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Summary 
 
The document presents an approach to enable loops and fault handling, 
compensating scopes to be split among a set of BPEL processes running on 
different BPEL engines. A mechanism to split a scope or loop into multiple 
fragments is presented, then a protocol is defined that can be used to 
coordinate fragments of a loop or a scope so that those fragments run as if 
they had been in a single process.   
The requirements for running split scopes and loops are explained. For 
compensation, this paper focuses on explicit compensation and makes the 
assumption that compensation handing does not fail.  
Two protocols are defined such that they may be plugged into the WS-
Coordination framework. The messages between the participant fragments 
and the coordinator are defined. The information about the participating 
processes that the coordinator needs to have is specified. An algorithm is 
provided to locate a fault handler in the hierarchy of scopes that can handle a 
particular BPEL fault. Additionally, the behavior of both participants and the 
coordinator are specified.  
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1. Introduction 
In an effort to ease business process partitioning and outsourcing, we have 
presented an approach  [4] for arbitrarily splitting business processes based 
on business roles. In this approach, a set of activities in a business process, 
derived from BPEL [3], is assigned to a partner. Then, a mechanism was 
presented to show how one can generate one business process for each 
partner so that the cumulative behaviour is the same as that of the original 
project. In  [4], we focused on processes expressed as flat graphs. In this 
paper, we add the capability to also split loops and scopes. For scopes, we 
focus on splitting the fault handling and compensation behaviour and not on 
event handlers or shared data. 
 
On attempting to split loops and scopes using BPEL activities in the process 
(invokes and receives in certain composition patterns among the fragments), 
the amount of activities and the complexity of the resulting processes 
drastically increased. The complexity was mainly due to the fact that one 
needs to synchronize the start and end of all fragments that result from the 
split, as well as possible abortion, and rollback. For example, if one fragment 
of a loop completes then it has to wait for all others to complete and also 
notify them that it itself has completed. Therefore, we find that splitting 
loops and scopes is one clear point where it is worth bringing in additional 
capabilities to the BPEL language and augmenting the pure BPEL processes 
we have so far been able to maintain.  
 
We propose solving the problem of splitting loops and scopes by adding a 
coordinator that coordinates the work of the fragments of loops and scopes so 
that they can behave as logical units. In order to lower the barrier of entry, 
we provide the coordination as protocols that plug into the WS-Coordination 
framework  [2]. 
 
In this paper, we present an overview of WS-Coordination, describe the parts 
of WS-Coordination used to enable splitting processes, shows how to define 
fragments, and presents the coordination protocols required to execute split 
loops and fault-handling scopes.  
 
We include split compensation handling, but only detail the case of explicit 
compensation at this time. Default compensation, although present in the 
protocol diagrams, will be out of scope for this paper and only briefly 
described.  
 
It is assumed that the reader has a familiarity with BPEL. 
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2. Background: WS-Coordination 
WS-Coordination is a pluggable framework for coordinating the agreement of 
the outcome of the execution of a collection of services that jointly perform a 
“distributed action”. For that purpose, WS-Coordination specifies two 
middleware-related services: an Activation Service and a Registration 
Service. The Activation Service, which is optional, is used by the initiator to 
create a unique context identifying the distributed action to be started. Then, 
this context can be exchanged in the header of application messages between 
the services of the distributed action. Upon first receiving a message with a 
coordination context, such a service registers for participation in that 
distributed action with the Registration Service. Registration especially 
encompasses associating a “protocol handler” with each such service; a 
protocol handler is the entity in charge of exchanging messages to reach 
outcome agreement between the services. A distributed action is thus 
equivalent to an instance of the associated agreement protocol. The 
combination of registration and activation allows services to dynamically join 
such a running protocol instance.  
 
Being a framework, WS-Coordination allows one to define one’s own protocols 
and provide corresponding protocol handlers to perform the actual 
coordination logic. Defining a protocol consists of possibly extending the 
activation and/or registration messages, defining the port types of both the 
participants’ and coordinator’s protocol handlers, the order in which the 
protocol messages need to be exchanged, and the required underlying 
behavior as a result of receiving or sending a protocol message. For example, 
if a coordinator sends a commit message to a participant, the participant 
must respond with committed - but only after doing the work associated with 
the commit message (i.e.: committing the transaction).  
 
When splitting processes each fragment of a split activity (loop or scope) 
corresponds to a service of a distributed action. In case of a split loop, for 
example, the associated agreement protocol is about agreeing whether or not 
another instance of the split loop body must be run. The fragments of a split 
activity are known at design time and their location is known at deployment 
time. Additionally, the fragments are peers: A fragment of a loop in one 
process can be reached before its associated other fragments in other 
processes, and it is not known ahead of time which one will start the 
corresponding protocol instance.  
 
The case at hand in this paper differs slightly from traditional coordination 
as shown by protocols such as WS-BusinessActivity and WS-
AtomicTransaction. Most importantly, the optional Activation Service is not 
used because a protocol instance is automatically created when the first 
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fragment of a split activity is reached and the context does not need to be 
dynamically flowed between the participants. Additionally, since the 
fragments were created to work together, each participant process has 
enough information for the coordinator to determine exactly which protocol 
instance it belongs to. The details of creating and using protocol instance 
identifiers will be explained in later sections.  

3. Scope and Loop Fragments 
A set of processes working in concert and needing to be coordinated together 
through our approach (usually because they were derived from a single larger 
process) are referred to as process fragments. The overall process formed by 
these fragments is referred to as a split process.  
 
Loops and scopes can be split across a set of process fragments. The part of a 
split scope in one process fragment is referred to as a scope fragment. In 
other words, a split scope is made up of a set of scope fragments distributed 
between two or more process fragments. The same applies to a split loop and 
its constituent loop fragments. In order to be able to identify the fragments of 
the same split scope, we place the requirement that a split scope or a split 
loop must be uniquely named in the split process and that all fragments of 
the same split scope or loop will have this name.  
 
In this work, the focus is on performing the behaviour of these artifacts as it 
relates to control and consistent lifecycle. Sharing data between fragments or 
control dependencies between entire activities (due to control links in the 
original process) are the domain of the work initiated in  [4]. Such data and 
control dependencies are addressed using BPEL constructs in the fragments 
and not through the coordination. Therefore, we do not address them here.  
 
In  [4], we handled data dependencies that were expressed as ‘data links’ and 
are currently it to enable deriving and maintating the data dependencies 
expressed in BPEL’s shared variable approach.  

3.1 Summary of Restrictions 
A few restrictions are assumed in this work. They are summarized in this 
section for quick reference. Sections providing more details are included in 
parenthesis. 
1. One correlation set is shared among all process fragments. This is done 

using the process definition. In BPEL, correlation sets are used to 
determine instance identification information from application data. All 
messages arriving at a process must carry this information. (Sections 
 3.2, 3.4, and  6.2). 

 Page 5 of 28  



Report 2007/1  Institute of Architecture of Application Systems (IAAS) 
 

2. The join condition of a split loop or scope is restricted to a conjunction of 
the local join conditions of each fragment of a split loop or scope. The join 
condition is a Boolean valued expression defined on a BPEL activity. The 
activity is executed once control flows to it from its parent activity, all of 
its incoming links have fired, and its join condition evaluates to true. 
(Section  4).  

3. This work does not address BPEL scopes’ additional capabilities of having 
event handlers or scoping variables. Only fault handling and 
compensation handling capabilities of scopes are considered. 

4. The loop condition in a split loop is the responsibility of exactly one 
fragment, instead of having the coordinator evaluate it from a set of 
variable values received from all or some of the fragments. In other words, 
we do not support splitting loop conditions. (Section  5). 

5. The immediate child activity of a split loop or scope is restricted to be a 
<flow> activity; furthermore, this <flow> activity is disallowed from 
having incoming or outgoing links crossing its own boundaries. Its only 
purpose is to provide a container for the enclosed activities. Note that 
loops and scopes in BPEL must have exactly one immediate child activity. 

6. Compensation is a recovery mechanism, and thus must not fail. 

3.2 Identifying fragments 
The process fragments of one split process must work together. More 
specifically, an instance of a fragment does not run in isolation. It must 
interact with instances of the other fragments of the split process. There may 
be several instances of each fragment running simultaneously. Therefore, one 
must be able to distinguish them and run the correct set (one instance per 
fragment) together. One way to address this problem natively in BPEL is to 
use the language’s correlation mechanism.  
 
In order to be able to correctly identify the instances of all the fragments of a 
split process that belong to the same ‘run’ of the split process, we provide a 
shared correlation set between all the fragments of the process. This is done 
in the process definitions. The value of this correlation set will be set be the 
message that creates an instance of a process fragment and will be used as 
the instance identifier.  

3.3 Adding Coordination Protocols for Split Scopes 
Next, we present several requirements resulting from our coordination 
approach to take into account the nature of the behaviour needed for splitting 
scopes and loops. The following steps need to be taken for that purpose:  
 
 Extend BPEL to denote a scope or loop as a fragment.  
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• Identifying the fragment enables one to signal to the BPEL engine 
in which the process will run that this activity must be coordinated 
and cannot be run as any other loop or scope.  

 Provide interfaces for the participant and coordinator protocol services.  
• WS-Coordination requires a WSDL interface for each. 

 Adapt the BPEL engine so it may be controlled as the protocols dictate.  
• The protocols require information from and need to be able to affect 

the process instances. For example, upon reaching a split loop or 
scope, the engine must wait for the remaining fragments of that loop 
or scope to start. Upon completing it, it must wait for the others to 
complete. Upon a fault being thrown in one fragment, the others 
must be stopped. Therefore, one needs a mechanism by which to 
control the running process based on messages from the 
coordination protocol. 

 Provide the coordinator with information about the process model. 
• Each process fragment alone does not have enough information on 

the entire split process. It sees only part of the picture: that in 
which it is involved directly. For example, a fault handler may exist 
in one fragment of scope but not on the other fragment of the same 
scope. Such global information is placed, in our approach, in the 
coordinator to enable decisions to be made where information is 
needed about the process model that involves more than one 
fragment.  

 Provide the logic at the participant and coordinator sides to implement the 
protocols.  

• The WSDL interfaces for the protocol must be implemented so that 
they send and receive the proper messages, as well as perform the 
appropriate expected behaviour both in the process and in the 
coordinator. For example, if one fragment of a split scope is ready to 
start then the participant side of the protocol implementation must 
send a starting message to the coordinator. Additionally, that scope 
must be blocked and not allowed it to run any of its activities until 
the coordinator sends it a start message. Furthermore, the 
coordinator implementation will not send the start message unless 
it has received starting from all fragments of this split scope.  

3.3.1 The Rubber Band Effect 
In BPEL, scopes and loops must be strictly nested. When split, this 
restriction is kept. It results in a property we define as the ‘rubber-band’ 
effect. Note that a process itself is treated as a scope in BPEL.  
 

 Page 7 of 28  



Report 2007/1  Institute of Architecture of Application Systems (IAAS) 
 

Corollary: If S is a split loop or scope, then all parent scopes of S (including 
the process itself) are split scopes. 
 
Particularly, if S has fragments in partner A and partner B, then all parent 
scopes of S also have fragments in partner A and partner B. Consider a scope 
S’ in a fault handler of scope S’’, where the immediate parent scope of S’ is not 
in that fault handler. For the purposes of the rubber band effect, S’ is treated 
as a child of S’’. Therefore, S’ cannot be split if S’’ is not split.  

3.3.2 Deriving and Encoding Split Scope and Loop Relationships 
The relationships between split scopes, their handlers, and their fragments, 
as well as between split loops and their fragments can be represented by the 
‘relationship tree’ defined below.  
 
The relationship tree, RT=( Nrt , Ert ), consists of a set of nodes Nrt  and a set 
of edges Ert. Nrt is divided into four pair wise disjoint sets, each containing a 
different kind of node. These sets are Srt , Sns , Lrt , and .  

 Srt , the set of split scope-nodes. Each scope node is a tuple 
consisting of the name of the scope, a set Ms of names of faults that 
the scope has handlers for, a Boolean stating whether or not this 
scope is in the fault handler of its immediate parent scope, and a 
Boolean stating whether or not this scope is in the compensation 
handler of its immediate parent scope.  

 (1)

 Sns, the set of non-split compensation-relevant scopes. A non-split 
child scope node is only included in the tree if it or any of its nested 
scopes have an explicit compensation handler. If not, then it does 
not need to be coordinated and may safely be ignored.  
Each such node,  is a tuple consisting of the participant 
name and a Boolean denoting whether it has an explicit 
compensation handler. Such scopes are not participating in a 
protocol instance themselves. 

 (2)
 Lrt , the set of split loop-nodes. Each loop node, , is a tuple 

consisting of the name of the loop and the name of the participant 
responsible or the loop condition.  

 (3)

 Frt , the set of fragment-nodes. A fragment node represents one 
fragment of a split loop or scope. All fragment nodes are leaf nodes 
in the relationship tree. Fragment nodes are of two kinds, in the 
subsets of Frt such that:  
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 (4)

o  , the set of loop fragments. Each loop fragment node, 
 , is a tuple consisting of the name of the 

participant the fragment is in (p_name), a Boolean 
stating whether that fragment is responsible for 
evaluating the condition of the loop, and the name of the 
loop to identify the loop that this fragment is part of. 

 
 (5)

o  , the set of scope fragments. Each scope fragment-
node,  is a tuple consisting of the name of the 
participant the fragment is in, a set O of fault names that 
this fragment of the scope (regardless of other fragments 
of the same scope) has handlers for, and the name of the 
scope to identify the scope that this fragment is a part of. 
The fault names must be a subset of the set Ms of the 
scope-node the fragment is part of. It also contains a 
Boolean stating whether or not at least one fragment of 
this scope has an explicitly defined compensation 
handler.  

 (6)
 
The tree contains three kinds of directed edges: . A, B, and C are pair 
wise disjoint.  

 A, the set of fragment-activity edges. Each fragment-activity edge, 
a, connects either the fragments of a loop to its corresponding loop-
node, or the fragments of a scope to its corresponding scope-node. 
Therefore, each fragment-activity edge is a tuple.  

 
Clearly, the fragments of a scope are always ‘scope fragments’ and 
the fragments of a loop are always ‘loop fragments’. Therefore, 
scope fragments cannot be linked to a loop-node via a fragment-
activity edge and vice versa. We define A as: 

 (7)

 B, the set of loop-scope edges. Each loop-scope edge, b, connects 
loops to their parent scopes. Each loop node is connected to exactly 
one scope-node with a loop-scope edge. Therefore, 

 (8)

 C, the set of child-parent edges. An edge c in C directly represents 
the nesting (child-parent) relations between scopes. Scopes in BPEL 
are strictly nested, so each scope node has exactly one child-parent 
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edge to the scope node representing its immediately enclosing scope 
in the process. Therefore, a scope-node is connected to other scope-
nodes by child-parent edges. A scope in a fault handler of another 
scope is considered the latter’s child scope. 

 (9)

The protocols are designed such that the nesting of loops within other loops is 
not relevant. Therefore such nesting is not represented in the relationship 
tree.  
 
The relationship tree can be derived automatically from the set of process 
definitions forming the split process, as long as scopes that are split are 
identifiable as such, all fragments of the same split scope or loop have the 
same name, and the nesting relationships are valid across the process 
fragments. In other words, consider that a scope fragment s’ is a child scope 
of scope fragment s in one process fragment. Then, all other fragments s’  
must be children of all other fragments s across the processes.   
 
It is of interest to note that if one were to support default compensation, the 
coordinator would be also be provided with  a set of graphs encoding default 
compensation order.  

3.4 Deployment 
This section addresses the two parts needed to set up the connections 
between the processes and the coordinator: deployment and registration. As 
described at the end of section  2, no Activation Service is used for these 
protocols. 
 
Deployment: The deployment descriptor provided in  [4] for every split process 
is extended if it includes split scopes and/or loops, to also provide the 
endpoints of a default starter service for each participant. This service, 
detailed in section  6.2, is used to enable the coordinator to start process 
instances. The deployment descriptor also provides the address of the 
registration service of the coordinator so that the first process fragment to 
start an instance can go register for the split scope protocol. This address 
includes the name of the overall split process (as a WS-Addressing  [1] 
reference property), needed in order for the coordinator to find the proper 
information related to this split process, such as the correct relationship tree, 
once a process registers.  
 
Before being able to run the protocol for split scopes the coordinator must be 
aware of the relationship tree for the process model containing the split 
scope. We recommend passing this information as part of deployment of the 
process model. 
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Registration: WS-Coordination’s Registration Service is in charge of 
establishing a connection between the environments hosting the various 
fragments. This connection is established based on “protocol handlers” being 
able to receive and process the corresponding protocol messages. When 
registering for a protocol, participants must provide a WS-Coordination 
protocol identifier identifying the protocol a participant will respect, and an 
address for the protocol handler of that participant. We define one identifier 
for the scope protocol and another for the loop protocol. 
 
Three more pieces of information are needed to set up the connections: The 
coordinator needs to know the scope/loop name so it can determine which 
split activity this registration is for, the name of the participant for which 
this registration is for so it can determine which fragment is registering and 
match that to the information in its relationship tree, and an identifier to 
identify the instance of the coordinated work (the value of the common 
correlation set) so it can coordinate the correct instances of those fragments 
of the split activity. Therefore, we use WS-Coordination’s built-in extension 
mechanism to extend the <wscoord:Register> element so that it includes this 
information.  
 
When a scope fragment begins, it sends to the registration service a 
registration message that also includes the address of the participant 
protocol handler for that particular scope instance. In return, the coordinator 
sends a registration response containing the address of the coordinator 
protocol handler that will receive all messages for that particular scope or 
loop instance from that particular participant.  
 
The pieces of data identified above are used by the coordinator and the 
participants to generate the specific addresses for specific instances of each 
coordinator protocol instance and participant protocol instance. How they 
generate these addresses is implementation dependent: the WS-Coordination 
contract is just that if the exchanged addresses are used, the messages will 
be handled by the right protocol instance. We recommend using WS-
Addressing  [1] reference properties to encode information about which 
particular scope instance at hand. These properties can directly be the data 
items we have highlighted above (scope name, etc) or middleware generated 
ones (workflow engine created process instance ID, etc). 
 
Traditionally, the identifier of a specific instance of coordinated work (i.e.: 
transaction id) is flowed in the coordination context after calling the 
activation service. For the problem specifically at hand in this work, using 
the activation service is superfluous so the instance identifier is placed in the 
registration message.  
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4. Join Failures 
Recall that a split loop or scope may have a join condition. In BPEL, if a join 
condition evaluates to false, then the activity throws a fault known as ‘join 
failure’. This fault may be suppressed using the attribute 
‘suppressJoinFailure=”yes | no”’. Suppressing it is equivalent to surrounding 
the activity with a scope that has an empty fault handler for this particular 
fault. However, an implementation is not forced to create an actual scope, 
and in BPEL 2.0  [5] it was shown that if done in this manner there may be 
interference in the order of compensation (if present). 
 
In this paper, we support splitting loops and scopes. Therefore, a split activity 
that will be skipped can only be skipped if it fires a join failure or it if is in a 
scope that is faulting. Handling join failures and faults properly are then all 
that is needed to ensure that a fragment does not hang if it is known that a 
sister fragment in another participant will never be executed.  
 
As expressed in section  3.1, the join condition of the split activity is restricted 
to be the conjunction of the local join conditions at each fragment. In order to 
handle coordinating join failures on split loops scopes, we place messages in 
both protocols as follows: A participant whose fragment is ready to start 
without a join failure sends starting. On the other hand, a participant that 
encounters a join failure upon reaching a fragment of a scope or loop sends a 
join failure message to the coordinator. The coordinator waits for all 
fragments of the loop/scope to be ready (send starting/join failure), and if any 
had sent join failure, the coordinator sends a complete after fault message to 
all the fragments and the protocol ends in the ‘dead path’ state. 
 
The restriction that the join condition is the conjunction of the local join 
conditions could be eased without loss of generality by providing the 
coordinator with the join condition definition, sending the status of the 
incoming links with the starting message from each fragment, and evaluating 
the condition at the coordinator side. However, this option was not chosen 
because although it is less restrictive, it obscures the behaviour of the 
fragments by placing an important piece of the business logic in the 
coordinator.  
 
An alternative option for dealing with the join condition is to remove the 
messages dealing with join failure and the dead path state from the protocols, 
and instead modify the processes: inject a scope with an empty join failure 
handler around the split activity and change its ‘suppressJoinFailure’ 
attribute value to ‘no’. The new scope itself will be split due to the rubber 
band effect but will never throw a join failure because it will have no links at 
its own boundaries. A local BPEL join failure fault, (thrown if the join 
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condition on a fragment evaluates to false) at the scope fragment level is thus 
treated as any other fault. It occurs in the parent scope, which must also be 
split by the rubber-band rule, and will be thrown and handled as any other. 
However, this forces an additional scope protocol instance for each split scope 
or loop. Instead, we manage to achieve the same behaviour by placing 
messages to deal with the join failure in the loops and scope protocols 
directly.  

5. The Split Loop Protocol 
We choose to have exactly one fragment be responsible for the loop condition. 
This can be specified in one of several ways: using an attribute on the split 
loop (isResponsible=”yes|no”), making the condition itself opaque, or by 
referring to a ‘magic variable’, on each ‘non responsible’ fragment, that gets 
populated through a message from the coordinator with the value of the loop 
condition upon its evaluation. An implementation can choose to take any 
such approach for a split process.  

 
Figure 1: Participant Coordinator Messages, loop. 

Figure 1 shows the behaviour of the protocol between a loop fragment and a 
coordinator for coordinating a split loop. Figure 2 shows the behaviour of the 
coordinator coordinating all fragments of that loop. Notice that any fragment 
can be the first to start, but the entire loop is only allowed to start once all 
fragments are ready. The same occurs for completion and iteration. 

5.1 Participant-coordinator messages 
The protocol takes place between each instance of a fragment of a loop and 
the coordinator. The coordinator gets a message that a loop is starting and 
containing the value of the while condition at that fragment. If the fragment 
is not the one responsible for the condition, then that value is omitted. The 
coordinator eventually sends back either a complete message if the loop 
condition is false or a start message so that the participant actually starts 
running its piece of the loop. Once the participant completes an iteration, it 
sends a completing message that again contains the value of the loop 
condition.  
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The coordinator then sends either continue if the loop condition is true or 
complete if the loop condition is false. The participant will then start a second 
iteration in the former case or navigate out of the loop in the latter case.  

5.2 Participant behavior 
The behaviour necessary on the participant side involves being able to listen, 
react to, and influence the process instance’s behaviour. The participant side 
needs to be able to know when a loop fragment has started or had a join 
failure and to block the activity when this occurs. In needs to be able to 
unblock the fragment and let it either iterate or complete based on messages 
from the coordinator, regardless of the value of the local loop condition if the 
fragment is not responsible for the condition.  

5.3 Coordinator behavior 
Having explained the coordination messages between a fragment and the 
coordinator, we now look at the behaviour of the coordinator in coordinating 
all fragments of one loop for one instance of that loop.  

 
Figure 2: Coordinator Behavior, loop. 

 
First, the coordinator waits for all instances of the loop to send starting, 
signalling that they have been reached in the control flow and are ready to 
run. The starting message contains the value of the loop condition from the 
responsible fragment. Based on this value, the coordinator then sends either 
complete or start to all fragments of the loop. Once start is received by a 
fragment, it starts running the body of the loop. Once it completes its work 
for one iteration, it sends completing. If it is the fragment responsible for the 
loop condition, then the completing message also contains the result of 
evaluating the condition. Then, the coordinator waits for all fragments to 
send completing and sends either continue if the loop condition is true or 
complete if it is false. If continue is sent, each fragment runs another 
iteration, otherwise it just completes and its process continues navigation out 
of the loop.  
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6. The Split Scope Protocol 
In order to understand how to fragment a scope, one must understand how a 
BPEL scope behaves. In BPEL, a scope is a compound activity. It may be the 
source and/or target of control links. The behaviours that we are concerned of 
a scope are that it can define fault and compensation handlers for the 
activities nested within it. A fault handler consists of a part of a process that 
runs if a particular fault occurs. A compensation handler consists of a part of 
a process that provides an ‘undo’ action that can be called on a completed 
scope. The two are tightly related.  
 
If an activity in a scope fails, all activities in that scope are terminated and a  
search for a fault handler is performed. If one is found on the parent scope of 
the faulting activity, then that handler runs next. If not, the search goes up 
the scope hierarchy until it does find a handler and execution continues 
there. A scope that faulted and did not have a corresponding handler fires all 
its outgoing links with a negative value. A scope that completed successfully 
or that successfully completed one of its fault handlers fires can then fire its 
outgoing links normally.  
 
A fault handler may compensate one or more of the immediate children of the 
scope it is defined on. It may do so explicitly using the <compensate 
name=”…”/> activity (renamed ‘compensateScope’ in BPEL 2.0). This activity 
may only appear inside a compensation handler or a fault handler.  
 
In this paper, we handle compensation only for this explicit case in which the 
name of the scope to be compensated is provided and where the named scope 
must have an explicit compensation handler defined.  The scope on which the 
compensation handler is defined may be split, the compensation handler 
itself may be split, and the scope in which the compensate activity is defined 
may be split (even if the named scope is not). Note that BPEL also defines 
default compensation that takes place due to either the <compensate/> 
activity (with no scope name in BPEL 1.1) or due to default fault and 
termination handling.  
 
Default fault handling in BPEL is supposed to not only terminate the 
children but also compensate any completed children in ‘default 
compensation order’ and then rethrow the fault. Termination (also known as 
handling of the enclosing scope fault) in BPEL occurs in a running scope 
when its parent is exiting due a fault. The default behaviour is defined to 
trigger default compensation on any completed children.  
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Although the protocol shown in this paper was designed to handle default as 
well as explicit compensation, we believe the default aspect is too complex for 
the goals of this paper. Therefore, we will not at this time discuss the details 
of compensation that results from: default termination, default fault 
handling, and default compensation handling.   

6.1 Data in split scope handlers 
As mentioned earlier, this work focuses on sharing data that is necessary for 
the coordination of control and lifecycle for split loops and scopes.  
 
Data provided with a fault in BPEL may be needed by a fault handler. For 
example, a ‘throw’ activity may have a variable attribute which requires that 
the value of that attribute reach the fault handler. Therefore, we send any 
data provided with the fault to the coordinator. The coordinator then sends it 
to all fragments that have a corresponding fault handler. A fault handler at a 
fragment that has a ‘faultVariable’ attribute will then save this message in 
this variable. For example, the value of variable ‘x’ is saved in variable ‘y’ if 
the fault was caused by a <throw faultName=”ns:flt” variable=”x”/> and 
caught by a <catch faultName=”ns:flt” faultVariable=”y”>…</catch>.  
 
As in BPEL 1.1, activities in a compensation handler can read data from 
variables in their own fragment based on the snapshot of the process state 
upon completion, and any data they write occurs on that snapshot and is not 
visible to any activities outside the handler. Again, sharing data between 
fragments, even for the compensation handler, is the responsibility of the 
splitting algorithm and not of the coordination work.  

6.2 Effects on process instance creation 
Special care must be taken in starting the fragments of the process itself (as 
opposed to those of loops and nested scopes). Unlike in the case of loops where 
one could simply wait for the other fragments to be started, the process 
fragments themselves may start very far apart in time (depending on when 
the message that can create an instance is received at each). For the case of 
process fragments that include protocol-driven split loops and scopes all 
fragments must be notified in case one of them fails, for both runtime (if 
another fragment has the necessary fault handler) and auditing purposes. 
Here, one cannot simply wait for all other process instances to start, 
especially since the start message of one fragment may come from another 
fragment.  
 
The coordinator needs to start all process instances once it is known that at 
least one has started. This is enabled in this work by using a ‘starter service’ 
that can create an instance of the process upon receiving a startInstance 
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message containing the correlation set value. In order to deal with a possible 
race condition, we place the requirement that the coordinator must ignore 
duplicate registration messages and the participant must ignore a 
startInstance if an instance with the same correlation set value already 
exists.  
 
Starting an instance in this manner will result in all fragments of the process 
registering, starting, and being in the active state once one of them starts. It 
will not cause activities to occur out of order because in BPEL the first 
activities to occur are the ‘create instance receives’. Receive is a blocking 
activity in BPEL, so these instance creating receives will block and wait for 
the actual external messages before allowing work in the body of the process 
to execute. Furthermore, since the split process was the result of splitting a 
larger BPEL process then starting all fragments at the same time is 
equivalent to having created one instance of the larger process.  

6.3 Participant-coordinator messages 
The messages between the coordinator and the participant for coordinating a 
fault are shown in Figure 3. Just as in the case of loops, one must also wait in 
this case for all fragments to start before allowing any particular one to 
actually begin executing its nested activities. The completion of the scopes is 
synchronized, also similar to the case of split loops. A BPEL scope, however, 
may complete either through having run its activities successfully, or through 
having run one of its fault handlers successfully. The two cases both lead to 
the scope having completed and its outgoing links being fired normally. 
However, in the latter case, the completion is considered abnormal and the 
engine needs to distinguish between the two especially if compensation is 
also involved. The result is that the fault handling protocol propagates a fault 
from one fragment to all other fragments of the scope that can handle it, and 
synchronizes the completion of the (split) fault handler.  
 
For this protocol, all messages that start with fault include the fault QName 
and a fault variable value. All messages that are related to compensating a 
particular scope include the name of that scope.  
 
Consider first the process fragments. Such a fragment will either start 
normally or be started by the coordinator. In the first case, it sends starting. 
In the second case, the coordinator sends a startInstance message containing 
the values of the correlation set to the fragment’s ‘starter service’ as provided 
in the deployment information. This message is not part of the protocol, as is 
seen from the fact that it is not targeted at the participant service but at our 
new ‘starter service’.  
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As each fragment creates its process instance, the process-level scope will 
send a registration message to the coordinator and everything continues as 
for any other (non-process) scope.  

 
Figure 3: Participant Coordinator messages, scope.  

A non-process scope sends starting when it is reached by navigation. After all 
fragments of a scope have started, the coordinator sends a start message to 
that fragment allowing it to actually start. A fragment stays in the active 
state while running its nested activities and no fault has occurred anywhere 
within the split scope. In the normal case, the next step would be to complete 
as was done in the case of loops (from active, to completing, to completed 
state).  
 
In the case of a process-level scope fragment, the participant may get a 
fault+exit message from all states in which a fault may have been thrown: 
‘active’, ‘fault handling’, and ‘fault-end’. This occurs in case a fault has been 
encountered elsewhere and cannot be handled by any scope up to and 
including the level of the process itself. In other words, if the scope lookup 
algorithm in section  6.6 does not find a scope. This message cannot appear in 
the protocol of a scope that is not a fragment of the process-level scope.  
 
Another step out of either the ‘active’ state occurs if another fragment 
faulted, and the scope of this fragment has a handler for the fault, then the 
coordinator would send a fault w/ handler message. If another fragment 
faulted and other fragments have handlers but not this one, then a fault 
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message is sent. If a fault is thrown and there are no handlers in any 
fragments of this scope, the coordinator will throw the fault to a parent 
scope’s protocol. That is why the protocol does not deal directly with this case.  
 
From the ‘active’ state the participant may also itself encounter fault. In this 
case, it sends a faulted message if it faulted and has no handler for the fault, 
or a faulted w/ handler message if it faulted and has a handler for that fault 
on the fragment itself. It then waits for the coordinator to confirm that it 
should run the handler (run handler message). As we are not dealing with 
default compensation at this time, we will ignore the other transitions out of 
the ‘terminating’ state.  
 
After receiving either a run handler message, the participant runs the 
corresponding handler. The handler itself then either completes (f_handler 
completed) or faults. If the handler completes, then the coordinator waits for 
any other fragments of that handler to complete and then sends a complete 
after fault message.  
 
Otherwise, if the handler faults, the participant sends a fault in handler 
message that is used by the coordinator to lookup an appropriate handler 
using the algorithm in section  6.6. 
 
Next, we focus on compensation. The fault handler may have a <compensate 
scope=”…”/> activity in one of its fragments. If this activity is reached, it 
sends the coordinator the request to perform this compensation work 
(compensate child or compensate non-split child). The target scope may be 
split, or may be non-split but in another fragment. The coordinator will 
request the compensation handler of the named scope and notify the 
participant once the compensation has completed (child compensation 
handler completed).  
 
The scope to be compensated may be non-split and in a fragment that does 
not have part of the fault handler. This fragment will be in the ‘fault-end’ 
state when the request to compensate arrives at the coordinator. Therefore, it 
can accept requests to compensate non-split children while in this state.  
 
Notice that the protocol also has a set of transitions and states that are 
present to enable the coordinator to request that a fragment run the 
compensation handler of a non-split child scope. These will only be the non-
split child scopes that are relevant to the compensation order and therefore 
present in the scope tree. The protocol shows three states labelled 
‘compensating non-split child’ that are there for this specific case. If the child 
to be compensated is not in the completed state, then the engine is to treat 
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this request as a no-op and send back immediately the compensation handler 
completed message.  
 
A scope can only be compensated after it has completed, so the states for 
running the compensation handler of a split scope follow after the completed 
state. Split scopes can only be compensated through a command from the 
coordinator, as will be details in section  6.4. Therefore, the compensate 
message comes from the coordinator and sends the protocol from the state 
completed to the state compensating. 
 
The coordinator sends compensate to all fragments of a split scope that it 
intends to compensate, whether that fragment has a handler or not. Any 
scope fragment with all or part of the compensation handler sends 
compensation handler completed upon completing the work in its part of the 
handler. Once the coordinator hears back from all fragments that have part 
of the compensation handler, it notifies all the scope’s fragments that 
compensation has completed by sending the finalize scope message.  
 
Finally, there are several states that are there to deal with default 
compensation. 

6.3.1 Dealing with Race Conditions 
Race conditions are introduced where one has a state with transitions that 
can be initiated either by the participant or by the coordinator. Looking 
closely at the protocol one can notice possible race conditions in the ‘active’  
and ‘fault handling’ states.  
 
For the ‘active’ state, there is a race between faults happening in different 
fragments, and a race between the participant wanting to complete and the 
coordinator trying to send it a fault. The former race already exists in BPEL, 
where faults may occur in parallel branches at nearly the same time. Only 
one fault is dealt with, the first one to reach the scope. Here, that will be the 
first one to reach the coordinator.  
 
To ensure this, we place the rule that, for the ‘active’ state, the coordinator 
messages win over the participant messages. Therefore, if the coordinator has 
sent out a fault, fault w/handler, or fault+exit message, then completing, 
faulted or faulted w/ handler from the participant are ignored. The case of 
completing is especially relevant since the coordinator may in fact have 
received it but still decided to send a fault message because another fragment 
had faulted. Furthermore, notice that a fragment cannot start its handler 
even if the fault came from it and it has a handler. It needs to wait for the 
coordinator to send run handler. The reason is that if the participant could 
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immediately start its handler and there was in fact a race, then it could start 
a handler for a different fault than the coordinator has deemed the winner.  
 
For a race between handler completed and fault in handler and the fault+exit 
messages, fault+exit wins. Therefore, the coordinator behaviour will ignore 
the handler completed or fault in handler message if it has already sent a 
fault+exit. Then, the race is not a problem because it only occurs for the 
process level scope with the fault+exit message. If this message comes late, 
then it can still be accepted by the protocol because it can also occur in the 
next state and also leads to ‘aborted’.  
 
Next, we address races between compensation related messages: those that 
lead to and from any of the states: compensating, compensating non-split 
child, compensating child, or performing compensate. These messages must 
not be dropped. Any of the compensation related messages that create a race 
must be queued and handled, unlike in the case of fault handling where one 
wins over the other.  For example, if a fault handling fragment sends the 
coordinator a request to compensate a nested scope A and the coordinator 
sends it a request to compensate its nested non-split scope B, then fragment 
will queue the coordinator’s request and handle it once it goes back to the 
state ‘fault handling’.  
 
In case of a race condition, fault related messages win over any compensation 
related messages. 

6.4 Participant Behavior 
Here as well, the participant side needs to be able to react to and affect the 
process instance’s behaviour. It needs to be able to detect the scope fragment 
starting or encountering a join failure and then block it until it receives the 
start message. It needs to detect a fault and override local fault handling 
behaviour as will be described in the next section. It needs to be able to 
produce a fault in a process instance even if that fault did not originate in 
that fragment at all.  
 
Finally, it needs to be able to completely disable default compensation 
handling on split scopes, whether triggered by fault or termination (enclosing 
scope fault) handling. Compensation for split scopes can only be triggered 
from the coordinator. The engine can only start an explicit compensation 
handler of a split scope and can only do so upon receiving a request from the 
coordinator.  
 
This section is only concerned with non-split scopes that belong to the scope 
relationship tree. The default fault handler for the ‘enclosing scope fault’ (or 
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in BPEL 2.0, the default ‘termination handler’) of a non-split scope is left 
intact and without interference. Unhandled faults that arise from non-split 
scopes will reach a split scope and be handled as any other fault in the 
fragment.  
 
The BPEL engine running a scope fragment may also only start the explicit 
compensation handler of a (relevant) non-split scope upon request from the 
coordinator. Both the engine (due to a compensate activity in the non-split 
scope’s handler or due to termination) and the coordinator (if the non-split 
scope is to be compensated and has no explicit handler )are allowed to trigger 
the default compensation handler of these non-split scopes.  
 
Recall that a request from the coordinator to compensate a non-split scope 
that has not completed must be treated by the engine as a no-op resulting in 
an immediate compensation handler completed message. Additionally, if the 
non-split scope is nested in a (split or non split) loop, the engine must 
determine whether it needs to compensate more than one instance of the non-
split scope and the coordinator is not involved beyond triggering the 
compensation and being notified of its completion (all instances of a group, if 
applicable). In other words, the engine must treat a single request to 
compensate such a scope by name as if it had come from the instance itself.  

6.5 Coordinator Behavior 
Having described the fragment/coordinator messages, we now describe the 
corresponding behaviour of the coordinator when running an entire split 
scope; that is, when interacting with all of its fragments from start to finish. 
Figure 4 illustrates the behaviour of the coordinator. 
 
The coordinator uses the relationship tree for identifying when all 
participants for a particular scope have registered, to search for handlers, 
and to relate endpoints to participant names. Words in italic correspond to 
signals of the protocol itself. Unless noted otherwise, a ‘send’ state sends to 
all fragments of this scope. Conditions on a transition are either local or they 
are signals received from participants (italics). The grey state and the 
underlined transition out of the active state are highlighted because they 
form the communication between several coordinator side scope behaviours. 
The protocol can be aborted at any time by a parent scope’s protocol, hence 
the ‘aborted’ state on its own in the corner. Transitions were not drawn to it 
from every state as not to clutter the figure. 
 
The states that deal with default compensation are the three states labelled 
‘compensation due to termination/rethrow’ and the two states labelled 
‘default compensation on children’. Suffice it to say that for the latter two 
states, the compensation handlers of child scopes will be requested to run in 
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the order specified by a ‘default compensation order graphs’ that resides in 
the coordinator. For the former three, a complex interleaving of default 
compensation handling deep into the scope tree will take place due to the 
compensation order resulting from mixing compensation resulting from 
default termination with that resulting from default fault handling as the 
fault gets rethrown up the scope hierarchy.  
 
Now, we take a closer look at the protocol. First, if a fragment is the process 
itself then one starts with the ‘startInstance’ message that will cause all 
fragments to create an instance and register if they have not already done so. 
Then, registration (not shown in the figure) takes place for the rest of the 
fragments and the protocol itself can begin. The behaviour for any scope is 
that the fragments send starting and the coordinator waits for all fragments 
to send this message before it sends start.  

 
Figure 4: Coordinator Behavior, scope.  

A fault from a fragment (faulted/faulted w/ handler) causes the coordinator to 
search the scope tree for a handler using the algorithm described in section 
 6.6. If the search does not yield a scope, then fault followed by  fault+exit is 
sent to the fragments of the process level scope. Otherwise, if the handler is 
on the scope that faulted (in any of its fragments), then the same fault is 
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thrown by the coordinator to those fragments so they can handle the fault 
locally. If the message had been faulted with handler, then the coordinator 
sends run handler to that fragment, fault to any other fragments of the scope 
that have no handlers for the fault, and fault w/ handler to any other 
fragments that have a handler. As we are not dealing with default 
compensation, we will skip over the terminating state and so for this last case 
the coordinator will then also send run handler. 
 
The previous chapter already mentioned how race conditions are dealt with 
in case of secondary faults from fragments.  
 
If the handler is in a parent scope, then the coordinator will send a local fault 
signal (grey state) to the coordinator behaviour of the scope that has the 
handler. This signal appears in a scope’s coordinator behaviour as the 
underlined transition out of the ‘active’ state. It will in turn abort all nested 
scope behaviours, and then send a message to the participants causing the 
fault to appear in all the fragments of the handling scope. At each fragment, 
such a fault will abort nested scopes as is normal BPEL fault behaviour. In 
this way, both the participant and coordinator sides of the nested protocols 
are stopped for all fragments without needing to send protocol abort 
messages to all. Default compensation may take place at this point as part of 
termination and of having caught the fault possibly several scopes higher 
than where it had been thrown. Next, the fault will kick off the fault handler 
fragments, and the protocol continues as shown.  
 
If the fault cannot be handled by any scope, then fault followed by fault+exit 
are sent to the process-level fragment ending the instance in every process 
fragment.  
 
The result is an interleaving of local BPEL behaviour and coordinated BPEL 
inspired behaviour (fault handler lookup, etc) to achieve the execution of 
cross-process fault handling scopes. 
 
The search for handlers occurs in the coordinator using the knowledge of 
which scope the fault was caused in, the relationship tree, and the algorithm 
for finding a fault handler presented in section  6.6. Note that this means that 
the fault and fault w/ handler messages are only propagated from the 
coordinator to a scope that has a handler for the fault (regardless of which 
fragment(s) the handler(s) are in) or to the process itself.  
 
Next we focus on compensation. A compensate request from a fragment can 
only occur while a scope is running a fault or compensation handler.  
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Consider the case that the scope to be compensated is not split. In this case, 
its parent must be split if the request to compensate has gone through the 
coordinator. The coordinator sends a message to request its compensation 
through its parent scope’s protocol. As noted in the previous section, the 
participant side will send the child compensation handler completed message 
either if the scope is not in the completed state or once it has completed the 
handler otherwise.  
 
Now consider the case that the scope to be compensated is split. If this scope 
has not completed successfully, the coordinator will immediately return that 
the compensation has finished without doing any work (no-op). If this scope 
has completed successfully and also has an explicitly defined compensation 
handler, then the coordinator will send a request to each fragment of that 
scope asking it to compensate. Once all fragments of the compensation 
handler have completed, the compensation due to the <compensate 
scope=”..”> activity is considered completed.  
 
If this scope has completed but has no explicit handler, then default 
compensation would occur (details are out of scope).  
 
Scopes nested in loops may need to be compensated more than once. We 
handle this as follows. For every instance of a protocol of a split scope, the 
coordinator keeps one LIFO queue for every immediate split child scope that 
is not in the parents compensation or fault handlers and that has an explicit 
compensation handler. This queue contains the identifiers of all instances, in 
order of activation, of the child scope’s protocol that ran after the protocol 
instance of the parent started and before the latter reached the completed or 
fault handling states. The protocol instances in each queue form what in 
BPEL 2.0 is known as a ‘compensation instance group’ for non-default 
compensation. Once a split child scope is requested to be compensated, the 
coordinator will run the compensation handler of each of these instances (if 
completed) based on the order specified by the queue. As a result, if the child 
scope had been nested in (one or more) loops, we would compensate it as 
many times as the loop(s) had run. On the other hand, if a non-split scope is 
nested in one ore more loops, then it is up to the process engine in which that 
scope is running to track and compensate multiple instances of the non-split 
scope if the coordinator requests that the scope be explicitly compensated. 
Note that the behavior of compensation instance groups for default 
compensation is more complex, requiring the coordinator to keep track of 
looping in the default compensation graph.  
 
Finally, we also require that messages arriving at a scope whose protocol has 
been aborted at the coordinator side are ignored. This may occur if the 
message arrives between when the coordinator aborted it and when the 
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coordinator sends a fault to it or its parent scope causing the participant to 
locally abort as well.  

6.6 Searching for the fault handler 
Consider the relationship tree define in section  3.3.2. In this section, we 
present the algorithm used to detect the scope that will be responsible for 
handling a particular fault.  
 
The coordinator is informed upon the occurrence of a fault and needs to look 
for a handler when the participant sends either a faulted or a fault in handler 
message.  
 
Let the scope node in the scope relationship tree corresponding to the split 
scope that receives the fault message be  . Let  be the BPEL scope 
where the search is to start, n be the fault name contained in the message 
from the participant, and h be a Boolean that is true if the message received 
was fault in handler and false if the message was faulted.  
 
We use ‘ ’ to denote undefined. The root scope is the only scope for which 
there is no edge in the set of cp-edges whose first element is this scope. 
Consider sr to denote the root scope. First, we define a function called parent 
that retrieves the immediate parent of a given scope using the scope tree: 

 (10)

Notice that sr  is the only scope where . 
 
Recall that in BPEL, if a fault occurred in a fault handler and is not caught 
within that handler, then the search really starts in the parent of the scope in 
which the fault occurred. Therefore,  is defined as: 

 
(11)

We define the following function, taking the name of a fault and a split scope 
node as input, to check whether a particular scope has a handler for the fault:  

 
(12)

Recall that one must skip the parent scope when a fault is crossing a fault 
handler boundary. In order to perform the skip, we check the Boolean in each 
scope node that specifies whether this scope is top level in a fault handler. 
The following function is then used to retrieve the scope that can handle the 
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fault. We use ( )i xπ  to represent the i-th projection map on x. For example, 
1 1 2(( , ))s s s1π = . 

 
(13)

We define a function y that takes the name of the fault and the scope where 
the search must begin and returns either the fault handling scope or 
undefined if none is found. It is defined as follows: 

 
(14)

Finally, the scope that can handle the fault is found as follows. The message 
provides both h and n and is addressed to the protocol of . At the 
coordinator,  Equation 11 is used to retrieve  from these values and the 
scope tree. Finally, the fault handling scope is retrieved using . 

6.7 Relation to the Loop Protocol 
Upon receiving a fault, a participant and the coordinator itself must abort all 
nested loop protocols. The nested loops are known from the relationship tree 
at the coordinator side. At the participant side, the nested loops are known 
from the process definition. 
For non-default compensation, the loop protocol is related only in so far as 
that it enables the coordinator to keep track of compensation instance groups 
of split scopes nested in split loops, as described in section  6.5. 

7. Conclusion 
In this paper, we have shown how one can define split loops and scopes that 
encompass activities from multiple BPEL business processes. We highlighted 
the main problems like fragment identification, instance matching, and race 
conditions. We argued that using coordination is a natural way to solve this 
problem, and provided a particular solution using new WS-Coordination 
protocols for coordinating the fragments of such split scopes. 
 
We limited the compensation handling explanation in this work to only the 
explicit case, leaving the details of default compensation handling for a 
separate paper. This is due to the complexity involved in  the work that needs 
to be done on the coordinator side for calculating compensation order and 
performing the combined default fault and termination handling. 
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