
�
�����

�����

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universität Stuttgart

Fakultät Informatik,
Elektrotechnik und
Informationstechnik

Fixpoint logics on hierarchical

structures

Stefan Göller and Markus Lohrey

Report Nr. 2005/01

Institut für Formale
Methoden der Informatik

Universitätsstraße 38

D–70569 Stuttgart

July 20, 2005

CR: F.1.3, F.4.1

Abstract

Hierarchical graph definitions allow a modular description of graphs using modules for the
specification of repeated substructures. Beside this modularity, hierarchical graph definitions
also allow to specify graphs of exponential size using polynomial size descriptions. In many
cases, this succinctness increases the computational complexity of decision problems. In this
paper, the model-checking problem for the modal µ-calculus and (monadic) least fixpoint logic
on hierarchically defined input graphs is investigated. In order to analyze the modal µ-calculus,
parity games on hierarchically defined input graphs are investigated. In most cases precise upper
and lower complexity bounds are derived. A restriction on hierarchical graph definitions that
leads to more efficient model-checking algorithms is presented.

1 Introduction

A hierarchical graph definition specifies a graph via modules, where every module is a graph
that may refer to modules of a smaller hierarchical level. In this way, large structures can
be represented in a modular and succinct way. Hierarchical graph definitions were introduced
in [16] in the context of VLSI design. Formally, hierarchical graph definitions can be seen
as hyperedge replacement graph grammars [8, 10] that generate precisely one graph. Specific
algorithmic problems (e.g. reachability, planarity, circuit-value, 3-colorability) on hierarchically
defined graphs are studied in [14, 15, 16, 20, 21, 22].

In this paper we consider the complexity of the model-checking problem for least fixpoint
logic (LFP) and its fragments monadic least fixpoint logic (MLFP) and the modal µ-calculus.
LFP is the extension of classical first-order logic that allows the definition of least fixpoints
of arbitrary arity [17]. MLFP is the fragment of LFP where only monadic fixpoints can be
defined. Finally, the modal µ-calculus is the fragment of MLFP that is obtained from classical
modal logic extended by a monadic fixpoint operator. The model-checking problem for some
logic (e.g. LFP or MLFP) asks whether a given sentence from that logic is true in a given
finite structure (e.g. a graph). Usually, the structure is given explicitly, for instance by listing
all tuples in each of the relations of the structure. In this paper, the input structure will be
given in a compressed form via a hierarchical graph definition. For the purpose of proving
upper complexity bounds we will use the related formalism of straight-line programs, see also
[18]. Every hierarchical graph definition can be transformed in polynomial time into a straight-
line program that generates the same structure, see [3, 19]. A graph that is represented by a
hierarchical graph definition or a straight-line program is called a hierarchically defined graph
in the following.

LFP and its fragments MLFP and the modal µ-calculus found many applications in data
base theory, finite model theory, and verification. The interested reader is referred to the text
books [4, 17]. It is therefore not surprising that the model-checking problem for these logics
on explicitly given input structures is a very well-studied problem. Let us just mention a
few references: [7, 5, 11, 13, 12, 25, 26]. Concerning hierarchically defined graphs, in [1] the
complexity of the temporal logics LTL and CTL on hierarchical state machines was investigated.
Hierarchical state machines can be seen as a restricted form of hierarchical graph definitions
that are tailored towards the modular specification of large reactive systems. It is well-known
that LTL and CTL can be efficiently translated into the modal µ-calculus. In this sense, our
work is a natural extension of [1]. Moreover, our work extends the previous paper [18] of the
second author, where the model-checking problem of first-order logic, monadic second-order
logic, and full second-order logic on hierarchically defined graphs was studied.

Our investigation of model-checking problems for hierarchically defined graphs follows a
methodology introduced by Vardi [25]. For a given logic L and a class of structures C, Vardi
introduced three different ways of measuring the complexity of the model-checking problem for
L and C: (i) One may consider a fixed sentence ϕ from the logic L and consider the complexity
of verifying for a given structure A ∈ C whether A |= ϕ; thus, only the structure belongs to
the input (data complexity or structure complexity). (ii) One may fix a structure A from the

1

class C and consider the complexity of verifying for a given sentence ϕ from L, whether A |= ϕ;
thus, only the formula belongs to the input (expression complexity). (iii) Finally, both the
structure and the formula may belong to the input (combined complexity). In the context of
hierarchically defined graphs, expression complexity will not lead to new results. Having a fixed
hierarchically defined graph makes no difference to having a fixed explicitly given graph. Thus,
we only consider data and combined complexity for hierarchically defined graphs.

After introducing the necessary concepts in Section 2 we study parity games on hierarchi-
cally defined graphs in Section 3. Parity games are the main tool for most model-checking
algorithms for the modal µ-calculus. Our main result states that the winner of a parity game
on a hierarchically defined graph can be determined in PSPACE. Since the classical reduction
of the model-checking problem for the modal µ-calculus to parity games [6, 5] can be extended
to hierarchically defined graphs, see Section 4, we obtain PSPACE-completeness of the model-
checking problem for the modal µ-calculus on hierarchically defined graphs. This generalizes a
corresponding result for CTL from [1]. For a restricted class of hierarchically defined graphs we
obtain the better upper bound of NP ∩ coNP for parity games, which leads to the same upper
bound for the data complexity of the modal µ-calculus. In Section 5 we study least fixpoint
logic (LFP) and its fragment monadic least fixpoint logic (MLFP) on hierarchically defined
input graphs. MLFP is still more expressive than the modal µ-calculus. It turns out that in
most cases the complexity of the model-checking problem on hierarchically defined input graphs
becomes EXP. Our results for model-checking problems are collected in Table 1 at the end of
Section 2.5.

2 Preliminaries

2.1 General notations

Let ≡ be an equivalence relation on a set A. Then, for a ∈ A, [a]≡ = {b ∈ A | a ≡ b} denotes
the equivalence class containing a. With [A]≡ we denote the set of all equivalence classes.
With π≡ : A → [A]≡ we denote the function with π≡(a) = [a]≡ for all a ∈ A. For a function
f : A → B let ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}. For C ⊆ A we define the restriction
f�C : C → B by f�C(c) = f(c) for all c ∈ C. For functions f : A→ B and g : B → C we define
the composition g ◦ f : A → C by (g ◦ f)(a) = g(f(a)) for all a ∈ A. For n ∈ N we denote by
id{1,...,n} the identity function over {1, . . . , n}.

2.2 Complexity theory

We assume that the reader has some basic background in complexity theory [24]. In particular,
we assume that the reader is familiar with the classes P (deterministic polynomial time), NP
(nondeterministic polynomial time), coNP (complements of problems in NP), PSPACE (poly-
nomial space), and EXP (deterministic exponential time). Several times we will use alternating
Turing-machines, see [2] for more details. An alternating Turing-machine M is a nondetermin-

2

istic Turing-machine, where the set of states Q is partitioned into three sets: Q∃ (existential
states), Q∀ (universal states), and F (accepting states). A configuration C with current state
q is accepting, if

• q ∈ F , or

• q ∈ Q∃ and there exists a successor configuration of C that is accepting, or

• q ∈ Q∀ and every successor configuration of C is accepting.

An input word w is accepted by M if the corresponding initial configuration is accepting. An
alternation on a computation path of M is a transition from a universal state to an existential
state or vice versa.

It is well known that PSPACE (resp. EXP) equals the class of all problems that can be
solved on an alternating Turing-machine in polynomial time (resp. polynomial space). The
levels of the polynomial time hierarchy are defined as follows: Let k ≥ 1. Then Σp

k is the
set of all problems that can be recognized on an alternating Turing-machine within k − 1
alternations and polynomial time, where furthermore the initial state is assumed to be in Q∃.
The polynomial time hierarchy is PH =

⋃

k≥1 Σp
k.

2.3 Relational structures and straight-line programs

A signature is a finite set R of relational symbols, where each relational symbol r ∈ R has an
associated arity nr. A (relational) structure over the signature R is a tuple A = (A, (rA)r∈R),
where A is a set (the universe of A) and rA is a relation of arity nr over the set A, which
interprets the relational symbol r. Usually, we denote the relation rA also with r. The size |A|
of A is |A|+

∑

r∈R |rA| ·nr. For an equivalence relation relation ≡ on A we define the quotient
A/≡ = (A/≡, (r

A/≡)r∈R), where rA/≡ = {(π≡(a1), . . . , π≡(anr
)) | (a1, . . . , anr

) ∈ rA}. For two
relational structures A1 and A2 over the same signature R and with disjoint universes A1 and
A2, respectively, we define the disjoint union A1 ⊕A2 = (A1 ∪ A1, (r

A1 ∪ rA2)r∈R).
For n ≥ 0, an n-pointed structure is a pair (A, τ), where A is a structure with universe A and

τ : {1, . . . , n} → A is injective. The elements in ran(τ) (resp. A\ ran(τ)) are also called contact
nodes (resp. internal nodes). Let Gi = (Ai, τi) be an ni-pointed structure (i ∈ {1, 2}) over the
signature R, where Ai is the universe of Ai and A1 ∩ A2 = ∅. We define the disjoint union
G1 ⊕G2 as the (n1 + n2)-pointed structure (A1 ⊕A2, τ), where τ : {1, . . . , n1 + n2} → A1 ∪A2

with τ(i) = τ1(i) for all 1 ≤ i ≤ n1 and τ(i + n1) = τ2(i) for all 1 ≤ i ≤ n2. Now let
G = (A, τ) be an n-pointed structure, where A is the universe of A. For a bijective mapping
f : {1, . . . , n} → {1, . . . , n} define renamef(G) = (A, τ ◦ f). If n ≥ 1, then forget(G) = (A, τ �

{1, . . . , n− 1}). Finally, if n ≥ 2, then glue(G) = (A/≡, (π≡ ◦ τ) � {1, . . . , n− 1}), where ≡ is
the smallest equivalence relation on A which contains the pair (τ(n), τ(n − 1)). Note that the
combination of renamef and glue (resp. forget) allows to glue (resp. forget) arbitrary contact
nodes.

3

Straight-line programs offer a succinct representation of large structures. A straight-line
program is a sequence of operations on n-pointed structures. These operations allow the dis-
joint union, the rearrangement, the forgetting, and the gluing of its contact nodes. More
formally, a straight-line program (SLP) S = (Xi := ti)1≤i≤l (over the signature R) is a sequence
of definitions, where the right hand side ti of the assignment is either an n-pointed finite struc-
ture (over the signature R) for some n or an expression of the form Xj ⊕ Xk, renamef(Xj),
forget(Xj) or glue(Xj) with j, k < i where 1 ≤ i ≤ l and f : {1, . . . , n} → {1, . . . , n} is a per-
mutation. Here, Xi are formal variables. For every variable Xi the type type(Xi) is inductively
defined as follows: (i) if ti is an n-pointed structure, then type(Xi) = n, (ii) if ti = Xj ⊕ Xk,
then type(Xi) = type(Xj) + type(Xk), (iii) if ti = renamef(Xj), then type(Xi) = type(Xj)
(and we require that f is a permutation on {1, . . . , type(Xj)}), and (iv) if ti = op(Xj) for
op ∈ {forget, glue}, then type(Xi) = type(Xj) − 1. The type(Xi)-pointed finite structure
eval(Xi) is inductively defined by: (i) if ti is an n-pointed structure G, then eval(Xi) = G,
(ii) if ti = Xj ⊕ Xk, then eval(Xi) = eval(Xj) ⊕ eval(Xk), and (iii) if ti = op(Xj) for
op ∈ {renamef , forget, glue}, then eval(Xi) = op(eval(Xj)). We define eval(S) = eval(Xl).
The SLP S is called c-bounded (c ∈ N) if type(Xi) ≤ c for all 1 ≤ i ≤ l. Finally, the size |S| is
defined as l plus the size of all explicit n-pointed structures that appear in a right-hand side ti.

In [18] we used hierarchical graph definitions for the specification of large structures. Every
hierarchical graph definition can be transformed in polynomial time into an SLP that generates
the same structure, see Section 5.2.

2.4 Transition systems

Formulas of the modal µ-calculus are interpreted on special relational structures that are called
transition systems. Let P be a finite set of atomic propositions. A transition system over
P is a tuple T = (Q,R, λ), where (i) Q is a finite set of states, (ii) R ⊆ Q × Q, and (iii)
λ : Q → 2P . Thus, a state may be labeled with several atomic propositions. An initialized
transition system over P is a pair (T, qinit), where T = (Q,R, λ) is a transition system over
P and qinit ∈ Q is the start state. Clearly, T can be identified with the relational structure
AT = (Q,R, ({q ∈ Q | p ∈ λ(q)})p∈P). This allows us to use SLPs in order to construct
large transition systems. Note that if two states q1 and q2 are glued, where the set Pi ⊆ P is
associated with state qi, then P1 ∪ P2 is associated with the resulting state.

2.5 Least fixpoint logic

Let us fix a signature R for the further discussion. First-order (FO) formulas over the signature
R are built from atomic formulas of the form x = y and r(x1, . . . , xnr

) (where r ∈ R and
x, y, x1, . . . , xnr

are first-order variables ranging over elements of the universe) using boolean
connectives and (first-order) quantifications over elements of the universe. Least fixpoint logic
(LFP) extends FO by the definition of least fixpoints. For this, let us take a countably infinite
set of fixpoint variables. Each fixpoint variable R has an associated arity n and ranges over n-ary
relations over the universe. Fixpoint variables will be denoted by capital letters. Syntactically,

4

LFP extends FO by the following formula building rule: Let ϕ(x̄, R, P̄ , ȳ) be a formula of LFP.
Here, x̄ and ȳ are tuples of first-order variables with x̄ repetition-free, P̄ is a tuple of fixpoint
variables, the arity of the fixpoint variable R is |x̄| (the length of the tuple x̄), and R only
occurs positively in ϕ (i.e., within an even number of negations). Then also lfpx̄,R ϕ(x̄, R, P̄ , ȳ)

is a formula of LFP. The semantics of the lfp-operator is the following: Let b̄ ∈ A|ȳ| and let S̄
be a tuple of relations that is interpreting the tuple P̄ of fixpoint variables. Since R only occurs
positively in ϕ(x̄, R, P̄ , ȳ), the function Fϕ that maps T ⊆ A|x̄| to {ā ∈ A|x̄| | A |= ϕ(ā, T, S̄, b̄)}
is monotonic. Hence, by the Knaster-Tarski Fixpointtheorem, the smallest fixpoint fix(Fϕ)
exists. Now for ā ∈ A|x̄| we have A |= [lfpx̄,R ϕ(x̄, R, S̄, b̄)](ā) if and only if ā ∈ fix(Fϕ). The
greatest fixpoint operator can be defined as gfpx̄,R ϕ(x̄, R, P̄ , ȳ) = ¬lfpx̄,R ¬ϕ(x̄,¬R/R, P̄ , ȳ),
its semantics can be defined in the same way as the lfp-operator, except that we refer to the
greatest fixpoint of the function Fϕ.

Monadic least fixpoint logic (MLFP) is the fragment of LFP that only contains unary (i.e.,
monadic) fixpoint variables. The modal µ-calculus can be defined as a fragment of MLFP that
is defined as follows. Formulas of the modal µ-calculus are interpreted on initialized transition
systems as defined in Section 2.4. Let P be a finite set of atomic propositions. The set of
formulas Fµ = Fµ(P) over P of the modal µ-calculus is inductively defined as follows:

• p,¬p ∈ Fµ for all p ∈ P

• X ∈ Fµ for every unary fixpoint variable X

• if ϕ, ψ ∈ Fµ, then ϕ ∧ ψ, ϕ ∨ ψ ∈ Fµ

• if ϕ ∈ Fµ, then �ϕ,♦ϕ ∈ Fµ

• if X is a unary fixpoint variable and ϕ ∈ Fµ, then µX.ϕ, νX.ϕ ∈ Fµ.

We define the semantics of a formula ϕ ∈ Fµ by translating it to an MLFP-formula ||ϕ||(x)
over the signature {R} ∪ P, where R has rank 2, every p ∈ P has rank 1, and x is a first-order
variable. The translation is done inductively:

||(¬)p||(x) = (¬)p(x)

||X||(x) = X(x)

||ϕ opψ||(x) = ||ϕ||(x) op ||ψ||(x) for op ∈ {∧,∨}

||�ϕ||(x) = ∀y : R(x, y) ⇒ ||ϕ||(y)

||♦ϕ||(x) = ∃y : R(x, y) ∧ ||ϕ||(y)

||µX.ϕ||(x) = [lfpx,X ||ϕ||(x)](x)

||νX.ϕ||(x) = [gfpx,X ||ϕ||(x)](x)

For an initialized transition system (T, qinit) over P with T = (Q,R, λ) and a formula ϕ ∈ Fµ,
we write (T, qinit) |= ϕ if AT |= ||ϕ||(qinit).

5

explicit[5, 11, 25] c-bounded SLP
unrestricted

SLP

data P P · · ·NP ∩ coNP
µ-calc.

combined P · · ·NP ∩ coNP PSPACE

data P P · · ·PH
MLFP

combined EXP

data P
LFP

combined
EXP

Table 1: Data and combined complexity for fixpoint logics

Example 2.1. Let (T, qinit) be an initialized transition system. Then (T, qinit) |= νX.(ϕ ∧ ♦X)
if and only if there exists an infinite path π in T which begins at state qinit s.t. (T, q) |= ϕ is
true for every state q along the path π.

The model checking problem for a logic L asks whether for a structure A and a sentence
ϕ ∈ L we have A |= ϕ. Following Vardi [25] we distinguish between the following three measures
of complexity:

• Data Complexity: Input is the structure A. The formula ϕ is fixed.

• Expression Complexity: The structure A is fixed and the input is the formula ϕ.

• Combined Complexity: Both the structure A and the formula ϕ are the input.

In this paper, we will only consider data and combined complexity for structures that are
represented by SLPs. Considering expression complexity in this context does not lead to new
insights: Having a fixed SLP is the same as having a fixed graph.

Table 1 collects the known results as well as our new results concerning the (data and
combined) complexity of the model-checking problems for the logics LFP, MLFP, and the
modal µ-calculus. Only for the data complexity of MLFP and the modal µ-calculus on graphs
defined by c-bounded SLPs (for some fixed c ∈ N) we do not obtain matching lower and upper
bounds.

2.6 Parity games

In this section we introduce parity games and state the close relationship between parity games
and the modal µ-calculus.

A parity game between two players, called Adam and Eve, which is played on a particular
kind of relational structures, called game graphs. Let C = {0, . . . , k} (k ∈ N) be a finite set of
priorities. A game graph G over the set of priorities C is a tuple G = (V,E, ρ) such that V is

6

�
v1

�

v2

�
v3

�

v4

�v5

�
v6

�
v7

2

3 5

2

4

1

2

2

1
3

0 0

7

7

Figure 1: The game graph G from Example 2.2

a finite set of nodes, E ⊆ V × C × V is the set of labeled edges, and ρ : V → {Eve,Adam}
assigns to every node v a player ρ(v). The size of a game graph is defined by |G| = |V | + |E|.
We define Eve = Adam and Adam = Eve. Let Vσ = ρ−1(σ) denote the set of σ-nodes for a
given player σ ∈ {Eve,Adam}. The set of successor nodes of a given node v ∈ V is vE = {u ∈
V | ∃c ∈ C : (v, c, u) ∈ E}. Note that we diverge from common conventions as in [5, 9, 23]
since priorities are assigned to edges instead to nodes. This is no restriction when considering
parity games. We call a sequence π = v0, c0, v1, c1, . . . ∈ V (CV)ω an infinite path in G if for all
i ≥ 0 we have: (vi, ci, vi+1) ∈ E. A sequence π = v0, c0, v1, . . . , cn−1, vn ∈ V (CV)∗ is called a
finite path in G if for all 0 ≤ i ≤ n− 1 we have (vi, ci, vi+1) ∈ E. A finite path π is called empty
if π = v for some v ∈ V . The set of priorities occurring in π is denoted by Occ(π). For an
infinite path π we denote with Inf(π) ⊆ Occ(π) the set of those priorities that occur infinitely
many times in the path π. We call a path maximal if and only if it is infinite or it ends in a
dead end, i.e., a node v with vE = ∅.

Example 2.2. Figure 1 shows a game graph G = (V,E, ρ) over the priorities C = {0, 1, . . . , 7}.
Here, � denotes an Eve-node and � denotes an Adam-node. An infinite path is for example
v1, 3, v2, 2, (v4, 0, v6, 2)ω ∈ V (CV)ω. The finite path v7, 7, v1, 3, v2, 3, v3 ∈ V (CV)∗ ends in v3

which is the only dead end of G.

Clearly, the game graph G = (V,E, ρ) can be identified with the relational structure
(V, ({(u, v) | (u, c, v) ∈ E})c∈C , VEve, VAdam). This allows us to generate large game graphs
using SLPs. Here we have to be careful with the glue-operation. If (G, τ) is an n-pointed
relational structure, where G is the game graph G = (V,E, ρ) — we call such a structure an
n-game graph — then glue(G, τ) is only defined if n ≥ 2 and ρ(τ(n − 1)) = ρ(τ(n)), i.e., the
two nodes that are glued belong to the same player. Thus, glue is only a partial operation on
n-game graphs.

Example 2.3. Figure 2 shows a 3-game graph G and the resulting 2-game-graph glue(G).
Contact nodeτ(i) is labeled with i.

7

�
v1

1

�

v2

�
v32

�

v4

�v5
3

�
v6

�
v7

2

3 5

2

4

1

2

2

1
3

0 0

7

7

�
v1

1

�

v2

�v3

2

�

v4

�
v5

�
v6

2

3

5

4

1

2

2

2

1
3

0 0

7

7

Figure 2: A 3-game graph G and the 2-game graph glue(G)

In the following let G = (V,E, ρ) be a game graph over the priorities C = {0, . . . , k} (k ∈
N). A play is a maximal path in G. Let π = v0, c0, v1, . . . be an infinite play in G and
σ ∈ {Eve,Adam} a player. We say that player Eve (resp. Adam) wins the infinite play π if and
only if max(Inf(π)) ≡ 0 mod 2 (resp. max(Inf(π)) ≡ 1 mod 2). Let π = v0, c0, v1, . . . , cn−1, vn
be a finite play. We say that player σ wins the finite play π if and only if ρ(vn) = σ, i.e., the
play ends in a dead end vn and vn belongs to player σ.

It is an important question whether a given player σ ∈ {Eve,Adam} has the possibility
to force the game to a play which she/he can win, i.e., if she/he has a winning-strategy. For
parity games, so called memoryless strategies suffice. Let σ ∈ {Eve,Adam} be a player. Then
a map Sσ : Vσ \ {v | vE = ∅} → V such that Sσ(v) ∈ vE for all v ∈ Vσ \ {v | vE = ∅} is
called a memoryless strategy for player σ. We say that a finite play π = v0, c0, v1, . . . cn−1, vn
is Sσ-confirm w.r.t. a memoryless strategy Sσ if and only if for all 0 ≤ i ≤ n − 1 we have
vi ∈ Vσ ⇒ Sσ(vi) = vi+1. Similarly an infinite play π = v0, c0, v1, . . . is called Sσ-confirm
w.r.t. Sσ if and only if for all i ≥ 0 we have vi ∈ Vσ ⇒ Sσ(vi) = vi+1. For v ∈ V we call
the memoryless strategy Sσ a memoryless winning strategy for player σ from the node v if and
only if player σ wins every Sσ-confirm play which begins in v. Note that the question whether
the memoryless strategy Sσ for player σ is a winning strategy can be answered in deterministic
polynomial time by searching for a play which player σ wins in the subgraph of G which is
restricted by Sσ.

A triple (G, v, σ), where G is a game graph, v is a node of G, and σ ∈ {Eve,Adam} is a
player is called an instance of the parity game problem. We call an instance (G, v, σ) positive if
there exists a memoryless winning strategy for player σ from v. The set of all positive instances
of the parity game problem is denoted by PARITY. The determinacy theorem for parity games
[5] states that (G, v, σ) ∈ PARITY if and only if (G, v, σ) /∈ PARITY. It implies that PARITY

8

�v1 �

v2

�
v3

�v7 �
v6

�
v5

�v8 �v4

2

1

2

1

0

1

0

1 0

01

2

Figure 3: The game graph G from Example 2.4

belongs to NP ∩ coNP.

Example 2.4. Let the game graph G = (V,E, ρ) over the priorities {0, 1, 2} be given in Fig-
ure 3. Apparently, player Eve wins the node set WEve = {v5, v6, v7}, whereas player Adam wins
WAdam = {v1, v2, v3, v4, v8}. The fat drawn edges show a winning strategy for player Eve for
the nodes in WEve. If player Adam always controls the game to node v1, player Eve either has
to go to v2 or to v8. The infinitely often occurring priority is 1, hence player Adam wins on
the set WAdam. Player Eve can force the game into the cycle (v6, 1, v7, 2)ω for all nodes from
{v5, v6, v7}. Therefore she wins the set WEve.

Theorem 2.5 ([6, 5]). Let P be a set of atomic propositions, (T, qinit) an initialized transition
system over P, and ϕ ∈ Fµ(P). Then there exists a game graph GT,ϕ and a node v of GT,ϕ s.t.
(GT,ϕ, v,Eve) ∈ PARITY if and only if (T, qinit) |= ϕ. Furthermore, the reduction can be done
in polynomial time.

We will extend Theorem 2.5 in Section 4 to the case of hierarchically defined graphs.

3 Parity games on SLP-defined graphs

In this section we will prove a PSPACE upper bound for parity games on game graphs that
are given via SLPs. Our construction is inspired by [23], where parity games and the modal
µ-calculus on graphs of bounded tree width are examined. Thereby, first a strategy for player
Eve is fixed. Then optimal reactions of player Adam are calculated efficiently on the tree
decomposition in a bottom-up manner. For our PSPACE-algorithm we first have to introduce
several concepts.

9

G
A strategy reduct

of G w.r.t {v4}

v1 v4

v2

v5

v6

v3

v7

�
1

�
2

�
3

�

�

�

�
4

0

1

1 0

17

1

3

5

5

5

4

3

3

v1

v4

v2

v5

v6

v3

v7

�
1

�
2

�
3

�

�

�

�
4

0

1

1 0

3

3

Figure 4: A strategy reduct of a 3-game graph G w.r.t. {v4}

3.1 The strategy reduct of an n-game graph

LetG = (H, τ) be an n-game graph withH = (V,E, ρ) and letW ⊆ ρ−1(Eve)∩ran(τ) be a set of
contact nodes that belong to Eve. Then we call an n-game graph G′ a strategy reduct of G w.r.t.
W if and only if G′ can be obtained from G by (i) removing all outgoing edges for all w ∈ W ,
and (ii) keeping exactly one outgoing edge for all w ∈ ρ−1(Eve) \ (W ∪ {v ∈ V | vE = ∅}).
Thus, a strategy reduct of G is the remainder of G by restricting G to a given strategy for Eve
and making certain contact nodes that belong Eve to dead ends. Note that a strategy reduct
is always defined w.r.t. a subset W of contact nodes that belong to Eve and is not unique in
general. The reason for making an Eve-node u to a dead end in G is the fact that u is a contact
node which will be glued with another contact node u′ from another n′-game graph G′ in an
SLP, and for u′ an outgoing edge (as a part of the strategy for Eve on G′) has already been
guessed.

Example 3.1. In Figure 4 a 3-game graph G together with a strategy reduct w.r.t. {v4} is
shown.

3.2 The evaluation function reward

For some guessed strategy reduct G′ of a potentially exponentially large n-game graph G =
(H, τ) we will only store a polynomial amount of relevant information in a so called n-interface.
More precisely, for each pair of contact nodes τ(i) and τ(j) we will only store the maximal
priority along an optimal path for player Adam from τ(i) to τ(j). In order to define this
formally, we introduce the evaluation function reward, see also [23]. Let C = {0, . . . , k} (k ∈ N)

10

be a set of priorities. Then we define reward : 2C \ {∅} → C as follows, where B ⊆ C, B 6= ∅:

reward(B) =

{

max(B ∩ {2n+ 1 | n ∈ N}) if B ∩ {2n+ 1 | n ∈ N} 6= ∅

min(B) else

Intuitively, reward(B) is the best priority in B for Adam: if there is an odd priority in B, then
the largest odd priority is the best for Adam. But if there are only even priorities in B, then
the smallest priority in B causes the smallest harm for Adam.

Let G be an (n-)game graph over the priorities C = {0, . . . , k} (k ∈ N) and Π 6= ∅ a set of
finite paths in G. Then we define

reward(Π) = reward({ max(Occ(π)) | π ∈ Π}).

The intuition behind this definition is the following: If G′ is a strategy reduct of an n-game
graph G, then it is only player Adam who can freely choose the next outgoing edge in G′.
Hence, if Π is the set of all paths in G′ between two contact nodes τ(i) and τ(j), then, if Adam
is smart, he will choose a path π ∈ Π with max(Occ(π)) = reward(Π) when going from τ(i)
to τ(j). Note that max(Occ(π)) is the relevant priority on the path π. We have to take the
maximum of Occ(π) since this priority is the relevant one to be considered. Hence, we can
replace the set of paths Π by a single edge from τ(i) to τ(j) with priority reward(Π). For
technical reasons we will only put paths into Π that do not visit any contact nodes except its
start and end node. We call such paths ττ -internal paths and introduce them next.

3.3 (τ)τ-internal paths

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N). For v0, vn ∈
ran(τ) we call a non-empty finite path π = v0, c0, v1, . . . , cn−1, vn a ττ -internal path from v0 to
vn if for all 1 ≤ i ≤ n − 1 we have vi 6∈ ran(τ); note that v0 = vn is allowed. We will be also
interested in maximal paths that start in a contact node, but that never visit a contact node
again. We call such paths τ -internal paths. More precisely, we call a finite non-empty maximal
path π = v0, c0, v1 . . . , cn−1, vn a finite τ -internal path from v0 to vn in G if v0 ∈ ran(τ) and for
all 1 ≤ i ≤ n we have vi 6∈ ran(τ). Note that vn must be a dead end, since π is assumed to be
maximal. We call an infinite path π = v0, c0, v1, . . . an infinite τ -internal path if v0 ∈ ran(τ)
and for all i > 0 we have vi 6∈ ran(τ). Later, we will be only interested in τ -internal paths
which can be won by player Adam.

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N). Then Πτ
i,j(G)

denotes the set of all ττ -internal paths from τ(i) to τ(j) for all 1 ≤ i, j ≤ n in G. Note that an
arbitrary path between two contact nodes can be split up into consecutive ττ -internal paths.
Similarly, an arbitrary maximal path that begins in a contact node starts with a sequence of
ττ -internal paths possibly followed by a τ -internal path. Intuitively, this is the reason, why we
do not lose any information by only considering (τ)τ -internal paths.

Example 3.2. Figure 5 shows a fat drawn ττ -internal path in a 3-game graph G from contact
node τ(2) to contact node τ(3).

11

v10

v8

v7

v9

v2

v1

v3

v4

v5

v6

�

1

�

�

� �

�2

�
3

�

�

�

�

1 0

24

3

3 4

2

1

2

4

2

1

1 0

5

2

3
0

3

3

Figure 5: A ττ -internal path in a 3-game graph G

3.4 The reduce operation

Assume that G′ is a strategy reduct of an n-game graph G. Then it is only player Adam
who can choose any path in G′. Of course, there is no reason for player Adam to move from
contact node τ(i) to contact node τ(j) along a path which is not optimal for him. Hence we can
replace the set Πτ

i,j(G) of all ττ -internal paths from τ(i) to τ(j) by a single edge with priority
reward(Πτ

i,j(G)). The operation reduce is doing this for every pair of contact nodes. We define
the reduce-operation on arbitrary n-game graphs, but later we will only apply it to strategy
reducts.

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N), where
H = (V,E, ρ). Then reduce(G) is the game graph ({1, . . . , n}, F, %), where %(i) = ρ(τ(i)) for
all 1 ≤ i ≤ n and (i, p, j) ∈ F if and only if Πτ

i,j(G) 6= ∅ and reward(Πτ
i,j(G)) = p. We identify

reduce(G) with the n-game graph (({1, . . . , n}, F, %), id{1,...,n}). Note that if G is not a strategy
reduct, then player Adam cannot, in general, force an optimal path with maximal priority
reward(Πτ

i,j(G)) from τ(i) to τ(j). But if G is a strategy reduct, then he can do so.

Example 3.3. In Figure 6 a 3-game graph G together with reduce(G) is shown.

In Section 3.6 we will need the following two lemmas:

12

v1 v4

v2

v5

v6

v3

v7

G

�1 �
2

�
3

�

�

�

�
4

0

2

1

5

1 0
2

3

3

3

reduce(G)

�1 � 2

�
3

5

31

5

Figure 6: Comparison between G and reduce(G)

Lemma 3.4. Let n ∈ N (n ≥ 1), op ∈ {forget, glue}, and G = (H, τ) an (n + 1)-game graph
s.t. op(G) exists. Then, we have reduce(op(G)) = reduce(op(reduce(G))).

Proof. We have to show that

reward(Πτ
i,j(op(G))) = reward(Πτ

i,j(op(reduce(G)))) (1)

for all 1 ≤ i, j ≤ n. First note that Πτ
i,j(op(G)) = ∅ if and only if Πτ

i,j(op(reduce(G))) = ∅, in
which case both sides of (1) are undefined. Moreover, for every path π ∈ Πτ

i,j(op(reduce(G)))
there exists a path π′ ∈ Πτ

i,j(op(G)) with max(Occ(π)) = max(Occ(π′)), because every edge
(i′, c, j ′) in reduce(G) corresponds to an optimal ττ -internal path for player Adam from τ(i′)
to τ(j ′) in G with priority c. On the other hand, for every optimal path π ∈ Πτ

i,j(op(G)) for
player Adam we find a path π′ ∈ Πτ

i,j(op(reduce(G))) with max(Occ(π)) = max(Occ(π ′)). This
implies (1).

Lemma 3.5. Let G = (H, τ) be an n-game graph over the priorities C. Then reduce(G) can
be computed in deterministic polynomial time (w.r.t. |G| and |C|).

Proof. For a game graphG′ and two nodes u and v ofG′ let Πu,v(G
′) denote the set of all paths in

G′ from u to v. LetGi,j be the game subgraph ofG which is induced by (V \ran(τ))∪{τ(i), τ(j)}
for all 1 ≤ i, j ≤ n (where V is the node set of G). Then we have

reward(Πτ
i,j(G)) = reward(Πτ(i),τ(j)(Gi,j))

for all 1 ≤ i, j ≤ n. The algorithm in Table 2 computes reward(Πτ(i),τ(j)(Gi,j)) by successively
removing edges from Gi,j.

13

procedure reward(Gi,j, τ(i), τ(j)) return p ∈ C is

pmin := max(C)

for c = max(C) downto 0 do

if ∃π ∈ Πτ(i),τ(j)(Gi,j) : max(Occ(π)) = c then

if c is odd then return c endif

if c is even then

remove all edges (u, c, v) from Gi,j

pmin := c

endif

endif

endfor

return pmin

end reward

Table 2: Algorithm for computing reduce(G)

The first if-condition can be checked for instance by Dijkstra’s algorithm deterministically
in polynomial time. The number of loops is bounded by |C|. We execute the algorithm for all
pairs 1 ≤ i, j ≤ n and get a polynomial time bound.

3.5 Interfaces and realizability

An n-interface stores all the relevant information for a given strategy reduct. For a given
variable Xi of an SLP, the type(Xi)-game graph eval(Xi) may have exponential size, and the
same is true for some strategy reduct G′ of eval(Xi). But any n-interface for G′ can be stored
in polynomial space, and this will be crucial in our overall PSPACE-algorithm. The notion of
an interface is inspired by the notion of a border from [23].

An n-interface S (n ∈ N) over the priorities C = {0, . . . , k} (k ∈ N) is a 5-tuple S =
({1, . . . , n}, F, %, I, U) s.t. (i) ({1, . . . , n}, F, %) is a game graph over the priorities C, which
we denote by graph(S), (ii) I ⊆ {1, . . . , n} is a subset of the set of nodes {1, . . . , n}, and (iii)
U ⊆ %−1(Eve) is a subset of the nodes which belong to player Eve. We identify graph(S) with
the n-game graph (({1, . . . , n}, F, %), id{1,...,n}), which formally also contains the identity over
{1, . . . , n} as a component.

Formally an n-interface is nothing more than a game graph with node set {1, . . . , n} and
two subsets of {1, . . . , n}. We now define what it means that an n-interface is realized by an
n-game graph.

Definition 3.6. We say that an n-interface S = ({1, . . . , n}, F, %, I, U) is realized by an n-game
graph G = (H, τ) if there exists a strategy reduct G′ = (H ′, τ) of G w.r.t. τ(U) s.t.

14

v1

v2

v3

v4

v5�

1

�
2

�
3

G

�

�

1 03

24

3 4

2

1

2

Strategy reduct G′ of G

w.r.t. {τ(2)}

v1

v2

v3

v4

v5�

1

�
2

�
3

�

�

3

24

4

2

1

2

S

�
1 ∈ I

�
2 ∈ U

�
3

3

4
2

4

Figure 7: The 3-game graph G realizes the 3-interface S

(1) graph(S) = reduce(G′), and

(2) i ∈ I if and only if there exists a τ -internal path π in G′ which begins in τ(i) and which
player Adam wins (recall that π is necessarily non-empty).

We also say that G′ is a witness that S is realized by G.

So the notion of realization intuitively expresses the fact that an n-interface correctly sum-
marizes reactions of player Adam in a remainder on an n-game graph w.r.t to a restricted
strategy for Eve.

Remark 3.7. Note that Condition (2) in Definition 3.6 can be checked in polynomial time for
a given strategy reduct G′ and 1 ≤ i ≤ n.

Example 3.8. In Figure 7 a 3-game graph G together with a strategy reduct G′ w.r.t. {τ(2)}
shown. The interface S = ({1, 2, 3}, E, ρ, I, U) with I = {1} and U = {2} on the right is
realized by G, and G′ is a witness for this. We have 1 ∈ I, because the infinite τ -internal path
v1, 2, (v4, 1)ω starts at node v1 = τ(1) in G′ and Adam wins this path. The loop with priority 4
at node 1 in S exists due to the ττ -internal path v1, 2, v4, 4, v5, 2, v1 in G′.

Lemma 3.9. Let S = ({1, . . . , n}, E, ρ, I, U) be an n-interface, let G an n-game graph, and let
G′ be a strategy reduct of G w.r.t. τ(U). Then the question whether G′ is a witness that S is
realized by G is in P.

Proof. We compute reduce(G′) deterministically in polynomial time (Lemma 3.5) and check
the two conditions of Definition 3.6 in polynomial time, see Remark 3.7.

15

Lemma 3.10. Let S = ({1, . . . , n}, E, ρ, I, U) be an n-interface and let G be an n-game graph.
Then the question whether S is realized by G is in NP.

Proof. We guess a strategy reduct G′ of G w.r.t. τ(U) and apply Lemma 3.9.

3.6 Operations on interfaces

Our PSPACE algorithm will only manipulate n-interfaces instead of whole n-game graphs. In
order to do this, we have extend the operations ⊕, renamef , forget, and glue on interfaces. The
crucial correctness property is expressed by Definition 3.11, which is formulated for arbitrary
operations. In the following we restrict to n-game graphs G = (H, τ) such that every contact
node τ(i) has at least one outgoing edge. This can be ensured by adding for a contact node
τ(i) without outgoing edges an outgoing edge to a new internal node v, which is a dead end
and which belongs to the same player as τ(i). The owner of node τ(i) will not choose this edge,
because she/he will immediately loose at node v. Hence the new edge has no influence on the
winner of a parity game.

Definition 3.11. Let op be a partial operation, mapping a k-tuple (G1, . . . , Gk), where Gi is an
ni-game graph, to an n-game graph op(G1, . . . , Gk). We say that op has a faithful polynomial
implementation (briefly FPI) on interfaces, if there exists a partial operation ops, mapping a
a k-tuple (S1, . . . , Sk), where Si is an ni-interface, to an n-interface op(S1, . . . , Sk) s.t. the
following holds:

• ops is computable in polynomial time.

• Assume that G = op(G1, . . . , Gk), where Gi is an ni-game graph and G is an n-game
graph, and let S be an n-interface. Then G realizes S if and only if there exist ni-
interfaces Si (1 ≤ i ≤ k) s.t. S = op(S1, . . . , Sk) and Gi realizes Si.

Lemma 3.12. The operations ⊕, renamef , forget, and glue have FPIs on interfaces.

Proof. For an n1-interface S1 = (graph(S1), I1, U1) and an n2-interface S2 = (graph(S2), I2, U2)
we set S1⊕

sS2 = (graph(S1)⊕graph(S2), I1∪(n1 +I2), U1∪(n1 +U2)), where n1 +I2 = {n1 + i |
i ∈ I2} and similarly for n1 + U2.

For an n-interface S = (graph(S), I, U) and a permutation f : {1, . . . , n} → {1, . . . , n} let
renamesf(S) = (renamef(graph(S)), f(I), f(U)).

For an (n+1)-interface S = ({1, . . . , n+1}, E, ρ, I, U) we define forgets(S) only if n+1 6∈ U .
Then forgets(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′), where:

(a) graph(forgets(S)) = reduce(forget(graph(S)))

(b) I ′ =

{

I \ {n+ 1} ∪ {i | 1 ≤ i ≤ n ∧ n+ 1 ∈ iE} if n+ 1 ∈ I

I else

16

(c) U ′ = U

The intuition behind this definition is the following. Assume that the (n + 1)-interface S =
({1, . . . , n + 1}, E, ρ, I, U) is realized by an (n + 1)-game graph G = (H, τ) and let G′ be a
witness for this. We want to define forgets(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) in such a way that
forgets(S) is realized by forget(G) and moreover forget(G′) is a witness for this. Since n + 1
is no longer a contact node in forget(G), there may be more ττ -internal paths in forget(G′)
between to contact nodes τ(i) and τ(j). In order to determine the maximal priority of an
optimal path (for player Adam) from τ(i) to τ(j) in forget(G′), it suffices to look at the n-game
graph forget(graph(S)), i.e., to calculate reduce(forget(graph(S))). This graph will be therefore
graph(forgets(S)). Second, if in the strategy reduct G′ there exists a ττ -internal path from the
contact node i to the contact node n + 1 (i.e., in the interface S there is an edge from i to
n+ 1) and n+ 1 ∈ I (i.e., there exists a τ -internal path starting from τ(n+ 1) in G′ and which
player Adam wins), then there exists a τ -internal path starting from τ(i) in forget(G′) and
which player Adam wins. Therefore we put i into I ′. Finally, we require n + 1 6∈ U , because
after applying the forget-operation, the former contact node τ(n+1) is no longer accessible, in
particular it cannot be glued with another node and will not get any further outgoing edges.
But if τ(n + 1) belongs to Eve, for a strategy of Eve we have to guess precisely one outgoing
edge for τ(n+1); recall that we assume that every contact node, and hence also τ(n+1), has at
least one outgoing edge in G. If we would have n + 1 ∈ U , then we would remove all outgoing
edges for τ(n+1), and this would not change anymore, since τ(n+1) remains inaccessible after
the glue-operation.

Finally, for an (n + 1)-interface (n ≥ 1) S = ({1, . . . , n + 1}, E, ρ, I, U) we define glues(S)
only if

(1) ρ(n + 1) = ρ(n) (thus, node n and n + 1 belong to the same player and can actually be
glued) and

(2) if ρ(n+ 1) = ρ(n) = Eve then n ∈ U or n+ 1 ∈ U .

Then we define the n-interface glues(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) as follows:

(a) graph(glues(S)) = reduce(glue(graph(S))).

(b) I ′ =

{

I \ {n+ 1} ∪ {n} if n ∈ I or n+ 1 ∈ I

I else
.

(c) U ′ =

{

U \ {n+ 1} if n, n + 1 ∈ U

U \ {n, n+ 1} else
.

The intuition behind this definition is the following. Assume that the (n + 1)-interface S =
({1, . . . , n+1}, E, ρ, I, U) is realized by an (n+1)-game graphG = (H, τ) and let G′ be a witness
for this. We want to define glues(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) in such a way that glues(S) is

17

G2 G′
2 graph(S2)

G1 G′
1 graph(S1)

glue glue

glue

reduce

strategy reduct w.r.t. U2

strategy reduct w.r.t. U1

reduce

reduce

Figure 8: The situation in the proof of Lemma 3.12

realized by glue(G) and moreover glue(G′) is a witness for this. Note that by assumption (1)
and (2), glue(G′) is in fact a strategy reduct of glue(G). In particular, (2) is necessary for this,
since by our assumption both τ(n) and τ(n+1) have at least one outgoing edge in G and hence
would have both precisely one outgoing edge in G′ if we would have n 6∈ U and n + 1 6∈ U .
The assignment graph(glues(S)) = reduce(glue(graph(S))) in (a) can be explained as for the
forget-operation. Note that in glue(graph(S)), there may be more than one edge between two
contact nodes. By applying reduce to glue(graph(S)) we select the optimal edge for player
Adam between two contact nodes. Finally, if n ∈ I or n + 1 ∈ I, i.e., there exists a τ -internal
path in G′ that starts in τ(n) or in τ(n+ 1) and which player Adam wins, then we can be sure
that there exists a τ -internal path in glue(G′) that starts in τ(n) and which player Adam wins.
Here it is important that τ -internal paths are always non-empty. Hence, we put n into the set
I ′.

This concludes the definition of the operations on interfaces. Each of these operations can
be computed in polynomial time; for forgets and glues we need Lemma 3.4. We present the
proof for the second condition of Definition 3.11 only for the glue-operation.

Let G1 = (H1, τ1) be an n-game graph and G2 = (H2, τ2) an (n + 1)-game graph with
op(G2) = G1. Let S1 be an n-interface. We have to show that the following two properties are
equivalent:

(1) S1 is realized by G1.

(2) There exists an (n+ 1)-interface S2, which is realized by G2 and such that ops(S2) = S1.

Figure 8 makes the situation clearer.
(1) ⇒ (2): Assume that G1 realizes S1 = ({1, . . . , n}, E1, ρ1, I1, U1) and let G′

1 be a witness
for this. Since we have G1 = glue(G2), there exists a strategy reduct G′

2 of G2 w.r.t. a set U2

satisfying

U1 =

{

U2 \ {n+ 1} if n, n+ 1 ∈ U2

U2 \ {n, n+ 1} else.
(2)

18

Furthermore, we have glue(G′
2) = G′

1. We put i into I2 if and only if there exists a τ -internal
path starting from τ2(i) in G′

2 which player Adam wins. We set S2 = (reduce(G′
2), I2, U2).

Then, G′
2 is a witness that G2 realizes S2. In order to proof glues(S2) = S1, we show the three

conditions (a),(b), and (c) from the definition of the glues-operation. Condition (a) follows
from:

reduce(glue(graph(S2))) = reduce(glue(reduce(G′
2)))

Lemma 3.4

= reduce(glue(G′
2))

= reduce(G′
1)

= graph(S1)

In order to show condition (b), we distinguish the following two cases:

• I2 ∩ {n, n + 1} = ∅: Then we have I1 = I2 due to Definition 3.6. Hence, condition (b) is
satisfied.

• I2 ∩ {n, n+ 1} 6= ∅: Then we have n ∈ I1 because of G′
1 = glue(G′

2). Thus, i ∈ I1 if and
only if i ∈ I2 \ {n+ 1} ∪ {n}. Hence, condition (b) is satisfied.

Condition (c) is satisfied by equation (2) above.

(2) ⇒ (1): Assume that S2 = ({1, . . . , n + 1}, E2, ρ2, I2, U2) is an (n + 1)-interface, which is
realized byG2 and such that glues(S2) = S1. LetG′

2 be a witness for this. We setG′
1 = glue(G′

2).
We have to verify condition (1) and (2) of Definition 3.6 for S1, G

′
1 and G1. Condition (1), i.e.

graph(S1) = reduce(G′
1), follows from Lemma 3.4 analogously to the first part of the proof. For

condition (2) of Definition 3.6, we again distinguish between the following two cases:

• I2∩{n, n+1} = ∅: Then we have I1 = I2 according to the definition of the glues-operation
and consequently:

i ∈ I1 ⇐⇒ i ∈ I2

⇐⇒ ∃ τ -internal path in G′
2 starting in τ2(i) and which Adam wins

⇐⇒ ∃ τ -internal path in G′
1 = glue(G′

2) starting in τ1(i) and which Adam wins

• I2 ∩ {n, n + 1} 6= ∅: Then we have I1 = I2 \ {n + 1} ∪ {n} according to the definition of
the glues-operation and consequently:

i ∈ I1 ⇐⇒ i ∈ I2 \ {n+ 1} ∪ {n}

⇐⇒ ∃ τ -internal path in G′
2 starting in τ2(i) (i 6= n + 1) and which Adam

wins or i = n

⇐⇒ ∃ τ -internal path in G′
1 = glue(G′

2) starting in τ1(i) and which Adam wins

19

3.7 Upper bounds for parity games on SLP-defined graphs

We are now ready to prove an upper bound of PSPACE for the parity game problem on general
SLPs. For c-bounded SLPs we will obtain the better upper bound of NP ∩ coNP. W.l.o.g.
we will restrict to SLPs such that for every right hand side, which is an n-game graph G,
every contact node of G has at least one outgoing edge, see the remark at the beginning of
Section 3.6. Note that this property transfers to every game graph eval(X) for a variable X of
the underlying SLP.

Theorem 3.13. The following problem is in PSPACE:
INPUT: An SLP S = (Xi := ti)1≤i≤l generating a 1-game graph eval(S) = (G, τ).
QUESTION: (G, τ(1),Eve) ∈ PARITY?

Proof. Without loss of generality we can assume that node τ(1) belongs to Eve and that τ(1) has
no incoming edges. Otherwise we construct G′ by adding a new node v to G whose only edge is
an outgoing one leading to τ(1) and give v to Eve. Then we have (G′, v,Eve) ∈ PARITY if and
only if (G, τ(1),Eve) ∈ PARITY. Due to this convention, the following holds: (G, τ(1),Eve) ∈
PARITY if and only if eval(G) realizes the interface Sl = ({1}, ∅, [1 7→ Eve], ∅, ∅).1 We present
the algorithm in form of the following procedure P, which works on a polynomial time bounded
alternating Turing machine; (Q∀) (resp. (Q∃)) indicates that the machine branches universally
(resp. existentially). Procedure P has two parameters, the current line i of the SLP and a
type(Xi)-interface Si, and it returns true if and only if Si is realized by eval(Xi). At the
beginning we call P with the parameter (l, Sl).

procedure P(i ∈ {1, . . . , l}, Si) return boolean is

if ti is a type(Xi)-game graph then return (ti realizes Si) (∗)
elseif ti = op(Xi1, . . . , Xik) then
(Q∃): for 1 ≤ j ≤ k guess type(Xij)-interfaces Sij s.t. Si = ops(Si1 , . . . , Sik) (**)
(Q∀): return

∧

1≤j≤k P(ij, Sij)
endif

The correctness of the algorithm follows easily by induction on the index i ∈ {1, . . . , l} using
the Definition 3.11. For the alternating polynomial time bound note that: (i) the test in line
(∗) is in NP by Lemma 3.10, (ii) an interface can be stored in polynomial space, i.e., polynomial
time suffices for guessing an interface in line (∗∗), and (iii) each of the operations ops in line
(∗∗) is computable in polynomial time by the definition of an FPI.

By the following theorem, we can improve the PSPACE upper bound from Theorem 3.13 to
NP ∩ coNP, when we restrict to c-bounded SLPs for some fixed constant c.

1Since τ(1) has no incoming edges, we can assume that the interface Sl has no edges, i.e., consists of an
isolated point. Since the I-component of Sl is empty, we assert that Adam cannot win from node τ(1), i.e., Eve
wins.

20

Theorem 3.14. Let c ∈ N be a fixed constant. Then the following problem is in NP ∩ coNP:
INPUT: A c-bounded SLP S = (Xi := ti)1≤i≤l such that eval(S) is a 1-game graph (G, τ).
QUESTION: (G, τ(1),Eve) ∈ PARITY?

Proof. In analogy to the proof of Theorem 3.13 we may assume that node τ(1) belongs to Eve
and that τ(1) has no incoming edges. Now, we guess for all 1 ≤ i ≤ l a set of interfaces Mi.
Note that for the representation of a single interface c2 log |C|+2c bits suffice, where C is the set
of priorities used in the SLP S. Thus, for every 1 ≤ i ≤ l there maximally exist |C|c

2

22c possible
interfaces. Hence, since c is a constant, polynomial space suffices in order to store all interfaces in
⋃

1≤i≤lMi. Next, we check in polynomial time whether for all 1 ≤ i ≤ l the set Mi is a subset of
the set of interfaces which are realized by eval(Xi). If the interface Sl = ({1}, ∅, [1 7→ Eve], ∅, ∅)
additionally belongs to Ml, then we know that (G, τ(1),Eve) ∈ PARITY. In Table 3 the
algorithm is shown. For the correctness of the algorithm we prove the following two points:

(1) If (G, τ(1),Eve) ∈ PARITY, then there exists a run in our non-deterministic algorithm of
Table 3, where true is returned.

(2) If the algorithm of Table 3 returns true, then (G, τ(1),Eve) ∈ PARITY.

To show (1), we simply guess in line (∗) for all 1 ≤ i ≤ l exactly the set of interfaces that are
realized by eval(Xi). Moreover, in line (∗∗) we guess for every S ∈ Mi such that ti = G is an
n-game graph a witness G(i, S) that G realizes S. Then the algorithm will return true. For (2)
let Mi be the set of interfaces for eval(Xi) (1 ≤ i ≤ l) that are guessed in a successful run of the
algorithm. By induction over i we easily obtain that every interface inMi is realized by eval(Xi).
Hence, ({1}, ∅, [1 7→ Eve], ∅, ∅) is realized by eval(S) = eval(Xl), i.e., (G, τ(1),Eve) ∈ PARITY.

By Lemma 3.9 the test in line (∗∗∗) can be done in polynomial time. The tests in the other
cases can be also done in polynomial time, which implies the upper bound of NP. Due to the
determinacy theorem for parity games [5], the problem is also in coNP.

4 The modal µ-calculus on SLP-defined graphs

In this section, we want show that both the data and combined complexity of the modal
µ-calculus on transition systems that are represented by SLPs is precisely PSPACE. This
generalizes a corresponding result for CTL from [1]. For c-bounded SLPs we obtain an upper
bound of NP∩coNP for the data complexity, whereas the combined complexity remains PSPACE.
For the upper bounds we will use a reduction to parity games, which is analogous to the
corresponding reduction for explicitly given input graphs. For this, we need a few notions
concerning the modal µ-calculus.

Let P be a set of atomic propositions. The set of free fixpoint variables of ϕ ∈ Fµ(P) is
denoted Free(ϕ). If ϕ is a subformula of ψ we also write ϕ � ψ. In the following we assume
w.l.o.g. that all sentences ϕ ∈ Fµ(P) have the property that for every fixpoint variable X that
occurs in ϕ there is a unique subformula σX.ψ � ϕ with σ ∈ {µ, ν} and X only ocurrs inside
of σX.ψ. The alternation depth α(ϕ) of ϕ is inductively defined as follows:

21

procedure P(S) return boolean is

for i = 1 to l do

guess a set Mi of type(Xi)-interfaces. (∗)

if ti = G for a type(Xi)-game graph G then

guess a strategy reduct G(i, S) of G for every S ∈Mi (∗∗)

endif

endfor

for i = 1 to l do

if ti = G for a type(Xi)-game graph G then

for S ∈Mi do

if G(i, S) is not a witness that G realizes S then (∗ ∗ ∗)

return false

endif

endfor

elseif ti = op(Xi1 , . . . , Xik) then

if ∃Si ∈Mi ∀(Si1 , . . . , Sik) ∈
∏k

j=1Mij : Si 6= ops(Si1 , . . . , Sik) then

return false

endif

endif

endfor

return ({1}, ∅, [1 → Eve], ∅, ∅) ∈Ml

end P

Table 3: NP-algorithm for the c-bounded case

22

• α(X) = α(p) = α(¬p) = 0.

• α(ψ1 ∧ ψ2) = α(ψ1 ∨ ψ2) = max{α(ψ1), α(ψ2)}.

• α(�ψ) = α(♦ψ) = α(ψ).

• α(µX.ψ) = max ({1, α(ψ)} ∪ {α(νY.θ) + 1 | νY.θ � ψ,X ∈ Free(νY.θ)})

• α(νX.ψ) = max ({1, α(ψ)} ∪ {α(µY.θ) + 1 | µY.θ � ψ,X ∈ Free(µY.θ)})

Theorem 4.1. The following problem can be calculated in polynomial time:
INPUT: A c-bounded SLP St defining a transition system eval(St), a node qinit of eval(St),

and a sentence ϕ of the modal µ-calculus s.t. ϕ has precisely k subformulas.
OUTPUT: A (c·k)-bounded SLP Sg defining a game graph eval(Sg) and a node v of eval(Sg)

such that (eval(St), qinit) |= ϕ if and only if (eval(Sg), v,Eve) ∈ PARITY.

Proof. Let us first repeat the construction for explicitly given input graphs. Thus, let T =
(Q,R, λ) be a transition system, let Θ := {ψ | ψ � ϕ} denote the set of all subformulas of the
formula ϕ, and let {ψ1, ψ2, . . . , ψk} be an enumeration of these subformulas (i.e. |Θ| = k). We
define the map χϕ : Θ → {0, . . . , α(ϕ)} for all ψ ∈ Θ as follows:

χϕ(ψ) =















2 · dα(ψ)−1
2

e if ψ = νX.ψ′

2 · bα(ψ)−1
2

c + 1 if ψ = µX.ψ′

0 else

Let Gϕ,T = (V,E, ρ) be the game graph that is defined as follows: The set of nodes is V =
(Q× Θ) ∪ {⊥,>}. We set

ρ(v, ψ) =

{

Adam if ψ of the form ψ1 ∧ ψ2 or of the form �ψ′

Eve else

23

and ρ(⊥) = ρ(>) = Eve. Finally the set E contains precisely the following edges:

>
0

−→ >

⊥
1

−→ ⊥

(q, p)
0

−→

{

> if p ∈ P, p ∈ λ(q)

⊥ if p ∈ P, p 6∈ λ(q)

(q,¬p)
0

−→

{

> if p ∈ P, p 6∈ λ(q)

⊥ if p ∈ P, p ∈ λ(q)

(q, σX.ψ)
χϕ(ψ)
−−−→ (q, ψ) for σ ∈ {µ, ν}

(q,X)
χϕ(σX.ψ)
−−−−−→ (q, σX.ψ) if σX.ψ is the unique subformula of ϕ binding X

(q, ψ1 op ψ2)
χϕ(ψi)
−−−−→ (q, ψi) for i ∈ {1, 2} and op ∈ {∧,∨}

(q, σψ)
χϕ(ψ)
−−−→ (q′, ψ) if (q, q′) ∈ R and σ ∈ {�,♦}

Then for every q ∈ Q we have (T, q) |= ϕ if and only if (Gϕ,T , (q, ϕ),Eve) ∈ PARITY, see [6, 5].
Hence, for a given SLP St defining a transition system eval(St), we have to construct an

SLP Sg defining the game graph Gϕ,eval(St). Let St = (Xi := ti)1≤i≤l. In the SLP Sg we will use
generalized versions of the operations glue and forget. First of all, if G = (H, τ) is an n-game
graph, then for every m ≤ n we define the (n − m)-game graph forgetm(G) = (H, τ ′) where
τ ′(i) = τ(i) for all 1 ≤ i ≤ n−m, i.e., we forget the last m contact nodes. Moreover, for every
m ≤ n with 2m ≤ n we define the (n − m)-game graph gluem(G) = (H/≡, τ

′), where ≡ is
the smallest equivalence relation on {1, . . . , n} that contains every pair (n − i, n −m − i) for
0 ≤ i ≤ m− 1 and τ ′ = (π≡ ◦ τ)�{1, . . . , n−m}.

Now, we define the SLP Sg = (Yi := ui)1≤i≤l as follows. First of all, the type of Yi will be
type(Xi) · k; recall that k is the number of subformulas of ϕ. If ti is an n-transition system
(T, τ), then ui is the (n · k)-game graph (Gϕ,T , τ

′), where τ ′(i + j · k) = (τ(j + 1), ψi) for
1 ≤ i ≤ k and 0 ≤ j ≤ n − 1. Next, if ti = Xj ⊕ Xk, then ui = Yj ⊕ Yk. If ti = op(Xj) for
op ∈ {forget, glue}, then ui = opk(Yj). Finally, if ti = renamef(Xj), then ui = renamef ′(Yj),
where f ′(i + j · k) = i + (f(j + 1) − 1) · k for 1 ≤ i ≤ k and 0 ≤ j ≤ type(Xi) − 1. The only
difference between eval(Sg) and Gϕ,eval(St) is that there are several copies of the nodes > and
⊥, and moreover, from a node of the form (q, p) with p ∈ P we may have edges to both ⊥ and
>: If q1 and q2 are glued by some instruction Xi = glue(Xj) of the straight-line program St,
where q1 is labeled with the atomic proposition p in eval(Xj) but q2 is not, then the node of
eval(Xj) that results from gluing (q1, p) with (q2, p) has edges to both ⊥ and >. But for every
node q of eval(St) we have: if q is labeled with p in eval(St), then in eval(St) there is at least
one edge from (q, p) to a >-node plus possibly additional edges to ⊥-nodes, whereas if q is not
labeled with p in eval(St), then there are only edges from (q, p) to ⊥-nodes. But note that in
the first case (q is labeled with p), additional edges to ⊥-nodes are not problematic. The node
(q, p) belongs to Eve, and she wins a >-node but looses a ⊥-node. Hence, she will not choose

24

an edge from (q, p) to ⊥. Therefore we still have as desired (eval(St), q) |= ϕ if and only if
(eval(Sg), (q, ϕ),Eve) ∈ PARITY.

Corollary 4.2. The following problem is PSPACE-complete:
INPUT: An SLP St defining a transition system eval(St), a node qinit of eval(St), and a sentence
ϕ of the modal µ-calculus.
QUESTION: (eval(St), qinit) |= ϕ ?
Moreover,

• the above problem is already PSPACE-complete when restricted to c-bounded SLPs (for a
suitable large c), and

• there exists already a fixed sentence of the modal µ-calculus for which the above problem
is PSPACE-complete.

Proof. The upper bound follows from Theorem 3.13 and 4.1. For the lower bounds, we can use
two results from [1]:

• The combined complexity of CTL for hierarchical state machines is PSPACE-complete [1,
Theorem 9]; recall that CTL is a fragment of the modal µ-calculus. Hierarchical state
machines are a slightly restricted class of hierarchical graph definitions in the sense of
[18]. Moreover, it is easy to see that the hierarchical state machines that are constructed
in the proof of [1, Theorem 9] can be translated into a 4-bounded SLPs.

• There exists already a fixed CTL-sentence, for which the model-checking problem for
hierarchical state machines is PSPACE-complete [1, Theorem 11].

When we restrict both to c-bounded SLPs and to a fixed sentence ϕ, then we obtain a better
upper bound:

Corollary 4.3. The following problem belongs to NP ∩ coNP for every constant c and every
fixed sentence ϕ of the modal µ-calculus:
INPUT: A c-bounded SLP St defining a transition system eval(St) and a node qinit of eval(St)
QUESTION: (eval(St), qinit) |= ϕ ?

Proof. Let St be a c-bounded SLP defining a transition system eval(St) and let ϕ be a fixed
sentence of the modal µ-calculus. Then the SLP Sg from Theorem 4.1 is (c ·k)-bounded, where
k is the number of subformulas of the sentence ϕ. Since ϕ is fixed, c ·k is a fixed constant. The
upper bound of NP ∩ coNP follows from Theorem 3.14.

25

5 LFP and MLFP on hierarchically defined graphs

In this section we study the complexity of the model-checking problems for the fixpoint logics
LFP and MLFP on hierarchically defined graphs. We start with upper bounds in Section 5.1.
In Section 5.2 we will introduce hierarchical graph definitions, which are closely related to
straight-line programs, but which are more suitable for the purpose of proving lower bounds in
Section 5.3.

5.1 Upper bounds for fixpoint logics on SLP-defined structures

An upper bound for the most general case (combined complexity of LFP) is given by the
following theorem:

Theorem 5.1. The following problem belongs to EXP:
INPUT: An SLP S and a sentence ϕ of LFP.
QUESTION: eval(S) |= ϕ?

Proof. We can use the standard EXP-algorithm that evaluates a fixpoint formula on a finite
structure by building for a subformula lfpx̄,Rϕ(x̄, R) a sequence of increasing approximations
of the fixpoint until convergence is reached [25]. If n is the size of the structure A and ϕ is
an LFP-formula, where ` is the nesting depth of alternating fixpoint operations and k is the
maximal arity of fixpoint variables in ϕ, then A |= ϕ can be checked in time |ϕ|O(1) · nk·` [25].
Now if the structure A is given by an SLP S, then n ∈ 2O(|S|). Thus, the running time is
|ϕ|O(1) · 2O(|S|)·k·`, which is still exponential.

Only for the data complexity of MLFP we obtain a better upper bound. MLFP is known to
be a fragment of MSO (monadic second order logic). Since for every fixed sentence ϕ and every
fixed constant c the model-checking problem for ϕ on structures represented by c-bounded SLPs
belongs to the polynomial time hierarchy PH [18], we obtain:

Theorem 5.2. For every fixed MLFP sentence ϕ and every fixed constant c ∈ N the following
problem belongs to PH:

INPUT: A c-bounded SLP S
QUESTION: eval(S) |= ϕ?

5.2 Hierarchical graph definitions

Fix a signature R. A hierarchical graph definition (over the signature R) is a triple D =
(N, S, P) such that:

(1) N is a finite set of reference names. Every B ∈ N has a rank rank(B) ∈ N.

(2) S ∈ N is the initial reference name, where rank(S) = 0.

26

(3) P is a set of productions. For every B ∈ N , P contains exactly one production B →
(A, τ, E), where (A, τ) is a rank(B)-pointed relational structure (over the signature R)
with universe A and E ⊆ {(B ′, σ) | B′ ∈ N, σ : {1, . . . , rank(B′)} → A is injective} (the
set of references).

(4) Define the relation ED on N as follows: (B,C) ∈ ED if and only if for the unique production
of the form B → (A, τ, E), E contains a reference of the form (C, σ). Then we require that
ED is acyclic.

The size |D| of D is defined by
∑

(B→(A,τ,E))∈P |A| + |E|. We say that D is c-bounded if

rank(B) ≤ c for every B ∈ N and moreover for every rule B → (A, τ, E) we have |E| ≤ c.
Let us fix a hierarchical graph definition D = (N, S, P) (over the signature R). For every

B ∈ N we define a rank(B)-pointed relational structure eval(B) (over the signature R) as
follows: Assume that B → (A, τ, E) is the unique production for B in P . Let E = {(Bi, σi) |
1 ≤ i ≤ n}. Of course we may have Bi = Bj for i 6= j. Assume that eval(Bi) = (Ai, τi)
is already defined. Then eval(B) = ((A ⊕ A1 ⊕ · · · ⊕ An)/≡, π≡ ◦ τ), where ≡ is the smallest
equivalence relation on the universe of A⊕A1⊕· · ·⊕An, which contains every pair (σi(j), τi(j))
for 1 ≤ i ≤ n and 1 ≤ j ≤ rank(Bi). Finally, we define eval(D) = eval(S); since rank(S) = 0
it can be viewed as an ordinary relational structure. From this definition, it is obvious that
from a hierarchical graph definition D we can construct in polynomial time a straight-line
program S with eval(S) = eval(D), see also [3, 19]. Moreover, if D is c-bounded, then S is
c(c+ 1)-bounded.

In the lower bound proofs in the rest of the paper, we will only use relational structures
where all relations have arity one or two. In diagrams, relations of arity two will be drawn as
labeled edges, where the edge label is the name of the relation. The fact that a node v belongs
to a unary relation r will be indicated by labeling v with r. Note that our definition allows
several node labels for a single node. A reference (B, σ) will be drawn as a big circle with inner
label B. This circle is connected via dashed lines with the nodes σ(i) for 1 ≤ i ≤ rank(B),
where the connection to σ(i) is labeled with i. These dashed lines are also called tentacles. If
G = (A, τ) is an n-pointed relational structure, then we label the contact node τ(i) with i. In
order to distinguish this label i better from node labels that correspond to unary relations, we
will use a smaller font for the label i.

Example 5.3. Let us consider the hierarchical graph definition D = (N, S, P) over a signature
containing two binary relation symbols α and β, where N = {S,A1, A2, A3} with rank(S) = 0,
rank(A1) = 1, and rank(A2) = rank(A3) = 2. The set P of productions is shown in Figure 9.
Then eval(D) is the graph in Figure 10. Edge labels are omitted; edges going down in the tree
have to be labeled with β, and the other edges going from the leafs to the root have to be labeled
with α.

27

S
A1

A1

A2 A2

A2

A3 A3

A3

1

1

2 2

β β

1 1

2 1

2 2

β
β

1 1

2 1

β
α β

α

Figure 9: The productions of the hierarchical graph definition from Example 5.3

5.3 Lower bounds for fixpoint logics on hierarchically defined struc-
tures

In this section we will prove several EXP lower bounds. Together with the EXP upper bound
in Theorem 5.1 we obtain the EXP completeness results in Table 1. We start with the data
complexity of LFP:

Theorem 5.4. There is a fixed LFP-sentence ϕ such that the following problem is EXP-hard:
INPUT: A 2-bounded hierarchical graph definition D.
QUESTION: eval(D) |= ϕ?

Proof. Let us take a fixed deterministic exponential time machine T = (Q,Σ, q0, qf , δ) with an
EXP-complete membership problem. Q is the set of states, Σ is the tape alphabet, q0 is the
initial state, qf is the unique accepting state, and δ is the transition function. W.l.o.g. assume
that T operates in time 2n on any input of length n. Let � ∈ Σ be the blank symbol of T . Let
Γ = Σ ∪ (Q × Σ) and let c1, . . . , cm be an arbitrary enumeration of Γ. A configuration of the
machine can be encoded as a word over Γ of length 2n, where exactly one position contains a
symbol from Q×Σ ⊆ Γ. We view every c ∈ Γ as a relational symbol of arity one, i.e., as a node
label. Let ∆ be the set of all tuples (c0, c1, c2, c) ∈ ∆ such that the following is true: If at some
point of time t three consecutive tape positions i−1, i, and i+1 contain the symbols c0, c1, and
c2, respectively, then at time t+ 1 the tape cell i contains the symbol c. Let w = a0a1 · · ·an−1

be an input of length n for T . It is straight-forward to construct a 2-bounded hierarchical graph
definition D such that eval(D) is the following structure, where the s-chain consists of 2n many
Γ-labeled nodes:

28

Figure 10: The graph eval(D) for the hierarchical graph definition from Example 5.3

(q0, a0) a1 a2 an−1 an � � � �

s s s s s s

c1 cm

.

. . .

Thus, eval(D) is a chain of length 2n encoding the initial configuration together with |Γ| = m
many isolated nodes. For every c ∈ Γ there is exactly one isolated node with label c.

Tape positions and time points will be both represented as nodes of the s-chain. A triple
(x, y, z), where x and y belong to the s-chain and z is the isolated ci-labeled node, encodes the
fact that in the unique computation of T on input w at time y the tape cell x contains the
symbol ci. The set of all “correct” triples for which this is actually true will be generated as a
fixpoint.

In order to construct the fixed LFP-sentence ϕ from the theorem, we first define a few

29

auxiliary formulas:

ω(x) ≡ ∃y : s(x, y) ∨ s(y, x) (x belongs to the s-chain)

zero(x) ≡ ω(x) ∧ ¬∃y : s(y, x) (x is the first node of the s-chain)

init(x, y, z) ≡ ω(x) ∧ zero(y) ∧ ¬ω(z) ∧
∨

c∈Γ

(c(x) ∧ c(z))

consistent(z0, z1, z2, z) ≡ ¬ω(z) ∧
2

∧

i=0

¬ω(zi) ∧
∨

(c0,c1,c2,c)∈∆

(c(z) ∧
2

∧

i=0

ci(zi))

ψ(x, y, z, R) ≡ init(x, y, z) ∨

∃x0, x2, y
′, z0, z1, z2 : s(x0, x) ∧ s(x, x2) ∧ s(y

′, y)∧

consistent(z0, z1, z2, z) ∧ R(x0, y
′, z0) ∧ R(x, y′, z1) ∧R(x2, y

′, z2)

Note that init(x, y, z) is true for a triple (x, y, z) if and only if this triple is a correct triple (in
the above sense) for the initial configuration. Now, the input w is accepted by T if and only if
the following sentence ϕ is true in eval(D), where A = {(qf , a) | a ∈ Σ} ⊆ Γ (recall that qf is
the unique accepting state):

∃s, t, u : [lfp(x,y,z),R ψ(x, y, z, R)](s, t, u) ∧
∨

c∈A

c(u)

This concludes the proof of the theorem.

If we do not restrict to c-bounded hierarchical graph definitions then an EXP lower bound
can be also shown for MLFP:

Theorem 5.5. There exists a fixed MLFP-sentence ϕ such that the following problem is EXP-
hard:

INPUT: A hierarchical graph definition D.
QUESTION: eval(D) |= ϕ?

Proof. Again we start with a fixed deterministic exponential time machine T = (Q,Σ, q0, qf , δ)
with an EXP-complete membership problem and which operates in time 2n on an input of
length n. Let � be the blank symbol of T . Let Γ = Σ ∪ (Q × Σ) and let c1, . . . , cm be an
arbitrary enumeration of Γ. Let w = a0a1 · · ·an−1 be an input of length n for T and define
ai = � for n ≤ i < 2n.

We will construct a hierarchical graph definition D such that eval(D) is the following struc-
ture A: The universe of A is

{(i, w) | 0 ≤ i < 2n, w ∈ {0, 1}≤n}∪

{(i, w, c) | 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ}∪

{0, . . . , n},

30

0

1

(0, ε) (1, ε)

(0, 0)
(0, 1) (1, 0)

(1, 1)

s

s0 s1 s0 s1

` `

`

` `

`

(0, 0, c) (0, 1, c) (1, 0, c) (1, 1, c)

b b b b

b b b b

Figure 11:

where {0, 1}≤n = {w ∈ {0, 1}∗ | |w| ≤ n} and {0, 1}n = {w ∈ {0, 1}∗ | |w| = n}.
The idea is that the nodes (i, ε) (0 ≤ i < 2n) form a chain of length 2n using a binary

relation s. Here i is a point of time in the run of the machine T . Every node (i, ε) is the
root of a binary tree Ti of height n. The left (resp. right) child-relation is s0 (resp. s1). The
node set of the tree Ti is {(i, w) | 0 ≤ i < 2n, w ∈ {0, 1}≤n}. A leaf (i, w) (where |w| = n) of
the tree Ti represents the tape cell w (where w is viewed as the binary coding of a number in
{0, . . . , 2n− 1}) at time i. For every node (i, w) of Ti, there is an `-labeled edge (` for level) to
the “level-node” |w| ∈ {0, . . . , n}. Using these edges, we can express that two nodes in possibly
two different trees Ti and Tj are on the same level. This is needed in order to express that for
two leafs (i, v) and (j, w) (of two different trees) we have v = w, i.e., the tape cell is the same.
Finally, to every leaf (i, w) (with |w| = n) of Ti we attach for every c ∈ Γ an additional c-labeled
node (i, w, c), representing the fact that at time i tape cell w contains the symbol c. Thus, the
meaning of such a node is the same as that of a triple in the previous proof. Again we will
generate the set of all “correct” nodes (i, w, c) (i.e., in the unique computation on input w, at
time i tape cell w actually contains the symbol c) as a fixpoint. From every node (i, w, c) there
is a b-labeled (b for back) “back-edge” to every node along the path from the root (i, ε) of Ti to
the leaf (i, w). An additional unary relation init will represent the initial configuration of the
machine T . It contains a triple (0, w, ai) if and only if w is the binary coding of i (bin(i) = w
for short). For the trivial case n = 1 the graph eval(D) without the init-relation is shown in
Figure 11, where we furthermore assume that Γ = {c} has only one element.

31

B0 A0 A0 A0 A0

0

s s s

`
`

` `

`

1 2 3 n

. . .

. . .

. . .

Figure 12:

Formally, the relations of A are (� denotes the prefix relation on strings):

s = {[(i, ε), (i+ 1, ε)] | 0 ≤ i < 2n − 1}

s0 = {[(i, w), (i, w0)] | 0 ≤ i < 2n, w ∈ {0, 1}<n}

s1 = {[(i, w), (i, w1)] | 0 ≤ i < 2n, w ∈ {0, 1}<n}

` = {[(i, w), |w|] | 0 ≤ i < 2n, v ∈ {0, 1}≤n}

b = {[(i, w, c), (i, v)] | 0 ≤ i < 2n, w ∈ {0, 1}n, v � w, c ∈ Γ}

c = {(i, w, c) | 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ} for every c ∈ Γ

init = {(0, w, ai) | w ∈ {0, 1}n, bin(i) = w}

Let us now sketch a hierarchical graph definition D that generates this structure. It is straight-
forward to generate from the initial reference name S the structure shown in Figure 12, where
the s-chain consists of 2n many nodes. Here, A0 and B0 are reference names. Using additional
reference names A1, . . . , An−1, we generate from the A0-labeled reference the binary trees Tj
(1 ≤ j < 2n) as well as the `-labeled edges to the level-nodes. The rule for Ai−1 (1 ≤ i ≤ n) is
shown in Figure 13. The rule for An is shown if Figure 14; it generates the c-labeled (c ∈ Γ)
nodes and the b-labeled back-edges. Every reference name Ai (0 ≤ i ≤ n) has rank n + 1.
The first i+ 1 tentacles (labeled with 0, . . . , i in Figure 13) of an Ai-labeled reference e access
those nodes of the binary tree that were produced by ancestor-references of e. These nodes
form a path starting at the root of the tree. The last n− i tentacles (labeled with i+ 1, . . . , n
in Figure 13) access the level-nodes i + 1, . . . , n of the structure A. From the reference B0 we
generate the tree T0. Recall that T0 is the same tree as Ti for i > 0 except that every node of
the form (0, w, ai) with bin(i) = w belongs to the unary init-relation. The rules for generating
T0 are similar to the rules for the reference name Ai (0 ≤ i ≤ n), we leave the details to the

32

Ai−1

Ai Ai

0

i− 2

i− 1

0

i− 2

i− 1
i

0

i− 2

i− 1
i

s0 s1

...

i

i+ 1 n

. . .

` `

i+ 1

n

i+ 1 n

Figure 13:

An

0 1 n

c1 c2 cm

b
b

b
b

b

b

b

b
b

. . .

. . .

Figure 14:

33

reader.
Let us now describe a fixed MLFP-sentence ϕ such that eval(D) |= ϕ if and only if the

machine T accepts the input word w. We first define a few auxiliary formulas:

γ(x) ≡
∨

a∈Γ

c(x) (x is a node of the form (i, w, c) for 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ)

succ-time(x, y) ≡ γ(x) ∧ γ(y) ∧ ∃x′, y′ : b(x, x′) ∧ b(y, y′) ∧ s(x′, y′)

succ-pos(x, y) ≡ γ(x) ∧ γ(y) ∧

∃x′, x′′, y′, y′′, z : b(x, x′) ∧ b(y, y′) ∧ ¬∃u : (
∨

i=0,1

si(x
′, u) ∨ si(y

′, u)) ∧

s0(z, x
′′) ∧ s1(z, y

′′) ∧

[lfpu,U(u = x′′ ∨ ∃v ∈ U : s1(v, u)](x
′) ∧

[lfpu,U(u = y′′ ∨ ∃v ∈ U : s0(v, u)](y
′)

same-pos(x, y) ≡ γ(x) ∧ γ(y) ∧

∀x′, y′ : b(x, x′) ∧ b(y, y′) ∧ ∃z : (`(x′, z) ∧ `(y′, z)) ⇒
∧

i=0,1

∃x′′ : si(x
′′, x′) ⇔ ∃y′′ : si(y

′′, y′)

The formula succ-time(x, y) expresses that the time associated with the node y is one plus
the time associated with the node x. The formula succ-pos(x, y) expresses that the nodes x
and y belong to the same binary tree (i.e., the point of time is the same) and moreover the
tape position associated with y is one plus the tape position associated with x. Note that
b(x, x′) ∧ b(y, y′) ∧ ¬∃u : ∨i=0,1si(x

′, u) ∨ si(y
′, u) implies that x′ (resp. y′) is the unique

leaf in the tree that can be reached by a b-labeled back-edge from x (resp. y). The rest of
the formula says that the leafs x′ and y′ have a common predecessor z in the tree such that
the unique path from z to x′ (resp. y′) belongs to the relation s0 ◦ s

∗
1 (resp. s1 ◦ s

∗
0). Finally,

same-pos(x, y) expresses that the tape positions associated to x and y are the same, but x and
y may belong to different trees. For this, we have to say that whenever x′ and y′ can be reached
via a b-labeled back-edge from x and y, respectively, and x′ and y′ are one the same level (i.e.,
∃z : `(x′, z) ∧ `(y′, z)), then x′ is an si-successor of its parent node in the tree if and only if y ′

is an si-successor of its parent node (i ∈ {0, 1}). Now let ψ(x,X) be the following formula:

init(x) ∨ ∃x1, x2, x3 ∈ X :
∨

(c1,c2,c3,c)∈∆

c(x) ∧
3

∧

i=1

ci(xi) ∧

3
∧

i=1

succ-time(xi, x) ∧ succ-pos(x1, x2) ∧ succ-pos(x2, x3) ∧ same-pos(x2, x)

Let A = {(qf , a) | a ∈ Σ} ⊆ Γ. Then w is accepted by the Turing-machine T if and only if
eval(D) |= ∃z :

∨

c∈A c(z) ∧ [lfpx,Xψ(x,X)](z).

34

For the combined complexity of MLFP, we can derive an EXP lower bound also in the
c-bounded case:

Theorem 5.6. The following problem is EXP-hard:
INPUT: A 2-bounded hierarchical graph definition D and an MLFP-sentence ϕ.
QUESTION: eval(D) |= ϕ?

Proof. Since EXP equals alternating polynomial space, we can start with a fixed alternating
PSPACE-machine T = (Q,Σ, q0, {qf}, δ) with an EXP-complete membership problem. Here
δ ⊆ Q×Σ×Q×Σ×{L,R} is the transition relation. A tuple (q, a, p, b, L) for instance means
that if the machine T is in state q and reads an a, then it may enter state p, writes b, and moves
left. W.l.o.g. assume that T operates in space n on an input of length n. Let Γ = Σ∪ (Q×Σ).
Let w = a0a1 · · ·an−1 ∈ Σn be an input for the the machine T . A configuration of T is a word
from the language C =

⋃n−1
i=0 Σi(Q×Σ)Σn−1−i ⊆ Γn. From n, it is easy to construct a 2-bounded

hierarchical graph definition D such that eval(D) = (pref(C), (sa)a∈Γ), where pref(C) is the set
of all prefixes of words in the language C and sa = {(c, ca) | c, ca ∈ pref(C)}. The leafs of
eval(D) precisely correspond to the configurations of T of length n. First of all, let us define a
formula ϕ(x1, x2) such that eval(D) |= ϕ(c1, c2) if and only if c1 and c2 are leafs of eval(D) and
the configuration represented by c1 can evolve in one step into the configuration represented
by c2:

ϕ(x1, x2) =
∧

a∈Γ,i=1,2

¬∃y : sa(xi, y) ∧

∃y, y1, y2, z1, z2 :




∨

(q,a,p,b,L)∈δ

∨

c∈Σ

(sc(y, y1) ∧ s(q,a)(y1, z1) ∧ s(p,c)(y, y2) ∧ sb(y2, z2)) ∨

∨

(q,a,p,b,R)∈δ

∨

c∈Σ

(s(q,a)(y, y1) ∧ sc(y1, z1) ∧ sb(y, y2) ∧ s(p,c)(y2, z2))



∧

the path from z1 to x1 is labeled with the same word as the path from z2 to x2

The last part of the formula can be expressed as follows:

n−2
∨

i=0

∃u1, . . . , ui+1, v1, . . . , vi+1 : z1 = u1 ∧ z2 = v1 ∧ x1 = ui+1 ∧ x2 = vi+1 ∧

i
∧

j=1

∨

a∈Σ

sa(uj, uj+1) ∧ sa(vj, vj+1)

The following formula univ(x) expresses that the leaf x represents a configuration, where the

35

current state is a universal state:

univ(x) =

n
∨

i=0

∃x0, . . . , xi :
∨

q∈Q∀,a∈Σ

s(q,a)(x0, x1) ∧
i−1
∧

j=1

∨

a∈Σ

sa(xj, xj+1) ∧ x = xi

Similarly we can construct a formula exist(x) (resp. accept(x)) expressing that x represents
a configuration, where the current state is an existential (resp. accepting) state. Now let us
define the formula ψ(x,X) by:

accept(x) ∨ (univ(x) ∧ ∀y : ϕ(x, y) ⇒ y ∈ X) ∨ (exist(x) ∧ ∃y : ϕ(x, y) ∧ y ∈ X).

Then w is accepted by the Turing-machine T if and only if

eval(D) |= ∃x0 · · · ∃xn : s(q0,a0)(x0, x1) ∧
n−1
∧

i=1

sai
(xi, xi+1) ∧ [lfpx,Xψ(x,X)](xn).

This concludes the proof of the theorem.

6 Open problems

As can be seen from Table 1, two open problems remain for hierarchically defined graphs:

• For the data complexity of the modal µ-calculus on c-bounded SLPs, there is a gap from
P to NP ∩ coNP. We conjecture that the precise complexity is P. In order to prove this
conjecture, it suffices to show that for fixed constants c and d one can verify in polynomial
time whether a given c-game graph G over the set of priorities {0, . . . , d} realizes a given
c-interface. Then, for a given c-bounded SLP S = (Xi = ti)1≤i≤n with all priorities from
{0, . . . , d}, we could compute the set of all type(Xi)-interfaces (over {0, . . . , d}) that are
realized by eval(Xi) bottom-up in polynomial time. For the case that ti is an explicitly
given type(Xi)-game graph, we need the assumption above. Note that the number of
possible c-interfaces over {0, . . . , d} is bounded by a constant (depending on c and d).

• For the data complexity of MLFP over c-bounded SLPs there is a gap from P to PH.

References

[1] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 23(3):273–303, 2001.

[2] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

36

[3] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages 193–242. Elsevier
Science Publishers, 1990.

[4] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1991.

[5] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the -calculus and its
fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001.

[6] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In Proc. FOCS’91, pages 132–142. IEEE Computer Society Press, 1991.

[7] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-
calculus (extended abstract). In Proc. LICS’86, pages 267–278. IEEE Computer Society
Press, 1986.

[8] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3: Beyond Words, pages 125–213. Springer, 1997.

[9] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games. Number
2500 in Lecture Notes in Computer Science. Springer, 2002.

[10] A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in Lecture
Notes in Computer Science. Springer, 1992.

[11] N. Immerman. Relational queries computable in polynomial time. Information and Con-
trol, 68(1–3):86–104, 1986.

[12] M. Jurdziński. Small progress measures for solving parity games. In Proc. STACS 2000,
LNCS 1770, pages 290–301. Springer, 2000.

[13] M. Jurdziński. Deciding the winner in parity games is in UP and co-UP. Information
Processing Letters, 68(3):119–124, 1998.

[14] T. Lengauer. Hierarchical planarity testing algorithms. Journal of the Association for
Computing Machinery, 36(3):474–509, 1989.

[15] T. Lengauer and K. W. Wagner. The correlation between the complexities of the non-
hierarchical and hierarchical versions of graph problems. Journal of Computer and System
Sciences, 44:63–93, 1992.

[16] T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierarchically
defined graph. SIAM Journal on Computing, 17(6):1063–1080, 1988.

[17] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[18] M. Lohrey. Model-checking hierarchical structures. In Proc. LICS 2005, 2005. to appear.

37

[19] M. Lohrey. Model-checking hierarchical graphs. Technical Re-
port 2005/1, University of Stuttgart, Germany, 2005. Available via
ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-2005-1/.

[20] M. V. Marathe, H. B. Hunt III, and S. S. Ravi. The complexity of approximation PSPACE-
complete problems for hierarchical specifications. Nordic Journal of Computing, 1(3):275–
316, 1994.

[21] M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan. Approximation
algorithms for PSPACE-hard hierarchically and periodically specified problems. SIAM
Journal on Computing, 27(5):1237–1261, 1998.

[22] M. V. Marathe, V. Radhakrishnan, H. B. Hunt III, and S. S. Ravi. Hierarchically specified
unit disk graphs. Theoretical Computer Science, 174(1–2):23–65, 1997.

[23] J. Obdržálek. Fast mu-calculus model checking when tree-width is bounded. In CAV’03,
volume 2725 of LNCS, pages 80–92. Springer, 2003.

[24] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[25] M. Y. Vardi. The complexity of relational query languages (extended abstract). In Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC 1982),
pages 137–146. ACM Press, 1982.

[26] M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the Four-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 1995), pages 266–276. ACM Press, 1995.

38

