.7 Summary
The related work does not provide any approach that would allow us to observe complex

real-world events through a distributed model. Active databases are not suitable for the dis-

 - 9 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

tributed case, publish-subscribe services do not support distributed observation, approaches
for evaluating global predicates based on causality cannot be applied and existing systems that
support spatial events do not scale beyond building-sized scenarios.

 - 10 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 3 Nexus
As the project “Event Management for Mobile Users” was carried out in close cooperation

with the Nexus project [Rothermel et al. 2003][Rothermel et al. 2003c], we give an overview
of the Nexus project here. We concentrate on those aspects that are relevant for our project.

The Nexus project was both a source of requirements and an environment for the evalua-
tion of the developed event service.

3.1 Nexus Vision

T
tour
as a
envi
stati
ticat
navi
mod
The

S
wor
each
dim
prov
depa

T
erate
and

T
data

Applications„Smart Factory“ City GuideNavigation Applications„Smart Factory“ City GuideNavigation

here are a large number of different context-aware applications. Typical examples are
ist guides, navigation systems, smart homes or the “smart factory”, which is investigated
n application as part of the Nexus project. All these applications need some model of their
ronment. Some models may be relatively simple, e.g. a car navigation system based on
c data only needs a course-grained model of the road network. However, the more sophis-
ed the applications become, the more detailed the model needs to be. For example, a
gation application for the visually impaired needs a much more detailed and up-to-date
el. As the models become more detailed, the costs for building and maintaining them rise.
refore it would be a good idea, if different applications could share the same model.

till, it is unrealistic to assume that there will be one single detailed model of the whole
ld. It is a much more realistic assumption that there will be many different models that
 model some part of the real world. For example, a city may decided to provide a two-

ensional model of its streets and houses as we know it from maps. The university may
ide a more detailed three-dimensional model of its campus, and the computer science
rtment may model the interior of its building as a set of floor plans.

he Nexus vision is to federate all these models and to provide a uniform view of the fed-
d model to the applications (see Figure 3). So all applications can share the available data

if a new model becomes available all the applications can immediately profit by it.

he model not only contains static data. With the proliferation of sensors, the dynamic
 from billions of sensors can be integrated to provide a detailed view of the current state

World Models

Information Spaces

Data from

Billions of
Sensors

WWW
Digital

Libraries

Federation

...

...

World Models

Information Spaces

Data from

Billions of
Sensors

Data from

Billions of
Sensors

WWW
Digital

Libraries

Federation

...

...

Figure 3: Nexus Vision
Source: [Nexus Project]

- 11 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

of the world. A lot of digital information about the real world exists in the World Wide Web
and other digital information systems. This data can be integrated into the models using vir-
tual objects like virtual post-its or virtual billboards as metaphors. Thereby the data of the
physical world is augmented with virtual information. The resulting federated world model is
therefore also called Augmented World Model.

3.2 Nexus Project Organization
The vision that we have just described is ambitious and a lot more research will be needed

to realize it. The DFG (German Research Foundation) has recognized the need for more re-
search in this direction and has provided funding for a Center of Excellence (SFB 627 - “Spa-
tial World Models for Mobile, Context-Aware Systems”). The first funding period is four
years and it can be extended by two more funding periods to a maximum of twelve years.
Currently 30 researchers are working on the project. There is a strong core of researchers
from computer science that are joined by colleagues from electrical engineering, photogram-
metry, road and transportation science, manufacturing, and philosophy of science and tech-
nology.

3.3 Nexus Platform Architecture
In Figure 4 the architecture of the Nexus platform is shown. It is structured in three layers,

the application layer, the federation layer, and the service layer. The concept of the federation
layer is as follows: The client applications query the federation layer. In the first step, the fed-
eration has to identify the servers that manage the data needed for answering the query. This
is done by querying the area service register. The area service register has the information
about which servers store what kind of data for a given area. In the second step, the federation
forwards sub-queries to the identified servers. The results are integrated with the help of
model transformation functions that may aggregate or fuse the data making the result consis-
tent. The integrated result is then returned to the requesting client application.

The federation layer also provides a number of value-added services. For example, a client
application may request a map of a certain area from the map service. The map service then
queries the servers that have the data it needs. Based on the data it draws the map and returns
it to the client application. The navigation service can be queried for a navigation route from
location A to location B.

In the service layer, the servers can be found that store the actual model data. Currently
there are two different types of servers, spatial model servers and location servers. The spatial
model servers store the data of stationary objects, e.g. roads, houses, rooms, … The location
servers store the data of mobile objects, e.g. people, cars, trains, … The location servers are
part of a hierarchically organized location service. As the position information of mobile ob-
jects is the basis for spatial events, we will look at the location service in more detail in the
following section.

 - 12 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Spatial
Model

Server 1

Spatial
Model

Server n
External

Data

Location-
Service

Area
Service
Register

Query
Decomposition

Result
Integration

Subqueries Partial Results

Query Result

...

Augmented
World Model

Map-Service Navigation-
Service...

Model
Transformation

Functions

Value-added
Services

Service
Layer

Federation
Layer

Application
Layer

App. 1 App. 2 App. n

Spatial
Model

Server 1

Spatial
Model

Server n
External

Data

Location-
Service

Area
Service
Register

Query
Decomposition

Result
Integration

Subqueries Partial Results

Query Result

...

Augmented
World Model

Map-Service Navigation-
Service...

Model
Transformation

Functions

Value-added
Services

Service
Layer

Federation
Layer

Application
Layer

App. 1 App. 2 App. n

Figure 4: Nexus Platform Architecture
Source: [Nexus Project]

The Nexus platform is designed as an open platform into which different data providers
can integrate their models. In order to do that, they have to implement an interface for their
server that understands the Nexus query language AWQL (Augmented World Query Lan-
guage) and returns the data in AWML (Augmented World Modeling Language). When they
register their server with the Area Service Register, the federation can utilize the data for an-
swering queries.

In addition to the query-based pull communication that we have just described, the Nexus
platform also has to support event-based push communication. This is an important require-
ment from the perspective of context-aware applications, especially if the users are mobile
and want proactive support from their system. This cooperation project has made an important
contribution towards reaching this goal.

3.4 Location Service
The Nexus location service was developed by Alexander Leonhardi as part of his disserta-

tion [Leonhardi 2003]. The goal was to design and implement a prototype of a location ser-
vice that is scalable up to world-wide scale [Leonhardi & Rothermel 2001b][Leonhardi &
Bauer 2001]. The supported functionality are position queries, range queries and nearest-
neighbor queries. Position queries query the current position of a certain object, range queries
query all mobile objects that are currently in a given area and nearest-neighbor queries query
for the mobile objects that are currently closest to a given position.

In this cooperation project, we extended the functionality to also support a number of ba-
sic events. Examples are onEnterArea, an event that occurs when a mobile objects enters a
given area, or onMeeting, an event that occurs when two given mobile objects meet, i.e. the
distance between them becomes smaller than a predefined threshold. These and other sup-
ported events will be discussed in detail in Section 6.3 and Section 10.1

 - 13 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The Nexus location service is organized in a hierarchy of location servers (see Figure 5).
Each location server has a service area, which is the union of the service areas of the child
servers. Only the leaf servers keep the actual position data of the mobile objects within their
service area. The assumption is that these leaf location servers are “close” to the mobile ob-
jects and the position updates need only as much network bandwidth as necessary. The loca-
tion servers that are higher up in the hierarchy only keep forwarding pointers for each mobile
object in their service area that point to the child servers where the position data can be found.
This information is necessary to find the position of a particular mobile object.

The location service supports different positioning systems, e.g. GPS for outdoors, and in-
door position systems based on infrared, ultrasound or radio technology. Depending on the
technology used, the accuracy of the position data can differ widely. The location service can
deal with the limited accuracy and the different accuracy levels.

oid

oid
...

oid
oid
...

oid
oid
...

oid

oid
...

oid

oid
...

root server

location
servers

leaf servers

pos, acc

pos, acc

pos, acc

pos, acc

...

...

tracked objects,
sensor systems

position
updates

service areas

forwarding
pointers oid

oid
...

oid
oid
...

oid
oid
...

oid

oid
...

oid

oid
...

root server

location
servers

leaf servers

pos, acc

pos, acc

pos, acc

pos, acc

...

...

tracked objects,
sensor systems

position
updates

service areas

forwarding
pointers

Figure 5: Location Service Architecture
Source: [Leonhardi & Rothermel 2001b]

position
queries

position updates
handover

position
updates

handover

tracked
object

client queried
object

range
queries

client queried
area

position
queries

position updates
handover

position
updates

handover

tracked
object

position updates
handover

position
updates

handover

tracked
object

client queried
object

range
queries

client queried
area

Figure 6: Location Service Functionality
Source: [Leonhardi & Rothermel 2001b]

 - 14 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Since only the leaf location servers store the actual position information, only they are po-
tential event sources. The limited accuracy of the position information also has implications
for the observation of events.

Figure 6 shows how the location service functionality is realized. For position queries, i.e.
requesting the location of a particular mobile object, clients query their closest location server.
If the location server does not have information about this object, the query is forwarded up
the hierarchy until a server is found that has a forwarding pointer for the queried object. The
forwarding pointers are followed down the hierarchy to the leaf location server that has the
position information, which is then returned to the querying leaf location server and eventual
to the client.

For range queries, the query is forwarded up the hierarchy until a location server is found
whose service area completely covers the area specified in the range query. The location
server forwards the query to all child servers whose service area overlaps with the queried
area. This is done recursively until the leaf location servers are reached. They return the mo-
bile objects in the area to the querying leaf location server that collects the answers and re-
turns the integrated answer to the client.

Since mobile objects move, they may leave the service area of a leaf location server. In
this case a handover has to be performed. When a location server realizes that the position in a
position update is outside its service area, it initiates a handover request. The request is passed
up the hierarchy until the new position is within the service area of the location server. It is
then passed down to the child location server whose area includes the new position, updating
the forwarding pointers on the way. The new child location server then informs the tracked
mobile object that it is now the responsible server to which position updates have to be sent.
The location service internally uses a UDP-based communication mechanism. For the exter-
nal communication, it provides both UDP and SOAP-based interfaces.

3.5 Communication in Nexus
As the Nexus platform is designed as an open platform, it is important to use standard

technology wherever possible. Therefore, it was decided to use XML and SOAP over HTTP,
with a WSDL description for the server interfaces. Thereby the Nexus services are made
available as web services.

Mobile devices rely on wireless communication and they move between different wireless
networks, potentially even between wireless networks with different technologies. This means
that mobility support like Mobile IP is required. In the Nexus project we have used the Mobile
IPv6 implementation that was developed as a cooperation between Lancaster University and
Microsoft Research in Cambridge. The implementation was extended to allow to switch be-
tween IEEE 802.11b and GPRS.

Another research goal of Nexus is to investigate what new forms of communication be-
come possible with the existence of a world model and one of them is GeoCast. With GeoCast
all the users in a geographic region can be addressed. GeoCast could also be used to deliver
event notification to users in a geographic regions, e.g. for warning messages concerning ac-
cidents, or natural disasters like fires, floods or storms.

 - 15 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 16 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 4 Definitions and Requirements
In this chapter, we provide an overview of the goals of this project. We define a number of

key terms and derive a set of high-level requirements that apply to the overall project. In the
chapters describing the respective components the relevant requirements will be taken up,
refined and extended.

The chapter is divided into two sections. The first section looks at the requirements for an
event service from the user’s point of view, whereas the second section concentrates on the
requirements of the provider(s) of the event service.

4.1 User View
The user is interested in an event service, because he wants to be notified about events that

occur in the world around him. The world around the user is the physical world, but also the
virtual world of digital information systems. To observe events occurring in this world, we
need a digital model of the world as our basis.

Definition 1: World Model
A world model describes a relevant subset of the world, real or virtual. The state of a
model is described through a set of variables and the values assigned to them at a
given time.

As the next step we can define an event with respect to this model.

Definition 2: Event
An event is an observable change
in the state of the model.

So an event is a change that occurs.
This change can be observed by the
event service. As the result of observ-
ing an event, the user can be notified
about the event occurrence.

Figure 7: Event Observation

Definition 3: Event Notification
An event notification is a message informing the user about the occurrence of an
event.

The underlying concept is shown in Figure 7.

A user interacts with the event service through a client (application). The concrete view
the end user gets of the event service is therefore defined by the application programmer. As
we want to develop an event service and not a specific client application, we do not distin-
guish between the view of the end user and the view of the application programmer and sub-
sume both, end user and application programmer, under the term user.

From the point of view of the client, the event service is a single entity with a two-way in-
terface (see Figure 8). It allows the client to register an event with the event service and the
event service can notify the client about the occurrence of an event.

 - 17 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Figure 8: User View of the Event Service

ClientEvent Service register

notify

ClientEvent Service register

notify

Registering an event includes both the initiation of the observation and the subscription to
receive event notifications. Unlike in the classic publish-subscribe paradigm, it is impossible
here to have publishers that provide notifications for all possible events. As we will see, a
simple change in the model could mean that an infinite number of events have occurred that
could be of potential interest to the user. For example, if a user has just moved through a door,
he may have entered the property, the house, the ground floor, the left wing of the house, and
the corridor, and at the same time he may have met the owner, his wife, the children, and the
cat. Therefore, the observation of an event has to be initiated explicitly.

The overall goal for the event service is to provide the user with means to specify and ob-
serve all events of interest in the given application domain. For us, the Nexus project served
as a basis for requirements, so the application domain was context-aware systems with a
strong focus on the spatial aspects. However, the results also apply to other application do-
mains with similar characteristics.

In principle, we want to support all those events that can be observed on the available
data. The system provider may restrict the events that can actually be observed, because the
observation of certain events may be extremely expensive and, as we will see in the next sec-
tion, the scalability of the system is an important issue.

It is unrealistic to assume that the model of the world will be stored on a single server. As
we have seen in the last chapter, the Nexus architecture consists of different kinds of servers,
i.e. location and spatial model servers. Each server only has some kind of data for a certain
geographic area. To observe an event, data from multiple different servers may be needed,
however the user should not have to deal with the resulting problems, which leads to our first
requirement:

Requirement 1: Data Distribution Transparency
The distribution of the data should be transparent to the user.

The user has a uniform view of the world model and can specify his events on that model.
It is the task of the event service to gather the data and realize the observation. This re-
quirement is taken into account in the general architecture and the specification of events
that are presented in Chapter 5 and Chapter 7 respectively.

Requirement 2: Simple Event Specification
The specification of the events should be as simple and easy to understand to the user
as possible. It should be clear to the user in its semantics, without oversimplification.

The user should be able to specify an event without needing a very deep knowledge about
the underlying system, e.g. it should be straight-forward to understand all parameters that are

 - 18 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

needed for the specification of an event. The semantics of the event that is actually observed
should be as close as possible to that of the real-world event that the user wants to observe. If
differences are not avoidable, they should at least be clear to the user. This requirement is an
important topic in Chapter 7.

Requirement 3: Optimal Event Semantics
The event should be observed in such a way that the semantics of the event is optimal
with respect to what can be achieved with the available data.

The semantics of events depends on the accuracy of the data that is available, which may
be limited due to the limited sensor accuracy and the properties of the distributed system,
which are discussed in detail in Chapter 8. Depending on where in the system the event ob-
servation takes place, the accuracy of the available data may differ and so does the semantics
of the event. In order to optimize the semantics, the accuracy has to be “optimal”. This can be
achieved through the optimal placement of the observer, which is discussed in Chapter 9.

Requirement 4: Generic Handling of Accuracy Issues
There should be a generic solution for handling the limited accuracy.

Regarding the specification of events, the limited accuracy should be handled in a uniform
way. This means that there has to be an explicit and generic solution for all events, it cannot
be handled differently for each event. Handling it differently would mean that there are event-
specific parameters that influence the observation of the event in a certain way. This would
require the user to know the details about how the events is actually observed, which could
make the specification unnecessarily difficult and would be in conflict with Requirement 2.
How Requirement 4 can be fulfilled is discussed in Chapter 7.

Requirement 5: Minimum Notification Delay
The notification about the occurrence of an event should reach the user with the mini-
mum delay possible

The larger the delay between the occurrence of an event in the real world and the event
notification, the less useful it may be. If I want to be informed when I pass a shoe shop and I
receive a notification one minute later - in one minute I may have covered 100m – it may not
be very useful anymore. The notification delay plays a role when deciding where to place the
event observation. This is discussed in Chapter 9.

4.2 System View
After looking at the event service from the user’s perspective, we now look at the re-

quirements from the perspective of an event service provider.

From the point of view of the user, the event service is a monolithic entity. As shown in
Figure 9, this is not the case for the service provider.

Event sources are typically servers that store some part of the model and in that role we
also call them local model servers. They become an event source when they can observe
events locally. An example for such an event source is a Nexus location server. The event
service itself has two functional parts, the observation service and the notification service. The
Observation Server observes events that can only be observed with data from multiple event
sources. We also call such events global events. The notification service delivers event notifi-
cations to interested clients. It is also used for delivering event notifications from event

 - 19 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Event
Source

Observation
Service

Client

Event Service

Notification
Service

publish register
notify

advertise

register

e.g. Location Server

Event
Source

Observation
Service

Client

Event Service

Notification
Service

publish register
notify

advertise

register

e.g. Location Server

sources to the observation service. So, the notification service provides the core functionality
of a publish/subscribe service, which does not support the explicit observation of global
events.

The components interact as follows: When the client registers an event with the event ser-
vice, the necessary local sub-events are registered with the event sources and an observer for
the event is set up in the observation service. When a local sub-event occurs an event notifica-
tion is published and sent to the observer using the notification service. When the observer
detects the occurrence of an event, an event notification is sent to the client, again using the
notification service.

The event service architecture that we have presented here differs from the standard archi-
tecture (shown in Figure 2) in that it makes the observation of events an explicit part of the
event service. Events are only observed if the event is explicitly registered and the observation
of global events through the observation service becomes possible. This can also be seen as a
shift from the standard event paradigm, which could be described as an event notification
paradigm, to an event observation & notification paradigm.

From the system providers view, there are a number of additional requirements that have
to be met, if the system is to be deployed.

Figure 9: Conceptual Event Service Architecture

Requirement 6: Scalability
The system should be scalable to a large, possibly world-wide scale.

In this case scalability applies to a number of parameters, e.g. the size of the world model,
the number of servers, the number of users, the number of events that are observed, the num-
ber of event notifications that can be sent per unit of time etc. In the chapters about the respec-
tive components, we will discuss in more detail what parameters most strongly influence the
scalability of the component and with it the scalability of the event service as a whole. Scal-
ability is an important design criteria. The scalability of the event service as a whole is evalu-
ated in Chapter 13.

Requirement 7: Fault Tolerance
Fault tolerance with respect to failure and unreachability of components

 - 20 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Fault tolerance is an important aspect for any large scale system as it is always possible
that components fail or are temporarily not available. This becomes even more important with
regard to mobile devices, as they are more likely to fail – due to limited battery power – and
as they have to rely on wireless communication, where temporary disconnections are much
more likely than in infrastructure-based networks.

Requirement 8: Efficiency
The observation and the notification about the occurrence of events should be as effi-
cient as possible.

Examples for making the observation of events efficient are checking for an event occur-
rence only when the event could potentially have occurred and reducing the cost of the aver-
age check as much as possible. An efficient notification mechanism fits the characteristics of
the observed events, especially with regard to the number of clients per event being observed,
the distribution of event sources and clients, and the rate of event notifications. The efficiency
of the event service components is evaluated in Chapter 13.

Requirement 9: Interoperability
The system should be built on standard technology, to facilitate the interoperability be-
tween different providers

Especially if the system is to be deployed on a large scale, this is an important point. Us-
ing standard Internet technology like XML, HTTP and SOAP is a step in the right direction.

Requirement 10: Mobility Support
The mobility of the users and the resulting effects on the system have to be taken into
account.

The typical usage scenarios we envision are centered around mobile users. Therefore mo-
bility support is a very important issue. Mobility means that we have wireless communication,
which has worse communication properties, e.g. less bandwidth, longer delays, and higher
loss rates. This may affect the accuracy/availability of the data, e.g. locally determined posi-
tion information that has to communicated, as well as the notification about the occurrence of
events.

4.3 Summary
In this chapter we have defined a number of requirements from both the user’s and the

system provider’s point of view. In summary, the user is mainly interested in an event seman-
tics that corresponds as closely as possible to his expectations of the real-world events that he
wants the system to observe. The system provider is mainly interested in a scalable event ser-
vice that efficiently fulfills the requirements of the user. In the next chapter we describe the
system architecture of our event service in detail that we have derived from these require-
ments.

 - 21 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 22 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 5 System Architecture
In Chapter 4 we have already presented a conceptual system architecture (see Figure 9).

Here, we want to look at the event observation in some more detail and derive the internal
architecture of our event service.

In Figure 10 the process of event observation is shown. An event occurs in the real world.
This leads to a change of a physical parameter that is picked up by a sensor. The sensor up-
dates the data of a local model on a local model server. If due to the change of the data, a local
event is observed on the local model server, an event notification is sent. If the event has been
registered by the observation service that is observing a global event, the event notification is
processed there. This may lead to the detection of the global event. Then an event notification
is sent to the client.

We assume that the underlying system takes care of the sensors and the update of the local
data model servers, so the event service is responsible for the levels above that. In the previ-
ous chapter we have already identified two functional parts of the event service (see Figure 9),
the observation service and the notification service, where the observation service is responsi-
ble for the observation of global events and the notification service is responsible for effi-
ciently delivering event notifications to interested clients.

Requirement 6 states that the system has to be scalable. This excludes a centralized archi-
tecture for either the observation service or the notification service. Therefore the observation
service consists of a number of observation nodes and the notification service of a number of
notification nodes. The nodes communicate with each other in a peer-to-peer fashion.

On the one hand, Requirement 1 states that the data distribution should be transparent to
the client. On the other hand Requirement 3 demands an optimal event semantics and
Requirement 5 a minimum notification delay. The placement of the observation plays an im-
portant role for the notification delay. This is obvious, because if a client in Germany wants to
observe a global event based on local events that occur within his vicinity, a significant notifi-
cation delay is added, if the global event is observed by an observation node in the US.

Reality

Sensors

Local Data Model
Server

Distributed
Observation

User

Scan Rate

Update Protocol

Event
Notification

Event Notification

Reality

Sensors

Local Data Model
Server

Distributed
Observation

User

Scan Rate

Update Protocol

Event
Notification

Event Notification

Figure 10: Event Observation

 - 23 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

As we will see
later, the optimal
placement of event
observation is also
important for the
event semantics.

Therefore, an
additional compo-
nent is needed that
takes care of the
placement of the
event observation
and the registration
of all local events
involved. We call
this component
observation man-
agement.

Figure 11
shows an example
of how the differ-

ent components interact. In the registration phase indicated by the dark arrows, the client first
registers an event with the observation management. The observation management finds the
local model servers that have the data needed for the observation, then determines the obser-
vation node that is best suited for observing the event and finally registers the global events
and the local events needed for the observation.

In the observation phase, whenever a local event occurs, the local model server (in its role
as an event source) hands over an event notification to the notification service using the clos-
est notification node. The notification node delivers the event notification to the observation
node through its closest notification node. Finally, if a global event has occurred, the observa-
tion node passes an event notification to the notification service that delivers it to the client.

Local
Model
Server

Local
Model
Server

Local
Model
Server

...

Client 1 Client 2 Client n

Observation
Management

Observation
Node

Notifi-
cation
Node

Local
Model
Server

...

Observation
Node

Observation
Node

Notifi-
cation
Node Notifi-

cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Local
Model
Server

Local
Model
Server

Local
Model
Server

...

Client 1 Client 2 Client n

Observation
Management

Observation
Node

Notifi-
cation
Node

Local
Model
Server

...

Observation
Node

Observation
Node

Notifi-
cation
Node Notifi-

cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Figure 11: Distributed Architecture

 - 24 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 6 Event Model
In this chapter we develop an event model, i.e. we structure the area, define different ab-

straction levels and find a suitable event classification. In the first section, we discuss the dif-
ferent conceptual approaches of observing global events on a distributed world model versus
observing composite events by combining event notifications describing the occurrence of
simpler events. We propose a general event classification in the second section, which we
apply to spatial events in the third section. The fourth section discusses the use of spatial
events in a number of real world scenarios.

6.1 Observation of Global Events vs. Composite Events
We start by defining the terms global events and composite events and discuss the concep-

tual difference.

Definition 4: Global Event
A global event is an event that is observed through a distributed model.

Observing an event through a distributed model means that the model data that is neces-
sary for the observation of the event is distributed over a number of local models. Each local
model can be seen as a fragment of a distributed global model. To observe the global event a
(local) view of that part of the global model has to be realized that is needed for the observa-
tion. We also call this view observer model. The observer model can be updated using update
events. These update events implement certain update protocols that we will discuss in Sec-
tion 8.4. The observation is based on the state of the model at a certain time.

Definition 5: Composite Event
A composite event is an event that is composed of simpler events.

A composite event combines a number of (simpler) events. To observe the event, the ob-
server has to subscribe for the event notifications that result from the occurrence of the events
to be composed. The event is observed directly based on event notifications, i.e. on messages,

Reality

Dynamic Data,
e.g. from Sensors

Local Models

Observer Model

User

Update

Event Notification

fragments

Reality

Dynamic Data,
e.g. from Sensors

Local Models

Observer Model

User

Update

Event Notification

Reality

Dynamic Data,
e.g. from Sensors

Local Models

Observer Model

User

Update

Event Notification

fragmentsfragments

Figure 12: Local and Observer Models

 - 25 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

and not through values describing the relevant state of the distributed model.

Since event notifications are used to update the observer model, global events can also be
seen as a specialization of composite events. The difference lies mainly in the conceptual
view. A composite event is based on other events, a global event on the change of values. In
practical use, composite events often provide simple constructors to combine any kinds of
event, e.g. AND(A,B), OR(C,D), SEQUENCE(E,F), NOT(G) etc. Global events are usually
more specialized and based on values, e.g. the simple spatial event onEnter-
Area(PERSON,AREA).

The general architecture of our event system is suitable for both approaches, even the
specification of events is rather similar. The main difference can be found in the implementa-
tion of the observation modules. In the theoretical part of this report, especially Chapter 8 and
Chapter 9, we focus only on the observation of global events.

Figure 12 is a specialization of Figure 10 that shows the models. Changes to the local
models can lead to updates of the observer model. The updates are realized in form of event
notifications. The local models are seen as fragments of a global distributed model, and the
observer model is a view of that part of the global model that is needed for the observation of
a particular global event.

6.2 General Event Classification
In this section we develop a general event classification. We look at different parameters

that can be used to classify events, especially regarding the observation of events.

6.2.1 Event Observation Hierarchy
We start with the event observation hierarchy. There are multiple abstraction levels on

which we have events. Figure 13 shows the event observation chain for our application do-

Reality

Sensors

Local Model
Server

Observer
Node

User

Sensing Event

Data Update Notification

Event Notification

Event Notification

Chain of Physical Events

Real World Event

System Event

Local User Event

Global User Event/
Composite Event

Reality

Sensors

Local Model
Server

Observer
Node

User

Sensing Event

Data Update Notification

Event Notification

Event Notification

Chain of Physical Events

Real World Event

System Event

Local User Event

Global User Event/
Composite Event

Figure 13: Event Observation Chain

 - 26 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

main. We are confident that in other domains the situation will be similar. Table 1 explains
the event observation chain and gives examples.

Table 1: Explanation of Event Observation Chain and Examples

Event Observation Chain Example

On the lowest level we have the real world
event.

A user with an IR tag enters a room.

Through a chain of physical events the in-
formation is propagated to the sensor that
observes a sensing event.

In the case of the IR tag an IR signal would
be sent that is picked up by the sensor.

Through some update protocol the data
reaches the local model server, where the
event is observed as a system event.

The IR signal can be interpreted as a posi-
tion update that is passed on to a location
server.

Within the server, the system event may
lead to the observation of a number of user
events.

A position update may lead to the observa-
tion of the event that a user has entered the
house (onEnterArea), that the user has en-
tered the room and that the user has moved
by more than 10 m since the last update
notification was sent (distPosUpdate).

The event notifications describing the oc-
currence of these local user events are de-
livered to observer nodes that may observe
more complex user events.

A composite user event, based on onEnter-
Area and onLeaveArea events, that might
be observed on an observer node, is that
more than a certain number of people are in
the house.

A global user event, based on the distPo-
sUpdate event, may be that two people,
whose position information is stored on
two different local model servers, are
within a specified meeting distance (on-
Meeting).

Finally, on the detection of an event occur-
rence in the observer node, an event notifi-
cation is sent to all interested users.

Event notifications for the number of peo-
ple in the house and the meeting event are
sent to the users interested in the respective
events.

A more complex multi-level observation is also possible. In this case the observation ser-
vice would observe global events that depend on other global and local events. As the obser-
vation in these cases follows the same principle as in the presented simple case, we concen-
trate on the simple case here.

An important abstraction is to distinguish between system events and user events. The
problem with providing all system events to the event system as a whole is that this does not
scale. The system event rate may be too high, so the distributed system would be over-
whelmed with the event notifications. With the introduction of user events that can be ob-
served through the local model servers, it becomes possible to introduce additional observa-
tion parameters and policies, like limiting the number of events that can be observed within a

 - 27 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

time interval. For example, the maximal accuracy of position data provided by a location
server can be limited in this way or the costs for an event could be based on the load that is
being generated.

The number of possible user events that can be observed based on a single system event is
infinite, e.g. as we have already seen, a position update can cause the detection of any number
of onEnterArea or onMeeting events. However, users in practice will only be interested in a
very small number of these.

There are an infinite number of different user events, e.g. there is an infinite number of
possible constellations of mobile objects, based on which a user event could be defined. How-
ever, the number of those that are of actual interest in a specific application domain will be
very limited.

6.2.2 Event Triggers
We have defined an event as a change in the state of the model. As we have seen in the

previous subsection, we have different models, one on every abstraction level. The change of
a model on a certain level can be triggered either by an explicit change in data, i.e. through an
update from a lower level, or through a time-induced change.

So we can distinguish between data-based and timer-based events. Data-based events can
sometimes be classified into value update events that change the attribute of an object, e.g. its
location, and management events that register or deregister objects. Timer-based events are
triggered through a timer.

6.2.3 Number of Dynamic Parameters
Events can further be classified according to the number of dynamic event parameters.

Each change in a dynamic parameter can potentially lead to the occurrence of an event.

For example, an onEnterArea event has one dynamic parameter, describing the mobile ob-
ject, whose position can lead to the occurrence of the event. An onMeeting event has at least
two dynamic parameters. Both objects can move and potentially the movement of each object
could lead to the occurrence of the event.

6.2.4 Specific and Variable Parameters
An event parameter can further be classified according to how specific it is, i.e. if it speci-

fies exactly one variable (or object) or if it specifies a group of objects. In the first case we
call the parameter specific, in the second case variable. For example an onEnterArea event
could be specified for John Doe, a specific person, or for an object selector, e.g. a professor.

As we will see in the next subsection, this classification is important for the efficient ob-
servation of an event.

6.2.5 Efficient Observation
The efficient observation of events is especially important in cases where one event can

cause multiple events on a higher abstraction level. This is especially the case for system
events that can cause multiple user events. To increase efficiency, it should be possible to
check only for the occurrence of those events that can possibly have occurred. The better this
preselection works, the more efficient the service will be.

For this purpose, the event observation can be attached to a given parameter. If there is a
change, there has to be an efficient index for each dynamic parameter to find the events at-

 - 28 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

tached to the given parameter. (The dynamic parameter and the parameter to which the event
is attached do not have to be the same!) This works well, if the respective parameter to which
the events are attached is specific, but not, if the parameter is variable.

For example, an onMeeting event can be efficiently observed, if both parameters are spe-
cific, e.g. if both mobile objects are explicitly specified, e.g. John Doe and Anne Smith. If the
onMeeting event is attached to both John Doe and Anne Smith respectively, for every position
update for either John Doe or Anne Smith, the event to be checked can be found efficiently.
For position updates of other mobile objects, the event does not have to be checked.

For an onMeeting event with one specific parameter, an efficient observation can also be
achieved – the implementation details are discussed in Section 10.1. However, with two vari-
able parameters, this may be impossible, e.g. an onMeeting event that any two professors or
any two students meet would be very expensive to observe.

The specific parameter does not have to be the same as the dynamic parameter. For an
onEnterArea event, the area parameter can be specific and the object parameter variable. With
a two-dimensional index structure, e.g. a quad tree, the events that have to be checked for a
position update with a given position can be found efficiently.

6.3 Classification of Spatial Events
In this subsection we classify the basic spatial events supported by the location service ac-

cording to the general event classification presented in the last section.

Definition 6: Spatial Events
Spatial events are events that occur when objects reach a certain spatial constellation.

This definition includes events in which mobile objects reach such a constellation with re-
spect to their environment, e.g. an onEnterArea event, and events in which mobile objects
reach a constellation relative to each other, e.g. an onMeeting event.

6.3.1 Basic Spatial Events
In [Bauer 2000] we have identified the following spatial relations:

• Distance (between objects)

• Direction (one object is in a certain direction from another object)

• Orientation (of an object)

• Inclusion (one object is included in another)

• Intersection (two objects intersect)

• Tangent (two objects touch each other)

• Disjoint (two objects are disjoint)

If the changes over time are taken into account, there are additional relationships:

• Change of orientation

• Direction of movement

• Speed

• Change of Speed

…

 - 29 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Based on these spatial relations, spatial events can be defined. Not all spatial events that
exist in principle can currently be observed in Nexus. The location service currently does not
take the extent of an object into account, the accuracy of the position data is limited and only
the current position of an object is available.

Currently the following basic spatial events are supported:

• onEnterArea: an object enters an area

• onLeaveArea: an object leaves an area

• onCrossingLine: an object crosses a line

• onMeeting: two objects meet

• distPosUpdate: an new position of an object is provided, as it has moved further than a
specified distance

• contPosUpdate: each (specified) time interval, a new position of an object is provided

• contAreaUpdate: each (specified) time interval, a new position of all objects that are
currently within a given area is provided

The following “management” events are also supported

• onRegisterObject: a certain object has registered with the location service

• onDeregisterObject: a certain object was deregistered from the location service

• onRegisterArea: an object has registered in a given area

• onDeregisterArea: an object in a given area was deregistered

6.3.2 Event Triggers
The spatial events can be classified according to the data-based system events that may

cause them:

• position update

o onEnterArea

o onLeaveArea

o onCrossingLine

o onMeeting

o distPosUpdate

• registration, deregistration (management events)

o onRegisterObject

o onDeregisterObject

o onRegisterArea

o onDeregisterArea

o onMeeting

6.3.3 Number of Dynamic Parameters
All basic spatial events, except for the onMeeting event have one dynamic parameter. The

onMeeting event has two dynamic parameters.

 - 30 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

6.3.4 Specific and Variable Parameters
In the following we show which parameters for the basic events supported by the location

service have to be specific and which can be variable. The decision if a parameter can be vari-
able or not is directly related the fact that for an efficient event observation, the observation
has to be attached to a specific parameter.

• onEnterArea: The onEnterArea event needs the area as a specific parameter, the mo-
bile object can be variable.
The reason that only this combination is supported is that the location service has the
information about mobile objects, so an object selector can be supported, whereas
there is no basis for an area selector. On the level of the observation node, we can sup-
port such an onEnterArea event, e.g. with [shoe shop] as an area selector. However, in
this case the mobile object has to be specific, as otherwise an efficient observation is
not possible.

• onLeaveArea: The onLeaveArea event needs the area as a specific parameter, the mo-
bile object can be variable.

• onCrossingLine: The onCrossingLine event needs the line as a specific parameter, the
mobile object can be variable.

• onMeeting: The onMeeting event needs one mobile object as a specific parameter, the
other can be variable. Again, this is due to ensure the efficiency of the observation.

• distPosUpdate: The distPosUpdate event needs a mobile object as a specific parame-
ter.

• contPosUpdate: The contPosUpdate event needs a mobile object as a specific parame-
ter.

• contAreaUpdate: The contAreaUpdate event needs an area as a specific parameter.

• onRegisterObject: The onRegisterObject event needs a mobile object as a specific pa-
rameter.

• onDeregisterObject: The onDeregisterObject event needs a mobile object as a specific
parameter.

• onRegisterArea: The onRegisterArea event needs an area as a specific parameter.

• onDeregisterArea: The onDeregisterArea event needs an area as a specific parameter.

6.3.5 Efficient Observation
For the efficient observation of an event, the observation has to be attached to a specific

parameter. In the case of the spatial events, this has to be either a mobile object or an area, i.e.
a location. In the case of a timer-based event, it is the (next) occurrence time of the event.

This means the events to be checked after a position update can be found through the ob-
ject id of the object for which the position is the updated, if the specific parameter is the mo-
bile object, or the position, if the specific parameter is the area. A possible index for the object
id is a hash table, for a two-dimensional area the index might be a quad tree and for a three-
dimensional space an oct tree might be used as an index. For timer-based events a heap can be
used as an index structure. The time when each event is scheduled to occur next are ordered in
the heap with the smallest element, i.e. the first event that will occur, being the root. We will
discuss our actual implementation in Section 10.1.

 - 31 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The object id, the location and the time is exactly the context that we have identified as
the primary context information in [Rothermel et al. 2003a]. The primary context can be used
as an index to efficiently access all other context information.

So, the onEnterArea, onLeaveArea and the onCrossingLine events that have to be checked
after a position update can be found through the position and the location index. The distPo-
sUpdate can be found through the object id and the object index. The onMeeting event has a
special implementation and the events to be checked can be found through both the position
and the location index.

6.4 Utilization of Spatial Events in Nexus Scenarios
So far, we have classified events according to the characteristics that are important for the

observation of events. In this section we will classify the spatial events according to how they
will be used, which is important for the design of the notification service.

The problem is that it is difficult to derive requirements for a totally new system that can-
not really be compared to any existing system. How will the users actually utilize the features
that are being offered? Therefore, we look at a couple of scenarios that we think might be
typical for the use of the event service in Nexus: an office scenario, a shopping mall scenario
and a city scenario.

6.4.1 Office Scenario
For this scenario we imagine that a company makes Nexus services available to their em-

ployees within one office building. Assuming that there are about 2 people per office, 40 of-
fices per floor and 5 floors per building, there may be about 400 people altogether. Taking
into account that there are always people who are on holiday, sick or traveling on business,
there may be about 250 people in the building at a given time during the day, who may use
the Nexus system.

Further, we assume that the company has installed an indoor location system on each floor
that can determine the location of people to within one meter from their actual location. For
each indoor location system, there is a separate location server that stores the location of all
the people within the system, i.e. of 50 people on average in this scenario. The five location
servers act as sources for basic events.

A typical application that is viable in such a scenario is having maps of the floors, show-
ing the location of all the people on the respective floor. This can be realized using con-
tAreaUpdates.

In addition to this continuous tracking, employees will also want to be informed about
more specialized events that are only of interest to themselves or to a small group of people,
e.g. if somebody enters their office. Another important characteristics is, if people are always
interested in the event, e.g. as in the last example, or if the event is observed to get a one-time
reminder, e.g. inform me when I pass the cafeteria, so that I can buy sweets for my col-
leagues. As an estimate, we assume that every employee is interested in five such specialized
events at any given time. This means that each location service has to monitor about 500
events, taking into account that some of the events are not restricted to a single floor.

Except for the continuous tracking, the other events will occur relatively rarely. Therefore,
the load on the notification service is relatively predictable and the continuous update rate can
be determined accordingly.

 - 32 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

6.4.2 Shopping Mall Scenario
Compared to the office scenario, there is a much higher turnover of people in a shopping

mall and the potential users, which, realistically, will only be a subset of the customers, are
not known in advance. Also, the variance is much greater, e.g. a Saturday afternoon before
Christmas compared to an afternoon in the middle of the week in summer. The customers
themselves are not really interested in what the other customers are doing, however the man-
agement of the shopping mall might be very much interested in customer behavior. An exam-
ple in which events might be useful is that additional salespersons could be sent to a certain
area to handle the higher demand, which can be determined by the number of people who
have entered (and left) it.

Another usage area that would be interesting for the shopping mall is to use events to pass
on advertisements, e.g. if a customer enters a shop or area, this event could be observed and
advertisements relevant for this particular shop could be sent to the customer. We assume that
there are about 20 shops/areas of interest for which the shopping mall provides events.

The events that are interesting to customers are events that remind them that they wanted
to buy something when they pass the shop that sells the given article. We assume that each
customer using the system registers about 2 such events. Unlike in the office scenario, the
number of event occurrences may vary considerably. This has to be taken into account when
designing the notification service, but also when planning the infrastructure (e.g. wireless
network access), so that the notification service can handle the amount of event notifications.

6.4.3 City Scenario
Here, a city scenario refers to the center of a city the size of Stuttgart. This scenario is

much more complex than the two previous scenarios, because it is much harder to predict
what type, number and complexity of events people are interested in. In addition, there will be
different user groups. Tourists have different interests than locals and people doing business
have different interests than people in their leisure time. Ideally, it should also be possible to
easily integrate the previous scenarios into the city scenario.

Whereas in the simple scenario the notification service can be mostly operated by a single
provider, such an integration requires that different providers cooperate in the delivery of
event notifications. As event notifications may generate a significant network load, policies
dealing with the cooperation of different providers, which also have to be visible to the cli-
ents, will have to be introduced in the future. However, we ignore this aspect for now.

We assume that one of the most popular applications in a city scenario is a reminder sys-
tem, i.e. a system that reminds the user when he is at a certain location that he wanted to do
something there, or even better, when he is at a location that fulfills certain requirements. An
example reminder of the first type is “Inform me, when I’m within 1 km of THE OPERA in
Stuttgart, because I need to pick up tickets there”. An example reminder of the second type is
“Inform me, when I’m near A PHOTO SHOP, because I need to get a new lens for my cam-
era”.

Going one step further, a tourist information system could be based on events. Whenever
a tourist gets close to a sight, information about this particular sight is automatically provided.
In order to do this, the user just has to register for certain types of events at the beginning of
the tour. Using different types of events, the information provided can also be specially cus-
tomized for the tourist, providing more information about things he is interested in or having
special information for children.

Under the given circumstances, it is very difficult to derive half-way reasonable numbers,
therefore we will make some rough assumptions: The city is covered by 50 location servers

 - 33 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

(not counting the ones in office buildings and department stores), there are about 10000 users
of the system and each of them is, on average, interested in about twenty events. Ten of these
events are of personal interest only, five events are of interest to about ten different people
and the remaining five are of interest to about 200 people.

6.4.4 Parameters of Interest
The following parameters may be of interest regarding the utilization of spatial events:

• Overall number of event sources

• Number of active event sources per time interval

• Overall number of clients

• Overall number of different events

• Number of event sources per event

• Number of clients per event

• Average size of an event notification

• Number of event observations per time interval

• Number of event notifications per client per time interval

• Number of subscription changes per time interval

• Number of subscription changes per client per time interval

6.4.5 Parameter Values for the Scenarios
In Table 2 we give an estimate for the parameter values in each of the scenarios.

Table 2: Parameter Values for the Scenarios

Parameter Office Scenario Shopping Mall
Scenario

City Scenario

Overall number of event
sources

5 5 50

Number of active event
sources per time interval

0.5/s 1/s 5/s

Overall number of clients 250 550 10000

Overall number of different
events

5: contAreaUpdates

2000: spec. events

100 (shop. mall)

1000: spec. events

100000

Number of event sources per
event

5 contAreaUpdate

1-2: spec. event

1-2 (shop. Mall) 1-2 (50%), 5-10
(40%), 50 (10%)

Number of clients per event 250 per contArea-
Update, 1-2 per
spec. event

1-2 spec. events

50 shop. mall
events

1 (50%)

10 (30%)

500 (20%)

 - 34 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Average size of an event no-
tification

2 KBytes 2 KBytes 1-500 KBytes

Number of event observa-
tions per time interval

0.5/s 1/s 5/s

Number of event notifica-
tions per client per time in-
terval

0.1 event notifica-
tion/s (con-
tAreaUpdate)

4 per hour 10 per hour

Number of subscription
changes per time interval

40 per hour 500 per hour 20000 per hour

Number of subscription
changes per client per time
interval

4 per day 1 per hour 2 per hour

6.4.6 Comparison with Other Notification/Publish - Subscribe Services
Overall, the numbers presented in the previous section can be summarized providing in-

terpolated results for using the Nexus notification service in a metropolitan area. These results
are compared to the requirements for other notification and publish / subscribe services (see
Table 3) as presented in [Jacobsen & Llirbat]. There, the following scenarios for publish /
subscribe services are presented: Alerting services, e.g. for digital libraries, inform users
about new publications in areas that are of interest to the user. Selective information dissemi-
nation services are used for disseminating news, including such time-sensitive items as cur-
rent stock quotes. Network and distributed system management services are used to manage
networks on an enterprise scale and may have tough real-time constraint. Enterprise applica-
tion integration is used to integrate software applications across heterogeneous platforms on
an enterprise scale.

Table 3: Comparison of Requirements for Different Notification Services

 Clients Event
Sources

Event obs.
Rate

Notificat.
size

Subscr.
Updates

Notificat.
Rate

Nexus Notifi-
cat. Service

200K + 200 20/s 1-500 KB 2/user/hour 10/user/hour

Alerting Ser-
vices

100K + 10-20 10 / h .5k - 2 MB 5/user/month 5/user/month

Selective In-
formation
Dissemination

millions 1000+ 100+/s variable 3/user/week 100+/sec.

Network
Management

10+ 10000+ 10000+/s .5 KB rare 100+/s

 - 35 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Enterprise
Application
Integration

10 10 Request
rate

request
size

rare request rate

Maybe, it should not come as a surprise that the estimates for the Nexus notification ser-
vice come closest to the selective information dissemination, because the number and kinds of
users and at least the type of some of the information are relatively similar.

The main difference is that in Nexus users explicitly register for certain types of events
and those events are only observed because of that. This also means that the service can di-
rectly find out, who is interested in which event. With selective information dissemination,
users usually specify the information they are interested in using filters and information is
routed according to those filters. Usually many users are interested in the same information,
whereas in Nexus, for the large majority of events, only a few users, if not only a single user
is interested. Also, most of the events will occur rarely, potentially only once.

These results have had an influence on the design of the Nexus notification service that we
will discuss in Chapter 12.

 - 36 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 7 Event Specification
In this chapter we look at the expectations of the user towards the observation of events,

and especially how he can specify the events he wants the event service to observe for him.
The specification here is on a relatively abstract level. Additional parameters that are relevant
mostly for the concrete implementation will be discussed in Section 10.3.

The system behavior the user would like to have for the observation of real world events
is that

• an event notification is sent if and only if the corresponding event in the real world has
occurred and that

• an event notification is available immediately

Unfortunately such a behavior cannot be realized, especially not in a distributed system. In
the best case, there is a short delay introduced by the time needed to communicate and process
the information. As we will see, the limited accuracy of the available data will make the first
point unrealistic. Therefore, we have to consider it in the specification of events.

As the user has to specify the event, we have to take the user requirements that apply to
the specification into account. Requirement 1: Data Distribution Transparency states that the
distribution of the data should be transparent to the user. For the specification this means that
for the user there is no difference between specifying a local or a global event.

Requirement 2: Simple Event Specification directly addresses event specification, stating
that it should be as simple as possible without distorting the semantics of the event. Finding a
reasonable balance between Requirement 3: Optimal Event Semantics and Requirement 5:
Minimum Notification Delay should be the default behavior of the event service. Additional
parameters may influence the implementation of the event service with respect to this balance,
but as stated before, we want to discuss event specification on a more abstract level here.

Requirement 4: Generic Handling of Accuracy Issues is an important requirement for
which we provide a solution in Section 7.2 , but for the next section, we assume that we have
exact data.

7.1 Event Specification Based on Exact Data
It should be relatively natural to the user to specify an event in form of a predicate. For the

user a predicate is a parameterized statement about the world that is true after an event has
occurred. So the occurrence of an event is equivalent to the predicate becoming true, i.e. the
predicate evaluated to false in the previous state and to true in the current state.

Predicates are defined over variables, which in our case represent the state of the model.

The following definition formalizes the intuitive understanding of predicate:

Definition 7: Predicate
If P is a k-ary predicate symbol defined for variables v1,...,vk of types z1,...,zk respec-
tively, P(v1,...,vk) is a predicate.

For example, if variable x stores the current temperature at location X and y is the tem-
perature at location Y, and there is a predicate P1(v1,v2):=(v1>v2), then P1(x,y) describes the
event when the temperature at location X becomes greater than the temperature at location Y.

A typical predicate that could be used for specifying the spatial event that a user enters an
area is PersonInArea(Person1, Area1). The onEnterArea event has occurred when the PersonI-

 - 37 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

nArea predicate becomes true, which is the case when the person specified by Person1 is out-
side Area1 in the previous state of the model and is inside Area1 in the current state. For easier
understanding of the described event, we still use onEnterArea as the name of the predicate.

We do not restrict the complexity of the predicates here, which means that all events ob-
servable on the model can be described in form of predicates. If we had exact data, the user
would just have to specify the predicate and based on the exact data the predicate would be
evaluated.

To specify events, the end user would be able to choose from a set of predicate templates.

Definition 8: Predicate Templates
Predicate templates are predicates that have free variables as parameters.

The user sets the parameters of a predicate template and gets a predicate that can be regis-
tered with the event service. For example onEnterArea(<Person>,<Area>) is a predicate tem-
plate. Setting Person to ‘Fritz’ and Area to the ‘Trafalgar Square’ yields the predicate onEn-
terArea(Fritz, Trafalgar Square).

For each predicate template an implemented observer module has to exist. New observer
modules can be added at runtime by putting them on a web server. The observer node can
then download them from there. Normal users will usually not implement their own observer
modules. They have to utilize what is already provided by the event service. Application pro-
grammers writing a new application may add new observer modules. As new observation
modules can be computationally expensive and may pose a security threat, event service pro-
viders may implement policies for adding new modules and may charge for the service ac-
cording to computational costs. However, these policies are beyond the scope of this work.

7.2 Event Specification based on Data with Limited Accuracy
In the previous section we have assumed that we have exact data. To decide if an event

has occurred we simply had to evaluate a predicate. In reality, exact data will be impossible to
achieve, because the accuracy of real sensors is limited and the fact that the observer model
has to be updated from different local models reduces the accuracy of the available data in
both the value and the time dimension, i.e. a value can only be given as lying within some
accuracy interval and the time in which a value has changed can only be given as an interval.

So in the realistic case, we have to deal with the inaccuracy of the data and that means
dealing with a potential error. As the error lies in the available model data, the user can only
influence how this error influences the observation of the event.

This could be explicitly encoded in the specification of the event. For example for the
event that two people meet, it could be defined by how much the location areas (area in which
the real location of the user can be found) extended by the maximal meeting distance have to
overlap and how the size of the location area influences the required overlap. However, this
requires that the user knows about the details of how an event is observed, not just the seman-
tics of the event itself. This information is not required in the exact case and is in contradic-
tion to Requirement 4: Generic Handling of Accuracy Issues that requires that there should be
a generic solution for handling the accuracy issues.

Since we cannot achieve that an event notification is sent if and only if the corresponding
event in the real world has occurred, we could “weaken” the approach by replacing the
equivalence relation (if and only if) with the implication:

• If an event in the real world has occurred, an event notification is sent.

 - 38 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• If an event notification is sent, an event in the real world has occurred.

In the first case, there is a notification for every real world event, but there may be also be
notifications when no event has occurred. This means there could be false positives.

 Definition 9: False Positive
We have a false positive, if an event notification was sent, even though no real-world
event has occurred.

In the second case, for every notification an event has occurred in the real world, but there
may also be events for which no event notification was sent. This means there could be false
negatives.

Definition 10: False Negative
We have a false negative, if a real-world event has occurred, but no event notification
was sent as a result.

Both approaches are generic with respect to the handling of accuracy issues, but are
somewhat extreme and may not be what the user would like to have. We therefore propose an
approach that allows the user to specify a threshold probability that decides if an event is con-
sidered to have occurred. If, based on the available data, the probability that an event has oc-
curred is higher than the specified threshold probability, an event notification is sent. Setting
the threshold probability to 100% yields the approach where we have no false positives, but
possibly a large number of false negatives. Setting the threshold probability close to 0% (an
occurrence probability of 0% does not make sense since this would be true for all values)
yields the approach where we get no false negatives, but possibly a large number of false
positives. So the threshold probability determines the ratio between false negatives and false
positives. Given that we can calculate the probability that an event has occurred, we have a
generic approach as required by Requirement 4. In the following chapter we show how the
probability with which an event has occurred can be calculated.

The user can specify an event as follows:

Definition 11: Specification of an Event
An event is specified as a pair (P, TP) where P is a predicate and TP a threshold prob-
ability. For an exact value, the predicate P becomes true if and only if the event has
occurred. The threshold probability TP specifies the probability with which the occur-
rence of the event must at least be detected so that the event is considered to have oc-
curred.

7.2.1 Setting the Threshold Probability
The question that arises from this definition is how the user can determine a suitable

threshold probability. The choice of the threshold probability depends on the usage scenario
and the model quality, i.e. the accuracy in value and time dimension. The accuracy is limited
by the accuracy of the sensor, which can be taken from the fact sheet of the sensor. However,
it is the update protocol (see Section 8.4) that ultimately determines the accuracy of the ob-
server model. Given a guaranteed accuracy we can estimate the number of false negatives and
false positives for a chosen threshold probability. For this estimation we have to make certain
assumptions, e.g. that all possible values have the same probability. If we have more informa-
tion about how the values typically change, reflecting the changes in the real world, we can
improve the estimation by weighting the values accordingly.

 - 39 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The threshold probability directly influences the ratio of false negatives to false positives.
Given a concrete scenario, the user has to decide what the relative costs of false negatives and
false positives are. If, for example, the application is important for the safety of the user – like
a navigation system for visually impaired people, which is investigated as part of the Nexus
project – it may be better to have more warnings (e.g. based on a false positive) than a missed
warning (e.g. based on a false negative), so the threshold should probably be set to a lower
value. For an application that is mostly for the convenience of the user, a higher threshold
probability might be selected.

There can be tools that help the user to find the appropriate threshold probability by calcu-
lating the number of false negatives and false positives for a predefined accuracy and the ex-
pected range of values. We plan to investigate the choice of threshold probability for concrete
application scenarios in our future work.

 - 40 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 8 Concepts and Realization of
Event Observation

In the previous chapter, we have proposed that an event can be specified as a predicate to-
gether with a threshold probability that decides, if the event is considered to have occurred for
a particular state change or not. In this chapter we show how the probability that an event has
occurred can be calculated on the available data. In the first section we look at the system
parameters that are relevant for the observation. In the second section we propose the concept
of an event domain to model the identified system parameters. In the third section, the general
properties of the observer model on which the events are actually observed are discussed. Up-
date protocols that define the properties are presented in the fourth section, before we finally
show in the fifth section how the occurrence probability can be calculated on the observer
model. The sixth section about realization issues concludes the chapter.

8.1 System Parameters Relevant for the Observation
Figure 14 shows a distributed system consisting of a number of nodes. The local models

and the observers with the
observer models are lo-
cated on different nodes.
As the event observation
takes place in a distrib-
uted system, we have to
deal with the typical
properties of such a sys-
tem.

The observation of
events is primarily af-
fected by two properties,
the delay update mes-
sages may experience and
the clock skew.

Node

Observer

Local
Model

Figure 14: Distributed System

Message Delay
The message delay is important for the evaluation of an event predicate as a predicate can

only be evaluated when there cannot be any update message delayed in the network that might
change the outcome of the evaluation. The communication delay that is introduced by the
network itself is only a lower limit of the overall message delay. The message delay is the
sum of all the processing and network delays the message may have incurred on the path from
its original source to the observer node. Figure 15 shows the delays that are incurred from the
occurrence of the real-world event to the delivery of the event notification to the user.

The communication delay is influenced by the underlying network, e.g. there is a big dif-
ference, if we have a backbone network, e.g. a 1 GBit/s LAN, or a wireless connection, in the
extreme case a GSM or GPRS network. The communication protocol used also has an influ-
ence, e.g. a low-level protocol like UDP vs. SOAP over HTTP.

 - 41 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Clock Skew and Time in Distributed Systems
The clock skew is important as it determines the time interval in which the reported model

state has become valid, i.e. the temporal inaccuracy of the information about the state change.

As we are interested in the real-time relation between state changes and causality relation-
ships may not be available, we have to completely rely on real time. As the user may define
events with respect to real time, the clocks do not only have to be synchronized with respect
to each other, but also with respect to a standard time scale. The most widely used time scale
is Coordinated Universal Time (UTC), so we expect that clocks are synchronized with respect
to UTC.

Real World

Sensor

Local Model
Server

Observer
Node

User

∆S ∆SP

∆SU ∆LP

∆LU ∆OP

∆EN

Figure 15: Delay Incurred from the Real-World Event to the User

The clock synchronization mechanism that is used most widely in the Internet is the Net-
work Time Protocol (NTP). The NTP protocol defines a synchronization hierarchy. The root
level servers (level 0) are directly synchronized with a primary reference source, e.g. an
atomic clock. Level 1 servers synchronize their clocks with level 0 servers, level 2 servers
with level 1 servers and so on. The root dispersion defines a conservative estimate of a
clock’s offset to a root source, and the root distance difference defines the (estimated) maxi-
mum offset between a clock and the root source. The root distance is an estimate, because no
real bound can be given NTP provides the method ntp_gettime() that returns the time, the root
dispersion and the root distance.

The last available study on clock synchronization in the Internet was conducted by Minar
in 1999 [Minar 1999]. It is based on 175,000 systems and looks at the root dispersion. Elimi-
nating the worst 3%of the systems with a root dispersion of up to one year, the median root
dispersion is 39 ms, the mean dispersion 88 ms and the standard deviation 175 ms.

 - 42 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.2 Event Domains
 For large networks, e.g.

the Internet as one extreme
case, there are no real bounds
on either delay or clock skew.
However, for a given set of
nodes, especially within local
area networks, reasonable
values for delay and clock
skew can be given. Unless
these networks can guarantee
certain real-time bounds,
which cannot be assumed in
the general case, the given
values are no strict upper
bounds for delay and clock
skew, but “statistical guaran-
tees”. This is sufficient for our
purposes, because due to the
restricted accuracy of the sen-

sor data, we cannot give more than „statistical guarantees“ for the event observation anyway.

To specify these values, we introduce the concept of an event domain. An event domain
consists of a set of nodes for which statistical guarantees for delay and clock skew are given.
Figure 16 shows a number of event domains in an example network.

For the observation of an event, we need to find the event domain with the best values for
delay and clock skew that includes all the nodes involved in the event observation, i.e. the
local model nodes, the observer nodes and all nodes that are needed for passing on notifica-
tions.

In the future, the concept of event domains can be extended to include dynamic informa-
tion, like the current load of the network, which may be especially useful for optimistic obser-
vation strategies, as well as incorporate means for resource reservation in order to guarantee a
distinct upper bound for the delay. The necessary dynamic information could be supplied by a
system management component.

Node

Observer

Local
Model

Event
Domain

Figure 16: Event Domain

8.3 Model Properties Relevant for the Observation
After introducing the underlying system model and the concept of event domains, we pre-

sent the observer model in its general
form. The update protocols, which we
present in the next section, and the system
properties then set the parameters of the
general observer model, yielding the con-
crete observer model on which the event is
observed. In principle the same parameters
also apply to the local models, but on a
smaller scale.

vi.accmin vi.accmax

vi.φ

value

probability

Figure 17: Probability Density Distribu-
tion of Value vi

 - 43 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.3.1 Accuracy
In Chapter 4 we have defined the state of the model as a set of (variable, value) pairs. In

the following we extend the definition of value by providing the accuracy for a given value
that needs to be taken into account for the observation. The limited accuracy of the value is
introduced through both the limited sensor accuracy and the update protocol as we will see in
the next section.

In principle, values can be multi-dimensional and complex. Here we begin with simple,
one-dimensional values, but, as we will see, the concepts can easily be extended to the multi-
dimensional case.

In the most general case, a value vi can be specified in form of a probability density distri-
bution vi.φ over an accuracy interval [vi.accmin, vi.accmax], see Figure 17.

Definition 12: Probability Density Distribution of Value vi

For a value vi a probability density distribution vi.φ over the accuracy interval
[vi.accmin, vi.accmax] can be given as vi.φ[vi.accmin, vi.accmax]

with

If the probability for all the values in the interval is equal, we have an equi-distribution
and it is sufficient to give the accuracy interval [vi.accmin, vi.accmax]. If we do not have any
given probability density distribution, we may also have to assume an equi-distribution or a
normal distribution.

The case of an exact value vi is a further specialization where the accuracy interval be-
comes a single point with a probability of 1.

If we go to n-dimensional values, e.g. a two- or three-dimensional spatial coordinate, the
value is given as an n-dimensional value; instead of an accuracy interval, we have an n-
dimensional body and the probability density distribution is an n-dimensional probability den-
sity distribution over the given body.

For example, if we have a positioning system, the likelihood that the actual position is in
the center of the accuracy area may be higher than at its edges, e.g. see [GPS Signal Specifi-
cation 1995], which can be modeled by a probability density distribution.

8.3.2 Update Interval
The update of model state cannot be attributed to a fixed point in time, but only to a given

time interval [vi.t_accmin, vi.t_accmax], e.g. because of clock synchronization issues. So the
updated value is associated with this time interval. The time interval is based on the time
stamp, which can already be given as an interval (e.g. from the sensor), and the maximum
clock skew. This also means that for the interval in which the new value has become valid, the
new and the old value coexist with the probability of the old value decreasing and the prob-
ability of the new value increasing over the time interval. This has to be taken into account for
the observation.

 - 44 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Again, as the distribution of the time may not be equal over the time interval, a probability
density distribution vi.δ over the time interval can be given as vi.δ[vi.t_accmin, vi.t_accmax] with

8.3.3 Change of Value over Time
For the observation of global events, the observer model has to provide model state over

time. If the maximal change of a value over time is known, a “worst-case” estimation for a
point in time for which no current value is available (yet) can be given. For example, a pedes-
trian may move at a maximum speed of 10km/h, so the current location can be estimated as
the location of the last update plus the product of the time that has passed since then and the
maximum speed. This means that the accuracy interval or body and the probability density
distribution can also change over time, which has to be taken into account for the observation.
In the extreme case, the probability of the event having occurred can cross the threshold prob-
ability simply through the change over time.

For the observation, it not only has to be checked, if the predicate evaluates to true for the
current state, but also for the previous state, as we are interested in the predicate becoming
true, which signifies the occurrence of the event. In some cases not only the current change,
but changes over a longer time interval have to be available for the evaluation of the predi-
cate, so a history of the model state has to be provided. An example for such an event would
be that a value has increased for the tenth time within 5 minutes. Over what period of time the
history needs to be provided depends on the event.

8.3.4 Resulting Model
Figure 18 shows the

model for a given vari-
able over time. At any
point in time the vari-
able has a value that is
given in form of a prob-
ability density distribu-
tion. If there is a new
update, the time density
distribution defines how
the distribution before
the update is “faded
over” to the new distri-
bution. In Figure 18 an
update takes place with
an update interval be-
tween Time 5 and Time
10, which modifies the
accuracy density distri-
bution over time.

As a next step we
look at update protocols

that can be used to provide such a model with data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100
120
140
160
180

0

10

20

30

40

50

Probability

Time

Value

Figure 18: Probability Density Distribution of a Vari-
able over Time

 - 45 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.4 Update Protocols
Update protocols are used to propagate the data from the data model node to the observer

nodes. The update protocols define the data available in the observer model at a given time.
So the update protocols determine the accuracy of the model, thereby defining its “quality”.

We can classify update protocols according to who initiates the check, if an update is nec-
essary, and how the check is triggered (also see [Leonhardi & Rothermel 2001])

As far as initiating the check is concerned, there are two principle options, either the re-
ceiver queries the source, which corresponds to „pull-based“ communication, or the source
sends an update when necessary, which corresponds to „push-based“ communication. As in
our case the initiative for observation has to come from within the system, a „push-based“
approach is appropriate, therefore we will not consider query-based approaches here.

There are two general classes of push-based update protocols, depending on how the up-
date is triggered: value-based protocols and time-based protocols. Value-based update proto-
cols send update notifications based on a change in value and time-based protocols send up-
date notifications in regular time intervals. Time-based protocols as such cannot guarantee
any accuracy of the value. Since this is necessary for the observation, we assume that an ini-
tial accuracy interval or density distribution is available; in addition we need a function that
models the (maximal) change of the value of a variable over time. With this information, we
have a value for any point in time.

Another important aspect is if it has to be guaranteed that the value in the updated model
is within the accuracy distribution at any point in time, or if it is sufficient to have accurate
information for the evaluation at a later, but known point in time. In the first case, it is possi-
ble to do evaluations at real-time with limitations regarding the accuracy, but it also requires
that certain information about how values can change over time is available and that the un-
derlying distributed system provides the necessary „quality of service“ as described for the
event domain.

8.4.1 Value-based Update Protocols
Value-based protocols send an update message whenever the value of a variable has

changed in such a way that an update criteria is fulfilled. This update criteria can also be de-
fined as a predicate that becomes true whenever such a change in the value occurs. This
means, an “update event” has occurred and an update message is sent, so that the variable in
the observer model can be updated by the new value. A typical predicate might specify that a
distance between two values is larger than a given threshold, taking into account the accuracy
information.

In our case, we assume that the accuracy interval for each value is known. If we want to
have a certain accuracy for the observer model – which of course cannot be more accurate
than what is available in the local model – we have to specify this accuracy in the predicate,
i.e. as a threshold.

As mentioned above, there is a difference between protocols that only update the informa-
tion after the source has detected that the accuracy requirement has been violated, as we have
just seen, and protocols that guarantee that a value on the receiver side has a certain accuracy
at any point in time.

In order to realize the latter case, additional information is needed. First, the source has to
have a certain guaranteed accuracy that is more accurate than the accuracy to be guaranteed at

 - 46 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

the receiver side. Then, the source also has to know the maximum delay between itself and
the receiver(s) and information about how the value may change over time in the worst case,
which depends on the characteristics of the information and the maximum delay, which is the
sum of all processing and network delays from the sensor to the receiver. The idea is that the
source has to be able to determine, if the next update it has to send can wait until it receives a
new update without violating the guaranteed accuracy.

In this case, the receiver does not have to wait for the maximum delay with the evaluation,
since all relevant values are guaranteed to be within their accuracy intervals at any point in
time.

Overall, value-based protocols lead to a model with a relatively regular distribution in the
value dimension (see Figure 19 and values v0 (= vi[t0]) to v3), as there is a new update value
with the granularity of the accuracy interval, but there is no regular distribution in the time

dimension (t1 to t3). So, as we can see in
Figure 19, we have a maximum accuracy
interval [vi.accmin, vi.accmax] (shown for v0),
i.e. the maximum inaccuracy, that is con-
stant for the time between updates. Without
any other external information, we do not
know anything about the probability den-
sity distribution vi.φ over this accuracy in-
terval, so we have to assume an equi-
distribution.

In the general case, the predicate can
only be evaluated for any given update

after the maximum delay has passed that update messages can experience in the event do-
main. Only after that delay it is clear that no other update messages that have experienced a
longer delay could influence the evaluation of a predicate for the time in which the update
took place. In case of guaranteed accuracies, however, this is not necessary, as we can always
assume to have the guaranteed accuracy level.

One problem of value-based update protocols is that faults of sources or the network may
not be detected by the receivers. If no message is received, it will just be assumed that the
value is still accurate enough, not that nodes or the network may be down.

Value

Timet1 t2 t3

V1,V3

V0

V2

V0.max

V0.min

Figure 19: Value-based Update
Protocol

8.4.2 Time-based Update
Protocols

Time-based update protocol are trig-
gered by the system clock. An event
notification is sent in regular intervals as
specified. In time-based protocols, there
is no guaranteed accuracy. The accuracy
interval can only be calculated if an ini-
tial value is available and also the maxi-
mum change over time is known.

With the change function being known
to the receiver, this leads to a model, in
which the accuracy interval [vi.accmin, vi.accmax] changes over time (see Figure 20), but, again,
we do not automatically have any information about the probability density distribution vi.φ.
If we want the distribution in our model, we would need additional information. In Figure 20

Figure 20: Time-based Update Protocol

 - 47 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

a probability distribution is indicated through the shading. If we want the most accurate in-
formation for the evaluation of the predicate, we may have to wait for the maximum delay,
but there can also be an immediate evaluation on possibly less accurate values.

Unlike, for the value-based protocol, faults of sources or the network can be detected by
the receivers. If no message is received after the specified time interval plus the maximum
delay, it means that there is a fault in either the source or the network.

8.4.3 Other Protocols
Other variations of the protocols are possible, e.g. there could be a combination of value-

based and time-based protocols, which would solve the problem of detecting faults. In addi-
tion, if the change of a value over time can be predicted, a dead reckoning protocol can be
used, where both sides use the same prediction function and an actual update is only sent
when the difference between the real value and the predicted value crosses a given threshold.
For a broader discussion of different types of update protocols taking the example of location
updates, see [Leonhardi & Rothermel 2001].

8.5 Event Observation
Now that we have defined the observation model and shown how it can be realized using

update protocols, it remains to be shown how global events can be observed based on the re-
sulting model. In order to do that, the probability with which an event has occurred has to be
calculated and compared to the specified threshold probability.

To decide if an event has occurred, it has to be checked, if there was a state change in the
model that leads to the predicate evaluating to true. In other words, evaluating the predicate
describing the event returns false before the state change and true afterwards. In case the val-
ues of the relevant variables and/or the point in time when the change has occurred can only
be determined as intervals with a probability density distribution, as in the model we have
defined in Section 8.3, it may not be possible to determine for certain that such a change in
the evaluation of a predicate has occurred. For those cases, we want to calculate the probabil-
ity with which the predicate evaluates to true. This probability can then be compared with a
predefined threshold probability to decide, if the event is considered to have occurred or not.
In the following we discuss how to calculate this probability. As this gets rather complicated
for the general case, we start out with a number of constraining assumptions that we relax step
by step to arrive at the general case in the end.

We also make a general assumption about the observer model: Values in the observer
model can only change when there is an explicit update, i.e. we assume that there are no
automatic model-internal changes of values over time. This means that predicates only need
to be evaluated when there is an explicit update. At first sight, this may seem very restrictive,
but such changes in the model can be realized through internal updates. So here predicates
only need to be evaluated as the result of an update.

8.5.1 Update in the Exact Case
We start the formalization with the case in which we have an update with an exact value at

an exact point in time. This means we have to evaluate the predicate for the point before the
value was updated as well as for the new value.

Let P be a predicate that is defined over the variables v1, ..., vi given as exact
numbers. The variable v1 is updated at the point in time t1 and t0 is defined to be
t1-ε for ε →0. Then the event specified by P has occurred, if the following holds:

 - 48 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 (Equation 1)

8.5.2 Update with the Value Given as an Accuracy Interval
For the following we no longer deal with exact values, but accuracy intervals. We inter-

pret the predicates as functions that return 0 or 1 for a given set of values and assume that for
each point in an interval, it is equally likely that the point is the actual value, which means we
have an equi-distribution over the interval. (We could also assume a normal distribution, in
which case the next subsection applies.)

As for each value, each point of the interval has the same probability, we have to evaluate
the predicate for all possible combinations of points and take the average. Since we do not
have discrete points, but continuous intervals, we have to integrate over the intervals, inter-
preting the predicate as a function over the values and normalize it by dividing it by the length
of the intervals. The result is a value between 0 and 1 that can be interpreted as the probability
that the predicate holds over the interval.

Let P be a predicate that is defined as above over v1, ..., vi given as accuracy inter-
vals, i.e. vi stands for [vi.accmin, vi.accmax]. |vi| is defined as |vi.accmax- vi.accmin|.
Again, the variable v1 is updated at the point in time t1. The threshold probability
TP is given as a value between 0 and 1.Then the event specified by P is consid-
ered to have occurred, if the following holds:

(Equation 2)

 - 49 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.5.3 Update with the Value Given as a Probability Density Distribution
Instead of an equi-distribution, we can have any probability density distribution over the

given accuracy interval. In this case, we have to integrate over the probability density distri-
butions multiplied by the predicate interpreted as a function. Again, the result is a value be-
tween 0 and 1 that can be interpreted as the probability that the predicate holds over the inter-
val.

Let P be a predicate defined over the variables v1, ..., vi for which probability den-
sity distributions (φi) over the accuracy interval are given. Again, the variable v1 is
updated at the point in time t1 by a new probability density distribution. Then the
event that is specified by P is considered to have occurred, if the following holds:

(Equation 3)

8.5.4 Update over a Time Interval without Any Interleaving Updates
So far, we have looked at the case for which it is known that the update has occurred at an

exact point in time. As this assumption is not very realistic in a distributed system, we now
look at the case, in which it is only known that the update has taken place within a certain
time interval. Not all points in the time interval may have the same probability, so again, we
have to take a probability density distribution into account. As a result, we know for each
point in the time interval with what probability the change has already taken place. In order to
focus on the time dimension, we assume exact values, before integrating all aspects in the
general case at the end.

If there are no other changes during the time interval of interest, it is sufficient to evaluate
the predicate for the begin of the interval, when the update has not yet taken place, and the
end of the interval, when we know for sure that the change has taken place, to determine if an
event has occurred. So basically we have the same situation as in Equation 1 only that t0
marks the beginning of the update interval and t1 the end.

8.5.5 Update over a Time Interval with Interleaving Updates
If the values of other variables that are needed for the evaluation of the predicate can also

change during the time interval in which the update has taken place, it is no longer sufficient
to check at the end of the update interval. The predicate may have become true during the
interval (with a certain probability), but due to other changes, this is no longer the case at the
end of the interval. So, when checking for a given point in time, it is possible that an old and a
new value for the same variable have to be taken into account with the respective probabilities
with which they are valid at that point. Overall, we have to find the point in the time interval
where the predicate is true with the maximum probability.

 - 50 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Let P be a predicate that is defined over the variables v1, ..., vi given as exact
numbers. The variable v1 is updated in the time interval m between t0 and t1. δm is
the probability density distribution over the interval m.

pb(vi,x,t) is the probability that variable vi has the value x at time t. In case there
are no overlapping updates for a single variable, it can be calculated for the update
of variable v1 as follows, where x1 is the value before the update and x2 the update
value, tk is a point in time within the update interval:

S(v,t) is the set of values x1, ..., xi of variable v at time t for which pb(v,x,t) > 0. In
the case of no overlapping updates S(v,t) has at most two values.

is the function that returns the maximum of function f
within the interval (t0 ... t1].

Then the event that is specified by P has occurred, if the following holds:

We face an additional problem, if the intervals for updates of the same variable can over-
lap. Now, a given variable can have more than two different values at the same time, each
with a certain probability. This is not only the case during the update intervals themselves, as
after an update it can only be determined with a given probability which update actually came
first. As a result, the probability of a given value for a variable only becomes 0 after a com-
pleted update of the same variable whose update interval did not overlap with the update in-
terval for the given value. However, we do not look at this case in detail here, because, assum-
ing that all updates come from the same local model, we can determine the sequence of up-
dates and in that case the described problem does not arise.

(Equation 4)

 - 51 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

8.5.6 General Case
Integrating the cases for values given as probability density distributions and updates over

potentially overlapping time intervals yields the general case that allows the evaluation of
predicates over the general model as defined in Section 8.3. In order to get the general case,
we have to replace the predicate (function) in Equation 4 by Equation 3, which yields Equa-
tion 5.

(Equation 5)

8.6 Realization Issues
As can be seen in Equation 5, the calculations in the general case can become rather com-

plicated. So, for efficiency reasons, it may be necessary to only calculate an approximation of
the actual result. The best approach may depend on the actual event and the desired semantics.
The following aspects should be considered when choosing a heuristic for the approximation:

• The complexity of the predicates: The more detailed the specification of the event has
to be, the more complex the predicates are and the more complex the calculation.
Sometimes a slightly less accurately described event can be observed much more effi-
ciently. If the number of cases in which the event actually occurs is low compared to
the number of cases in which the predicate has to be evaluated, it may be worth to
have a test in two steps. The first test just checks a predicate describing a rough ap-
proximation of the event, which can be done efficiently, and only if this evaluates to
true, the actual predicate is evaluated.

• The probability distribution of the values: It may be sufficient to assume an equi-
distribution instead of a complex probability distribution. Depending on the update
protocol this may be all we have anyway.

• The accuracy interval of the values: It may be possible to simplify the calculation by
evaluating the predicate for a few (weighted) representative values instead of the
whole accuracy interval.

• The time interval and probability distribution: If there are no overlapping update inter-
vals, the calculation is the same as in the case where we have exact time points. If up-
date intervals do overlap, it may be sufficient to check for a few values to determine, if
any event may have occurred, and only do an exact check, if this is the case.

As we can see, the calculations that have to be done in the general case can be simplified
for given specific cases. However, what is reasonable in a given case depends on the actual
event and the desired semantics. As an example, [Dudkowski 2002] looks into the observation
of spatial events. For the observation of the event that two users meet (onMeeting), whose
locations are given in form of circular accuracy areas, an approximation based on a number of

 - 52 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

representative values is used. We are confident that this approach will work in other cases and
we plan a more detailed investigation for a number of specific cases.

 - 53 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 54 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 9 Observer Placement
In the previous chapter, we have shown how events can be observed through a distributed

world model and what the relevant parameters are that determine the quality of the model.
The event semantics depend directly on the quality of the model. Therefore, it is important to
observe an event at the location with the best possible observer model, so the placement of the
observer in the network is crucial.

Figure 21 shows two observers. One is connected to the event sources through a fast local
area network, whereas the other is connected through a slow modem. The observer models on
top show the accuracy of a certain value over time as it is available in the respective model.
Whereas on the left side, the accuracy interval is very small for each point in time and the
time when the value changes is relatively accurately defined, this is not the case on the right
side, where the interval in which the value may have changed is relatively long (see Figure 18
for a larger picture of the model).

To derive possible optimization criteria, we first look at the goals of the different parties
involved.

The user of the service wants the best possible event semantics:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120
140
160
180

0

10

20

30

40

50

Probability

Time

Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120
140
160
180

0

10

20

30

40

50

Probability

Time

Value

LS1 LS2

O2O1

Fast LAN Slow Modem

Figure 21: Different Observers and their Respective Observer Models

• maximal observation accuracy

• minimum delay

The operator of the service is interested in performance, stability and scalability, which
corresponds to the following optimization goals:

• balance server load

• minimum network load

As some of the goals are potentially in conflict, e.g. balanced server load vs. maximal ob-
servation accuracy, there have to be trade-offs.

 - 55 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Table 4: Mapping Optimization Goals to Parameters

Optimization Goal Parameters

Observation Accuracy Local accuracy permissions, maximal notifi-
cation rate allowed, clock skew

Minimum Delay Delay, (network load)

Restrict/Balance Server Load Load/node:
number of observers/node,

[sum(load by observers)/node]

Restrict/Minimize Network Load Link load, Sum(link loads)

Table 4 shows a mapping between the optimization goals and the parameters whose val-
ues can be optimized. We can further distinguish between system-dependent parameters, e.g.
delay and clock skew, and policy-dependent parameters, e.g. maximal notification rate al-
lowed.

Different optimization strategies can be investigated:

• System load: to optimize for system load, the load of the possible observation nodes
has to be compared. The advantage is that this is a single value, however the load is a
dynamic parameter that can change over time.

• Delay: to optimize for delay, the delay of the communication paths between the event
sources and the observation nodes has to be optimized. As this involves at least two
values, it is not a-priori clear, if the sum or some other relation, e.g. the difference of
the values, should be optimized. This may also be event-dependent.

• Observation accuracy: as the observation accuracy depends on two parameters, the
maximal notification rate allowed (affects the accuracy in the value domain) and the
clock skew (affects the accuracy in the time domain), a suitable method to combine
the two values has to be found.

If we abstract from the concrete optimization strategies, we have to solve a general opti-
mization problem in which a tree (of logical observation nodes) has to be mapped to a graph
(consisting of event sources and observation nodes) and minimize “costs”, which are defined
by the parameters, e.g. delay, clock skew, 1/(notifications/s), or a combination of the parame-
ters.

In general, multi-parameter optimizations are difficult. Our plan is to focus on the obser-
vation accuracy, and evaluate how that affects the other parameters. Due to time limitations,
we have not been able to do that yet. As the next steps we will look at concrete application
scenarios to have a basis for evaluating the optimization strategies.

Another issue that has to be addressed with respect to the observer placement is the dy-
namic reconfiguration of the observation, Mobile objects move between service areas of loca-
tion servers and handovers are performed on that level. To keep the observation optimal, the
placement of the observation has to be adapted.

So far, we have assumed that there are a number of observation nodes that exist and we
optimize based on those. However, the question for a system operator may be where to place
observation nodes in the first place. Thus, a lot of research questions remain to be solved here.

 - 56 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 10 Integration of Events into Event Sources
Event sources are an important foundation for any event service. We have identified spa-

tial events as the events of primary interest in Nexus. For the observation of spatial events, the
position data of mobile objects is required. In Nexus, the location service stores the position
data of mobile objects. Therefore, the location service has to be instrumented to serve as a an
event source.

In the first section, we describe a specialized event component for the location service,
which was developed as part of a student thesis [Dudkowski 2002] early in the project, as it
was important to have a reference event source. It is specialized with respect to the fixed set
of events that are supported and the interface for registering events. In the second section the
general format for event notifications based on XML is described, and in the third section a
generic XML-based format for the registration of events is presented. In the fourth section, we
describe a generic event component for the location service that was developed as part of the
a diploma thesis [Minder 2003]. This interface supports the registration of events using the
generic XML-based format and allows the integration of new event types through the
download of plug-in triggers.

10.1 Specialized Event Component for a Leaf Location Server
The goals for developing the first specialized event component were to have an event

source that can observe a fixed set of event types in a single leaf location server.

The supported event types correspond to those that we have classified in Section 6.3. We
repeat them here with their specific parameters. The classification of the respective parameter
is added in brackets. A specific parameter has to uniquely identify a single object or area,
whereas a variable parameter can be given as an object selector, i.e. specify attribute values
that an object has to have. For example an object selector can specify that a mobile object has
to be a student or a car.

Data-based Events

• onEnterArea(mobile object (variable), area (specific)): specifies the event that a mo-
bile object enters a given area

• onLeaveArea(mobile object (variable), area (specific)): specifies the event that a mo-
bile object leaves an area

• onMeeting(mobile object (specific), mobile object (variable), distance): specifies the
event that the distance between the two mobile object becomes closer than the given
distance

• onCrossingLine(mobile object (variable), line (specific)): specifies the event that a
mobile object crosses a line

• distPosUpdate(mobile object (specific), report distance (specific)): specifies the event
that a mobile object has moved further than the report distance from the previously re-
ported position; the new object position is sent with the event notification.

Timer-based Events

• contPosUpdate(mobile object (specific), report interval (specific)): specifies the event
that after each report interval, the new object position is sent with the notification.

 - 57 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• contAreaUpdate(area (specific), report interval (specific)): specifies the event that af-
ter each report interval, the positions of all objects in the given area are sent with the
event notification.

Management Events

• onRegisterObject(mobile object (specific)): specifies the event that the given object
has registered with the location service.

• onUnregisterObject(mobile object (specific)): specifies the event that the given object
has deregistered from the location service.

• OnRegisterArea(mobile object (variable), area (specific)): specifies the event that a
mobile object has registered with the location service with a position in the given area.

• OnUnregisterArea(mobile object (variable), area (specific)): specifies the event that a
mobile object has deregistered from the location service with the last position having
been within the given area.

Implementation of the onMeeting Event
As indicated in Subsection 6.3.5, the onMeeting event with one mobile object given in

form of an object selector can be efficiently observed: The onMeeting event has two parame-
ters with dynamic position attributes, i.e. a change in either of these attributes can result in the
occurrence of the event. We now consider the specific mobile object to be the primary mobile
object. If the primary object moves, it can be checked if any mobile object within the given
distance fits object selector, but has not already been within the given distance for the previ-
ous position of the primary object. Whenever the primary object moves, a temporary onEn-
terArea event is registered. The event area is given as a circle around the current position of
the primary object with the given distance as the radius and the mobile object has to specify
the object selector for the onMeeting event. If such a mobile object moves so it is within the
given distance of the primary object, the temporary onEnterArea occurs and as a result, the
onMeeting event can be detected.

Assumptions
For the first implementation we have made a number of assumption. The most important

assumption is that we have exact position information. As we have already seen, this is not
very realistic, but got us started. With the implementation of the generic event component and
the support for the distributed observation of location service events, we now also support
position information with a limited accuracy.

For the movement of the mobile objects, we have assumed that between position updates
they move in a straight line and with constant speed between two position updates. This is
especially important for onCrossingLine events.

Event Triggers
As we discussed in Subsection 6.3.2, user events can be triggered by a number of system

events. The system events in a location server are:

• position update

• register

• deregister

• handover

 - 58 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

In the following we will list the user events that can possibly be triggered for each of the
system events. For each of these system events the predicates describing those user events that
can possibly have occurred have to be checked:

• position update: onEnterArea, onLeaveArea, onCrossingLine, onMeeting, distPosUp-
date

• register: onRegisterObject, onRegisterArea, onMeeting,

• deregister: onDeregisterObject, onDeregisterArea

• handover: onEnterArea, onLeaveArea, onCrossingLine, onMeeting, distPosUpdate

On a timer system event, the contPosUpdate and contAreaUpdate can occur.

To support event observation, observation hooks have to be integrated into the location
server that initiate the checking for event occurrences for each system event.

Efficient Event Observation
Requirement 8: Efficiency states that the observation of events should be as efficient as

possible. This also applies to the observation of events in the event component.

To make the event observation more efficient, the number of predicates that have to be
checked for each system event have to be kept to a minimum. As discussed in Subsection
6.3.5, efficient index structures can help to easily access only the predicates describing those
user events that have to be checked.

As the data-based events are directly related to system events in the location server,
whereas the timer-based events are not, there are two different managers: a spatial events
manager and a timer-based event manager. The timer-based event manager is run as a sepa-
rate thread so it does not interfere with the operations of the location server.

Data-based Events
For the events that are

attached to specific mobile
objects, a simple hash ta-
ble can be used as an in-
dex structure to access the
predicates to be checked.
For the events attached to
a specific area, the predi-
cates to be checked have
to be found through a spa-
tial index structure. We
have used a quad tree, a
two-dimensional index
structure. In the three-
dimensional case an oct tree could be used.

a) Quad Tree Before Splitting

new

a) Quad Tree After Splitting

Figure 22: Quad Tree Example
Source: [Dudkowski 2002]

Figure 22 shows a visualization of a quad tree, to which a point has just been added. Every
quad tree node has the capacity to store a number of points. If the number of points are larger
than the capacity, the node is split into four parts that are added to the quad tree as new leaf
nodes. A quad tree can be defined to cover a certain geographical area, i.e. the root node cov-
ers the whole area and the areas of the child nodes taken together give the area of the parent
node.

 - 59 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The predicates for area events are stored in the quad tree node with the smallest area that
completely covers the event area. The quad tree can be queried for a point location, e.g. as
returned by a position update, to find all the quad tree nodes whose areas overlap with the
given point. Exactly the events stored in these quad tree nodes have to be checked.

Timer-based Events
The predicates for timer-based events can be efficiently accessed by a heap index struc-

ture. For each registered event the next occurrence is calculated and this time is inserted into
the heap. The smallest element, i.e. the timer-based event that occurs next is always on top of
the heap. At the respective time the top element is removed from the heap, an event notifica-
tion is sent, the next occurrence time is calculated and reinserted into the heap. The overall
complexity for all operations on the heap (read next element, remove next element and add
new element) is O(log n).

Congestion Avoidance
If too many timer-based events per unit of time occur, the event component can no longer

keep up with sending event notification. Therefore, a mechanism was implemented that de-
tects a possible overload and prevents the registration of more timer-based events.

Soft State Approach
Requirement 10: Mobility Support states that the effects resulting from the mobility of the

user and the wireless connections used should be taken into account. Mobile devices can eas-
ily run out of battery or loose their network connection. However, the events they have regis-
tered will continue to be observed in the system. To avoid an overload of the system with or-
phaned event observations, a soft state approach is followed. Clients can register events only
for a certain time interval. If they continue to be interested in the observation, they can re-
fresh the observation before the end of the time interval. If there has been no refresh by the
end of the time interval, the event is (implicitly) deregistered.

Registration Interface
The specialized event component has a SOAP-based event registration interface. The in-

terface has a separate method for each supported event.

Event Notification
On the occurrence of an event, an event notification is handed over to the notification ser-

vice. We discuss the general content of this event notification in the next section.

The evaluation of the specialized event component will be presented in Section 13.1, to-
gether with the evaluation of the event service as a whole. More information about the spe-
cialized event component can be found in [Dudkowski 2002] .

10.2 Event Notification Format
An event notification has the following elements:

• ID: The (notification) ID uniquely identifies the event notifications, which corre-
sponds to a concrete event occurrence. For example the onEnterArea(Tom, Office12)
event that occurred at 09:30:25. In Nexus, IDs are given as NOLs (Nexus Object Lo-
cators).

• Predicate ID: The predicate ID uniquely specifies the event that is being observed, e.g.
onEnterArea(Tom, Office12)

 - 60 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• Template ID: the template ID uniquely specifies the type of event being observed, e.g.
onEnterArea(<mobile object>, <area>)

<?xml version="1.0"?>

<notification xmlns="http://www.nexus.uni-stuttgart.de/Notification">

<id>nexus://nexus.uni-
stut-
tgart.de/0x9a06f8e11c3f9dd326e31a6a2437c964/0x9a06f8e11c3f9dd326e31a6a243
7c964</id>

 <predicateId>nexus://nexus.uni-
stutt-
gart.de/onEnterAreaEvent/0xcf2d68a644dd219d09f66deee6874a5f</predicateId>

 <templateId>nexus://nexus.uni-
stutt-
gart.de/onEnterAreaEvent/0x00000000000000000000000000000000</templateId>

 <name>onEnterAreaEvent</name>

 <service>Location Service</service>

 <server>127.0.0.1</server>

 <counter>1</counter>

 <scope>2002-01-17T20:51:14.418+00:00</scope>

 <timestamp>2002-01-17T18:51:14.418+00:00</timestamp>

 <variableList>

 <variable>

 <name>Entering Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea60000000000000000000</value>

 </variable>

 <variable>

 <name>Entering Space</name>

 <type>Nexus Object</type>

 <value><SEGMENT WGS84: 48.7746077, 9.18255183, 0.0; WGS84:
48.77415773, 9.183014, 0.0></value>

 </variable>

 </variableList>

</notification>

Figure 23: Event Notification for an onEnterArea Event

• Name: the human-readable name of the event type, which does not necessarily have to
be unique, e.g. onEnterArea

• Service: specifies the service that has observed the event, e.g. the location service

• Server: specifies the server that has observed the event, e.g. the location server with
the IP address 129.99.99.99.

 - 61 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• Counter: specifies the number of times this event has been observed so far by the
given server, e.g. the 10th occurrence.

• Scope: specifies for how long the event notification is considered valid.

• Timestamp: specifies the time when the event was observed.

• Comment: optional element

• Variable List: the list of event variables, specified as 4-tuples:

o Name: the name of the variable, e.g. Entering Object

o Type: the type of the variable, e.g. mobile object

o Restriction: a possible further restriction of the object, e.g. origin: Germany

o Value: the value of the variable, e.g. Tom’s NOL

An example event notification is shown in Figure 23. The XML schema that defines the
event notification together with more examples can be found in the appendix.

10.3 Generic Event Registration
For the specialized event component we have implemented an interface that has a separate

registration method for each event type. This approach is not very flexible and does not allow
to flexibly add new event types at run-time. For this purpose a generic approach is needed.
We therefore propose a registration message with a generic format for the registration of
events.

In Chapter 7 we have proposed to specify events as predicates. We now propose to make
predicate templates available, one for each type that the user can register. A predicate tem-
plate defines the parameters for the event type. In addition to the predicate template an obser-
vation module has to exist that implements the observation of the event.

This observation module is then loaded by either an observer node or an event source and
instantiated with the parameter values from the event registration message.

Every event has a number of event specific parameters, e.g.

• onEnterArea: the entering object, which is of type mobile object, and the entered area,
which is of type area

• onMeeting: the primary object, which is of type mobile object, and the secondary ob-
ject, which is also of type mobile object

Then, due to the limited accuracy of the data, a probability threshold has to be defined that
determines the minimum occurrence probability up to which an event is considered to have
occurred, so that an event notification is sent (see Chapter 7):

• Probability Threshold: in the range (0, 100] percent

In addition to these required parameters, there are a number of optional parameters, that
can be specified. If a parameter is not given, a suitable default will be used. These parameters
can be grouped into different categories that we discuss now. The parameters in each category
may have to be extended depending on the application domain and the exact requirements.

Quality of Service Parameters
The quality of service parameters are optional, but they could be used to influence the ob-

server placement (see Chapter 9) in a certain way:

 - 62 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• Maximal clock skew: The maximal clock skew refers to the maximal time difference
of any two clocks within the observation hierarchy. (of course this is a “statistical
maximum” and not an absolute bound)

• Maximal delay: The maximal delay refers to the maximal time it takes from the obser-
vation of the occurrence of an event to the delivery of the event notification, possibly
taking multiple processing steps into account.

• Average delay: The average delay refers to the average time it takes from the observa-
tion of the occurrence of an event to the delivery of the event notification, possibly
taking multiple processing steps into account.

• Package loss: The package loss refers to the average rate of lost packages over a cer-
tain amount of time.

• Duplicates: Specifies, if duplicate event notifications are allowed. Duplicate event no-
tifications could either be introduced by the underlying system or in the event observa-
tion, e.g. when a handover of an event observation is performed.

Evaluation Parameters
The evaluation parameters are those that directly influence the evaluation of a predicate,

i.e. they determine if an event has occurred.

• Blocking interval: The blocking interval determines the time after an event occur-
rence, in which the same event is not observed again. For example, after a user has en-
tered an area, due to the limited accuracy of the position data, there may be an oscilla-
tion of the position data showing the user inside and outside the area, which could lead
to a number of events being observed. With a blocking interval, this behavior can be
avoided.

• Event consumption: If an event is a composition of multiple other events, i.e. an event
pattern, there can be multiple occurrences of one of these events, before the occur-
rence of another event, e.g. a sequence A A A B. The question is what event(s) is/are
observed and when the event notification is finally “consumed”, i.e. that it is no longer
available for future event observations. A number of different event consumption pol-
icy have been proposed: chronicle (oldest), recent (newest) [Liebig et al. 1999], con-
tinuous (all subevents initiate a new observation), accumulative (subevents are accu-
mulated).

Notification Parameters
The notification parameters affect the sending of an event notification, i.e. if the notifica-

tion is sent and what the content of the event notification can be.

• Sub-event parameter values: This parameter decides how the values given in the event
notifications of sub-events is included in the event notification of the complex event.
The general options are: do not include, include as a flat list, i.e. as a simple list of
variables of the complex event, or include as a hierarchy to keep the original structure
from the notifications of the sub events. Of course, other, event-specific solutions are
possible.

Management Parameters
The management parameters directly concern the management of the event observation

and the characteristics of the event occurrences themselves.

 - 63 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• Handovers: decides if handovers of the observation are allowed

• Maximal notification rate: limits the maximal number of notifications per second

• Lifetime of registration: specifies for how long an event has to be observed (soft state)

Error Handling Parameters
The error handling parameters specify how to react if an error occurs.

• Error semantics: different semantics are possible: ignore, i.e. ignore the error and con-
tinue, stop, i.e. stop if an error occurs, or warn, i.e. warn the application, e.g. using a
special kind of event notification

Based on these parameters we have defined an XML-based registration language. The
schema and an example can be found in the Appendix.

10.4 Generic Event Component with Plug-In Triggers
The motivation for developing the generic event component for leaf location servers was

that the specialized event component was very efficient concerning the observation of a fixed
set of event types (see Subsection 13.1.1), but it lacked extensibility. To add a new event type,
changes deep in the location server and in different parts of the event component are neces-
sary. The goal was to allow the observation of new event types at run-time through the
download of special observer modules, which we sometimes also call plug-in triggers. In ad-
dition, we wanted to develop an event component that can easily be adapted and integrated
into other (system) event sources.

The general motivation for observing
events in the event source as opposed to an
observation node is that the event seman-
tics of a locally observed event is much
better than the semantics of an event ob-
served further away (see Chapter 8 and
Chapter 9), so events should be observed
locally wherever that is possible.

The generic event component was de-
veloped by Daniel Minder as part of his
diploma thesis [Minder 2003].

Interfaces
Figure 24 shows the three interfaces of

the generic event component. The interface
towards the observation management is
for management purposes, e.g. event regis-
tration. The observation interface is to-
wards the (system) event source, in our
case the leaf location server. It is responsible for the efficient handover of system events. Fi-
nally, the notification interface is responsible for handing over event notifications to the noti-
fication service.

Event
Component

Observation
Management

Notification
Node

Leaf
Location
Server

Observation Management Interface

Observation Interface

N
otification

Interface

Event
Component

Observation
Management

Notification
Node

Leaf
Location
Server

Observation Management Interface

Observation Interface

N
otification

Interface

Figure 24: Interfaces of Event Component

An important design decision was how generic the interfaces could and should be to allow
an efficient management and observation of events.

 - 64 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Observation Interface
The advantage of having a generic observation interface is that new events can easily be

integrated. However, in this case parameters have to be checked first to find out which ob-
server module can handle the event. The advantage of a specialized interface is that this is
automatically known, but, on the other hand, the interface needs to be changed for every new
observer module. In this case, the decision was made to support a combination of both: a gen-
eral interface to provide extensibility and a specialized interfaces for certain events for which
efficiency is crucial.

Observation Management Interface
The observation management interface is responsible for the registration of events, the de-

registration of events, for the refresh of event registration, as a soft state approach has been
implemented, and for the handover of event observations. A handover of the event observa-
tion has to take place, if the mobile object to which the observation is attached moves out of
the service area of a leaf location server. Then it is handed over to another leaf location server
and the same handover has to happen on the level of the event components.

As management operations are relatively rare, the general drawbacks of a generic inter-
face do not play an important role. Therefore a SOAP interface was implemented that takes
the XML-based event registration message presented in Section 10.3.

Notification Interface
The notification interface is defined by the notification service. The event notification has

the format described in message as discussed in Section 10.2.

Recovery
Requirement 7: Fault Tolerance states that the event service should be tolerant to failures.

In case a location server crashes, the event component will also crash and with it its current
state is lost. For those events, for which that makes sense, the initialization data can be kept
on persistent storage. When the location server recovers, the respective events can be reregis-
tered and the observation resumed.

Reuse of Observation
Modules

Registration
Component

Observation
Module

Manager Observation
Module

Observation
Module Loader

Notification
Module

Event
Component

Observation
Management

Notification
Node

WWW

Spatial Events
Manager

Timer Events
Manager

Leaf
Location
Server

Registration
Component

Observation
Module

Manager Observation
Module

Observation
Module Loader

Notification
Module

Event
Component

Observation
Management

Notification
Node

WWW

Spatial Events
Manager

Timer Events
Manager

Leaf
Location
Server

Certain events provide
the basis for the observation
of other events. There can be
a whole hierarchy of obser-
vation modules. The same
basis modules may be needed
for different observations, so
it would be inefficient to ob-
serve the same event multiple
times with different observa-
tion modules. Therefore, the
reuse of observation modules
is supported in the event
module. Whenever a new

event is registered, it is
checked, if the event is al-

Figure 25: Architecture of Event Component

 - 65 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

ready being observed.

Architecture of the Event Component
Figure 25 shows the architecture of the generic event component.

When the observation of an event is registered, the main module checks, if an existing ob-
servation module can be reused. If this is not the case, it requests an observer module from the
observation module loader. It registers all necessary sub-events. There are checks that prevent
possible cycles in the observation module hierarchy.

The observation module loader loads the locally available modules on startup. When a
new observation module is requested, it checks if such a module is locally available. If this is
not the case, it tries to download it using a URLClassLoader. Finally, it returns the instanti-
ated observation module.

The observation modules have to implement different interfaces depending on what kind
of system events they require. Observation modules that need data for a specific object have
to implement the ObjectModule interface, observation modules that require data for a specific
area have to implement the AreaModule interface. Both interfaces are derived from the Spa-
tialModule interface. Observation modules that are timer-based have to implement the
TimerModule interface. To implement an event component for a different event source, new
interfaces have to be provided.

The spatial events manager manages all observation modules that directly depend on the
location server system events. Just as in the specialized event component a hash table (or al-
ternatively a linked list index structure) is used for object-based events and a quad tree (or
alternatively a linked list) is used for area-based events. The events that depend on both object
and area are registered in both indexes. A duplicate elimination mechanism is used to prevent
double evaluation. The timer events manager manages all time-dependent events.

The purpose of a manager is to efficiently determine for each system event, which obser-
vation modules need this information. If events are to be observed that are neither spatial nor
timer-based, a new manager has to be implemented.

With its general approach, the generic event component can easily be integrated in other
event sources. We currently plan to integrate it into the new version of the Nexus spatial
model server that is just being developed.

The performance of the generic event component is evaluated and compared to the spe-
cialized event component in Section 13.1. For more information about the generic event com-
ponent see [Minder 2003].

 - 66 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 11 Observation Service
The observation service is responsible for observing the events that have to be observed

on distributed data, i.e. those events that cannot be observed locally within an event source. A
general observation service framework has been developed as part of a diploma thesis
[Boronas 2003]. Within this framework, the observation of events as described in Chapter 8
can be realized. An important goal when developing the framework was its modularity, so
that components can easily be extended or replaced.

11.1 Requirements
The general requirements that are important with respect to the observation service are

Requirement 1: Data Distribution Transparency, Requirement 3: Optimal Event Semantics,
Requirement 5: Minimum Notification Delay, Requirement 6: Scalability, Requirement 7:
Fault Tolerance, Requirement 8: Efficiency, Requirement 9: Interoperability, and
Requirement 10: Mobility Support. In the following we will discuss the detailed requirements
that follow from these general requirements with respect to the observation service:

• To fulfill Requirement 1: Data Distribution Transparency, a client has to have a single
point for registering events. So the event service is responsible for registering and ob-
serving the event. This includes:

o the registration of sub-events

o the optimal placement of the observation of global and composite events
(Requirement 3: Optimal Event Semantics and Requirement 5: Minimum Noti-
fication Delay)

o the efficient observation (Requirement 8: Efficiency) of the global event based
on data from multiple sources or the composite event based on multiple sub-
events

• It should be possible to add observers for new event types at runtime. Following from
that, there have to be mechanisms and policies to control the addition of new event
types, as they can pose a possible security threat.

• The handover of observations should be supported, in order to keep the event seman-
tics optimal (Requirement 3: Optimal Event Semantics) during the course of the ob-
servation, e.g. a mobile object may move into the service area of another leaf location
server. The handover on the level of leaf location servers may make the observation
suboptimal, which may be corrected by a handover between observation nodes.

• For efficiency reasons (Requirement 8: Efficiency) the same event should only be ob-
served once, i.e. the observation should be reused, if multiple clients are interested in
the same event.

• The replication of the event observation should be possible, e.g. if a server crashes or
it gets (temporarily) disconnected from the network (Requirement 7: Fault Tolerance).

• Again, a soft state approach should be used to deal with observations that have not
been properly deregistered (Requirement 7: Fault Tolerance, Requirement 10: Mobil-
ity Support).

• Scalability (Requirement 6: Scalability) and interoperability (Requirement 9: Interop-
erability) are of major importance for the whole event service, which of course in-
cludes the observation service.

 - 67 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• As already mentioned in the introduction to this chapter, the modularity of the obser-
vation service is important, so that components can easily be extended or replaced.

11.2 Overview
Figure 26 shows a simple configu-

ration of the observation service. There
are two types of components: the ob-
servation management and the observa-
tion nodes. The observation manage-
ment is responsible for the placement of
the event observation and the event
registration as indicated by the dark
arrows, whereas the observation nodes
are responsible for the actual observa-
tion. The event notifications that are
sent are indicated by the lighter arrows.

The observation of events is real-
ized through observation modules,
which can be loaded at runtime

In the following section we look in
detail at the observation nodes and ob-

servation modules. In Section 11.4 we
discuss the observation management.

Figure 26: Observation Service Over-
view

Client

Observation
Management

Observation
Node

Event
Source

Event
Source

Observation
Node

Observation
Service

11.3 Observation Nodes & Observation Modules
Figure 27 shows the internal structure of an observation node. In the following we present

the different components:

• Registration Component: The registration component provides the interface for the
observation management component, or the client, if the client should directly contact
an observation node. It accepts registration messages of the format defined in Section
10.3. In principle, the registration component may support different communication
technologies. Currently only SOAP is supported.

• Observation Module Manager: When a new event is registered, it delegates the load-
ing of the respective observation module to the observation module loader and then
initializes the returned observation module. During the lifetime of the observation, it is
responsible for the management of the observation modules and their deregistration;
again, we employ a soft state approach, so the registration has to be renewed regularly.

• Observation Module Loader: The observation module loader loads the observation
modules. The observation module loader first checks, if an observation module is
available locally. If not, it has to be downloaded from a web server, i.e. by a Java class
loader over HTTP. Of course there are security issues related to downloaded code.
Therefore, the download can be restricted to trusted servers and only signed observa-
tion modules can be accepted.

 - 68 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Registration
Component

Observation
Module

Manager Observation
Module

Observation
Module Loader

Dispatcher

Input
Module
Timer.

Notification
Module

Observation
Node

Input
Module
AWQL

Input
Module

Event Serv.

Observation
Management

Notification
NodeFederationTimer

WWW

Registration
Component

Observation
Module

Manager Observation
Module

Observation
Module Loader

Dispatcher

Input
Module
Timer.

Notification
Module

Observation
Node

Input
Module
AWQL

Input
Module

Event Serv.

Observation
Management

Notification
NodeFederationTimer

WWW

Figure 27: Internal Structure of Observation Node

• Observation Module: An observation module implements the evaluation of a predi-
cate describing an event. At startup, it is initiated with the event parameters provided
by the registration message (see Section 10.3). During the event observation, it re-
ceives event notifications that are stored in a queue. This information is then inte-
grated into the internal state of the observation module. It is checked, if the resulting
state change makes the predicate become true. If additional information is needed, an
observation module can also query services, e.g. a Nexus spatial model server.

• Input Modules: Input modules provide an infrastructure for the observation modules.
This means that observation modules do not have to implement their communication
themselves. Instead they only communicate with a single component, the dispatcher.

• Dispatcher: Observation modules hand over registrations for sub-events, queries etc.
to the dispatcher, that passes it on to the correct input module, so the observation
module does not need to know about the input modules themselves.

• Input Module “Event Service”: The input module for the event service is used by the
observation modules to register events and receive event notifications. The module
passes on event registrations from the observer modules to the observer management
and passes the event notifications from the notification service on to the observation
modules.

• Input Module “AWQL”: The input module sends AWQL queries to a spatial model
server/federation and returns the AWML answers to the requesting observation mod-
ules.

• Input Module “Timer”: The timer input module registers timer events and passes on
event notifications when a timer event has occurred.

 - 69 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

• Notification Module: When the occurrence of an event is detected, the observation
module passes on a notification to the notification module, which hands it over to the
notification service to deliver it to all the clients interested in the event.

Replication
The idea behind replication is that multiple observation modules on different observation

nodes observe the same events. There is one active, primary observation module sending noti-
fications and multiple passive observation modules that observe the event, but do not send any
event notifications. Through regular synchronization with the primary observation module, it
can be detected when the primary module has failed and another observation module can take
over. The full replication strategy has not yet been implemented, but the mechanisms to do so
are available.

Handovers
For the handover of an observation, the state of the observer module has to be transferred

from one observation node to the other. A two phase handover protocol is needed to realize a
safe handover. In the first phase, the observation on the new observation node is prepared, i.e.
the module is initialized and the necessary sub-events are registered. In the second phase, the
state of the old observation module is transferred. This requires that the observation module
has to implement a method to extract its state and also a method to set the state in the new
observation module. For the handover itself, there is a trade-off: either the observation is “fro-
zen” during the handover, i.e. no event notifications are sent during the second handover
phase, or both observation modules may observe the event in parallel for some time, in which
case there is no freeze, but there may be duplicate event notifications, which are difficult to
detect as they come from different observation nodes and may have slightly different time-
stamps.

A performance evaluation of the observation node can be found in Section 13.3. For more
information about the observation service see [Boronas 2003].

11.4 Observation Management
The task of the observation management component is to accept event registration re-

quests from client applications, find the event sources, optimally place the observation of
global and composite
events on an observation
nodes and register the
event and all sub-events.

Figure 28 shows an
example: “Inform me
when the outdoor tem-
perature is greater than the
average indoor tempera-
ture.” There are three sen-
sor, one outdoors (OTS),
two indoors (ITS 1) and
(ITS2).

On the left side, the
logical observer structure
is shown. First the average
of the two indoor sensors

GT

OTS AVG

ITS1 ITS2

ot AVG(it1, it2)

it1 it2

GT

OTS AVG

ITS1 ITS2

ot AVG(it1, it2)

it1 it2
ITS1 ITS2

OTS

?

?

O1

O2

O3
O4

Figure 28: Observation Placement in the Observa-
tion Management

 - 70 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

has to be calculated (AVG), then it has to be compared to the value of the outdoor sensor
(GT). The mapping to the event sources (OTS for the outdoor sensor, ITS1 and ITS2 for the
indoor sensors) is clear, as only they have the necessary data. For the observation nodes, there
is a choice, i.e. O3 or O4 for AVG, and O1 or O2 for GT. For this purpose a suitable observer
placement strategy is needed (see Chapter 9). Finally, the registration of sub-events should be
bottom up, because if a registration with an event source fails for some reason, the event can-
not be observed, whereas if it fails for an observation node, alternatives can be tried.

To optimize the event observation, after receiving an event registration, it should first be
checked, if the event or any sub-events are already being observed, so the observation module
can be re-used for the new observation.

The finding of the respective event sources is system dependent. In Nexus we can distin-
guish between object-dependent data and location-dependent data. Location-dependent data
can be found with the help of the Area Service Register, which given an area and the object
type of interest returns the servers that have data for the given area and object type. Object-
dependent data can be found using the ID, in case of stationary object, as the server that stores
an object is encoded into the ID. For mobile objects, the location service has to be queried.

Based on the event sources, the event domains with the best characteristics that contain all
the event sources have to be found. Within these event domains the optimal observation node
has to be found.

The current implementation of the observation management is very rudimentary and does
not support this functionality yet. So far, the existing observation nodes are hard-coded into
the observation management. We also have not been able yet to evaluate the different ob-
server placement strategies (see Chapter 9) due to time restrictions. A good observer place-
ment strategy is a prerequisite for a good observation management. We plan to investigate
these issues in the near future.

 - 71 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 72 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 12 Notification Service
The purpose of the notification service is to efficiently deliver event notifications to inter-

ested clients. As the notification service is an essential part of the event service, we had de-
cided to develop two prototypes. The purpose of the first prototype, described in Section 12.1,
was to get started with a simple version and gain experience. Based on that, a second proto-
type was developed as part of a diploma thesis [Till 2002]. It is described in Section 12.2. A
.NET-based version of the second prototype was implemented in C# as part of a student thesis
[Dieterle 2003]. The purpose was to evaluate the interoperability of the SOAP-based commu-
nication and to compare the performance of the different platforms. This implementation is
described in Section 12.3. The evaluation of the performance and scalability of the event ser-
vice can be found as part of the general evaluation in Chapter 13.

12.1 First Prototype

12.1.1 Requirements
The notification service is a fundamental part of the event service, because it is used by all

other event service components. Therefore we began the project with a first implementation.
Not all requirements were known at the beginning of the project. They only became clear in
the course of the project. Some requirements like Requirement 6: Scalability, Requirement 7:
Fault Tolerance, and Requirement 8: Efficiency, only played a secondary role here.

As we wanted to gain some experience with the web service technology that was estab-
lishing itself as a standard at that time, we decided to use the SOAP protocol for the commu-
nication. SOAP (which used to stand for Simple Object Access Protocol) is a light-weight
XML-based protocol that defines the serialization of data and is mostly used over HTTP. Us-
ing standards that are available for all relevant platforms fits well with Requirement 9: Inter-
operability.

12.1.2 Design
As we have seen in Sec-

tion 6.4, in some typical
Nexus scenarios only few
clients are interested in the
observation of a certain
event. Therefore, the compo-
nents communicate directly
with each other. Using multi-
cast on an overlay network
does not make sense in such a
scenario, as the overhead for
keeping the structure is not
justified with regard to the
efficiency that could be
gained.

As the clients explicitly
initiate the event observa-
tion, they know the ID of the events they are interested in. Therefore, an id-based notification
mechanisms is sufficient. Content-based addressing would not help, because no similarity
between different events can be exploited. For example, if somebody is interested in an onEn-

Notification
Node

Event
Source

Event
Source

Notification
Node

Notification
Node

Notification
Node

Notification
Node

Event
Source

Event
Source

Client

Client

Client

Client

Client

Central
Notification

Register

Figure 29: First Event Service Prototype

 - 73 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

terArea event for his office, he will not automatically be interested in an onEnterArea event
for the office of his colleague.

The communication interface was kept general, so other notification mechanisms could be
added later.

Figure 29 shows the architecture of the first notification service prototype. The arrows in-
dicate the directions in which the components communicate with each other. The notification
service consists of a number of notification nodes and a central register. A client registers its
interest in an event (based on the event ID) with its pre-configured notification node. The idea
is that a notification node runs on each device, but a configuration with a distant notification
node is also possible. The nodes in turn register their interest in the event with the central reg-
ister (light arrows).

An event source passes an event notifications to its pre-configured notification node (dark
arrows). The notification node queries the central register for the notification nodes that are
registered for this event (light arrows) and directly send the event notification to each of them
(dark arrows). The notification nodes then pass the event notification on to all registered cli-
ents (dark arrows).

12.1.3 Evaluation
The notification service prototype was implemented in Java based on Apache SOAP, the

only SOAP implementation for Java that was available at that time. Apache SOAP is imple-
mented as a servlet that was run inside the Apache Tomcat Servlet container. The perform-
ance of the first prototype was sufficient for small-scale examples, but the scalability of the
underlying architecture is limited due to the centralized register.

A general problem with SOAP was that for the delivery of SOAP notifications the event
clients have to act as servers with respect to the SOAP/HTTP connection. Therefore they have
to run a web server, which is not always possible on mobile devices like PDAs due to their
limited resources.

12.2 Second Prototype
After gaining some experience with the first notification service prototype and after the

requirements for a notification service in the given environment became clearer, a new notifi-
cation service was designed and prototypically implemented as part of a diploma thesis [Till
2002].

12.2.1 Requirements
The general requirements, especially the Requirement 6: Scalability, Requirement 7: Fault

Tolerance, Requirement 8: Efficiency, Requirement 9: Interoperability, and Requirement 10:
Mobility Support have been the focus of attention for the design of the second notification
service prototype.

On a more detailed level, we have identified the following requirements:

• Scalability: In the context of the notification service, scalability means scalability to
large networks, in the extreme case the whole Internet. It also means scalability with
respect to a number of parameters that we have identified in Section 6.4, i.e. the num-
ber of clients, the number of event sources, the number of event types, the notification
rate and the number of subscriptions.

• Number of clients registered for an event: The investigation of more scenarios led to
the observation that in a large number of cases only a small number of clients is inter-

 - 74 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

ested in a certain event. There are only a few scenarios with a higher number of inter-
ested clients, e.g. in the city scenario, see Subsection 6.4.3.

• Number of event sources per event: There are possibly multiple event sources for a
single event, which has to be considered in the design of the notification service.

• Locality principle: Another important observation is that most events are only of inter-
est locally.

• Configuration: Dynamic and automatic configuration and possibly reconfiguration is
important for a fault tolerant system. It also simplifies the operation of the event ser-
vice.

• Interoperabiltiy: As the notification service may be operated by different providers in
a large-scale environment, the interoperability between different platforms is impor-
tant.

• Mobile clients: The mobile clients have limited computing resources, limited battery
power and wireless communication that is not as reliable as the cable-bound commu-
nication in the infrastructure. This has to be taken into account in the design of the no-
tification service.

12.2.2 Design
As scalability

and fault tolerance
is required, the ar-
chitecture may not
include a single
point of failure. So
a central register as
in our first proto-
type is not accept-
able, which also
means that we need
a new design.

Figure 30 shows
the new notification
service architecture.
Again the arrows
indicate which
components com-
municate with each
other.

Figure 30: Second Notification Service Prototype

Notification
Node

Event
Source

Event
Source

Notification
Node

Notification
Node

Notification
Node

Notification
Node

Event
Source

Event
Source

Client

Client

Client

Client

Client

Advertisement
Register

Advertisement
Register Advertisement

Register

Advertisement
Register

Advertisement
Register

Notification Source
The Notification Source, i.e. event sources or observation nodes, use a notification node as

connection point to the notification service. They create event notifications (see Section 10.2)
and pass them on to the notification node. If they start observing an event they advertise this
to the notification service and unadvertise it again, when they stop the observation.

 - 75 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Notification Client
Notification clients also use notification nodes as connection points. They register (or sub-

scribe for) events with the notification node and receive event notifications.

Notification Node
Taken together, the notification nodes make up the notification service. A notification

node provides the access point to the notification service for both the notification sources and
the clients. It handles advertisements, subscriptions, and event notifications. The notification
service has two registers, a subscription register that is local to each node (not shown in
Figure 30), and an advertisement register that is distributed over all the notification nodes.

Subscription Register
The local subscription register manages subscriptions for local clients and subscriptions

from other notification nodes for events that are observed by local notification sources. For
the subscription register, there is no difference between the two kinds of subscriptions.

Advertisement Register
The advertisement register is distributed over the notification nodes. The advertisement

register of each notification node manages its share of mappings from event IDs to notifica-
tion sources that observe events with the given event ID. So, the advertisement register can
answer which notification nodes have event sources that observe an event with a given event
ID. The mapping of event ID to notification node and the implementation of the advertise-
ment register is discussed in the next subsection.

Functionality

• Advertise: The notification source advertises an event ID to the notification node. The
advertisement is passed on to the advertisement register on the responsible notification
node that stores the mapping of event ID to event sources.

• Subscribe: The client subscribes for an event ID with the notification node. The noti-
fication node checks, if it has already subscribed for this event. If this is not the case, it
queries the advertisement register with the given event ID. The advertisement registers
returns a list of all the notification nodes that have notification sources observing the
event with this event ID. Finally, the notification node registers with all notification
nodes on the list. It also registers with the advertisement register to receive an
event notification, if a new notification source for this particular ID becomes avail-
able.

• Notify: The notification source passes the event notification to its notification node.
The notification node notifies all registered subscribers, both notification nodes and
local clients. The notification nodes receiving the notification pass it on to their local
clients.

• Startup: At startup, the notification node tries to find another notification node. If no
notification node is preconfigured, it uses an expanding ring search to find the closest
notification and integrates itself in the notification service.

Discussion of Design Decisions

• Structure: The problem with using a fixed hierarchical structure for delivering event
notifications is the problem of failures, especially of the root node, which can become
a single point of failure. Therefore, we have decided to use a peer-to-peer structure.

 - 76 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

If a node fails, the other nodes are not affected and the share of the node’s advertise-
ment register can be taken over by other nodes. To avoid temporary problems with the
advertisement information, it can be replicated on other nodes, see Subsection 12.2.3.

• The following subscription strategies exist:

o Local: If subscriptions are only stored locally, the event notifications have to
be broadcast, which results in poor scalability.

o Distributed: In the distributed case, the subscriptions have to be broadcast and
stored on each node. This results in poor scalability regarding subscriptions.

o Hierarchical: The hierarchical subscription strategies requires a fixed hierar-
chical structure that we want to avoid.

o Explicit advertisement of event observations: In this case, the subscription is
only stored locally, whereas the advertisement information is available for the
whole notification service. Event notifications are delivered directly to local
clients and the notification nodes with local clients. Advertisements are stored
in a distributed register. They are only needed to find the notification nodes
that have event sources, so that notification nodes with clients can subscribe
there.

We have decided to take the last alternative. This requires another step, i.e. that the
event sources advertise an event observation. Compared to the alternatives, this is still
a much better solution, if we can efficiently realize a distributed register. This is
shown in Subsection 12.2.3.

• Communication: We have decided to support different communication protocols.
Therefore, the communication is encapsulated using interfaces. Thereby the use of
communication mechanism is transparent to the notification service components and
can be easily changed. Currently we support communication mechanisms using SOAP
and plain TCP/IP. Other communica-
tion mechanisms can easily be
added, e.g. for events with a large
number of subscribers.

• Fault tolerance: Again, we have de-
cided to implement a soft state ap-
proach, so state related to nodes that
are permanently unreachable is even-
tually discarded. As already men-
tioned, replication of advertisement
register entries can make the overall
service more reliable.

The evaluation of the notification service
performance can be found in Chapter 13.
More information about the second notifica-
tion service prototype can be found in [Till
2002].

Figure 31: Routing in Pastry
Source: [Castro et al. 2002]

 - 77 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

12.2.3 Distributed Advertisement Register based on Pastry
We have decided to implement the distributed advertisement register based on Pastry, a

peer-to-peer system that was developed by Microsoft Research in Cambridge, in cooperation
with Rice University, Purdue University, the University of Washington and Microsoft Re-
search in Redmond. In contrast to Scribe [Rowstron et al. 2001], we have used Pastry only for
implementing the advertisement register and not for the notification service itself, because we
need to know the communication characteristics as specified for the event domains and this is
not possible on an overlay network with a changing topology.

In Pastry, every node has a unique node ID. Messages with an ID can efficiently be routed
to the node with the node ID that is closest to the message ID (see Figure 31 for an example).
In addition to the closest node, the n nodes with the closest IDs can be addressed, which can
be used to improve the fault tolerance of the system. Nodes stay in contact with their numeri-
cally closest neighbors, so they can react to node failures. A detailed description of Pastry can
be found in [Rowstron & Druschel 2001].

The distributed advertisement register is realized as follows: The advertisement for an
event with a given event ID is stored on the notification node with the node ID that is closest
to the event ID. To increase the reliability, the advertisement can be stored at the n nodes
with IDs closest to the event ID. If a node fails this is detected and the information can be
replicated on the new n-closest node. If a new node is added to the system, the respective in-
formation can be transferred to the new node and deleted from the n+1-closest node.

12.3 .NET-based Implementation
We have reimplemented the notification service (second prototype) in C# based on the

.NET platform as part of a student thesis [Dieterle 2003]. The goal was to test the interopera-
bility between the different SOAP implementations, to compare the performance between the
implementations and to get some experience with the .NET platform.

.NET platform
Visual Studio .NET provided a very nice environment for software development. Espe-

cially, the .NET support for web services was extremely helpful to get started.

Pastry

Unfortunately, we had to realize that no full implementation of Pastry for .NET was avail-
able, so the distributed register could not be realized on the .NET platform. Instead, we im-
plemented a centralized version.

SOAP and XML Web Services in the Internet Information Server
With SOAP, we had the problem that, in order to receive SOAP calls, a component has to

run within the Internet Information Server (IIS). As event notifications have to be delivered to
clients using SOAP, the client has to run in IIS. The reason is that, with respect to the SOAP
communication, it acts as a server. So, the notification client has to be an XML Web Service.
Unlike their Java equivalents, XML Web Services under .NET cannot have user interfaces,
which is of course inconvenient for client applications. So, in practice, another solution has to
be found, e.g. a TCP/IP version could be implemented to avoid the problem. The use of IIS on
mobile devices with limited resources is also not possible.

 - 78 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Limitations of IIS on Non-Server Editions of Windows
The notification service was tested on Windows XP Professional. IIS has a limitation of

10 open connections in parallel on non-server editions. This was just sufficient for the tests,
but might represent a problem for notification nodes in any larger scenarios.

Interoperability
The .NET-based version was implemented in such a way that the interoperability between

.NET-based and Java-based components was possible. Due to the incompatibilities of the ad-
vertisement register (which would require interoperating pastry implementations), it was only
possible to test how .NET clients and .NET notification sources interoperate with Java-
notification nodes. This test was successful, so the SOAP communication based on the two
different SOAP implementations, Apache SOAP on the Java side and .NET, actually provides
the interoperability that we expected.

The performance comparison between the two notification service implementations can be
found in Chapter 13 together with the overall evaluation of the event service. More informa-
tion about the .NET-based implementation of the notification service can be found in
[Dieterle 2003].

 - 79 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 80 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 13 Evaluation
In this chapter we describe the integration of the event service into the Nexus platform and

the evaluation of the different event service components and their interaction. The focus of the
evaluation lies on the performance of the event service, especially regarding Requirement 6:
Scalability and Requirement 8: Efficiency. The evaluation is based on the prototype imple-
mentation of the Nexus platform, primarily on the location service prototype.

In the first section the performance of the specialized event component of a location
server is evaluated and then compared to the generic event component that allows the integra-
tion of plug-in triggers. In the second section we investigate the throughput and delay charac-
teristics of the notification service, before the performance of the observation node and the
observation of global events is evaluated in the third section. In the fourth section, we de-
scribe the conceptual integration of the event service components into the Nexus platform and
the use of spatial events in Nexus applications. The fifth section summarizes the evaluation
results.

13.1 Leaf Location Server As Event Source
The primary event sources within the Nexus system are the location servers, or more pre-

cisely the leaf location servers, because only they store the position information of mobile
objects. On the one hand the position information of mobile objects is highly dynamic, on the
other hand location is the primary context information for a large class of context-aware ap-
plications. So the spatial events that can be observed in the location service provide the basis
for evaluating our event system.

Even though the location service itself is not part of the project, the efficiency of its event
component, especially the improvements achieved through the use of special index structures,
is of general interest. Other event sources can profit from the experience we gained with a
location server as an event source.

As discussed in Chapter 10, there are two implementations of the event component of the
location server. The first was developed by Dominique Dudkowski as part of his student the-
sis [Dudkowski 2002]. It tightly integrates the event component with the location server and it
has a specialized interface for registering certain basic events. The second is an event compo-
nent developed by Daniel Minder as part of his diploma thesis [Minder 2003]. It has a generic
interface that allows the integration of plug-in triggers. With this concept new types of events
can be integrated at a later time. We first present a summary of Dominique Dudkowski’s
evaluation of his specialized event component and then compare it with the evaluation results
from Daniel Minder’s generic component.

13.1.1 Evaluation of Specialized Event Component
For the performance evaluation Dudkowski used the following computer [Dudkowski

2002]:

The performance experiments were
run locally within a single Java Virtual
Machine. Instead of the real notification
service, a UDP-based one was used that
provided only the functionality that was
needed for evaluation purposes.

Sun Ultra Sparc
CPU: 4 CPUs @ 450 Mhz
RAM: 1 GB
OS: Sun OS 5.8
Programming Language: Java 1.2.2

Sun Ultra Sparc
CPU: 4 CPUs @ 450 Mhz
RAM: 1 GB
OS: Sun OS 5.8
Programming Language: Java 1.2.2

 - 81 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

The parameter that measures the performance of an event source is the number of system
events that can be processed per second. In the case of the location server the most important
system event is the position update, because it is by far the most frequent system event.

The parameters that influence the performance are:

• Mobile Objects

o Number

o Step size, i.e. how far do they move between updates

• Registered User Events

o Type

o Number

For area-/location-based events:

• Size of the observation area

For timer-events:

• Report interval

For a number of special events, other parameters are also of importance. We discuss them
together with the evaluation of that particular event.

An important issue for the observation of events is to reduce the number of user events
that have to be checked for each system event. As discussed in Subsection 6.3.5 and in Sec-
tion 10.1, index structures can be used to efficiently access those events that have to be
checked.

For the events that were attached to an object, we used a hash table over the object id. For
the events that were attached to a geographical area, we used a quad tree, a suitable two di-
mensional index structure (see Section 10.1). Each quad tree node could hold ten elements
before it was split and four children were added to the tree.

We compared the results achieved with the index structure with the results achieved with
a linked list containing all registered events. As all the elements of the list have to be checked
every time, this corresponds to the worst case.

0

2

4

6

8

10

10 100 1000 10000

pe
rfo

rm
an

ce
 b

oo
st

quad tree

1

quad tree

linked list

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

lo
ca

tio
n

up
da

te
s

pe
r s

ec
on

d

Figure 32: onEnterArea Performance with Standard Parameters
 a. Performance Comparison, b. Performance Boost with Quad Tree Implementation

Source:[Dudkowski 2002]

 - 82 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

onEnterArea
The onEnterArea event is attached to a specific area, so the quad tree index structure is

used.

For the evaluation of the onEnterArea event the following default parameters were used:

• Number of mobile objects registered: 10,000

• Step size of mobile objects: 10m

• Size of observation area: 200m * 200m (= 40,000 m²)

As explained above, the performance is measured in number of position updates per sec-
ond. Figure 32 shows the performance of onEnterArea with default parameter settings. With
very few events registered, the linked list slightly outperforms the quad tree index. The per-
formance boost achieved reaches a maximum factor of about 8.8.

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

lo
ca

tio
n

up
da

te
s

pe
r s

ec
on

d

100 m × 100 m

200 m × 200 m

500 m × 500 m

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

po
si

tio
n

up
da

te
s

pe
r s

ec
on

d

100 m × 100 m

200 m × 200 m

500 m × 500 m

Figure 33: onEnterArea Performance for Different Area Sizes
a. Quad Tree, b. Linked List
Source:[Dudkowski 2002]

In Figure 33 the results for varying area sizes are shown for both the quad tree index struc-
ture and the linked list. The area sizes are:

• 100 m * 100 m (10,000 m²)

• 200 m * 200 m (40,000 m²)

• 500 m * 500 m (250,000 m²)

The remaining parameters are set to the default values.

For larger area sizes the performance of the quad tree index gets worse. This is due to the
fact that larger areas have to be stored higher up in the quad tree and therefore have to be
checked more often. For the linked list, the difference between the different area sizes is very
small, because the traversal of the list has a high overhead compared to the evaluation of the
event.

 - 83 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

distPosUpdate
The distPosUpdate event is attached to a specific object, so the hash table index is used.

The relevant parameters are the report distance and the mobile object step size. The following
parameter settings were used for the experiments:

• Number of mobile objects registered: 10000

• Mobile object step size: 10m

• Report distance: 30m

As shown in Figure 34, the maximal performance boost achieved for the distPosUpdate
event by the use of the hash table is about 20.5.

Figure 34: distPosUpdate Performance
a. Performance Comparison, b. Performance Boost with Hash Table Implementation

Source:[Dudkowski 2002]

hash table / linked list

1

0

5

10

15

20

25

10 100 1000 10000

pe
rfo

rm
an

ce
 b

oo
st

hash table

linked list

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000

lo
ca

tio
n

up
da

te
s

pe
r s

ec
on

d

contPosUpdate
The contPosUpdate is a timer-based event. Timer-based events are managed by a separate

timer thread that runs in
parallel to the main thread
and competes with it for
CPU time. The perform-
ance of timer-based events
is given by the number of
event notifications that
can be sent within a cer-
tain time interval. The
parameters of interest are
the number of events reg-
istered and their report
interval. With a longer
report interval more
events can be registered
and vice versa.

Figure 35: contPosUpdate with 100 Notifications/s

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
time [ms]

ob
se

rv
at

io
n

de
la

y
[m

s]

registration done
at t = 13.0 s

 The observation delay,
i.e. the time an event noti-
fication is “late” compared

 - 84 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

to the expected notification time, tells us, if the timer thread can keep up with the processing
of event notifications. If a large number of event notifications experience a high delay, we
have an overload of the event component.

In Figure 35 the performance for the following parameter setting is shown:

• Number of position updates/s: 1000 (background load)

• Number of events : 100

• Report interval: 1s

• Notifications/s: 100
As we can see, the event component can easily handle the number of 100 event notifica-

tions per second, since the observation delay stays well below the 50 ms margin for the vast
majority of cases.

In Figure 36 the performance for a second experiment with the following parameter set-
ting is shown:

• Number of po-
sition up-
dates/s: 1000
(background
load)

• Number of
events: 500

• Report interval:
2 s

• Notifications/s:
250

As we can see, the
event component can
no longer keep up with
the sending of event
notifications. After
about 90 s delays of
more than 300 ms ap-
pear. The reason may be that some other process has temporarily taken more CPU time, so the
event component can no longer handle the 250 notifications per second. As discussed in Sec-
tion 10.1, a mechanism for congestion avoidance was implemented that rejects new registra-
tions, if the event component is at the limit of its capacity.

0

50

100

150

200

250

300

350

400

450

500

0 20000 40000 60000 80000 100000 120000 140000
time [ms]

ob
se

rv
at

io
n

de
la

y
[m

s]

registration done
at t = 68.3 s

Figure 36: contPosUpdate with 250 Notifications/s

For more information concerning the evaluation of the specialized event component see
[Dudkowski 2002].

Overall, we can see that the specialized event component of the location server can easily
fulfill the requirements of simple Nexus scenarios like the office scenario that was described
in Subsection 6.4.1. For larger scenarios multiple location servers are needed. In that case
some of the spatial events, like onMeeting can no longer be observed locally and observation
nodes are needed for the observation.

 - 85 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

13.1.2 Evaluation of Generic Event Component with Plug-in Triggers
The evaluation of the generic event component with plug-in triggers, which Daniel

Minder developed as part of his diploma thesis [Minder 2003], focuses on the comparison to
Dudkowski’s specialized event component.

The experiments were run on the following computer:

Again, the measurements were
made with a pseudo notification ser-
vice, but this time the regular notifica-
tion service interface was used and
again the performance was measured
with respect to the number of position
updates per second and the observation

delay for the timer-based events.

The distPosUpdate events showed a very similar performance compared to the specialized
event component. With only 10 registered events there is a noticeable performance loss due to
duplicate elimination, which was not necessary in the specialized event component.

The onEnterArea events showed a performance loss of about 10% compared to the spe-
cialized event component when using a quad tree. This may again be due to the duplicate
elimination.

Just as in the case of the specialized event component, a separate thread for timer-based
events was used. When registering 100 contPosUpdates with a report interval of 1 s, 65%
were of the event notifications were less than 10 ms late and 95% less than 25 ms. However,
occasional peaks could be seen that were due to the notification service interface. Without the
notification service interface, 99.2% of the event notifications were less than 20 ms late. This
points to a strong influence of other components on the event observation, which has to be
investigated further.

The delay encountered between the time an event was observed and the time the event no-
tification was received by the notification service was also measured for distPosUpdates: In
97.4% of the cases, the delay was less than 3 ms. However there are regular peaks of a delay
of about 30 ms, possibly due to a background thread, and in 0.08% of the cases, the delay
was over 31 ms.

As distPosUpdate events are very simple, the experiment was repeated for an observation
module with a more complex observation (“more than a certain number of objects in a given
area”). Here, only in 82.7% of the cases, the delay was less than 3 ms, but in 3% of the cases,
the delay was longer than 30 ms, so there is some dependence on the event type.

For more information concerning the evaluation of the generic event component see
[Minder 2003].

Overall, the generic event component provides similar performance compared to the spe-
cialized event component, but much more flexibility regarding the observation of new types
of events, even at runtime.

CPU: 300 MHz Pentium II MMX
RAM: 128 MB
OS: Linux, Kernel 2.2.16
Programming Language: Java 1.4.2

 - 86 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

13.2 Notification Service
The most important requirement for the notification service is Requirement 6: Scalability.

The peer-to-peer architecture of the notification service aims at scalability. As we have seen
in Section 6.4, the events in most Nexus scenarios are only of interest for a relatively small
number of clients, so if the event sources and clients are regularly distributed, the notification
service should scale with the number of nodes; the nodes directly contact each other for sub-
scribing for event notification and delivering event notifications and the overhead for the ad-
vertisement register is balanced over the nodes.

However, one limitation on the scalability of the notification service is the throughput of a
single notification node. Therefore we have measured the maximum throughput of event noti-
fications.

The tests were run on the following computers:

The tests for .NET were run on the following computers:

For the communication mechanism based on Apache SOAP a throughput of about 35 noti-
fications per second was achieved. The values for SOAP on the .NET platform are similar, as
a throughput of 24 notifications was achieved, albeit on a slower computer.

For the TCP/IP- based communication mechanism, a throughput of about 600 notifica-
tions per second was achieved.

Whereas the performance of the SOAP-based communication mechanism was somewhat
disappointing, the TCP/IP-based mechanism provides a performance that is adequate for the
Nexus scenarios in Section 6.4. We will further investigate the poor SOAP performance and
switch to a faster implementation.

Another important aspect is the delay event notifications encounter in the notification ser-
vice. Tests have shown that the TCP/IP-based communication mechanism can deal with one
source sending permanently, which results in maximum delays of about 80 ms. With more
event sources sending continuously in parallel, delays of more than 10,000 ms can be ob-
served.

The SOAP-based communication mechanism can also deal with one event source sending
permanently, which results in maximum delays of about 40 ms. With multiple event sources,
delay values of more than 1000 ms are possible.

CPU: Pentium III 800 MHz
RAM: 256 MB
OS: Windows 2000
Programming Language: Java 1.4

CPU: Athlon 1 GHz
RAM: 256 MB
OS: Windows 2000
Programming Language: Java 1.4

CPU: Dual Celeron 433
RAM: 512 MB
OS: Windows 2000
Programming Language: C#

CPU: Mobile Pentium 3 700/550
RAM: 256 MB
OS: Microsoft Windows XP Prof.
Programming Language: C#

CPU: Mobile Pentium 3 700/550
RAM: 256 MB
OS: Microsoft Windows XP Prof.
Programming Language: C#

 - 87 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

In case of the .NET-based SOAP implementation the maximum delay was also around 40
ms for a single source, but in general stayed under 100 ms even for multiple event sources. A
notable exception is the first event notification delivery that can take as much as 3 seconds.
This may be due to just-in-time compilation or instantiation overhead.

13.3 Observation Service
In this section we look at the performance of the observation nodes. The measurements

are taken from [Boronas 2003], who developed the observation service, and [Csallner 2003],
who developed observation modules for the observation of location service events in the dis-
tributed case.

13.3.1 Performance Measurements for a Single Observation Node
The parameters of interest are the throughput of the observation node for different obser-

vation modules and the delay. Regarding the delay we first look at the processing delay in the
observation node itself and then at the overall delay from the position update to the notifica-
tion about the occurrence of the event.

The following tests were conducted by Andreas Boronas with the following computers:

CPU: Pentium III, 600 Mhz
RAM: 256 MB
OS: Windows 2000
Programming Language: Java 1.4

CPU: Athlon, 1.3 GHz
RAM: 512 MB
OS: Windows 2000
Programming Language: Java 1.4

Maximum Throughput
The first test shows the number of event notifications a notification service can handle in

the best case, i.e. when the respective method is called locally. The registered observation
modules were dummy modules that did not do any processing. The number of modules regis-
tered was varied between 1 and 125 (see Figure 37).

 - 88 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

0

1000

2000

3000

4000

5000

6000

1 25 50 75 100 125

Number of Observation Modules

Ev
en

t N
ot

ifi
ca

tio
ns

 p
er

 S
ec

on
d

Pentium III Average
Pentium III Minimum
Athlon Average
Athlon Minimum

Figure 37: Event Notifications per Second
adapted from [Boronas 2003]

Table 5: Event Notifcations per Second [Boronas 2003]

 1 25 50 75 100 125

Pentium III Average 2414,53 1610,92 1630,97 1592,62 1544,62 1545,03

Pentium III Minimum 2325 765 1378 1458 710 711

Athlon Average 5292,92 4270,88 4007,48 3711,13 3710,38 3503,95

Athlon Minimum 5250 3924 3928 3639 3597 3391

As we can see in Table 5, for 125 registered modules on average 1500 event notifications
can be processed on the Pentium 3 and 3500 on the Athlon (based on 10 measurements per
value). Compared to the 600 event notifications the notification service can deliver per sec-
ond, we do not have a bottleneck yet, even though the dummy modules do not represent typi-
cal observation modules. The comparison between the Pentium 3 and the Athlon shows that
the performance scales with the clock rate of the processor.

Processing Time
The second test investigated the processing time for event notifications given a notifica-

tion rate of 500 notifications per second. Again, dummy modules were used. All the following
tests were carried out on the Pentium 3.

 - 89 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

On average, the processing time was 1 ms, in 0.3% of the cases longer than 9 ms and in
0.03% longer than 100 ms with the maximum being about 250 ms (based on 2000 measure-
ments).

The third test investigated the effects of how the registration of new events in parallel in-
fluenced the processing time. The results show that, if events were registered one at a time,
there was a slightly higher rate of processing times of 100 ms than in the normal case, but no
qualitative difference. With 20 registrations in parallel, times of more than 300 ms are possi-
ble. This suggests that the number of registrations that can occur in parallel should be re-
stricted.

Event Registration
The fourth test looked at the time it takes to process an event registration and initialize the

observation module. If the module was available locally, the measured registration time on the
Pentium 3 was always under 500 ms. If the module has to be downloaded, the registration
time depends on the network connection between the observation node and the web server.

Handover of Event Observations
In the fifth test, the time for a handover of an event observation was measured. The hand-

over took place between two observation nodes on the Pentium 3 and the Athlon that were
connected by a 100 MBit LAN. The handover took between 1200 and 1400 ms (based on ten
measurements).

13.3.2 Event Observation for a Distributed Location Service
In his diploma thesis [Csallner 2003] Christoph Csallner investigated the observation of

spatial events for a distributed location service configuration. He considered all the events that
Dominique Dudkowski had implemented for a single leaf location server and implemented
observation modules for the distributed case.

As a basis for the evaluation, two scenarios within a shopping mall were chosen (also see
shopping mall scenario in Subsection 6.4.2): a bargain reminder and a friend finder service.

The bargain reminder allows customers to register events for certain special offers. When
the customer passes the area where the product is offered, he receives a reminder. The service
is realized based on the onEnterArea event. The event is registered for the area around the
location where the product is offered. When the customer enters this area he receives an event
notification reminding him about the bargain.

With the friend finder service, the user can register a number of friends with the service. If
he comes within a specified meeting distance he receives a message. The service is realized
based on the onMeeting event. The event is registered for two users and a distance. An event
notification is sent, when the two users come closer than the specified distance.

The following experiments were run on the following computers:

CPU: 1,2 GHz Mobile Pentium 3
RAM: 512 MB
OS: Microsoft Windows XP
Programming Language: Java 1.4

CPU: 1,2 GHz Mobile Pentium 3
RAM: 512 MB
OS: Microsoft Windows XP
Programming Language: Java 1.4

CPU: 1 GHz Pentium 3
RAM: 256 MB
OS: Microsoft Windows 2000
Programming Language: Java 1.4

CPU: 1 GHz Pentium 3
RAM: 256 MB
OS: Microsoft Windows 2000
Programming Language: Java 1.4

 - 90 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

An object mover component simulated the movements of the mobile users. It sent position
updates to the location service every 10 seconds using the UDP protocol of the location ser-
vice.

Bargain Reminder - Evaluation of the Local User Event
As the onEnterArea events needed for implementing the bargain reminder are fixed to a

given area, it is sufficient to observe an onEnterArea event on those leaf location servers
whose service area overlaps with the given area. So the experiment shows the performance of
the observation of a local user event.

The object mover updated the position information in such a way that for every second
position update an onEnterArea event was observed and an event notification was sent.

This lead to a mean observation delay (from the movement of the object mover over the
position update at the leaf location server to the detection of the event in the event component
of the leaf location server) between 13 ms and 18 ms. The measurements were based on three
series of 100 position updates each.

Assuming that there is no parallelism within the system, i.e. from the updating of the posi-
tion by the object mover to the detection of the event occurrence, the leaf location service can,
in the worst case, handle a maximum of 55 system events (position updates) resulting in 27
onEnterArea events per second. Taking an update rate of one update every 10 seconds, the
leaf location server can manage a maximum of 270 mobile objects. The capacity of the loca-
tion service can be enhanced by dividing up the service area and adding more leaf location
servers.

Friend Finder - Distributed User Event
The observation of the onMeeting event needed for implementing the friend finder cannot

be restricted to a single leaf location service. As an example take two mobile objects that are
within meeting distance, but on both sides of a border between adjacent service areas of two
leaf location servers. Therefore, we need an observation module that implements the distrib-
uted observation on an observation node. The onMeeting event is based on distPosUpdates for
each mobile object that can cause the onMeeting event.

We compare two dif-
ferent scenarios: In the
first we have a single ob-
servation node on one
computer, in the second
we have two observation
nodes on two computers
(see Figure 38).

Figure 38: Configuration of the Friend Finder Ex-
periment with Two Observation Nodes

Leaf Location
Server

Leaf Location
Server

Location
Server

Notification
Node

Observation
Node

Observation
Node

Computer 1: 1,2 GHz Pentium 3 Computer 2: 1 GHz Pentium 3

Leaf Location
Server

Leaf Location
Server

Location
Server

Notification
Node

Observation
Node

Observation
Node

Computer 1: 1,2 GHz Pentium 3 Computer 2: 1 GHz Pentium 3

Again, the object
mover updates the posi-
tion information every 10
seconds. Every position
update system event
causes a distPosUpdate
user event. Every second
distPosUpdate user event
causes an onMeeting
event.

 - 91 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

This time the mean observation delay is between 39 and 43 milliseconds for the single ob-
servation node and between 55 and 71 milliseconds for two notification nodes. The result is
somewhat surprising. A possible explanation is that the two computers were different with
regard to their computational power. Since the position updates were sent as fast as possible,
the faster node flooded the slower node with event notifications and then had to wait for input
from the slower node.

In the first case we have about 23 system events per seconds, leading to 11 onMeeting
events that can be observed per second. Under the same assumptions as above, the service can
handle 110 mobile objects. In the second case, we get about 14 system events, or 7 onMeeting
events per observation node, so we have a total of 14 onMeeting events.

Further experiments have to be carried out to investigate the reason that we did not get the
increase in capacity that we expected. However, we are confident that this is mostly due to the
setup of the experiment.

13.4 Integration in Nexus

13.4.1 Conceptual Integration
Figure 39 shows the conceptual integration of the event service in Nexus. In the case of

queries, the federation layer hides the distribution of the data from the applications and pro-
vides them with a homogeneous view (also see Figure 4). The observation management com-
ponents and the observation nodes support the same goal. When registering an event observa-
tion the applications do not need to know about the distribution of the data and the existence
of multiple event sources. They register their request with the observation management that,
like a federation node, queries the area service register for the servers on which events have to
be registered or which have to be queried (e.g. in the case of spatial model servers) to observe
an event. Then the observation management registers local events with the event sources and
global events with the observation node. For the observation, the observation node plays the
role of the federation component as it gathers the data that is needed for the observation of an
event, and when an event is detected, it sends a notification to the client application.

The notification nodes cannot easily be assigned to any of the Nexus layers, as they are re-
sponsible for the communication and the components responsible for the communication are
not explicitly considered in the architecture.

 - 92 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Figure 39: Conceptual Integration of the Event Service in Nexus

Spatial
Model

Server 1

Spatial
Model

Server n

Leaf
Location-
Server

...

Service
Layer

Federation
Layer

Application
Layer

App. 1 App. 2 App. n

Observation
Management

Observation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Leaf
Location-
Server

...
Event
Sources

Information
(& Event)
Sources

ASR

Spatial
Model

Server 1

Spatial
Model

Server n

Leaf
Location-
Server

...

Service
Layer

Federation
Layer

Application
Layer

App. 1 App. 2 App. n

Observation
Management

Observation
Node

Notifi-
cation
Node

Notifi-
cation
Node

Leaf
Location-
Server

...
Event
Sources

Information
(& Event)
Sources

ASR

13.4.2 Use of Spatial Events in Nexus Applications
Spatial events have been used in a number of example applications that have been devel-

oped based on the Nexus platform:

• The Nexus Scout is a city information system that shows the functionality of the
Nexus platform. With the Nexus Scout, the user can register spatial reminders based
on the onEnterArea event, i.e. he is reminded that he wanted to do something at a cer-
tain location, when he gets there. He also can register reminders for the meeting with
other users [Nicklas et al. 2003].

• The NexusRallye is a kind of game application where users walk around in a certain
area and have to solve tasks. The tasks are associated with locations, so based on an
onEnterArea event, a new task is presented to the users.

• The Intelligent Door Plate application tells people where the person they are looking
for currently is, if they are not in their office, by showing the current location on the
door plate of the office. The location of the user is tracked based on distPosUpdate and
onEnterArea events.

13.5 Summary
Overall, we can see that our implementation of the event service is efficient enough to

handle scenarios of the scale of the office scenario (see Subsection 6.4.1) and the shopping
mall scenario (see Subsection 6.4.2), where the number of events observed on distributed data
is limited. We still need to evaluate the event service for use in larger scenarios, especially the
scalability of the distributed observation has to be further investigated.

 - 93 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 94 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Chapter 14 Conclusion & Outlook
The goal of this project was to develop a scalable event service for the area of mobile and

ubiquitous computing.

The events of interest in this domain are events that occur in the real world. As there are a
huge number of events that are of potential interest, the observation of these events has to be
initiated explicitly. The data based on which the events can be observed can be distributed
over different local models stored by different servers. Therefore, global events have to be
observed through a distributed model and the observation of these events has to be realized as
part of the event service. As this together with the explicit observation of events is not part of
the standard event paradigm, we proposed a new event paradigm called event observation &
notification paradigm. An event service that fits this paradigm has two different functional
components – for the observation of events and the delivery of event notifications.

We developed an event model that provides a general classification of events according to
parameters that are relevant for the observation of events. We classified spatial events that are
relevant in the context of the Nexus project according to this general classification. We also
investigated how spatial events are utilized in a number of typical Nexus scenarios, which was
important for the design of a suitable event notification mechanism.

A special focus of this work was on the observation of global events through a distributed
model that takes the limited accuracy of the available data into account. We proposed a uni-
form approach for specifying events based on a predicate that defines the occurrence of events
in the exact case, together with a threshold probability that defines the minimum probability
with which the event is considered to have occurred, so that an event notification is sent. We
showed how different parameters influence the accuracy of the model and how the probability
with which an event has occurred can be calculated.

We designed and implemented an event service prototype based on which we evaluated
our approach in the context of the Nexus project. We could show that the approach is feasible
and that our requirements could be fulfilled. Therefore, this project has been completed suc-
cessfully.

To show the scalability of the approach, we still need to conduct a final evaluation of the
event service for a large scale scenario. So far this has not been possible, partly due to techni-
cal problems outside the scope of our project, e.g. with the Nexus location service. However
this evaluation is next on our agenda.

For the observer placement we have identified the relevant parameters, but, due to time
limitations, different strategies for the observer placement still have to be evaluated. The dy-
namic reconfiguration of observation, e.g. after handovers that are due to the movement of
mobile objects, also remains as future work.

Storing position information of people immediately raises privacy concerns. The support
of spatial events does not improve the situation. Therefore a real system needs strict access
control mechanisms to ensure that only authorized people can access position data with a cer-
tain accuracy and only those people will be able to register spatial events based on this data. It
may also be possible to provide anonymized position data with a more limited accuracy. Ob-
viously, there will be a trade-off between the level of privacy protection and the available
functionality. In a diploma thesis that will start soon, we will investigate suitable access con-
trol mechanisms for the event service.

 - 95 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 96 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Appendix: Event Notification

XML-Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://nexus.informatik.uni-stuttgart.de/Notification"
xmlns:nol="http://nexus.informatik.uni-stuttgart.de/NOL"
xmlns:notify="http://nexus.informatik.uni-stuttgart.de/Notification"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://nexus.informatik.uni-stuttgart.de/NOL"
schemaLocation="http://nexus.informatik.uni-stuttgart.de/NOL.xsd"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Schema defining event notifications for the Nexus

 Event Service.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleType name="NOL">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="nexus://(.*(:.*)?@)?.*(:[1-9][0-9]{0,3})?/(.*|0x([0-
9]|[A-F]|[a-f]){32}|\.home)/(.*|0x([0-9]|[A-F]|[a-f]){32})"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name="notification" type="notify:NotificationType"/>

 <xsd:complexType name="NotificationType">

 <xsd:sequence>

 <xsd:element name="id" type="notify:NOL"/>

 <xsd:element name="predicateId" type="notify:NOL"/>

 <xsd:element name="templateId" type="notify:NOL"/>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="service" type="xsd:string"/>

 <xsd:element name="server" type="xsd:string"/>

 <xsd:element name="counter" type="xsd:unsignedLong"/>

 <xsd:element name="scope" type="xsd:dateTime"/>

 <xsd:element name="timestamp" type="xsd:dateTime"/>

 <xsd:element name="comment" type="xsd:string" minOccurs="0"/>

 <xsd:element name="variableList" type="notify:VariableListType"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="VariableListType">

 <xsd:sequence>

 <xsd:element name="variable" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="type" type="xsd:string"/>

 <xsd:element name="restriction" type="xsd:string"
minOccurs="0"/>

 <xsd:element name="value" type="xsd:string"/>

 - 97 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Example for onMeeting Event
<?xml version="1.0"?>

<notification xmlns="http://www.nexus.uni-stuttgart.de/Notification">

<id>nexus://nexus.uni-
stuttgart.de/0x8cc8775ba13a3440ae9ce1c2b6cec756/0x8cc8775ba13a3440ae9ce1c2b6cec756</id>

 <predicateId>nexus://nexus.uni-
stuttgart.de/onMeeting/0x30b9a4e2d6256d30d663aa828ff5d5b5</predicateId>

 <templateId>nexus://nexus.uni-
stuttgart.de/onMeeting/0x00000000000000000000000000000000</templateId>

 <name>onMeetingEvent</name>

 <service>Location Service</service>

 <server>127.0.0.1</server>

 <counter>29</counter>

 <scope>2002-01-18T01:31:14.586+00:00</scope>

 <timestamp>2002-01-17T23:31:14.586+00:00</timestamp>

 <variableList>

 <variable>

 <name>Meeting Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea60000006130000000000</value>

 </variable>

 <variable>

 <name>Meeting Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea6000000b610000000000</value>

 </variable>

 </variableList>

</notification>

Example for contAreaUpdate Event
<?xml version="1.0"?>

<notification xmlns="http://www.nexus.uni-stuttgart.de/Notification">

<id>nexus://nexus.uni-
stuttgart.de/0x0cbb2aa5b8fd6e3c718a11d2b56986b0/0x0cbb2aa5b8fd6e3c718a11d2b56986b0</id>

 <predicateId>nexus://nexus.uni-
stuttgart.de/contAreaUpdatesEvent/0x613e20bccbc8844cdb9ce28983b4f9f0</predicateId>

 <templateId>nexus://nexus.uni-
stuttgart.de/contAreaUpdatesEvent/0x00000000000000000000000000000000</templateId>

 <name>contAreaUpdatesEvent</name>

 - 98 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 <service>Location Service</service>

 <server>127.0.0.1</server>

 <counter>3</counter>

 <scope>2002-01-17T15:14:54.070+00:00</scope>

 <timestamp>2002-01-17T13:14:54.051+00:00</timestamp>

 <variableList>

 <variable>

 <name>Tracked Space</name>

 <type>Nexus Object</type>

 <value><SEGMENT WGS84: 48.722, 9.125, 0.0; WGS84: 48.72173, 9.126192, 0.0></value>

 </variable>

 <variable>

 <name>Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea60000000130000000000</value>

 </variable>

 <variable>

 <name>Location</name>

 <type>Geodetic Coordinate</type>

 <value>WGS84: 48.72199594, 9.12517916, 0.0</value>

 </variable>

 <variable>

 <name>Location Timestamp</name>

 <type>Datetime</type>

 <value>2002-01-17T13:14:53.169+00:00</value>

 </variable>

 <variable>

 <name>Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea600000001b0000000000</value>

 </variable>

 <variable>

 <name>Location</name>

 <type>Geodetic Coordinate</type>

 <value>WGS84: 48.72194515, 9.12509107, 0.0</value>

 </variable>

 <variable>

 <name>Location Timestamp</name>

 <type>Datetime</type>

 <value>2002-01-17T13:14:53.179+00:00</value>

 </variable>

 ... 57 more mobile objects ...

 <variable>

 - 99 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 <name>Object</name>

 <type>Mobile Object</type>

 <restriction>Mobile Object</restriction>

 <value>00000000ea60000000050000000000</value>

 </variable>

 <variable>

 <name>Location</name>

 <type>Geodetic Coordinate</type>

 <value>WGS84: 48.72176165, 9.12602461, 0.0</value>

 </variable>

 <variable>

 <name>Location Timestamp</name>

 <type>Datetime</type>

 <value>2002-01-17T13:14:52.168+00:00</value>

 </variable>

 </variableList>

</notification>

 - 100 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

Appendix: Event Registration Language

XML-Schema
<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by Martin Bauer (IPVR-Iniversität
Stuttgart) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <xs:element name="predicate" type="PredicateType">

 <xs:annotation>

<xs:documentation>This is the root element of the Predicate Definition
Language.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="PredicateType">

 <xs:sequence>

 <xs:element name="templateID" type="NOLType"/>

 <xs:element name="name" type="xs:string" minOccurs="0"/>

 <xs:element name="observerURI" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="predicateId" type="NOLType" minOccurs="0"/>

 <xs:element name="thresholdProbability" type="xs:float"/>

 <xs:element name="parameterList" type="ParameterListType"/>

 <xs:element name="filterList" type="FilterListType" minOccurs="0"/>

 <xs:element name="qosParameterList" type="QosParameterListType"/>

 <xs:element name="predicateManagementParameterList"
type="PredicateManagementParameterListType"/>

 <xs:element name="predicateEvaluationParameterList"
type="PredicateEvaluationParameterListType" minOccurs="0"/>

 <xs:element name="eventNotificationParameterList"
type="EventNotificationParameterListType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ParameterListType">

 <xs:sequence>

<xs:element name="Parameter" type="ParameterType"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ParameterType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="restriction" type="xs:string" minOccurs="0"/>

 <xs:choice>

 <xs:element name="value">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

 - 101 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="predicate" type="PredicateType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ValueType">

 <xs:choice/>

 </xs:complexType>

 <xs:complexType name="FilterListType">

 <xs:sequence>

 <xs:element name="filter" type="FilterType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="FilterType">

 <xs:sequence>

 <xs:element name="attributeReference1">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

<xs:attribute name="unit" type="xs:string"
use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="compareFunction" type="CompareType"/>

 <xs:element name="attributeReference2">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="CompareType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="QosParameterListType">

 <xs:sequence>

 - 102 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

<xs:element name="qosParameter" type="QoSParameterType"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="QoSParameterType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="ClockDriftValueType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="DelayValueType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="PredicateManagementParameterListType">

 <xs:sequence>

<xs:element name="predicateManagementParameter"
type="PredicateManagementParameterType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="HandoverType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="DeregistrationIntervalType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="PredicateManagementParameterType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 - 103 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PredicateEvaluationParameterListType">

 <xs:sequence>

<xs:element name="predicateEvaluationParameter"
type="PredicateEvaluationParameterType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="notificationConsumptionPolicyType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="PredicateEvaluationParameterType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EventNotificationParameterListType">

 <xs:sequence>

 <xs:element name="eventNotificationParameter"
type="EventNotificationParameterType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EventNotificationParameterType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

<xs:attribute name="unit"
type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 - 104 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="NOLType">

 <xs:restriction base="xs:string">

 <xs:pattern value="nexus://(.*(:.*)?@)?.*(:[1-9][0-9]{0,3})?/(.*|0x([0-
9]|[A-F]|[a-f]){32}|\.home)/(.*|0x([0-9]|[A-F]|[a-f]){32})"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Example for onEnterArea Event
<?xml version="1.0" encoding="UTF-8"?>

<predicate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="G:\Nexus\XML Schemas\PredicateDefinitionLanguage.xsd">

 <templateID>nexus://nexus.stuttgart.de/0x84a6fe8cc8b4e101d62ff005ecb97a88/
0x84a6fe12380000000000000000000000</templateID>

 <name>onEnterArea</name>

 <observerURI>http://trompete.informatik.uni-stuttgart.de:8081/soap/servlet/rpcrouter
urn:registerOnEnterArea</observerURI>

 <thresholdProbability>0.7</thresholdProbability>

 <parameterList>

 <Parameter>

 <name>Entering Object</name>

 <type>Nexus Object Reference</type>

 <restriction>Mobile Object</restriction>

 <value>nexus://nexus.stuttgart.de/.home/Timo%20Heiber</value>

 </Parameter>

 <Parameter>

 <name>Entered Space</name>

 <type>Nexus Object Reference</type>

 <value>nexus://nexus.uni-
stuttgart.de/InformatikFakultaet/Room2.069</value>

 </Parameter>

 </parameterList>

 <qosParameterList>

 <qosParameter>

 <name>clock drift</name>

 <type>real</type>

 <value unit="milliseconds">100.0</value>

 </qosParameter>

 <qosParameter>

 <name>maximum delay</name>

 <type>real</type>

 <value unit="milliseconds">100.0</value>

 </qosParameter>

 <qosParameter>

 <name>message loss</name>

 - 105 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 <type>real</type>

 <value unit="messages/second">0.00001</value>

 </qosParameter>

 </qosParameterList>

 <predicateManagementParameterList>

 <predicateManagementParameter>

 <name>handover</name>

 <type>String</type>

 <value>allowed</value>

 </predicateManagementParameter>

 <predicateManagementParameter>

 <name>deregistration interval</name>

 <type>String</type>

 <value unit="seconds">10000</value>

 </predicateManagementParameter>

 <predicateManagementParameter>

 <name>maximum notification rate</name>

 <type>String</type>

 <value unit="messages/second">0.1</value>

 </predicateManagementParameter>

 </predicateManagementParameterList>

 <predicateEvaluationParameterList>

 <predicateEvaluationParameter>

 <name>blocking interval</name>

 <type>real</type>

 <value unit="seconds">10</value>

 </predicateEvaluationParameter>

 <predicateEvaluationParameter>

 <name>use estimated occurrence time</name>

 <type>boolean</type>

 <value>true</value>

 </predicateEvaluationParameter>

 </predicateEvaluationParameterList>

</predicate>

 - 106 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

References

Project-Related Publications
[Bauer et al. 2001]
Bauer, Martin; Becker, Christian; Rothermel, Kurt: Location Models from the Perspective of Context-Aware
Applications and Mobile Ad Hoc Networks. In: Workshop on Location Modeling for Ubiquitous Computing,
UbiComp 2001
[Bauer et al. 2002]
Bauer, Martin; Becker, Christian; Rothermel, Kurt: Location Models from the Perspective of Context-Aware
Applications Mobile Ad Hoc Networks. In: Personal and Ubiquitous Computing. Vol. 6(5-6)
[Bauer et al. 2003]
Bauer, Martin; Becker, Christian; Hähner, Jörg; Schiele, Gregor: ContextCube - Providing Context Information
Ubiquitously. In: Proceedings of the 23rd International Conference on Distributed Computing Systems Work-
shops (ICDCS 2003)
[Bauer et al. 2003a]
Bauer, Martin; Jendoubi, Lamine; Rothermel, Kurt; Westkämper, Engelbert: Grundlagen ubiquitärer Systeme
und deren Anwendung in der "Smart Factory". In: Gronau, Norbert (ed.); Krallmann, Hermann; Scholz-Reiter,
Bernd (ed.): Industrie Management - Zeitschrift für industrielle Geschäftsprozesse. Bd. 19(6)
[Bauer & Rothermel 2002]
Bauer, Martin; Rothermel, Kurt: Towards the Observation of Spatial Events in Distributed Location-Aware
Systems. In: Wagner, Roland (ed.): Proceedings of the 22nd International Conference on Distributed Computing
Systems Workshops
[Becker et al. 2002]
Becker, Christian; Bauer, Martin; Hähner, Jörg: Usenet-on-the-fly - Supporting Locality of Information in Spon-
taneous Networking Entironments. In: Liscano, Ramiro (ed.); Kortuem, Gerd (ed.): Workshop on Ad Hoc Com-
munications and Collaboration in Ubiquitous Computing Envirnments
[Lehmann et al. 2004]
Lehmann, Othmar; Bauer, Martin; Becker, Christian; Nicklas, Daniela: From Home to World - Supporting Con-
text-aware Applications through World Models. In: to appear: Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications
[Leonhardi & Bauer 2001]
Leonhardi, Alexander; Bauer, Martin: “Managing Highly Dynamic Location Data”; “Infobox: Spatial Events”,
In: GIS Geo-Informations-Systeme. Vol. 6
[Rothermel et al. 2003]
Rothermel, Kurt; Bauer, Martin; Becker, Christian: SFB 627 - "Nexus" Umgebungsmodelle für mobile kontext-
bezogene Systeme. In: Molitor, Paul (ed.); Küspert, Klaus (ed.); Rothermel, Kurt (ed.): it - Information Technol-
ogy. Bd. 45(5)
[Rothermel et al. 2003a]
Rothermel, Kurt; Bauer, Martin; Becker, Christian: Digitale Weltmodelle - Grundlage kontextbezogener Syste-
me. In: Friedemann Mattern (ed.): Total vernetzt - Szenarien einer informatisierten Welt
[Rothermel et al. 2003b]
Rothermel, Kurt; Dudkowski, Dominique; Dürr, Frank; Bauer, Martin; Becker, Christian: Ubiquitous Computing
- More than Computing Anytime Anyplace?. In: Proceedings of Photogrammetrische Woche
[Rothermel et al. 2003c]
Rothermel, Kurt; Fritsch, Dieter; Mitschang, Bernhard; Kühn, Paul J.; Bauer, Martin; Becker, Christian; Hauser,
Christian; Nicklas, Daniela; Volz, Steffen: SFB 627: Umgebungsmodelle für mobile kontextbezogene Systeme.
In: Proceedings Informatik 2003

Diploma and Student Thesis
[Boronas 2003]
Andreas Boronas, “Ein Framework für verteilte Ereignisbeobachtung”, Diplomarbeit 2045 (German), Studien-
gang Informatik, Universität Stuttgart, 2003.
[Csallner 2003]
Christoph Csallner, “Verteilte Beobachtung von Ereignissen im Nexus-Lokationsdienst”, Diplomarbeit 2064
(English), Studiengang Softwaretechnik, Universität Stuttgart, 2003.
[Dieterle 2003]
Ralf Dieterle, “Notifikationsdienst auf Basis von Microsoft .NET”, Studienarbeit Nr. 1885 (German), Studien-
gang Informatik, Universität Stuttgart, 2003.

 - 107 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

[Dudkowski 2002]
Dominique Dudkowski, “Events in the Nexus Location Service”, Studienarbeit 1825 (English), Studiengang
Informatik, Universität Stuttgart, 2002.
[Li 2001]
Chiangping Li, “Notification Service Based on the SOAP Technology”, Diplomarbeit Nr. 1942 (German), Stu-
diengang Master of Information Technology, Universität Stuttgart, 2001
[Minder 2003]
Daniel Minder, “Generische Integration der Beobachtung von Ereignissen in Ereignisquellen”, Diplomarbeit
2080 (German), Studiengang Softwaretechnik, Universität Stuttgart, 2003.
[Till 2002]
Alexander Till, “Erweiterter Notifikationsdienst für Nexus“, Diplomarbeit 2020 (German), Studiengang Infor-
matik, Universität Stuttgart, 2002.

Related Work
[Bauer 2000]
Martin Bauer, “Event-Management für mobile Benutzer“, Diplomarbeit 1836 (English), Studiengang Informatik,
Universität Stuttgart, 2000.
[Cabrera et al. 2001]
Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer, “Herald : Achieving a Global Event Notification
Service”, Proceedings of HotOS VIII, May 2001, pp. 87-94.
[Carzaniga et al. 1998]
Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, “Design of a Scalable Event Notification
Service: Interface and Architecture”, …
[Castro et al. 2002]
M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "One ring to rule them all: Service discovery and
binding in structured peer-to-peer overlay networks", SIGOPS European Workshop, France, September, 2002
[Chakravarty et al. 1993]
S. Chakravarty, V. Krishnaprasad, E. Anwar, and S.-K Kim, “Anatomy of a Composite Event Detector. Techni-
cal Report”, UF-CIS-TR-93-039, University of Florida, Department of Computer and Information Science, De-
cember 1993.
[Chase & Garg 1998]
C.M. Chase, and V.K. Garg, “Detection of Global Predicates: Techniques and Their Limitations”, Distributed
Computing, Vol. 11, No. 4, Springer, 1998, pp. 191-201.
[Cooper & Marzullo 1991]
Cooper, Robert and Marzullo, Keith, “Consistent Detection of Global Predicates”, Conference proceedings on
ACM/ONR workshop on parallel and distributed debugging, May 20 - 21, 1991, Santa Cruz, CA USA
http://www.acm.org/pubs/citations/proceedings/onr/122759/p167-cooper
[Cugola et al. 1998]
Gianpaolo Cugola, Elisabetta di Nitto, and Alfonso Fuggetta, “Exploiting an event-based infrastructure to develp
complex distributed systems”, Proceedings of the 20th International Conference on Software Engineering, IEEE
Computer Society, Kyoto, Japan, 1998, pp. 261-270
[Dittrich & Gatziu 2000]
Klaus R. Dittrich and Stella Gatziu, “Aktive Datenbanksysteme”, dpunkt Verlag, Heidelberg, 2., völlig neubearb.
und erw. Auflage, 2000
[Eugster et al. 2003]
P. Th. Eugster, P.A. Felber, R. Guerraoui, and A,-M. Kermarrec, “The Many Faces of Publish/Subscribe”, ACM
Surveys, Vol.35, No. 2, June 2003, pp. 114-131.
[Gehani et al. 1992]
N.H. Gehani, H.V. Jagadish, and O. Shmueli, “Composite Event Specification in Active Databases: Model and
Implementation”, Proceedings of the 18th International Conference on Very Large Databases, 1992, pp. 327-
338.
[GPS Signal Specification 1995]
GPS SPS Signal Specification, 2nd Edition (June 2,1995), Annex B, Section 5.0, “Accuracy Characteristics”, pp.
B-15-B21.
(http://www.navcen.uscg.gov/pubs/gps/sigspec/default.htm)
[Gruber et al. 1999]
Robert Gruber, Balachander Krishnamurthy, and Euthimios Panagos, “The Architecture of the READY Event
Notification Service”, Proceedings of the 19th IEEE International Conference on Distributed Computing, System
Middleware Workshop, 1999.

 - 108 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

[Harter et al. 1999]
A. Harter, A. Hopper, P. Steggles, A.Ward, and P.Webster, “The Anatomy of a Context-Aware Application”, In
Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking
(Mobicom’99), Seattle, Washington, USA, August 1999, pp. 59 - 68
[Hayton et al. 1996]
Richard Hayton, Jean Bacon, John Bates, and Keb Moody, “Using Events to Build Large Scale Distributed Ap-
plications”, ACM SIGOPS European Workshop, September 1996, pp. 9-16
[Hinze & Voisard 2002]
Annika Hinze and Agnès Voisard, “Composite events in notification services with application to logistics sup-
port”, in Proceedings of the 9th International Symposium on Temporal Representation and Reasoning (TIME-
2002), 7-9 July 2002.
[Hohenstein & Schmatz 2003]
Uwe Hohenstein and Klaus-Dieter Schmatz, „Webanwendungen entwickeln mit Oracle9i“, dpunkt Verlag, Hei-
delberg, 1. Auflage, 2003.
[Hohl et al. 1999]
F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm, “Next Century Challenges: Nexus – An
Open Global Infrastructure for Spatial-Aware Applications”, Proceedings of the Fifth Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (MobiCom'99), Seattle, USA, 1999, pp. 249-255.
[Jacobsen & Llirbat]
Hans-Arno Jacobsen and F. Llirbat, “Publish / Subscribe Systems Tutorial”,
http://www.eecg.toronto.edu/~jacobsen
[Janotti et al. 2000]
John Canotti, David K. Gifford, Kirk L. Johanson, M. Frans Kaashoek, James W. O’Toole, Jr., “Overcast: Reli-
able Multicasting with an Overlay Network”, Proceedings of the Fourth Symposium on Operating System De-
sign and Implementation (OSDI), October 2000, pp. 197-212.
[Los Angeles Times 2004]
Vanessa Gera, Associated Press Writer, “Gates Forsees Seamless Software Links”, Los Angles Times, January
28, 2004
http://www.latimes.com/technology/ats-ap_technology12jan28,1,3889909.story?coll=sns-ap-toptechnology
[Leonhardi & Rothermel 2001]
A. Leonhardi and K. Rothermel, “A Comparison of Protocols for Updating Location Information”, Baltzer Clus-
ter Computing Journal, 4(4), pp. 355-367, Baltzer Science Publishers, 2001.
[Leonhardi & Rothermel 2001b]
Alexander Leonhardi and Kurt Rothermel, “Architecture of a Large-scale Location Service”, Technical Report
No. 2001/01, Universität Stuttgart, Fakultät Informatik, 2001.
[Leonhardi 2003]
Alexander Leonhardi, “Architektur eines verteilten skalierbaren Lokationsdienstes“, Dissertation (German),
Fakultät Informatik, Elektrotechnik und Informationstechnik, Universität Stuttgart, 2002.
[Liebig et al. 1999]
C. Liebig, M. Cilia and A. Buchmann, “Event Composition in Time-dependent Distributed Systems”, Proceed-
ings of the 4th International Conference on Cooperative Information Systems (CoopIS 99), IEEE Computer
Society, 1999, pp. 70-78.
[Matthiessen & Unterstein 2000]
Günter Matthiessen and Michael Unterstein, Relationale Datenbanken und SQL“, Addison-Wesley, München,
2000.
[Minar 1999]
Nelson Minar, “A Survey of the NTP Network”, December, 1999
http://www.media.mit.edu/~nelson/research/ntp-survey99/
[Naguib 2001]
Hani Naguib and George Coulouris, “Location Information Management”, Proceedings of Ubicomp 2001, pp.
35-41
[Nelson 1998]
Giles John Nelson, “Context-Aware and Location Systems”, PhD thesis, Clare College, University of Cam-
bridge, UK, January 1998
[Nicklas et al. 2001]
Daniela Nicklas, Matthias Grossmann, Thomas Schwarz, Steffen Volz, and Bernhard Mitschang, “A Model-
Based, Open Architecture for Mobile, Spatially Aware Applications”, Proceedings of the Symposium on Spatial
and Temporal Databases, Los Angeles, USA, 2001.
[Nicklas et al. 2003]
Nicklas, Daniela; Grossmann, Matthias; Schwarz, Thomas: NexusScout: An Advanced Location-Based Applica-
tion On A Distributed, Open Mediation Platform. In: Proceedings of the 29th VLDB Conference, Berlin, Ger-
many, 2003

 - 109 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

[Nicklas & Mitschang 2001]
Daniela Nicklas and Bernhard Mitschang, “The Nexus Augmented World Model: An Extensible Approach for
Mobile, Spatially Aware Applications”, Proceedings of the 7th International Conference on Object-Oriented
Information Systems (OOIS) 2001, Calgary, Canada, 2001.
[OMG 2001]
Object Management Group, “Event Service Specification”, 2001
htpp.//www.omg-prg/cgi-bin/doc?formal/01-03-01.pdf
[OMG 2002]
Object Management Group, “Notification Service Specification”, 2001.
htpp.//www.omg-prg/cgi-bin/doc?formal/02-08-04.pdf
[Pietzuch & Shand 2002]
Peter R. Pietzuch and Brian Shand, “A Framework for Object-Based Event Composition in Distributed Sys-
tems”, 12th Workshop for PhD Students in Object-Oriented Systems (PhDOOS'02), Malaga, Spain, June 2002.
[Pietzuch et al. 2003]
Peter R. Pietzuch, Brian Shand, and Jean Bacon, “A Framework for Event Composition in Distributed Systems”,
ACM/IFIP/USENIX International Middleware Conference, Springer-Verlag, 2003.
[Rosenblum & Wolf 1997]
David S. Rosenblum and Alexander L. Wolf, “A Design Framework for Internet-Scale Event Observation and
Notification”, Proceedings of the Sixth European Software Engineering Conference (ESEC/FSE 97), 1997, pp.
344-360
[Rowstron & Druschel 2001]
Antony Rowstron and Peter Druschel, “Pastry: Scalable, Decentralized Object Location and Routing for Large-
Scale Peer-To-Peer Systems”, IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, pages 329-350, November, 2001.
[Rowstron et al. 2001]
Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel, “SCRIBE: The Design of a
Large-Scale Event Notification Infrastructure”, NGC2001, UCL, London, November 2001.
[Schmidt & Demmig 2001]
Meinhardt Schmidt and Thomas Demmig, “SQL GE-PACKT”, mitp Verlag, Bonn, 1. Auflage, 2001.
[Schwarz & Mattern 1994]
R. Schwarz, and F. Mattern, “Detecting Causal Relationships in Distributed Computations: In Search of the Holy
Grail”, Distributed Computing, Vol 7, No. 3, Springer, 1994, pp. 149-174.
[Want et al. 1992]
Roy Want and Andy Hopper and Veronica Falcão and Jonathan Gibbons, “The Active Badge Location System,"
ACM Transactions on Information Systems, vol. 10, pp. 91--102, Jan. 1992.

 - 110 -

Report 2004/02 Event Management for Mobile Users Martin Bauer

 - 111 -

	Introduction
	Related Work
	Nexus
	Definitions and Requirements
	User View
	System View
	Summary

	System Architecture
	Event Model
	Event Specification
	Concepts and Realization of �Event Observation
	Message Delay
	Clock Skew and Time in Distributed Systems

	Observer Placement
	Integration of Events into Event Sources
	Data-based Events
	Timer-based Events
	Management Events
	Implementation of the onMeeting Event
	Assumptions
	Event Triggers
	Efficient Event Observation
	Data-based Events
	Timer-based Events
	Congestion Avoidance
	Soft State Approach
	Registration Interface
	Event Notification
	Quality of Service Parameters
	Evaluation Parameters
	Notification Parameters
	Management Parameters
	Error Handling Parameters
	Interfaces
	Observation Interface
	Observation Management Interface
	Notification Interface
	Recovery
	Reuse of Observation Modules
	Architecture of the Event Component

	Observation Service
	Replication
	Handovers

	Notification Service
	Notification Source
	Notification Client
	Notification Node
	Subscription Register
	Advertisement Register
	Functionality
	Discussion of Design Decisions
	.NET platform
	Pastry
	SOAP and XML Web Services in the Internet Information Server
	Limitations of IIS on Non-Server Editions of Windows
	Interoperability

	Evaluation
	onEnterArea
	distPosUpdate
	contPosUpdate
	Maximum Throughput
	Processing Time
	Event Registration
	Handover of Event Observations
	Bargain Reminder - Evaluation of the Local User Event
	Friend Finder - Distributed User Event

	Integration in Nexus

	Conclusion & Outlook
	XML-Schema
	Example for onMeeting Event
	Example for contAreaUpdate Event
	XML-Schema
	Example for onEnterArea Event
	Project-Related Publications
	Diploma and Student Thesis
	Related Work

