neeess Universitat Stuttgart

WSl Fakultat Informatik, Elektrotechnik und Informationstechnik

Realizing Enterprise Integration
Patterns in WebSphere

Thorsten Scheibler, Frank Leymann

Report 2005/09
October 20, 2005

Institut fur Architektur von
Anwendungssystemen

Universitatsstr. 38
70569 Stuttgart
Germany

CR:C.24,D.1.7,D.2.11,D.2.12

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Summary

Over the last few years, patterns became focus of many activities in both,
software development and research. Because of the financial significance of
enterprise application integration (EAI) technologies corresponding patterns in
this area are especially important and, thus, found a lot of interest. Even a
standard textbook has been well-established in this space [2].

People are asking for guidelines about how to use the patterns from [2] in their
environment. [1] provides a sample integration scenario together with guidelines
of how to implement this integration scenario based on a subset of the patterns
from [2] in the BizTalk Server 2004 environment. In this document, we use the
same scenario and the same patterns as in [1] and show how to implement them

in WebSphere.

1 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Contents

1. Introduction

1.1. Prerequisite

2. Overview

2.1. Requirements

2.2. Designing with Patterns

3. Mapping Patterns to WSAD-IE

4. Implementing the Application

4.1. The Credit Bureau Business Process

4.2. The Bank Web Services

o 00 OO A W W W W

4.3. The Loan Broker Business Process

5. Conclusions

6. References

2 of 36

[ERY
ol

20
35
36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

1. Introduction

In [1] the authors have shown how a simple integration application designed
with Enterprise Integration Patterns [2] can be implemented with the help of
Microsoft BizTalk Server 2004. We now want to show how you realize the
corresponding Enterprise Integration Patterns architecture with IBM
WebSphere, especially exploiting WebSphere Studio Application Developer
Integration Edition 5.1.11 (WSAD-IE). The solution will be based on BPEL [5]
and IBM extensions of the BPEL called BPEL+ [3]. The corresponding processes
will be executed in a product called WebSphere Process Choreographer [4]. This
runtime is included in WebSphere Application Integration Server 5.1 and is
referred to as BPC [3].

1.1. Prerequisite

In chapter 4 “Implementing the Application” we are using WSAD-IE to
implement our proposed solution. If you want to try this by your own you can
take this Technical Report as a tutorial about how you can achieve that. The only
prerequisite is that you are familiar with WSAD-IE: we don’t go into all details
and may even skip some steps which are needed for getting a running
implementation. Furthermore you have to understand the basics of the Web
Service Architecture [6] in particular how BPEL works together with the various
Web Service technologies.

2. Overview

First, we take look at the example. A customer provides some personal
information and the terms to get a loan. The loan broker needs this data to
determine the best loan offer the customer is asking for. This input is sent to the
loan broker. In return the customer receives the best interest rate the broker
could obtain from the banks. In order to get this result, the loan broker interacts
with a credit bureau to receive the credit worthiness of the customer after
receiving a customer’s request. This result together with the terms of the favored
loan will be transferred to several loaners (1.e. banks). If these banks offer a loan
based on the given input, these offers will be immediately sent back to the loan
broker. The broker chooses the best choice out of the multiple quotes and returns
the result to the customer. Figure 2.1.1 shows the overview of the scenario.

2.1. Requirements
The loan broker needs the following input provided by the customer:

The customers social security number to uniquely identify him or her
The desired loan amount in Euro
The desired loan term in months

The customer will get following information as result:

The interest rate of the best quote chosen by the loan broker
A unique Quote ID from the loaner for future references

L http://www-306.ibm.com/software/integration/wsadie/support/

3 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

» Bank1l
Customer [« ——— » Bank?2
Broker
A
v » Bank3
Credit
Bureau

Figure 2.1.1: Overview of the example scenario

The loan broker has to interact with a credit bureau and different banks to
achieve the result.

To communicate with the banks the loan broker requires information about the
credit standing of the customer so he can enrich the information passed to the
banks with needed pieces. The loan broker transfers the social security number
to the credit bureau so that the credit bureau can uniquely identify the customer.
In return the credit bureau provides the credit score and the credit history length
of the costumer to the loan broker. With these information and the initial input
values the broker can contact different banks to get different loan quotes.

We define the communication with three banks. Each of them offers specialized
loans for different kinds of costumer. The loan broker will filter request to banks
so that they are not burdened with quote requests from customers which don’t fit
to their customer portfolio. Each bank defines its customer portfolio with
preferences describing the wanted duration of the customer’s credit history and
the credit score rating. The preferences for the three banks look like this:

Bank 1 — Customer Bank for the widest range of customers:

Credit Score has to have 500 or higher and the credit history has to be at least 5
months.

Bank 2 — Exclusive Bank for the best rates offered to a top-end clientele:

Credit Score has to have 700 and higher and the credit history length has to be at
least 10 months.

Bank 3 — Loan Shark which gives loans to everybody and makes no restrictions
to credit score neither to credit history length.

The banks will decide individually whether they will expose an offer or not. In
both cases the bank has to return a reply to the loan broker. If it won’t make an
offer this conclusion has to be included in the reply. The loan broker can
determine the result afterwards. With this procedure the loan broker can
distinguish a missing response from the decision of not providing an offer.

2.2. Designing with Patterns

To create an architecture for the loan broker application we first have to
determine the processing steps for getting the appropriate information for the
customer. The loan broker application has to do the following:

1. Receive requests from the customer.

4 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Obtain credit score from the credit bureau for every customer.
Select the banks to be contacted.

Request every selected bank for loan quotes.

Receive requests from each bank.

Select the best offer out of the requests.

7. Reply the best offer back to the customer.

Each single step can be modeled with the help of one or more patterns. In each
step we may choose different kinds of patterns. We simplify the procedure of
selecting a specific pattern by leaving out the discussions of the benefits and
drawbacks of each solution. We will just explain why the chosen pattern is right
for our architecture. Furthermore we won’t explain in detail what the pattern is
about. If you're interested in more detailed information see [2].

S

Let’s begin with the first step where a customer sends a request to the loan
broker. The customer only sees an interface which offers a special operation or
service to him. The possibly complex structure of the underlying system is
hidden. These considerations lead to a pattern which is called “Service Interface”.
While implementing this pattern you have to be aware of some design decisions,
e.g. you have to think about the communication style. In our case we use
synchronous communication between the customer and the loan broker
application.

Before a bank can be contacted more information is needed. Because of that we
have to enrich the content of the customer’s request of the first step with
additional data. As the description already suggests we use the “Content
Enricher” patter for that purpose. In our case the content enricher communicates
with an external credit bureau to get the required information.

After enriching the request in step 2 we have to walk through the next steps and
have to send it to multiple banks. For that we have to define a channel for each
connected bank. Depending on the incoming message the list of recipients is
determined, and the message is forwarded to all channels associated with the
recipients in the list. Afterwards we have to collect all the response messages of
the different banks and form a single message out of them. That behavior can be
realized based on the “Scatter-Gather” pattern which broadcasts a message to
multiple recipients and aggregates the different responses into a single message.
In our case the “inner structure” of the scatter-gather pattern consists of a
“Recipient List” which contains a rule base for selecting the appropriate
recipients and an “Aggregator” which selects the best quote of the banks and
forms a single message out of the result. The aggregator service may be used by
multiple processes at a time. Because of that we need a “Correlation Identifier”
which is inserted into the response messages of the banks.

With the “Scatter-Gather” Pattern we have processed steps 3 to 6. To finalize our
loan broker example process the result has to be sent back to the calling
customer. This is done by the already selected “Service Interface” pattern where
the customer calls a method to get a response. But before we can send back the
response message we have to transform the result message of the aggregator into
a format the customer expects. We utilize the “Message Translator” pattern
which translates one data format into another to accomplish that.

Put all these patterns together results in the architecture of our overall solution
shown in Figure 2.2.1.

5 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Web Credit
Service Bureau Java
(BPEL Process) Classes
T Service
— 1 Interface
Bank 1
Loan Request (WSDL) v

A

L[

i

Bank 2

Enricher Recipient List

?D — 0| | aég 1

Best Quote Bank 3
[]
<« [4 [l«— <
n (]
= DEespR Translator Aggregator Correlation
—>» Control Flow Identifier
Loan Broker BPEL Process

Figure 2.2.1: The architecture with involved patterns

3. Mapping Patterns to WSAD-IE

After choosing our patterns based on which we described the architecture of our
solution we have to consider how we can implement these patterns within a
J2EE environment offered by the WSAD-IE including Web Service capabilities
and BPEL execution support.

Service Interface

A “Service Interface” within a Web Service environment is simply represented by
a port type within Web Service Description Language (WSDL) file. Inside this file
all information about the port type, its bindings and ports is specified. Because
we want to build a business process to calculate the loan broker outcome we need
a BPEL based business process in conjunction with the WSDL file. Within this
process the other patterns will be implemented. The WSDL file will also be used
to define the Partner Link Type of the Partner Role of the business process which
can be used by the customer’s application.

Content Enricher

The content enricher consists of two parts which both must be implemented. The
first part to implement is the credit bureau service itself which is used to enrich
the customer’s request with additional information. Because we want to show the
versatility of WSAD-IE we use different methods of implementing some features
of the loan broker scenario. For the credit bureau we choose to calculate the
additional data within a separate business process which will be encapsulated as
Web Service.

The second part of the “Content Enricher”is implemented within the loan broker
business process. This part will handle two steps. First we have to call the credit
bureau and afterwards we have to add additional data to the customer’s request.
These two steps will be implemented by an “Invoke” activity followed by a
“Transform” activity.

6 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Recipient List

The recipient list pattern gets a single message as input, copies it and transfers it
to multiple recipients. So we can process the recipient list within three steps. In
the first step the recipients of an appropriate message have to be determined. In
the second step the message has to be copied. This can be done in two ways: first,
copy the incoming message before selecting the recipients; second, copy the
messages after determining the recipients. We decided for the first variant
because we want the copy activity at one single place at the price of a certain
overhead because we copy messages that sometimes won’t be used afterwards.
But since we're just talking to three banks that overhead is affordable. The last
step 1s to send the copied messages to the previously selected banks. In our case
this 1s done in parallel.

To implement this behavior we're using a “Flow” activity wherein three flows are
modeled, one for each bank. To select the recipients we include “Switch” activities
followed by a “Case” activity, and for copying messages we utilize an “Assign”
activity. Sending requests to the banks is done by “Invoke” activities.

Correlation Identifier

A correlation identifier pattern (note, that this is different from BPEL’s build-in
feature of correlation sets) simply takes an identifier and adds it to a message. So
first we have to generate a unique identifier for our process. Afterwards we just
construct a new message with the help of an “Assign™ activity- one for each bank
response. These messages can be sent to the according aggregator.

Aggregator

The aggregator is collecting all bank responses and calculates the best result out
of the incoming messages. We model this with the help of a “Flow” activity with
three different flows for each possible response message. In the flow the
aggregation service is called with an “Invoke” activity and the response message
is added to the response set included within the aggregator. Afterwards the
service 1s called one more time to request the calculation of the best result.

The aggregator will be implemented as Java singleton [7] so that we can be sure
that all messages are added to the same instance of the service implementation.
Because of that we have to be aware of correlation so that the aggregation service
knows which incoming message belongs to which caller (i.e. process).
Furthermore the service needs a correlation ID to identify which messages belong
together when calculating the best result. That’s very important when the
aggregation service is called by multiple clients or multiple times during its
lifetime.

Message Translator

The message translator can be easily implemented by a special activity within
WSAD-IE: With the help of the “Transform” activity it’s possible to transform one
or more incoming messages to one outgoing message.

7 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

4. Implementing the Application

4.1. The Credit Bureau Business Process

The credit bureau is required to enrich the requests for the banks with additional
information about the customer’s credit status. The bureau provides this service
as a Web Service. The message types, port types and bindings are described in a
WSDL-file. A BPEL-process which will determine the needed information resides
behind the Web Service. The process acquires the credit worthiness of the
customer with a numerical credit score. This score together with the duration of
the credit history will be used by the loaners to determine the risk of lending
money to the customer. For the sake of simplicity we will use randomly generated
values instead of a complex mathematical calculation algorithm to get the values.

The loan broker utilizes the credit bureau by calling the Web Service passing the
social security number (SSN) as parameter which will uniquely identify the
customer. As response the broker expects a credit score as well as the length of
the credit history.

Implementation

We have to walk through a number of steps to construct the credit bureau Web
Service (i.e. the business process of the credit bureau):

1. Define the message formats of all incoming and outgoing messages.

2. Define the operations of the Web Service.

3. Create a new business process for the credit bureau.

4. Define the partner link type and partner role of the created BPEL-process.

5. Define the variables inside the BPEL-process which will represent the

incoming and outgoing messages.

Add a receive activity to the process to receive incoming messages.

7. Construct a reply message with the help of a so called “Java Snippet”.

8. Add a reply shape to the process in order to send the result of the
calculation.

9. Deploy the process to the WebSphere Application Server.

10.Publish the generated application onto the application server.

11.Start the application on the server.

12.Test the application with the help of the internal test client.

o

Step 1 - The message formats

Before we start with the design of the business process we first need to specify
the incoming and outgoing messages of the process. The format will be designed

with the help of XML Schema. WSAD-IE provides us with the possibility of
creating XSD files within a graphical XML editor.

When using this XML schema inside a WSDL file which represents the credit
bureau process, WSAD-IE will generate corresponding messages as Java classes
(see Step 3 for details).

The schema which represents request and response messages should look like
Figure 4.1.1 in WSAD-IE XML Schema designer.

8 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

:E Qutling az v x || 5] CreditBureauiessages.xsd X
=I-[8] CreditBureautessages.sd | | -oeginment | =
-4 | CreditBureauRequest - Schema
= 090
[e] 55M Marmespace
= 'ﬂ CreditBureauResponse Prefix: | ths
=l-ega & URI: | http:ffloanbroker.iaas. uni-skul
| 550
‘&| CreditScore Apply
'&] HistoryLength B—! o9 [E— S5N
Other Attributes | Walue
S5M wersion
wrol:lang
attributeFormbefault
CreditScore elementFormbef ault
E— 9" blockDef ault
finalDefault
HistoryLength
be] [2] x
Source | Graph

Figure 4.1.1: Credit Bureau Messages Schema

Step 2 - Define the operations

The next step in creating the credit bureau process is to define the operations and
the input and output parameters, i.e. the messages. Because we want to publish
that process as a Web Service we will be designing a WSDL-file to describe the
behavior of the service. At this part we don’t need to take care of the binding. We
only need the description of the port types together with including operations and
messages. To design such a file WSAD-IE provides a WSDL editor.

For our purpose we need the port type “CreditBureauPort” which offers only one
operation which is called “GetCreditScore”. The operation has an input and an
output message. Each message part has the format of the previous defined
schemas (see Figure 4.1.2).

Definition

Imports Types

=8

Services Bindings Port Types Messages

[[CreditBureauPort = C M
[i GetCreditScore

quest (tns:CreditBureauRequest)
[input B (4 CreditScoreResponseMsg
{1 output [P CreditScoreResponse (tns:CreditBureauResponse)

ogo =2—

Figure 4.1.2: Credit Bureau Port Type definition

Step 3 - Create a new business process

The next step is the creation of a business process. We have to create a new
empty business process so we can customize it for our needs. WSAD-IE is
working with BPEL to describe and execute a business process. After creating the

9 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

process we have to delete the default values of partner link, variables and receive
and reply shapes at first. If the process and its corresponding WSDL description
are cleaned we can go on to the next step.

Step 4 - Define the partner link role

Each BPEL process must have a partner role. The partner role is described
within the partner link tag which itself can be described by a WSDL file. We use
the description created in step 2. Import the file into the business process and
change the implementation as shown in the picture (see Figure 4.1.3).

Now we have created a business process which will take over the partner link
role as “CreditBureau” within the partner link type “CreditBureaoPortLT” which
offers the port type “CreditBureauPort” with the operation “GetCreditScore” to
1ts possible users.

2 CreditBureauBP.bpel 3

[% " | Partner Links == o
Variables wa o = n -
CreditBureauBP CreditBureauPort |
> . .
>
4l
1 Correlation Sets == s
)
| CreditBureauPort —-oOd
Description File: CreditBureaubP . wsdl
Implementation 5 .
Server Partrer Link Type: CreditBureauPortLT - | | Mew. .. | | Edit
Partner's Role Mame: Process Rols Name:
[Hone - | - [creditBureauPortRole |
<>
Partner's Port Type: Process Pork Type:
[Hone - | [CreditBureaurort |

Figure 4.1.3: Implementation of the partner link

Step 5 - Define the variables inside the process

After the declaration of the partner link we have to create the variables which
represent the incoming (request) and outgoing (response) messages during the
existence of a process instance. Add a variable to the business process by pressing
the “add” button beside the variables label. Enter “CreditScoreRequest” as the
variable representing the request sent to the process (or better Web Service) and
“CreditScoreResponse” as the variable representing the response. As types we
have to refer to the previously (step 2) created WSDL file and select the according
message. In case of “CreditScoreRequest” you have to choose
“CreditScoreRequestMsg” as type. During the creation of the variables WSAD-IE
generates Java Bean classes. In our case two Java classes are generated namely
“CreditBureauRequest.java” and “CreditBureaResponse.java”.

10 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

2 CreditBureauBP.bpel X

[% || Partner Links w=
Varisbles = o =
CreditBureauBP CreditBureauPort ||
5 CreditSroreRequest
A r a
CreditScoreReply
* L a
-
J Correlation Sets ss s
)
) CreditscoreReply - oOd
(Dt ity File: CreditBureau, wsd|

Message

: Credits R [
p—— Messane: reditscoreResponseMsg v|

Parts: | CreditScareResponse @ CreditBureauResponse

Figure 4.1.4: Declared variables in the business process

Step 6 — Add a receive activity

The process is now prepared for adding a receive shape which will accept
incoming requests on the port type “CreditBureauPort” and the operation
“GetCreditScore”. After adding the shape we have to connect it to the
corresponding partner link select the operation and assign the incoming message
variable. By now the process 1s able to receive an incoming
“CreditScoreRequestMessage” message on the appropriate port and can access
therein included values.

Step 7 — Construct the reply message

In this step the real work of the process has to be realized. In our case the
computation and determination of the credit score will be a single and very
simple step. In real life this work may consist of different steps, maybe contact
multiple backend systems and do a complicated computation. For the sake of
simplicity our calculation of the credit score depends on some random values.

To construct the response message we have to add a “Java Snippet” activity to
the process and fill it with simple Java Code shown in Listing 4.1.1.

jJava.util _Random random = new java.util_.Random();
int creditScore = random.nextInt(600) + 300;
int historylLength = random.nextint(19) + 1;

CreditBureauResponse resp = new CreditBureauResponse();
resp.setHistorylLength(historylLength);

resp.setCreditScore(creditScore);

resp.setSSN(getCreditBureauRequest() .getCreditScoreRequest().getSSN());

CreditScoreResponseMsgMessage msg = new CreditScoreResponseMsgMessage();
msg.setCreditScoreResponse(resp);
setCreditBureauResponse(mnsg);

Listing 4.1.1: Construct the credit bureau reply

11 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

The code creates two random values, one for the credit score and one for the
history length. Afterwards a new message is created and filled with the
generated values. This message will be put into the context of the BPEL process
so that subsequent activities can work with the variable. In our case only the
reply activity needs the variable to send the response back to the requesting
consumer.

Step 8 — Add a reply activity

To finish the process we have to add a reply shape which takes a variable out of
the process context and sends it to the requesting customer. At first we have to
set the partner link of the reply activity, select the operation and the variable
that contains the outgoing message.

2 CreditBureauBP bpel <

% | Partner Links == o

Variables = o .
CreditBureaubP CreditBureauPort |

CreditacoreRequesk

7
CreditScoreReply Receive
¢
L] L]
& |
Javasnippet
_J n n
] | 3
Correlation Sets s o Reply
cJ
| JavaSnippek - o0
Description java.util.Random random = new java.util.Randomi): S
Implementation int creditScore = random.nextInt (600) + 300;
Daocumentation int historylLength = random.nextInt (19) + 1;

Jain Behaviour
de.unistuttgart.iaas. loanbroker.CreditBureaukesponse resp = new de.unistut

Server
resp.setHistoryLength (historyLength)
resp.setlredit3core (creditScore) 2

resp.set3S(getCreditScoreRequest () JgetCrediticoreRequest [) .get33N (1)

de.unistuttgart.iaas. loanbroker msy.CrediticoreResponselsglessage msy = ne

man . AetCreditSenreResnnnas (resnd o ot

b4

Figure 4.1.5: The overall credit bureau business process

The credit bureau business process is now ready for computing the credit score
for a customer.

Step 9 — Deploy the process

After creating the business process it has to be made available on an application
server. In our case we're using an integrated WebSphere Application Integration
Server (WAS) Version 5.1. First set up such a server. This procedure is far

12 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

beyond our scope so read continuative material which you can find at the help
section of WSAD-IE. Afterwards we have to deploy our business process. WSAD-
IE provides us with functionality of generating deployment code. We only have to
adjust the bindings that shall be generated for the port type of the business
process. Because the process, i.e. the Web Service, is called by an external
partner (in our case the loan broker process) the generator is set to generate the
binding for SOAP over HTTP. Other bindings aren’t needed at present. Now
WSAD-IE generates a lot of projects, the WSDL files, EJBs, deployment
descriptors and so on. In short, everything needed for the publishing of the
process on a WAS.

Step 10 - Publish the generated application

Publish the application containing the process on the server after deployment of
the credit bureau process. Add the previously generated EAR project to the
server’s application projects. Afterwards publish the application. This is done by
selecting the option in the context menu entry of the server. The job is done
automatically and the database is being updated so that no further interaction is
needed.

Step 11 - Start the application

After publishing the application it’s required to start the application in order to
use it. This 1s done by selecting the appropriate menu item out of the context
menu entry of the server. The Server tries to start the application. The result is
shown at the server’s console.

Step 12 - Test the application

After publishing and starting the application on the server we can test the
business process with the help of WSAD-IE. The integrated “Business Process
Web Client” offers the possibility among other things to test business processes.
This is done by entering the values of the request message into a web front-end.
Afterwards the web client shows the results, 1.e. the values of the response
message, generated by the business process. The following two screenshots show
this proceeding.

13 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

i Process Web client X

WebSphere. Business Integration
Server Foundation

Process choreographer

Help UserlD UMALTHENTICATED

Work ltem Lists

Ern Process Input Message

& Define Viork ftem
List

Uze this page to change the input message before you complete the actions to start the business

process [il

Process Instance Lists

Available Actions

Start Instance

Process Template Description

Bl Crested By hle

B sdministered By e

B Undo Actions in
Error

& Define Process
Instance List

Walic Fram

Documertation AMI03 1:00:00 Ah

B Description Delete on Completion =
ez UanphliEE Template Mame CrediBursaubP Can Run Interruptad =
B py Templates Created 22205101527 AM Can Run Synchronoushy 45
& Define Template List
Administration Service
B Manage YWork tems .
for Process Mame Receive
Instences Descrigtion
B Manace Activitizs PortType CreditBureauPort
for Process Operation GetCreditScore

Instances

Process Input Message

CreditScoreRequest. SSH

555885444

(string)

Figure 4.1.6: Enter request values for a business process

As reminder the credit bureau web service requires a SSN as input value and
returns the same SSN together with a credit score and a history length. In our
example we set the SSN to ‘655888444’ and send this request (encapsulated in a
request message) to the web service. As result we get the same SSN along with
random values for credit score, ‘860°, and for the history length, ‘7’.

& Process Web client X

WebSphere Business Integration
Server Foundation

Process choreographer

Help UserlD UNAUTHENTICATED

Work ltem Lists

EMy ToDos Process Qutput Message

Detine Work lkem
List

Use this page to view the results of & business process that you s‘tarted_m

Process Instance Lists Process Template Description

B Created By Me

B pdministered By e | Dosumentation Crested 202205 10:15:27 AM

Bl Undo 2ctions in Descripfion) Walid From 1403 10000 A
Error Template Mame CreditBuresuBPR Delete on Completion =

Detine Process Wersion Can Run Interrupted =

Instance List Can Run Synchronoushy g

Process Template Lists

B bty Templates
& Define Template List

B manadge Work tems
for Process
Instances

B hanage Activities
for Process
Instances

Process Cutput Message

CreditScoreResponse. S5M 555858444
CreditScoreResponse creditScore 60
Administration CreditScoreResponse historyLength 7

Figure 4.1.7: Overview of the result of the business process

14 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

4.2. The Bank Web Services

After getting the result of the credit bureau, the loan broker needs to interact
with different banks to obtain loan offers. Comparable to the credit bureau the
banks are Web Services which generate random values as reply to a request.

The banks will be designed as Java classes which will expose a method to the
caller that allows passing a quote request message. This method will reply a
quote reply message. All three banks are very similar so that we will implement
an abstract bank class which will encapsulate the calculation of the interest rate.
The three bank instances- named “CreditBankl”, “CreditBank2” and
CreditBank3”- will inherit form the abstract class “CreditBankAbstr” and
implement the bank specific values like name, maximum loan term and rate
premium.

& CreditBankAbstr

@ getloancucteshbstr()

|

@ CreditBank3 O CreditBank2 @ CreditBank1

@ getloanGuote() @ getloanGuote() @ getloanGuote)

Figure 4.2.1: Overview of the banks architecture

We want to use three different kinds of banks. Each of them is distinguished by
different bank names and a different customer’s target group. The three banks
differ from each other by the minimum premium rate, which determines their
profit margin, and the maximum loan term the bank is willing to accept.

Our example offers these three banks:

Bank 1 — Customer Bank services a wide range of customers. It charges a rate
premium at 2.0% and willing to engage a maximum loan term of 48 months.

Bank 2 — Exclusive Bank offers the best loans but only to a top-end clientele. The
bank only charges a 1.8% rate premium and is willing to accept a maximum loan
term of 60 months.

Bank 3 — Loan Shark offers quotes to all interested customers regardless of the
credit score and credit history length. Because of that it charges a high premium
rate at 4.0% and a maximum loan term of 72 months.

Implementation

The following steps are involved while creating the Web Services of the multiple
banks:

1. Define the message structures of the incoming and outgoing messages
Generate the Java classes which represents this message types
Implement the abstract Bank class with the quote calculation algorithm
Implement three different instances of the banks

Generate the Web Services for each of the bank

Test the Web Services with the help of a service proxy

SN

15 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Step 1 - Define message structures

At first we have to specify the message structures that will be used by the credit
bank Web Services. We also use XML Schema at this point to design the
messages. The proceeding will be the same as in the previous chapter.

With the help of the integrated XML Schema Editor of WSAD-IE 5.1 we create
the schema shown in Figure 4.2.2 for the incoming and outgoing messages of the
credit bank Web Service.

:E Qutling laz - X @BankQuUteMEssages.xsd x

= @ BankQuoteMessages.xsd Containment
= r’;ﬂ Bank{uoteResponse - Schema
= .D

s
(]| InterestRate Mamespace
[e] QuotelD

Prefix: [tns |
URI: |http:J‘,l’loanbroker.iaas.unkstuttgart.de |

Apply

le] ErrorCode
= r'.".'a BankQuoteReguest
=J.og

2
(e] 55M 55N

(] LoanTerm Other Attributes | Value |
[e]| LoanAmount WErsion

le| CreditScore xmlilang

[e]| HistoryLength attributeFormDefault ungualified
elementFormDefault qualified

LoanTerm

| | LoanAmount blackDefault

FinalDef aul:

CreditScore

HistoryLength

InterestRate

QuotelD

ErrorCode

<] E

Source | Graph

Figure 4.2.2: Credit Bank Messages Structures

Step 2 - Generate Java message classes

After designing the message formats and before implementing the Java classes
we first have to create the Java files which represents the two different
messages. WSAD-IE 5.1 provides us with functionality to generate Java classes
out of a XML schema file. In our case the tool will generate two Java classes
named “BankQuoteRequest.java” and “BankQuoteResponse.java”. With these
two classes we can specify the signature of the method which each instance of the
credit banks has to implement.

Step 3 - Implement the abstract Bank class

Before implementing the concrete instances of the banks the abstract class with
the main logic has to be implemented. This class provides a method which
separates the computation of the interest rate from the real instances. With this
circumstance the instances of the banks do not have to deal with the
computation. This is possible because the calculation of the interest rate only
differs in parameters which will be set in each of the instances. The
implementation of the abstract class is shown in Listing 4.2.1.

public abstract class CreditBankAbstr {

public double PRIME_RATE = 2.0;

16 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

private String bankName;
private double ratePremium;
private int maxLoanTerm;

/** The constructor */

public CreditBankAbstr() {
bankName = getBankName();
ratePremium = getRatePremium();

maxLoanTerm = getMaxLoanTerm();

}

protected BankQuoteReply getLoanQuoteAbstr(BankQuoteRequest request) {
BankQuoteReply reply = new BankQuoteReply();

iT (request.getLoanTerm() <= maxLoanTerm) {
reply.setinterestRate(
this.PRIME_RATE + ratePremium + (request.getLoanTerm() 7/ 12) /
10 + (new Random()).nextInt(10) / 10);
reply.setErrorCode(new Integer(0));

} else {
reply.setinterestRate(0.0);
reply.setErrorCode(new Integer(1));

}
reply.setQuotelD(bankName + (new Random()).nextInt(100000) + 99999);
return reply;

}

/** To be implemented by inheriting classes. */
public abstract BankQuoteReply getLoanQuote(
BankQuoteRequest argBankQuoteRequest);

/** To be implemented by inheriting classes. */
protected abstract String getBankName();

/** To be implemented by inheriting classes. */
protected abstract double getRatePremium();

/** To be implemented by inheriting classes. */
protected abstract int getMaxLoanTerm();

by
Listing 4.2.1: The abstract bank class

As you can see, the whole “magic” happens inside the method
‘getLoanQuoteAbstr’ where the answer of the Web Service is being created with
random values. In real life this computation is much more complex and would
involve backend and information systems. In our case this calculation fits our
needs.

The information of not offering a loan quote is being handled in the else branch
where the interest rate is set to 0.0 and the error code is set to 1. With this
information the caller (in our case the loan broker) can distinguish if a bank is
willing to offer a loan or not.

Step 4 - Implement three instances of the banks

The next step is to implement three different instances of the abstract credit
bank class. The instances inherit from the abstract class and have to implement
four different methods. With the help of these methods each bank differs from the

17 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

others by setting bank specific values. As mentioned in 2.1 “Requirements” the
differences are shown in the different code pieces. The source code of
CreditBank1.java is shown in Listing 4.2.2.

public BankQuoteReply getLoanQuote(BankQuoteRequest argBankQuoteRequest) {
return getLoanQuoteAbstr(argBankQuoteRequest);
}

protected String getBankName() {
return "ConsumerBank™;
¥

protected double getRatePremium() {
return 2.0;

}
protected int getMaxLoanTerm() {
return 48;

}

Listing 4.2.2: CreditBank1 - Customer Bank

CreditBank2.java implements the abstract methods as shown in Listing 4.2.3.

public BankQuoteReply getlLoanQuote(BankQuoteRequest argBankQuoteRequest) {
return getLoanQuoteAbstr(argBankQuoteRequest);
}

protected String getBankName() {
return "ExclusiveBank';
}

protected double getRatePremium() {
return 1.8;

}
protected int getMaxLoanTerm() {
return 60;

}

Listing 4.2.3: CreditBank2 — Exclusive Bank
At last have a look at the code of CreditBank3.java in Listing 4.2.4.

public BankQuoteReply getLoanQuote(BankQuoteRequest argBankQuoteRequest) {
return getLoanQuoteAbstr(argBankQuoteRequest);
}

protected String getBankName() {
return "Loan Shark™;
by

protected double getRatePremium() {
return 4.0;
}

protected int getMaxLoanTerm() {

18 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

return 72;

}
Listing 4.2.4: CreditBank3 - Loan Shark

Step 5 - Generate the Web Services

After implementing three instances of the banks we have to wrap these
implementations inside a Web Service. So we have to create a description of the
Web Service and a binding to the Java implementation. WSAD-IE 5.1 provides us
with functionality of generating a Web Service out of a Java class.

We have to walk through the procedure three times for every single credit bank.
For simplicity we will only present the result for the Customer Bank (see Figure
4.2.3). The other two Web Services are created analogues.

@] CreditBankiJavaService.wsdl X
e 2
Definition
Imports Types
4 CredtBank JavaBinding.wsdl
Services Bindings Port Types Messages
Bl CreditBank! Javaservice B[] CreditBanki JavaBinding B | Credigankl Bl [GetLoanQuoteRequest
B [CreditBank1 JavaPort T3] javaibinding Bl & Getloancuots P BankGuoteRsquest (tns:BankeuoteRsquest)
Ji java:address B33, format:typeMapping 4 input Bl [GetLoanGuoteReply
o8 interface L :BankQuotsRequest Q1 output P BankGuoteReply (tns:BankQuoteReply)
o nterfacel:BankQuateReply "
Bl @, GetloanGuote
Jg javaroperation
D input
11 output
< B3
Definition Documentation
Mame CreditBankl JavaService |
Namespaces Edit Mamespaces. .. |
Source | Graph

Figure 4.2.3: CreditBank1l.wsdl

Step 6 — Test the Web Services

To test the Credit Bank Web Services we can use a tool of WSAD-IE. This tool
generates a so called Service Proxy out of a WSDL file. With the help of this
proxy you can test a Web Service without the need of something else than this

class. Simply generate the proxy class an implement a test case as show in
Listing 4.2.5.

/**

* main method (for proxy unit testing)
* @generated

*/

public static void main(String[] args) {

try {
CreditBanklProxy aProxy = new CreditBanklProxy();

// user code begin {proxy_ method _calls}
BankQuoteRequest req = new BankQuoteRequest();
req.setCreditScore(250);
req.setHistorylLength(60);

19 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

req.setLoanAmount(45000) ;

req.setLoanTerm(45);

req.setSSN(47110815);

BankQuoteResponse resp = aProxy.getLoanQuote(req);
System.out.printIn(''Bank Quote Response of CreditBankl succesfull."™);
System.out._printIn(’® InterestRate: " + resp.getinterestRate() +

- ErrorCode: " + resp.getErrorCode());

// user code end
} catch (Exception e) {
// user code begin {exception_handling}
e.printStackTrace();
// user code end

}

Listing 4.2.5: Service proxy with a test case

When you run this proxy the Java Web Service will be tested. If everything goes
right you see the output of the test case in the console.

4.3. The Loan Broker Business Process

Until this step we only did preparatory work so that we are able to build the
main process of the example. Now we are ready to design the process and
integrate our previously created Web Services into the main flow.

Implementation

In order to implement the Loan Broker process, following steps have to be
performed:

1.

6.

7.
8.
9.

Define message schemas for the incoming and outgoing messages.

2. Define the operations of the Web Service.
3.
4
5

Create a new business process for the loan broker.

. Define the partner link role of the created BPEL-process.
. Define the variables inside the BPEL-process which will represent the

incoming and outgoing messages.

Enhance the process with a receive shape to be able to receive incoming
messages.

Insert the interaction with the Credit Bureau Web Service.

Construct the interaction with the banks.

Build the aggregator so that the different replies of the banks will be
aggregated into one single message.

10. Construct the reply message of the loan broker business process.
11.In order to send the result of the calculation, add a reply shape to the

process.

12.Deploy the process to the WebSphere Application Server.
13.Publish the generated application onto the application server.
14.Start the application on the server.

15.Test the application with the help of the internal test client.

Step 1 - The message schemas

The starting point in the creation of the loan broker process is the same as in the
sections above. At first we need to define the incoming and outgoing message

20 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

formats. As we're using the same technology as mentioned earlier we don’t need
to go through it anymore.
The message schemas should look like shown in Figure 4.3.1.

[S] LoarBrokerMessages.xsd X l

Containment | = |

A] Schema
Echema
Complex Types Mamnespace
E— Profic [|
URI: |http:,l’,l’loanbroker.iaas.uni-stuttgart.de |

type = xs:integer
type = xs:decimal
type = Hs:inkt
ES
type = xsiinteger
type = xs:decimal

InterestRate
type = xs:double
| QuoteId |
type = xs:string

Apply

| Yalue |

Cther Attributes
wersion

=mlilang
aktributeFormDefult
elementFormDefault
blockDefault
finalDefault

LoanQuoteResponse

Source lGraph J

Figure 4.3.1: Loan broker message schemas

Step 2 - Define the operations

The next step has to deal with the operations that our loan broker offers to its
clients. As we're creating a Web Service we have to describe the operations in a
WSDL file. The graphical representation of the file is shown in Figure 4.3.2.

@] LoanBroker wsd X l
& N
Diefinition
Imports Types
= 3
LoanQuoteResponse
Services Eindings Potk Types Messages m—
E [LoanBrokerPort & 4] Loan(uoteRequestMsg type = xsinteger
[$# GetloanQuote [P LoanQuoteRequest (tns:LoanQuoteRequest)
[input B] Loan(uoteResponselsg
<1 qutput; [P LoanQuoteResponse (kns:LoanouokeResponse) - type = wxsidecimal
InterestRate
type = xs:double
[Quoteld |
type = xsistHing
1< I
Definition Documnentation
Name [LoanBroker |
Mamespaces | Edit Mamespaces. .. |
Source lGraph I

Figure 4.3.2: Loan broker WSDL

21 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

The loan broker only has to offer one operation. The client gets its loan quote by
calling the “GetLoanQuote” operation with the message in the format defined in
the first step. As result he gets the best loan quote the loan broker could obtain
for him.

Step 3 - Create a new business process

Now we need a new empty business process. See the appropriate step at the
credit bureau process creation in section 4.1 “The Credit Bureau Business
Process”. Afterwards we get a cleaned BPEL and a cleaned WSDL file and go on
to the next step.

Step 4 - Define the partner link role

Since the process, 1.e. Web Service, will be used by other partners, we have to
specify the role of our business process. Import the WSDL file which was created
two steps earlier and set the partner link like it is shown in Figure 4.3.3.

If you did so the loan broker process will take over the role “LoanBrokerPortRole”
at the port “LoanBrokerPort”. Thus it can accept messages which where send to
this port, process the message and send a response back to the caller.

Step 5 - Define the request/response variables inside the process

Accordingly to the credit bureau process the next step is to create the variables
for the request and response messages inside the BPEL process (see Figure
4.3.4). For the incoming “LoanQuoteRequest” the message type has to be set to
the type specified a few steps earlier in the “LoanBroker.wsdl” file. The same
procedure has to be done with the “LoanQuoteResponse” variable. During this
creation WSAD-IE generates Java files for each of the message objects. These
files are needed during the next steps of the loan broker business process.

. LoanBrokerBP.bpel X
h .| Partrier Links w= o
Variables == o I T
LoanBrokerBR LoanBrokerPort |
> L 4
<
7
_J
J Correlation Sets e o
o)
| LoanBrokerPort —-oOd
Description File: LoanBroketBE . wedl
Implement ation
— Partner Link Type: LoanBrokerPartLT - | | Hew. . | | Edit |
Fartner's Role Marme: Process Raole Mame:
| -- Mone - | - | LoanBroker PortRole |
o
Partner's Port Type: Process Pork Type:
| -- Mone - | | LoanBroker Pork |

Figure 4.3.3: Implementation of the partner link

22 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

LoanBrokerBP bpel 3
% " | Partner Links == o
Variables wm o
LoanBrokerBF LoanBrokerPort ||
> LoanQuakeRequesk
A s 7
LoanQuoteResponse
a L a
4
=
J Correlation Sets w=
Ll
) LoanQuoteResponse -o0
DESE File: LoanBroker .wsdl
Message
Server Message: LoanuoteR esponseisg - |
Parts: “|LoanQuoteResponse ¢ LoanQuoteResponse

Figure 4.3.4: Declare request and response variables

Step 6 — Add a receive activity

Now the process is ready for adding a receive shape which will accept incoming
requests on the port type “LoanBrokerPort”. After adding the shape we have to
connect it to the corresponding partner link select the operation and assign the
incoming message variable. By now the process can receive an incoming
“LoanQuoteRequestMessage” on the appropriate port and is able to work with
the therein included values.

Step 7 - Interaction with the credit bureau

The credit banks need more information about the customer than the data which
1s contained in the loan broker request message. So the message has to be
enriched with more data. Beside the SSN, the loan term and the loan amount,
the bank also needs the customer’s credit score and history. Because of that the
message has to be augmented with data delivered from a credit bureau. At this
point the pattern ‘Content Enricher’ comes in place.

Add a new “Sequence” shape to the business process and call it ‘Content
Enricher”. You don’t need to add a sequence to the process but we're doing so to
get a better overview later on when the process may increase in volume. The first
thing to do is to add a new partner link, name it ‘CreditBureauPort’ and
import the ‘CreditBureau.wsdl’ file into the partner link. After that you have
to add two wvariables to the business process. The first 1s called
‘CreditBureauRequest’, the second is called ‘CreditBureauResponse’. The
message types of each of them is defined in the ‘CreditBureau.wsdl’ file
previously imported.

Construct credit bureau request

If we want to call the credit bureau web service it is necessary to create the
request message. We will perform this operation by adding a ‘Transform’ activity
to the business process inside the content enricher sequence. Select the incoming

23 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

message (‘LoanQuoteRequest)) and the resulting message
(‘CreditBureauRequest’) and create a new transformation service by selecting
the new button in the transformation service mask. Fill out the fields with the
desired values and press finish. The next window to appear is one in which you

can select the input fields and map them to the wanted output fields (see Figure
4.3.5).

Invoke the credit bureau Web Service
After creating the credit bureau request message the process is ready to call the
credit bureau Web Service. To do so walk through the following steps:

- Add an ‘Invoke’ activity to the content enricher sequence and name it

‘Credit Bureau’.

- Set the partner link to the ‘CreditBureauPort’.

- Select the ‘GetCreditScore’ operation.

- Set ‘CreditBureauRequest’ as request message.

- And set ‘CreditBureauResponse’ as response message.

LoanBrokerBP. bpel 1 GenerateCBRequestService. wsdl X
4 Input Message 1 Aﬁ L 4 O 2p w | p| Output Message 5'@ it =
i | 1 message LoanJuateRequestisg e | 3 message CreditScoreRequestiMsg

_gst : LoanQuaokeRequest =P 4 park CreditScoreRequest : CreditBureauRequest
: (€] ¥ 55M : xsistring

le| Loandmount : xs:decimal
(€] LoanTerm : xstink

b Overview P i
Cutpuk Message | Inpuk Message | ¥Path Expression |
—-4 message CreditScoreRequestMsg [message LoanQuoteRequestMsg [LoanQuoteRequestisg
— P part CreditScoreRequest : CreditBureauRequest (8] SSh : xstinteqer [LoanQuoteRequestiMsg/LoanJuateRaquesk/SSh
(€] 55N : xs:string (€] SSM: xsiinteger) converter:longzstring fLoanuokeRequestMsg Loan, .,

Figure 4.3.5: Create credit bureau request message

Enrich credit bank request

After the call to the credit bureau Web Service returns to the process we have to
prepare the request message to the multiple credit banks. At first add a new
variable called ‘BankQuoteRequest’ to the process. Set the type of the variable
to the message type we defined at section 4.2 named ‘GetLoanQuoteRequest’.

24 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

LoanBrokerBP.bpel ﬂ EntichCEBRequestService wsdl - X
4| Input Message Q ﬁ‘ I O 2w | b Output Message "@ Cl a4 =
=[] Ll message LoanQuokeRequestMsg = 3 message GetloanQuoteRequest
=P part LoanQuoteRequest : LoanQuoteRequest =P 4 part BankQuoteRequest : BankQuoteRequest
le| Agsn xsiinteger le| ¥ SSh wsink
le| 1| qanfmaunt: ; xs:decimal le| ¥ LoanTerm : wsint
le| A L ganTerm : wsint le| ¥ | ganamaunt ; xsiint
= 4 message CreditScoreResponseMsg [e] ¥ CreditScore © xstint
=P part CreditcoreResponse | CreditBureauResponse le| k HistoryLength : xs:ink

(8] 55N : xsistring
[e] CreditScare : xstint
[e] ¥ HistaryLength : xs:int

4

4+ Overview A

4 v
Input Message | Cutput Message | ¥Path Expression
—-[4] message LoanQuateRequestisg] message GetLoanuoteRequest
—- P part LoanQuoteRequest @ LoanQuoteR equest
(& 55N : xs:inkeger —_JJ patt BankQuoteRequest | BankQuoteRequest, 55N @ xs... [0 converter:string2Ink(/In1 fLoanQuoteRequest/SSH)
(8| Loandmount : xs:decimal —_JJ patt BankQuoteRequest | BankQuoteRequest, Loanam... [0 converter:string2Ink(fIn1 fLoanQuoteR.equest /Loanamount)
(&| LoanTerm : xs:ink —_JJ part BankQuoteRequest : BankQuoteRequest, LoanTer... /InlfLoanQuateRequest/LoanTerm
—-[41 message CreditScoreResponseMsg] message GetLoanuoteRequest

— P part CreditScoreResponse © CreditBureauResponse

'&] CreditScore : xs:inl
‘& HistoryLength : xs:int

art BankQuoteRequest | BankQuoteRequest, CreditSc,.. JIn2fCreditScoreResponse/CreditScore

p
part BankQuoteRequest : BankQuoteRequest, HistoryL,., fInZfCreditScoreResponse/HistoryLength

(LI

Figure 4.3.6: Enrich the credit bank request

The variable has to be filled with different values which originate from the
‘LoanQuoteRequest’ as well as from the ‘CreditBureauResponse’. In Figure
4.3.6 the transformation is shown. You can see that we’re using another
Transformation activity at this point. The difference is that we get two input
messages. In detail the mapping looks like this:

- LoanQuoteRequest.SSN - BankQuoteRequest.SSN

- LoanQuoteRequest.LoanAmount 2 BankQuoteRequest.LoanAmount

- LoanQuoteRequest.LoanTerm - BankQuoteRequest.LoanTerm

- CreditBureauResponse.CreditScore 2 BankQuoteRequest.CreditScore

- CreditBureauResponse.HistoryLength - BankQuoteRequest.HistoryLength

The output message is the message with which we can work at the multiple
credit bank instance Web Services.

The whole ‘Content Enricher’ with its activities is shown in Figure 4.3.7.

-

J
Content Enricher

_ .

-]
GenerateCreditBuerauRgst

o
Credit Bureau

el
Jawva Snippet

J\
-
EnrichreditBankRequest

Figure 4.3.7: The content enricher within the loan broker process

25 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Step 8 - Interaction with the banks

After enriching the request message with credit bureau information, the loan
broker has the needed data to interact with the banks. As discussed in chapter 3
“Mapping Patterns to WSAD-IE” we have to implement the ‘Recipient List’ to
route a bank request to the according bank. Before a message will be sent to a
credit bank the recipient list checks upon given preconditions which credit banks
have to be contacted. The requirements for each bank were shown in section 2.2
“Designing with Patterns” and will be listed later on in this section. After
ascertain from which credit banks to obtain a loan quote, the appropriate
messages for each bank have to be constructed.

Insert the recipient list frame

The ‘Recipient List’ is a flow in which probably all three credit bank Web Services
are called in parallel. To implement that in WSAD-IE we use the ‘Flow’ activity
of BPEL. Within this flow we have to implement multiple switch activities
followed by sequences.

Start first by inserting a ‘Flow’ activity into the business process and rename it to
‘Recipients List. Because we have to invoke up to three banks we need to
copy the common ‘BankQuoteRequest’ variable to the three individual request
messages- each for every credit bank service. This is done by adding an ‘Assign’
shape to the ‘Flow’ activity. Afterwards we’re putting two ‘Switch’ activities into
the flow and one ‘Sequence’ activity and connect the 'assign activity with each of
these activities. Inside the switch activities we add a case condition which
represents the filter rule. Now we got our frame (see Figure 4.3.8) which will be
filled up with more activities and implementation code later on in this step.

>
=

CopyBankR.equests

|
& N L

=)
Credit Bank 1 Credit Bank. 2 Credit Bank 3
Case Case =

Figure 4.3.8: The recipient list frame

Implement credit bank 1 branch

Inside the credit bank 1 switch activity select the case statement. Within the
properties window select ‘condition’ and ‘ava statement’ as value. As java
statement write the following condition:

26 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

boolean result = false;
BankQuoteRequest bankRqst = getBankQuoteRequest() -getBankQuoteRequest();
if((bankRqgst.getCreditScore() >= 500) &&

(bankRgst.getHistoryLength() >= 5)) {

result = true;

}

return result;

Listing 4.3.1: Credit bank 1 decision rule

Insert an ‘Invoke’ activity after the case rectangle. This activity needs a
partner link. Import the Web Service binding of the credit bank 1
(CreditBanklJavaService.wsdl) and set the accordant partner link of the
invoke activity. Select ‘GetLoanQuote’ as operation and insert new variables for
the incoming and outgoing messages. Click on the new button beside the request
field and enter ‘BanklLoanQuoteRequest as variable name. Repeat this step
for response variable and name it ‘BanklLoanQuoteResponse’. At this point the
process is ready to interact with the first credit bank.

Implement credit bank 2 branch

The branch of the credit bank 2 looks very similar to the one before. The
differences are the condition of the case statement (see Listing 4.3.2) and the
partner link. As partner link of the ‘Invoke’ activity the file
CreditBank2JavaService.wsdl has to be imported. The needed variables
should be named ‘Bank2LoanQuoteRequest’ and ‘Bank2LoanQuoteResponse’.

boolean result = fTalse;
BankQuoteRequest bankRqgst = getBankQuoteRequest() -getBankQuoteRequest();
if((bankRqgst.getCreditScore() >= 700) &&

(bankRgst.getHistoryLength() >= 10)) {

result = true;

}

return result;
Listing 4.3.2: Credit bank 2 decision rule

Implement credit bank 3 branch

The last of the three credit banks does not have a ‘Switch’ activity. That means
that this branch will always be contacted when going through the recipients list.
This 1s because the last bank will accept every loan quote request sent to it. So
the only thing we have to do is to add an ‘Invoke’ activity, set the partner link to
the 1mported file ‘CreditBank3JavaService.wsdl’ and create the
corresponding variables called ‘Bank3LoanQuoteRequest’ and
‘Bank3LoanQuoteResponse’.

Multiply the request messages

Last thing we have to go through is to create copies for each of the credit bank
variables. In WSAD-IE this is done by the BPEL activity ‘Assign’. We already
inserted this activity to our process. Now we have to implement its behavior.
WSAD-IE offers the possibility to easily build the assign statements. As shown in
Figure 4.3.9 the part ‘BankQuoteRequest’ out of the common
‘BankQuoteRequest’-variable is copied to the part ‘BankQuoteRequest’ of the
‘BanklLoanQuoteRequest’-variable. After the execution of the assign activity

217 of 36

Report 2005/09

Institute of Architecture of Application Systems (IAAS)

the request variable for the credit bank 1 (i.e. the Customer Bank) is filled with

the needed values.

= CopyBankRequests
Description
Implementation

cor [o []

A ——— From: |Var|ab|e of Part:

—_oOd

| Variable or Part

Join Behaviour . LoanGuoteR equest

_) LoanCuoteResponse
o CreditBureauRequest
o CreditBureauResponse
o BarkQuoteRequest
-] __] GetloanQuoteRequest
+ __] BankGuoteRequest ; BankQuoteRequest
o AagregatediloanQuoteRequest
o BarklloanQuoteRequest
o) BankZLoanQuoteRequest
o Bank3LoanQuoteRequest

Server

1 [-F- -

F-[F- -

1] [- - -

Query: |

. LoanQuoteRequest

_) LoanCuokeResponse

) CreditBureauRequest

o) CreditBureauResponse

o) BarkQuoteRequest

o) AogregatedioanQuoteRequest

) BanklloanQuoteRequest

= __] GetloanCQuoteRequest
__] BankuoteRequest ; BankQuoteRequest

) Bank2loanQuoteR equest

o) Bank3loanQuoteRequest

Figure 4.3.9: Copy the bank requests

Repeat this step for each of the credit bank requests. The ‘Assign’ activity allows
implementing more than one of this copying operations. Simple press the new
button at the top and set the other assigns.

After completing this step the process is ready for interacting with different
credit banks (see Figure 4.3.10). Which bank will be called is decided according to
the result the credit bureau delivers at the point of the ‘Content Enricher’ in the

business process.

i
—

CopyBankReguests
I

b N N
4 . =
Credit Bank 1 Credit Bank 2 Credit Bank. 3
Case Case gl
CreditBank3
e *.:./
CreditBankl CreditBankz T

Figure 4.3.10: The whole recipients list

Step 9 - Build the aggregator

Last step in building the loan broker business process is to aggregate multiple
messages delivered by multiple banks into one single message. This is not only
done by adding each message but rather by an algorithm which determines
which of the incoming loan quote requests is the best and returns this as best
loan offer to the client, i.e. the loan broker business process. The aggregator will
be integrated as Web Service. The implementation will be a Java class which
offers two different methods — one for adding messages and one for selecting the
best offer of the added messages.

Due to the Java implementation we have to pay attention on correlation. The
service needs additional information about the caller of the method. The
singleton instance of the aggregator service could not determine from which
client the request originated if we would leave that information out. Therefore we

28 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

add a parameter called ‘processiD’ to the message signature beside the message
parameter. The creation and addition of the correlation ID is the representation
of the ‘Correlation Identifier’ pattern.

The completeness criterion is very simple. The aggregator Web Service will be
appended after the parallel interaction flow of the credit banks. So if the activity
thereafter will be reached all possible bank responses already arrived and the
aggregator can calculate the best offer.

To create the aggregator we first have to design the structures for adding a bank
response message and for the best loan offer request message. The first structure
was already designed a few steps earlier (see Section 4.2 “The Bank Web
Services” and Figure 4.2.2). It is nothing more than the response message of the
credit banks. The best loan offer message is shown in Figure 4.3.11.

[S] BestBarkQuote xsd X 2=/ outline L ov x
Containment | = |- [§] BestBankQuote.xsd
chema = estBankQuote
—~1 Sch 3 | BestBankGuot
L - = 090
Mamespace '&| InterestRate
Prefix: | tns ‘| QuotelD
URIL: |http:/floanbroker.iaas uni-skukkc (€] ErrorCode
Apply
InterestRate
Cther Attributes | Walue
uotelD WErSIan
E— o9e 9 xmlilang
attributeFormDefault
3 Cod elementFormbefaulk
EHOREDCE . blockDef ault
finalDefault
vl 2] (2]
€ 2]
Source |Graph

Figure 4.3.11: The best loan offer message structure

The Java implementation of the aggregator Web Service uses a dJava
representation of the XSD Schemas of the two message structures as parameters
of the methods. The first Java representation was generated during the creation
of the credit bank Web Services. The second representation has to be generated
with the generator included in WSAD-IE. Afterwards a Java file named
‘BestBankQuote. java’ exists.

The next step is implementing the ‘Aggregator . java’ class. Because the service
has to aggregate more than one message of different processes, the service has to
implement a mechanism so that it can correlate the incoming messages with a
process instance. We won’t handle that with the help of BPEL correlation set
facility. Rather the implementation itself has to care about the correlation of
different messages of different clients (see Listing 4.3.3). Therefore the process
generates a unique id and adds it to the message dedicated for the aggregator
service.

public class Aggregatorimpl {
private static Aggregatorimpl _instance = null;

private Aggregatorimpl O {
}

synchronized public static Aggregatorimpl getinstance() {

29 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

if (instance == null) {
_instance = new Aggregatorimpl();
}

return _instance;

}

private Hashtable allProcesses = new Hashtable(5);

synchronized public void addBankQuoteResponse(
BankQuoteResponse bankQuoteResponse, int processiD) {
String id = (new Integer(processiD)).toString();
Object processRepliesObj = allProcesses.get(id);
Hashtable processReplies;
iT (processRepliesObj == null) {
processReplies = new Hashtable(5);
allProcesses.put(id, processReplies);
} else {

processReplies = (Hashtable) processRepliesObj;
}

processReplies.put(bankQuoteResponse.getQuotelD(), bankQuoteResponse);

}

synchronized public BestBankQuote getBestBankQuote(int processliD)
{
String id = (new Integer(processiD)).toString();
BestBankQuote result = null;
double interestRate = -1;
String quotelD = null;
Hashtable process = (Hashtable) allProcesses.get(id);
it (process 1= null) {
Enumeration elems = process.elements();
while (elems_hasMoreElements()) {
BankQuoteResponse element =
(BankQuoteResponse) elems.nextElement();
if ((quotelD = null) &&
(element._getErrorCode().-intvValue() == 0)) {
if (interestRate > element.getlnterestRate()) {
interestRate = element._getinterestRate();
quotelD = element.getQuotelD();

}
} else {
interestRate = element.getinterestRate();
quotelD = element.getQuotelD();
}
}

}

it (quotelD I= null) {
BankQuoteResponse best = (BankQuoteResponse) process.get(quotelD);
BestBankQuote resultBBQ = new BestBankQuote();
resultBBQ.setErrorCode(best.getErrorCode().intvValue());
resultBBQ.setlnterestRate(best.getinterestRate());
resultBBQ.setQuotelD(best.getQuotelD());
result = resultBBQ;

}

return result;

}
Listing 4.3.3: Implementation of the Aggregator Servie (AggregatorIlmpl.java)

Due to the Web Service implementation a singleton class can not be wrapped as a
service because the needed public constructor isn’t available. That’s the reason

30 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

why another class- we call it the port type class- has to be implemented (see
Listing 4.3.4). This class uses the singleton pattern inside and can be wrapped as
a Web Service.

public class AggregatorPT {
private Aggregatorimpl _instance = null;

public AggregatorPT() {
it (Cinstance == null) {
_instance = Aggregatorimpl.getinstance();

}
}

synchronized public void addBankQuoteResponse(
BankQuoteResponse bankQuoteResponse, int processiD) {
_instance.addBankQuoteResponse(bankQuoteResponse, processiD);

}

synchronized public BestBankQuote getBestBankQuote(int processiD) {
return _instance.getBestBankQuote(processliD);

}
}

Listing 4.3.4: The Aggregator Port Type class (AggregatorPT.java)

After implementing the aggregator class, wrap it inside a Web Service. Use the
‘Service build from Java’ tool within WSAD-IE to generate the required WSDL
files. After processing we can import the newly generated Web Service
description into our loan broker process. Now we’re ready for building the
‘Aggregator’.

At first insert a ‘Flow’ activity after the ‘Recipients List’ flow and rename it to
‘Aggregator’. The next step is to insert three ‘Switch’ activities each containing
one ‘Case’ element. This construction let us decide which of the banks did answer
to the request. Before we can add an ‘Invoke’” activity to each branch we have to
implement the case elements. These queries will simple check if the bank
responses are null (i.e. the bank didn’t respond) or not (e.g. see Figure 4.3.12).

¥ Case =

Descripkion walue: Expression =

Condition

return getBanklLoanQuoteResponse() != null:

Figure 4.3.12: Check if credit bank responses are null

Now add ‘Invoke’ activities to each branch and set the partner link to the
imported “Aggregator Web Service”. As operation select the
‘AddBankQuoteReply’ method. The input variable 1s
‘BanklLoanQuoteResponse’ for the credit bank 1, ‘Bank2LoanQuoteResponse’
for credit bank 2 and ‘Bank3LoanQuoteResponse’ for the last credit bank.
Because of the generated WSDL file of the bank Web Services we have also to
specify the response variables although the responses will always be null. That’s

31 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

because WSAD-IE isn’t able to create a one-way-invoke out of a void return value
of the Java method signature.

To finish the aggregator insert another ‘Invoke’ activity to the ‘Aggregator’ flow.
Set the partner link of this activity to the earlier imported aggregator Web
Service description. Select ‘GetBestBankQuote’ as operation within the
implementation section and set both the request and response message variables
though the input parameter of the implemented method doesn’t exist. The
important variable is the response variable because it’s including the best bank
quote of the previously aggregated bank offers. The last step is to connect all
three branches where the individual messages are aggregated with the lastly
added ‘Invoke’ activity. In Figure 4.3.13 you can see the whole Aggregator part of
the Loan Broker business process.

o]
GengrateProcessID
g \L’ B4
#
CheckReplyBankl CheckReplyBankz CheckReplyBank3
Case Case Case
¥ ¥ ']
- = =
CorrelationIdentifier CorrelationIdentifier CorrelationIdentifier
o] o e
addBankR.eply1 addBankReplyz addBankReply3
| | J
Al
o]

CreateGetBest

m

ankRequestiMsg

% ¢

GetBestBankouote

Figure 4.3.13: Aggregator part of the loan broker business process

Now the process is ready for constructing the reply message for the client. After
this following step the implementation of the process is finished.

Step 10 - Construct the reply message

Last action to be performed is to construct the reply message. In the patterns
scenario this is the part of the message translator. To achieve the translation we
need a so called ‘Transform’ activity. To form the output message we need data of
the input request message and the response of the last called Web Service.
Consequential the ‘Transform’ activity needs the input messages
‘LoanQuoteRequest’ and ‘BestBankQuote’ and responds with the filled
‘LoanQuoteResponse’ message as output message (see Figure 4.3.14).

Step 11 — Add a reply activity
The last step in implementing the business process is to add the ‘Reply’ activity

at the end of the process. After adding the activity set the partner link to the
WSDL file which we imported in Step 5. As operation select ‘GetLoanQuote’ and

32 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

as message select ‘LoanQuoteRequest’. Now the process is ready and can be run
after the deployment following in the next steps.

N3 Transform20utput Service wsdl - 3¢

4| Input Message Lol o4 O 2w (b output Message & B Blac -
e | pl message LoanQuoteRequestMsg o i | 3 message LoanQuoteResponseMsg
=P 1 park LoanQuoteRequest : LoanZuoteRequest +-- P 4 part LoanQuateResponse : LoanJuoteResponse

(e] sy ®sinkeger
(e] 1 gandmount @ ws:decimal
‘8] LoanTerm : xstint
e i | 1 message getBestBankuoteResponse
=} P ¥ part result ; BestBankQuote
(e] YinterestRate : double
'e| errorCode :int
(e] 1 quateID : skring

b= Cregryiew l;)rl iyl Fitihg
Oukpuk Message | Input Message | %Path Expression
=14 message Loan(uoteResponseMsg] message LoanCuoteRequestMsg, message getBe...
-+ [P part LoanQuoteResponse : LoanQuaoteRes... U" patt resule : BastBankQuate, part LoanQuateReq. ..
(€] 55N : xsiinteger (€] 55M : xsiinteqer 1In1LoanuoteRequestSSH
(8] LoanAmaount : xs:decimal (8] LoanAmaount : xs:decimal 1In1/LoanCuoteRequest /Loandmaunt
(8] InterestRate : xs:double (8] interesthate @ double JInzjresultiinterestRate
l&] QuotelD : xs:string (&] quatelD : string 1INz fresultfquotelD

Figure 4.3.14: The transformer for the reply message

Step 12 - Deploy the process

After creating the business process it should be deployed on an application
server. WSAD-IE provides us with functionality of generating deployment code.
Because we only want to have the ability to call the process from the outside over
SOAP/HTTP we do not need to adjust anything. We only have to check the
partner links, if they are pointing to the right service implementations and start
the generation.

Step 13 - Publish the generated application

After generation of the deployment code of the loan broker process publish the
application containing the process on the WebSphere Application Server. First of
all add the previously generated EAR project to the server’s application projects.
Afterwards publish the application. This is done by selecting the option in the
context menu entry of the server. The job is done automatically and the database
1s being updated so that no further interaction is needed. Keep in mind that the
loan broker process uses the credit bureau process to enrich the incoming
messages. Because of that the EAR containing the credit bureau business process
has to be published on the server as well.

Step 14 - Start the application

After publishing the application it’s required to start the application in order to
use it. This 1s done by selecting the appropriate menu item out of the context
menu entry of the server. The Server tries to start the application. The result is
shown on the server’s console.

Step 15 - Test the application

After publishing and starting the application on the server we can test the
business process with the help of WSAD-IE. The integrated “Business Process

33 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

Web Client” offers the possibility among other things to test business processes.
This is simply done by entering the values of the request message into a web
front-end. Afterwards the web client shows the results, 1.e. the values of the
response message, generated by the business process. The following two
screenshots show this proceeding.

WebSphere Business Integration Process choreographer
Server Foundation

Help UserlD UNAUTHENTICATED

Work ltem Lists
Process Input Message

El My To Dos
& Defing Wiork tem
List
Use thiz page to change the input message before you complete the actions to start the business process_m
Process Instance Lists Available Actions

B Crested By Me
brsid o i Start Instance

El pdministered By Me
Bl Unicho Actions in

Error Process Template Description
Define Process
Inztance List Documerntation - “alicl From 1003 1:00:00 Ak
Dezcription - Delete an Completion =
Template Mame LoanBrokerBP3 Can Run Interrupted =i

Process Template Lists

Crested 1109005 92616 Al Can Run Synchronously 45
El My Templates
Define Template List
Service
Administration
El Manage Wiork tems Mame Receive
for Process Description
Instances PortType LoanBrokerPort
El anage Activities COperation Getl oanCunte

for Process
Instances

Process Input Message

LoanGuoteReguest S5h 47110815 linteger)
LoanGuateReguast loandmaourt 0000 (decimal)
LoanGuoteRequest loanTerm a0 [int}

Figure 4.3.15: Enter request values for a business process

As shown in Figure 4.3.15 following input values were entered for testing:
- SSN: 555888444
- Loan amount: 50000
- Loan term: 30

The process answered with the values shown in Figure 4.3.16. During the
computation of the best loan offer the process contacted the credit bureau to
enrich the request dedicated for the banks. In our case the credit bureau returns
the following values as result of the random calculation:

- Credit score: 557

- History length: 7
Because of these values the process contacted only two banks within the
‘Recipient List’ — the Consumer Bank and the Loan Shark. As expected the best
loan quote is offered by the Consumer Bank.

34 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

WebSphere Business Integration Process choreographer
Server Foundation

Help UserlDd UNAUTHEMTICATED:

Work ltem Lists

S Process Output Message

& Define Wiork tem
List
Usze this page to view the results of a business process that you Started_m

Process Instance Lists Process Template Description
Bl Created By Me
E Administered By he Documentation Crested 115305 32616 A
SOMINIEEred By ME
B Undo Actions in Description “alicl From 1M403 1:00:00 A8
Errar Template Mame LoanBrokerBP3 Delete on Completion =
Define Process Wersion Can Run Interrupted =
Instance List Can Run Synchronously 1=
Process Template Lists
Process Output Messane
Bl uy Templates
Define Templste List LoanGuoteResponss. 55N 47110815
LosnGuoteResponse.interestRate 4.0
Administration LoanGunteRezponse [oandmaunt 0000

LoanZuoteRezponse. quotell ConsumerBank356799999

B Manage Wiork ftems
for Process
Instances

Bl Manage Activiies
for Process
Instances

Figure 4.3.16: Overview of the result of the loan broker business process

5. Conclusions

In the Technical Report we have seen how a sample scenario can be modeled with
the help of enterprise integration patterns. Afterwards we were discussing how
you can map these patterns onto a BPEL compliant developing tool. Within this
discussion we have seen how single BPEL elements can be combined to build an
enterprise integration pattern. The last step included the deployment and
execution of the whole business process.

In some place we might implement the patterns a different way. E.g. we could
have built the recipient list as sequential calls to the banks Web Services. Our
solution is just a proposition how to solve the problem scenario. Another thing is
that some parts of the overall business process engage some IBM specific BPEL
features. If you would want to build a general solution you have to substitute
these elements by BPEL4WS compliant parts.

Our example doesn’t cover the whole spectra of the rich set of enterprise
integration patterns. We just present a little extract of the powerful pattern
catalogue. Furthermore we disregard some very critical issues in a common
scenario. We didn’t look at error handling procedures e.g. in absence of services,
malformed messages or unanswered requests. But all we talked about is much
enough to demonstrate how enterprise integration patterns can be used and
mapped onto an executable environment.

The whole purpose of the technical report was in showing how you can design a
common scenario and divide it into several parts with the help of integration

35 of 36

Report 2005/09 Institute of Architecture of Application Systems (IAAS)

patterns. The main aspect was to show how a given architecture can be mapped
onto an executable runtime language like BPEL with the help of a BPEL runtime
engine and modeling tool like WSAD-IE.

6.
1.

References

G. Hohpe, H.-S. Tham; Enterprise Integration Patterns with BizTalk Server
2004; ThoughtWorks Whitepaper; July 2004;
http://www.eaipatterns.com/docs/integrationpatterns_biztalk.pdf

G. Hohpe, B. Woolf; Enterprise Integration Patterns; Addison Wesley; 2004
M. Kloppmann, D. Kénig, F. Leymann, G. Pfau, D. Roller; Business process
choreography in WebSphere: Combining the power of BPEL and J2EE; IBM
Systems Journal, Volume 43, Number 2, 2004

M. Kloppmann, G. Pfau; WebSphere Application Server Enterprise Process
Choreographer — Concepts and Architecture; IBM Corporation (December
2002); http://www-
128.ibm.com/developerworks/websphere/library/techarticles/wasid/ WPC_Conc
epts/WPC_Concepts.html

T. Andrews, et al; Business Process Execution Language for Web Services
(BPEL4WS) Version 1.1 (May 2003);
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

S. Weerawarana, F. Cubera, F. Leymann, T. Storey, D.F. Ferguson; Web
Services Plarform Architecture; Prentice Hall; March 2005

E. Gamma, R. Helm, R. Johnson, J. Vlissides; Design Patterns: Elements of
Reusable Object-Oriented Software; Addison Wesley; 1997

36 of 36

