

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

Coordination Protocols for Split BPEL
Loops and Scopes

Rania Khalaf, Frank Leymann

Report 2007/1
March 11, 2007

Institut für Architektur von
Anwendungssystemen

 Universitätsstr. 38
70569 Stuttgart
Germany

CR: C.2.4, D.2.6, D.2.11, D.2.12, H.4.1

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Summary

The document presents an approach to enable loops and fault handling,
compensating scopes to be split among a set of BPEL processes running on
different BPEL engines. A mechanism to split a scope or loop into multiple
fragments is presented, then a protocol is defined that can be used to
coordinate fragments of a loop or a scope so that those fragments run as if
they had been in a single process.
The requirements for running split scopes and loops are explained. For
compensation, this paper focuses on explicit compensation and makes the
assumption that compensation handing does not fail.
Two protocols are defined such that they may be plugged into the WS-
Coordination framework. The messages between the participant fragments
and the coordinator are defined. The information about the participating
processes that the coordinator needs to have is specified. An algorithm is
provided to locate a fault handler in the hierarchy of scopes that can handle a
particular BPEL fault. Additionally, the behavior of both participants and the
coordinator are specified.

 Page 1 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Contents
1. Introduction ___ 3

2. Background: WS-Coordination__ 4

3. Scope and Loop Fragments ___ 5
3.1 Summary of Restrictions __ 5
3.2 Identifying fragments ___ 6
3.3 Adding Coordination Protocols for Split Scopes ___________________________ 6
3.4 Deployment __ 10

4. Join Failures ___ 12

5. The Split Loop Protocol ___ 13
5.1 Participant-coordinator messages ______________________________________ 13
5.2 Participant behavior ___ 14
5.3 Coordinator behavior __ 14

6. The Split Scope Protocol __ 15
6.1 Data in split scope handlers ___ 16
6.2 Effects on process instance creation ____________________________________ 16
6.3 Participant-coordinator messages ______________________________________ 17
6.4 Participant Behavior___ 21
6.5 Coordinator Behavior__ 22
6.6 Searching for the fault handler __ 26
6.7 Relation to the Loop Protocol ___ 27

7. Conclusion ___ 27

Acknowledgements___ 28

References ___ 28

 Page 2 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

1. Introduction
In an effort to ease business process partitioning and outsourcing, we have
presented an approach [4] for arbitrarily splitting business processes based
on business roles. In this approach, a set of activities in a business process,
derived from BPEL [3], is assigned to a partner. Then, a mechanism was
presented to show how one can generate one business process for each
partner so that the cumulative behaviour is the same as that of the original
project. In [4], we focused on processes expressed as flat graphs. In this
paper, we add the capability to also split loops and scopes. For scopes, we
focus on splitting the fault handling and compensation behaviour and not on
event handlers or shared data.

On attempting to split loops and scopes using BPEL activities in the process
(invokes and receives in certain composition patterns among the fragments),
the amount of activities and the complexity of the resulting processes
drastically increased. The complexity was mainly due to the fact that one
needs to synchronize the start and end of all fragments that result from the
split, as well as possible abortion, and rollback. For example, if one fragment
of a loop completes then it has to wait for all others to complete and also
notify them that it itself has completed. Therefore, we find that splitting
loops and scopes is one clear point where it is worth bringing in additional
capabilities to the BPEL language and augmenting the pure BPEL processes
we have so far been able to maintain.

We propose solving the problem of splitting loops and scopes by adding a
coordinator that coordinates the work of the fragments of loops and scopes so
that they can behave as logical units. In order to lower the barrier of entry,
we provide the coordination as protocols that plug into the WS-Coordination
framework [2].

In this paper, we present an overview of WS-Coordination, describe the parts
of WS-Coordination used to enable splitting processes, shows how to define
fragments, and presents the coordination protocols required to execute split
loops and fault-handling scopes.

We include split compensation handling, but only detail the case of explicit
compensation at this time. Default compensation, although present in the
protocol diagrams, will be out of scope for this paper and only briefly
described.

It is assumed that the reader has a familiarity with BPEL.

 Page 3 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

2. Background: WS-Coordination
WS-Coordination is a pluggable framework for coordinating the agreement of
the outcome of the execution of a collection of services that jointly perform a
“distributed action”. For that purpose, WS-Coordination specifies two
middleware-related services: an Activation Service and a Registration
Service. The Activation Service, which is optional, is used by the initiator to
create a unique context identifying the distributed action to be started. Then,
this context can be exchanged in the header of application messages between
the services of the distributed action. Upon first receiving a message with a
coordination context, such a service registers for participation in that
distributed action with the Registration Service. Registration especially
encompasses associating a “protocol handler” with each such service; a
protocol handler is the entity in charge of exchanging messages to reach
outcome agreement between the services. A distributed action is thus
equivalent to an instance of the associated agreement protocol. The
combination of registration and activation allows services to dynamically join
such a running protocol instance.

Being a framework, WS-Coordination allows one to define one’s own protocols
and provide corresponding protocol handlers to perform the actual
coordination logic. Defining a protocol consists of possibly extending the
activation and/or registration messages, defining the port types of both the
participants’ and coordinator’s protocol handlers, the order in which the
protocol messages need to be exchanged, and the required underlying
behavior as a result of receiving or sending a protocol message. For example,
if a coordinator sends a commit message to a participant, the participant
must respond with committed - but only after doing the work associated with
the commit message (i.e.: committing the transaction).

When splitting processes each fragment of a split activity (loop or scope)
corresponds to a service of a distributed action. In case of a split loop, for
example, the associated agreement protocol is about agreeing whether or not
another instance of the split loop body must be run. The fragments of a split
activity are known at design time and their location is known at deployment
time. Additionally, the fragments are peers: A fragment of a loop in one
process can be reached before its associated other fragments in other
processes, and it is not known ahead of time which one will start the
corresponding protocol instance.

The case at hand in this paper differs slightly from traditional coordination
as shown by protocols such as WS-BusinessActivity and WS-
AtomicTransaction. Most importantly, the optional Activation Service is not
used because a protocol instance is automatically created when the first

 Page 4 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

fragment of a split activity is reached and the context does not need to be
dynamically flowed between the participants. Additionally, since the
fragments were created to work together, each participant process has
enough information for the coordinator to determine exactly which protocol
instance it belongs to. The details of creating and using protocol instance
identifiers will be explained in later sections.

3. Scope and Loop Fragments
A set of processes working in concert and needing to be coordinated together
through our approach (usually because they were derived from a single larger
process) are referred to as process fragments. The overall process formed by
these fragments is referred to as a split process.

Loops and scopes can be split across a set of process fragments. The part of a
split scope in one process fragment is referred to as a scope fragment. In
other words, a split scope is made up of a set of scope fragments distributed
between two or more process fragments. The same applies to a split loop and
its constituent loop fragments. In order to be able to identify the fragments of
the same split scope, we place the requirement that a split scope or a split
loop must be uniquely named in the split process and that all fragments of
the same split scope or loop will have this name.

In this work, the focus is on performing the behaviour of these artifacts as it
relates to control and consistent lifecycle. Sharing data between fragments or
control dependencies between entire activities (due to control links in the
original process) are the domain of the work initiated in [4]. Such data and
control dependencies are addressed using BPEL constructs in the fragments
and not through the coordination. Therefore, we do not address them here.

In [4], we handled data dependencies that were expressed as ‘data links’ and
are currently it to enable deriving and maintating the data dependencies
expressed in BPEL’s shared variable approach.

3.1 Summary of Restrictions
A few restrictions are assumed in this work. They are summarized in this
section for quick reference. Sections providing more details are included in
parenthesis.
1. One correlation set is shared among all process fragments. This is done

using the process definition. In BPEL, correlation sets are used to
determine instance identification information from application data. All
messages arriving at a process must carry this information. (Sections
 3.2, 3.4, and 6.2).

 Page 5 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

2. The join condition of a split loop or scope is restricted to a conjunction of
the local join conditions of each fragment of a split loop or scope. The join
condition is a Boolean valued expression defined on a BPEL activity. The
activity is executed once control flows to it from its parent activity, all of
its incoming links have fired, and its join condition evaluates to true.
(Section 4).

3. This work does not address BPEL scopes’ additional capabilities of having
event handlers or scoping variables. Only fault handling and
compensation handling capabilities of scopes are considered.

4. The loop condition in a split loop is the responsibility of exactly one
fragment, instead of having the coordinator evaluate it from a set of
variable values received from all or some of the fragments. In other words,
we do not support splitting loop conditions. (Section 5).

5. The immediate child activity of a split loop or scope is restricted to be a
<flow> activity; furthermore, this <flow> activity is disallowed from
having incoming or outgoing links crossing its own boundaries. Its only
purpose is to provide a container for the enclosed activities. Note that
loops and scopes in BPEL must have exactly one immediate child activity.

6. Compensation is a recovery mechanism, and thus must not fail.

3.2 Identifying fragments
The process fragments of one split process must work together. More
specifically, an instance of a fragment does not run in isolation. It must
interact with instances of the other fragments of the split process. There may
be several instances of each fragment running simultaneously. Therefore, one
must be able to distinguish them and run the correct set (one instance per
fragment) together. One way to address this problem natively in BPEL is to
use the language’s correlation mechanism.

In order to be able to correctly identify the instances of all the fragments of a
split process that belong to the same ‘run’ of the split process, we provide a
shared correlation set between all the fragments of the process. This is done
in the process definitions. The value of this correlation set will be set be the
message that creates an instance of a process fragment and will be used as
the instance identifier.

3.3 Adding Coordination Protocols for Split Scopes
Next, we present several requirements resulting from our coordination
approach to take into account the nature of the behaviour needed for splitting
scopes and loops. The following steps need to be taken for that purpose:

 Extend BPEL to denote a scope or loop as a fragment.

 Page 6 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

• Identifying the fragment enables one to signal to the BPEL engine
in which the process will run that this activity must be coordinated
and cannot be run as any other loop or scope.

 Provide interfaces for the participant and coordinator protocol services.
• WS-Coordination requires a WSDL interface for each.

 Adapt the BPEL engine so it may be controlled as the protocols dictate.
• The protocols require information from and need to be able to affect

the process instances. For example, upon reaching a split loop or
scope, the engine must wait for the remaining fragments of that loop
or scope to start. Upon completing it, it must wait for the others to
complete. Upon a fault being thrown in one fragment, the others
must be stopped. Therefore, one needs a mechanism by which to
control the running process based on messages from the
coordination protocol.

 Provide the coordinator with information about the process model.
• Each process fragment alone does not have enough information on

the entire split process. It sees only part of the picture: that in
which it is involved directly. For example, a fault handler may exist
in one fragment of scope but not on the other fragment of the same
scope. Such global information is placed, in our approach, in the
coordinator to enable decisions to be made where information is
needed about the process model that involves more than one
fragment.

 Provide the logic at the participant and coordinator sides to implement the
protocols.

• The WSDL interfaces for the protocol must be implemented so that
they send and receive the proper messages, as well as perform the
appropriate expected behaviour both in the process and in the
coordinator. For example, if one fragment of a split scope is ready to
start then the participant side of the protocol implementation must
send a starting message to the coordinator. Additionally, that scope
must be blocked and not allowed it to run any of its activities until
the coordinator sends it a start message. Furthermore, the
coordinator implementation will not send the start message unless
it has received starting from all fragments of this split scope.

3.3.1 The Rubber Band Effect
In BPEL, scopes and loops must be strictly nested. When split, this
restriction is kept. It results in a property we define as the ‘rubber-band’
effect. Note that a process itself is treated as a scope in BPEL.

 Page 7 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Corollary: If S is a split loop or scope, then all parent scopes of S (including
the process itself) are split scopes.

Particularly, if S has fragments in partner A and partner B, then all parent
scopes of S also have fragments in partner A and partner B. Consider a scope
S’ in a fault handler of scope S’’, where the immediate parent scope of S’ is not
in that fault handler. For the purposes of the rubber band effect, S’ is treated
as a child of S’’. Therefore, S’ cannot be split if S’’ is not split.

3.3.2 Deriving and Encoding Split Scope and Loop Relationships
The relationships between split scopes, their handlers, and their fragments,
as well as between split loops and their fragments can be represented by the
‘relationship tree’ defined below.

The relationship tree, RT=(Nrt , Ert), consists of a set of nodes Nrt and a set
of edges Ert. Nrt is divided into four pair wise disjoint sets, each containing a
different kind of node. These sets are Srt , Sns , Lrt , and .

 Srt , the set of split scope-nodes. Each scope node is a tuple
consisting of the name of the scope, a set Ms of names of faults that
the scope has handlers for, a Boolean stating whether or not this
scope is in the fault handler of its immediate parent scope, and a
Boolean stating whether or not this scope is in the compensation
handler of its immediate parent scope.

 (1)

 Sns, the set of non-split compensation-relevant scopes. A non-split
child scope node is only included in the tree if it or any of its nested
scopes have an explicit compensation handler. If not, then it does
not need to be coordinated and may safely be ignored.
Each such node, is a tuple consisting of the participant
name and a Boolean denoting whether it has an explicit
compensation handler. Such scopes are not participating in a
protocol instance themselves.

 (2)
 Lrt , the set of split loop-nodes. Each loop node, , is a tuple

consisting of the name of the loop and the name of the participant
responsible or the loop condition.

 (3)

 Frt , the set of fragment-nodes. A fragment node represents one
fragment of a split loop or scope. All fragment nodes are leaf nodes
in the relationship tree. Fragment nodes are of two kinds, in the
subsets of Frt such that:

 Page 8 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

 (4)

o , the set of loop fragments. Each loop fragment node,
 , is a tuple consisting of the name of the

participant the fragment is in (p_name), a Boolean
stating whether that fragment is responsible for
evaluating the condition of the loop, and the name of the
loop to identify the loop that this fragment is part of.

 (5)

o , the set of scope fragments. Each scope fragment-
node, is a tuple consisting of the name of the
participant the fragment is in, a set O of fault names that
this fragment of the scope (regardless of other fragments
of the same scope) has handlers for, and the name of the
scope to identify the scope that this fragment is a part of.
The fault names must be a subset of the set Ms of the
scope-node the fragment is part of. It also contains a
Boolean stating whether or not at least one fragment of
this scope has an explicitly defined compensation
handler.

 (6)

The tree contains three kinds of directed edges: . A, B, and C are pair
wise disjoint.

 A, the set of fragment-activity edges. Each fragment-activity edge,
a, connects either the fragments of a loop to its corresponding loop-
node, or the fragments of a scope to its corresponding scope-node.
Therefore, each fragment-activity edge is a tuple.

Clearly, the fragments of a scope are always ‘scope fragments’ and
the fragments of a loop are always ‘loop fragments’. Therefore,
scope fragments cannot be linked to a loop-node via a fragment-
activity edge and vice versa. We define A as:

 (7)

 B, the set of loop-scope edges. Each loop-scope edge, b, connects
loops to their parent scopes. Each loop node is connected to exactly
one scope-node with a loop-scope edge. Therefore,

 (8)

 C, the set of child-parent edges. An edge c in C directly represents
the nesting (child-parent) relations between scopes. Scopes in BPEL
are strictly nested, so each scope node has exactly one child-parent

 Page 9 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

edge to the scope node representing its immediately enclosing scope
in the process. Therefore, a scope-node is connected to other scope-
nodes by child-parent edges. A scope in a fault handler of another
scope is considered the latter’s child scope.

 (9)

The protocols are designed such that the nesting of loops within other loops is
not relevant. Therefore such nesting is not represented in the relationship
tree.

The relationship tree can be derived automatically from the set of process
definitions forming the split process, as long as scopes that are split are
identifiable as such, all fragments of the same split scope or loop have the
same name, and the nesting relationships are valid across the process
fragments. In other words, consider that a scope fragment s’ is a child scope
of scope fragment s in one process fragment. Then, all other fragments s’
must be children of all other fragments s across the processes.

It is of interest to note that if one were to support default compensation, the
coordinator would be also be provided with a set of graphs encoding default
compensation order.

3.4 Deployment
This section addresses the two parts needed to set up the connections
between the processes and the coordinator: deployment and registration. As
described at the end of section 2, no Activation Service is used for these
protocols.

Deployment: The deployment descriptor provided in [4] for every split process
is extended if it includes split scopes and/or loops, to also provide the
endpoints of a default starter service for each participant. This service,
detailed in section 6.2, is used to enable the coordinator to start process
instances. The deployment descriptor also provides the address of the
registration service of the coordinator so that the first process fragment to
start an instance can go register for the split scope protocol. This address
includes the name of the overall split process (as a WS-Addressing [1]
reference property), needed in order for the coordinator to find the proper
information related to this split process, such as the correct relationship tree,
once a process registers.

Before being able to run the protocol for split scopes the coordinator must be
aware of the relationship tree for the process model containing the split
scope. We recommend passing this information as part of deployment of the
process model.

 Page 10 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Registration: WS-Coordination’s Registration Service is in charge of
establishing a connection between the environments hosting the various
fragments. This connection is established based on “protocol handlers” being
able to receive and process the corresponding protocol messages. When
registering for a protocol, participants must provide a WS-Coordination
protocol identifier identifying the protocol a participant will respect, and an
address for the protocol handler of that participant. We define one identifier
for the scope protocol and another for the loop protocol.

Three more pieces of information are needed to set up the connections: The
coordinator needs to know the scope/loop name so it can determine which
split activity this registration is for, the name of the participant for which
this registration is for so it can determine which fragment is registering and
match that to the information in its relationship tree, and an identifier to
identify the instance of the coordinated work (the value of the common
correlation set) so it can coordinate the correct instances of those fragments
of the split activity. Therefore, we use WS-Coordination’s built-in extension
mechanism to extend the <wscoord:Register> element so that it includes this
information.

When a scope fragment begins, it sends to the registration service a
registration message that also includes the address of the participant
protocol handler for that particular scope instance. In return, the coordinator
sends a registration response containing the address of the coordinator
protocol handler that will receive all messages for that particular scope or
loop instance from that particular participant.

The pieces of data identified above are used by the coordinator and the
participants to generate the specific addresses for specific instances of each
coordinator protocol instance and participant protocol instance. How they
generate these addresses is implementation dependent: the WS-Coordination
contract is just that if the exchanged addresses are used, the messages will
be handled by the right protocol instance. We recommend using WS-
Addressing [1] reference properties to encode information about which
particular scope instance at hand. These properties can directly be the data
items we have highlighted above (scope name, etc) or middleware generated
ones (workflow engine created process instance ID, etc).

Traditionally, the identifier of a specific instance of coordinated work (i.e.:
transaction id) is flowed in the coordination context after calling the
activation service. For the problem specifically at hand in this work, using
the activation service is superfluous so the instance identifier is placed in the
registration message.

 Page 11 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

4. Join Failures
Recall that a split loop or scope may have a join condition. In BPEL, if a join
condition evaluates to false, then the activity throws a fault known as ‘join
failure’. This fault may be suppressed using the attribute
‘suppressJoinFailure=”yes | no”’. Suppressing it is equivalent to surrounding
the activity with a scope that has an empty fault handler for this particular
fault. However, an implementation is not forced to create an actual scope,
and in BPEL 2.0 [5] it was shown that if done in this manner there may be
interference in the order of compensation (if present).

In this paper, we support splitting loops and scopes. Therefore, a split activity
that will be skipped can only be skipped if it fires a join failure or it if is in a
scope that is faulting. Handling join failures and faults properly are then all
that is needed to ensure that a fragment does not hang if it is known that a
sister fragment in another participant will never be executed.

As expressed in section 3.1, the join condition of the split activity is restricted
to be the conjunction of the local join conditions at each fragment. In order to
handle coordinating join failures on split loops scopes, we place messages in
both protocols as follows: A participant whose fragment is ready to start
without a join failure sends starting. On the other hand, a participant that
encounters a join failure upon reaching a fragment of a scope or loop sends a
join failure message to the coordinator. The coordinator waits for all
fragments of the loop/scope to be ready (send starting/join failure), and if any
had sent join failure, the coordinator sends a complete after fault message to
all the fragments and the protocol ends in the ‘dead path’ state.

The restriction that the join condition is the conjunction of the local join
conditions could be eased without loss of generality by providing the
coordinator with the join condition definition, sending the status of the
incoming links with the starting message from each fragment, and evaluating
the condition at the coordinator side. However, this option was not chosen
because although it is less restrictive, it obscures the behaviour of the
fragments by placing an important piece of the business logic in the
coordinator.

An alternative option for dealing with the join condition is to remove the
messages dealing with join failure and the dead path state from the protocols,
and instead modify the processes: inject a scope with an empty join failure
handler around the split activity and change its ‘suppressJoinFailure’
attribute value to ‘no’. The new scope itself will be split due to the rubber
band effect but will never throw a join failure because it will have no links at
its own boundaries. A local BPEL join failure fault, (thrown if the join

 Page 12 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

condition on a fragment evaluates to false) at the scope fragment level is thus
treated as any other fault. It occurs in the parent scope, which must also be
split by the rubber-band rule, and will be thrown and handled as any other.
However, this forces an additional scope protocol instance for each split scope
or loop. Instead, we manage to achieve the same behaviour by placing
messages to deal with the join failure in the loops and scope protocols
directly.

5. The Split Loop Protocol
We choose to have exactly one fragment be responsible for the loop condition.
This can be specified in one of several ways: using an attribute on the split
loop (isResponsible=”yes|no”), making the condition itself opaque, or by
referring to a ‘magic variable’, on each ‘non responsible’ fragment, that gets
populated through a message from the coordinator with the value of the loop
condition upon its evaluation. An implementation can choose to take any
such approach for a split process.

Figure 1: Participant Coordinator Messages, loop.

Figure 1 shows the behaviour of the protocol between a loop fragment and a
coordinator for coordinating a split loop. Figure 2 shows the behaviour of the
coordinator coordinating all fragments of that loop. Notice that any fragment
can be the first to start, but the entire loop is only allowed to start once all
fragments are ready. The same occurs for completion and iteration.

5.1 Participant-coordinator messages
The protocol takes place between each instance of a fragment of a loop and
the coordinator. The coordinator gets a message that a loop is starting and
containing the value of the while condition at that fragment. If the fragment
is not the one responsible for the condition, then that value is omitted. The
coordinator eventually sends back either a complete message if the loop
condition is false or a start message so that the participant actually starts
running its piece of the loop. Once the participant completes an iteration, it
sends a completing message that again contains the value of the loop
condition.

 Page 13 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

The coordinator then sends either continue if the loop condition is true or
complete if the loop condition is false. The participant will then start a second
iteration in the former case or navigate out of the loop in the latter case.

5.2 Participant behavior
The behaviour necessary on the participant side involves being able to listen,
react to, and influence the process instance’s behaviour. The participant side
needs to be able to know when a loop fragment has started or had a join
failure and to block the activity when this occurs. In needs to be able to
unblock the fragment and let it either iterate or complete based on messages
from the coordinator, regardless of the value of the local loop condition if the
fragment is not responsible for the condition.

5.3 Coordinator behavior
Having explained the coordination messages between a fragment and the
coordinator, we now look at the behaviour of the coordinator in coordinating
all fragments of one loop for one instance of that loop.

Figure 2: Coordinator Behavior, loop.

First, the coordinator waits for all instances of the loop to send starting,
signalling that they have been reached in the control flow and are ready to
run. The starting message contains the value of the loop condition from the
responsible fragment. Based on this value, the coordinator then sends either
complete or start to all fragments of the loop. Once start is received by a
fragment, it starts running the body of the loop. Once it completes its work
for one iteration, it sends completing. If it is the fragment responsible for the
loop condition, then the completing message also contains the result of
evaluating the condition. Then, the coordinator waits for all fragments to
send completing and sends either continue if the loop condition is true or
complete if it is false. If continue is sent, each fragment runs another
iteration, otherwise it just completes and its process continues navigation out
of the loop.

 Page 14 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

6. The Split Scope Protocol
In order to understand how to fragment a scope, one must understand how a
BPEL scope behaves. In BPEL, a scope is a compound activity. It may be the
source and/or target of control links. The behaviours that we are concerned of
a scope are that it can define fault and compensation handlers for the
activities nested within it. A fault handler consists of a part of a process that
runs if a particular fault occurs. A compensation handler consists of a part of
a process that provides an ‘undo’ action that can be called on a completed
scope. The two are tightly related.

If an activity in a scope fails, all activities in that scope are terminated and a
search for a fault handler is performed. If one is found on the parent scope of
the faulting activity, then that handler runs next. If not, the search goes up
the scope hierarchy until it does find a handler and execution continues
there. A scope that faulted and did not have a corresponding handler fires all
its outgoing links with a negative value. A scope that completed successfully
or that successfully completed one of its fault handlers fires can then fire its
outgoing links normally.

A fault handler may compensate one or more of the immediate children of the
scope it is defined on. It may do so explicitly using the <compensate
name=”…”/> activity (renamed ‘compensateScope’ in BPEL 2.0). This activity
may only appear inside a compensation handler or a fault handler.

In this paper, we handle compensation only for this explicit case in which the
name of the scope to be compensated is provided and where the named scope
must have an explicit compensation handler defined. The scope on which the
compensation handler is defined may be split, the compensation handler
itself may be split, and the scope in which the compensate activity is defined
may be split (even if the named scope is not). Note that BPEL also defines
default compensation that takes place due to either the <compensate/>
activity (with no scope name in BPEL 1.1) or due to default fault and
termination handling.

Default fault handling in BPEL is supposed to not only terminate the
children but also compensate any completed children in ‘default
compensation order’ and then rethrow the fault. Termination (also known as
handling of the enclosing scope fault) in BPEL occurs in a running scope
when its parent is exiting due a fault. The default behaviour is defined to
trigger default compensation on any completed children.

 Page 15 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Although the protocol shown in this paper was designed to handle default as
well as explicit compensation, we believe the default aspect is too complex for
the goals of this paper. Therefore, we will not at this time discuss the details
of compensation that results from: default termination, default fault
handling, and default compensation handling.

6.1 Data in split scope handlers
As mentioned earlier, this work focuses on sharing data that is necessary for
the coordination of control and lifecycle for split loops and scopes.

Data provided with a fault in BPEL may be needed by a fault handler. For
example, a ‘throw’ activity may have a variable attribute which requires that
the value of that attribute reach the fault handler. Therefore, we send any
data provided with the fault to the coordinator. The coordinator then sends it
to all fragments that have a corresponding fault handler. A fault handler at a
fragment that has a ‘faultVariable’ attribute will then save this message in
this variable. For example, the value of variable ‘x’ is saved in variable ‘y’ if
the fault was caused by a <throw faultName=”ns:flt” variable=”x”/> and
caught by a <catch faultName=”ns:flt” faultVariable=”y”>…</catch>.

As in BPEL 1.1, activities in a compensation handler can read data from
variables in their own fragment based on the snapshot of the process state
upon completion, and any data they write occurs on that snapshot and is not
visible to any activities outside the handler. Again, sharing data between
fragments, even for the compensation handler, is the responsibility of the
splitting algorithm and not of the coordination work.

6.2 Effects on process instance creation
Special care must be taken in starting the fragments of the process itself (as
opposed to those of loops and nested scopes). Unlike in the case of loops where
one could simply wait for the other fragments to be started, the process
fragments themselves may start very far apart in time (depending on when
the message that can create an instance is received at each). For the case of
process fragments that include protocol-driven split loops and scopes all
fragments must be notified in case one of them fails, for both runtime (if
another fragment has the necessary fault handler) and auditing purposes.
Here, one cannot simply wait for all other process instances to start,
especially since the start message of one fragment may come from another
fragment.

The coordinator needs to start all process instances once it is known that at
least one has started. This is enabled in this work by using a ‘starter service’
that can create an instance of the process upon receiving a startInstance

 Page 16 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

message containing the correlation set value. In order to deal with a possible
race condition, we place the requirement that the coordinator must ignore
duplicate registration messages and the participant must ignore a
startInstance if an instance with the same correlation set value already
exists.

Starting an instance in this manner will result in all fragments of the process
registering, starting, and being in the active state once one of them starts. It
will not cause activities to occur out of order because in BPEL the first
activities to occur are the ‘create instance receives’. Receive is a blocking
activity in BPEL, so these instance creating receives will block and wait for
the actual external messages before allowing work in the body of the process
to execute. Furthermore, since the split process was the result of splitting a
larger BPEL process then starting all fragments at the same time is
equivalent to having created one instance of the larger process.

6.3 Participant-coordinator messages
The messages between the coordinator and the participant for coordinating a
fault are shown in Figure 3. Just as in the case of loops, one must also wait in
this case for all fragments to start before allowing any particular one to
actually begin executing its nested activities. The completion of the scopes is
synchronized, also similar to the case of split loops. A BPEL scope, however,
may complete either through having run its activities successfully, or through
having run one of its fault handlers successfully. The two cases both lead to
the scope having completed and its outgoing links being fired normally.
However, in the latter case, the completion is considered abnormal and the
engine needs to distinguish between the two especially if compensation is
also involved. The result is that the fault handling protocol propagates a fault
from one fragment to all other fragments of the scope that can handle it, and
synchronizes the completion of the (split) fault handler.

For this protocol, all messages that start with fault include the fault QName
and a fault variable value. All messages that are related to compensating a
particular scope include the name of that scope.

Consider first the process fragments. Such a fragment will either start
normally or be started by the coordinator. In the first case, it sends starting.
In the second case, the coordinator sends a startInstance message containing
the values of the correlation set to the fragment’s ‘starter service’ as provided
in the deployment information. This message is not part of the protocol, as is
seen from the fact that it is not targeted at the participant service but at our
new ‘starter service’.

 Page 17 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

As each fragment creates its process instance, the process-level scope will
send a registration message to the coordinator and everything continues as
for any other (non-process) scope.

Figure 3: Participant Coordinator messages, scope.

A non-process scope sends starting when it is reached by navigation. After all
fragments of a scope have started, the coordinator sends a start message to
that fragment allowing it to actually start. A fragment stays in the active
state while running its nested activities and no fault has occurred anywhere
within the split scope. In the normal case, the next step would be to complete
as was done in the case of loops (from active, to completing, to completed
state).

In the case of a process-level scope fragment, the participant may get a
fault+exit message from all states in which a fault may have been thrown:
‘active’, ‘fault handling’, and ‘fault-end’. This occurs in case a fault has been
encountered elsewhere and cannot be handled by any scope up to and
including the level of the process itself. In other words, if the scope lookup
algorithm in section 6.6 does not find a scope. This message cannot appear in
the protocol of a scope that is not a fragment of the process-level scope.

Another step out of either the ‘active’ state occurs if another fragment
faulted, and the scope of this fragment has a handler for the fault, then the
coordinator would send a fault w/ handler message. If another fragment
faulted and other fragments have handlers but not this one, then a fault

 Page 18 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

message is sent. If a fault is thrown and there are no handlers in any
fragments of this scope, the coordinator will throw the fault to a parent
scope’s protocol. That is why the protocol does not deal directly with this case.

From the ‘active’ state the participant may also itself encounter fault. In this
case, it sends a faulted message if it faulted and has no handler for the fault,
or a faulted w/ handler message if it faulted and has a handler for that fault
on the fragment itself. It then waits for the coordinator to confirm that it
should run the handler (run handler message). As we are not dealing with
default compensation at this time, we will ignore the other transitions out of
the ‘terminating’ state.

After receiving either a run handler message, the participant runs the
corresponding handler. The handler itself then either completes (f_handler
completed) or faults. If the handler completes, then the coordinator waits for
any other fragments of that handler to complete and then sends a complete
after fault message.

Otherwise, if the handler faults, the participant sends a fault in handler
message that is used by the coordinator to lookup an appropriate handler
using the algorithm in section 6.6.

Next, we focus on compensation. The fault handler may have a <compensate
scope=”…”/> activity in one of its fragments. If this activity is reached, it
sends the coordinator the request to perform this compensation work
(compensate child or compensate non-split child). The target scope may be
split, or may be non-split but in another fragment. The coordinator will
request the compensation handler of the named scope and notify the
participant once the compensation has completed (child compensation
handler completed).

The scope to be compensated may be non-split and in a fragment that does
not have part of the fault handler. This fragment will be in the ‘fault-end’
state when the request to compensate arrives at the coordinator. Therefore, it
can accept requests to compensate non-split children while in this state.

Notice that the protocol also has a set of transitions and states that are
present to enable the coordinator to request that a fragment run the
compensation handler of a non-split child scope. These will only be the non-
split child scopes that are relevant to the compensation order and therefore
present in the scope tree. The protocol shows three states labelled
‘compensating non-split child’ that are there for this specific case. If the child
to be compensated is not in the completed state, then the engine is to treat

 Page 19 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

this request as a no-op and send back immediately the compensation handler
completed message.

A scope can only be compensated after it has completed, so the states for
running the compensation handler of a split scope follow after the completed
state. Split scopes can only be compensated through a command from the
coordinator, as will be details in section 6.4. Therefore, the compensate
message comes from the coordinator and sends the protocol from the state
completed to the state compensating.

The coordinator sends compensate to all fragments of a split scope that it
intends to compensate, whether that fragment has a handler or not. Any
scope fragment with all or part of the compensation handler sends
compensation handler completed upon completing the work in its part of the
handler. Once the coordinator hears back from all fragments that have part
of the compensation handler, it notifies all the scope’s fragments that
compensation has completed by sending the finalize scope message.

Finally, there are several states that are there to deal with default
compensation.

6.3.1 Dealing with Race Conditions
Race conditions are introduced where one has a state with transitions that
can be initiated either by the participant or by the coordinator. Looking
closely at the protocol one can notice possible race conditions in the ‘active’
and ‘fault handling’ states.

For the ‘active’ state, there is a race between faults happening in different
fragments, and a race between the participant wanting to complete and the
coordinator trying to send it a fault. The former race already exists in BPEL,
where faults may occur in parallel branches at nearly the same time. Only
one fault is dealt with, the first one to reach the scope. Here, that will be the
first one to reach the coordinator.

To ensure this, we place the rule that, for the ‘active’ state, the coordinator
messages win over the participant messages. Therefore, if the coordinator has
sent out a fault, fault w/handler, or fault+exit message, then completing,
faulted or faulted w/ handler from the participant are ignored. The case of
completing is especially relevant since the coordinator may in fact have
received it but still decided to send a fault message because another fragment
had faulted. Furthermore, notice that a fragment cannot start its handler
even if the fault came from it and it has a handler. It needs to wait for the
coordinator to send run handler. The reason is that if the participant could

 Page 20 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

immediately start its handler and there was in fact a race, then it could start
a handler for a different fault than the coordinator has deemed the winner.

For a race between handler completed and fault in handler and the fault+exit
messages, fault+exit wins. Therefore, the coordinator behaviour will ignore
the handler completed or fault in handler message if it has already sent a
fault+exit. Then, the race is not a problem because it only occurs for the
process level scope with the fault+exit message. If this message comes late,
then it can still be accepted by the protocol because it can also occur in the
next state and also leads to ‘aborted’.

Next, we address races between compensation related messages: those that
lead to and from any of the states: compensating, compensating non-split
child, compensating child, or performing compensate. These messages must
not be dropped. Any of the compensation related messages that create a race
must be queued and handled, unlike in the case of fault handling where one
wins over the other. For example, if a fault handling fragment sends the
coordinator a request to compensate a nested scope A and the coordinator
sends it a request to compensate its nested non-split scope B, then fragment
will queue the coordinator’s request and handle it once it goes back to the
state ‘fault handling’.

In case of a race condition, fault related messages win over any compensation
related messages.

6.4 Participant Behavior
Here as well, the participant side needs to be able to react to and affect the
process instance’s behaviour. It needs to be able to detect the scope fragment
starting or encountering a join failure and then block it until it receives the
start message. It needs to detect a fault and override local fault handling
behaviour as will be described in the next section. It needs to be able to
produce a fault in a process instance even if that fault did not originate in
that fragment at all.

Finally, it needs to be able to completely disable default compensation
handling on split scopes, whether triggered by fault or termination (enclosing
scope fault) handling. Compensation for split scopes can only be triggered
from the coordinator. The engine can only start an explicit compensation
handler of a split scope and can only do so upon receiving a request from the
coordinator.

This section is only concerned with non-split scopes that belong to the scope
relationship tree. The default fault handler for the ‘enclosing scope fault’ (or

 Page 21 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

in BPEL 2.0, the default ‘termination handler’) of a non-split scope is left
intact and without interference. Unhandled faults that arise from non-split
scopes will reach a split scope and be handled as any other fault in the
fragment.

The BPEL engine running a scope fragment may also only start the explicit
compensation handler of a (relevant) non-split scope upon request from the
coordinator. Both the engine (due to a compensate activity in the non-split
scope’s handler or due to termination) and the coordinator (if the non-split
scope is to be compensated and has no explicit handler)are allowed to trigger
the default compensation handler of these non-split scopes.

Recall that a request from the coordinator to compensate a non-split scope
that has not completed must be treated by the engine as a no-op resulting in
an immediate compensation handler completed message. Additionally, if the
non-split scope is nested in a (split or non split) loop, the engine must
determine whether it needs to compensate more than one instance of the non-
split scope and the coordinator is not involved beyond triggering the
compensation and being notified of its completion (all instances of a group, if
applicable). In other words, the engine must treat a single request to
compensate such a scope by name as if it had come from the instance itself.

6.5 Coordinator Behavior
Having described the fragment/coordinator messages, we now describe the
corresponding behaviour of the coordinator when running an entire split
scope; that is, when interacting with all of its fragments from start to finish.
Figure 4 illustrates the behaviour of the coordinator.

The coordinator uses the relationship tree for identifying when all
participants for a particular scope have registered, to search for handlers,
and to relate endpoints to participant names. Words in italic correspond to
signals of the protocol itself. Unless noted otherwise, a ‘send’ state sends to
all fragments of this scope. Conditions on a transition are either local or they
are signals received from participants (italics). The grey state and the
underlined transition out of the active state are highlighted because they
form the communication between several coordinator side scope behaviours.
The protocol can be aborted at any time by a parent scope’s protocol, hence
the ‘aborted’ state on its own in the corner. Transitions were not drawn to it
from every state as not to clutter the figure.

The states that deal with default compensation are the three states labelled
‘compensation due to termination/rethrow’ and the two states labelled
‘default compensation on children’. Suffice it to say that for the latter two
states, the compensation handlers of child scopes will be requested to run in

 Page 22 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

the order specified by a ‘default compensation order graphs’ that resides in
the coordinator. For the former three, a complex interleaving of default
compensation handling deep into the scope tree will take place due to the
compensation order resulting from mixing compensation resulting from
default termination with that resulting from default fault handling as the
fault gets rethrown up the scope hierarchy.

Now, we take a closer look at the protocol. First, if a fragment is the process
itself then one starts with the ‘startInstance’ message that will cause all
fragments to create an instance and register if they have not already done so.
Then, registration (not shown in the figure) takes place for the rest of the
fragments and the protocol itself can begin. The behaviour for any scope is
that the fragments send starting and the coordinator waits for all fragments
to send this message before it sends start.

Figure 4: Coordinator Behavior, scope.

A fault from a fragment (faulted/faulted w/ handler) causes the coordinator to
search the scope tree for a handler using the algorithm described in section
 6.6. If the search does not yield a scope, then fault followed by fault+exit is
sent to the fragments of the process level scope. Otherwise, if the handler is
on the scope that faulted (in any of its fragments), then the same fault is

 Page 23 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

thrown by the coordinator to those fragments so they can handle the fault
locally. If the message had been faulted with handler, then the coordinator
sends run handler to that fragment, fault to any other fragments of the scope
that have no handlers for the fault, and fault w/ handler to any other
fragments that have a handler. As we are not dealing with default
compensation, we will skip over the terminating state and so for this last case
the coordinator will then also send run handler.

The previous chapter already mentioned how race conditions are dealt with
in case of secondary faults from fragments.

If the handler is in a parent scope, then the coordinator will send a local fault
signal (grey state) to the coordinator behaviour of the scope that has the
handler. This signal appears in a scope’s coordinator behaviour as the
underlined transition out of the ‘active’ state. It will in turn abort all nested
scope behaviours, and then send a message to the participants causing the
fault to appear in all the fragments of the handling scope. At each fragment,
such a fault will abort nested scopes as is normal BPEL fault behaviour. In
this way, both the participant and coordinator sides of the nested protocols
are stopped for all fragments without needing to send protocol abort
messages to all. Default compensation may take place at this point as part of
termination and of having caught the fault possibly several scopes higher
than where it had been thrown. Next, the fault will kick off the fault handler
fragments, and the protocol continues as shown.

If the fault cannot be handled by any scope, then fault followed by fault+exit
are sent to the process-level fragment ending the instance in every process
fragment.

The result is an interleaving of local BPEL behaviour and coordinated BPEL
inspired behaviour (fault handler lookup, etc) to achieve the execution of
cross-process fault handling scopes.

The search for handlers occurs in the coordinator using the knowledge of
which scope the fault was caused in, the relationship tree, and the algorithm
for finding a fault handler presented in section 6.6. Note that this means that
the fault and fault w/ handler messages are only propagated from the
coordinator to a scope that has a handler for the fault (regardless of which
fragment(s) the handler(s) are in) or to the process itself.

Next we focus on compensation. A compensate request from a fragment can
only occur while a scope is running a fault or compensation handler.

 Page 24 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Consider the case that the scope to be compensated is not split. In this case,
its parent must be split if the request to compensate has gone through the
coordinator. The coordinator sends a message to request its compensation
through its parent scope’s protocol. As noted in the previous section, the
participant side will send the child compensation handler completed message
either if the scope is not in the completed state or once it has completed the
handler otherwise.

Now consider the case that the scope to be compensated is split. If this scope
has not completed successfully, the coordinator will immediately return that
the compensation has finished without doing any work (no-op). If this scope
has completed successfully and also has an explicitly defined compensation
handler, then the coordinator will send a request to each fragment of that
scope asking it to compensate. Once all fragments of the compensation
handler have completed, the compensation due to the <compensate
scope=”..”> activity is considered completed.

If this scope has completed but has no explicit handler, then default
compensation would occur (details are out of scope).

Scopes nested in loops may need to be compensated more than once. We
handle this as follows. For every instance of a protocol of a split scope, the
coordinator keeps one LIFO queue for every immediate split child scope that
is not in the parents compensation or fault handlers and that has an explicit
compensation handler. This queue contains the identifiers of all instances, in
order of activation, of the child scope’s protocol that ran after the protocol
instance of the parent started and before the latter reached the completed or
fault handling states. The protocol instances in each queue form what in
BPEL 2.0 is known as a ‘compensation instance group’ for non-default
compensation. Once a split child scope is requested to be compensated, the
coordinator will run the compensation handler of each of these instances (if
completed) based on the order specified by the queue. As a result, if the child
scope had been nested in (one or more) loops, we would compensate it as
many times as the loop(s) had run. On the other hand, if a non-split scope is
nested in one ore more loops, then it is up to the process engine in which that
scope is running to track and compensate multiple instances of the non-split
scope if the coordinator requests that the scope be explicitly compensated.
Note that the behavior of compensation instance groups for default
compensation is more complex, requiring the coordinator to keep track of
looping in the default compensation graph.

Finally, we also require that messages arriving at a scope whose protocol has
been aborted at the coordinator side are ignored. This may occur if the
message arrives between when the coordinator aborted it and when the

 Page 25 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

coordinator sends a fault to it or its parent scope causing the participant to
locally abort as well.

6.6 Searching for the fault handler
Consider the relationship tree define in section 3.3.2. In this section, we
present the algorithm used to detect the scope that will be responsible for
handling a particular fault.

The coordinator is informed upon the occurrence of a fault and needs to look
for a handler when the participant sends either a faulted or a fault in handler
message.

Let the scope node in the scope relationship tree corresponding to the split
scope that receives the fault message be . Let be the BPEL scope
where the search is to start, n be the fault name contained in the message
from the participant, and h be a Boolean that is true if the message received
was fault in handler and false if the message was faulted.

We use ‘ ’ to denote undefined. The root scope is the only scope for which
there is no edge in the set of cp-edges whose first element is this scope.
Consider sr to denote the root scope. First, we define a function called parent
that retrieves the immediate parent of a given scope using the scope tree:

 (10)

Notice that sr is the only scope where .

Recall that in BPEL, if a fault occurred in a fault handler and is not caught
within that handler, then the search really starts in the parent of the scope in
which the fault occurred. Therefore, is defined as:

(11)

We define the following function, taking the name of a fault and a split scope
node as input, to check whether a particular scope has a handler for the fault:

(12)

Recall that one must skip the parent scope when a fault is crossing a fault
handler boundary. In order to perform the skip, we check the Boolean in each
scope node that specifies whether this scope is top level in a fault handler.
The following function is then used to retrieve the scope that can handle the

 Page 26 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

fault. We use ()i xπ to represent the i-th projection map on x. For example,
1 1 2((,))s s s1π = .

(13)

We define a function y that takes the name of the fault and the scope where
the search must begin and returns either the fault handling scope or
undefined if none is found. It is defined as follows:

(14)

Finally, the scope that can handle the fault is found as follows. The message
provides both h and n and is addressed to the protocol of . At the
coordinator, Equation 11 is used to retrieve from these values and the
scope tree. Finally, the fault handling scope is retrieved using .

6.7 Relation to the Loop Protocol
Upon receiving a fault, a participant and the coordinator itself must abort all
nested loop protocols. The nested loops are known from the relationship tree
at the coordinator side. At the participant side, the nested loops are known
from the process definition.
For non-default compensation, the loop protocol is related only in so far as
that it enables the coordinator to keep track of compensation instance groups
of split scopes nested in split loops, as described in section 6.5.

7. Conclusion
In this paper, we have shown how one can define split loops and scopes that
encompass activities from multiple BPEL business processes. We highlighted
the main problems like fragment identification, instance matching, and race
conditions. We argued that using coordination is a natural way to solve this
problem, and provided a particular solution using new WS-Coordination
protocols for coordinating the fragments of such split scopes.

We limited the compensation handling explanation in this work to only the
explicit case, leaving the details of default compensation handling for a
separate paper. This is due to the complexity involved in the work that needs
to be done on the coordinator side for calculating compensation order and
performing the combined default fault and termination handling.

 Page 27 of 28

Report 2007/1 Institute of Architecture of Application Systems (IAAS)

Acknowledgements
We gratefully acknowledge the input of: Oliver Kopp for a detailed review of a
previous draft; Thomas Mikalsen and Dimka Karastayanova for feedback on
early ideas; Michael Paluszek for working on an implementation of this
approach.

References
[1] Box, D. and Curbera, F. (Eds). Web Services Addressing (WS-Addressing). Published online at

http://www.ibm.com/developerworks/library/ws-add, 2004
[2] Cabrera, L. F. et al (ed.) Web Services Coordination (WS-Coordination). Online at

ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf, Aug 2005.
[3] Curbera, F., Goland, Y., and Klein, J., and Leymann, F., Roller, D. and Thatte, S., Weerawarana,

S. Business Process Execution Language for Web Service v1.1, Online at
http://www.ibm.com/developerworks/library/ws-bpel, May 2003.

[4] Khalaf, R. and Leymann, F. Role-based Decomposition of Business Processes using BPEL, Proc. of
ICWS 2006, Industry Track, Chicago, USA, September 2006.

[5] OASIS WSBPEL Technical Commitee, Web Services Business Process Execution Language
Version 2.0, Committee Specification, January 2007. Published online at http://docs.oasis-
open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

 Page 28 of 28

	1. Introduction
	2. Background: WS-Coordination
	3. Scope and Loop Fragments
	3.1 Summary of Restrictions
	3.2 Identifying fragments
	3.3 Adding Coordination Protocols for Split Scopes
	3.3.1 The Rubber Band Effect
	3.3.2 Deriving and Encoding Split Scope and Loop Relationships

	3.4 Deployment
	4. Join Failures
	5. The Split Loop Protocol
	5.1 Participant-coordinator messages
	5.2 Participant behavior
	5.3 Coordinator behavior

	6. The Split Scope Protocol
	6.1 Data in split scope handlers
	6.2 Effects on process instance creation
	6.3 Participant-coordinator messages
	6.3.1 Dealing with Race Conditions

	6.4 Participant Behavior
	6.5 Coordinator Behavior
	6.6 Searching for the fault handler
	6.7 Relation to the Loop Protocol

	7. Conclusion
	Acknowledgements
	References

