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Abstract

Hierarchical graph definitions allow a modular description of graphs using modules for the
specification of repeated substructures. Beside this modularity, hierarchical graph definitions
also allow to specify graphs of exponential size using polynomial size descriptions. In many
cases, this succinctness increases the computational complexity of decision problems when input
graphs are defined hierarchical. In this paper, the model-checking problem for first-order logic
(FO), monadic second-order logic (MSO), and second-order logic (SO) on hierarchically defined
input graphs is investigated. It is shown that in general these model-checking problems are
exponentially harder than their non-hierarchical counterparts, where the input graphs are given
explicitly. As a consequence, several new complete problems for the levels of the polynomial
time hierarchy and the exponential time hierarchy are obtained. Based on classical results of
Gaifman and Courcelle, two restrictions on the structure of hierarchical graph definitions that
lead to more efficient model-checking algorithms are presented.



1 Introduction

Hierarchical graph definitions specify a graph via modules, where every module is a graph
that may refer to modules of a smaller hierarchical level. In this way, large structures can
be represented in a modular and succinct way. Hierarchical graph definitions were introduced
in [29] in the context of VLSI design. Formally, hierarchical graph definitions can be seen as
hyperedge replacement graph grammars [12, 22] that generate precisely one graph.

In this paper we consider the complexity of the model-checking problem for first-order
logic (FO), monadic second-order logic (MSO), and second-order logic (SO) on hierarchically
defined input graphs. FO allows only quantification over elements of the universe, MSO allows
quantification over subsets (unary predicates) of the universe, and SO allows quantification
over relations of arbitrary arity over the universe. The model-checking problem for some fixed
logic (e.g. FO or MSO) asks whether a given sentence from that logic is true in a given finite
structure (e.g. a graph). Usually, the structure is given explicitly, for instance by listing all
tuples in each of the relations of the structure. In this paper, the input structure will be given
in a compressed form via a hierarchical graph definition.

Each of the logics FO, MSO, and SO has many fascinating connections to other parts of
computer science, e.g., automata theory, complexity theory, database theory, verification, etc.
The interested reader is referred to the text books [11, 25, 30, 42] and the handbook article [44]
for more details. It is therefore not surprising that the model-checking problem for these logics
on explicitly given input structures is a very well-studied problem with many deep results.
Let us just mention a few references: [13, 16, 17, 20, 21, 31, 33, 45, 46]. But whereas several
papers study the complexity of specific algorithmic problems on hierarchically defined input
graphs, like for instance reachability, planarity, circuit-value, and 3-colorability [27, 28, 29,
34, 35, 36|, there is no systematic investigation of model-checking problems for hierarchically
defined graphs so far (one should notice that all the algorithmic problems mentioned above can
be formulated in SO). The only exception is the work from [1, 5] on hierarchical state machines,
where the complexity of temporal logics (LTL, CTL, CTL") over hierarchical state machines
is investigated. Hierarchical state machines can be seen as a restricted form of hierarchical
graph definitions that are tailored towards the modular specification of large reactive systems.
We think that the investigation of model-checking problems for “general purpose logics” like
FO and MSO over hierarchically defined graphs leads to a better understanding of hierarchical
structures in a broad sense.

Our investigation of model-checking problems for hierarchically defined graphs will follow a
methodology introduced by Vardi [45]. For a given logic £ and a class of structures C, Vardi
introduced three different ways of measuring the complexity of the model-checking problem for
L and C: (i) One may consider a fixed sentence ¢ from the logic £ and consider the complexity
of verifying for a given structure A € C whether A = ¢; thus, only the structure belongs to
the input (data complexity or structure complexity). (ii) One may fix a structure A from the
class C and consider the complexity of verifying for a given sentence ¢ from £, whether A = ¢;
thus, only the formula belongs to the input (expression complexity). (iii) Finally, both the
structure and the formula may belong to the input (combined complexity). In the context of



hierarchically defined graphs, expression complexity will not lead to new results. Having a fixed
hierarchically defined graph makes no difference to having a fixed explicitly given graph. Thus,
we will only consider data and combined complexity for hierarchically defined graphs.

After introducing the necessary concepts in Section 3—7, we study model-checking problems
for FO over hierarchically defined graphs in Section 8. Section 8.1 deals with data complexity
whereas in Section 8.2, combined complexity is briefly considered. Section 9 carries out the
same program for MSO and SO. In all cases, we measure the complexity of the model-checking
problem in dependence on the structure of the quantifier prefix of the input formula. In some
cases we observe an exponential jump in computational complexity when moving from explicitly
to hierarchically defined input graphs. In other cases there is no complexity jump at all. We
also consider structural restrictions of hierarchical graph definitions that lead to more efficient
model-checking algorithms. Our results are collected in Table 1 and Table 2 at the end of the
paper, see Section 4 and Section 5 for the relevant definitions.

2 Related work

Specific algorithmic problems (e.g. reachability, planarity, circuit-value, 3-colorability) on hier-
archically defined graphs are studied in [27, 28, 29, 34, 35, 36]. A concept related to hierarchi-
cally defined graphs are hierarchical state machines [1, 5], which are a widely used concept for
the modular and compact system specification in model-checking. Hierarchical state machines
can be seen as a restricted form of hierarchically defined graphs. The papers [1, 5] study the
complexity of model-checking temporal logics (LTL, CTL, CTL") over hierarchical state ma-
chines. Other formalisms for the succinct description of structures, which were studied under a
complexity theoretical perspective, are boolean circuits [6, 19, 38, 49], boolean formulas [21, 47],
and binary decision diagrams [15, 48]. For these formalisms, general upgrading theorems can
be shown, which roughly state that if a problem is complete for a complexity class C', then the
compressed variant of this problem is complete for the exponentially harder version of C'. For
hierarchical graph definitions such an upgrading theorem fails [28].

3 General notations

. o . . . . * .
The reflexive and transitive closure of a binary relation — is —. Let = be an equivalence

relation on a set A. Then, for a € A, [a]z = {b € A | a = b} denotes the equivalence class
containing a. With [A]= we denote the set of all equivalence classes. With 7= : A — [A]=
we denote the function with 7=(a) = [a]= for all « € A. For sets A, Ay, and Ay we write

A=A WA if A= AU Ay and A; N Ay = 0. For a function f: A — B let dom(f) = A and
ran(f) ={b€ B|3Ja € A: f(a) = b}. For C C A we define the restriction f[c: C — B by
flc(e) = f(e) for all ¢ € C. For functions f : A — B and g : B — C we define the composition
gof:A— Chby(gof)a)=g(f(a)) for all « € A. For functions f: A — C and g: B — D
with AN B = () we define the function fUg: AUB — CUD by (fUg)(a) = f(a) fora € A



and (f U g)(b) = g(b) for b € B.

A ranked alphabet is a pair (I',rank), where I' is a finite alphabet and rank : I' — N =
{0,1,2,...} assigns to every a € I its rank. If the rank-function is clear from the context, we
will omit it. An ordered dag (directed acyclic graph) is a triple G = (V, ¢, roots) where (i) Vi
is a finite set of nodes, (ii) v : Vo — V& is the child-function, (iii) the relation Fq := {(u,v) |
u,v € Vg, v occurs in yg(u)} is acyclic, and (iv) roote has indegree 0 in the graph (Vg, Eg).
The size of G is |G| = |V|. The notion of a root-path p € N* in G together with its target-node
7¢(p) € Vi are inductively defined as follows: (i) € is a root-path in G and 7¢(g) = roots and
(i) if p is a root-path in G, v = 7¢(p), and n = |y5(v)|, then pi is a root-path for all 1 <i <n
and 7g(pi) is the i-th node in the list v4(v).

4 Complexity theory

We assume that the reader has some basic background in complexity theory [37]. In particular,
we assume that the reader is familiar with the classes L (deterministic logarithmic space), NL
(nondeterministic logarithmic space), and P (deterministic polynomial time). It is well known
that each of these classes is closed under (deterministic) logspace reductions. A function f is
computable in nondeterministic logspace [2] if

o for all z, |f(x)| < |z|° for some constant ¢ and

e there exists a Turing machine M for which the working space is bounded by O(log(n))
and such that for every input x: on every computation path, either M rejects on that
path or produces f(x) on the output tape.

Of course the space on the output tape does not belong to the working space. We say that
a language A is NL-reducible to a language B, if there exists a function f such that (i) f is
computable in nondeterministic logspace and (ii) for all x, x € A if and only if f(z) € B. It is
not hard to see that if A is NL-reducible to B € NL, then also A € NL. One can use the same
proof that shows that L is closed under (deterministic) logspace reductions: For an input z,
one simulates an NL-machine for B on the input f(z), but without actually producing f(z).
Each time, the machine for B needs the i-th bit of f(z), then one starts a simulation of the
machine that calculates f in nondeterministic logspace until the i-th bit of f(z) is produced; if
the machine for f rejects, then the overall simulation rejects.

Several times we will use alternating Turing-machines, see [7] for more details. Roughly
speaking, an alternating Turing-machine M is a nondeterministic Turing-machine, where the
set of states ) is partitioned into three sets: Q3 (existential states), @y (universal states), and
F (accepting states). A configuration C' with current state ¢ is accepting, if

e gc F, or

® ¢ € (Y3 and there exists a successor configuration of C' that is accepting, or



e g € )y and every successor configuration of C' is accepting.

An input word w is accepted by M if the corresponding initial configuration is accepting. An
alternation on a computation path of M is a transition from a universal state to an existential
state or vice versa.

By [23, 43], the class of all problems, that can be solved on an alternating Turing-machine
in logarithmic space, where furthermore the number of alternations is bounded by some fixed
constant, is still equal to NL.

The levels of the polynomial time hierarchy are defined as follows: Let k > 1. Then X}
(resp. IT}) is the set of all problems that can be recognized on an alternating Turing-machine
within £ — 1 alternations and polynomial time, where furthermore the initial state is assumed
to be in Q3 (resp. Qv). The polynomial time hierarchy is PH = (J,., 3}. If we replace in

these definitions the polynomial time bound by an exponential time bound (i.e., 2”0(1)), then
we obtain the levels 3¢ (resp. II§) of the (weak) EXP time hierarchy EH = |J,-, X5. If we
replace the polynomial time bound by a logarithmic time bound O(log(n)), then we obtain
the levels X% (resp. II®) of the logtime hierarchy LH = U1 Y%, which is contained in
L. Here one assumes that the basic Turing-machine model is enhanced with a random access
mechanism in form of a query tape that contains a binary coded position of the input tape.
If the machine enters a distinguished query state, then the machine has random access to the
input position that is addressed by the query tape. The logtime hierarchy is a uniform version
of the circuit complexity class AC".

5 Hierarchical graph definitions

Let " be a ranked alphabet. A I'-labeled hypergraph is a tuple H = (V, E,\), where V is
a finite set of nodes, E is a finite set of hyperedges, and X\ : E — {(A,7) | A € I',7 :
{1,...,rank(A)} — V7} is the labeling function. We also write V¥ =V Ef = E, and
M= X If Me) = (A,7), then we say that e is an A-labeled hyperedge. Assume that =
is an equivalence relation on the set of nodes V. Then we define the quotient hypergraph
H/= = ([V]z, E, pn), where for all e € E, u(e) = (A,m=o7) if A(e) = (A, 7). For a hyperedge
e € E we define the hypergraph H \ e = (V, E \ {e}, A\[p\(¢}). We say that two hypergraphs
Hy = (Vi, E1, \) and Hy = (Va, Eo, A2) are disjoint if Vi NV = E; N Ey = (0. In this case,
we define the hypergraph Hy @ Hy = (V4 U Vo, By U Eo, A\ U Ag). For n > 0, an n-pointed
hypergraph is a pair G = (H,o), where H is a hypergraph and o : {1,...,n} — V# is an
injective mapping. The nodes o(i) (1 < i < n) are also called the pin nodes of G. Nodes in
VH\ ran(o) are called internal nodes of G. For A € " with rank(A) = n we define the n-pointed
hypergraph G4 = (({1,...,n},{e}, A),id) with A(e) = (A, id), where id is the identity function
on{l,...,n}.

Definition 5.1. A hierarchical graph definition is a tuple D = (I', N, S, P) such that the
following holds:



(1) T'UN is a ranked alphabet, N is the set of nonterminals, I' is the set of terminals,
(2) S € N is the start nonterminal, where rank(S) =0, and

(8) P is a set of productions. For every A € N, P contains exactly one production A — G,
where G = (H,o0) is a rank(A)-pointed (I' U N)-labeled hypergraph. We require that if
M(e) = (A, 7) with A € N, then T is injective.

(4) Define the relation Ep on N as follows: (A, B) € Ep if and only if for the unique production
of the form A — G, G contains a B-labeled hyperedge. Then we require that Ep is acyclic.

By (4), the transitive closure =p of the relation Ep is a partial order, we call it the hierarchical
order. The size |D| of D is defined by 3 4 (g ryep [V +|EY.

Let us fix a hierarchical graph definition D = (I', N, S, P). For i € {1,2} let G; = (H;, 0;)
be an n-pointed (I' U N)-labeled hypergraph for some n > 0 (thus o; is injective). Then we
write G1 =p G if and only if there exists a hyperedge e € F* such that:

o \Mi(e)= (A, 1) with A€ N,
e A — (H, o) is the unique production with left-hand side A (thus, also o is injective),
e w.lo.g. H and H, are disjoint,

Hy = (H,\ e ® H)/= with = the smallest equivalence relation on V1 &V that contains
all pairs of the form (7(i),0(i)) for 1 < i <rank(A), and

® 09 = TT=00]1.

Note that the injectivity of oy follows from the injectivity of ¢ and oy. It is easy to see that for
every A € N, there exists a unique I'-labeled rank(A)-pointed hypergraph evalp(A) such that
G A =p evalp(A). Finally, we define eval(D) = evalp(S5).

We assume the following conventions for the graphical representation of hypergraphs and
productions of hierarchical graph definitions: A hyperedge e with A(e) = (A, 7) for a nontermi-
nal A is drawn as a big circle with inner label A. This circle is connected via dashed lines with
the nodes 7(i) for 1 < i < rank(A), where the connection to 7(i) is labeled with i. These dashed
lines are also called tentacles. Only terminals of rank 1 or rank 2 will occur in diagrams and
lower bound proofs. A terminal hyperedge e with A(e) = (f,7) and rank(f) = 2 is drawn as a
solid directed edge from 7(1) to 7(2) with label f. A terminal hyperedge e with A(e) = (a, 7)
and rank(a) = 1 is represented by just labeling the node 7(1) with a. Our definition allows
multiple edges with the same label as well as several node labels for a single node. If G = (H, o)
is an n-pointed hypergraph, i.e., o : {1,...,n} — V# is an injective mapping, then we label the
pin node o (i) with i. In order to distinguish this label i better from node labels that correspond
to terminals of rank 1, we will use a smaller font for the label 1.



Example 5.2. Let us consider the hierarchical graph definition D = (I', N, S, P), where T’
contains two terminals o and 3 of rank 2, N = {S, Ay, Aa, A3}, where rank(S) = 0, rank(A4;) =
1, and rank(Ay) = rank(A3) = 2. The set P of productions contains the following rules:

1 4 \
O—~ ®—~ £
(49 e

o' 11

”—’ .~~~ 2 1
LA W
—~ . - o
1 12 21 17 v 6

Then eval(D) is the following graph. Edge labels are omitted; edges going down in the tree have

to be labeled with 3, and the other edges going from the leafs to the root have to be labeled with
a.

Definition 5.3. A hierarchical graph definition D = (I', N, S, P) is in Chomsky normal form
if for every production A — (H,T) in P, either

o BH ={ey es}, where M (e;) = (A, 1), Ay € N (i € {1,2}), and V¥ = ran(r;) Uran(ry),
or

e H does not contain any hyperedge that is labeled with a nonterminal.

A typical production of the first type looks as follows, where rank(A) = 4:
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It is straight-forward to construct for a given hierarchical graph definition D another hierarchical
graph definition D" in Chomsky normal form such that eval(D) = eval(D’). Moreover, this
construction can be carried out by a logarithmic space bounded machine.

Definition 5.4. With a hierarchical graph definition D = (I', N, S, P) we associate an ordered
dag dag(D) = (N,~,S), where the child-function -y is defined as follows: Let A — G be
the unique production with left-hand side A € N and let ey, ..., e, be an enumeration of all
hyperedges in G that are labeled with a nonterminal (this enumeration is somehow given by the
input encoding of D). Then v(A) = Ay --- A, where A; is the label of the hyperedge e;.

For instance, dag(D) for the hierarchical graph definition from Example 5.2 looks as follows:

1
12
12

(4s)

Remark 5.5. We list some simple algorithmic properties of hierarchical graph definitions that
are useful for the further considerations.

1. A node of eval(D) can be uniquely represented by a pair (p,v) such that (i) p is a root-path
in dag(D) with target node A = Tyagpy(p) and (i) A — (H,T) is the unique production
with left-hand side A, where v € VH \ ran(7) is an internal node.' This representation
is of size O(|D]) and given a pair (p,v) we can check in time O(|D|) (or alternatively in
space O(log(|D])), whether (p,v) represents a node of eval(D).

2. Given nodes u; = (p;,v;) for 1 < i < rank(a), where a is a terminal label, we can verify
in time O(|D|) (or alternatively in space O(log(|D|))), whether H = eval(D) contains a
hyperedge e with A (e) = (a,T) and 7(i) = u; for 1 <i < rank(a).

!The nodes in ran(7), i.e., the pin nodes of the right-hand side of A, are excluded here, because they were
already generated by some larger (with respect to the hierarchical order > p) nonterminal.



The following simple statement will be useful later:

Lemma 5.6. For a given hierarchical graph definition D and a node u = (p,v) of eval(D),
we can construct in deterministic logarithmic space (and hence in polynomial time) a new
hierarchical graph definition D' such that eval(D) and eval(D') are identical, except that in
eval(D’) the node u has the additional label o, where « is a node label that does not occur
anywhere else in D.

Proof. Assume that p = iyig-- i, (ip € N) and let Ay = Taag(p)(i192 - - -ix) € N be the target
node of the path iyis - - - i) for k € {0,...,n}. Thus, Ay = S (the start nonterminal). For every
nonterminal A; introduce a copy A;. Let Ay — Gy be the unique production for Ay in D. If
0 < k < n, then we introduce for A} the production A) — G, where G}, results from G}, by
labeling the i41-th nonterminal-hyperedge with A}, (instead of A4, as in Gj). Finally, we
add the rule A, — G! , where G/, results from G, by adding the new label « to the node v of
G,. The resulting hierarchical graph definition D’ has the property from the lemma. Clearly,
the construction can be done using logarithmic working space. O

6 Graph operations

Hierarchically defined graphs can be also described via graph operations on n-pointed hyper-
graphs in the sense of Courcelle [10]. Since this approach will be useful in Section 8.1 and 9.1, we
briefly introduce this formalism in this section. Given an n;-pointed hypergraph G; = (H;, 0;)
(i € {1,2}) with H,; and H, disjoint we define the disjoint union G1 & Gy = (H; ® Ha, 0), where
o:{l,...,ny +ny} — VIO jg defined by (i) = o1(i) for 1 <i < ny and o(i) = 09(i — ny)
forny+1 <i <mnj;+mny. For 1 <a < b<nand an n-pointed hypergraph G = (H, o) we define
the (n — 1)-pointed hypergraph glue, ,(G) = (H/=,0’), where = is the smallest equivalence
relation on V# that contains the pair (0(a),o (b)) and o’(i) = o(i) for 1 < i < b—1 and
o'(i) =o(i+1) for b < i < n—1. Finally, for an injective mapping f : {1,...,m} — {1,...,n}
we define the m-pointed hypergraph rename((G) = (H,o o f). A graph straight-line program
S = (X :=t;)1<i<n over the ranked alphabet I is a sequence of definitions of the form X; :=t;,
where t; is either an n-pointed I'-labeled hypergraph (for some arbitrary n), or an expression
of the form X; @ Xy, glue,,(X;), or renamey(X;), where j,k < i and a,b, f are as above.
Here, the X; are formal variables. For every variable X; we define inductively its type type(X;)
as follows: (i) if ¢; is an n-pointed hypergraph, then type(X;) = n, (i) if t;, = X; & X,
then type(X;) = type(X;) + type(Xy), (iii) if t; = glue, ,(X}), then type(X;) = type(X;) — 1,
and (iv) if ¢; = rename;(X;), then type(X;) = |dom(f)|. Now we can define inductively
the type(X;)-pointed I'-labeled hypergraph eval(X;) as follows: (i) if ¢; is an n-pointed hy-
pergraph G, then eval(X;) = G, (ii) if t; = X; & X}, then eval(X;) = eval(X;) @ eval(Xy),
(iii) if t; = glue, ,(X;), then eval(X;) = glue, ,(eval(X;)), and (iv) if #; = rename;(Xj), then
eval(X;) = renamey(eval(X;)). Finally, we define eval(S) = eval(X,,). It is straight-forward to
construct (in logarithmic space) from a given hierarchical graph definition D a graph straight-
line program S such that eval(D) = eval(S), see for instance [9].

8



7 Logic

A relational signature S is a finite set consisting of relational symbols r; (i € I) and constant
symbols ¢; (j € J). Each relation symbol r; has an associated arity a;. A structure over the
signature S is a tuple A = (A, (R;)ier, (a;)jes), where R; C A% is the relation associated with
the relation symbol r; and a; € A is the constant associated with the constant symbol c;.
As usual, a constant a may be replaced by the unary relation {a}, thus it suffices to consider
relational signatures without constant symbols. But for convenience, we will consider signatures
with constant symbols several times.

We identify a ranked alphabet I' with the relational signature, where every a € I' is a
relation symbol of arity rank(a). Thus, a I-labeled hypergraph H = (V| E,\) is identified
with the relational structure (V, (R,)ser), where R, = {(v1,. .., Vrank(a)) € V@ | Je € E :
Ae) = (a,7),v; = 7(i) for 1 < i < rank(a)}. An n-pointed I'-labeled hypergraph G = (H, o)
is identified with the same structure, where every pin node o(i) (1 < i < n) is added as an
additional constant. The i-th pin node is denoted by the new constant symbol pin(i). Let us
fix a ranked alphabet (i.e., a signature) I" for the further discussion.

In this paper, we consider the logics FO (first-order logic), MSO (monadic second-order
logic), and SO (second-order logic) over hierarchically defined hypergraphs. A detailed intro-
duction into mathematical logic can be found in [11]. Atomic FO formulas over the signature

[’ are of the form = = y, x = pin(7), and a(zy,...,x,), where a € I" with rank(a) = n, and
x,Y,x1,...,T, are first-order variables ranging over nodes. The interpretation of a(x1,...,x,)
is (z1,...,7,) € R,. In case rank(a) = 2 we also write 2; = x5, in case rank(a) = 1 we also

write x1 € a, i.e, we identify the node label a with the set of all a-labeled nodes. From these
atomic subformulas we construct arbitrary FO formulas over the signature I' using boolean
connectives and (first-order) quantifications over nodes. A ¥;-FO formula (resp. I1;-FO for-
mula) is a first-order formula of the form ByBy--- By : ¢, where: (i) ¢ is a quantifier-free FO
formula, (ii) for ¢ odd, B; is a block of existential (resp. universal) quantifiers, whereas (iii) for
i even, B; is a block of universal (resp. existential) quantifiers. An FO*-formula (k > 2) is a
first-order formula that only uses at most k different (bounded or free) variables.

SO extends FO by allowing the quantification over relations of arbitrary arity. For this,
there exists for every m > 1 a set of second-order variables of arity m that range over m-ary
relations over the universe. In addition to the atomic formulas of FO, SO allows atomic formulas
of the form (x1,...,2,) € X, where X is an m-ary second-order variable and z1,...,z,, are
first-order variables. MSO is the fragment of SO (and the extension of FO) that only allows
to use second-order variables of arity 1, i.e., quantification over subsets of the universe is
allowed. A ¥;-SO formula (resp. I1x-SO formula) is an SO formula of the form BBy --- By : ¢,
where: (i) ¢ is an SO formula that contains only first-order quantifiers, (ii) for ¢ odd, B; is a
block of existential (resp. universal) SO quantifiers, whereas (iii) for i even, B; is a block of
universal (resp. existential) SO quantifiers. For an SO sentence ¢, i.e., an SO formula without
free variables, and a relational structure A, we write A = ¢ if the sentence ¢ is true in the
structure A.

The quantifier rank qr(yp) of an MSO formula (we won’t need this notion for general SO



formulas) is inductively defined as follows: qr(yp) = 0 if ¢ is atomic, qr(—¢) = qr(e), qr(pAY) =
qr(e V ¥) = max{qr(y),qr(¢)}, and qr(Vey) = qr(Ize) = qr(p) + 1, where x is an FO or an
MSO variable. It is well-known that for every k& > 1, there are only finitely many pairwise
nonequivalent formulas of quantifier rank at most k. This value only depends on k, see [26]
for an explicit estimation. The k-FO theory (resp. k-MSO theory) of a structure A, briefly
k-FOTh(A) (resp. k-MSOTh(A)), consists of all FO sentences (resp. MSO sentences) of
quantifier rank at most k£ that are true in A; by the previous remark it is a finite set up to
logical equivalence.

In Section 8.1 we will briefly consider modal logic, see e.g. [40] for more details. Modal
logic is interpreted over directed graphs, where both edges and nodes are labeled. Let G =
(V. (Ea)aes, (Py)4er) be such a graph, where V' is the set of nodes, E, C V' x V is the set of all
a-labeled edges, and P, C V' is the set of all y-labeled nodes. Such a structure can be seen as a
hypergraph, where all terminals have rank 1 or 2. Atomic formulas of modal logic are v, where
v € T'is a node label, tt (for true), and ff (for false). If ¢ and ¢ are already formulas of modal
logic, then also =, @ A, o V1, [a]p, and {a)¢ are formulas of modal logic, where a € X is
an edge label. The satisfaction relation G, v |= ¢ (the modal logic formula ¢ is satisfied in the
node v € V of G) is inductively defined as follows (o € ¥, v € T'):

G,v = tt

G,v £t

G,vEry & vePl,

G,v = —p & G e

GuoEepANYy & GouvlEeand GolEY

GuvEeVvy & GoulEgo GuEY

GvlElalp &  G,ul pforevery u € V with (v,u) € E,
GovE ()¢ < G,ul @ for some u €V with (v,u) € E,

It is well-known and easy to see that for every formula ¢ of modal logic we can construct an
FO? formula ¢'(z) with one free variable such that for every node v € V: G,v = ¢ if and only
if G = ¢'(v), see e.g. [30, Prop. 14.8].

7.1 Model-checking explicitly given input graphs

Let us briefly recall the known results concerning the complexity of the model-checking problem
for the logics from the previous section when input graphs are represented explicitly. For ¥,-FO
(resp. I1;-FO) the data complexity is £, (resp. TL¥) [4, 24], whereas the combined complexity
goes up to 3} (resp. II}) [13, 41]. For X;-MSO (resp. II;-MSO), both the data and combined
complexity is 2P (resp. II}) [13, 33, 41]. For full second-order logic, the data complexity of
Y-S0 is still 3} [13, 41], whereas the combined complexity becomes €. For modal logic, the
combined complexity is P, in fact, for every fixed £ > 2, the combined complexity of FO! is P
as well [46].

10



8 FO over hierarchically defined graphs

In this section we study the model-checking problem for FO over hierarchically defined input
graphs. Section 8.1 deals with data complexity. First, we prove that the data complexity of
¥;-FO for hierarchically defined input graphs is NL (Theorem 8.2). Using this result, we show
that for X;-FO (resp. II;-FO) with £ > 1 the data complexity becomes X} ; (resp. IT} ;)
(Theorem 8.3). Next, we study structural restrictions on hierarchical graph definitions that
lead to more efficient model-checking algorithms. We introduce the apex restriction, which
means that tentacles in a right-hand side are not allowed to access the pin nodes. We prove
that under the apex restriction the data complexity of FO goes down to NL (Theorem 8.5).
Finally, we consider hierarchical graph definitions, for which the rank of every nonterminal as
well as the number of nonterminal hyperedges in a right-hand side is bounded by some fixed
constant ¢ (c-boundedness). We show that under this restriction the data complexity reduces
to P (Theorem 8.6), but we cannot provide a matching lower bound.

In Section 8.2 we briefly consider combined complexity. We argue that the combined com-
plexity for ¥-FO (resp. II;-FO) does not change when moving from explicitly to hierarchically
defined input graphs (namely 37 resp. II7) (Theorem 8.7).

8.1 Data complexity

A trivial lower bound for model-checking a fixed FO sentence over hierarchically defined input
graphs is given by the following statement:

Proposition 8.1. [t is NL-hard to verify for a given hierarchical graph definition D whether
eval(D) is the empty graph. Thus, given D, it is NL-hard to verify whether eval(D) | 3z :
x = x. Moreover, for the hierarchical graph definition D we can assume that the rank of
every nonterminal is 0 and that every right-hand side of a production contains at most two
nonterminal hyperedges.

Proof. We prove the proposition by a reduction from the NL-complete graph accessibility
problem for directed acyclic graphs [39]. Thus, let G = (V, E) be a directed acyclic graph and
let u,v € V, where w.l.o.g. v has outdegree 0 and every node a € V has at most 2 direct
successor nodes. For every node a € V we introduce a nonterminal A, of rank 0; the start
nonterminal is A,. If a has the direct successor nodes aq,...,ar with k € {1,2}, then the
right-hand side of A, consists of k hyperedges labeled with A,,,..., A, (and no nodes). If
a € V' \ {v} is a node of outdegree 0, then the right-hand side of A, is the empty hypergraph.
Finally, the right-hand side of A, consists of a single node. Then, (u,v) € V' if and only if the
resulting hierarchical graph definition generates a non-empty graph. U

For ¥1-FO we can also prove a matching NL upper bound:

Theorem 8.2. For every fized ¥1-FO or I1;-FO formula ©(y1, ..., Ym), the following problem
is in NL (and hence in P):
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INPUT: A hierarchical graph definition D and nodes uy, ..., u,, from eval(D) (encoded as
described in Remark 5.5).

QUESTION: eval(D) = o(uq, ... ,upn)?

Proof. Due to the closure of NL under complement (see e.g. [37]), it suffices to prove the
theorem for a 3;-FO formula. Let D = (I', N, S, P). In a first step, take new node labels
Qi,...,q, and use Lemma 5.6 in order to construct in logarithmic space a new hierarchi-
cal graph definition D’ such that eval(D’) is identical to eval(D) except that in eval(D’)
the node u; has the additional node label «;. Then eval(D) = ¢(uy,...,uy,) if and only
if eval(D') = 3y -3y 0 @(z1,. .., 2m) A \jo 2 € ;. Note that the latter sentence is
a fixed ¥1-FO sentence. Thus, it suffices to consider a fixed ¥;-FO sentence of the form
Ay -+ -3z, ¢ (21, ..., x,), where moreover ¢ is a conjunction of possibly negated atomic for-
mulas (disjunctions can be shifted in front of the existential quantifiers). We may also assume
that the input hierarchical graph definition D is in Chomsky normal form, see Definition 5.3.

A subformula v of ¢ is a conjunction of a subset of the conjuncts that occur in ¢. With
Var (1) we denote the set of those variables from {z1,...,x,} that occur in 9. Clearly, there is
only a constant number of subformulas. For a nonterminal A € N of rank m, we denote with
F(A) the set of all formulas that result by replacing in an arbitrary subformula ¢ of ¢ some
of the variables from Var(¢)) by constants from {pin(1),...,pin(m)}. For § € F(A) we denote
with 87 (resp. 67) the set of all positive atoms (resp. negated atoms) that occur in . An
assertion is a pair (A, ), where § € F(A). Note that an assertion can be stored in logarithmic
space. Let evalp(A) = (H,o). We write valid(A, @) for the assertion (A,6) if there exists a
mapping 3 : Var(6) — V7 \ ran(o) such that 6 becomes true in evalp(A) when every variable
x € Var(0) is replaced by ((z).

Let us consider an example. Assume that

W =11(21, T2, 1g) A (T2, x3) A T3(T4, 3, T2) A 11 (T2, T3, T4).
If rank(A) = 3, then for instance the following formula 6 belongs to F(A):
r1(z1, pin(3), pin(1)) A =ra(pin(3), x3) A r3(pin(1), z3, pin(3)) A =r1(pin(3), z3, pin(1)).
We have

0" = {ri(z1,pin(3), pin(1)), r3(pin(1), 23, pin(3)) }

0~ = {—|7’2(pin(3), CU3>’ —|7‘1(pin(3), 3, pin(l))}.
Claim: We can verify in NL whether for a given assertion (A, 0) with Var(d) = 0 we have
valid(A, 6).

Proof of the claim. The formula 6 is a conjunction of a constant number of (negated) atoms of
the form (=)r(pin(é1), ..., pin(ig)). Since NL is closed under complement, it suffices to verify a
single atom a = r(pin(iy),...,pin(i)) in evalp(A). Let A — (H,7) be the unique production
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for A. If H only contains terminal hyperedges, then it is trivial to check valid(A,a) in NL.
Otherwise, assume that Ef = {e;, e}, where M7 (e;) = (A4;,7:) and A; € N for i € {1,2}. In
this case we nondeterministically choose an i € {1,2} such that {7(iy),...,7(ix)} C ran(r). If
such an 7 does not exist then we reject immediately. Otherwise we proceed with the assertion
(A;,b), where the atom b results from the atom r(pin(éy),. .., pin(ix)) by replacing the constant
pin(ig) by pin(j) if 7(i¢) = 7;(j); since 7; is injective (see (3) in Definition 5.1), j is determined
uniquely. The atom b can be calculated in logspace from r(pin(iy),...,pin(ix)). This proves
the claim.

Now we present an NL-algorithm for verifying general assertions (with variables). The
algorithm stores a list ajag---ay of assertions where k < |Var(p)| + 2. Since |Var(y)| is
a constant and every assertion «; can be stored in logarithmic space, the algorithm works in
logarithmic space as well. If the algorithm transforms the list ajas - - - o into the list o) a5 - - - oy,
then

k ¢
M\ valid(es) & /\ valid(c). (1)
i=1 i=1

Initially, the list only contains the assertion (.5, ¢). The algorithm accepts, if the list of assertions

is empty. Together with (1) this proves the correctness of the algorithm. It remains to describe
a single step of the algorithm such that (1) is true.

Case 1. There exists an i such that o; = (A4,60) and Var(d) = (). Then by the above claim,
we can verify in NL whether valid(A, 6) is true. If valid(A, §) turns out to be wrong, then we
reject immediately, otherwise we continue with the list oy --- ;10,11 -+ - ag. The correctness
property (1) is clearly true.

Case 2. There does not exist an ¢ such that a; = (A,0) and Var(f) = 0. Then the algorithm
removes an arbitrary assertion, say a; = (A, 0), from the list and continues as follows:

Case 2.1. A — (H,7) is the unique production for A, and H does not contain nonterminal
hyperedges. Then it is again trivial to check in NL whether valid(A, a) and we can proceed as
in Case 1.

Case 2.2. A — (H, ) is the unique production for A, and E* = {e;, s}, where M (e;) = (4;, i)
and A; € N for i € {1,2}. Thus, V# = ran(r;) Uran(7y). We now guess:

e a partition Var(f) =Y W X; W Xy (each of the three sets X, Xy, and Y may be empty),
e a mapping 8: Y — VH \ ran(7), and

e a partition 7 = ¢ Wy such that for every i € {1,2}, every atom a € 1, every
constant pin(j), and every variable x € Var(#) we have:

pin(j) occurs in a = 7(j) € ran(7;)
zoceursina = (z € X;V(reY AP(x) €ran(r)))

(2)
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Intuitively, Y is the set of all variables from Var(f) that will be assigned (via the mapping 3) to
a node in V7 \ ran(7) = (ran(r;) Uran(y)) \ ran(7) (which is the set of nodes that are directly
generated by A), whereas X; is the set of all variables that will be assigned to a node that is
generated by the nonterminal A;. The set ¢, contains all positive atoms a from 6 such that
the terminal hyperedge that will finally make the atom a true is generated by the nonterminal
A;. If the above data do not exist, then we reject immediately. Otherwise we construct for
i € {1,2} the conjunction 0; € F(A;) as follows:

e First define v; as the conjunction of all atoms in

¥ U{(—a) € 0 | a satisfies (2) for all constants pin(j) and all variables z € Var(0)}.

e Next, we replace in ¢; every constant pin(j) by pin(¢), where 7(j) = 7;(¢), and we replace
every variable z € Y by pin(¢), where 5(z) = 7;(¢). Let 6; be the resulting conjunction.

We continue with the list (Ay,0;)(As, 02)as - - - ag. Note that Var(d;) C X;. To see that (1) is
true, we have to argue that valid(A, #) if and only if valid(A;, ;) and valid(As, f2). We leave
the proof to the reader.

This concludes the description and the correctness proof of the algorithm. The number
of assertions in the stored list is bounded by |Var(¢)| + 2, because (i) there are at most two
assertions (A, ) with Var(f) = () in the list, and (ii) if (A4, 6;) and (As, 6;) belong to the list,
then Var(6;) N Var(6y) = (). This proves the theorem. O

Theorem 8.3. For every fized Yy 1-FO sentence (resp. Il 1-FO sentence) v, the question,
whether eval(D) = for a given hierarchical graph definition D is in X} (resp. IIY} ).
Moreover, for every k > 1, there exists a fived Y. 1-FO sentence (resp. Iy 1-FO sentence)
W such that the question, whether eval(D) |= ¢ for a given hierarchical graph definition D, is
Sh-complete (resp. II-complete). Finally, the sentence 1 is equivalent to an FO?-sentence.

Proof. For the upper bound assume that
Y =37 VT3 ITgr O(T1, - - Thy Tig1)

is a fixed ¥;,1-FO formula, where £ is assumed to be even (other cases can be dealt analogously)
and 7; is a tuple of FO variables. Our alternating polynomial time algorithm guesses for every
1 < <k atuple w; (of the same length as 7;) of nodes from eval(D), using the representation
for nodes from Remark 5.5 in Section 5. Since the size of this representation for a node is of
polynomial size, this guessing needs polynomial time. Moreover, if ¢ is odd (resp. even) we
guess the tuple 7; in an existential (resp. universal) state. It remains to verify, whether

eval(D) &= 3Ty 10(uy, . . ., Uk, Tet1),

which is possible in polynomial time by Theorem 8.2.
For the proof of the second statement, note that for every k > 1 it suffices to prove the
statement either for the class X} or IT}, because these two classes are complementary to each
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other, and the negation of a Y;.1-FO sentence is a II;,1-FO sentence and vice versa. For k
even, we prove the statement for 37, for £ odd, we prove the statement for ITy. For k odd, the
following problem QSAT), is IT}-complete [41, 50]:

INPUT: A quantified boolean formula © of the form
Vo« Vap, 13w, - g1 Vg, Vo, (T, ..., Tn),

where 1 < 01 < ¥y < --- < {1 < n and ¢ is a boolean formula in 3-DNF over the variables
T1yeooyTp.

QUESTION: Is © true?

For k even, the corresponding problem that starts with a block of existential quantifiers is
3h-complete. In the following, we will only consider the case that & is odd, the case k even can
be dealt analogously. Thus, let us take an instance © of QSAT), of the above form. Assume
that o = Cy V Oy V - - -V (), where every (; is a conjunction of exactly three literals.

We define a hierarchical graph definition D = (I', N, S, P) as follows: Let N = {S} U
{4; | 0 < i < n}, where rank(S) = 0 and rank(A;) = i + 1. The terminal alphabet
[’ contains the symbols g,c¢,t, f,n1,na,n3, p1,p2,p3, and root where rank(z) = 2 for z €
{g,¢,t, f,n1,n2,n3,p1,p2,p3} and rank(root) = 1. Exactly one node is labeled with root; it
is generated in the first step starting from the start nonterminal S:

root

*

® — ‘
The root-labeled node will become the root of a binary tree which is generated with the following
productions, where 1 <7 < n:

Note that for a non-leaf of the generated binary tree, the edge from the left (resp. right)
child is labeled with f for false (resp. ¢ for true). Thus, a path in the tree defines a truth
assignment for the boolean variables x; (1 < i < n). Via the j-labeled tentacles (1 < j <i+1),
every A;-labeled hyperedge e gets access to all nodes of the binary tree that were produced by
ancestor-hyperedges of e. These nodes form a path starting at the root.

Finally, for A,, we introduce the production A,, — G, where G is the following (n+1)-pointed
hypergraph:
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e The node set contains the n + 1 pin nodes (which correspond to the n + 1 nodes along
a path from the root to a leaf in the generated tree) plus m additional internal nodes
C1,...,Cm, Where node ¢; corresponds to the conjunction Cj.

e There is a g-labeled (g for guess) edge from pin 1 (which accesses the root) to pin ¢y,
there is a g-labeled edge from pin ¢;_; to pin ¢; for 1 < ¢ < k, and there is a g-labeled
edge from pin ¢;_; to pin n + 1. These g-labeled edges allow to go from the root to a
leaf of the tree in only k steps; thus, they provide shortcuts in the tree and will enable
us to produce a truth assignment for the boolean variables x1,...,z, with only k edge
traversals.

e There is a c-labeled (c for conjunction) edge from pin n + 1 (which accesses a leaf in the
tree) to each of the internal nodes ¢y, ..., ¢y, i.e., to each of the m conjunctions.

e There is a py-labeled edge (resp. ny-labeled edge), where k € {1,2,3}, from node ¢; to
pin j+1 (1 < j < n) if and only if z; (resp. —x;) is the k-th literal in the conjunction C;.

This concludes the description of the hierarchical graph definition D. Let us consider an
example for the last rule. Assume that

0= V$1V9625|x35|x4Vx5Vx6 { (—|ZL’1 VAN X3 VAN ZE4) V (I'l VAN WA ZL‘3) V } .

($3 N xg N 1‘5) V (_'$4 VAN Ty VAN _‘376)

Thus, k£ = 3, n = 6, m = 4, and the right-hand side for Ag is shown in Figure 1. We have labeled
the nodes cy, ..., ¢, with the corresponding conjunction, but note that these conjunctions do
not appear as node labels in the actual right-hand side. For the above formula, Figure 2 shows
the path in eval(D) that corresponds to the truth assignment x; = f,z9 = 23 = t, 14 = 75 =
r¢ = f. By construction of D, a leaf z of the binary tree, which corresponds to a boolean
assignment for the variables xq,...,z,, satisfies the disjunction C; vV Cy V --- Vv C,, of the m
conjunctions if and only if

3
c i t n; f
S AN R A )] (3)
=1

Using the edge z - y we guess a conjunction that will evaluate to true under the assignment

represented by the leaf z. Then y 2 v; SN yiVy 5y EN y. checks whether the i-th literal of
the guessed conjunction evaluates to true. For instance, for the path in Figure 2, the formula
in (3) is indeed true; we have to choose the conjunction -4 A =5 A —xg for the FO variable y.
From this observation, it follows that for the FO sentence

IpE‘V’ZOErootVzl:zoizl = Azg:21 D2y A - Vap: 21 > 2 =
3
i t i f
S N T T R T AN (TR R R VAR TR ST

=1
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_|[E1/\_|[E3/\l'4 [L’l/\Ig/\Ig ZL’3/\ZE4/\I5_\I4/\_\JI5/\_\JI6

Figure 1:

we have eval(D) = ¢ if and only if 6 is a true instance of QSAT,. If we bring ¢ into prenex
normal form, we obtain a II;;;-FO sentence. Finally, note that eval(D) | ¢ if and only if
eval(D), root = 1', where 1) is the following sentence of modal logic:

[9]{g) - - - [g]{c)
—_—— !

k many v

() ()t v (ni) (f)tt)

3
=1
By the remark from the end of Section 7, this modal sentence is equivalent to an FO?-sentence.
This proves the theorem. O

In the rest of this section we consider two structural restrictions of hierarchical graph definitions
that lead to more efficient model-checking algorithms for FO.

A hierarchical graph definition D = (T, N, S, P) is apex if for every production A — (H, o)
from P the following holds: For every e € Ef such that A\ (e) = (B, 7) for some B € N we have
ran(o) Nran(7) = (). Thus, pin nodes of a right-hand side cannot be accessed by nonterminal
hyperedges. Apex hierarchical graph definitions are called 1-level restricted in [34]. We will
prove that under the apex restriction the data complexity for FO over hierarchically defined
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_|[E1/\_|[E3/\l'4 [L’l/\Ig/\Ig ZL’3/\ZE4/\I5_\I4/\_\JI5/\_\JI6

Figure 2:

input graphs becomes NL. The proof of this result is based on Gaifman’s locality theorem [18].
First we have to introduce a few notations.

For a given relational structure A = (A, Ry,..., Ry), where R; is a relation of arbitrary
arity n; over A, we define the Gaifman-graph G 4 of the structure A as the following undirected
graph:

Ga=(A{(ab) e Ax Al \/ Jer,...en) €ERiTjkicj=a#b=cr}).

1<i<k

Thus, two nodes are adjacent in the Gaifman-graph if the nodes are related by some of the
relations of the structure A. For a,b € A we denote with d4(a,b) the distance between a
and b in the Gaifman-graph G 4. Note that d4(x,y) < r can be expressed by an FO formula
over the signature of A. We just write d(z,y) < r for this FO formula. For r» > 0 and
a € A, the r-sphere S4(r,a) is the set of all b € A such that da(a,b) < r. With Ny(r,a) =
(Sa(r,a), (R; N Sa(r,a)™)1<i<x) we denote the restriction of the structure A to the r-sphere
Sa(r,a).

Now let ¢ be an FO formula over the signature of A and let x be a variable. Then the FO
formula ™) results from ¢ by relativizing all quantifiers to S4(r,z). It can be defined induc-

tively, for instance (o1 A ©2)T® = " A G (3y ) = Fyld(z,y) < A @D} (where
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y has to be renamed into a fresh variable if y = 2), and R;(zy,...,2,)"" = Ri(zy,...,x,) for
atomic formulas. It is allowed that the formula ¢ contains the variable x free. Moreover, the
formula ¢™®) certainly contains z free if ¢ contains at least one quantifier. If ¢ contains at
most x free, then we write (N4(r,a),a) = o(z)"® if the formula ¢(z)™ is true in the sphere
N (r,a) when the variable x is set to a. Gaifman’s Theorem states the following [18].

Theorem 8.4. Every FO sentence is logically equivalent to a boolean combination of sentences

of the form
Jxq - --Elxm{ /\ d(zi,z;) > 2r A /\ w(xi)(mi)}

1<i<j<m 1<i<m

where Y(x) is an FO formula that contains at most x free and (x;) results from ¥(z) by
replacing every free occurrence of x by x;.

Theorem 8.5. For every fized FO sentence ¢, the question, whether eval(D) |= ¢ for a given
apex hierarchical graph definition D, is in NL.

Proof. By Gaifmans’s Theorem it suffices to consider a fixed local sentence of the form

Jzy -+ Jzpy { /\ d(z;,zj) > 2r A /\ w(xi)(”’””i)} : (4)

1<i<j<m 1<i<m

Thus, for a given hierarchical graph definition D = (T', N, S, P) we have to check, whether there
are at least m disjoint r-spheres in eval(D) that satisfy 1 (z)™®). Let d = 2r be the diameter
of r-spheres. We say that a sphere Sevaipy(7, @) is a ¥-sphere, if (Nevai(py(r, a), a) = Y(x)r),

Let A € N and let A — (H,o0) be the production for A. Let evalp(A) = (H',0’). We
identify V¥ with a subset of V¥ in the natural way. Then we say that evalp(A) contains a
top-level occurrence of a 1-sphere, if there exists v € V' such that (i) Sg:(v,r) NV £, (ii)
Sir(v,7) Nran(o’) = 0, and (iii) (Ng(v,7),v) = ¥ (z)™®. This means that if we consider a
subgraph of eval(D) that is generated from the nonterminal A, then this subgraph completely
contains a t-sphere (by (ii) and (iii)). Moreover, this sphere is not completely generated by
a smaller (w.r.t. the hierarchical order >p) nonterminal (by (i)). Note that the pin nodes of
evalp(A) are generated by a nonterminal that is larger than A w.r.t. the hierarchical order > p;
thus, we exclude them from a potential top-level occurrence of a i-sphere in (ii).

Claim 1: We can verify in L, whether evalp(A) contains a top-level occurrence of a 1-sphere.

Proof of Claim 1. Due to the apex restriction, if evalp(A) contains a top-level occurrence of a
1-sphere, then every node of that occurrence is generated by a nonterminal B that is at most
d steps below A in dag(D). Thus, in order to search for a top-level occurrence of a t-sphere in
evalp(A) we only have to unfold the nonterminal A up to depth d. Since d is a fixed constant,
this partial unfolding results in a graph of polynomial size. Every node of that graph can be
represented in logarithmic space. A more formal exposition follows.

We define a hierarchical graph definition D(d, A) as follows:
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The set of terminals is .

The set of nonterminals contains for every B € N and every 0 < i < d + 1 a copy B; of
the same rank as B.

The start nonterminal is Agy;.

The set of productions contains the following productions:

— For every 1 <i <d+ 1 and every B € N with (B — (H,0)) € P we take the pro-
duction B; — (H;_1,0), where H; ; results from G by replacing every nonterminal
label C'in H by C;_;. Moreover, if (A — (H,0)) € P, then in H; we additionally
label every internal node v € VH \ ran(o) with the new node label o and we label
every pin node v € ran(o) with the new node label (.

— For every B € N with (B — (H,0)) € P we take the production By — (H',0),
where H' results from H by (i) removing all nonterminal hyperedges and (ii) labeling
every node v € V' that is accessed by some tentacle of a nonterminal hyperedge of
H (ie., v € ran(7) for some e € E¥ with M (e) = (C,7), C € N) with the node
label (.

Clearly, D(d, A) can be constructed in logspace. Due to the apex restriction, evalp(A) contains
a top-level occurrence of a -sphere if and only if

eval(D(d, A)) & Jx {w(r’x) AVy € B:d(z,y) >r ATy €a:day) <r}. (5)

Note that this is a fixed FO sentence. Moreover, the representation of a node from the graph
eval(D(d, A)) according to Remark 5.5 can be stored in logarithmic space: it is a pair (p,v),
where v is an internal node in a right-hand side and p is a root-path in dag(D(d, A)), and this
root-path has length at most d (a constant). Every number in the path p needs logarithmic
space (it denotes a hyperedge in a right-hand side). Since by Remark 5.5 we can also check in
L, whether a tuple of nodes in eval(D(d, A)) is connected via a hyperedge, any L-algorithm for
verifying a fixed FO sentence over an explicitly given input graph can be also applied to check
whether (5) holds. This proves Claim 1.

Let Niop be the set of those A € N such that evalp(A) contains a top-level occurrence of
a 1-sphere. Thus, we can check in L whether a given nonterminal belongs to Nio,. In the
following we assume that S € Ny,,. The other case can be dealt analogously. Let P(D) be
the set of all root-paths in dag(D) that end at some nonterminal from N, and that are not a
proper prefix of some other root-path that is also ending in some nonterminal from Ni,p.

Claim 2: eval(D) contains at least |P(D)| many disjoint 1)-spheres.

Proof of Claim 2. Each of the root-paths in P(D) ends at some nonterminal from Ny, and
hence it gives rise to an occurrence of a -sphere in eval(D). Since none of the root-paths in
P(D) is a prefix of another root-path in P (D), all these ¥-spheres are pairwise disjoint. Thus,
there are at least |P(D)| many disjoint 1-spheres. This proves Claim 2.
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For a number n € N define n]™ by

m {n ifn<m
n|™ =

m otherwise

Recall that m is a fixed constant in our consideration (it appears in the sentence (4)).
Claim 3: We can verify in NL, whether |P(D)|]™ equals a given number k € {0,...,m}.

Proof of Claim 3. For a given number k we first guess a number 0 < j < k and we guess j many
nonterminals Ay, ..., A; € Nyop. Next we guess for every 1 < i < j a number k; € {1,...,k}
such that & = k; + ka4 - - k;. Note that these data can be stored in logarithmic space, because
k is bounded by the fixed constant m. We now verify the following:

1. For every 1 <i < j, in dag(D) there are at least k; many different root-paths ending in
A;.

2. For every 1 <i < j, and for all B € Ny, \ {A;}, there is no path from A; to B in dag(D).

First note that these conditions ensure that |P(D)[|™ > k. To verify condition (1) in NL, we
use k; (which is bounded by the constant m) many pointers for tracing the k; many different
paths. Condition (2) is a coNL condition; thus, the whole algorithm is an alternating logspace
algorithm with at most one alternation; hence, it can be transformed into an NL-algorithm
23, 43]. Thus, we can check in NL, whether |P(D)[]™ > k. Using the complement closure of
NL we can also check in NL, whether |P(D)|]™ < k + 1 (if £ < m). This proves Claim 3.

Our overall NL-algorithm first verifies in NL whether |P(D)|]™ = m, i.e., whether |P(D)| >
m. If this is true, then by Claim 2 eval(D) contains at least m disjoint t)-spheres and we can
accept. Thus, let us assume in the following that |P(D)| < m.

For A € N\ Ny, and B € Ny, denote with p(A, B) the number of all paths p in dag(D)
such that (i) p is path from A to B and (ii) except the last node B, p does not visit any other
nodes from Nyqp.

Claim 5: We can verify in NL, whether p(A, B)|™ equals a given number from {0,...,m}.

Proof of Clatm 5. Similarly to the proof of Claim 3.
We next define a new hierarchical graph definition D(d, m) as follows:

e The set of terminals is the same as for D.
e The set of nonterminals of D(d, m) contains:

— all A € Ny,
— for all A € Ny, a copy A’ of rank 0, and
— forall Ae N\ Nyop and all 0 < ¢ < d+1 a copy A4; (of the same rank as A).

e The start nonterminal of D(d,m) is S (recall that we assume S € Niop).
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e The set of productions of D(d, m) contains the following productions:

— For every A € Ny such that (A — (H,0)) € P we take the productions A —
(Hgy1,0) and A" — (H};,0). Here Hgyq results from H by replacing every label
B € N\ Niop by Bgyq and H),, is the same hypergraph but with all pin nodes
labeled with a new node label 3 (note that (HJ,,,0) is a O-pointed hypergraph).

— For every A € N\ Ny, such that (A — (H,0)) € P and every 1 <i < d+1 we take
the production A; — (H;_1,0), where H; ; is defined as above (with i — 1 instead
of d+1).

— Finally, for every A € N \ Ny, we take the production 4y — G. Here G is the
rank(A)-pointed hypergraph that consists of rank(A) many isolated pin nodes that
are labeled with  and p(A, B)|]™ many isolated B’-labeled hyperedges (for every
B € Niop).

The idea underlying this definition is the following: We unfold nonterminals from N \ Ny, in
the same way as in D but only up to depth d, because by the apex restriction this is sufficient
in order to generate the part of the graph that belongs to any i-sphere that is generated
by a nonterminal from N, on a higher hierarchical level. From a nonterminal A, (with
A € N\ Niop) we make a shortcut and directly produce those nonterminals from Ny, (more
precisely, the corresponding copies from Ny, ) that are below A in dag(D). The following claim
follows directly.

Claim 6: eval(D) contains m disjoint -spheres if and only if eval(D(d, m)) contains m disjoint
1)'-spheres, where ¢/ = AVy 1y & (.

Claim 7: The function that maps a hierarchical graph definition D to D(d, m) can be calculated
in nondeterministic logspace.

Proof of Claim 7. In fact, the construction of D(d,m) from D can be done in deterministic
logspace, except for the calculation of the values p(A, B)|™. Here, we simply guess the value
p(A, B)|™ and verify the correctness of the guess in NL using Claim 5.

By Claim 6 and 7 as well as the closure of NL under NL-reductions, it suffices to verify
in NL, whether eval(D(d, m)) (represented by D(d, m) on the input tape) contains at least m
disjoint ¢’-spheres. This will be shown in the rest of the proof.

Let Nyop = Niop U N, Similarly to P(D), define P(D(d,m)) as the set of all root-paths
in dag(D(d, m)) that end at a nonterminal from J/\\ftop and that are not a proper prefix of some
other root-path also ending in a nonterminal from Ntop. From the definition of D(d,m) it
follows that |P(D)||™ = |P(D(d,m))|]™; thus, also |P(D(d, m))| < m. Each of the paths from
P(D(d,m)) can be represented by a sequence (e, ..., ex) of edges of dag(D(d, m)), where

e ¢; starts in the root of D(d,m) (i.e., in S), ey is the last edge of the path (i.e., it ends in
a nonterminal from Niop),

® co,...,e._1 are intermediate edges of the path,
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o k< [|P(D(d,m))| <m, and
e there is exactly one path from the target of e; to the source of e;1; for 1 <1 < k.

Let us consider an example. Assume that dag(D(d, m)) looks as follows, where e, f, g, and h
are edge names. of the edges received names:

e\ f

g h

Then each of the four different paths (of length 6) from the root to the leaf can be specified
with only 2 edges: (e,g), (¢, h), (f, ), and (f,h)

Claim 8: Every node of eval(D(d,m)) can be represented in space O(log(|D(d,m)|)) (in par-
ticular the size of eval(D(d, m)) is bounded polynomially in the size of D(d, m)).

Proof of Claim 8. According to Remark 5.5, a node of eval(D(d,m)) is represented by a
pair (p,v), where p is a root-path in dag(D(d,m)) (ending in a nonterminal A) and v is an
internal node in the right-hand side of A. Thus, it suffices to show that an arbitrary root-path
in dag(D(d,m)) can be stored in logspace. Note that in dag(D(d,m)), every nonterminal of
D(d, m) has distance at most d+ 1 from a nonterminal of ]Vtop. Since d + 1 is a fixed constant,
it suffices to store an arbitrary root-path in dag(D(d, m)) ending at a nonterminal from ]\Afmp in
logspace. Now, every root-path ending in a nonterminal from ]Vtop is a prefix of some path from
P(D(d,m)). By the remark preceding Claim 8, such a path can be represented by a sequence
(e1,...,ex) of k < m edges of D(d, m). Since m is a fixed constant, logarithmic space suffices.
To sum up, a node of eval(D(d, m)) can be represented by a tuple ((e,...,ex),q,v), where
(e1,...,er) is as above, ¢ specifies a path of length at most d + 1 in dag(D(d, m)) that starts
at the target node of the edge e, and ends in some nonterminal A, and v is an internal node in
the right-hand side of A.

Claim 9: Let (uy,...,uy) be a tuple of nodes of eval(D(d, m)) represented as in the proof of
Claim 8. Then, given D(d,m) and (us,...,us) as input, it can be checked in NL, whether
uy, ..., up are connected by a hyperedge in eval(D,m).

Proof of Claim 9. Let ((e1,...,ex),q,v) be the logspace representation of u; from the proof
of Claim 8. Thus, ((ey,...,ex),q) represents a root-path p in dag(D(d,m)). Then, (p,v) is
the ordinary (polynomial size) representation of u; according to Remark 5.5. Note that the
function that maps ((e,...,ex),q) to p can be calculated in nondeterministic logspace by
simply guessing the path p in dag(D(d,m)) and thereby checking whether each of the edges
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e; is visited and that the path ¢ is a suffix of the path p. Now, by the second statement of
Remark 5.5, given the ordinary (polynomial size) representation of w1, ..., u,, it can be checked
in logspace, whether these nodes are connected by a hyperedge in eval(D,m). Claim 9 follows
from the closure of NL under NL-reductions.

Now we can finish the proof of the theorem. Recall that it suffices to check, whether
eval(D(d,m)) (represented by D(d,m)) contains at least m disjoint ¢)’-spheres. Thus, we have
to verify a fixed first-order sentence ¢ in eval(D(d,m)). We will do this using an alternating
logspace machine, where the number of alternations is bounded by the number of quantifier
alternations of ¢ (a fixed constant). For each existential (universal) quantifier of ¢ we guess
existentially (universally) a node u of eval(D(d,m)) using the logspace representation from
Claim 8. After guessing such a representation, we have to verify that the guessed data indeed
represents a node of eval(D(d, m)), but this is clearly possible in NL. Finally, we have to verify
atomic statements on the logspace representations of the guessed nodes, which is possible in
NL by Claim 9. This finishes the proof of the theorem. O

For ¢ € N, a hierarchical graph definition D = (T, N, S, P) is c-bounded if rank(A) < ¢ for every
A € N and every right-hand side of a production from P contains at most ¢ hyperedges that
are labeled with a nonterminal. The crucial fact for the further consideration is that for a given
c-bounded hierarchical graph definition D we can construct an equivalent graph straight-line
program S = (X; := t;)1<i<p in the sense of Section 6 such that for every formal variable X;,
type(X;) < d(c). Here d(c) is a constant that only depends on c.

Theorem 8.6. For every fized FO sentence ¢, every fixed c € N, and every fixed ranked alphabet
I, the question, whether eval(D) |= ¢ for a given c-bounded hierarchical graph definition D with
termainal alphabet T, is in P.

Proof. The basic idea for the proof of the theorem is based on Courcelle’s technique for eval-
uating fixed MSO formulas in linear time over graph classes of bounded tree width [9]. Let ¢
be a fixed FO sentence of quantifier rank k. Let D = (I', N, S, P) be a c¢-bounded hierarchical
graph definition over the fixed terminal alphabet I'. By the remark above, we can construct
from D an equivalent graph straight-line program S = (X, := t;)1<i<n over the ranked alpha-
bet T" such that for every formal variable X, type(X;) < d(c). Thus, for every 1 < i < n,
the graph eval(X;) can be viewed as a relational structure over some subsignature O, of the
fized signature © = I' U {pin(1),...,pin(d(c))}. Since this signature © is fixed (i.e., does not
vary with the input) and since moreover also the quantifier rank k is fixed in the theorem, the
number of pairwise nonequivalent FO sentences of quantifier rank at most k over the signature
© is bounded by some constant g(k). Thus, also the number of possible k-FO theories (in the
sense of Section 7) over the signature © is bounded by some constant.

By [10] (see also [14, 32]), there exist functions Fg, F,;, and Iy (where 1 < a,b < d(c) and
f:{L,...,a} — {1,...,b}) over the set of all k-FO theories over the signature © such that

o k-FOTh(G} @ Gs) = Fu(k-FOTh(G,), k-FOTh(Gy)),
o k-FOTh(glue, ,(G)) = F,3(k-FOTh(G)), and
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o k-FOTh(rename;(G)) = F¢(k-FOTh(G)).

Again, these functions do not depend from the input; they can be assumed to be given hard-
wired.

Now we replace the graph straight-line program S by a straight-line program for calculating
k-FOTh(eval(S)) as follows:

1. If X; :=t; is a definition from S such that ¢; is an n-pointed (n < d(c)) hypergraph
G, then we calculate k-FOTh(G), which is possible in polynomial time (in fact in AC"
[4, 24]) and replace the definition X; :=t¢; by X, := k-FOTh(G).

2. A definition of the form X; := X, @ X}, is replaced by X; := Fi(X;, X;) and similarly for
definitions of the form Xj := glue, ,(X;) and X; := rename;(X;).

Note that this is a straight-line program over a fixed set, namely the set of all k-FO theories.
Hence, we can evaluate this straight-line program in polynomial time and thereby calculate

k-FOTh(eval(S)). O

One may generalize Theorem 8.6 by considering graph straight-line programs that in addition
to the operators &, glue,,, and rename; contain further operators that are compatible with
the calculation of the k-FO theory, see [32] for such operations.

Theorem 8.3, 8.5, and 8.6 give us a clear picture on the conditions that make the model-
checking problem for FO over hierarchically defined input graphs difficult: nonterminals have
to access pin nodes (i.e., references can be passed along nonterminals) and nonterminals have
to access an unbounded number of nodes.

8.2 Combined complexity

In the previous section, we have seen that for ¥;-FO, data complexity increases considerably
when moving from explicitly given input graphs to hierarchically defined input graphs (from
E}fg to 3} ;). For the combined complexity of ¥;-FO, such a complexity jump does not occur
(recall that the combined complexity of ¥;-FO for explicitly given input graphs is 37):

Theorem 8.7. The following problem is Xy -complete (resp. I} -complete):

INPUT: A hierarchical graph definition D and a Xx-FO sentence (resp. I1;-FO sentence) ¢
QUESTION: eval(D) = ¢ ?

Proof. The lower bound follows from the corresponding result for explicitly given input graphs.
For the upper bound we can follow the arguments for the upper bound from Theorem 8.3. [

For explicitly given input graphs, the combined complexity reduces from PSPACE to P when
moving from FO to FO™ for some fixed m [46]. A slight modification of the proof of Theorem 8.3
shows that for hierarchically defined graphs, PSPACE-hardness already holds for the data
complexity of FO? (without any restriction on the quantifier prefix). We just have to start
from an instance of QBF (quantified boolean satisfiability) and carry out the construction in
the proof of Theorem 8.3.
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9 MSO and SO over hierarchically defined graphs

In this section we study the model-checking problem for MSO and SO over hierarchically defined
input graphs. We prove that the data complexity of ¥;-SO (resp. I1;-SO) for hierarchically
defined input graphs is 3¢ (resp. IT§) (Theorem 9.2). In fact, the lower bound already holds for
3,-MSO. For c-bounded hierarchical graph definitions we can show that the data complexity
of ¥;-MSO (resp. II;-MSO) goes down to 3} (resp. IT}) (Theorem 9.6). Finally, in Section 8.2
we show that also the combined complexity for 3;-SO (resp. IIx-SO) and hierarchically defined
input graphs is 3¢ (resp. II§) (Theorem 9.7). In fact, the lower bound already holds for
Yx-MSO and 2-bounded hierarchical graph definitions (Theorem 9.8).

We should remark that the apex restriction from Section 8.1 does not lead to more efficient
model-checking algorithms in the context of MSO. For an arbitrary hierarchical graph definition
D we can enforce the apex restriction by inserting additional edges (labeled with some new
terminal a’) whenever a tentacle of a nonterminal hyperedge accesses a pin node. If D’ denotes
this new hierarchical graph definition, then eval(D) results from eval(D’) by contracting all
a-labeled edges. But this contraction is MSO-definable.

9.1 Data complexity

In order to obtain a sharp lower bound on the data complexity of >;-MSO over hierarchically
defined graphs, we will use the following computational problem QO ;-SAT (resp. QOII;-SAT)
for k > 1 (where QO stands for “quantified oracle”). For m > 1 let F,, be the set of all m-ary
boolean functions. If k is even, then the input for QOX,-SAT is a formula © of the form

3f1 € Fon - Vfx € Fu3Tn, ..., T € {0,1}™ 37 € {0, 1} o((Fi)1<ic, U, (fi(T3))1<ij<k),

where ¢ is a boolean formula in mk + ¢ 4+ k? boolean variables. For k odd, the input © for
QOX;-SAT has the form

3f1 € FuVfa € Frp---3fx € FuVZ, ..., T € {0,1}™ Vg € {0,1}*:
o(Ti)r<i<i U, (fi(T5))1<ij<i)-

In both cases, we ask whether © is a true formula. The problem QOII,-SAT is defined analo-
gously, we only start with a universal quantifier over F,,.

Proposition 9.1. For all k > 1, the problem QOXy-SAT (resp. QOll-SAT) is 35 -complete
(resp. 11§ -complete).

Proof. We demonstrate the general idea for the class X5, the same ideas also work for the other
classes. Let M be an alternating Turing-machine that accepts a X§-complete language L(M)
and let w be an input for M of length n. We may assume that M makes on every computation
path exactly 2 alternations and that M makes exactly 2P (for a polynomial p(n)) transitions
between two alternations. Thus, the total running time is 3 - 22", Let ¢ = p(n).
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There exists a polynomial time predicate ¢ over {0, 1}* such that w € L(M) if and only if
37, € {0, 1}V, € {0,1}*'375 € {0,1}* : p(w T, Ty T3).

Since ¢ is a polynomial time predicate, we can apply the construction from the proof of the
Cook-Levin Theorem and obtain a 3-CNF formula 1),, of size exponential in n = |w| such that
w € L(M) if and only if

3z, € {0,1}*'Vz, € {0,1}* 373 € {0,1}*' 3y € {0, 1} 1 b, (T) T2 T3 7),

where c is some constant. By padding the sequences 71,72, and T3y to some length 2™ where
m € O(q) and 2™ > 27 4+ 2°¢ we can bring the above formula into the form

37, € {0,1}*"VT, € {0,112 375 € {0, 1} : 0y (T1 To T3). (6)

We encode each of the 3 - 2™ many variables in the sequence TZ»T3 by a pair (i,b) € {0,1}? x
{0,1}™. The pair (i,b) encodes the b-th variable of T;. Here b and i are interpreted as binary
numbers. Let us denote this variable by x(i,b). Then a typical clause from v, has the form

(tl@JI(il,bl)) V (tQ@I(ZQ,bg)) V (tg@]f(ig,bg)), (7)

where t; € {0,1}, i; € {0,1}%, b; € {0,1}™, and @ denotes the boolean exclusive or (note that
0@z =uxand 1 ® 2 = -z). Now the crucial point is that the clauses that are constructed in
the proof of the Cook-Levin Theorem follow a very regular pattern. More precisely, from the
input w it can be checked in polynomial time, whether a clause of the form (7) belongs to 1,,.
Thus, there exists a boolean predicate p,,, which can be computed in polynomial time from w
such that (7) belongs to the 3-CNF formula 1, if and only if p,, (b, b, bs, i1, @2, i3, t1, ta, t3) is
true, see also [3, proof of Prop. 4.2].
Let F,, be the set of all m-ary boolean functions. Then, (6) is equivalent to

dfi € FoVfe € Fodfs € Fo
Vby, bo, by € {0,1}"Viy, ig, i3 € {0,1}2V, ta, 3 € {0,1} :
t® fi,(b1) V 2@ fiy(ba) V t3® fiy(bs) V
P (b1, ba, b3, i1, 9,13, 11, ta, t3).
Finally, we replace in this formula every f;(b) by
(i=01 A fi(b) V (i=10 A fo(b)) V (i=11 A fs(b)).
The resulting formula is of the desired form. O

Theorem 9.2. For every fized Xx-SO sentence (resp. 11;,-SO sentence) @, the question, whether
eval(D) = ¢ for a given hierarchical graph definition D, is in 3§ (resp. IIg).

Moreover, for every level 3¢ (resp. IIY) of EH, there exists a fivzed ¥i-MSO sentence
(resp. -MSO sentence) ¢ such that the question, whether eval(D) |= ¢ for a given hierarchical
graph definition D, is 35 -hard (resp. II§-hard).
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Proof. For the first statement, assume that

e =3X 1 VXo - QX (X, ..., Xy)

is a fixed ¥;-SO sentence, where X, is a tuple of SO variables, ¥ is an FO formula, Q = 3
if £ is odd, and Q = V if k is even. Our alternating exponential time algorithm guesses
for every 1 < ¢ < k a tuple U, of relations over the set V of nodes of eval(D). For every
quantified SO variable of arity m we have to guess (existentially if 7 is odd, universally if i
is even) an m-ary relation over V. Since |V| is bounded by 2°UPD the number of m-tuples
in an m-ary relation is bounded by 2°™IPD which is exponential in the input size. Thus,
an m-ary relation over V' can be guessed in exponential time. At the end, we have to verify,
whether eval(D) = (Uy,...,U}), where 1 only contains FO quantifiers. This is possible
in deterministic exponential time: Assume that v is in prenex normal form and contains /¢
distinct FO variables. Then there are only 2°¢IPD many assignments from the set of FO
variables to the nodes of eval(D). Next, unfold the graph eval(D) and check for each of the
20PN possible assignments, whether the quantifier-free kernel of v evaluates to true under
that assignment. This takes time 20¢IPD . 20(PD i e exponential time. From the resulting
data we can easily determine in exponential time, whether eval(D) = ¢(Uy,...,U}). Thus, we
obtain an exponential time algorithm with precisely £ — 1 alternations.

The second statement from the theorem will be shown by a reduction from QOX-SAT
(resp. QOIIE-SAT). We will present the construction only for QOXs-SAT, the general case can
be dealt analogously. Thus, let © be a formula of the form

3f1 € F.Vfo € F 371,72 € {0,1}™ 3y € {0, 1}£ c (T, T2, s (fi(T)) )1<i<a)- (8)

We will construct a hierarchical graph definition D and a fixed >5-MSO sentence ¢ such that
© is a positive QOXy-SAT-instance if and only if eval(D) |= 9. In a first step we will construct
a fixed »3-MSO sentence with this property, then this sentence will be further reduced to an
equivalent ,-MSO sentence.

We will use the node labels tt, ff, AND, OR, NOT, root, var, fi, fi, fZ, and fi and the
edge labels 1 and 2 (and an additional label for unlabeled edges). The nonterminals are S,
AV AY AT AP where rank(S) = 0 and rank(A7) = 2m + j. The initial rule of D has the
following form:

1
var —@
o n
. _.f1
@ - : Gy 1
—® f;
._
var — f22
vad . .Lvar

,’ \ , \\
A Y 4
Iy v 2m
- ‘ ~
(Ay 2m - A4
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In the right-hand side, there are 2m + ¢ many wvar-labeled nodes, which represent the vari-
ables in the sequences 71,72, and y. The wvar-labeled node that is connected via the i-th
(resp. (m + i)-th) tentacle of the A%-labeled hyperedge (1 < i < m, j € {1,2}) represents
the i-th variable of the sequence 7; (resp. ). The / remaining var-labeled nodes on the left
side of the rectangular box represent the variables in §. The unique f;-labeled node represents
the input f;(Z;) of the formula ¢. The box labeled with G, represents the boolean formula
¢, encoded as a directed acyclic graph (dag) in the usual way. The nodes of this dag corre-
spond to the subexpressions of ¢, and every node is labeled with the topmost boolean operator
(AND, OR, or NOT) of the corresponding subexpression of ¢. The root of the dag is in ad-
dition also labeled with root. In the following let A denote those nodes labeled with a symbol
from {AND, OR,NOT, root, var, f{, f3, f2, f2}. Assume that X C A. Then, the fixed formula
valid(X'), which is defined as

(

(y—ax—2ANy#2zAxeAND)= )
(reXeoyeXANzeX)A
(y—x—zANy#zANzxeOR)=
(reXswyeXVzeX)A
(y =z A xeNOT) =

(reXeyédX)

valid(X) =Vz,y,2z € A A X N root # ()

Ve

expresses that X C A defines a consistent truth assignment to the subformulas of ¢ such that
moreover ¢ evaluates to true (i.e., the root node belongs to X).

The nonterminals AY and AY generate a graph structure that enables us to quantify over
two m-ary boolean functions. For this, we introduce the following rules, where i € {1,2} and
0< 7 <m

AR
e A N\
" v 2m
7 N
- ~
’2m 1\
2m 41
s \ D2 AN
2m4+j+10! N Mg Va2mt g+l
II \2m+] \\,/ 2m +1, \‘
1 \ AN 4 \
S e N .
¢ o< - @ )
tt 2m +j 2m + 1 ff

The tentacles with labels 1,...,2m of each Ag—labeled hyperedge access the 2m many wvar-
labeled nodes that represent the variables in the sequences T; and Z,; thus, the access to these
nodes is just passed from Ag to Ag“. The other tentacles (with labels 2m + 1,...,2m + j)
access nodes that are either labeled with tt or ff. These labels represent the truth values true
and false, respectively. Note that in the production above, two new nodes are generated, one
is labeled with tt and the other one is labeled with ff.

Finally, for i € {1,2} we introduce the following rule:
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In general, pin 2m + i (1 < i < m) is connected with each of the pins (j — 1)m + i (which
represents the i-th variable of z;) via a j-labeled edge (1 < j < k = 2). For i € {1,2} these
productions generate 2™ many f;-labeled nodes (because 2™ many A'-labeled hyperedges are
generated), one for each possible argument to the function f;. Thus, a quantification over
fi € F,, corresponds to a quantification over a subset F; of the f;-labeled nodes. The following
picture shows for m = k = 2 the graph that is generated from the nonterminals A} and AS.
We did not draw multiple edges with the same label between two nodes. The three labels a, b,
and ¢ are introduced in order to denote these three nodes, they do not represent actual node
labels.

The first two var-labeled nodes b and ¢ represent the pair of variables Z; and the second two
var-labeled nodes represent To. The function f; € F, with f1(0,0) = 1 and f1(0,1) = f1(1,0) =
f1(1,1) = 0 for instance is represented by the subset F; of the fi-labeled nodes that contains
only the left-most fi-labeled node a. An assignment to all the 2m + ¢ = 4 + ¢ variables in
the sequences 71, T, and i will be encoded by a subset X of the var-labeled nodes that were
generated with the rule for the start nonterminal S. For instance, if b, ¢ € X, then this means
that (0,0) is assigned to ;. Then the fact that f,(z1) = f1(0,0) = 1 for this f; and T; can be
expressed by the fact that

VYyVzia —y - 2 = (yett ez e X).
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In general, if F; is a subset of the f;-labeled nodes that represents the function f; € F,, and
X is a subset of the var-labeled nodes that represents an assignment to the variables in Z1, Ts,
and 7, then the fact that f;(Z;) = 1 can be expressed by the following formula v; ;(F;, X):

Vij(FuX) = Iwe FvyVziz—»y bz = (yett s 2 e X)

Now let ¢ be the following ¥3-MSO sentence (recall that A is the set of those nodes that are
labeled with a symbol from {AND, OR,NOT, root, var, fi, f3, f2, f3}):

¢ = IF, C fLVF, C f,3X CA { N\ Xnf 7é®<:>¢i,j(ﬂ,X)} A valid(X),  (9)

1<i,j<2

where X N f/ # () is an abbreviation for 3y : y € X Ay € f/. Then eval(D) |= ¢ if and only if
© in (8) is a positive QO35-SAT-instance.

Note that the above sentence is a X3-MSO sentence instead of a 25-MSO sentence. On the
other hand, the innermost existential MSO quantifier 3X C A ranges over a set of nodes of
polynomial size in eval(D) (A has polynomial size). We will use this fact and replace 3X C A
by an additional first-order quantifier. For this we have to introduce some additional graph
structure of exponential size. Note that all nodes from A are generated directly from the start
nonterminal S. Assume that 6 = |A]|. We now add to the right-hand side of S a new nonterminal
B of rank §, whose tentacles access precisely the nodes from A. From B we generate a graph
structure that is shown for § = 2 in the following picture, where A = {uq,u2} (u; and uy are
not node labels) and A is a new node label.

Uy

In general, we generate a binary tree of height §, where every leaf is labeled with A. From
every leaf there is an edge back to every node on the unique path from that leaf to the root
(including the leaf itself), except to the root. Moreover, from every node on the i-th level of
the tree (1 < i <), which is a right child of its parent node, there exists an edge to the node
u; € A. This graph structure is easy to generate with a small hierarchical graph definition, the
construction is similar to the one used in the proof of Theorem 8.3. Using this additional graph
structure we can
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e replace the MSO quantification 3X C A in the formula ¢ in (9) by 3x € A\, where x is a
new FO variable, and

e replace every atomic formula y € X in the formula ¢ in (9) by 3z:z — 2z — v.

The resulting formula is a ¥o-MSO sentence that is true in eval(D) if and only if ¢ from (9) is
true in eval(D). O

We will next show that for c-bounded hierarchical graph definitions the data complexity of ;-
MSO (resp. II;-MSO) goes down to the level 3} (resp. IT}) of the polynomial time hierarchy.
Thus, the same complexity as for explicitly given input graphs is obtained. For this, we have
to introduce a few definitions.

A quantifier prefic 7 is a sequence T = Qra1Q2qs - - - Qpav,, where Q; € {3,V} and «; is
an FO or MSO variable. A m-formula is a formula of the form 7 : 1, where 1 is a quantifier-
free MSO formula. We define generalized m-formulas inductively as follows: If m = ¢, then a
generalized m-formula is just a quantifier-free MSO formula. If 7 = Qa 7', then a generalized 7-
formula is a positive boolean combination of formulas of the form Qo v, where 1) is a generalized
7’-formula. If 7 is of the form 7y - - - m,7’, where 7’ only contains FO quantifiers and 7; is a block
of existential (if 7 is odd) or universal (if 7 is even) MSO quantifiers, then a generalized m-formula
is logically equivalent to a >;-MSO formula. Moreover, if the quantifier prefix 7= has length
k, then a generalized m-formula has quantifier rank k. Thus, up to logical equivalence, there
are only finitely many generalized m-sentences over some fixed signature. The generalized m-
theory of a structure A (over some signature ), briefly gen-m-Th(.A), consists of all generalized
m-sentences over the signature S that are true in A.

The following proposition is a refinement of the well-known Feferman-Vaught decomposition
theorem [14] for MSO, see [10, 32|. In fact, an analysis of the inductive proof of [10, Lemma
4.5] yields the statement of the proposition. For two structures A; and Ay over signatures Sy
and Sy (we may have S; N Sy # 0), respectively, we consider the disjoint union A; @ A; as a
structure over the signature S; U Ss in the natural way. We only have to require that the set
of constant symbols from S; and S5, respectively, are disjoint.

Proposition 9.3. Let Sy and Sy be relational signatures and let
O( X1, s Xoy Uty oo o s Yms 21, - -+ Zn)

be a generalized m-formula over the signature S; U Ss. Then there exist a boolean formula
Vier(aii Naiz) and generalized m-formulas 0;1 (over the signature S1) and 0; 5 (over the signa-
ture Sy) such that for all structures Ay and Ay over the signatures Sy and So, respectively, and
all By,...,By C A1 ® As, by,..., b, € Ay, and ¢y, ..., c, € Ay we have:

(./41@./42)IZQ(Bl,...,Bg,bl,...,bm,cl,...,cn) ~
\/[«41 EOi1(BiNAL,...,BiNV AL by, .. b)) A

icl
A EOio(BiN Ay, ..., BN Az cqy. .., ¢p)]
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Corollary 9.4. Let S; and Sy be relational signatures and let 6 be a generalized w-sentence
over the signature S{USs. Then there exist a boolean formula \/iel(am Aa;2) and generalized -
sentences 6,1 (over the signature Sy) and ;5 (over the signature Ss) such that for all structures
Ay and Ay over the signatures S and Ss, respectively, we have:

(AoA) 0 & \[AE6iIAALEGb,

iel
The statements of the following lemma correspond to [10, Lemma 4.6, Lemma 4.7].

Lemma 9.5. Let S be a relational signature and let 0 be a generalized mw-sentence over the
signature S. Then there exist generalized w-sentences 0 and 0" over the signature S such that
for all structures A over the signature S we have:

glue, ,(A)EO & AR
renames(A) E0 < ARG

Theorem 9.6. For every fized ¥j,-MSO sentence (resp. I1,-MSO sentence) p, every fized ¢ € N,
and every fized ranked alphabet T, the question, whether eval(D) | ¢ for a given c-bounded
hierarchical graph definition D with terminal alphabet T, is in 3} (resp. I} ).

Proof. 1t suffices to prove the statement for ¥;-MSO sentences. As in the proof of Theorem 8.6,
the basic idea is again based on Courcelle’s technique for evaluating fixed MSO formulas in linear
time over graphs of bounded tree width [9]. Let ¢ be a fixed ¥;-MSO sentence of quantifier
rank k. Let D = (I', N, S, P) be a c-bounded hierarchical graph definition over the terminal
alphabet I'. As in the proof of Theorem 8.6 we first transform D into an equivalent graph
straight-line program S = (X; = t;)1<i<n, where type(X;) < d(c) for every formal variable X;.
Again, eval(X;) is a relational structure over some subsignature ©; of the fixed signature ©,
and the number of pairwise nonequivalent MSO sentences of quantifier rank at most k over the
signature © is bounded by some constant g(k).

Recall that in the proof of Theorem 8.6 we first have calculated in polynomial time the
theories k-FOTh(G;) for every definition X; := G;, where G, is a graph. In the present situation,
the direct calculation of k-MSOTh(G;) would lead to a PZk-algorithm, i.e., a polynomial time
algorithm with access to an oracle for 3. It is believed that X¥ is a proper subset of Pk
The notion of generalized 7-theories was introduced in order to get a 3-algorithm.

Assume that our input formula ¢ is a 7-sentence for some quantifier prefix 7. Thus, since
p is a X,-MSO sentence, m is of the form 7y --- 7', where 7’ only contains FO quantifiers
and m; is a block of existential (if ¢ is odd) or universal (if ¢ is even) MSO quantifiers. From
Corollary 9.4 and Lemma 9.5 we obtain the following statement:

There exist monotonic (w.r.t. set inclusion) functions Fy, Fy;, and Fy (where 1 < a,b <
d(c) and f : {1,...,a} — {1,...,b} injective) over the set of all generalized m-theories (over
the signature ©) such that

e gen-1-Th(G @ Gy) = Fg(gen-m-Th(G), gen-m-Th(G3)),
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e gen-m-Th(glue, ,(G)) = Fyp(gen-7-Th(G)), and
o gen-m-Th(rename(G)) = Fy(gen-m-Th(G)).
Now we verify eval(S) = ¢ in X} as follows:

(1) Guess in an existential state for every formal variable X; a set T; of generalized m-sentences
over the signature ©; such that

a) p e Ty,

(a)

(b) if t; = X; @ X, then T; C Fi (T}, T}),

(c) if t; = glue, ,(X;), then T; C F, (7)), and
(d) if t; = rename;(X;), then T; C F¢(1}).

(2) For every i such that ¢; is a hypergraph G; we verify in 3¢ whether G; = A or. ¢.

We have to show that (i) this is indeed a X}-algorithm and (ii) it is correct. For (i), first
notice that step (2) is indeed in X}: There are at most n many ¢ such that ¢; is an explicitly
given hypergraph G;; let I be the set of all these i. For every ¢ € I we have to check whether
Gi = Ager, - Note that also /\ ;. ¢ is a generalized 7-sentence and hence equivalent to a
Y-MSO sentence ¢;. Now, we verify for all ¢ € I the property G; |= ¢; in parallel. We first
guess existentially for each variable in one of the leading existential quantifier blocks of the ¢;
a value from G}, then we proceed with the following blocks of universal quantifiers and so on.
Finally, the initial existential guessing in step (1) can be merged with the initial existential
guessing in step (2). Thus, the overall algorithm is a X} algorithm.

It remains to verify the correctness of the algorithm. If eval(S) | ¢, then we obtain a
successful run of the algorithm by guessing T; = gen-m-Th(eval(X;)) for every formal variable
X; in step (1). On the other hand, if the algorithm accepts the straight-line program S, then
there exists for every formal variable X; a set T; of generalized m-sentences such that the
inclusions in (1b)-(1d) hold, and moreover G; = Ay, ¢ for every i such that ; = G is a
hypergraph. We prove inductively, that 7; C gen-m-Th(eval(X;)) for all 1 < i < n. If ¢; is
an explicitly given hypergraph, this is clear. If t; = X; @ X, for 5,k < ¢, then, by induction,
T; C gen-m-Th(eval(X;)) and T}, C gen-m-Th(eval(X})). Since Fg is monotonic, we obtain

T, C Fg(T;,Ty) C Fa(gen-m-Th(eval(X;)), gen-m-Th(eval(Xy)))
= gen-m-Th(eval(X;)).

For the operators glue,, and rename; we can argue analogously. Thus, we obtain ¢ € T,, C
gen-m-Th(eval(X,,)) = gen-m-Th(eval(S)), i.e., S = . O
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9.2 Combined complexity

By the next theorem, the 3 (resp. IT§) upper bound for 3;-SO (resp. [1;-SO) generalizes from
data to combined complexity.

Theorem 9.7. For every k > 1, the following problem is 3¢ -complete (resp. IIg-complete):

INPUT: A hierarchical graph definition D and a $x-SO sentence (resp. 11x-SO sentence) ¢
QUESTION: eval(D) = ¢ ¢

Proof. The lower bound follows from Theorem 9.2. For the upper bound, note that in the
upper bound proof of Theorem 9.2, it is not relevant that the ¥;-SO sentence is fixed; it is only
important that the number of quantifier blocks k is fixed. Thus, we can reuse the arguments
from the proof of Theorem 9.2. O

Due to the following theorem, hardness for X¢ (resp. II§ ) even holds for 2-bounded hierarchical
graph definitions and MSO:

Theorem 9.8. For every k > 1 and every ¢ > 2, the following problem 1is 3§ -complete
(resp. II§-complete):

INPUT: A c-bounded hierarchical graph definition D and a Xp-MSO sentence (resp. Tlj-
MSO sentence) ¢
QUESTION: eval(D) = ¢ ?

Proof. We use a construction from [8, 31]. For k odd, we prove the theorem for 3¢, for k even,
we prove the theorem for IIy. We only consider the case that k is odd. Let M be an alternating
Turing-machine with a ¥§-complete membership problem. Let I' = {a4,...,a,} be the tape
alphabet with a,, =, Q = Q3 Qv W F be the state set, and ¢y € Q5 be the initial state. Let
p(n) be a polynomial such that when M is started on an input word of length n, the running
time is bounded by 2P, W.l.o.g. we may assume that on every computation path, M makes
precisely k — 1 alternations, We may also assume that a final state from F' can be only reached
from a state in ()3, i.e., there does not exist a transition from a state in (Qy to a state in F.

We will consider structures of the form ([0, N], S) where N € N, [0, N] = {0,..., N}, and S
is the successor function on the interval [0, N]. When viewed as a graph, it is easy to generate
the structure ([0,2" — 1],.S) with a 2-bounded hierarchical graph definition of size O(n): take a
context-free grammar in Chomsky normal form of size O(n) that generates only the word a?"
and view it as a hierarchical graph definition. For an input word w for M we will construct
a formula 1, such that ([0,2P(0*D) — 1], S) = 4, if and only if w is accepted by M. In a first
step, we will consider the richer structure ([0, 270" — 1], +), where + denotes the addition of
natural numbers on the interval [0,27(*) —1]. In a second step, we will show how to eliminate
+ using the successor function S.

Let [0, N] be an initial segment of the natural numbers, where N > |@|—1. We may identify
the state set @ with the numbers {0, ...,|Q|—1}. An instantaneous description of M of length
N will be encoded by a tuple A = (Ay,..., Apyo) with A; C [0, N], where 4; (1 < i < m) is
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the set of all those k € [0, N] such that tape cell k contains the tape symbol a;, A1 = {k}
with &k the current position of the tape head, and Ay = {q}_With q the current state. For
subsets P, P, C Q and two tuples A, B € (2%N)™+2 we write A =¥ , B if and only if

e A and B describe instantaneous descriptions of M,

e B can be obtained from A within at most N moves of M, where no tape position greater
than N is reached and only transitions out of states from P; are allowed, and

e B2 ={q} with ¢ € P, i.e., we end in a state from P,.

Using the construction from [31], it is possible to construct a fized 31-MSO formula v p, p,(X,Y)
such that for every N > |Q| — 1:

([07 N]’ +) ): 77Z}P17P2 (Za E) & A i]1’\3[1,P2 B.

Now construct formulas 7; (1 <1i < k) as follows:

m(X) = 3y @/}Q}F(Y, Y)
Ni+1 (Y) = \V/? : va,QEI (Y, ?) = 1) (?) if 7 is odd
Ni1(X) = Y g0, (X, Y)An(Y)  if i is even

Then an input word w = bgb, - - - b,y with b; € I' \ {0} is accepted by the machine M if and
only if the sentence

m—1

1X - B

X1 = {0} A Xppo = {0} A mi(X)

is true in ([0,2P™ — 1], +) (recall that a,, = O, thus, X,, = [n,2P( — 1] expresses that the
tape positions n, . .., 2P —1 contain the blank symbol). It is easy to write down an equivalent
sentence of size O(n) in the language of addition. Moreover, if we shift MSO quantifiers to the
front, the resulting sentence becomes a >;-MSO sentence.

It remains to eliminate + using the successor function S on the interval [0, 2™ — 1]. For
this, we will show that addition on numbers in the range |0, 2p(n) _ 1] can be expressed using an
FO formula of size O(p(n)?) over the successor function S. First of all, using a standard trick we
can construct formulas d;(x,y) (0 < i < p(n)) of size O(i) such that ([0,27™ — 1], 5) |= di(a,b)
if and only if b — a = 2%

do(x,y) = y=5(x)
dit1(z,y) = T2VuVo: (u=xAv=2)V(u=2Av=y)) = di(u,v)

36



explicit
¥-FO 4, 13, 24, 41] apex c-bounded general
NL(k =1)
log
data > NL NL---P SP (k> 1)
combined P
Table 1: FO over hierarchical graphs
explicit
¥-MSO (13, 33, 41] c-bounded general
data P .
: b
combined

Table 2: MSO over hierarchical graphs

Next, for bits z; € {0,1} (0 <@ < p(n)) let n(xo, ..., Tpm)-1) = Zfi%)_l z; - 2'. Using the carry
look ahead algorithm for addition of natural numbers, it is straightforward to write down a
formula plus((2;)o<i<p(n), (Yi)o<icp(n)s (2i)o<i<p(n)) i 3p(n) variables such that

([0; 2P(m) 1]; S) ): PIUS((%)OSKp(n), (yi>0§i<p(n)7 (Zi)0§i<p(n))

if and only if z;,y;, 2z € {0,1} and n(xo, ..., Tpm)—1) + (Yo, - - Ypm)—1) = (205 - - Zp(n)—1)-
The size of this formula is O(p(n)?). Let bin((x;)o<i<pm), =) be the formula

uy =0 A Up) =T A
p(n)—1

/\ (=0 = w; = uzs1) A (2 =1= di(ui, uisr)))

I(ui)o<i<p(n)

Then x +y = z for z,y, z € [0,2P(™ — 1] if and only if

(@i)o<i<p(m) (Wi)o<i<pm) I (2i)o<i<p(n) :
plus((z:)o<i<p(n)s (Yi)o<i<p(n)s (2i)o<i<p(n)) A

bin((2;)o<icpm), ©) A bin((¥s)o<icpm), ¥) A bin((2i)o<icpm), 2),

which is a formula of size O(p(n)?). O
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10 Conclusion and open problems

In Table 1 and 2 our complexity results for hierarchically defined graphs together with the
known results for explicitly given input graphs are collected. The only open problem that
remains from these tables is the precise complexity of the model-checking problem for FO and
c-bounded hierarchical graph definitions. There is a gap between NL and P for this problem.
Currently, we are investigating the complexity of parity games and various fixed point logics
over hierarchically defined graphs.
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