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Abstract

We compare the expressive power of some first-order fragments and of two simple temporal
logics over Mazurkiewicz traces. Over words, most of these fragments have the same
expressive power whereas over traces we show that the ability of formulating concurrency
increases the expressive power.

We also show that over so-called dependence structures it is impossible to formulate
concurrency with the first-order fragments under consideration. Although the first-order
fragments A,[<] and FO?[<] over partial orders both can express concurrency of two
actions, we show that in general they are incomparable over traces. For FO?*[<] we give
a characterization in terms of temporal logic by allowing an operator for parallelism.



1 Introduction

Mazurkiewicz traces are a model for concurrent systems that extends the theory of words
by allowing commutation between certain letters [12]. Within three decades of trace
theory, many results have been obtained. For details see The Book of Traces [2]. Diekert
and Gastin have shown that (local) temporal logic for traces is complete [1], i.e. it can
express the same set of properties as first-order logic. This makes temporal logic a suitable
formalism for specifying properties of concurrent systems.

This paper contributes to a better comprehension of the relation between temporal
logic and first-order logic over traces. We will compare the expressivity of certain logical
fragments. Over words, these fragments are known to have the same expressive power
(see [15]). As a tool for this purpose, we will use Ehrenfeucht-Fraissé (EF) games [3].
Originally, these games were applied to the first-order logic over relational structures in
general. In [5] a modified version was presented in order to characterize fragments of
temporal logic over words. We continue this approach and alter EF games for words in
order to capture specific logical fragments over traces.

In particular, we consider first-order formulae with two variables. This is a natural
restriction, because three variables are already sufficient to express all first-order prop-
erties [8]. Traces can be given either as labeled partially ordered sets or as dependence
structures, i.e. labeled sets with directed arcs only between dependent letters. Depen-
dence structures are no restriction for the full first-order fragment [1]. We explain how
the distinction between partial orders and dependence structures affects the expressivity
of restricted first-order fragments and show a connection to temporal logic with and with-
out an operator for parallelism. Surprisingly, there are simple fragments that have more
exhausting characterizations on dependence structures than on partial orders, although
the latter representation would seem to be more natural.

We will proceed as follows: Section 2 introduces Mazurkiewicz traces as well as
some fragments of first-order and temporal logic for traces. In Section 3 two types of
Ehrenfeucht-Fraissé games are presented and they are shown to characterize fragments of
first-order and temporal logic. In Section 4 we first show that the properties expressible
with two variables in first-order logic can also be characterized by simple fragments of
temporal logic, both for the interpretation of traces as partially ordered sets and as de-
pendence structures. Next, we show that on traces interpreted as dependence structures,
first-order formulae restricted to one quantifier alternation that begin with an existential
quantifier capture exactly the class of polynomials. We further give a couple of (natural)
properties that are used to separate several of the fragments under consideration.

2 Preliminaries

An independence alphabet (X, I') consists of a finite set ¥ with a symmetric and irreflexive
independence relation I C 3 x 3. Whenever a I b holds for two symbols a,b € ¥ they are
called independent. Otherwise they are dependent, and accordingly, D = (X x X) \ [ is
called the dependence relation. The congruence ~; on X* is the reflexive and transitive



closure of the relation ~; defined by
Vw,v € X*Va,b € 3: wabv ~; wbav < alb.

The set of equivalence classes [w]NI with respect to that congruence forms the free partially
commutative monoid generated by (3, I). It is denoted by M(3, I'). Its elements are called
(Mazurkiewicz) traces and the set itself a trace monoid following a convention from [12].
It is common to determine a trace monoid by the graph of its dependence relation, in
which the loops resulting from the reflexivity are omitted.

Since w ~; v implies that the words w and v contain the same letters, possibly in
a different order, the length and the alphabet of w are invariant within an equivalence
class. Therefore, these notions can also be applied to traces, and for [w] =1t € M(%, )
we denote the length of the trace ¢ by |t| = |w| and its alphabet is alph(t) = {a € 3 |
a occurs in w }.

Another point of view is the following: A trace for the independence alphabet (X, 1)
is a relational structure t = (X, label, —, <) with a finite set of positions X;, a mapping
label : X; — X, and binary relations — and < over the set of positions X; such that:

e — is acyclic and irreflexive,

e for all v, x € X; with v # x, we have that label(v) D label(x) holds if and only if
either v — x or y — v holds,

e the relation < is the transitive closure of —.

The word w = label(vy) - label(r,) - - - label(v,,) € ¥* with {vy,..., v, } = X} is a repre-
sentative of t if and only if v, < vy implies m < £ for all 1 < m, ¢ < n, i.e. if and only if
w is a linearization of (X;, <). We have t = [w] € M(X, I) if and only if w = ayay -+~ a,
is a representative of ¢t. The relations — and < contain the same information: < is the
transitive closure of —, and for any two elements v, y € X; we have

v — x & v < x A label(v) D label(x)

therefore — can be reconstructed if only < is given. For this reason, it is equally valid
to describe a trace using only one of these relations and to write t = (X, label, —) or
t = (X3, label, <). From [1, Lemma 5] we can conclude the following lemma.

Lemma 2.1 The partial order relation < equals U (—)".
1<i<|3|

The parallelism relation || is the complement of the symmetric and reflexive closure of
<. When the considered object is clearly a trace, it is also common to omit the brackets
and to write t = ajas---a,. Let < C X; x X; be minimal such that < is the transitive
closure of <. The directed graph (X;, <) is called the Hasse diagram of t.

In first order logic, allowed logical formulae contain only quantifiers 4 and V that bind
variables representing single elements. First-order logic on traces is called FO[<] when it
is applied to the representation of a trace as t = (X, label, <), and FO[—] if the predicate
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—> is used instead. In addition to the binary predicates = for equality and < or —, the
formulae may contain the unary predicates a(-) for a € 3 that hold at all positions labeled
with that letter.

Let a first-order formula ¢ contain the free variables free(¢). Then, it can only be
assigned a truth value on a trace ¢ when an interpretation g : free(p) — X, of these
variables is indicated. Whenever free(y) is { z1,...,x, }, interpretations will be denoted
by sequences w € X;'. We write (t,w) | ¢ if ¢ using the interpretation w is true on t.
We will discuss the following fragments of first-order logic on traces:

e FO™[<] contains all properties that can be expressed with m variables.

e Y[<] consists of the properties expressible by ®(n,m) formulae without free vari-
ables. Intuitively, n describes the number of quantifier blocks and m the number of
nested variables. More formally: the formulae without quantifiers constitute ®(0, 0).
A formula ¢ with free variables z1, ..., z; is in ®(n,m) if and only if for some k € N
it can be written as \/, ., 3x;41 - - - 3xj406) 0 with £(7) € N, ¢ € P(n—1,m—L(i))
forall1 <i<k.

e II""[<] contains all properties expressible as —¢ with ¢ € ®(n,m).
We also write 3, [<] = U,y Z4[<] and 1L, [<] = U, oy T4 [<].

e A,[<] is defined as the intersection %, [<] N I, [<].

By applying the same restrictions on FO[—], analogous logical fragments such as FO"[—»]
and X, [—»] are obtained. Particular attention will be paid to the special cases with n = 2.

A different way to formulate logical properties of traces is (local) temporal logic TL,
which generalizes linear temporal logic LTL for words [1]. In a TL formula, the quantifiers
of first-order logic appear again, but only implicitly by the means of temporal operators
that can be seen as macros representing FO subformulae. We will use four operators:
neXt Future (XF), Yesterday Past (YP), PARallel (PAR) and soMewhere (M). Although
these operators are well-known, there is no uniform way of referring to them, e.g. the XF
operator can also be called ‘strict future’ or ‘next eventually’. The operator PAR has also
been defined as Eco or co by some authors, e.g. [7, 9]. The role of M is only auxiliary. It
will enable us to switch to another connected component within a trace.

The syntax of TL is given as follows: every a € X is a temporal formula. Let ¢ and
1 be temporal formulae and Op a temporal operator. Then —p, (¢ V ¥) and Opp are
temporal formulae as well.

Let t € M(X,]) be a trace. Then the semantics of formulae in temporal logic with
the operators XF, YP, PAR and M is defined inductively as follows, where ¢ and ) are



subformulae and v € X, is a position of the trace:

tbvE=T

VaeX: t,vEa & label(v) = a
t,vE—p &ty
ttvEeVYy & tvEyportvEY
t,vEXFo S IveXpv<xyANt,xEe
t,v =EYPy S IeXyx<vAtLxEV®
t,v EPARp & IxeXpv|x At xkEep
t,v EMyp S IveXpit,xEop

This can be applied to a trace according to the rules
t =0pgp & eXitviEp
tE-"Opyp & WweX;:tvyp
tEpVYy S tEyportEY
tEeANY < tEgandtlE=9y

where Op represents any of the temporal operators XF, YP, PAR and M. We denote the
set of all properties L(p) = {t € M(3,]) | t = ¢} where ¢ is a temporal formula that
contains no temporal operators apart from Opy, ..., Op, by TL[Op,,...,0p,].

Remark 2.2 [t is known from [11] that TL]XF,YP] = TL[XF,YP, M|, hence the M oper-
ator does not add any expressivity to this fragment.

3 Ehrenfeucht-Fraissé games for traces

Ehrenfeucht-Fraissé (EF) games [3, 6] are often used to characterize logical fragments. For
the boolean closure of ¥,,[<], Thomas presented an EF game [16] that can be modified in
order to describe ¥,[<]. The main difference consists in the fact that ¥,[<] is not closed
under complementation. If we want to capture this fragment, it is therefore insufficient
to determine whether two traces t and s are equivalent or not. Instead, we will ask if ¢
models at least the same %,[<] properties as s does. By limiting the number of pebbles
to m € N, an idea introduced in [10], it is possible to characterize the ¥7"[<] fragments.

Definition 3.1 (Ehrenfeucht-Fraissé game for X"[<]) The set of configurations for
the EF game corresponding to the fragment X"[<] played on the traces ty and t; with
position sets Xo and X1 is X§x X7 x{0, 1} with the restriction that the size of the first two
components is equal and does not exceed m. The first two components of the configuration
are interpreted as a distribution of pebbles on the two traces: a pebble labeled with x; lies at
position v € X; whenever v is the i-th character of the word corresponding to j € {0,1}.
The third component contains the number of the trace where Spoiler will carry out his next
move.

Let (wg, wq,0) with |we| = |wy] =i < m be the current configuration, then the next
turn is carried out as follows:



o Spoiler takes 7 < m — i pebbles labeled with i1, ..., x;+; and distributes them on
trace t, by assigning a position v, (k) € X, to each x; .

o Duplicator places identically labeled pebbles on nodes of the other trace, such that
every Ty is assigned some v1_,(k) € X1_,.

o The new configuration is (wovo(l) -+ vo(j), wirn (1) - -11(j), 1 — o).

The game for ¥'[<] consists of n rounds. Duplicator wins if and only if initially and
after each of these rounds, the partial mapping Xo — X; : wo(k) — wq(k) with 1 < k <
|wo| = |wy| induces an isomorphism with respect to labels and the relation <.

For ty,t; € M(X, I) we write tg j(zn[j]n)
in the EF game for the logical fragment ¥'[<], played on ¢y and t; and starting with
the initial configuration (e, €, 0). This relation is extended to intermediate configurations

t; if and only if Duplicator has a winning strategy

of the game by replacing the initial configuration, i.e. (to,wp) <z[<]) (t1,w;) whenever

—(n,m

Duplicator has a winning strategy in the game on ¢, and ¢; starting with the configuration
(’wo, Wy, 0)

Lemma 3.2 Let n,m,j € N and t,s € M(X, I) with sequences w; € th and wy € X7I.
Then (t,w;) <[]

_(n7 m)

have that (t,w;) = ¢ implies (s,vs) = @. In particular:

(s,ws) holds if and only if for all ¢ € ®(n, m) with j free variables we

t< s & (VLexm<]iteL = sel).

(n,m)

Proof: The lemma holds for n = 0, as without any rounds Duplicator wins the game if
and only if in the initial configuration, the j pebbles are isomorphically distributed on
both traces, which amounts to saying that the same Eé[<] formulae hold for (¢, w;) and
(s,ws). Suppose n > 0. Let w, € th, ws € X7 be interpretations such that the partial
mapping X; — X, 1 wy(i) — ws(i), 1 <@ < j induces an isomorphism with respect to the
order relation and the label function.

(=) Let ¢ € ®(n,m) be a formula with the free variables zy,...,z;. Without
loss of generality, we assume that 3 (and not V) is the outermost junctor, i.e. ¢ =
Jzj4q -+ -3z~ with £ < m and ¢ € &(n — 1, m — £). Suppose that Duplicator has a
winning strategy in the EF game with n rounds starting from the configuration (w;, ws, 0).
Let (wy,t) be a model of ¢. Now let Spoiler distribute ¢ pebbles on positions vy, ...,
of X; such that =1 holds on ¢ with the interpretation v; = wyv vs - - -vp. If Duplicator
proceeds according to his winning strategy, he obtains positions y; for all 1 <7 < /. We
set vy = Wsx1X2 - X¢- We have

(5:00) 20 mgy (B0,
By induction hypothesis the implication (s,vs) = ¥ = (t,v) = ¥ holds for all ¢ €
®(n —1,m — ¢). Hence, from (t,v;) = —¢ we can conclude (s,v;) = = and therefore
(s,ws) = .
(<) Assume that Spoiler has a winning strategy starting from the configuration
(wy, ws, 0). Let his first move according to this strategy consist in placing ¢ < m pebbles on
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t. Let v; be the new configuration on t. Now, after every possible response of Duplicator,
Spoiler has a winning strategy with at most n—1 rounds starting on trace s. By induction,
for each v € w X’ there exists a formula v, € ®(n,m — ¢) such that (s,v) = 1, and
(t,v¢) B~ 1. Since the range of possible values for v is finite, we can construct ¢¥* = \/ 1,
which in turn is a ®(n, m — £) formula. By construction it follows that

(t,w;) = Jxq -+ Fxg—p*  whereas (s, wy) £ Iy -+ - Jxp <™.
The lemma now follows by contraposition. O

Corollary 3.3 By replacing < with — we obtain relations j(zn[;l) and EF games for
Yml—].  An analogous proof shows that for the game X7 [—| starting with (wy, ws,0),
Duplicator has a winning strategy if and only if (t,w;) jz:n[_;; (s,ws) holds.

In [5] an EF game is defined for the linear temporal logic on words with three operators:
until, eventually and next. We will adapt this game in order to characterize simple
fragments of temporal logic on traces.

Definition 3.4 (Ehrenfeucht-Fraissé game for TL[XF,YP,PAR]) The EF game for the
fragment TLIXF, YP, PAR] with n rounds is played on two traces to,t; € M(X, I) using one
pebble per trace. A configuration of the game is a pair of positions (v, v1) € Xy X Xy,
currently occupied by the pebbles. In each round, Spoiler selects a side o € {0,1} and one

of the moves XF, YP and PAR.

XF: From a position v the pebble is moved to a position x such that x > v.
YP:  From a position v the pebble is moved to a position x such that x < v.
PAR: From a position v the pebble is moved to a position x such that x || v.

First, Spoiler moves the pebble on t, and then, Duplicator carries out the same type of
move on t1_,. If no other starting configuration is indicated we assume that initially, both
pebbles are placed beside the board at an unlabeled position we will refer to as ¢ ¢ XoUX;.
Any move starting from 1 consist in placing the pebble on an arbitrary position of the
respective trace.

Spoiler wins if Duplicator cannot move his pebble to the indicated direction or if,
initially or after the move, the pebbles lie on differently labeled nodes. Duplicator wins if
this never occurs.

The depth of a formula ¢ in temporal logic is the maximal number of nested temporal
operators occurring within ¢ (cf. [4]).

Lemma 3.5 The following propositions are equivalent:

1. Duplicator has a winning strateqy for the game from Definition 3.4 with n € N
rounds played on the traces t,s € M(X, I).

2. The traces t and s are models of exactly the same formulae in TLIXF, YP, PAR] with
a mazimal operator depth of n.



Proof: We first show that ¢,1, and s, v; are models of the same n-depth formulae if and
only if Duplicator has a winning strategy for the n-round game starting at the configura-
tion (14, vs) € Xy X X;. For n = 0 this is true, because at two positions the same 0-depth
formulae hold if and only if they are equally labeled. Let n > 0.

Let XFp be an n-depth formula such that (without loss of generality) t,1v, = XFyp,
whereas s, Vs [~ XFp. In the game with n rounds starting with the configuration (v, vs),
Spoiler can select the XF move and a position x; > v, with ¢, x; = 1, as opposed to
Duplicator, who will find no analogous position xs > vs. By induction, Spoiler wins the
game. The other temporal operators are analogous.

Now suppose that Spoiler wins the game starting with the configuration (v, ) within
n rounds. If the positions have different labels, then with ¢ = label(1;) it follows that
t,v; = ¢ and s, vs [~ . Otherwise Spoiler does his first move. Without loss of generality
let this first move be XF on t. Spoiler moves his pebble to x;. By induction, for every
position x € X with x > v, there exists an (n —1)-depth formula ¢, such that ¢, x; = ¢
and s, x £ ¢y Let o = A ., ¢y Then by construction ¢,v; = XFe and s, v, = XFe.

Let ,¢ = ¢ be equivalent to t = ¢. Now, the case that the game starts at (¢, ) works
similarly. a

By omitting the PAR operator we obtain:

Corollary 3.6 The following propositions are equivalent:

1. Duplicator has a winning strategy for the EF game on the traces t,s for TL with
n € N rounds and in which the move corresponding to PAR is not allowed.

2. The traces t and s are models of exactly the same formulae in TL[XF,YP] with a
mazimal operator depth of n.

4 Comparison of logical fragments

In [4] it is proven that over words, LTL with the operators XF and YP is equally expressive
as FO?[<]. The proof from that paper can be adapted in order to show analogous results
for FO? over traces. In contrast to words, in the case of FO?[<] two positions might be
parallel. This case can be covered using the PAR operator.

Lemma 4.1 FO’[<] C TL[XF,YP, PAR].

Proof: Let ¢(x) € FO?[<] be a formula with one free variable and without universal
quantifiers. The only variables of ¢ are z and y. We show by induction on the quantifier
depth and the size of the formula that there exist a formula @ in TL[XF, YP, PAR] such
that

Vve X (tv) Eor) & tvEe.



If p(z) = T then we set ¢ = aV —a. Constant formulae will arise later in the construction.
The atomic formula are translated as follows:

o) = a(z)forae® ~ @ =a
plr)=zr <z ~ P =alA-a
plr)=z=x ~ P =aVa.

Inductively, boolean operators are translated as follows:

p(r) = (@) V() ~  F =iV
p(z) = ~Y(z) - F =

If o(x) is of the form Jz: ¥ (z), in an intermediate step it is transformed into ¢'(x) =
Jy: ¥ (y) by interchanging = and y. If p(z) = Jy: ¥(y) then it can be interpreted as
o(r) = Jy: Y(x,y) where x is a dummy variable in ¢. We now consider the general case
o(r) = Jy: Y(x,y). First, we will transform ¢(x) into an equivalent formula ¢”(x) of the
same quantifier depth. Let

?/)(%?/) = ﬁ(l’ =Y, <Yy, y<ux, gl(x)v"'vgn(x)v Cl(y)vvgm(y))

where (3 is a propositional formula and &;(z), (;(y) are atomic formulae or existential
formulae with smaller quantifier depth. The first step in the transformation of ¢(x) is to
guess the values of &;(x) before the quantification of y. We set ¢'(z) =

\ ( A (Elr) <) A

Fe{T,L}" M1<i<n
Hy: ﬁ(l‘ =Y, T <Y, Y<T, V-3 Tn; Cl(y)77Cm(y)))

The next step is to guess the relation 7 that holds between z and y in advance. The
possible relations are x = y, * < y, * > y or none them and then x and y correspond to
parallel positions, x || y. Hence we choose 7 from the set { =, <,>, || }. We set ¢"(z) =

V < A G@) =) a0 3y (:CTyAﬁ(y)>

Fe{T,L}" *1<i<n Te{=,<.>,1}

with B(y) = Blx = y",x < y",y < 27,7, (1(y),...,(m(y) ). Note that the first 3 +n
arguments are constant boolean values at this point. After this transformation of ¢(z)
it remains to show how to translate formulae of the form Jy: (z7y A B(y)) with 7 €

{=<>1}%

Jy: (z=yABy) ~ B

By (@ <y ABy) ~ XFB
By (@ >y ABY) ~ YPB
Jy: (zlly A B(y))  ~  PARG.



Let now ¢ € FO?[<] be a formula without free variables. Next, we show how to construct

a formula @ € TL[XF, YP, PAR] such that

tEe & tEQ

For this we use the following transformation scheme:

=Y Vihy ~ Q= Vo

=Y ~ Q=)

o= 3z:Y(x) ~ F=XFi.
Formule of the form ¢ = Jy: 1(y) are in an intermediate step transformed into Jz: ¥ (z)
by interchanging = and y. O

Lemma 4.2 FO*[-] C TL[XF, YP].

The proof is analogous to Lemma 4.1. The only difference is that we use the operator M
if none of x =y, x — y or y — x holds. In this case, we additionally have to check that
the labels of x and y are independent. Afterwards the M operator can be removed by
Remark 2.2.

We say that a language L is a polynomial if it is a finite union of languages of the form
Ajar AT - - a, A

where n € N and A; C X for all 0 <7 < n. By Pol we denote the class of such languages
and by coPol we denote the class of complements of such languages.

Lemma 4.3 Pol C 3[—].

Proof: Tt is easy to see that languages of the form A* for A C ¥ are in Y,[—]. Since Pol
and Y,[—] are both closed under union, it suffices to show that Loal; € 35[—] if Ly and
Ly are in ¥5[—|. Suppose Ly and L; are expressed by the Ys[—] formulae ¢y and ¢,
respectively. We will construct a ¥o[—| formula ¢ expressing L = LoaL;. We have t € L
if and only if there exists a factorization t = tgat; with ty € Ly and ¢t; € L;. Our aim is
to to check whether there exists such a factorization. This will be done by determining
for each letter in ¢y (resp. t1) its last occurrence (resp. its first occurrence). We will then
use these positions to restrict g (resp. ¢1) to the left (resp. right) factor by means of the
relation —. We introduce some macro formulae:

label(z) = label(y) = /\ a(x) < a(y)
acx
path(zq,...,2z,) = /\ (x; = Ty Vo — Tigq)
1<i<n
vy = V... Vay:

(ﬁpath(xl, o xm)VE FE o Vy # :1:‘2|) A
(ﬁpath(xl, Lo xm) Ve Fam Vy # xl)



r<y = xTH#YA
Jxy .. Fxyw_1: path(z, ze, ..., 2n-1,y).

That this definition of < is equivalent with the transitive closure of — follows by Lemma
2.1. For alphabets Ay = {ay,...,a, } and A; = {by,..., b, } we define a ¥y[—] formula
Yagaa (T1, .oy Tny 21, Y1, - - -, Ym) With n + 1 + m free variables. Consider a factorization
t = toat;. The formula 104, 4 4, is true if each variable x;, 1 < i < n is interpreted at the
last occurrence of the letter a; in to and the alphabet of ¢q is Ag. The last m variables
y; represent the first positions of letters of ¢; whose alphabet is A; and z; corresponds to
the position of @ in this factorization. We set ¥4, 0.4, (T1, .-, Tny 21, Y14+ -+, Ym) =

/\ a;(x;) N a(z1) A /\ bi(y;) N

1<i<n 1<i<m
(IL‘Z‘ ||Zl V oz, < 2’1) A
/\ (@illy; V@i <y;) A o A
1<i<n (1 |ly; V 21 <)

Vz: 1<i<n

\/ (label(z) = label(y;) A (y; =2z V y; — z))

\ 1<j<m ).

Let x1, ..., z, be variables. The restriction of ¢y = JyVZ1y(7, Z) to the past of z1,...,x,
is

Yo = 3Y1...FYmV21... V2

/\ <\/ (yj =z V yj_bxi)> A

1<j<m \1<i<n
< \/ ( /\ (=1 V Zj_bxi)> v %(@J))
1<k<e \1<i<n _
Similarly, we can define the restriction ] of ¢; to the future of vy, ..., ymn. Using these

restrictions, we define

Y= \/ dzy ... 37149 T2 Ty - Ty (onﬂ,Al A oy A gpf)
Ag,A1CYE

Note that ¢ is a Ya[—»] formula. It expresses the language L. O

Lemma 4.4 ¥,[—] C Pol.
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Proof: Let L € Ys[—»]. An algebraic characterization in terms of Mal’cev products of Pol
is given in [11]. In order to show L € Pol we will prove that L has this algebraic property.
Therefore we will use some methods from algebraic language theory, see e.g. [13, 14]. Tt
suffices to show that for each ¢ € M(X, I) there is an n’ € N such that, for all n > n’ and
s € M(X, I) with alph(¢) = alph(s), the following implication holds:

Vp,q € M(X,1): pt"q € L = pt"st"q € L.

Let m € N with L € ¥'[—]. Consider the EF game for this fragment, played on the
traces r = pt"q and u = pt"st"q with n > (m + 1)? starting from the initial configuration
(e,£,0). The interior sections of both traces, i.e. t" on r and t"st" on u, are composed of
factors t and s. We refer to the n factors t of r as blocks 1 to n.

In the first round, Spoiler places up to m pebbles on positions of . Due to the large
number of blocks in comparison to the number of pebbles, he must necessarily leave a big
gap: there is an ¢ < n — m such that on trace r, Spoiler places no pebbles on any of the
blocks ¢ +1,...,¢+ m. We decompose r into three factors

r = pté . tm . tn—é—mq.
All pebbles lie on positions of the left and of the right factor. We analogously factorize u:

Duplicator responds by copying the distribution of the pebbles on the two identical outer
factors.

In the second round, Spoiler has to distribute his remaining pebbles on u. Duplicator
can carry over the distribution of the new pebbles on the outer factors of u to the corre-
sponding positions of the outer factors of r. It remains to show how Duplicator can answer
the j pebbles, j < m, on the intermediate factor t" st of u. Let vy, 10, ...,v; € X, be
a linearization of the positions with pebbles on this intermediate factor such that v; — v
implies © < k. Now, Duplicator uses the gap of size m beginning at block ¢+ 1 of r and
the assumption that alph(¢) = alph(s). For each position v;, 1 <i < j, Duplicator places
a pebble of the same type on an arbitrary position y; of block ¢ + i in trace r such that
label(v;) = label(y;). By construction, we have v; — v if and only if x; — yx. Hence,
Duplicator has a winning strategy for this EF game. Therefore,

n X[~ n 4n
p"g <fy o PE"st"q

holds due to Corollary 3.3, which shows that pt"q € L implies pt"st"q € L. a

Lemma 4.5 It is not expressible in TL[XF,YP] whether two actions occur in parallel,
whereas this property is expressible in L3[<].

11
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Figure 1: Hasse diagram of trace p (see proof of Lemma 4.6)

Proof: Let M(3, I) be the trace monoid given by the dependence relation D = a — b — c.
We formulate the property L = ‘the symbols a and ¢ occur in parallel’” that coincides
with the semantics of ¢ = JxJy: = ||y. Consider the EF game for TL restricted to
n € N rounds and the moves XF and YP, i.e. without the PAR move, played on the traces
t = (babe)™bacb(babe)® € L and s = (babc)* ™! ¢ L. We enumerate the blocks bach and
babc that constitute both traces with integers running from —n to n such that both traces
are identical apart from block 0. We sketch a simple winning strategy for Duplicator on
this game.

As long as no pebble is placed on a or ¢ of block 0, Duplicator can imitate all moves
made by Spoiler. If at some point the pebbles are placed on such positions and Spoiler
moves one of them forward or backward within block 0 then Duplicator can respond by
moving the other pebble to an identically labeled position of either block —1, 0 or 1. If
Spoiler moves one of the pebbles to a non-adjacent block then Duplicator can return to a
configuration where both pebbles are placed in equally numbered blocks. Otherwise, he
can always maintain the distance of at most one block, which means that he can respond
in all of the maximally n — 1 rounds that remain. By Corollary 3.6, L cannot be expressed

in TL[XF, YP]. O

Lemma 4.6 [t is not expressible in TLIXF,YP, PAR] whether three actions occur in par-
allel, whereas this property is expressible in L3[<].

Proof: Let M(X, I) be the trace monoid with ¥ = {a,b,¢,d, e, f,#} such that among the
letters {a,b,c,d, e, f} we have the circular dependencies a —b—c—d—e— f —a and all
these letters are dependent of #. The maximal sets of independent letters are {a,c, e}
and {b,d, f}. In X3[<], we can express whether three actions occur in parallel by the
formula

e = JxdyIz: (z|ly Ayllz Az z).

Next, we will show that L(y) is not in TL[XF, YP, PAR]. Let r = acbdcedfeafb. For an
arbitrarily chosen n € N consider the traces p = r?*™! and ¢ = acbedf. We combine them
in order to build the larger traces t = (#p)*" ™! £ ¢ and s = (#p)"#q(#p)" = ¢, see
Figures 1 and 2. We say that p and g are segments of t and s. We numerate the segments
of t and s with numbers running from —n to n from left to right. All segments of ¢ and s
consist of p, except for segment 0 of trace s, which is q. Every segment that correspond
to p is further subdivided into 2n + 1 blocks with numbers running from —n to n such
that all blocks consist of 7.

Consider the n-round EF game for TL[XF, YP, PAR] played on the traces ¢ and s. In all
blocks, except the outermost ones —n and n, every position has parallel occurrences of all
letters that are independent of its own label. Although there do not exist three parallel

12



2

Figure 2: Hasse diagram of trace #q# (see proof of Lemma 4.6)

positions in ¢, we will use this fact to mimic three parallel positions in order to construct
a winning strategy for Duplicator.

The main strategy of Duplicator is to copy all moves of Spoiler. Since only the behavior
on the segments 0 of ¢ and s is not evident, we will describe the strategy of Duplicator
for this case. Whenever Spoiler accesses segment 0 of trace ¢, Duplicator avoids placing
the pebble on segment 0 of trace s by putting his pebble to the corresponding position
of either segment —1 or 1 of trace s. In the up to n — 1 remaining rounds it is possible
for Duplicator to keep a maximal difference of 1 between the numbers of the segments.
If Spoiler moves his pebble on segment 0 of trace s, Duplicator responds by placing the
other pebble on an identically labeled position of block 0 of either segment —1, 0 or 1 of
trace s. From this position he can mimic all possible PAR-moves of Spoiler on s. Each
PAR-move of Spoiler could force Duplicator to increase or decrease the block number by
1. Since there occur at most n — 1 of these moves and there are n blocks to the left as
well as to the right, Duplicator wins the game. It follows that L(y) ¢ TL[XF, YP, PAR].

O

Lemma 4.7 For alln € N, we have TL[XF, YP, PAR] £ ¥, [<].

Proof: Let m € N be arbitrary, and let a series of trace monoids M(T';, I;,), i > 1,
be given inductively by the alphabets I'y = {a;} and T, = T';_; U {a;,b; } with the
dependence graph D; = D; ; — b; — a; or, more formally, D; = {(aj,a1)} and D; =
D; 1 UT;y x {b} U {b} xT;_1 U {a;,b; }>. This means that each T'; with i > 2
introduces a letter a;, which is independent of all preceding letters, and a letter b; that
depends on all letters. For i € N, let £; = (m+1)". By induction we also define the traces
ty =€, 1 = ay, and

ti = (biagsiy)"

si = (biaisi1)" - biagtiy - (biagsi1)"

such that t;,s; € M(T;, I;,). The b;’s partition these traces into blocks. We number these
blocks from 1 to ¢; on t; and from —/¢; to ¢; on s;. Within each block, the position labeled
with a; is parallel to all other positions.

We define the formulae ¢, = a;, ¥; = “PARy; and ¢; = a; AY;_1. By induction, ¢;
holds at the position of a; in b;a;t;_1 but not in b;a;s;_1. It follows that s;, which contains
a factor t;_1, does not model 1;, as opposed to t;, which models ;. Hence for all n € N,
there is a TL[XF, YP, PAR] property modeled by ¢, but not by s,.
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Now consider the EF game for ¥"[<] played on the traces t,, and s,, i.e. there are
n rounds, m pebbles, and Spoiler places his first pebbles on ¢,. Using induction, we
describe a winning strategy of Duplicator for this game. The case for n = 1 is trivial:
Spoiler cannot place any pebbles and Duplicator responds by doing the same. Assume
n > 1, then in the first round, Spoiler places m’ < m pebbles on t,,. Because this trace
consists of £, blocks, there must remain a big continuous gap of ¢ = (m + 1)"~! blocks
without any pebbles. Let such a gap start after the k-th block and consider the following
factorizations of t,, and s,:

t, =p* - o L plnk=t
5, = pF - plnh gphtt . pta—k=t
where p = b,a,5,-1 and ¢ = b,a,t,_1. Duplicator can react by placing corresponding
pebbles on the respective positions of the left and right factor of s,,. On both traces, the
factor in the middle contains no pebbles. For the remaining rounds, we can ignore the
outermost factors of both traces because they are identical. By induction we know
tnfl j(zn[f]l,m) Sn—1,
i.e. for the rest of the game, the blocks p and ¢ cannot be distinguished. Both middle
factors consist of at least (m + 1)"~! blocks, and there are n — 1 rounds to play. This
allows Duplicator to win the game. We conclude that
¥ [<]
tn j(n,m) Sp-

Hence for all n € N, no ¥"[<] property is modeled by ¢, but not by s,. As this holds for
all m € N| it follows that TL[XF, YP, PAR] is not a subset of ¥,[<]. O

Theorem 4.8 We have the following relations:

a. TLIXF,YP] = FO*[—] = Ay[—].

b. TL[XF,YP,PAR] = FO*[<].

c. FO*[—] € FO?[<].

d. Aq[—] € Asl<].

e. For alln > 2, the fragments A,[<] and FO?[<] are not comparable.
[. Pol = Xo[—] C Xs[<].

g. coPol = Il [—] C Ilx[<].

14



Proof: The relation FO?[—] C TL[XF,YP] is Lemma 4.2 and we have TL[XF,YP] C
FO?[—] since the definition of the temporal operators can be seen as macros using only
two variables. By Lemma 2.1, the relation < in those macros can be simulated by —.
The relation TL[XF,YP, PAR] C FO?[<] follows similarly and FO?*[<] C TL[XF,YP, PAR]
is Lemma 4.1. The relations ¥s[—] = Pol and Ils[—] = coPol follow from Lemma 4.3
and Lemma 4.4, the latter one by complementation. Now, Pol N coPol = TL[XF, YP], see
[11], implies TL[XF, YP] = As[—»]. That there exists a trace monoid such that the subset
relations in FO*[—»] € FO*[<] and Ay[—] € Ay[<] and Zy[—] € Y5[<] and I[—] C
IT,[<] are strict follows from Lemma 4.5 and that for all n > 2, neither A, [<] C FO?<]
nor FO?[<] C A,[<] holds follows from Lemma 4.6 and Lemma 4.7, respectively. O

Conclusion

The main contribution of this document is algebraic, although few methods from algebra
were used. Over traces the variety Pol N coPol was already known to be identical with
TL[XF, YP], and over words also with Ay[<] = FO?[<]. With the results from Theorem
4.8 we can see that the identity

Pol NcoPol = TL[XF,YP] = Ay[—] = FOy[—]

remains valid in the more general setting of traces understood as dependence structures.
However, this does not extend to the partial order interpretation of traces. We have shown
how the difference between FO?[<] and FO?*[—] coincides with the difference between
fragments of temporal logic with and without the operator PAR. For all n > 1 we have
seen that none of the fragments FO?*[<] and A,,[<] includes the other.

As a tool for carrying out the proofs, we mostly applied straightforward Ehrenfeucht-
Fraissé games. The rules we defined for the game that characterizes fragments of the X"
type combine the approaches from [16] and [10]. The properties of that game are valid for
first-order theories in general, not only for Mazurkiewicz traces. The games for temporal
logic are adaptations of the version from [5].

The examples that were given in order to prove differences between logical fragments
are very natural in the sense that they are among the simplest properties that describe
concurrency between actions. In particular, for the temporal formulae

©n = “PAR(a, A @n_1)

of linear size in n with ¢ = a; there is no equivalent in 3,,[<]. Within FO?[—] we cannot
distinguish whether two concurrent actions occur or not. That there are three concurrent
actions cannot be expressed in FO?[<].

Using the characterization for FO*[—] and Ay[—+] and the algebraic properties of
Pol N coPol we can conclude that membership in these fragments is decidable However, it
remains an open problem to obtain algebraic characterizations of the first-order fragments
FO?[<] and Ay[<]. This would be desirable in order to establish decidability results for
these fragments as well.
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