*

*
*

*

. Universitat Stuttgart

Fakultat Informatik,
Elektrotechnik und
. Informationstechnik

*
L € 4
*

()
s

00’
A
A
*e®e
oo
.
PR

@,
¢
298¢
J

/

S

XX

J

(S
0‘0 N

 J
00
0:;0
AN

0%’
@,

%

od
L

®,

O

%,

XX
’0’0
+00%
*
o
A

.
N
.
-
*%e
.
.
A

XXX XY
I X XXX
: AAS
’S

0O

*
Qa?

* e

*
*
*
*
<
*

*

*
*

*

Fixpoint logics on hierarchical
structures

Stefan Goller and Markus Lohrey

Report Nr. 2005/01

Institut fur Formale
Methoden der Informatik

UniversitatsstraBe 38
D-70569 Stuttgart

July 20, 2005

CR: F.13,F4.1

Abstract

Hierarchical graph definitions allow a modular description of graphs using modules for the
specification of repeated substructures. Beside this modularity, hierarchical graph definitions
also allow to specify graphs of exponential size using polynomial size descriptions. In many
cases, this succinctness increases the computational complexity of decision problems. In this
paper, the model-checking problem for the modal p-calculus and (monadic) least fixpoint logic
on hierarchically defined input graphs is investigated. In order to analyze the modal p-calculus,
parity games on hierarchically defined input graphs are investigated. In most cases precise upper
and lower complexity bounds are derived. A restriction on hierarchical graph definitions that
leads to more efficient model-checking algorithms is presented.

1 Introduction

A hierarchical graph definition specifies a graph via modules, where every module is a graph
that may refer to modules of a smaller hierarchical level. In this way, large structures can
be represented in a modular and succinct way. Hierarchical graph definitions were introduced
in [16] in the context of VLSI design. Formally, hierarchical graph definitions can be seen
as hyperedge replacement graph grammars [8, 10] that generate precisely one graph. Specific
algorithmic problems (e.g. reachability, planarity, circuit-value, 3-colorability) on hierarchically
defined graphs are studied in [14, 15, 16, 20, 21, 22].

In this paper we consider the complexity of the model-checking problem for least fixpoint
logic (LFP) and its fragments monadic least fixpoint logic (MLFP) and the modal p-calculus.
LFP is the extension of classical first-order logic that allows the definition of least fixpoints
of arbitrary arity [17]. MLFP is the fragment of LFP where only monadic fixpoints can be
defined. Finally, the modal p-calculus is the fragment of MLFP that is obtained from classical
modal logic extended by a monadic fixpoint operator. The model-checking problem for some
logic (e.g. LFP or MLFP) asks whether a given sentence from that logic is true in a given
finite structure (e.g. a graph). Usually, the structure is given explicitly, for instance by listing
all tuples in each of the relations of the structure. In this paper, the input structure will be
given in a compressed form via a hierarchical graph definition. For the purpose of proving
upper complexity bounds we will use the related formalism of straight-line programs, see also
[18]. Every hierarchical graph definition can be transformed in polynomial time into a straight-
line program that generates the same structure, see [3, 19]. A graph that is represented by a
hierarchical graph definition or a straight-line program is called a hierarchically defined graph
in the following.

LFP and its fragments MLFP and the modal p-calculus found many applications in data
base theory, finite model theory, and verification. The interested reader is referred to the text
books [4, 17]. It is therefore not surprising that the model-checking problem for these logics
on explicitly given input structures is a very well-studied problem. Let us just mention a
few references: [7, 5, 11, 13, 12, 25, 26]. Concerning hierarchically defined graphs, in [1] the
complexity of the temporal logics LTL and CTL on hierarchical state machines was investigated.
Hierarchical state machines can be seen as a restricted form of hierarchical graph definitions
that are tailored towards the modular specification of large reactive systems. It is well-known
that LTL and CTL can be efficiently translated into the modal p-calculus. In this sense, our
work is a natural extension of [1]. Moreover, our work extends the previous paper [18] of the
second author, where the model-checking problem of first-order logic, monadic second-order
logic, and full second-order logic on hierarchically defined graphs was studied.

Our investigation of model-checking problems for hierarchically defined graphs follows a
methodology introduced by Vardi [25]. For a given logic £ and a class of structures C, Vardi
introduced three different ways of measuring the complexity of the model-checking problem for
L and C: (i) One may consider a fixed sentence ¢ from the logic £ and consider the complexity
of verifying for a given structure A € C whether A = ¢; thus, only the structure belongs to
the input (data complexity or structure complexity). (ii) One may fix a structure A from the

class C and consider the complexity of verifying for a given sentence ¢ from £, whether A = ¢;
thus, only the formula belongs to the input (expression complexity). (iii) Finally, both the
structure and the formula may belong to the input (combined complexity). In the context of
hierarchically defined graphs, expression complexity will not lead to new results. Having a fixed
hierarchically defined graph makes no difference to having a fixed explicitly given graph. Thus,
we only consider data and combined complexity for hierarchically defined graphs.

After introducing the necessary concepts in Section 2 we study parity games on hierarchi-
cally defined graphs in Section 3. Parity games are the main tool for most model-checking
algorithms for the modal p-calculus. Our main result states that the winner of a parity game
on a hierarchically defined graph can be determined in PSPACE. Since the classical reduction
of the model-checking problem for the modal u-calculus to parity games [6, 5] can be extended
to hierarchically defined graphs, see Section 4, we obtain PSPACE-completeness of the model-
checking problem for the modal u-calculus on hierarchically defined graphs. This generalizes a
corresponding result for CTL from [1]. For a restricted class of hierarchically defined graphs we
obtain the better upper bound of NP N coNP for parity games, which leads to the same upper
bound for the data complexity of the modal p-calculus. In Section 5 we study least fixpoint
logic (LFP) and its fragment monadic least fixpoint logic (MLFP) on hierarchically defined
input graphs. MLFP is still more expressive than the modal p-calculus. It turns out that in
most cases the complexity of the model-checking problem on hierarchically defined input graphs
becomes EXP. Our results for model-checking problems are collected in Table 1 at the end of
Section 2.5.

2 Preliminaries

2.1 General notations

Let = be an equivalence relation on a set A. Then, for a € A, [a]l= = {b € A | a = b} denotes
the equivalence class containing a. With [A]= we denote the set of all equivalence classes.
With 7= : A — [A]= we denote the function with 7=(a) = [a]= for all a € A. For a function
f:A— Bletran(f) ={be B|3Ja e A: f(a) =b}. For C C A we define the restriction
fle:C — Bby fle(c) = f(c) for all ¢ € C. For functions f : A — B and g : B — C we define
the composition go f: A — C by (go f)(a) = g(f(a)) for all a € A. For n € N we denote by

.....

2.2 Complexity theory

We assume that the reader has some basic background in complexity theory [24]. In particular,
we assume that the reader is familiar with the classes P (deterministic polynomial time), NP
(nondeterministic polynomial time), coNP (complements of problems in NP), PSPACE (poly-
nomial space), and EXP (deterministic exponential time). Several times we will use alternating
Turing-machines, see [2] for more details. An alternating Turing-machine M is a nondetermin-

istic Turing-machine, where the set of states @) is partitioned into three sets: Q3 (existential
states), Qv (universal states), and F' (accepting states). A configuration C' with current state
q is accepting, if

e gc F,or
e ¢ € (Y5 and there exists a successor configuration of C' that is accepting, or
e ¢ € (v and every successor configuration of C' is accepting.

An input word w is accepted by M if the corresponding initial configuration is accepting. An
alternation on a computation path of M is a transition from a universal state to an existential
state or vice versa.

It is well known that PSPACE (resp. EXP) equals the class of all problems that can be
solved on an alternating Turing-machine in polynomial time (resp. polynomial space). The
levels of the polynomial time hierarchy are defined as follows: Let & > 1. Then X} is the
set of all problems that can be recognized on an alternating Turing-machine within k£ — 1
alternations and polynomial time, where furthermore the initial state is assumed to be in Q5.
The polynomial time hierarchy is PH = (J,-, £}

2.3 Relational structures and straight-line programs

A signature is a finite set R of relational symbols, where each relational symbol € R has an
associated arity n,. A (relational) structure over the signature R is a tuple A = (4, (1),er),
where A is a set (the universe of A) and 7 is a relation of arity n, over the set A, which
interprets the relational symbol r. Usually, we denote the relation r* also with . The size | A
of Ais |A|+ >, .5 [r*| - n,. For an equivalence relation relation = on A we define the quotient
A= = (A)=, (r)2)rer), where v/ = {(m=(ay),...,7=(an,)) | (a1,...,an.) € r*}. For two
relational structures A; and A, over the same signature R and with disjoint universes A; and
Aj, respectively, we define the disjoint union A; @ Ay = (A; U Ay, (r Urh?),cr).

For n > 0, an n-pointed structure is a pair (A, 7), where A is a structure with universe A and
7:{1l,...,n} — Aisinjective. The elements in ran(7) (resp. A\ran(r)) are also called contact
nodes (resp. internal nodes). Let G; = (A;, 7;) be an n;-pointed structure (i € {1,2}) over the
signature R, where A; is the universe of A; and A; N Ay = (). We define the disjoint union
G1 @ Gy as the (ny + ny)-pointed structure (A; @ Ag, 7), where 7: {1,...,ny +ns} — Aj U Ay
with 7(i) = 7 (i) for all 1 < i < ny and 7(i + ny) = () for all 1 < i < ny. Now let
G = (A, T) be an n-pointed structure, where A is the universe of A. For a bijective mapping
f:{1,...,n} = {1,...,n} define rename;(G) = (A, 7o f). If n > 1, then forget(G) = (A, 7 |
{1,...,n —1}). Finally, if n > 2, then glue(G) = (A/=, (r=o7) [{1,...,n — 1}), where = is
the smallest equivalence relation on A which contains the pair (7(n),7(n — 1)). Note that the
combination of rename; and glue (resp. forget) allows to glue (resp. forget) arbitrary contact
nodes.

Straight-line programs offer a succinct representation of large structures. A straight-line
program is a sequence of operations on n-pointed structures. These operations allow the dis-
joint union, the rearrangement, the forgetting, and the gluing of its contact nodes. More
formally, a straight-line program (SLP)S = (X; := t;)1<i<i (over the signature R) is a sequence
of definitions, where the right hand side t; of the assignment is either an n-pointed finite struc-
ture (over the signature R) for some n or an expression of the form X; @& X, rename(X;),
forget(X;) or glue(X;) with j,k < i where 1 <4 <land f:{l,...,n} — {1,...,n} is a per-
mutation. Here, X; are formal variables. For every variable X; the type type(X;) is inductively
defined as follows: (i) if ¢; is an n-pointed structure, then type(X;) = n, (ii) if t;, = X; & Xy,
then type(X;) = type(X;) + type(Xy), (iii) if ¢; = rename;(X;), then type(X;) = type(X;)
(and we require that f is a permutation on {1,...,type(X;)}), and (iv) if t; = op(Xj) for
op € {forget,glue}, then type(X;) = type(X;) — 1. The type(X;)-pointed finite structure
eval(X;) is inductively defined by: (i) if ¢; is an n-pointed structure G, then eval(X;) = G,
(ii) if t;, = X; & Xj, then eval(X;) = eval(X;) & eval(X}), and (iii) if ¢, = op(Xj) for
op € {renamey, forget, glue}, then eval(X;) = op(eval(X;)). We define eval(S) = eval(X;).
The SLP S is called c-bounded (c € N) if type(X;) < ¢ for all 1 < i <. Finally, the size |S| is
defined as [plus the size of all explicit n-pointed structures that appear in a right-hand side ;.

In [18] we used hierarchical graph definitions for the specification of large structures. Every
hierarchical graph definition can be transformed in polynomial time into an SLP that generates
the same structure, see Section 5.2.

2.4 Transition systems

Formulas of the modal p-calculus are interpreted on special relational structures that are called
transition systems. Let P be a finite set of atomic propositions. A transition system over
P is a tuple T' = (Q, R, \), where (i) @ is a finite set of states, (ii) R C @ x @, and (iii)
A :Q — 2%. Thus, a state may be labeled with several atomic propositions. An initialized
transition system over P is a pair (T ¢init), where T = (Q, R, \) is a transition system over
P and gy € Q is the start state. Clearly, T' can be identified with the relational structure
Ar = (Q,R,({qg € Q | p € MNq)})pep). This allows us to use SLPs in order to construct
large transition systems. Note that if two states ¢; and ¢o are glued, where the set P, C P is
associated with state ¢;, then P, U P, is associated with the resulting state.

2.5 Least fixpoint logic

Let us fix a signature R for the further discussion. First-order (FO) formulas over the signature
R are built from atomic formulas of the form x = y and r(zy,...,z,,) (where r € R and
Z,Y, X1, ..., Ty, are first-order variables ranging over elements of the universe) using boolean
connectives and (first-order) quantifications over elements of the universe. Least fizpoint logic
(LFP) extends FO by the definition of least fixpoints. For this, let us take a countably infinite
set of fizpoint variables. Each fixpoint variable R has an associated arity n and ranges over n-ary
relations over the universe. Fixpoint variables will be denoted by capital letters. Syntactically,

4

LFP extends FO by the following formula building rule: Let o(z, R, P, %) be a formula of LFP.
Here, z and ¢ are tuples of first-order variables with Z repetition-free, P is a tuple of fixpoint
variables, the arity of the fixpoint variable R is |z| (the length of the tuple z), and R only
occurs positively in ¢ (i.e., within an even number of negations). Then also lfp; 5 ¢(, R, P,)
is a formula of LFP. The semantics of the Ifp-operator is the following: Let b € Al¥l and let S
be a tuple of relations that is interpreting the tuple P of fixpoint variables. Since R only occurs
positively in ¢(z, R, P, §), the function F, that maps T C Al#l to {a € A®l | A |= p(a, T, S,b)}
is monotonic. Hence, by the Knaster-Tarski Fixpointtheorem, the smallest fixpoint fix(F,,)
exists. Now for a € Al we have A |= [lfp, ; ©(Z, R, S,b)|(a) if and only if @ € fix(F,). The
greatest fixpoint operator can be defined as gfp, » ©(7, R, P,j) = —lfp; g —0(Z, - R/R, P.y),
its semantics can be defined in the same way as the lfp-operator, except that we refer to the
greatest fixpoint of the function F,.

Monadic least fizpoint logic (MLFEP) is the fragment of LFP that only contains unary (i.e.,
monadic) fixpoint variables. The modal u-calculus can be defined as a fragment of MLFP that
is defined as follows. Formulas of the modal p-calculus are interpreted on initialized transition
systems as defined in Section 2.4. Let P be a finite set of atomic propositions. The set of
formulas F,, = F,(P) over P of the modal p-calculus is inductively defined as follows:

e p,peF,foralpeP

e X ¢ F, for every unary fixpoint variable X

if o, € F,, then p A, oV e F,
o if ¢ € F,, then Oy, Op € F,
e if X is a unary fixpoint variable and ¢ € F,, then uX.p,vX.p € F,.

We define the semantics of a formula ¢ € F, by translating it to an MLFP-formula |¢|(x)
over the signature { R} U P, where R has rank 2, every p € P has rank 1, and x is a first-order
variable. The translation is done inductively:

() = (=)p(x)
() = X(z)

() = |el(x)op [¥|(z) forop € {A,V}
10¢f(z) = Vy:R(z,y) = lel(y)

() = Fy: Rz, y) Alel(y)

() = [p, x|el(@)](x)

() = [gfp, xlel(z))(2)

For an initialized transition system (7', ginit) over P with T' = (@, R, A) and a formula ¢ € F,,
we write (T, ginit) E ¢ if Ar E | 0] (Ginit)-

explicit[5, 11, 25] | c-bounded SLP unrestricted
SLP
data P P..-NP NcoNP

p~calc.

combined | P---NP NcoNP PSPACE
MLFP data p P.--PH

combined EXP
LFP data P EXP

combined

Table 1: Data and combined complexity for fixpoint logics

Example 2.1. Let (T, gimit) be an initialized transition system. Then (T, gmit) = vX.(@ A OX)
if and only if there exists an infinite path w in T which begins at state gy s.t. (T,q) = ¢ is
true for every state q along the path m.

The model checking problem for a logic £ asks whether for a structure A and a sentence
¢ € L we have A = ¢. Following Vardi [25] we distinguish between the following three measures
of complexity:

e Data Complexity: Input is the structure A. The formula ¢ is fixed.
o FExpression Complexity: The structure A is fixed and the input is the formula .
o Combined Complexity: Both the structure A and the formula ¢ are the input.

In this paper, we will only consider data and combined complexity for structures that are
represented by SLPs. Considering expression complexity in this context does not lead to new
insights: Having a fixed SLP is the same as having a fixed graph.

Table 1 collects the known results as well as our new results concerning the (data and
combined) complexity of the model-checking problems for the logics LFP, MLFP, and the
modal p-calculus. Only for the data complexity of MLFP and the modal p-calculus on graphs
defined by c-bounded SLPs (for some fixed ¢ € N) we do not obtain matching lower and upper
bounds.

2.6 Parity games

In this section we introduce parity games and state the close relationship between parity games
and the modal p-calculus.

A parity game between two players, called Adam and Eve, which is played on a particular
kind of relational structures, called game graphs. Let C' = {0,...,k} (k € N) be a finite set of
priorities. A game graph G over the set of priorities C' is a tuple G = (V, E, p) such that V is

6

Figure 1: The game graph G from Example 2.2

a finite set of nodes, E C V x C' x V is the set of labeled edges, and p : V' — {Eve, Adam}
assigns to every node v a player p(v). The size of a game graph is defined by |G| = |V| + |E|.
We define Eve = Adam and Adam = Eve. Let V, = p~'(0) denote the set of o-nodes for a
given player o € {Eve, Adam}. The set of successor nodes of a given node v € V is vE = {u €
V| 3ceC:(v,e,u) € E}. Note that we diverge from common conventions as in [5, 9, 23]
since priorities are assigned to edges instead to nodes. This is no restriction when considering
parity games. We call a sequence m = vy, ¢o, v1, ¢y, ... € V(CV)¥ an infinite path in G if for all
i > 0 we have: (v;,¢;,vip1) € E. A sequence m = v, Co, U1, ..., Cn_1,U, € V(CV)* is called a
finite path in G if for all 0 < ¢ < n—1 we have (v;, ¢;,v;41) € E. A finite path 7 is called empty
if 1 = v for some v € V. The set of priorities occurring in 7 is denoted by Occ(w). For an
infinite path m we denote with Inf(7) C Occ(w) the set of those priorities that occur infinitely
many times in the path 7. We call a path maxzimal if and only if it is infinite or it ends in a
dead end, i.e., a node v with vE = (.

Example 2.2. Figure 1 shows a game graph G = (V| E, p) over the priorities C = {0,1,...,7}.
Here, & denotes an Eve-node and m denotes an Adam-node. An infinite path is for example
v1, 3,09, 2, (v4,0,06,2)% € V(CV)¥. The finite path v;,7,v1,3,v9,3,v3 € V(CV)* ends in vs
which is the only dead end of G.

Clearly, the game graph G = (V, E,p) can be identified with the relational structure
(V. ({(u,v) | (u,c,v) € E})eecs Vive, Vadam). This allows us to generate large game graphs
using SLPs. Here we have to be careful with the glue-operation. If (G, 7) is an n-pointed
relational structure, where G is the game graph G = (V, E, p) — we call such a structure an
n-game graph — then glue(G, 1) is only defined if n > 2 and p(7(n — 1)) = p(7(n)), i.e., the
two nodes that are glued belong to the same player. Thus, glue is only a partial operation on
n-game graphs.

Example 2.3. Figure 2 shows a 3-game graph G and the resulting 2-game-graph glue(G).
Contact nodet (i) is labeled with i.

Figure 2: A 3-game graph G and the 2-game graph glue(G)

In the following let G = (V, E, p) be a game graph over the priorities C' = {0,...,k} (k €
N). A play is a maximal path in G. Let m = vg,cp,v1,... be an infinite play in G and
o € {Eve, Adam} a player. We say that player Eve (resp. Adam) wins the infinite play 7 if and
only if max(Inf(7)) =0 mod 2 (resp. max(Inf(7)) =1 mod 2). Let m = vy, co, V1, .-, Cn1,Un
be a finite play. We say that player ¢ wins the finite play 7 if and only if p(v,) = 7, i.e., the
play ends in a dead end v, and v, belongs to player &.

It is an important question whether a given player ¢ € {Eve, Adam} has the possibility
to force the game to a play which she/he can win, i.e., if she/he has a winning-strategy. For
parity games, so called memoryless strategies suffice. Let 0 € {Eve, Adam} be a player. Then
amap .7, : Vo \ {v | vE = 0} — V such that .%,(v) € vE for all v € V, \ {v | vE = 0} is
called a memoryless strategy for player o. We say that a finite play © = wvg, co, v1,...Ch_1,Un
is .7, -confirm w.r.t. a memoryless strategy .7, if and only if for all 0 < i < n — 1 we have
v; € V, = S,(v;) = vi41. Similarly an infinite play © = wg, ¢, vy, ... is called .7, -confirm
w.r.t. 7, if and only if for all ¢ > 0 we have v; € V, = .7, (v;) = v;11. For v € V we call
the memoryless strategy .7, a memoryless winning strategy for player o from the node v if and
only if player o wins every .#,-confirm play which begins in v. Note that the question whether
the memoryless strategy .7, for player ¢ is a winning strategy can be answered in deterministic
polynomial time by searching for a play which player ¢ wins in the subgraph of G which is
restricted by .7.

A triple (G,v,0), where GG is a game graph, v is a node of G, and o € {Eve, Adam} is a
player is called an instance of the parity game problem. We call an instance (G, v, o) positive if
there exists a memoryless winning strategy for player o from v. The set of all positive instances
of the parity game problem is denoted by PARITY. The determinacy theorem for parity games
[5] states that (G,v,0) € PARITY if and only if (G,v,5) ¢ PARITY. It implies that PARITY

1 v2 0 U3
g ——mu ¢
1
0 1 0
vs ll W4
2
0
9 1
v7’/—\. > ‘U
5

\—/UG
1

Figure 3: The game graph G from Example 2.4

belongs to NP M coNP.

Example 2.4. Let the game graph G = (V, E, p) over the priorities {0,1,2} be given in Fig-
ure 3. Apparently, player Eve wins the node set Wgye = {vs, vg, v7}, whereas player Adam wins
Wadam = {v1,v9,v3,v4,08}. The fat drawn edges show a winning strategy for player Eve for
the nodes in Wgye. If player Adam always controls the game to node vy, player Eve either has
to go to vy or to vg. The infinitely often occurring priority is 1, hence player Adam wins on
the set Wagam- Player Eve can force the game into the cycle (vg, 1,v7,2)* for all nodes from
{vs, v6,v7}. Therefore she wins the set Wrye.

Theorem 2.5 ([6, 5]). Let P be a set of atomic propositions, (T, qini) an initialized transition
system over P, and ¢ € F,(P). Then there exists a game graph Gr., and a node v of Gp,, s.1.
(Gr,p,v,Eve) € PARITY if and only if (T, ginit) = . Furthermore, the reduction can be done
in polynomial time.

We will extend Theorem 2.5 in Section 4 to the case of hierarchically defined graphs.

3 Parity games on SLP-defined graphs

In this section we will prove a PSPACE upper bound for parity games on game graphs that
are given via SLPs. Our construction is inspired by [23], where parity games and the modal
p-calculus on graphs of bounded tree width are examined. Thereby, first a strategy for player
Eve is fixed. Then optimal reactions of player Adam are calculated efficiently on the tree
decomposition in a bottom-up manner. For our PSPACE-algorithm we first have to introduce
several concepts.

A strategy reduct
of G wr.t {vy}

3
¢

/ " 3
1‘ .

2
V1 V3 ‘

V4
1 0 v
4
.
0
3
[|
v6

Figure 4: A strategy reduct of a 3-game graph G w.r.t. {vs}

5

3.1 The strategy reduct of an n-game graph

Let G = (H, 7) be an n-game graph with H = (V, E, p) and let W C p~!(Eve)Nran(7) be a set of
contact nodes that belong to Eve. Then we call an n-game graph G’ a strategy reduct of G w.r.t.
W if and only if G’ can be obtained from G by (i) removing all outgoing edges for all w € W,
and (ii) keeping exactly one outgoing edge for all w € p~*(Eve) \ (WU {v € V | vE = 0}).
Thus, a strategy reduct of GG is the remainder of G by restricting G to a given strategy for Eve
and making certain contact nodes that belong Eve to dead ends. Note that a strategy reduct
is always defined w.r.t. a subset W of contact nodes that belong to Eve and is not unique in
general. The reason for making an Eve-node u to a dead end in G is the fact that u is a contact
node which will be glued with another contact node v’ from another n’-game graph G’ in an
SLP, and for u’ an outgoing edge (as a part of the strategy for Eve on G’) has already been
guessed.

Example 3.1. In Figure 4 a 3-game graph G together with a strategy reduct w.r.t. {v4} is
shown.

3.2 The evaluation function reward

For some guessed strategy reduct G’ of a potentially exponentially large n-game graph G =
(H, 7) we will only store a polynomial amount of relevant information in a so called n-interface.
More precisely, for each pair of contact nodes 7(i) and 7(j) we will only store the maximal
priority along an optimal path for player Adam from 7(i) to 7(j). In order to define this
formally, we introduce the evaluation function reward, see also [23]. Let C' = {0,...,k} (k € N)

10

be a set of priorities. Then we define reward : 2¢ \ {#}} — C as follows, where B C C, B # 0):

max(BN{2n+1|neN}) if BNn{2n+1|neN} #£0

min(B) else

reward(B) = {

Intuitively, reward(B) is the best priority in B for Adam: if there is an odd priority in B, then
the largest odd priority is the best for Adam. But if there are only even priorities in B, then
the smallest priority in B causes the smallest harm for Adam.

Let G be an (n-)game graph over the priorities C' = {0,...,k} (k € N) and T #) a set of
finite paths in G. Then we define

reward(IT) = reward({ max(Occ(7)) | = € I1}).

The intuition behind this definition is the following: If G’ is a strategy reduct of an n-game
graph G, then it is only player Adam who can freely choose the next outgoing edge in G’.
Hence, if IT is the set of all paths in G’ between two contact nodes 7(i) and 7(j), then, if Adam
is smart, he will choose a path 7 € II with max(Occ(7)) = reward(Il) when going from 7(7)
to 7(j). Note that max(Occ(7)) is the relevant priority on the path 7. We have to take the
maximum of Occ(7) since this priority is the relevant one to be considered. Hence, we can
replace the set of paths II by a single edge from 7(i) to 7(j) with priority reward(II). For
technical reasons we will only put paths into II that do not visit any contact nodes except its
start and end node. We call such paths 77-internal paths and introduce them next.

3.3 (7)7-internal paths

Let G = (H,7) be an n-game graph over the priorities C' = {0,...,k} (k € N). For vy, v, €
ran(7) we call a non-empty finite path = = vg, co, v1, ..., ¢p_1, v, a TT-internal path from vy to
vy, if for all 1 <i < n — 1 we have v; € ran(7); note that vy = v,, is allowed. We will be also
interested in maximal paths that start in a contact node, but that never visit a contact node
again. We call such paths 7-internal paths. More precisely, we call a finite non-empty maximal
path ™ = vy, co,v1 ..., Cp_1, vy & finite T-internal path from vy to v, in G if vy € ran(7) and for
all 1 <i < n we have v; € ran(7). Note that v, must be a dead end, since 7 is assumed to be
maximal. We call an infinite path m = vy, ¢, vy, ... an infinite T-internal path if vy € ran(r)
and for all ¢ > 0 we have v; ¢ ran(7). Later, we will be only interested in 7-internal paths
which can be won by player Adam.

Let G = (H, 7) be an n-game graph over the priorities C' = {0, ..., k} (k € N). Then II7 ;(G)
denotes the set of all 77-internal paths from 7(i) to 7(j) for all 1 <4, j < n in G. Note that an
arbitrary path between two contact nodes can be split up into consecutive 77-internal paths.
Similarly, an arbitrary maximal path that begins in a contact node starts with a sequence of
T7-internal paths possibly followed by a 7-internal path. Intuitively, this is the reason, why we
do not lose any information by only considering (7)7-internal paths.

Example 3.2. Figure 5 shows a fat drawn T1-internal path in a 3-game graph G from contact
node 7(2) to contact node 7(3).

11

Figure 5: A 77-internal path in a 3-game graph G

3.4 The reduce operation

Assume that G’ is a strategy reduct of an n-game graph G. Then it is only player Adam
who can choose any path in G’. Of course, there is no reason for player Adam to move from
contact node 7(7) to contact node 7(j) along a path which is not optimal for him. Hence we can
replace the set II7 ;(G) of all 77-internal paths from 7(i) to 7(j) by a single edge with priority
reward (117 ;(G)). The operation reduce is doing this for every pair of contact nodes. We define
the reduce-operation on arbitrary n-game graphs, but later we will only apply it to strategy
reducts.

Let G = (H,7) be an n-game graph over the priorities C' = {0,...,k} (k € N), where
H = (V,E,p). Then reduce(G) is the game graph ({1,...,n}, F, o), Whe re o(i) = p(7(7)) for
all 1 <i<nand (i,p,j) € F if and only if TI7 ;(G) # 0 and reward(II7;(G)) = p. We identify
reduce(G) with the n-game graph (({1, .. n} F 0),idg1,.ny). Note that if G is not a strategy
reduct, then player Adam cannot, in general force an optimal path with maximal priority
reward(Il7 ;(G)) from 7(i) to 7(j). But if G is a strategy reduct, then he can do so.

Example 3.3. In Figure 6 a 3-game graph G together with reduce(G) is shown.

In Section 3.6 we will need the following two lemmas:

12

U1

Figure 6: Comparison between G and reduce(G)

Lemma 3.4. Let n € N (n > 1), op € {forget, glue}, and G = (H,7) an (n + 1)-game graph
s.t. op(QG) exists. Then, we have reduce(op(G)) = reduce(op(reduce(G))).

Proof. We have to show that

reward(H;j(op(G))) = reward(H;j(op(reduce(G)))) (1)
for all 1 <i,j < n. First note that II7;(op(G)) = 0 if and only if II7 ;(op(reduce(G))) = 0, in
which case both sides of (1) are undefined. Moreover, for every path = € II7 ;(op(reduce(G)))
there exists a path 7’ € II7 ;(op(G)) with max(Occ(m)) = max(Occ(n’)), because every edge
(7, ¢,j') in reduce(G) corresponds to an optimal 77-internal path for player Adam from 7(i’)
to 7(j') in G with priority ¢. On the other hand, for every optimal path 7 € II7 ;(op(G)) for
player Adam we find a path 7" € I17 ;(op(reduce(G))) with max(Occ(7)) = max(Occ(n’)). This

implies (1). O

Lemma 3.5. Let G = (H,T) be an n-game graph over the priorities C. Then reduce(G) can
be computed in deterministic polynomial time (w.r.t. |G| and |C|).

Proof. For a game graph G’ and two nodes v and v of G’ let I1,, ,(G") denote the set of all paths in
G’ from u to v. Let G, ; be the game subgraph of G which is induced by (V \ran(7))U{7(¢), 7(j)}
for all 1 <4i,7 <n (where V is the node set of G). Then we have

reward(Il7 ;(G)) = reward(IL ;) -(;)(Gi)

for all 1 <, <n. The algorithm in Table 2 computes reward (Il -(;)(Gi;)) by successively
removing edges from G ;.

13

procedure reward(G; ;, (i), 7(j)) return p € C is
Pmin := max(C)
for ¢ = max(C') downto 0 do
if 3Im € l;4),-(j)(Giy) : max(Occ(m)) = ¢ then
if c is odd then return c endif
if cis even then
remove all edges (u, c,v) from G, ;
Pmin ‘= €
endif
endif
endfor

return pni,

end reward

Table 2: Algorithm for computing reduce(G)

The first if-condition can be checked for instance by Dijkstra’s algorithm deterministically
in polynomial time. The number of loops is bounded by |C|. We execute the algorithm for all
pairs 1 < 14,7 < n and get a polynomial time bound. O

3.5 Interfaces and realizability

An n-interface stores all the relevant information for a given strategy reduct. For a given
variable X; of an SLP, the type(X;)-game graph eval(X;) may have exponential size, and the
same is true for some strategy reduct G’ of eval(X;). But any n-interface for G’ can be stored
in polynomial space, and this will be crucial in our overall PSPACE-algorithm. The notion of
an interface is inspired by the notion of a border from [23].

An n-interface S (n € N) over the priorities C' = {0,...,k} (k € N) is a 5-tuple § =
{1,...,n},F,0, 1,U) st. (i) ({1,...,n}, F,p) is a game graph over the priorities C', which
we denote by graph(S), (ii) I C {1,...,n} is a subset of the set of nodes {1,...,n}, and (iii)
U C o !(Eve) is a subset of the nodes which belong to player Eve. We identify graph(S) with
the n-game graph (({1,...,n}, F,0),idf,. »}), which formally also contains the identity over
{1,...,n} as a component.

Formally an n-interface is nothing more than a game graph with node set {1,...,n} and
two subsets of {1,...,n}. We now define what it means that an n-interface is realized by an
n-game graph.

Definition 3.6. We say that an n-interface S = ({1,...,n}, F,0,1,U) isrealized by an n-game
graph G = (H, T) if there exists a strategy reduct G' = (H',7) of G w.r.t. 7(U) s.t.

14

Strategy reduct G’ of G

G w.r.t. {7(2)} S
1 1
Wv4 W4
3 4 4

4

2 2
4 g 9 T~ v a4 g 9 T~ » 4 N
R I S T e T S

1 3 0 3 3
v2 v2
¢ ¢
2 2 2¢U

Figure 7: The 3-game graph G realizes the 3-interface S

(1) graph(S) = reduce(G’), and

(2) i € I if and only if there exists a T-internal path © in G' which begins in 7(i) and which
player Adam wins (recall that m is necessarily non-empty).

We also say that G' is a witness that S is realized by G.

So the notion of realization intuitively expresses the fact that an n-interface correctly sum-
marizes reactions of player Adam in a remainder on an n-game graph w.r.t to a restricted
strategy for Eve.

Remark 3.7. Note that Condition (2) in Definition 3.6 can be checked in polynomial time for
a given strategy reduct G' and 1 <1i < n.

Example 3.8. In Figure 7 a 3-game graph G together with a strategy reduct G' w.r.t. {1(2)}
shown. The interface S = ({1,2,3}, E,p,I,U) with I = {1} and U = {2} on the right is
realized by G, and G’ is a witness for this. We have 1 € I, because the infinite T-internal path
v1,2, (vg, 1) starts at node vy = 7(1) in G' and Adam wins this path. The loop with priority 4
at node 1 in S exists due to the TT-internal path vy, 2, vy, 4, vs5,2,v1 in G'.

Lemma 3.9. Let S = ({1,...,n}, E,p,I,U) be an n-interface, let G an n-game graph, and let
G’ be a strategy reduct of G w.r.t. T(U). Then the question whether G’ is a witness that S is
realized by G is in P.

Proof. We compute reduce(G’) deterministically in polynomial time (Lemma 3.5) and check
the two conditions of Definition 3.6 in polynomial time, see Remark 3.7. U

15

Lemma 3.10. Let S = ({1,...,n}, E, p,1,U) be an n-interface and let G be an n-game graph.
Then the question whether S is realized by G is in NP.

Proof. We guess a strategy reduct G’ of G w.r.t. 7(U) and apply Lemma 3.9. O

3.6 Operations on interfaces

Our PSPACE algorithm will only manipulate n-interfaces instead of whole n-game graphs. In
order to do this, we have extend the operations @, renamey, forget, and glue on interfaces. The
crucial correctness property is expressed by Definition 3.11, which is formulated for arbitrary
operations. In the following we restrict to n-game graphs G = (H, 7) such that every contact
node 7(7) has at least one outgoing edge. This can be ensured by adding for a contact node
7(i1) without outgoing edges an outgoing edge to a new internal node v, which is a dead end
and which belongs to the same player as 7(7). The owner of node 7(i) will not choose this edge,
because she/he will immediately loose at node v. Hence the new edge has no influence on the
winner of a parity game.

Definition 3.11. Let op be a partial operation, mapping a k-tuple (G1, ..., Gy), where G; is an
n;-game graph, to an n-game graph op(Gi,...,Gy). We say that op has a faithful polynomial
implementation (briefly FPI) on interfaces, if there exists a partial operation op®, mapping a
a k-tuple (Si,...,Sk), where S; is an n;-interface, to an n-interface op(Si,...,Sk) s.t. the
following holds:

e op® is computable in polynomial time.

o Assume that G = op(Gh,...,Gy), where G; is an n;-game graph and G is an n-game
graph, and let S be an n-interface. Then G realizes S if and only if there exist n;-
interfaces S; (1 <1 <k)s.t. S=op(Si,...,S) and G; realizes S;.

Lemma 3.12. The operations @, renamey, forget, and glue have FPIs on interfaces.

Proof. For an ni-interface S; = (graph(S), [1,U;) and an ne-interface Sy = (graph(.Ssy), I, Us)
we set S7@*° Sy = (graph(Sy) @ graph(Ss), 1 U (ny+12), Uy U (ny +Us)), where nq+ Iy = {ny+1i |
i € I} and similarly for n; + Us.

For an n-interface S = (graph(S),[,U) and a permutation f : {1,...,n} — {1,...,n} let
rename}(S) = (renamey(graph(sS)), f(1), f(U)).

For an (n+1)-interface S = ({1,...,n+1}, E, p, I, U) we define forget®(S) only if n+1 ¢ U.
Then forget®(S) = ({1,...,n}, E', o/, I',U"), where:
(a) graph(forget®(S)) = reduce(forget(graph(.S)))
b) = {[\{n—i—l}u{i |1<i<nAn+1€iE} ifn+l1el

I else

16

(©) U'=U

The intuition behind this definition is the following. Assume that the (n + 1)-interface S =
({1,....,n+ 1}, E, p,I,U) is realized by an (n + 1)-game graph G = (H,7) and let G’ be a
witness for this. We want to define forget®(S) = ({1,...,n}, E',p/,I',U’) in such a way that
forget®(S) is realized by forget(G) and moreover forget(G’) is a witness for this. Since n + 1
is no longer a contact node in forget(G), there may be more 77-internal paths in forget(G’)
between to contact nodes 7(i) and 7(j). In order to determine the maximal priority of an
optimal path (for player Adam) from 7(i) to 7(j) in forget(G’), it suffices to look at the n-game
graph forget(graph(S)), i.e., to calculate reduce(forget(graph(S))). This graph will be therefore
graph(forget®(S)). Second, if in the strategy reduct G’ there exists a 77-internal path from the
contact node ¢ to the contact node n + 1 (i.e., in the interface S there is an edge from i to
n+1)and n+1 € I (i.e., there exists a 7-internal path starting from 7(n+ 1) in G’ and which
player Adam wins), then there exists a 7-internal path starting from 7(i) in forget(G’) and
which player Adam wins. Therefore we put ¢ into I’. Finally, we require n + 1 ¢ U, because
after applying the forget-operation, the former contact node 7(n + 1) is no longer accessible, in
particular it cannot be glued with another node and will not get any further outgoing edges.
But if 7(n + 1) belongs to Eve, for a strategy of Eve we have to guess precisely one outgoing
edge for 7(n+1); recall that we assume that every contact node, and hence also 7(n+ 1), has at
least one outgoing edge in G. If we would have n + 1 € U, then we would remove all outgoing
edges for 7(n+1), and this would not change anymore, since 7(n+ 1) remains inaccessible after
the glue-operation.

Finally, for an (n + 1)-interface (n > 1) S = ({1,...,n+ 1}, E, p, I,U) we define glue®(S)
only if

(1) p(n+ 1) = p(n) (thus, node n and n + 1 belong to the same player and can actually be
glued) and

(2) if p(n+1)=p(n)=EvethenneUorn+1eU.
Then we define the n-interface glue®(S) = ({1,...,n}, £, p/, I’,U’) as follows:
(a) graph(glue®(S)) = reduce(glue(graph(sS))).

) [,:{[\{n—i-l}u{n} ifnelorntlel

I else
() U = U\{n+1} ifn,n+1€U.
U\{n,n+1} else

The intuition behind this definition is the following. Assume that the (n + 1)-interface S =
({1,...,n+1}, E, p,I,U) is realized by an (n+1)-game graph G = (H, 7) and let G’ be a witness
for this. We want to define glue®(S) = ({1,...,n}, E', o/, I',U’) in such a way that glue®(S) is

17

strategy reduct w.r.t. Uy o reduce
2 2

graph(Ss)
glue
glue glue ‘
reduce
é1 strategy reduct w.r.t. U, _ C‘;,l reduce —grapil(Sl)

Figure 8: The situation in the proof of Lemma 3.12

realized by glue(G) and moreover glue(G’) is a witness for this. Note that by assumption (1)
and (2), glue(G’) is in fact a strategy reduct of glue(G). In particular, (2) is necessary for this,
since by our assumption both 7(n) and 7(n+ 1) have at least one outgoing edge in G and hence
would have both precisely one outgoing edge in G’ if we would have n ¢ U and n+ 1 &€ U.
The assignment graph(glue®(S)) = reduce(glue(graph(.S))) in (a) can be explained as for the
forget-operation. Note that in glue(graph(S)), there may be more than one edge between two
contact nodes. By applying reduce to glue(graph(S)) we select the optimal edge for player
Adam between two contact nodes. Finally, if n € I or n+ 1 € I, i.e., there exists a 7-internal
path in G’ that starts in 7(n) or in 7(n + 1) and which player Adam wins, then we can be sure
that there exists a 7-internal path in glue(G’) that starts in 7(n) and which player Adam wins.
Here it is important that 7-internal paths are always non-empty. Hence, we put n into the set
I

This concludes the definition of the operations on interfaces. Each of these operations can
be computed in polynomial time; for forget® and glue® we need Lemma 3.4. We present the
proof for the second condition of Definition 3.11 only for the glue-operation.

Let Gy = (Hi,m1) be an n-game graph and Gy = (Ha2,7) an (n + 1)-game graph with
op(Gs) = G;. Let S; be an n-interface. We have to show that the following two properties are
equivalent:

(1) S is realized by Gj.
(2) There exists an (n + 1)-interface Sy, which is realized by G5 and such that op*(Sy) = 5.

Figure 8 makes the situation clearer.

(1) = (2): Assume that G realizes S1 = ({1,...,n}, E1, p1, I1,Up) and let G be a witness
for this. Since we have G; = glue(Gs), there exists a strategy reduct G, of Gy w.r.t. a set Us
satisfying

Uy \{n+1 ifn,n+1¢€U.
Ul:{)\ {n+1}))

Uy \ {n,n+1} else.

18

Furthermore, we have glue(G%) = G'. We put i into I, if and only if there exists a 7-internal
path starting from 75(i) in G which player Adam wins. We set Sy = (reduce(GY), I, Us).
Then, GY, is a witness that Gy realizes Sp. In order to proof glue®(Ss) = 51, we show the three
conditions (a),(b), and (c) from the definition of the glue®-operation. Condition (a) follows
from:

reduce(glue(graph(Ss))) = reduce(glue(reduce(G)))
Frzt M peduce(glue(GY))
= reduce(G))
= graph(5))

In order to show condition (b), we distinguish the following two cases:

e IbN{n,n+1} = 0: Then we have I; = I, due to Definition 3.6. Hence, condition (b) is
satisfied.

e hbnN{n,n+ 1} # (: Then we have n € I; because of G| = glue(GY%). Thus, i € I; if and
only if i € I\ {n+ 1} U {n}. Hence, condition (b) is satisfied.

Condition (c) is satisfied by equation (2) above.

(2) = (1): Assume that Sy = ({1,...,n + 1}, Es, po, [5,Us) is an (n + 1)-interface, which is
realized by G and such that glue®(Sy) = S;. Let GY be a witness for this. We set G| = glue(GY).
We have to verify condition (1) and (2) of Definition 3.6 for Sy, G} and G;. Condition (1), i.e.
graph(S;) = reduce(G}), follows from Lemma 3.4 analogously to the first part of the proof. For
condition (2) of Definition 3.6, we again distinguish between the following two cases:

e LN{n,n+1} = 0: Then we have I; = I, according to the definition of the glue*-operation
and consequently:

iel, — i€l
<= 3 7-internal path in G starting in 75(i) and which Adam wins
<= 3 7-internal path in G| = glue(G,) starting in 71 (i) and which Adam wins

e Ihbn{n,n+1} # (: Then we have I = I, \ {n + 1} U {n} according to the definition of
the glue®-operation and consequently:

ielhb <— ieh\{n+1}U{n}
<= 3 7-internal path in G} starting in 72(i) (i # n + 1) and which Adam
wins or ¢ = n

<= 3 7-internal path in G| = glue(G5) starting in 7 (i) and which Adam wins
U

19

3.7 Upper bounds for parity games on SLP-defined graphs

We are now ready to prove an upper bound of PSPACE for the parity game problem on general
SLPs. For c-bounded SLPs we will obtain the better upper bound of NP N coNP. W.l.o.g.
we will restrict to SLPs such that for every right hand side, which is an n-game graph G,
every contact node of GG has at least one outgoing edge, see the remark at the beginning of
Section 3.6. Note that this property transfers to every game graph eval(X) for a variable X of
the underlying SLP.

Theorem 3.13. The following problem is in PSPACE:
INPUT: An SLP S = (X; :=t;)1<i< generating a 1-game graph eval(S) = (G, 7).
QUESTION: (G, (1), Eve) € PARITY ?

Proof. Without loss of generality we can assume that node 7(1) belongs to Eve and that 7(1) has
no incoming edges. Otherwise we construct G’ by adding a new node v to G whose only edge is
an outgoing one leading to 7(1) and give v to Eve. Then we have (G’, v, Eve) € PARITY if and
only if (G, 7(1),Eve) € PARITY. Due to this convention, the following holds: (G, 7(1), Eve) €
PARITY if and only if eval(G) realizes the interface S; = ({1},0, [1 — Eve],0,0).! We present
the algorithm in form of the following procedure P, which works on a polynomial time bounded
alternating Turing machine; (Qy) (resp. (@3)) indicates that the machine branches universally
(resp. existentially). Procedure P has two parameters, the current line ¢ of the SLP and a
type(X;)-interface S;, and it returns true if and only if S; is realized by eval(X;). At the
beginning we call P with the parameter (I, S)).

procedure P(i € {l,...,l}, S;) return boolean is
if ¢; is a type(X;)-game graph then return (¢; realizes S;) (%)
elseif ¢; = op(X,,,...,X;,) then
(Q3): for 1 < j < k guess type(X;,)-interfaces S, s.t. S; = op®(Sy,, ..., Sy) (**)
(Qv): return /\1§j§k P(ij, Ss;)

endif

The correctness of the algorithm follows easily by induction on the index i € {1,...,[} using
the Definition 3.11. For the alternating polynomial time bound note that: (i) the test in line
(*) is in NP by Lemma 3.10, (ii) an interface can be stored in polynomial space, i.e., polynomial
time suffices for guessing an interface in line (#x), and (iii) each of the operations op® in line
(xx) is computable in polynomial time by the definition of an FPI. O

By the following theorem, we can improve the PSPACE upper bound from Theorem 3.13 to
NP N coNP, when we restrict to c-bounded SLPs for some fixed constant c.

ISince 7(1) has no incoming edges, we can assume that the interface S; has no edges, i.e., consists of an
isolated point. Since the I-component of S; is empty, we assert that Adam cannot win from node 7(1), i.e., Eve
wins.

20

Theorem 3.14. Let ¢ € N be a fized constant. Then the following problem is in NP N coNP:
INPUT: A c-bounded SLP S = (X; := t;)1<i<i such that eval(S) is a 1-game graph (G,).
QUESTION: (G, 7(1),Eve) € PARITY ¢

Proof. In analogy to the proof of Theorem 3.13 we may assume that node 7(1) belongs to Eve
and that 7(1) has no incoming edges. Now, we guess for all 1 < i <[a set of interfaces M;.
Note that for the representation of a single interface c? log |C|+2c bits suffice, where C'is the set
of priorities used in the SLP §. Thus, for every 1 < i <[there maximally exist |C' |02220 possible
interfaces. Hence, since ¢ is a constant, polynomial space suffices in order to store all interfaces in
Uj<i<; Mi. Next, we check in polynomial time whether for all 1 <i <[the set M; is a subset of
the set of interfaces which are realized by eval(X;). If the interface S; = ({1}, 0, [1 — Eve], 0, 0
additionally belongs to M, then we know that (G,7(1),Eve) € PARITY. In Table 3 the
algorithm is shown. For the correctness of the algorithm we prove the following two points:

(1) If (G,7(1),Eve) € PARITY, then there exists a run in our non-deterministic algorithm of
Table 3, where true is returned.

(2) If the algorithm of Table 3 returns true, then (G, 7(1),Eve) € PARITY.

To show (1), we simply guess in line (x) for all 1 < i <[exactly the set of interfaces that are
realized by eval(X;). Moreover, in line (x*) we guess for every S € M; such that ¢; = G is an
n-game graph a witness G(7,) that G realizes S. Then the algorithm will return true. For (2)
let M; be the set of interfaces for eval(X;) (1 < i <) that are guessed in a successful run of the
algorithm. By induction over i we easily obtain that every interface in M; is realized by eval(.X;).
Hence, ({1},0, [1 — Eve|,0,0) is realized by eval(S) = eval(X)), i.e., (G,7(1), Eve) € PARITY.

By Lemma 3.9 the test in line (%) can be done in polynomial time. The tests in the other
cases can be also done in polynomial time, which implies the upper bound of NP. Due to the
determinacy theorem for parity games [5], the problem is also in coNP. U

4 The modal p-calculus on SLP-defined graphs

In this section, we want show that both the data and combined complexity of the modal
p~calculus on transition systems that are represented by SLPs is precisely PSPACE. This
generalizes a corresponding result for CTL from [1]. For ¢-bounded SLPs we obtain an upper
bound of NPNcoNP for the data complexity, whereas the combined complexity remains PSPACE.
For the upper bounds we will use a reduction to parity games, which is analogous to the
corresponding reduction for explicitly given input graphs. For this, we need a few notions
concerning the modal p-calculus.

Let P be a set of atomic propositions. The set of free fizpoint variables of ¢ € F,(P) is
denoted Free(y). If ¢ is a subformula of ¢ we also write ¢ < 1. In the following we assume
w.l.o.g. that all sentences ¢ € F,(P) have the property that for every fixpoint variable X that
occurs in ¢ there is a unique subformula 0 X.¢) < ¢ with o € {y, v} and X only ocurrs inside
of 0 X.4p. The alternation depth a(p) of ¢ is inductively defined as follows:

21

procedure P(S) return boolean is

fori=1toldo
guess a set M; of type(X;)-interfaces.
if t; = G for a type(X;)-game graph G then
guess a strategy reduct G(i,S) of G for every S € M,
endif
endfor
fori=1toldo
if t; = G for a type(X;)-game graph G then
for S € M; do
if G(7,5) is not a witness that G realizes S then
return false
endif
endfor
elseif t; = op(Xj,,...,X;,) then

if 35, € MiV(Sy,,....Si,) € [I5y Mi, + Si # op*(Siy, .. -

return false
endif
endif
endfor
return ({1},0,[1 — Eve],0,0) € M,
end P

()

(5 %)

Sz'k) then

Table 3: NP-algorithm for the c-bounded case

22

(X) = alp) = a(-p) = 0.

(1 A2) = by V) = max{a(vn), a(iha) }-
() = a(0) = a().
(
(

°
L

.
Q

Q

pX.4p) = max ({1, ()} U{a(vY.0) + 1| vY.0 < ¢, X € Free(rY.0)})
o a(rX.y) =max ({1, ()} U{a(puY.8) + 1| nY.0 < ¢, X € Free(uY.0)})

Theorem 4.1. The following problem can be calculated in polynomial time:

INPUT: A c-bounded SLP S, defining a transition system eval(S;), a node gy of eval(S;),
and a sentence p of the modal p-calculus s.t. ¢ has precisely k subformulas.

OUTPUT: A (c-k)-bounded SLP S, defining a game graph eval(S,) and a node v of eval(S,)
such that (eval(St), gmit) = ¢ if and only if (eval(S,), v, Eve) € PARITY.

Proof. Let us first repeat the construction for explicitly given input graphs. Thus, let T' =
(@, R, \) be a transition system, let © := {1 | ¥ < ¢} denote the set of all subformulas of the
formula ¢, and let {11, 19, ...,1%} be an enumeration of these subformulas (i.e. |©| = k). We
define the map x, : © — {0,...,a(p)} for all) € © as follows:

2. [2)-1] if i = vX.
Xo(¥) = Q2 221 11 if o = puX .y
0

else

Let G, = (V, E,p) be the game graph that is defined as follows: The set of nodes is V' =
(@ xO)U{L, T} We set

Adam if ¢ of the form vy A 1)y or of the form [y’

Eve else

p(v,¢) = {

23

and p(L) = p(T) = Eve. Finally the set E contains precisely the following edges:

0

T — T

1 A0
(a.7) T ifpeP,pe(q)
7 1L ifpeP,pé&Aqg)
(¢ -p) T ifpeP,pé&Aqg)
7 L ifpeP,pe(q)
(oXy) 29 (g9) foro e {u v}

(g op) 2L (g) fori€ {1,2} and op € {A, V}
(q,0¢ ¢,) if(¢,¢') € Rand 0 € {0, 0}

Then for every ¢ € @ we have (T, q) = ¢ if and only if (G, r, (¢,), Eve) € PARITY, see [6, 5].

Hence, for a given SLP S, defining a transition system eval(S;), we have to construct an
SLP S, defining the game graph G evai(s,). Let S = (X; := t;)1<i<;. In the SLP S, we will use
generalized versions of the operations glue and forget. First of all, if G = (H, 1) is an n-game
graph, then for every m < n we define the (n — m)-game graph forget,,(G) = (H,7") where
7'(i) = 7(i) for all 1 <i < n—m, i.e., we forget the last m contact nodes. Moreover, for every
m < n with 2m < n we define the (n — m)-game graph glue,,(G) = (H/=,7’), where = is
the smallest equivalence relation on {1,...,n} that contains every pair (n —i,n —m — i) for
0<i<m-—1land 7' = (mzo7)[{l,...,n—m}.

Now, we define the SLP S, = (Y; := u;)1<i<; as follows. First of all, the type of Y; will be
type(X;) - k; recall that %k is the number of subformulas of . If ¢; is an n-transition system
(T, 7), then w; is the (n - k)-game graph (G, r,7'), where 7'(i + j - k) = (7(5 + 1), ;) for
1<i<kand0<j<n-—1. Next,ift;=X;® Xy, thenu;, =Y; ®Y}. If t;, = op(X;) for
op € {forget, glue}, then u; = opk(Y) Finally, if ¢, = rename;(X;), then u; = rename(Y}),
where f'(i +j7-k) =i+ (f(j+1)—1)-kfor 1 <i<Ekand0<j<type(X;)— 1. The only
difference between eval(S,) and G evai(s,) is that there are several copies of the nodes T and
1, and moreover, from a node of the form (g, p) with p € P we may have edges to both L and
T: If ¢ and ¢, are glued by some instruction X; = glue(X;) of the straight-line program &,
where ¢; is labeled with the atomic proposition p in eval(X;) but ¢, is not, then the node of
eval(X;) that results from gluing (qi,p) with (g2, p) has edges to both L and T. But for every
node ¢ of eval(S;) we have: if ¢ is labeled with p in eval(S;), then in eval(S;) there is at least
one edge from (g, p) to a T-node plus possibly additional edges to L-nodes, whereas if ¢ is not
labeled with p in eval(S;), then there are only edges from (¢, p) to L-nodes. But note that in
the first case (¢ is labeled with p), additional edges to L-nodes are not problematic. The node
(q,p) belongs to Eve, and she wins a T-node but looses a L-node. Hence, she will not choose

) (
(¢, X) Xp (0 X1) (q,0X.4p) if 0X.9 is the unique subformula of ¢ binding X
) (
o ()
) (

24

an edge from (q,p) to L. Therefore we still have as desired (eval(S;),q) = ¢ if and only if
(eval(Sy), (¢, ¢), Eve) € PARITY. O

Corollary 4.2. The following problem is PSPACE-complete:

INPUT: An SLP S, defining a transition system eval(S;), a node gy of eval(S;), and a sentence
© of the modal p-calculus.

QUESTION: (eval(S;), gimit) E ¢ ?

Moreover,

e the above problem is already PSPACE-complete when restricted to c-bounded SLPs (for a
suitable large ¢), and

e there exists already a fized sentence of the modal p-calculus for which the above problem
1s PSPACE-complete.

Proof. The upper bound follows from Theorem 3.13 and 4.1. For the lower bounds, we can use
two results from [1]:

e The combined complexity of CTL for hierarchical state machines is PSPACE-complete |1,
Theorem 9]; recall that CTL is a fragment of the modal p-calculus. Hierarchical state
machines are a slightly restricted class of hierarchical graph definitions in the sense of
[18]. Moreover, it is easy to see that the hierarchical state machines that are constructed
in the proof of [1, Theorem 9] can be translated into a 4-bounded SLPs.

e There exists already a fixed CTL-sentence, for which the model-checking problem for
hierarchical state machines is PSPACE-complete [1, Theorem 11].

O

When we restrict both to c-bounded SLPs and to a fixed sentence ¢, then we obtain a better
upper bound:

Corollary 4.3. The following problem belongs to NP N coNP for every constant ¢ and every
fized sentence ¢ of the modal p-calculus:

INPUT: A c-bounded SLP S, defining a transition system eval(S;) and a node gy, of eval(S;)
QUESTION: (eval(S:), giit) = ¢ ¢

Proof. Let S; be a c-bounded SLP defining a transition system eval(S;) and let ¢ be a fixed
sentence of the modal p-calculus. Then the SLP S, from Theorem 4.1 is (¢ k)-bounded, where
k is the number of subformulas of the sentence ¢. Since ¢ is fixed, c- k is a fixed constant. The
upper bound of NP N coNP follows from Theorem 3.14. U

25

5 LFP and MLFP on hierarchically defined graphs

In this section we study the complexity of the model-checking problems for the fixpoint logics
LFP and MLFP on hierarchically defined graphs. We start with upper bounds in Section 5.1.
In Section 5.2 we will introduce hierarchical graph definitions, which are closely related to
straight-line programs, but which are more suitable for the purpose of proving lower bounds in
Section 5.3.

5.1 Upper bounds for fixpoint logics on SLP-defined structures

An upper bound for the most general case (combined complexity of LFP) is given by the
following theorem:

Theorem 5.1. The following problem belongs to EXP:
INPUT: An SLP S and a sentence @ of LFP.
QUESTION: eval(S) | ¢?

Proof. We can use the standard EXP-algorithm that evaluates a fixpoint formula on a finite
structure by building for a subformula Ifp; r¢(Z, R) a sequence of increasing approximations
of the fixpoint until convergence is reached [25]. If n is the size of the structure A4 and ¢ is
an LFP-formula, where ¢ is the nesting depth of alternating fixpoint operations and k is the
maximal arity of fixpoint variables in ¢, then A |= ¢ can be checked in time |¢|9®) - n#¢ [25].
Now if the structure A is given by an SLP S, then n € 2908, Thus, the running time is
|p|OW) . 20USD ", which is still exponential. O

Only for the data complexity of MLFP we obtain a better upper bound. MLFP is known to
be a fragment of MSO (monadic second order logic). Since for every fixed sentence ¢ and every
fixed constant ¢ the model-checking problem for ¢ on structures represented by c-bounded SLPs
belongs to the polynomial time hierarchy PH [18], we obtain:

Theorem 5.2. For every fired MLFP sentence ¢ and every fized constant ¢ € N the following
problem belongs to PH:

INPUT: A c-bounded SLP S

QUESTION: eval(S) = ¢?

5.2 Hierarchical graph definitions

Fix a signature R. A hierarchical graph definition (over the signature R) is a triple D =
(N, S, P) such that:

(1) N is a finite set of reference names. Every B € N has a rank rank(B) € N.

(2) S € N is the initial reference name, where rank(S) = 0.

26

(3) P is a set of productions. For every B € N, P contains exactly one production B —
(A, 1, E), where (A,7) is a rank(B)-pointed relational structure (over the signature R)
with universe A and E C {(B',0) | B’ € N,o : {1,...,rank(B’)} — A is injective} (the
set of references).

(4) Define the relation Ep on N as follows: (B, C) € Ep if and only if for the unique production
of the form B — (A, 7, E), FE contains a reference of the form (C, o). Then we require that
Ep is acyclic.

The size |D| of D is defined by > 5 (4, pyep Al + [E|. We say that D is c-bounded if
rank(B) < ¢ for every B € N and moreover for every rule B — (A, 7, E') we have |E| < c.

Let us fix a hierarchical graph definition D = (N, S, P) (over the signature R). For every
B € N we define a rank(B)-pointed relational structure eval(B) (over the signature R) as
follows: Assume that B — (A, 7, F) is the unique production for B in P. Let E = {(B;,0;) |
1 < i < n}. Of course we may have B; = B, for i # j. Assume that eval(B;) = (A, 1)
is already defined. Then eval(B) = (A® A, @ --- ® A,)/=, 7= o7), where = is the smallest
equivalence relation on the universe of AG A, @- - - & A, which contains every pair (o;(7), 7(7))
for 1 <i<nand1l<j<rank(B;). Finally, we define eval(D) = eval(5); since rank(S) = 0
it can be viewed as an ordinary relational structure. From this definition, it is obvious that
from a hierarchical graph definition D we can construct in polynomial time a straight-line
program S with eval(S) = eval(D), see also [3, 19]. Moreover, if D is c-bounded, then S is
c(c + 1)-bounded.

In the lower bound proofs in the rest of the paper, we will only use relational structures
where all relations have arity one or two. In diagrams, relations of arity two will be drawn as
labeled edges, where the edge label is the name of the relation. The fact that a node v belongs
to a unary relation r will be indicated by labeling v with r. Note that our definition allows
several node labels for a single node. A reference (B, o) will be drawn as a big circle with inner
label B. This circle is connected via dashed lines with the nodes o (i) for 1 < i < rank(B),
where the connection to (i) is labeled with i. These dashed lines are also called tentacles. If
G = (A, 1) is an n-pointed relational structure, then we label the contact node 7(i) with ¢. In
order to distinguish this label ¢ better from node labels that correspond to unary relations, we
will use a smaller font for the label i.

Example 5.3. Let us consider the hierarchical graph definition D = (N, S, P) over a signature
containing two binary relation symbols o and B, where N = {5, Ay, Ay, A3} with rank(S) = 0,
rank(A;) = 1, and rank(Ay) = rank(A3) = 2. The set P of productions is shown in Figure 9.
Then eval(D) is the graph in Figure 10. Edge labels are omitted; edges going down in the tree
have to be labeled with (3, and the other edges going from the leafs to the root have to be labeled
with «.

27

/” 5\\ 2 1
7 N
I/ ﬁ /8 \\ ﬁ
— ' — a
1 12

2t a (3

Figure 9: The productions of the hierarchical graph definition from Example 5.3

5.3 Lower bounds for fixpoint logics on hierarchically defined struc-
tures

In this section we will prove several EXP lower bounds. Together with the EXP upper bound
in Theorem 5.1 we obtain the EXP completeness results in Table 1. We start with the data
complexity of LFP:

Theorem 5.4. There is a fivred LFP-sentence @ such that the following problem is EXP-hard:
INPUT: A 2-bounded hierarchical graph definition D.
QUESTION: eval(D) = ¢?

Proof. Let us take a fixed deterministic exponential time machine T' = (Q, X, qo, ¢, 0) with an
EXP-complete membership problem. () is the set of states, X is the tape alphabet, ¢g is the
initial state, g is the unique accepting state, and 4 is the transition function. W.l.o.g. assume
that T operates in time 2" on any input of length n. Let [J € ¥ be the blank symbol of T'. Let
['=XYU(Q x X) and let ¢y, ..., ¢, be an arbitrary enumeration of I'. A configuration of the
machine can be encoded as a word over I' of length 2", where exactly one position contains a
symbol from) x ¥ C I'. We view every ¢ € I" as a relational symbol of arity one, i.e., as a node
label. Let A be the set of all tuples (cq, ¢1, ¢, ¢) € A such that the following is true: If at some
point of time ¢ three consecutive tape positions ¢ —1, ¢, and i+ 1 contain the symbols cq, ¢;, and
o, respectively, then at time ¢ + 1 the tape cell ¢ contains the symbol c¢. Let w = aga; - --a,_1
be an input of length n for T'. It is straight-forward to construct a 2-bounded hierarchical graph
definition D such that eval(D) is the following structure, where the s-chain consists of 2" many
['-labeled nodes:

28

Figure 10: The graph eval(D) for the hierarchical graph definition from Example 5.3

.
C1 Cm
S S S S S S
*——>0—>0 s e *———>0—>0—>0 e *——»0
(g0, a0) @ a2 an—1 Qn O 0 O 0O

Thus, eval(D) is a chain of length 2™ encoding the initial configuration together with |I'| = m
many isolated nodes. For every ¢ € I there is exactly one isolated node with label c.

Tape positions and time points will be both represented as nodes of the s-chain. A triple
(x,y, z), where x and y belong to the s-chain and z is the isolated c¢;-labeled node, encodes the
fact that in the unique computation of 7" on input w at time y the tape cell x contains the
symbol ¢;. The set of all “correct” triples for which this is actually true will be generated as a
fixpoint.

In order to construct the fixed LFP-sentence ¢ from the theorem, we first define a few

29

auxiliary formulas:

w(x)

zero(r) = w

Jy:s(z,y) V s(y,x) (z belongs to the s-chain)
() A =3y :s(y,z) (x is the first node of the s-chain)
w(x

init(z,y, 2) =) A zero(y) A —w(z) A \/(c(x) A c(2))
cel
2 2
consistent(zo, 21, 29, 2) = ~w(z) A /\—w \/ (c(z) A /\cl(zz))
1= (co,c1,c2,c)EA =0
U(x,y, 2z, R) = init(x,y, 2) V

g, T2, Y, 20, 21, 22 1 $(x0,) A Sz, 22) A s(y', y)A
consistent (2o, 21, 22, 2) A R(z0,y, 20) A R(z, 9, 21) A R(xa,y', 22)

Note that init(x,y, z) is true for a triple (x,y, z) if and only if this triple is a correct triple (in
the above sense) for the initial configuration. Now, the input w is accepted by T if and only if
the following sentence ¢ is true in eval(D), where A = {(¢s,a) | a € £} C I' (recall that ¢ is
the unique accepting state):

EIS) tu: [lfp(x,y,z),R ¢($7 Y, =, R)](‘Sv 12 U) N \/ C(U)

ceA
This concludes the proof of the theorem. O

If we do not restrict to c-bounded hierarchical graph definitions then an EXP lower bound
can be also shown for MLFP:

Theorem 5.5. There exists a fired MLFP-sentence ¢ such that the following problem is EXP-
hard:

INPUT: A hierarchical graph definition D.

QUESTION: eval(D) = ¢?

Proof. Again we start with a fixed deterministic exponential time machine T = (Q, X, qo, ¢y, 9)
with an EXP-complete membership problem and which operates in time 2™ on an input of
length n. Let OJ be the blank symbol of T. Let I' = ¥ U (Q x X) and let ¢y, ..., ¢, be an
arbitrary enumeration of I'. Let w = agay - - -a,_1 be an input of length n for T" and define
a; = forn <i< 2",

We will construct a hierarchical graph definition D such that eval(D) is the following struc-
ture A: The universe of A is

{(i,w) | 0<i<2"we{0,1}*"}IU
{(i,w,e) |0<i< 2", we{0,1}",cel}U
{0,...,n},

30

Figure 11:

where {0,1}=" = {w € {0,1}* | |w| < n} and {0,1}" = {w € {0,1}* | |w| = n}.

The idea is that the nodes (i,¢) (0 < ¢ < 2™) form a chain of length 2" using a binary
relation s. Here i is a point of time in the run of the machine 7. Every node (i,¢) is the
root of a binary tree T; of height n. The left (resp. right) child-relation is sq (resp. si). The
node set of the tree T; is {(i,w) | 0 < < 2", w € {0,1}="}. A leaf (i,w) (where |w| = n) of
the tree T; represents the tape cell w (where w is viewed as the binary coding of a number in
{0,...,2" —1}) at time i. For every node (i, w) of T}, there is an ¢-labeled edge (¢ for level) to
the “level-node” |w| € {0,...,n}. Using these edges, we can express that two nodes in possibly
two different trees 7; and T} are on the same level. This is needed in order to express that for
two leafs (7,v) and (j,w) (of two different trees) we have v = w, i.e., the tape cell is the same.
Finally, to every leaf (i,w) (with |w| = n) of T; we attach for every ¢ € I' an additional c-labeled
node (i, w,), representing the fact that at time i tape cell w contains the symbol ¢. Thus, the
meaning of such a node is the same as that of a triple in the previous proof. Again we will
generate the set of all “correct” nodes (i, w, c) (i.e., in the unique computation on input w, at
time i tape cell w actually contains the symbol ¢) as a fixpoint. From every node (i, w, ¢) there
is a b-labeled (b for back) “back-edge” to every node along the path from the root (i,¢) of T; to
the leaf (i, w). An additional unary relation init will represent the initial configuration of the
machine 7'. It contains a triple (0, w, a;) if and only if w is the binary coding of i (bin(i) = w
for short). For the trivial case n = 1 the graph eval(D) without the init-relation is shown in
Figure 11, where we furthermore assume that I' = {c} has only one element.

31

WO Wos \ 7 A
\ \ I\ 1 i < 7
WS \ 2, AN
R A IAREE S L SN IR A

SN AN G M RPN
MaTd W N N 2.7 4
NN N N1 Ny A /
\ \\\\\, \(\&Yb’//\/’////l ’
N }\I\ 1V A 7
\ VIN 7 SN ’
LR L S S AL
N2 RN 27 SN
¢ ¢ Vv S
1 2 3 n
Figure 12:

Formally, the relations of A are (= denotes the prefix relation on strings):

c={(,w,c)|0<i<2"we{0,1}",ce '} for every ce T
init = {(0,w, a;) | w € {0,1}", bin(i) = w}

s={[(i,e),(i+1,e)]|0<i< 2" -1}
so = {[(i,w), (i, w0)] | 0 < i< 2" w e {0,1}<"}
s ={[(4,w), (i, wl)] |0 <i< 2" we {0,1}~"}
= {[(i,w), |w]] |0 <i<2ve{0,1}="}
b={[(i,w,c),(1,v)] |0 <i< 2" we {0,1}",v Jw,ceT}
(
(

Let us now sketch a hierarchical graph definition D that generates this structure. It is straight-
forward to generate from the initial reference name S the structure shown in Figure 12, where
the s-chain consists of 2" many nodes. Here, Ay and By are reference names. Using additional
reference names A, ..., A,_1, we generate from the Ayp-labeled reference the binary trees T;
(1 <j < 2") as well as the (-labeled edges to the level-nodes. The rule for A;_; (1 <i<n)is
shown in Figure 13. The rule for A, is shown if Figure 14; it generates the c-labeled (¢ € T)
nodes and the b-labeled back-edges. Every reference name A; (0 < i < n) has rank n + 1.
The first ¢ + 1 tentacles (labeled with 0,...,7 in Figure 13) of an A;-labeled reference e access
those nodes of the binary tree that were produced by ancestor-references of e. These nodes
form a path starting at the root of the tree. The last n — i tentacles (labeled with i+ 1,...,n
in Figure 13) access the level-nodes i + 1,...,n of the structure A. From the reference By we
generate the tree Tj. Recall that Tj is the same tree as 7T; for i > 0 except that every node of
the form (0, w, a;) with bin(iz) = w belongs to the unary init-relation. The rules for generating
To are similar to the rules for the reference name A; (0 < ¢ < n), we leave the details to the

32

S PN s
N -~ ~ 7

. o« o o .
i+1 n
Figure 13:

Figure 14:

33

reader.
Let us now describe a fixed MLFP-sentence ¢ such that eval(D) = ¢ if and only if the
machine 7" accepts the input word w. We first define a few auxiliary formulas:

v(z) = \/ c(x) (xis a node of the form (i,w,c) for 0 <i < 2", w e {0,1}",ceT)
acl’
suce-time(z,y) = v(x) A y(y) A 32’y b(x,2") A by, y') A s(@'y)
suce-pos(z,y) = v(x) A Y(y) A
A 2"y Yy 2 b(x,2’) A b(y,y) A =T (\/ si(z,u) Vs (y',u)) A
i=0,1

so(z,2") N s1(z,y") A
p,y(u=2" v JveU:si(v,u)](z) A
(p, (v = y" vV FveU: so(v,u)|(y)

same-pos(z, y) = y(z) A y(y) A
Va!' y' bz,) Ab(y,y) ATz (U2 2) ANy, 2)) =

N 32" si(@”) & sy y)
1=0,1

The formula succ-time(x,y) expresses that the time associated with the node y is one plus
the time associated with the node x. The formula succ-pos(z,y) expresses that the nodes z
and y belong to the same binary tree (i.e., the point of time is the same) and moreover the
tape position associated with y is one plus the tape position associated with z. Note that
b(z, ') N bly,y') N —3u: Vicgisi(2',u) V s;(y',u) implies that 2’ (resp. ') is the unique
leaf in the tree that can be reached by a b-labeled back-edge from x (resp. y). The rest of
the formula says that the leafs 2’ and 3y’ have a common predecessor z in the tree such that
the unique path from z to 2’ (resp. y’) belongs to the relation sy o s} (resp. s; o sf). Finally,
same-pos(z, y) expresses that the tape positions associated to x and y are the same, but = and
y may belong to different trees. For this, we have to say that whenever ' and 3 can be reached
via a b-labeled back-edge from x and y, respectively, and z’ and y’ are one the same level (i.e.,
dz:l(2,2) NLU(Y, z)), then 2" is an s;-successor of its parent node in the tree if and only if ¢’
is an s;-successor of its parent node (i € {0,1}). Now let ¢(z, X) be the following formula:

3
init(z) V Jry, 29,23 € X ¢ \/ c(x) A /\cl(xl) A
(c1,c2,c3,c)EA i=1
3
/\succ—time(:ci,:c) A succ-pos(z1,) A succ-pos(za,x3) A same-pos(zg, x)

i=1
Let A = {(qf,a) | a € ¥} C T'. Then w is accepted by the Turing-machine 7" if and only if
eval(D) 3 : Ve el2) A [lp, yib(a, X)](2). 0

34

For the combined complexity of MLFP, we can derive an EXP lower bound also in the
c-bounded case:

Theorem 5.6. The following problem is EXP-hard:
INPUT: A 2-bounded hierarchical graph definition D and an MLFP-sentence .
QUESTION: eval(D) = ¢?

Proof. Since EXP equals alternating polynomial space, we can start with a fixed alternating
PSPACE-machine T' = (Q, %, qo, {¢s},d) with an EXP-complete membership problem. Here
JCQxXXEXQxXx{L, R} is the transition relation. A tuple (g, a,p, b, L) for instance means
that if the machine T is in state ¢ and reads an a, then it may enter state p, writes b, and moves
left. W.l.o.g. assume that 7" operates in space n on an input of length n. Let I' = X U (Q x X).
Let w = agay - - - a,—1 € X" be an input for the the machine 7. A configuration of T is a word
from the language C = [J/y ¥¥(Q x X)X 1=F C T, From n, it is easy to construct a 2-bounded
hierarchical graph definition D such that eval(D) = (pref(C), (s4)aer), where pref(C) is the set
of all prefixes of words in the language C and s, = {(c,ca) | ¢,ca € pref(C)}. The leafs of
eval(D) precisely correspond to the configurations of 7" of length n. First of all, let us define a
formula ¢(x1, z5) such that eval(D) = ¢(c1, ¢o) if and only if ¢; and ¢y are leafs of eval(D) and
the configuration represented by ¢; can evolve in one step into the configuration represented
by c¢s:

p(a1,22) = /\ —3y ¢ Sa(i,) A

a€l,i=1,2

Fy, Y1, Y2, 21, 22

\/ \/(Sc(y, yl) A S(q,a)(yl, 2’1) A S(p7c)(y7 y2) A Sb(y2, 22)) V
(g,a,p,b,L)ES cEX

VoV 6eamm) Aselyr, 21) A sy, 52) A s (2 2)) | A
(g,a,p,b,R)ES cEX

the path from z; to x; is labeled with the same word as the path from 25 to -

The last part of the formula can be expressed as follows:

\/Hul,---,ui+1,v1,---,vi+1i21=U1 N 2o =01 N Ty =Uyp1 N\ T =01 N\

i
AV salwsujn) Asa(vy,v41)

j=1a€x

The following formula univ(z) expresses that the leaf = represents a configuration, where the

35

current state is a universal state:

n
univ(x) = \/HSL’O,...,SL’Z' : \/ S(g,a)(Z0, 1) /\ \/ Sa(Tj, Tj1) N v =uwm;
i=0

S ONIDY j=1a€X

Similarly we can construct a formula exist(z) (resp. accept(x)) expressing that z represents
a configuration, where the current state is an existential (resp. accepting) state. Now let us

define the formula ¢ (z, X) by:
accept(z) V (univ(z) A Yy:p(z,y) =y € X) V (exist(z) A Jy:p(z,y) ANy € X).

Then w is accepted by the Turing-machine T if and only if

eval(D) = Jxg - - - 3y, ¢ 8(gg,a0) (T0, 1) /\ Sa; (i, Tiv1) N [Up, x¥ (2, X)](2).

This concludes the proof of the theorem. O

6 Open problems

As can be seen from Table 1, two open problems remain for hierarchically defined graphs:

e For the data complexity of the modal p-calculus on c-bounded SLPs; there is a gap from
P to NP N coNP. We conjecture that the precise complexity is P. In order to prove this
conjecture, it suffices to show that for fixed constants ¢ and d one can verify in polynomial
time whether a given c-game graph G over the set of priorities {0, ..., d} realizes a given
c-interface. Then, for a given c¢-bounded SLP S = (X; = t;)1<;<,, with all priorities from
{0,...,d}, we could compute the set of all type(X;)-interfaces (over {0,...,d}) that are
realized by eval(X;) bottom-up in polynomial time. For the case that t; is an explicitly
given type(X;)-game graph, we need the assumption above. Note that the number of
possible c-interfaces over {0, ...,d} is bounded by a constant (depending on ¢ and d).

e For the data complexity of MLFP over c-bounded SLPs there is a gap from P to PH.

References

[1] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 23(3):273-303, 2001.

[2] A.K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114-133, 1981.

36

3]

[16]

[17]
[18]

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages 193-242. Elsevier
Science Publishers, 1990.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1991.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the -calculus and its
fragments. Theor. Comput. Sci., 258(1-2):491-522, 2001.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In Proc. FOCS’91, pages 132-142. IEEE Computer Society Press, 1991.

E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-
calculus (extended abstract). In Proc. LICS’86, pages 267-278. IEEE Computer Society
Press, 1986.

J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3: Beyond Words, pages 125-213. Springer, 1997.

E. Gradel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games. Number
2500 in Lecture Notes in Computer Science. Springer, 2002.

A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in Lecture
Notes in Computer Science. Springer, 1992.

N. Immerman. Relational queries computable in polynomial time. Information and Con-
trol, 68(1-3):86-104, 1986.

M. Jurdzinski. Small progress measures for solving parity games. In Proc. STACS 2000,
LNCS 1770, pages 290-301. Springer, 2000.

M. Jurdzinski. Deciding the winner in parity games is in UP and co-UP. Information
Processing Letters, 68(3):119-124, 1998.

T. Lengauer. Hierarchical planarity testing algorithms. Journal of the Association for
Computing Machinery, 36(3):474-509, 1989.

T. Lengauer and K. W. Wagner. The correlation between the complexities of the non-
hierarchical and hierarchical versions of graph problems. Journal of Computer and System
Sciences, 44:63-93, 1992.

T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierarchically
defined graph. SIAM Journal on Computing, 17(6):1063-1080, 1988.

L. Libkin. Elements of Finite Model Theory. Springer, 2004.
M. Lohrey. Model-checking hierarchical structures. In Proc. LICS 2005, 2005. to appear.

37

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

M. Lohrey. Model-checking hierarchical graphs. Technical Re-
port 2005/1, University of Stuttgart, Germany, 2005. Available via
ftp.informatik.uni-stuttgart.de/pub/library /ncstrl.ustuttgart fi/ TR-2005-1/.

M. V. Marathe, H. B. Hunt III, and S. S. Ravi. The complexity of approximation PSPACE-
complete problems for hierarchical specifications. Nordic Journal of Computing, 1(3):275-
316, 1994.

M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan. Approximation
algorithms for PSPACE-hard hierarchically and periodically specified problems. SIAM
Journal on Computing, 27(5):1237-1261, 1998.

M. V. Marathe, V. Radhakrishnan, H. B. Hunt III, and S. S. Ravi. Hierarchically specified
unit disk graphs. Theoretical Computer Science, 174(1-2):23-65, 1997.

J. Obdrzalek. Fast mu-calculus model checking when tree-width is bounded. In CAV’03,
volume 2725 of LNCS, pages 80-92. Springer, 2003.

C. H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

M. Y. Vardi. The complexity of relational query languages (extended abstract). In Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC 1982),
pages 137-146. ACM Press, 1982.

M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the Four-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 1995), pages 266-276. ACM Press, 1995.

38

