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Abstract

We compare the expressive power of some first-order fragments and of two simple temporal
logics over Mazurkiewicz traces. Over words, most of these fragments have the same
expressive power whereas over traces we show that the ability of formulating concurrency
increases the expressive power.

We also show that over so-called dependence structures it is impossible to formulate
concurrency with the first-order fragments under consideration. Although the first-order
fragments ∆n[<] and FO2[<] over partial orders both can express concurrency of two
actions, we show that in general they are incomparable over traces. For FO2[<] we give
a characterization in terms of temporal logic by allowing an operator for parallelism.



1 Introduction

Mazurkiewicz traces are a model for concurrent systems that extends the theory of words
by allowing commutation between certain letters [12]. Within three decades of trace
theory, many results have been obtained. For details see The Book of Traces [2]. Diekert
and Gastin have shown that (local) temporal logic for traces is complete [1], i.e. it can
express the same set of properties as first-order logic. This makes temporal logic a suitable
formalism for specifying properties of concurrent systems.

This paper contributes to a better comprehension of the relation between temporal
logic and first-order logic over traces. We will compare the expressivity of certain logical
fragments. Over words, these fragments are known to have the same expressive power
(see [15]). As a tool for this purpose, we will use Ehrenfeucht-Fräıssé (EF) games [3].
Originally, these games were applied to the first-order logic over relational structures in
general. In [5] a modified version was presented in order to characterize fragments of
temporal logic over words. We continue this approach and alter EF games for words in
order to capture specific logical fragments over traces.

In particular, we consider first-order formulae with two variables. This is a natural
restriction, because three variables are already sufficient to express all first-order prop-
erties [8]. Traces can be given either as labeled partially ordered sets or as dependence
structures, i.e. labeled sets with directed arcs only between dependent letters. Depen-
dence structures are no restriction for the full first-order fragment [1]. We explain how
the distinction between partial orders and dependence structures affects the expressivity
of restricted first-order fragments and show a connection to temporal logic with and with-
out an operator for parallelism. Surprisingly, there are simple fragments that have more
exhausting characterizations on dependence structures than on partial orders, although
the latter representation would seem to be more natural.

We will proceed as follows: Section 2 introduces Mazurkiewicz traces as well as
some fragments of first-order and temporal logic for traces. In Section 3 two types of
Ehrenfeucht-Fräıssé games are presented and they are shown to characterize fragments of
first-order and temporal logic. In Section 4 we first show that the properties expressible
with two variables in first-order logic can also be characterized by simple fragments of
temporal logic, both for the interpretation of traces as partially ordered sets and as de-
pendence structures. Next, we show that on traces interpreted as dependence structures,
first-order formulae restricted to one quantifier alternation that begin with an existential
quantifier capture exactly the class of polynomials. We further give a couple of (natural)
properties that are used to separate several of the fragments under consideration.

2 Preliminaries

An independence alphabet (Σ, I) consists of a finite set Σ with a symmetric and irreflexive
independence relation I ⊂ Σ×Σ. Whenever a I b holds for two symbols a, b ∈ Σ they are
called independent. Otherwise they are dependent, and accordingly, D = (Σ × Σ) \ I is
called the dependence relation. The congruence ∼I on Σ∗ is the reflexive and transitive
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closure of the relation ≈I defined by

∀w, v ∈ Σ∗ ∀a, b ∈ Σ: wabv ≈I wbav ⇔ a I b.

The set of equivalence classes [w]∼I with respect to that congruence forms the free partially
commutative monoid generated by (Σ, I). It is denoted byM(Σ, I). Its elements are called
(Mazurkiewicz) traces and the set itself a trace monoid following a convention from [12].
It is common to determine a trace monoid by the graph of its dependence relation, in
which the loops resulting from the reflexivity are omitted.

Since w ∼I v implies that the words w and v contain the same letters, possibly in
a different order, the length and the alphabet of w are invariant within an equivalence
class. Therefore, these notions can also be applied to traces, and for [w]∼I = t ∈ M(Σ, I)
we denote the length of the trace t by |t| = |w| and its alphabet is alph(t) = { a ∈ Σ |
a occurs in w }.

Another point of view is the following: A trace for the independence alphabet (Σ, I)
is a relational structure t = (Xt, label,_, <) with a finite set of positions Xt, a mapping
label : Xt → Σ, and binary relations _ and < over the set of positions Xt such that:

• _ is acyclic and irreflexive,

• for all ν, χ ∈ Xt with ν 6= χ, we have that label(ν)D label(χ) holds if and only if
either ν_ χ or χ_ ν holds,

• the relation < is the transitive closure of _.

The word w = label(ν1) · label(ν2) · · · label(νn) ∈ Σ∗ with { ν1, . . . , νn } = Xt is a repre-
sentative of t if and only if νm < ν` implies m < ` for all 1 ≤ m, ` ≤ n, i.e. if and only if
w is a linearization of (Xt, <). We have t = [w]∼I ∈M(Σ, I) if and only if w = a1a2 · · ·an
is a representative of t. The relations _ and < contain the same information: < is the
transitive closure of _, and for any two elements ν, χ ∈ Xt we have

ν _ χ ⇔ ν < χ ∧ label(ν)D label(χ)

therefore _ can be reconstructed if only < is given. For this reason, it is equally valid
to describe a trace using only one of these relations and to write t = (Xt, label,_) or
t = (Xt, label, <). From [1, Lemma 5] we can conclude the following lemma.

Lemma 2.1 The partial order relation < equals
⋃

1≤i<|Σ|
(_)i.

The parallelism relation ‖ is the complement of the symmetric and reflexive closure of
<. When the considered object is clearly a trace, it is also common to omit the brackets
and to write t = a1a2 · · ·an. Let ≺⊆ Xt × Xt be minimal such that < is the transitive
closure of ≺. The directed graph (Xt,≺) is called the Hasse diagram of t.

In first order logic, allowed logical formulae contain only quantifiers ∃ and ∀ that bind
variables representing single elements. First-order logic on traces is called FO[<] when it
is applied to the representation of a trace as t = (Xt, label, <), and FO[_] if the predicate

2



_ is used instead. In addition to the binary predicates = for equality and < or _, the
formulae may contain the unary predicates a(·) for a ∈ Σ that hold at all positions labeled
with that letter.

Let a first-order formula ϕ contain the free variables free(ϕ). Then, it can only be
assigned a truth value on a trace t when an interpretation g : free(ϕ) → Xt of these
variables is indicated. Whenever free(ϕ) is { x1, . . . , xn }, interpretations will be denoted
by sequences w ∈ Xn

t . We write (t, w) |= ϕ if ϕ using the interpretation w is true on t.
We will discuss the following fragments of first-order logic on traces:

• FOm[<] contains all properties that can be expressed with m variables.

• Σm
n [<] consists of the properties expressible by Φ(n,m) formulae without free vari-

ables. Intuitively, n describes the number of quantifier blocks and m the number of
nested variables. More formally: the formulae without quantifiers constitute Φ(0, 0).
A formula ϕ with free variables x1, . . . , xj is in Φ(n,m) if and only if for some k ∈ N
it can be written as

∨
1≤i≤k ∃xj+1 · · · ∃xj+`(i)¬ψi with `(i) ∈ N, ψi ∈ Φ(n−1, m−`(i))

for all 1 ≤ i ≤ k.

• Πm
n [<] contains all properties expressible as ¬ϕ with ϕ ∈ Φ(n,m).

We also write Σn[<] =
⋃
i∈N Σi

n[<] and Πn[<] =
⋃
i∈NΠi

n[<].

• ∆n[<] is defined as the intersection Σn[<] ∩ Πn[<].

By applying the same restrictions on FO[_], analogous logical fragments such as FOn[_]
and Σn[_] are obtained. Particular attention will be paid to the special cases with n = 2.

A different way to formulate logical properties of traces is (local) temporal logic TL,
which generalizes linear temporal logic LTL for words [1]. In a TL formula, the quantifiers
of first-order logic appear again, but only implicitly by the means of temporal operators
that can be seen as macros representing FO subformulae. We will use four operators:
neXt Future (XF), Yesterday Past (YP), PARallel (PAR) and soMewhere (M). Although
these operators are well-known, there is no uniform way of referring to them, e.g. the XF
operator can also be called ‘strict future’ or ‘next eventually’. The operator PAR has also
been defined as Eco or co by some authors, e.g. [7, 9]. The role of M is only auxiliary. It
will enable us to switch to another connected component within a trace.

The syntax of TL is given as follows: every a ∈ Σ is a temporal formula. Let ϕ and
ψ be temporal formulae and Op a temporal operator. Then ¬ϕ, (ϕ ∨ ψ) and Opϕ are
temporal formulae as well.

Let t ∈ M(Σ, I) be a trace. Then the semantics of formulae in temporal logic with
the operators XF, YP, PAR and M is defined inductively as follows, where ϕ and ψ are
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subformulae and ν ∈ Xt is a position of the trace:

t, ν |= >
∀a ∈ Σ: t, ν |= a ⇔ label(ν) = a

t, ν |= ¬ϕ ⇔ t, ν 6|= ϕ

t, ν |= ϕ ∨ ψ ⇔ t, ν |= ϕ or t, ν |= ψ

t, ν |= XFϕ ⇔ ∃χ ∈ Xt : ν < χ ∧ t, χ |= ϕ

t, ν |= YPϕ ⇔ ∃χ ∈ Xt : χ < ν ∧ t, χ |= ϕ

t, ν |= PARϕ ⇔ ∃χ ∈ Xt : ν ‖χ ∧ t, χ |= ϕ

t, ν |= Mϕ ⇔ ∃χ ∈ Xt : t, χ |= ϕ

This can be applied to a trace according to the rules

t |= Opϕ ⇔ ∃ν ∈ Xt : t, ν |= ϕ

t |= ¬Opϕ ⇔ ∀ν ∈ Xt : t, ν 6|= ϕ

t |= ϕ ∨ ψ ⇔ t |= ϕ or t |= ψ

t |= ϕ ∧ ψ ⇔ t |= ϕ and t |= ψ

where Op represents any of the temporal operators XF, YP, PAR and M. We denote the
set of all properties L(ϕ) = { t ∈M(Σ, I) | t |= ϕ } where ϕ is a temporal formula that
contains no temporal operators apart from Op1, . . . ,Opn by TL[Op1, . . . ,Opn].

Remark 2.2 It is known from [11] that TL[XF,YP] = TL[XF,YP,M], hence the M oper-
ator does not add any expressivity to this fragment.

3 Ehrenfeucht-Fräıssé games for traces

Ehrenfeucht-Fräıssé (EF) games [3, 6] are often used to characterize logical fragments. For
the boolean closure of Σn[<], Thomas presented an EF game [16] that can be modified in
order to describe Σn[<]. The main difference consists in the fact that Σn[<] is not closed
under complementation. If we want to capture this fragment, it is therefore insufficient
to determine whether two traces t and s are equivalent or not. Instead, we will ask if t
models at least the same Σn[<] properties as s does. By limiting the number of pebbles
to m ∈ N, an idea introduced in [10], it is possible to characterize the Σm

n [<] fragments.

Definition 3.1 (Ehrenfeucht-Fräıssé game for Σm
n [<]) The set of configurations for

the EF game corresponding to the fragment Σm
n [<] played on the traces t0 and t1 with

position sets X0 and X1 is X∗0×X∗1×{0, 1} with the restriction that the size of the first two
components is equal and does not exceed m. The first two components of the configuration
are interpreted as a distribution of pebbles on the two traces: a pebble labeled with xi lies at
position ν ∈ Xj whenever ν is the i-th character of the word corresponding to j ∈ {0, 1}.
The third component contains the number of the trace where Spoiler will carry out his next
move.

Let (w0, w1, σ) with |w0| = |w1| = i ≤ m be the current configuration, then the next
turn is carried out as follows:
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• Spoiler takes j ≤ m − i pebbles labeled with xi+1, . . . , xi+j and distributes them on
trace tσ by assigning a position νσ(k) ∈ Xσ to each xi+k.

• Duplicator places identically labeled pebbles on nodes of the other trace, such that
every xi+k is assigned some ν1−σ(k) ∈ X1−σ.

• The new configuration is (w0ν0(1) · · ·ν0(j), w1ν1(1) · · ·ν1(j), 1− σ).

The game for Σm
n [<] consists of n rounds. Duplicator wins if and only if initially and

after each of these rounds, the partial mapping X0 → X1 : w0(k) 7→ w1(k) with 1 ≤ k ≤
|w0| = |w1| induces an isomorphism with respect to labels and the relation <.

For t0, t1 ∈M(Σ, I) we write t0 �Σ[<]
(n,m) t1 if and only if Duplicator has a winning strategy

in the EF game for the logical fragment Σm
n [<], played on t0 and t1 and starting with

the initial configuration (ε, ε, 0). This relation is extended to intermediate configurations

of the game by replacing the initial configuration, i.e. (t0, w0) �Σ[<]
(n,m) (t1, w1) whenever

Duplicator has a winning strategy in the game on t0 and t1 starting with the configuration
(w0, w1, 0).

Lemma 3.2 Let n,m, j ∈ N and t, s ∈ M(Σ, I) with sequences wt ∈ Xj
t and ws ∈ Xj

s .

Then (t, wt) �Σ[<]
(n,m) (s, ws) holds if and only if for all ϕ ∈ Φ(n,m) with j free variables we

have that (t, wt) |= ϕ implies (s, vs) |= ϕ. In particular:

t �Σ[<]
(n,m) s ⇔

(
∀L ∈ Σm

n [<] : t ∈ L ⇒ s ∈ L
)
.

Proof: The lemma holds for n = 0, as without any rounds Duplicator wins the game if
and only if in the initial configuration, the j pebbles are isomorphically distributed on
both traces, which amounts to saying that the same Σj

0[<] formulae hold for (t, wt) and
(s, ws). Suppose n > 0. Let wt ∈ Xj

t , ws ∈ Xj
s be interpretations such that the partial

mapping Xt → Xs : wt(i) 7→ ws(i), 1 ≤ i ≤ j induces an isomorphism with respect to the
order relation and the label function.

(⇒) Let ϕ ∈ Φ(n,m) be a formula with the free variables x1, . . . , xj. Without
loss of generality, we assume that ∃ (and not ∨) is the outermost junctor, i.e. ϕ =
∃xj+1 · · · ∃xj+` ¬ψ with ` ≤ m and ψ ∈ Φ(n − 1, m− `). Suppose that Duplicator has a
winning strategy in the EF game with n rounds starting from the configuration (wt, ws, 0).
Let (wt, t) be a model of ϕ. Now let Spoiler distribute ` pebbles on positions ν1, . . . , ν`
of Xt such that ¬ψ holds on t with the interpretation vt = wtν1ν2 · · · ν`. If Duplicator
proceeds according to his winning strategy, he obtains positions χi for all 1 ≤ i ≤ `. We
set vs = wsχ1χ2 · · ·χ`. We have

(s, vs) �Σ[<]
(n−1,m−`) (t, vt).

By induction hypothesis the implication (s, vs) |= ψ ⇒ (t, vt) |= ψ holds for all ψ ∈
Φ(n − 1, m − `). Hence, from (t, vt) |= ¬ψ we can conclude (s, vs) |= ¬ψ and therefore
(s, ws) |= ϕ.

(⇐) Assume that Spoiler has a winning strategy starting from the configuration
(wt, ws, 0). Let his first move according to this strategy consist in placing ` ≤ m pebbles on
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t. Let vt be the new configuration on t. Now, after every possible response of Duplicator,
Spoiler has a winning strategy with at most n−1 rounds starting on trace s. By induction,
for each v ∈ wsX

`
s there exists a formula ψv ∈ Φ(n,m − `) such that (s, v) |= ψv and

(t, vt) 6|= ψv. Since the range of possible values for v is finite, we can construct ψ∗ =
∨
v ψv,

which in turn is a Φ(n,m− `) formula. By construction it follows that

(t, wt) |= ∃x1 · · · ∃x` ¬ψ∗ whereas (s, ws) 6|= ∃x1 · · · ∃x` ¬ψ∗.

The lemma now follows by contraposition. 2

Corollary 3.3 By replacing < with _ we obtain relations �Σ[_]
(n,m) and EF games for

Σm
n [_]. An analogous proof shows that for the game Σm

n [_] starting with (wt, ws, 0),

Duplicator has a winning strategy if and only if (t, wt) �Σ[_]
(n, j) (s, ws) holds.

In [5] an EF game is defined for the linear temporal logic on words with three operators:
until, eventually and next. We will adapt this game in order to characterize simple
fragments of temporal logic on traces.

Definition 3.4 (Ehrenfeucht-Fräıssé game for TL[XF,YP,PAR]) The EF game for the
fragment TL[XF,YP,PAR] with n rounds is played on two traces t0, t1 ∈M(Σ, I) using one
pebble per trace. A configuration of the game is a pair of positions (ν0, ν1) ∈ Xt0 × Xt1

currently occupied by the pebbles. In each round, Spoiler selects a side σ ∈ {0, 1} and one
of the moves XF, YP and PAR.

XF: From a position ν the pebble is moved to a position χ such that χ > ν.
YP: From a position ν the pebble is moved to a position χ such that χ < ν.
PAR: From a position ν the pebble is moved to a position χ such that χ ‖ ν.

First, Spoiler moves the pebble on tσ and then, Duplicator carries out the same type of
move on t1−σ. If no other starting configuration is indicated we assume that initially, both
pebbles are placed beside the board at an unlabeled position we will refer to as ι /∈ X0∪X1.
Any move starting from ι consist in placing the pebble on an arbitrary position of the
respective trace.

Spoiler wins if Duplicator cannot move his pebble to the indicated direction or if,
initially or after the move, the pebbles lie on differently labeled nodes. Duplicator wins if
this never occurs.

The depth of a formula ϕ in temporal logic is the maximal number of nested temporal
operators occurring within ϕ (cf. [4]).

Lemma 3.5 The following propositions are equivalent:

1. Duplicator has a winning strategy for the game from Definition 3.4 with n ∈ N
rounds played on the traces t, s ∈ M(Σ, I).

2. The traces t and s are models of exactly the same formulae in TL[XF,YP,PAR] with
a maximal operator depth of n.
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Proof: We first show that t, νt and s, νs are models of the same n-depth formulae if and
only if Duplicator has a winning strategy for the n-round game starting at the configura-
tion (νt, νs) ∈ Xt ×Xs. For n = 0 this is true, because at two positions the same 0-depth
formulae hold if and only if they are equally labeled. Let n > 0.

Let XFϕ be an n-depth formula such that (without loss of generality) t, νt |= XFϕ,
whereas s, νs 6|= XFϕ. In the game with n rounds starting with the configuration (νt, νs),
Spoiler can select the XF move and a position χt > νt with t, χt |= ψ, as opposed to
Duplicator, who will find no analogous position χs > νs. By induction, Spoiler wins the
game. The other temporal operators are analogous.

Now suppose that Spoiler wins the game starting with the configuration (νt, νs) within
n rounds. If the positions have different labels, then with ϕ = label(νt) it follows that
t, νt |= ϕ and s, νs 6|= ϕ. Otherwise Spoiler does his first move. Without loss of generality
let this first move be XF on t. Spoiler moves his pebble to χt. By induction, for every
position χ ∈ Xs with χ > νs there exists an (n−1)-depth formula ϕχ such that t, χt |= ϕχ
and s, χ 6|= ϕχ. Let ϕ =

∧
χ>νs

ϕχ. Then by construction t, νt |= XFϕ and s, νs 6|= XFϕ.
Let t, ι |= ϕ be equivalent to t |= ϕ. Now, the case that the game starts at (ι, ι) works

similarly. 2

By omitting the PAR operator we obtain:

Corollary 3.6 The following propositions are equivalent:

1. Duplicator has a winning strategy for the EF game on the traces t, s for TL with
n ∈ N rounds and in which the move corresponding to PAR is not allowed.

2. The traces t and s are models of exactly the same formulae in TL[XF,YP] with a
maximal operator depth of n.

4 Comparison of logical fragments

In [4] it is proven that over words, LTL with the operators XF and YP is equally expressive
as FO2[<]. The proof from that paper can be adapted in order to show analogous results
for FO2 over traces. In contrast to words, in the case of FO2[<] two positions might be
parallel. This case can be covered using the PAR operator.

Lemma 4.1 FO2[<] ⊆ TL[XF,YP,PAR].

Proof: Let ϕ(x) ∈ FO2[<] be a formula with one free variable and without universal
quantifiers. The only variables of ϕ are x and y. We show by induction on the quantifier
depth and the size of the formula that there exist a formula ϕ̃ in TL[XF,YP,PAR] such
that

∀ν ∈ Xt : (t, ν) |= ϕ(x) ⇔ t, ν |= ϕ̃.
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If ϕ(x) ≡ > then we set ϕ̃ ≡ a∨¬a. Constant formulae will arise later in the construction.
The atomic formula are translated as follows:

ϕ(x) ≡ a(x) for a ∈ Σ  ϕ̃ ≡ a

ϕ(x) ≡ x < x  ϕ̃ ≡ a∧¬a
ϕ(x) ≡ x = x  ϕ̃ ≡ a∨¬a.

Inductively, boolean operators are translated as follows:

ϕ(x) ≡ ψ1(x)∨ψ2(x)  ϕ̃ ≡ ψ̃1 ∨ ψ̃2

ϕ(x) ≡ ¬ψ(x)  ϕ̃ ≡ ¬ψ̃.

If ϕ(x) is of the form ∃x : ψ(x), in an intermediate step it is transformed into ϕ′(x) ≡
∃y : ψ(y) by interchanging x and y. If ϕ(x) ≡ ∃y : ψ(y) then it can be interpreted as
ϕ(x) ≡ ∃y : ψ(x, y) where x is a dummy variable in ψ. We now consider the general case
ϕ(x) ≡ ∃y : ψ(x, y). First, we will transform ϕ(x) into an equivalent formula ϕ′′(x) of the
same quantifier depth. Let

ψ(x, y) ≡ β( x = y, x < y, y < x, ξ1(x), . . . , ξn(x), ζ1(y), . . . , ζm(y) )

where β is a propositional formula and ξi(x), ζj(y) are atomic formulae or existential
formulae with smaller quantifier depth. The first step in the transformation of ϕ(x) is to
guess the values of ξi(x) before the quantification of y. We set ϕ′(x) ≡

∨

γ∈{>,⊥}n

( ∧

1≤i≤n
(ξi(x)↔ γi) ∧

∃y : β(x = y, x < y, y < x, γ1, . . . , γn, ζ1(y), . . . , ζm(y) )

)
.

The next step is to guess the relation τ that holds between x and y in advance. The
possible relations are x = y, x < y, x > y or none them and then x and y correspond to
parallel positions, x ‖ y. Hence we choose τ from the set {=, <,>, ‖ }. We set ϕ′′(x) ≡

∨

γ∈{>,⊥}n

( ∧

1≤i≤n
(ξi(x)↔ γi) ∧

∨

τ∈{=,<,>,‖ }
∃y : (xτy ∧ β(y)

)

with β(y) = β(x = yτ , x < yτ , y < xτ , γ, ζ1(y), . . . , ζm(y) ). Note that the first 3 + n
arguments are constant boolean values at this point. After this transformation of ϕ(x)
it remains to show how to translate formulae of the form ∃y : (xτy ∧ β(y)) with τ ∈
{=, <,>, ‖ }:

∃y : (x = y ∧ β(y))  β̃

∃y : (x < y ∧ β(y))  XFβ̃

∃y : (x > y ∧ β(y))  YPβ̃

∃y : (x ‖ y ∧ β(y))  PARβ̃.
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Let now ϕ ∈ FO2[<] be a formula without free variables. Next, we show how to construct
a formula ϕ̂ ∈ TL[XF,YP,PAR] such that

t |= ϕ ⇔ t |= ϕ̂.

For this we use the following transformation scheme:

ϕ ≡ ψ1 ∨ψ2  ϕ̂ ≡ ψ̂1 ∨ ψ̂2

ϕ ≡ ¬ψ  ϕ̃ ≡ ¬ψ̂
ϕ ≡ ∃x : ψ(x)  ϕ̃ ≡ XFψ̃.

Formulæ of the form ϕ ≡ ∃y : ψ(y) are in an intermediate step transformed into ∃x : ψ(x)
by interchanging x and y. 2

Lemma 4.2 FO2[_] ⊆ TL[XF,YP].

The proof is analogous to Lemma 4.1. The only difference is that we use the operator M
if none of x = y, x_ y or y_ x holds. In this case, we additionally have to check that
the labels of x and y are independent. Afterwards the M operator can be removed by
Remark 2.2.
We say that a language L is a polynomial if it is a finite union of languages of the form

A∗0a1A
∗
1 · · ·anA∗n,

where n ∈ N and Ai ⊆ Σ for all 0 ≤ i ≤ n. By Pol we denote the class of such languages
and by coPol we denote the class of complements of such languages.

Lemma 4.3 Pol ⊆ Σ2[_].

Proof: It is easy to see that languages of the form A∗ for A ⊆ Σ are in Σ2[_]. Since Pol
and Σ2[_] are both closed under union, it suffices to show that L0aL1 ∈ Σ2[_] if L0 and
L1 are in Σ2[_]. Suppose L0 and L1 are expressed by the Σ2[_] formulae ϕ0 and ϕ1,
respectively. We will construct a Σ2[_] formula ϕ expressing L = L0aL1. We have t ∈ L
if and only if there exists a factorization t = t0at1 with t0 ∈ L0 and t1 ∈ L1. Our aim is
to to check whether there exists such a factorization. This will be done by determining
for each letter in t0 (resp. t1) its last occurrence (resp. its first occurrence). We will then
use these positions to restrict ϕ0 (resp. ϕ1) to the left (resp. right) factor by means of the
relation _. We introduce some macro formulae:

label(x) = label(y) ≡
∧

a∈Σ

a(x)↔ a(y)

path(x1, . . . , xn) ≡
∧

1≤i<n
(xi = xi+1 ∨ xi _ xi+1)

x ‖ y ≡ ∀x1 . . .∀x|Σ| :(
¬path(x1, . . . , x|Σ|)∨x 6= x1 ∨ y 6= x|Σ|

)
∧(

¬path(x1, . . . , x|Σ|)∨x 6= x|Σ| ∨ y 6= x1

)

9



x < y ≡ x 6= y ∧
∃x2 . . .∃x|Σ|−1 : path(x, x2, . . . , x|Σ|−1, y).

That this definition of < is equivalent with the transitive closure of _ follows by Lemma
2.1. For alphabets A0 = { a1, . . . , an } and A1 = { b1, . . . , bm } we define a Σ2[_] formula
ψA0,a,A1(x1, . . . , xn, z1, y1, . . . , ym) with n + 1 +m free variables. Consider a factorization
t = t0at1. The formula ψA0,a,A1 is true if each variable xi, 1 ≤ i ≤ n is interpreted at the
last occurrence of the letter ai in t0 and the alphabet of t0 is A0. The last m variables
yi represent the first positions of letters of t1 whose alphabet is A1 and z1 corresponds to
the position of a in this factorization. We set ψA0,a,A1(x1, . . . , xn, z1, y1, . . . , ym) =

∧

1≤i≤n
ai(xi) ∧ a(z1) ∧

∧

1≤i≤m
bi(yi) ∧

∧

1 ≤ i ≤ n
1 ≤ j ≤ m





(xi ‖ z1 ∨ xi < z1) ∧
(xi ‖ yj ∨ xi < yj) ∧
(z1 ‖ yj ∨ z1 < yj)



 ∧

∀z :





z = z1 ∨∨

1≤i≤n

(
label(z) = label(xi) ∧ (z = xi ∨ z_ xi)

)
∨

∨

1≤j≤m

(
label(z) = label(yj) ∧ (yj = z ∨ yj _ z)

)




.

Let x1, . . . , xn be variables. The restriction of ϕ0 = ∃y ∀z ψ0(y, z) to the past of x1, . . . , xn
is

ϕ−0 = ∃y1 . . .∃ym∀z1 . . .∀z` :
∧

1≤j≤m

( ∨

1≤i≤n
(yj = xi ∨ yj _ xi)

)
∧

( ∨

1≤k≤`

( ∧

1≤i≤n
¬ (zk = xi ∨ zj _ xi)

)
∨ ψ0(y, z)

)

.

Similarly, we can define the restriction ϕ+
1 of ϕ1 to the future of y1, . . . , ym. Using these

restrictions, we define

ϕ =
∨

A0,A1⊆Σ

∃x1 . . .∃x|A0|∃z1∃y1 . . .∃y|A1| :
(
ψA0,a,A1 ∧ ϕ−0 ∧ ϕ+

1

)
.

Note that ϕ is a Σ2[_] formula. It expresses the language L. 2

Lemma 4.4 Σ2[_] ⊆ Pol.
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Proof: Let L ∈ Σ2[_]. An algebraic characterization in terms of Mal’cev products of Pol
is given in [11]. In order to show L ∈ Pol we will prove that L has this algebraic property.
Therefore we will use some methods from algebraic language theory, see e.g. [13, 14]. It
suffices to show that for each t ∈M(Σ, I) there is an n′ ∈ N such that, for all n ≥ n′ and
s ∈M(Σ, I) with alph(t) = alph(s), the following implication holds:

∀p, q ∈M(Σ, I) : ptnq ∈ L ⇒ ptnstnq ∈ L.

Let m ∈ N with L ∈ Σm
2 [_]. Consider the EF game for this fragment, played on the

traces r = ptnq and u = ptnstnq with n ≥ (m+ 1)2 starting from the initial configuration
(ε, ε, 0). The interior sections of both traces, i.e. tn on r and tnstn on u, are composed of
factors t and s. We refer to the n factors t of r as blocks 1 to n.

In the first round, Spoiler places up to m pebbles on positions of r. Due to the large
number of blocks in comparison to the number of pebbles, he must necessarily leave a big
gap: there is an ` < n−m such that on trace r, Spoiler places no pebbles on any of the
blocks `+ 1, . . . , `+m. We decompose r into three factors

r = pt` · tm · tn−`−mq.

All pebbles lie on positions of the left and of the right factor. We analogously factorize u:

u = pt` · tn−`st`+m · tn−`−mq.

Duplicator responds by copying the distribution of the pebbles on the two identical outer
factors.

In the second round, Spoiler has to distribute his remaining pebbles on u. Duplicator
can carry over the distribution of the new pebbles on the outer factors of u to the corre-
sponding positions of the outer factors of r. It remains to show how Duplicator can answer
the j pebbles, j ≤ m, on the intermediate factor tn−`st`+m of u. Let ν1, ν2, . . . , νj ∈ Xu be
a linearization of the positions with pebbles on this intermediate factor such that νi_ νk
implies i < k. Now, Duplicator uses the gap of size m beginning at block ` + 1 of r and
the assumption that alph(t) = alph(s). For each position νi, 1 ≤ i ≤ j, Duplicator places
a pebble of the same type on an arbitrary position χi of block ` + i in trace r such that
label(νi) = label(χi). By construction, we have νi _ νk if and only if χi _ χk. Hence,
Duplicator has a winning strategy for this EF game. Therefore,

ptnq �Σ[_]
(2,m) pt

nstnq

holds due to Corollary 3.3, which shows that ptnq ∈ L implies ptnstnq ∈ L. 2

Lemma 4.5 It is not expressible in TL[XF,YP] whether two actions occur in parallel,
whereas this property is expressible in Σ2

1[<].
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Figure 1: Hasse diagram of trace p (see proof of Lemma 4.6)

Proof: Let M(Σ, I) be the trace monoid given by the dependence relation D = a− b− c.
We formulate the property L = ‘the symbols a and c occur in parallel’ that coincides
with the semantics of ϕ = ∃x∃y : x ‖ y. Consider the EF game for TL restricted to
n ∈ N rounds and the moves XF and YP, i.e. without the PAR move, played on the traces
t = (babc)nbacb(babc)n ∈ L and s = (babc)2n+1 /∈ L. We enumerate the blocks bacb and
babc that constitute both traces with integers running from −n to n such that both traces
are identical apart from block 0. We sketch a simple winning strategy for Duplicator on
this game.

As long as no pebble is placed on a or c of block 0, Duplicator can imitate all moves
made by Spoiler. If at some point the pebbles are placed on such positions and Spoiler
moves one of them forward or backward within block 0 then Duplicator can respond by
moving the other pebble to an identically labeled position of either block −1, 0 or 1. If
Spoiler moves one of the pebbles to a non-adjacent block then Duplicator can return to a
configuration where both pebbles are placed in equally numbered blocks. Otherwise, he
can always maintain the distance of at most one block, which means that he can respond
in all of the maximally n−1 rounds that remain. By Corollary 3.6, L cannot be expressed
in TL[XF,YP]. 2

Lemma 4.6 It is not expressible in TL[XF,YP,PAR] whether three actions occur in par-
allel, whereas this property is expressible in Σ3

1[<].

Proof: Let M(Σ, I) be the trace monoid with Σ = {a, b, c, d, e, f,#} such that among the
letters {a, b, c, d, e, f} we have the circular dependencies a− b− c− d− e− f − a and all
these letters are dependent of #. The maximal sets of independent letters are {a, c, e}
and {b, d, f}. In Σ3

1[<], we can express whether three actions occur in parallel by the
formula

ϕ = ∃x∃y∃z : (x ‖ y ∧ y ‖ z ∧ z ‖ x) .

Next, we will show that L(ϕ) is not in TL[XF,YP,PAR]. Let r = acbdcedfeafb. For an
arbitrarily chosen n ∈ N consider the traces p = r2n+1 and q = acbedf . We combine them
in order to build the larger traces t = (#p)2n+1 6|= ϕ and s = (#p)n#q(#p)n |= ϕ, see
Figures 1 and 2. We say that p and q are segments of t and s. We numerate the segments
of t and s with numbers running from −n to n from left to right. All segments of t and s
consist of p, except for segment 0 of trace s, which is q. Every segment that correspond
to p is further subdivided into 2n + 1 blocks with numbers running from −n to n such
that all blocks consist of r.

Consider the n-round EF game for TL[XF,YP,PAR] played on the traces t and s. In all
blocks, except the outermost ones −n and n, every position has parallel occurrences of all
letters that are independent of its own label. Although there do not exist three parallel

12
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Figure 2: Hasse diagram of trace #q# (see proof of Lemma 4.6)

positions in t, we will use this fact to mimic three parallel positions in order to construct
a winning strategy for Duplicator.

The main strategy of Duplicator is to copy all moves of Spoiler. Since only the behavior
on the segments 0 of t and s is not evident, we will describe the strategy of Duplicator
for this case. Whenever Spoiler accesses segment 0 of trace t, Duplicator avoids placing
the pebble on segment 0 of trace s by putting his pebble to the corresponding position
of either segment −1 or 1 of trace s. In the up to n − 1 remaining rounds it is possible
for Duplicator to keep a maximal difference of 1 between the numbers of the segments.
If Spoiler moves his pebble on segment 0 of trace s, Duplicator responds by placing the
other pebble on an identically labeled position of block 0 of either segment −1, 0 or 1 of
trace s. From this position he can mimic all possible PAR-moves of Spoiler on s. Each
PAR-move of Spoiler could force Duplicator to increase or decrease the block number by
1. Since there occur at most n − 1 of these moves and there are n blocks to the left as
well as to the right, Duplicator wins the game. It follows that L(ϕ) 6∈ TL[XF,YP,PAR].

2

Lemma 4.7 For all n ∈ N, we have TL[XF,YP,PAR] 6⊆ Σn[<].

Proof: Let m ∈ N be arbitrary, and let a series of trace monoids M(Γi, Ii,), i ≥ 1,
be given inductively by the alphabets Γ1 = {a1} and Γi = Γi−1 ∪ { ai, bi } with the
dependence graph Di = Di−1 − bi − ai or, more formally, D1 = {(a1, a1)} and Di =
Di−1 ∪ Γi−1 × {bi} ∪ {bi} × Γi−1 ∪ { ai, bi }2. This means that each Γi with i ≥ 2
introduces a letter ai, which is independent of all preceding letters, and a letter bi that
depends on all letters. For i ∈ N, let `i = (m+ 1)i. By induction we also define the traces
t1 = ε, s1 = a1, and

ti = (biaisi−1)`i

si = (biaisi−1)`i · biaiti−1 · (biaisi−1)`i

such that ti, si ∈ M(Γi, Ii,). The bi’s partition these traces into blocks. We number these
blocks from 1 to `i on ti and from −`i to `i on si. Within each block, the position labeled
with ai is parallel to all other positions.

We define the formulae ϕ1 = a1, ψi = ¬PARϕi and ϕi = ai ∧ψi−1. By induction, ϕi
holds at the position of ai in biaiti−1 but not in biaisi−1. It follows that si, which contains
a factor ti−1, does not model ψi, as opposed to ti, which models ψi. Hence for all n ∈ N,
there is a TL[XF,YP,PAR] property modeled by tn but not by sn.
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Now consider the EF game for Σm
n [<] played on the traces tn and sn, i.e. there are

n rounds, m pebbles, and Spoiler places his first pebbles on tn. Using induction, we
describe a winning strategy of Duplicator for this game. The case for n = 1 is trivial:
Spoiler cannot place any pebbles and Duplicator responds by doing the same. Assume
n > 1, then in the first round, Spoiler places m′ ≤ m pebbles on tn. Because this trace
consists of `n blocks, there must remain a big continuous gap of `′ = (m + 1)n−1 blocks
without any pebbles. Let such a gap start after the k-th block and consider the following
factorizations of tn and sn:

tn = pk · p`′ · p`n−k−`′

sn = pk · p`n−k q pk+`′ · p`n−k−`′

where p = bnansn−1 and q = bnantn−1. Duplicator can react by placing corresponding
pebbles on the respective positions of the left and right factor of sn. On both traces, the
factor in the middle contains no pebbles. For the remaining rounds, we can ignore the
outermost factors of both traces because they are identical. By induction we know

tn−1 �Σ[<]
(n−1,m) sn−1,

i.e. for the rest of the game, the blocks p and q cannot be distinguished. Both middle
factors consist of at least (m + 1)n−1 blocks, and there are n − 1 rounds to play. This
allows Duplicator to win the game. We conclude that

tn �Σ[<]
(n,m) sn.

Hence for all n ∈ N, no Σm
n [<] property is modeled by tn but not by sn. As this holds for

all m ∈ N, it follows that TL[XF,YP,PAR] is not a subset of Σn[<]. 2

Theorem 4.8 We have the following relations:

a. TL[XF,YP] = FO2[_] = ∆2[_].

b. TL[XF,YP,PAR] = FO2[<].

c. FO2[_] ( FO2[<].

d. ∆2[_] ( ∆2[<].

e. For all n ≥ 2, the fragments ∆n[<] and FO2[<] are not comparable.

f. Pol = Σ2[_] ( Σ2[<].

g. coPol = Π2[_] ( Π2[<].
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Proof: The relation FO2[_] ⊆ TL[XF,YP] is Lemma 4.2 and we have TL[XF,YP] ⊆
FO2[_] since the definition of the temporal operators can be seen as macros using only
two variables. By Lemma 2.1, the relation < in those macros can be simulated by _.
The relation TL[XF,YP,PAR] ⊆ FO2[<] follows similarly and FO2[<] ⊆ TL[XF,YP,PAR]
is Lemma 4.1. The relations Σ2[_] = Pol and Π2[_] = coPol follow from Lemma 4.3
and Lemma 4.4, the latter one by complementation. Now, Pol ∩ coPol = TL[XF,YP], see
[11], implies TL[XF,YP] = ∆2[_]. That there exists a trace monoid such that the subset
relations in FO2[_] ( FO2[<] and ∆2[_] ( ∆2[<] and Σ2[_] ( Σ2[<] and Π2[_] (
Π2[<] are strict follows from Lemma 4.5 and that for all n ≥ 2, neither ∆n[<] ⊆ FO2[<]
nor FO2[<] ⊆ ∆n[<] holds follows from Lemma 4.6 and Lemma 4.7, respectively. 2

Conclusion

The main contribution of this document is algebraic, although few methods from algebra
were used. Over traces the variety Pol ∩ coPol was already known to be identical with
TL[XF,YP], and over words also with ∆2[<] = FO2[<]. With the results from Theorem
4.8 we can see that the identity

Pol ∩ coPol = TL[XF,YP] = ∆2[_] = FO2[_]

remains valid in the more general setting of traces understood as dependence structures.
However, this does not extend to the partial order interpretation of traces. We have shown
how the difference between FO2[<] and FO2[_] coincides with the difference between
fragments of temporal logic with and without the operator PAR. For all n > 1 we have
seen that none of the fragments FO2[<] and ∆n[<] includes the other.

As a tool for carrying out the proofs, we mostly applied straightforward Ehrenfeucht-
Fräıssé games. The rules we defined for the game that characterizes fragments of the Σm

n

type combine the approaches from [16] and [10]. The properties of that game are valid for
first-order theories in general, not only for Mazurkiewicz traces. The games for temporal
logic are adaptations of the version from [5].

The examples that were given in order to prove differences between logical fragments
are very natural in the sense that they are among the simplest properties that describe
concurrency between actions. In particular, for the temporal formulae

ϕn = ¬PAR(an ∧ϕn−1)

of linear size in n with ϕ1 = a1 there is no equivalent in Σn[<]. Within FO2[_] we cannot
distinguish whether two concurrent actions occur or not. That there are three concurrent
actions cannot be expressed in FO2[<].

Using the characterization for FO2[_] and ∆2[_] and the algebraic properties of
Pol∩ coPol we can conclude that membership in these fragments is decidable However, it
remains an open problem to obtain algebraic characterizations of the first-order fragments
FO2[<] and ∆2[<]. This would be desirable in order to establish decidability results for
these fragments as well.
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