ssese Universitat Stuttgart

L AAA D

weeeesss Fakultat Informatik, Elektrotechnik und Informationstechnik

BPEL Event Model

Dimka Karastoyanova, Rania Khalaf,
Ralf Schroth, Michael Paluszek,
Frank Leymann

Report 2006/10
November, 2006

Institut fur Architektur von
Anwendungssystemen

Universitatsstr. 38
70569 Stuttgart
Germany

CR:C.24,D.2.6,D.2.11,D.2.12,HA4.1

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

Summary

The document presents an engine-independent BPEL event model. We present
two groups of events — events related to the life cycle of BPEL processes that are
produced by the process execution environment, and events used to control or
influence the life cycle of BPEL processes produced by applications external to
the BPEL processor.

The events produced by the BPEL processor are notifying state changes in the
life cycle of processes, activities, loops and fragmented loops, scopes and
fragmented scopes, BPEL links. Some of the state transitions, depending on the
scenario they are used in, may be fired only if a particular action/event is
signaled by an external application. This means that a process instance would
remain blocked in a particular state if the external event is not notified to the
BPEL engine. The external events are meant to control the execution of BPEL
processes, in particular to unblock process instances being in particular states, as
well as enforce state transitions from the outside.

The event model is used by the authors of the report in several projects, all
utilizing process life cycle events in different scenarios. This report represents an
attempt to create an event model common to several projects and help reuse of
research results and software, and foster cooperation. In general, the model is
meant to be independent of BPEL processor implementation. Some of the
assumptions in the presented event model are inspired by a particular
implementation, e.g. fault handling and compensation; however they are kept as
general as possible, so that they can be mapped on other engine-specific
approaches to tackle faults and support compensation. In addition, the report
draws on the experience of some of the authors in business process management
and software development.

lofl

Report 2006/10

Contents

1. Introduction
2. BPEL Event Model

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.

Institute of Architecture of Application Systems (IAAS)

Process life cycle events

Activity life cycle events

Scope life cycle events

o o b~ B~ W

Loop events

Link events

Incoming events

Classification of types of events

3. Conclusions

4. References

2 of 2

10
11
12
13
14
14

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

1. Introduction

Business Process Execution Language for Web Services (BPEL4WS or BPEL) [1]
1s the de facto standard for defining processes with Web Services (WS) [7] as
participants. The BPEL specification does not put any requirements on the
implementation and therefore it does not impose any event model on process
execution environments. The process execution environments for BPEL processes
are also called BPEL engines and contain a component called the navigator. The
navigator is also called a BPEL processor.

In this report we present a BPEL event model. It specifies events related to the
life cycle of processes, activities, scopes, loops and links. These events are
produced by the BPEL processor and are used to drive the state transitions of the
elements specified above.

Some of these events are identified as blocking, i.e. the state transitions done
upon a blocking event result in a state that cannot be left, unless another event
produced by an application external to the BPEL processor is notified. The
blocking events are dependent on the particular scenario they are used in. The
BPEL event model presented here takes into account requirements for blocking
imposed by three particular application scenarios: support for coordinated
interaction of fragmented processes running on multiple BPEL processors [4],
implementation of process compensation based on externalizing the BPEL
transaction support to an external coordinator [5], improving the flexibility of
processes in an engine-independent manner using language extensions [3] or an
aspect-oriented approach [6].

In addition, we identify events that are produced by applications external to the
BPEL processor and can influence the execution of process instances. External
events may be used to unblock process instances in a state reached by a blocking
type event.

3of 3

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

2. BPEL Event Model

This section presents the event models for BPEL processes, activities, links,
scopes and loops in terms of State diagrams [2]. These event models include
events required for supporting fragmented scopes and loops [4] as well. The event
types we identify and the groups we classify them in are presented later in the
document.

2.1. Process life cycle events

The events produced during the life cycle of a process are presented in the next
figure.

sm Process States /

o

[Fire event
Process_Deployed

[Deployed \

Instantiating message
successfully received
/Fire event Process_Instantiated

/ Instantiated N\

.

Instance execution
started

/Fire event
Instance_Running

- Instance suspension required
Running /Fire event Instance_Suspended Suspended

Instance resumed
/Fire event Instance_Running

Instance completed

Instance Terminated successfully Unhandled fault during execution of

/Fire event JFire event process instance

Instance_Terminated Instance_Complete /Fire event Instgce_Faulted
Terminated Completed Faulted

Figure 2.1.1: Process Life cycle events

4 of 4

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

Description of events:

e Process_Deployed
This event is fired whenever a new BPEL-process is deployed into a BPEL
engine. This event is not fired for each instance, but rather per process
model.

e Process_Instantiated
The event is fired, when a process is instantiated through a pick, receive or
onMessage activity with the attribute “createlnstance=yes”.

e Instance_Running
This event is fired, when a process instance starts running after being
instantiated or resumed.

e Instance_Suspended
This event is fired when a process instance is suspended, e.g. a breakpoint
1s reached or an external request for suspension is received by the engine.

e Instance Terminated
This event is fired, when a process instance is terminated though
execution of a <terminate> activity.

e Instance_Complete
This event is fired, when a process finishes successfully (not terminated by
a fault or by a <terminate> activity)

e Instance_Faulted
This event is fired, when a process is terminated by a fault that was not
handled and propagated to the implicit fault-handler of the root-scope of
the process.

2.2. Activity life cycle events

This section describes the general life cycle events for all BPEL activities. Later
sections cover special events for scopes and loops, but some of the events typical
for scopes and loop, being activities, are presented here as well. The activity life
cycle events are presented in Figure 2.2.1.

50f5

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

sm Activity States /

Initial

Dead Path Elemination
/Fire event
@ < Actvity_Dead_Path

Dead Path

Inactive

Activity becomes runnable
(incoming link and join-
condition true)

/Fire event Activity_Ready

Process faulted
Process Terminated
/Fire event

Activity_Terminated BEady

Process faulted
/Fire event Activity_Faulted

Process Terminated Activity execution started or
fFire event incoming event
Activity_Terminated Start_Activity received when
blocked

/Fire event Activity_Executing

Faulted

Process terminated

/Fire event Activity_Terminated Activity or process faulted

/Fire event Activity_Faulted
. /
Executing Process faulted
Process terminated /Fire event Activity_Fa ulted
/Fire event Activity_Terminated

Execution finished [waiting necessary]
/Fire event Activity_Executed

/~ Waiting)

Execution finished [No waiting necessary]
/Fire event Activity_Complete

Incoming Event
Complete_Activity
received

/Fire event
Activity_Complete

Complete

Figure 2.2.1: Activity life cycle events

Description of events:

e Activity_Ready
This event is fired, when an activity becomes ready to execute (i.e. all
incoming links are evaluated and the join-condition 1s true).
In case of fragmented scopes, the engine is waiting (blocking) for a
response from the coordinator before starting the execution, e.g. to
synchronize the start of execution of fragments with different incoming

6 of 6

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

links. Further execution is triggered by the incoming event Start_Activity
which is sent by the coordinator. This blocking only occurs when the event
is marked as blocking for the current activity.

e Activity_Executing
This event is fired, when an activity starts its execution (for activities like
pick, receive and onMessage this event is fired, when starting to wait for
incoming messages, not when the actual message is received).

e Activity_Executed
This event is fired, when the execution of an activity is finished and a
subscriber for this event is registered. The engine changes to the state
“waiting” and waits (blocking) for signals from external sources (e.g.
completion of child-activities, notification from coordinator etc.) before
completing the activity. When no subscriber is present this event is not
fired and the engine transfers directly from state “Executing” to
“Complete” (see “Continue” incoming event).

e Activity_Complete
This event is fired when an activity is completed and received signals from
external sources (e.g. completion of child-activities, notification from
coordinator)

e Activity_Dead_Path
This event is fired, when an activity was marked dead by the engine’s
dead-path-elimination (DPE) mechanism implementation.

e Activity_Terminated
This event is fired, when an activity is marked terminated or aborted
because the associated process instance is terminating.

e Activity_Faulted
This event is fired when an activity is skipped or aborted because of a fault
that occurred within the activity. It can also be fired if a fault in a
preceding activity of the same scope is not handled or if a fault of its child-
scopes was not handled.

7 of 7

Report 2006/10

Institute of Architecture of Application Systems (IAAS)

2.3. Scope life cycle events

sm Scope States /

Event handler invoked
fFire event
Scope_Handling_Event

EventHandling

Event handler compléte
fFire event
Scope_Event_Handling_Ended

Process terminated
fFire event
Activity_Terminated

Process terminated
fFire event
Terminated Activity_Terminated

[no waiting
necessary)
{Fire event

Equivalent to state
“Complete”, reached,|
when process

instance successfully
completes

Execution finished

Activity_Complete

No compensation of scope
invoked

Finished

Activity becomes runnable
(incoming link and join-
condition true)

fFire event Activity_Ready

Read

Activity executjon started or
incoming every
Start_Activity feceived when
blocked
/Fire event Actjvity_Executing

Execution

Activity_Executed

Receive incoming
event Fault_To_Scope
fFire event
Scope_Handling_Fault

Activity successfully
completed or incoming
event Complete_Activity
received

{Fire event
Activity_Complete

C ion handler

invoked or incoming event
~. Compensate_Scope received

fFire event

Scope_Compensating

> Compensation
Executing

Complete

Compensation completed
[Fire event Compensated

ol

Compensated

Fault during execution of nested

finished [waiting activity or reception of incoming
necessary] event Fault_To_Scope
/Fire event

fFire event Scope_Handling_Fault

(" Foulianding

Scope has fault handler,
but fault was not
handled or was rethrown
{Fire event
Activity_Faulted

no explicit fault handler
present

{Fire event
FaultHandling_NoHandler

Fault handled and not
rethrown Incoming event
fFire event Complete_NoFaultHandling,
Scope_Complete_With_Fault fault propagated,
{Fire event Activity_Faulted

Just for fragmented scopes:
another fragment has fault
handler, incoming Event
Complete_WithFaultHandling
{Fire event
Scope_CompleteWithFault

O]

CompletedWithFault Faulted

Figure 2.3.1: Life cycle events of Scopes

8of 8

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

Description of events:

e Scope_Handling Fault
This event is fired, when a scope’s fault-handler (explicit as well as
1mplicit) is invoked.

e Scope_Complete_With_Fault
This event is fired, when a scope completes (see Activity_Complete) after
handling a fault that was not rethrown in the scope’s fault-handler.

e Scope_Handling Event
This event is fired, when a scope’s event handler (onAlarm or onMessage)
starts executing (incoming message received or alarm occurred/fired).

e Scope_Event_Handling Ended
This event is fired, when a scope’s event handler finished executing.

e Scope_Compensating
This event is fired, when a completed scope’s compensation handler is
invoked by the engine or if the incoming event Compensate_Scope is
notified.

90f9

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

2.4. Loop events

sm Loop States /

Inactive

Activity becomes runnable
(incoming link and join-
condition true)

/Fire event Activity_Ready

Activity execution started or
incoming event
Start_Activity received when

blocked
/Fire event Activity_Executing
Incoming event Evaluate Loop condition
Continue_Loop / Fire event Loop_Condition_True
received or Loop_Condition_False
ﬁterationjomplete { Executing %/ Check_Condition \
~— Loop condition true |
One iteration of loop Execution finished or Incoming event
pgrformed [waiting necessary] Continue_Loop_Execution received
/Fire event [Fire event Activity_Executed

Loop_lteration_Complete

Waiting

Execution finished [No waiting necessary]
/Fire event Activity_Complete

Activity successfully

completed or incoming /

event Complete_Activity Loop condition false

received or Incoming event

/Fire event Finish_Loop_Execution received

Activity_Complete () / Fire event Activity_Complete
Complete

Figure 2.4.1: State-transition Diagram - Loops

Description of events:

e Loop_Iteration_Complete
This event is fired when an iteration of a while loop is complete and before
the loop-condition is re-evaluated. This event is especially important for
fragmented loops, where it is necessary to synchronize the individual
fragments.

10 of 10

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

e Loop_Condition_True
This event i1s fired when the loop condition has been evaluated to true.
This event is needed for the fragmented loops scenario to tell other
fragments the loop condition, because only one fragment is able to evaluate
the loop condition for the loop.

e Loop_Condition_False
This event is fired when the loop condition has been evaluated to false. We
need this event for fragmented loops to tell other fragments the loop
condition, because only one fragment is able to evaluate the loop condition
for all.

2.5. Link events

sm Link States /

Undetermined

__

Link evaluatfon triggered
/Fire event Ynk_Ready

\%
i Ready
Link evaluatgd

/Fire event Link_Evaluated

/
Evaluated \

O) ©®

True False

Figure 2.5.1: State-transition Diagram - Links

Description of events:

e Link_Ready
This event is fired when a Link is ready for evaluation, i.e. immediately
after its source activity has been completed.

e Link Evaluated
The event is fired when the transition condition on a link has been
evaluated.

11of 11

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

2.6. Incoming events

The engine reacts to events that are sent to it by the external entities
(applications), e.g. a coordinator of fragmented processes [4], an external
monitoring tool [3], an external coordinator supporting BPEL transactions [5], or
an aspect weaver [6].

e Compensate_Scope
This event starts the execution of the compensation handler of a scope that
is in the “Complete” state.

e Fault_To_Scope
This event causes the specified fault to be thrown in the context of
specified scope. The fault is propagated in the scope-hierarchy like regular
faults. It is consumed by a scope that is in the “Executing” or “Waiting”
state.

e Compensated
This event tells the engine, that the scope’s state must change to
“Compensated”, i.e. all other fragments of a scope have also finished
compensating and are ready to change to the “Compensated” state.

e Start_Activity
This event causes the specified activity that is blocked in the state “Ready”
to be continued.

e Complete_Activity
This event unblocks the specified activity that is blocked in the state
“Waiting” fires the transition to the “Completed” state. In addition, the
event i1s used to fire the transition of activities that are in the “Ready”
state to the state “Completed” (doing so activities can be skipped).

e Continue_Loop
This event wunblocks a loop that 1is blocked in the state
“Iteration_Complete” and enforces reevaluation of the loop-condition.

e Continue_Loop_Execution
This event unblocks a waiting loop in the state “Check_Condition” after
the loop condition was evaluated to true. A fragment can be forced in this
way to execute a new loop iteration from a fragment that evaluates the
loop condition.

e Finish_Loop_Execution
This event unblocks a waiting loop in the state “Check_Condition” after
the loop condition was evaluated to false by another fragment of the loop.

e Set_Link_State
This incoming event is used to set the state of a link that is blocked in a
state “Evaluated” to a value commanded from outside the engine.
Depending on the value of the link’s transition condition calculated outside
the engine, the Link goes in either state “True” or “False”.

e Continue
The event simply unblocks activities; it is used whenever a state is
declared as blocked when using aspects [6] but there is no subscribed
aspect for the particular activity.

12 of 12

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

2.7. Classification of types of events

We classify events according to two different criteria: blocking and direction.

The direction indicates whether the event is generated by the engine as a source
or by an external entity. Blocking events block process instances (in particular
activities/links in a process instance) until an incoming event from an external
entity is received that unblocks the particular instance.

Table 1. Classification of types of events

Event Blocking | Source
Process_Deployed - engine
Process_Instantiated - engine
Instance_ Running - engine
Instance_Suspended - engine
Instance_Terminated - engine
Instance_Completed - engine
Instance_Faulted - engine
Activity_Ready X engine
Activity_Executing - engine
Activity_Executed X engine
Activity_Complete - engine
Activity_Dead_Path - engine
Activity_Terminated - engine
Activity_Faulted X engine
Scope_Compensating X engine
Scope_Handling_Event - engine
Scope_Event_Handling Ended | - engine
Scope_Complete_With_Fault - engine
Scope_Handling_Fault - engine
Compensate_Scope - engine
Loop_Condition_True X engine
Loop_Condition_False X engine
Loop_Iteration_Complete X engine
Link_Ready - engine
Link Evaluated X engine
Compensate_Scope - external
Fault_To_Scope - external
Compensated - external
Start_Activity - external
Complete_Activity - external
Continue_Loop - external
Continue_Loop_execution - external
Finish_Loop_Execution - external
Set_Link State - external
Continue - external

13 0of 13

Report 2006/10 Institute of Architecture of Application Systems (IAAS)

3. Conclusions

The BPEL Event model presented here is meant to be independent of any BPEL
processor implementation. A corresponding mapping of the model to
implementation-specific events is necessary, and it allows for implementations to
include additional events if necessary.

This BPEL event model is defined with the purpose of creating the basis for
implementing a common infrastructure for notifying life cycle events. Such an
infrastructure will be presented in future publications of the authors.

4. References

1. Andrews, T. et al.: Business Process Execution Language for Web Services
(BPEL4WS) Version 1.1, May 2003.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

2. Fowler, M., Scott, K.: UML Distilled, Second Edition. Addison-Wesley, 2000.

3. Karastoyanova, D., Leymann, F., Nitzsche, J., Wetzstein, B., Wutke, D.:
Parameterized BPEL Processes: Concepts and Implementation. In
Proceedings of BPM 2006. Vienna, Austria, September 2006.

4. Khalaf, R., Leymann, F.: "E Role-based Decomposition of Business Processes
using BPEL," In Proceedings of IEEE International Conference on Web
Services (ICWS'06), 2006. pp. 770-780

5. Mietzner, R.: Extraction of WS-Business Activity from BPEL 1.1. Diploma
Thesis 2444, University of Stuttgart, 2006.

6. Schroth, R.: Specification, Design and Implementation of a BPEL Engine with
AOP Support and an Aspect Weaver for BPEL Processes. Diploma Thesis
2523. University of Stuttgart, 2006.

7. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture; Prentice Hall; March 2005.

14 of 14

