Universitat Stuttgart

The Design and Implementation of a
Presentation System for Interactive
3D Graphics Applications

S. Stegmaier T.Klein M. Strengert T. Ertl

Bericht Nr. 2005/05
Juli 2005

O

Institut fiir Visualisierung und Interaktive Systeme
Fakultit fiir Informatik, Elektrotechnik und Informationstechnik
UniversititsstraBe 38, 70569 Stuttgart

The Design and Implementation of a Presentation System
for Interactive 3D Graphics Applications

S. Stegmaier

T. Klein

M. Strengert T. Ertl

Institute for Visualization and Interactive Systems
Universitit Stuttgart, Universitétsstrale 38
70569 Stuttgart, Germany

Abstract

We present the design and implementation of a stand-alone
system for presenting interactive 3D graphics applications
and arbitrary multimedia contents to a public audience.
The description includes technical details regarding the
construction of a sturdy case to accommodate touchscreen,
PC, video projector, and sound equipment, and details in-
volved in the design of the presentation software. The pre-
sented system was evaluated during a week-long exhibition
with several hundreds of users.

1 Introduction

The University of Stuttgart is a state university mainly
funded by the public. To express its appreciation for this
funding, it was decided to organize a series of talks and
exhibitions with hands-on exhibits on a popular science
level—a “Science Year’—to inform the public about re-
search projects being financed by the tax payers’ money.
The main event was the so-called “Summer of Science”
which included week-long exhibitions of various university
institutes, organized centrally located collection of booths
with posters explaining the respective institute’s research
goals. The Institute for Visualization and Interactive Sys-
tems (VIS), the university’s computer graphics group, de-
cided to present a selection of real-world applications de-
veloped at the institute in recent years and found in the
car manufacturing industry, medicine, and other areas. Al-
though the demonstrations should be available continously,
presence of researchers had to be reduced to half a day each
day. This lead to various problems: How can interactive
3D graphics applications be presented to an audience with-
out knowledgeable staff being around? How can users be
prevented from closing the application and gaining access
to the machine, maybe shutting it down? How can key-
boards, displays, and computers be secured against vandal-
ism? What was needed was a cabinet similar to those found

in stations and airports for looking up timetables or mak-
ing reservations—locked boxes with sturdy touchscreens.
However, building a system capable of presenting arbitrary
applications with complex user interfaces poses several in-
teresting hardware and software problems which we will
address in this paper, based on our experiences with build-
ing and operating such a system during the “Summer of Sci-
ence 2004”.

2 Related Work

Several commercial and open-source software solutions are
available for creating and presenting slide presentations.
Most well-known are Microsoft’s PowerPoint [1] and Sun’s
OpenOffice suite [2]. Both solutions enable the user to cre-
ate presentations suitable for a public audience. The sys-
tems allow for the inclusion of audio and video files and
even allow for the execution of arbitrary external appli-
cations. These systems may therefore appear as suitable
choices for the intended scenario. However, PowerPoint
is not available on Linux, our target platform, and both
systems cannot present external applications without over-
whelming inexperienced users by their complex user inter-
faces nor keep them from tempering with the system in an
undesired way. Both systems can, therefore, at best give
hints at how a presentation system might be organized that
meets our requirements.

3 Requirements

Both hardware and software requirements were defined for
the desired presentation system. The case had to accommo-
date both an 18 inch touchscreen (which was already avail-
able), a PC tower case, a moderately-sized video projec-
tor and sound equipment (for video playback and acoustical
feedback). Whenever possible, the devices should be hid-
den from the user to prevent vandalism. There was neither

display
-

projector \I

standard
PC

Figure 1: The hardware component of the proposed pre-
sentation system. Left: Schematic drawing of the cooling;
right: Photograph of the actual box operated during the ex-
hibition (courtesy IFF, University of Stuttgart).

a need for a keyboard nor a mouse since the system should
only allow for remote administration via a network connec-
tion. The projector was included to attract people and to
make it easier to gather a view of the running application
once a crowd had formed around the display. The software
requirements were dictated by the applications to be pre-
sented and the intended audience: Linux operating system,
able to present arbitrary applications with (partially) hid-
den user interfaces, e.g. menu bars, but without requiring
any modifications. The latter issue is of special importance
since the system will only be accepted if existing applica-
tions can be integrated as-is. Finally, the system was to be
operated by researchers of various institutes which added
the requirement of being able to start up upon powering it on
and shutting it down from a key-protected slide from within
the running presentation without requiring user logins.

4 System Design

4.1 Hardware Design

The basic case was build to specifications by a professional
carpenter. It included an aluminium frame with the side
walls made from sturdy 4 mm plastic enclosed in 1 mm
thin sheets of aluminium. The top and the lockable front
were built from covered particle board. For cost reasons,
the final modifications to the case were made by university
technicians and included all aspects of integrating the elec-
tronic devices to be operated during the presentation. Since
both the touchscreen and the projector generate a consid-
erable amount of heat, providing sufficient cooling poses
the main difficulty in designing the interior. In our solu-

tion (Fig. 1, left) cool air flows through large inlets near
the bottom and is then being transported upwards through
a perforated metal plate accommodating the projector into
a low-pressure compartment generated by two 220 V/18 W
fans. Another fan induces vortices between the projector
and the case back wall so that projector models with cooling
fans installed next to the projector lens can be used without
overheating. Fig. 1, right, shows the actual box as it was
operated during the exhibitions.

4.2 Software Design

As was described in Sec. 3, the desired presentation soft-
ware has a simple requirement: It must be able to run ar-
bitrary applications without any modifications and with-
out overwhelming the user with complex user interfaces.
We achieve this property by defining the screen area cov-
ered by a presentation slide as a set of windows—a win-
dow mask—covering the whole desktop and always being
on top of the stacking order. The center part of this win-
dow mask (in the following called the “demo window”’) can
be unmapped to open the view to selected parts of under-
lying windows of arbitrary external applications (Fig. 2).
For 3D graphics applications, the underlying external appli-
cation is typically composed of a large OpenGL drawable
and surrounding user interface elements. Thus, these appli-
cations are positioned so that the user interface is clipped
either at the desktop borders or the window mask. Fig. 3
illustrates this process by successively increasing the trans-
parency of the window mask, thereby exposing the appli-
cation area to be seen by the user. Of course, upon un-
mapping the demo window any events occurring in the ex-
posed area will be passed to the underlying window which
enables the user to interact with external applications with-
out losing the impression of viewing a presentation. For
this to work, the window mask color must match the ex-

Figure 2: The basic idea of the presentation system soft-
ware: A window mask exposes only the part of the applica-
tion’s user interface that is intended for the audience. The
demo window is shown in white.

AT

72 Blp FvFsDos B
/WINIIEVE BOXRTIZZARAT

: Strdmungsvisualisierung
TR e NS E R N EEmnoe

Hauptmend

Ubersicht VIS

néchste Demo

vorherige Demo

Experimente zur Umstrmung von Fahrzeugen werden zunehmend durch Computersimulation auf Grossrechner
ersetzt. Der kostspielige Betrieb von Wind- und Wasserkanalen und der aufwéindige Bau von miniaturisierten
Fahrzeugmodellen wird dadurch ueberflssig. Die Folge: Der Entwicklungszyklus wird verkirzt und die Entwickungs-
kosten reduziert.

Um aus den riesigen Datenmengen der Computersimulationen Ruckschidsse auf die Aerodynamik eines Fahr-

Figure 3: Clipping the user interface. Top: application af-
ter being started with the preload library (background color,
position, and size are being set, Ul partially clipped at desk-
top); bottom: final result as seen by the user (UI clipped at
window mask).

posed window’s background color. If the application win-
dow cannot be scaled to fill the demo window, the root win-
dow background color additionally must match the window
mask color. Since in general these colors will not match,
we provide a non-intrusive solution taking advantage of the
operating system’s dynamic loading and linking function-
ality [4] to override the background-setting functions and

to simultaneously disable window manager control by set-
ting the override_redirect flags during window cre-
ation so that the top-level window’s size and position can be
scripted [5]. We found this solution to be reliable even for
complex commercial applications.

4.2.1 Slide Creation

The concept of a WYSIWYG interface for slide creation
was discarded since this functionality coins the appearance
of slides, leading to presentations often lacking a unique
layout and design. Instead, arbitrary image manipulation
programs are used to create the slide images and active ar-
eas (buttons) are specified in a separate text file written in a
simple slide description language. The slide image is auto-
matically cut into subimages suitable for creating the win-
dow mask with a cropping script generated by the presen-
tation software. If required, smooth transitions between the
application-loading state and the application-running state
can be obtained with an integrated screenshot function that
captures the demo window area right after the demo win-
dow has been unmapped and the application becomes visi-
ble. Fig. 4 shows an example slide for a flow visualization
demonstration. The captured demo window has been ex-
tended by a pointing-hand image and an explanatory text to
better indicate the loading of an interactive demo.

4.2.2 Slide Description

The appendix gives the complete slide description used dur-
ing the “Summer of Science 2004 presentation, starting
with area definitions for the various buttons and then pro-
ceeding by specifying the individual slides. Area definitions
are given in the usual X Window geometry specification for-
mat of the form W x H+ X +Y where W and H specify
the area width and height, respectively, and X and Y denote
the position. Thus, e.g., Down = 83x83+1155+899
gives the area specification of the arrow-labeled button in
the lower right corner of Fig. 4. The area definitions are
followed by an obligatory slide description for each slide
which assigns a unique slide number and the actions to
be performed when certain areas are clicked'. The def-
inition for the slide sequence corresponding to the ap-
plication shown in Fig. 4 is given in the section labeled
POWERVIZ. We will examine the file structure at this ex-
ample. The sequence comprises slides #4 and #5. These
slide identifiers are assigned explicitly by giving the respec-
tive identifier right at the beginning of the corresponding
slide description. The text following the identifier and up

1Our touchscreen is limited to moving the mouse pointer and to simu-
late clicks and double-clicks; mouse events are, therefore, the only events
that have to be processed.

PowerVIZ StrbmungswsuaI|S|erung
mram (B L [l DN} 1) IS0 R RN R EN R EED mnm

Hauptmenii
Ubersicht VIS
néchste Demo

vorherige Demo

Experimente zur Umstrdmung von Fahrzeugen werden zunehmend durch Computersimulationen auf GroBrechnem
ersetzt. Der kostspielige Betrieb von Wind- und Wasserkanalen und der aufwandige Bau der miniaturisierten
Fahrzeugmodelle wird dadurch berflissig. Die Folge: Der Entwicklungszyklus wird verkirzt und die Entwicklungs-
kosten reduziert.

Um aus den riesigen Datenmengen der Computersimulationen Rilckschisse auf die Aerodynamik eines Fahrzeuges
ziehen zu kénnen, ist es notwendig, die Daten zu visualisieren. Die in dieser Demo gezeigte Software PowerVIZ wurde

am Institut fur Visualisierung und Interaktive Systeme entwickelt und erlaubt erstmals die interaktive Visualisierung von ‘
Strémungsdatensétzen mit mehreren Millionen Datenwerten. Die hohe Geschwindigkeit wird zum einen dadurch

Figure 4: Example slide used during the exhibition. Active
areas are depicted as 3D buttons, the text box at the bottom
displays a scrollable text explaining the current application.
The center text reads Please wait ... interactive demo is
being loaded.

to the closing bracket specifies the image data to be used
for composing the slide. In our example, this text reads
slides/slidePowerViz_0_ which indicates that the
slide is made up of all the image files in the directory
slides beginning with the prefix slidePowerviz 0.

The remaining lines of the slide description specify ac-
tions. These actions are enclosed by angle brackets <
and > and can be stand-alone to indicate autostart ac-
tions run automatically when the slide is loaded or user ac-
tions (indicated by curly braces { and }) to be executed
upon user interactions. In the example, the user action
{Down $5 <0, ./click,—-1>} asks the system to ex-
ecute the program click in the current directory O s after
the area designated by the variable Down has been clicked
by the user and then to jump to slide 5. The number —1
indicates that the program must not be kept running when
switching to another slide or when hitting the Down area
again. In contrast, the autostart action is supposed to expose
the application powerviz.1.4.6.1linux found in the
working directory after a loading time of 7 s and to keep the
application running when switching to the next slide (since
this slide contains the second half of the explanatory text
shown in the text box at the lower border). The remain-
ing slides are specified analogously. This also applies to
the service slide (section CODE LOCK), a slide reached by
clicking a tool symbol on the presentation main page and
intended to provide the booth personnel with some means
for rebooting the hosting machine or for shutting it down.

However, obviously this functionality must be inaccessible
for the audience to prevent misuse. We will shortly demon-
strate a way to implement this functionality without having
to resort to specifically tailored stand-alone applications. In
contrast, our solution is based exclusively on small and easy
to maintain shell scripts.

4.2.3 Implementing Special Functionality

The basis for the service slide again is laid by providing im-
age data indicating active areas, in this case an image of a
code lock (Fig. 5), and by defining the respective regions for
the buttons. The latter is accomplished by the definitions of
Key0 to Key?9 in the provided description file and the def-
initions for the asterisk and hash symbols. The idea now
is to define a number of codes (number keys to be pressed
in sequence) each provoking a certain functionality. En-
tering a code is terminated by pressing the hash key, the
asterisk is assigned the functionality to start over in case er-
roneous data was entered. Independently of whether a num-
ber key or some other key was pressed, the same shell script
shown in Fig. 6 is executed and the individual invocations
only differ in the arguments passed. For number keys the
corresponding numerical value is passed. Examining the
shell script reveals that in this case the entered code is suc-
cessively compiled in a code file by appending the entered
digit. When clicking the asterisk key, this code file is simply
cleared—the input process starts anew. When the user indi-
cates the input code is complete by pressing the hash key,
the code is read from the code file and compared to a list of

Universiat Stutgart

SennceCenter
L] ITREN NI EEN NI EED I RN R RN O EEE md

Hauptmeni

Figure 5: Service slide. Entering certain codes provokes
certain actions like rebooting or halting the machine hosting
the presentation system.

#!/bin/sh
CODEFILE=secret.code

SHUTDOWN=47114711
REBOOT=08150815

./click

case "$1" in
[0-9])
echo -n $1 >> SCODEFILE
i
a)
echo -n > $SCODEFILE;;
b)
CODE=‘cat secret.code’
echo -n > SCODEFILE
case SCODE in
SSHUTDOWN)
killall X && \
/sbin/shutdown —-h now
7
SREBOOT)
killall X && \
/sbin/shutdown —-r now

rr

true
I
esac;;
*)
true;;
esac

Figure 6: Shell script implementing service functionality.

predefined number sequences. If a match is found, the cor-
responding action is performed. The implementation shows
that by taking full advantage of the Unix programming en-
vironment the chosen design allows for integrating special
functionality quickly and without burdening the presenta-
tion developer with the need for programming skills beyond
standard knowledge.

4.2.4 Managing External Applications

Managing external applications is the most delicate part in
a system that is being operated without staff and potentially
malicious users trying to bring the system down to its knees
by, e.g., starting and stopping applications in rapid order.
This is caused by the fact that unreliable process termina-

tion will in the long term result in scarce resources and,
therefore, render the system into an unusable or unstable
state. We took great efforts to prevent these problems. In
our solution, the presentation system spawns a new child
Cy for each external application to be executed using the
fork (2) system call. The child Cy then becomes the ses-
sion leader by calling setsid (2) to initiate a new process
group. It then spawns another child C; whose sole purpose
is to run the external application via exec (2) and termi-
nates afterwards. After spawning C, child Cy suspends its
execution for the number of seconds specified in the slide
description. Setting this time span is the user’s task and
depends on how long the external application takes to be
up and running. Cp then opens a new display connection
and, if required, unmaps the demo window. Finally, Cy calls
pause (2) to suspend its execution until a parent signal is
being received and then terminates. Running external ap-
plication this way is fairly complex. However, the great
advantage of this solution is that now the operating system
keeps track of all subprocesses spawned be the external ap-
plication. A single killpg (3) is then sufficient to reli-
ably clean all processes related to the external application
(see [3]).

5 Evaluation

The presented presentation system was evaluated during
a week-long exhibition. Three university institutes con-
tributed an overall of 7 videos and 5 interactive 3D graphics
applications, including volume rendering of complete hu-
man datasets, live visualizations of flows around car bod-
ies, visualizations of cosmic events, and architectural vi-
sualization. Due to the limited interaction possibilities of
the touchscreen device, in most cases user interactions were
limited to rotations and zooming. During the exhibition,
all user interactions were logged in order to obtain mean-
ingful usage statistics. Overall more than 2,500 application
invocations were processed. Almost 700 audio-visual pre-
sentations explaining research fields were watched by the
audience and the most popular application (an example of
flow visualization) was started several hundred times. The
system seemed to be especially attracting to children and
school classes which seemed to be able to navigate through
the slide hierarchy intuitively without prior explanations.
In contrast, older generations tended to be reluctant to use
the system, astonishingly often fearing to break the device.
During the whole week, there was never any malfunction or
a system crash. The casing proved to be too heavy for being
moved accidentally. The fans—while being quite noisy in
an office atmosphere—did not bother in an actual presenta-
tion environment which is very noisy anyway. The cooling
proved sufficient and did not cause any overheating. Due

to the robustness of the casing and touchscreen, no dam-
age was made at all although the system was located mostly
unattended in a public place.

6 Conclusion and Future Work

We have given an overview of the design of a stand-
alone presentation system for arbitrary multimedia content,
including interactive OpenGL-based applications for 3D
scientific visualization. The system—both hardware and
software—was build from scratch. The system includes a
4,000 Euro touchscreen mounted to a 1,000 Euro casing
(only considering the carpenter’s wages) and is, thus, not
cheap. However, the resulting system proved very flexi-
ble and professional in a real-world exhibition and is well-
worth the money. As a conclusion, we can thoroughly rec-
ommend the given procedure to anyone with an interest in
the public presentation of interactive graphics applications,
be it for product marketing or educational purposes.

Creating uniform layouts for very large presentations us-
ing general image manipulation software may be quite cum-
bersome. However, first results show that the slide creation
can be completely scripted based on IATEX templates, which
has the additional benefit of allowing the easy integration
of complex mathematical expressions into the explanatory
texts given on the slides.

Acknowledgments

We are grateful to Peter Burger for coordinating the case
construction and to Erwin Beck for integrating the electron-
ics into the case. The touchscreen was gratefully provided
by Hanns Ruder, University of Tiibingen.

References

[1] Microsoft Corporation, PowerPoint Product Information,
http://www.microsoft.com/office/powerpoint/prodinfo, 2004.

[2] Sun Microsystems, Inc., OpenOffice Impress
http:/f/www.openoffice.org/product/impress.html, 2004.

[3] W.R. Stevens, Advanced Programming in the UNIX Environ-
ment, Addison-Wesley, 1993.

[4] W. W. Ho and R. A. Olsson, “An Approach to Genuine Dy-
namic Linking,” Software, Practice and Experience, Vol. 21
4), pp- 375-390, John Wiley & Sons, 1991.

[5] A.Nye, Volume 0: X Protocol Reference Manual, X Window
System Series, O’Reilly & Associates, 4th Edition, 1995.

Appendix — Example Slide Descrip-
tion File

NOTE: DO NOT RUN ANY ACTIONS IN THE
BACKGROUND ! THE PRESENTATION
TOOL TAKES CARE OF THIS!

H= oW #E B

Slide format:

<slide number> <file mask>
Service = 80x110+1200+915
Up = 83x83+1155+742

Down = 83x83+1155+899
MainMenu = 260x80+983+140
AboutVIS = 260x80+983+220
NextDemo 260x80+983+300
PrevDemo 260x80+983+380
MainDemol = 548x325+36+140
MainDemo2 = 548x325+404+309
MainDemo3 = 548x325+36+478
MainDemo4 = 548x325+404+647
MainDemo5 = 548x325+36+222
MainDemo6 = 548x325+404+301
MainDemo7 = 548x325+36+560
MainVis = 376x320+20+463
MainSGS = 376x320+452+532
MainITE = 376x320+887+463
VolumeDecrease = 80x80+983+620
VolumeIncrease = 80x80+1163+620
Key0 = 100x100+445+690

Keyl = 100x100+318+310

Key2 = 100x100+445+310

Key3 = 100x100+571+310

Key4 = 100x100+318+436

Key5 = 100x100+445+436

Key6 = 100x100+571+436

Key7 = 100x100+318+563

Key8 = 100x100+445+563

Key9 = 100x100+571+563
Asterisk = 100x100+318+690
Hash = 100x100+571+690

#OHHH A A
VIS MAIN PAGE
#oRHHHEH RS A

[0 slides/slideMain_0_]
#{MainMenu $21 <0, ./click,-1>}
{Service $24 <0,./key.sh a,-1>}
{Mainvis $1 <0, ./click,-1>}
{MainSGS $2 <0, ./click,-1>}
{MainITE $3 <0, ./click,-1>}

#OHHH A R A
VIS MAIN PAGE
OHHHHAEH AR AR A

[1 slides/slideVisMain_0_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $2 <0, ./click,-1>}
{NextDemo $3 <0, ./click,-1>}
{MainDemol $4 <0, ./click,-1>}
{MainDemo2 $6 <0,./click,-1>}
{MainDemo3 $9 <0, ./click,-1>}
{MainDemo4 $11 <0, ./click,-1>}

oA

SGS MAIN PAGE

#oRHHHERES A

[2 slides/slideSGSMain_0_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $3 <0, ./click,-1>}
{NextDemo $1 <0, ./click,-1>}
{MainDemol $16 <0, ./click,-1>}
{MainDemo2 $18 <0, ./click,-1>}
{MainDemo3 $14 <0, ./click,-1>}
{MainDemo4 $20 <0, ./click,-1>}

#ORHHHR AR

ITE MAIN PAGE

ot HHER A A

[3 slides/slideITEMain_0_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $2 <0, ./click,-1>}
{MainDemo5 $21 <0, ./click,-1>}
{MainDemo6 $22 <0, ./click,-1>}
{MainDemo7 $23 <0, ./click,-1>}

[4 slides/slidePowerViz_0_]
<7, ./powerviz.1l.4.6.1linux, 4-5>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $6 <0, ./click,-1>}
{PrevDemo $11 <0, ./click,-1>}
{Down $5 <0, ./click,-1>}

[5 slides/slidePowerViz_1_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $6 <0, ./click,-1>}
{PrevDemo $11 <0,./click,-1>}
{Up $4 <0,./click,-1>}

[6 slides/slideStudent_0_]
<1l,./mplayer_Stud, 6-8>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $9 <0, ./click,-1>}
{PrevDemo $4 <0, ./click,-1>}

{Down $7 <0, ./click,-1>}
{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[7 slides/slideStudent_1_]

{MainMenu $0 <0, ./click,-1>}

{AboutVIS $1 <0, ./click,-1>}

{NextDemo $9 <0, ./click,-1>}

{PrevDemo $4 <0,./click,-1>}

{Up $6 <0,./click,-1>}

{Down $8 <0, ./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[8 slides/slideStudent_2_]

{MainMenu $0 <0, ./click,-1>}

{AboutVIS $1 <0, ./click,-1>}

{NextDemo $9 <0, ./click,-1>}

{PrevDemo $4 <0, ./click,-1>}

{Up $7 <0,./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[9 slides/slideVisHum_ 0_]

<3, ./vProgram, 9-10>

{MainMenu $0 <0, ./click,-1>}
{AboutVIs $1 <0, ./click,-1>}
{NextDemo $11 <0, ./click,-1>}
{PrevDemo $6 <0, ./click,-1>}
{Down $10 <0, ./click,-1>}

[10 slides/slideVisHum_ 1_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $11 <0,./click,-1>}
{PrevDemo $6 <0, ./click,-1>}
{Up $9 <0,./click,-1>}

[11 slides/slidePoint_0_]
<12, ./pointcloud,11-13>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $4 <0, ./click,-1>}
{PrevDemo $9 <0, ./click,-1>}
{Down $12 <0, ./click,-1>}

[12 slides/slidePoint_1_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $4 <0, ./click,-1>}
{PrevDemo $9 <0, ./click,-1>}
{Down $13 <0, ./click,-1>}

{Up $11 <0, ./click,-1>}

[13 slides/slidePoint_2_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $1 <0, ./click,-1>}
{NextDemo $4 <0,./click,-1>}
{PrevDemo $9 <0, ./click,-1>}
{Up $12 <0, ./click,-1>}

i ORFRAR AR AR AR AR
SGS MATERIAL
F OAH AR AR AR AR AR AR S A S

[14 slides/slideOctree_0_]
<1l,./sppl103,14-15>

{MainMenu $0 <0, ./click,-1>}
{AboutVIS $2 <0, ./click,-1>}
{NextDemo $16 <0, ./click,-1>}
{PrevDemo $20 <0, ./click,-1>}
{Down $15 <0, ./click,-1>}

[15 slides/slideOctree_1_]
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $2 <0, ./click,-1>}
{NextDemo $16 <0, ./click,-1>}
{PrevDemo $20 <0,./click,-1>}
{Up $14 <0, ./click,-1>}

[16 slides/slideHWelt_0_]
<1l,./mplayer_HWelt, 16-17>

{MainMenu $0 <0,./click,-1>}

{AboutVIS $2 <0, ./click,-1>}

{NextDemo $18 <0, ./click,-1>}

{PrevDemo $14 <0,./click,-1>}

{Down $17 <0, ./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[17 slides/slideHWelt_ 1_]

{MainMenu $0 <0, ./click,-1>}

{AboutVIS $2 <0, ./click,-1>}

{NextDemo $18 <0, ./click,-1>}

{PrevDemo $14 <0,./click,-1>}

{Up $16 <0, ./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase, -1>}

[18 slides/slideFlowCo_0_]

<1l,./mplayer_FlowCo, 18-19>

{MainMenu $0 <0, ./click,-1>}

{AboutVIsS $2 <0, ./click,-1>}

{NextDemo $20 <0, ./click,-1>}

{PrevDemo $16 <0, ./click,-1>}

{Down $19 <0,./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[19 slides/slideFlowCo_1_]

{MainMenu $0 <0, ./click,-1>}

{AboutVIS $2 <0, ./click,-1>}

{NextDemo $20 <0, ./click,-1>}

{PrevDemo $16 <0, ./click,-1>}

{Up $18 <0, ./click,-1>}

{VolumeDecrease <0, ./volume_decrease,-1>}
{VolumeIncrease <0, ./volume_increase,-1>}

[20 slides/slideMozart_0_]

<1, ./mplayer_Mozart, 20>

{MainMenu $0 <0, ./click,-1>}

{AboutVIS $2 <0, ./click,-1>}

{NextDemo $14 <0, ./click,-1>}

{PrevDemo $18 <0, ./click,-1>}
#{VolumeDecrease <0, ./volume_decrease,-1>}
#{VolumeIncrease <0, ./volume_increase,-1>}

#OHHH A A
ITE MATERIAL
FORHHH AR AR R A

[21 slides/slideWellen_0_]
<1l,./mplayer_Wellen,21>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $3 <0, ./click,-1>}
{NextDemo $22 <0, ./click,-1>}
{PrevDemo $23 <0,./click,-1>}

[22 slides/slideTomo_0_]

<1, ./mplayer_Tomo, 22>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $3 <0, ./click,-1>}
{NextDemo $23 <0, ./click,-1>}
{PrevDemo $21 <0, ./click,-1>}

[23 slides/slideFelder_0_]
<1l,./mplayer_Felder,23>
{MainMenu $0 <0, ./click,-1>}
{AboutVIS $3 <0, ./click,-1>}
{NextDemo $21 <0, ./click,-1>}
{PrevDemo $22 <0,./click,-1>}

FORHRA R AR AR AR AR AR
CODE LOCK
F AR AR AR AR AR AR HHH S

[24 slides/slideCodeLock_0_]
{MainMenu $0 <0, ./click,-1>}
{Key0 <0, ./key.sh 0,-1>}
{Keyl <0, ./key.sh 1,-1>}
{Key2 <0, ./key.sh 2,-1>}
{Key3 <0, ./key.sh 3,-1>}
{Key4 <0, ./key.sh 4,-1>}
{Key5 <0, ./key.sh 5,-1>}
{Key6 <0, ./key.sh 6,-1>}
{Key7 <0, ./key.sh 7,-1>}
{Key8 <0, ./key.sh 8,-1>}
{Key9 <0, ./key.sh 9,-1>}
{Asterisk <0,./key.sh a,-1>}
{Hash <0, ./key.sh b,24>}

