

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

Reaching Definitions Analysis Respecting
Dead Path Elimination Semantics in

BPEL Processes

Oliver Kopp, Rania Khalaf,
Frank Leymann

Report 2007/04
November 2007

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

CR: F.3.2, H.4.1

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 2

1 Introduction

The Business Process Execution Language for Web Services (BPEL) is a workflow
language geared towards Service Oriented Computing. BPEL provides basic workflow
capabilities, such as the ability to impose control on a set of activities via explicit links, as
well as advanced features such as recovery and event handling. The area of workflow often
requires understanding the data dependencies as well as the control dependencies between
activities. This aids in business process design as well as in analysis and rengineering.
BPEL, however, uses shared variables to model data. Activities read and write data to
these variables, i.e. there is no explicit data link construct. In order to draw out the flow
of data between the activities of a BPEL process, one must therefore perform data-flow
analysis on that process.

To address this problem, we present an algorithm that statically determines such data
dependencies. “Statically” means, that we do not determine the dependencies per process
instance at runtime, but on the process model without creating any instances. Mainstream
data-flow analysis techniques are presented in [ALSU06,Muc97,NNH04]. However, these
techniques cannot be directly applied to a BPEL process, since BPEL supports both
parallelism and dead path elimination (DPE, [CDG+03,OAS07,CKLW03,BK05,LR00]).
DPE is a technique used in BPEL to propagate activity disablement down paths that
can no longer be executed. The algorithm in this paper consists of reaching definitions
analysis dealing with DPE, enabling it to reduce the number of data dependencies when
compared to approaches not dealing with DPE.

While there may be many varied and additional uses of the presented data-flow
analysis, our main motivation for creating a data-flow analysis algorithm for BPEL was
a need to provide results that enable splitting BPEL processes based on business need:
A user assigns the activities of a business process to different partners and the result is a
set of BPEL processes, one for each partner, such that the operational semantics of the
unsplit process are maintained. The splitting of BPEL processes was introduced in [KL06].
In that work, data dependencies were dealt with by using an extension of BPEL, known
as BPEL-D, which enables a user to define explicit data links instead of BPEL’s shared
variables. Data links are based on def-use edges (also known as writer-reader-relations),
but also have runtime semantics. However, when splitting a standard BPEL process,
instead of a BPEL-D process, the results of a BPEL-based data-flow analysis algorithm
are needed.

We extended the work of [KL06] in [KKL07] to split standard BPEL processes. One
of the inputs to the splitting algorithm was a generic result that could be achieved from
an arbitrary data-flow analysis algorithm. Data-flow analysis algorithms are selected
based on the problem space one is trying to address. In our case, the focus is on using
the results in order to exchange the data between fragments of the process after it has
been partitioned by a process designer. A data dependency between two activities in
different fragments will be roughly translated into a message sent from one fragment to
another. Therefore, it is important to return as few data dependencies as possible in

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 3

order to minimize the communication overhead between the partners. Our work here
relates to [KKL07] in that it provides one specific data-flow analysis algorithm that
reduces the number of data dependencies due to its handling of DPE.

The splitting algorithms, defined across [KL06], [KKL07] [KL07], place a set of
restrictions on BPEL. These restrictions are therefore also used in this work. The
restrictions are:

• Flow, scope, and while activities are the only structured activities.

• Dead path elimination is always activated.

• Writers may not write in parallel to a reader of a variable. This is ensured, if the
Bernstein Criterion holds for the BPEL process [LA94].

• Event handlers are disallowed.

• Termination handlers are disallowed.

• Fault handlers get their data from the coordinator (cf. [KL07]).

• Compensation handlers have BPEL 1.1 [CDG+03] semantics: The compensation
handler takes a snapshot of the scope as soon as the compensation handler gets
installed, which is when the scope completes.

In section 2 we present the challenges of DPE for data-flow analysis and in section 3, the
state of the art in the field of data-flow analysis on BPEL processes. Afterwards, we present
a reaching definitions analysis algorithm for BPEL 1.1 [CDG+03] and BPEL 2.0 [OAS07]
processes following the restrictions listed above and returning less data dependencies
than existing algorithms (Section 4). Appendix A presents an example process and shows
the results of the reaching definitions analysis. Section 5 shows the algorithms needed to
construct the input format for the algorithm presented in [KKL07]. Finally, section 6
provides a summary of the key contributions of the presented algorithm and gives an
outlook on future work.

2 The Challenges of DPE for Data-flow Analysis

In order to address data-flow analysis in BPEL, we present a short summary of the
behavior of its links and activities focusing on processes where ‘suppressJoinFailure’ is set
to ‘yes’, thus enabling dead path elimination. Each BPEL activity may have incoming
and/or outgoing links, with each link associated with a ‘transitionCondition’. A BPEL
join condition is a Boolean function over the status of the incoming links of an activity.
Once every incoming link has fired, the join condition is evaluated. If the join condition
evaluates to true, the activity is executed, and if executed successfully, the transition
conditions of the outgoing links are evaluated. If the join condition evaluates to false,

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 4

the activity is disabled (not executed) and the status of its outgoing links is set to false.
The default value for a transition condition is true, and for the join condition it is the
disjunction of the status of all incoming links. Regardless of whether the activity is
executed or not, the outgoing links are fired and the target activities visited.

It should be noted that the existence of multiple incoming links associated with an
activity always represents a synchronizing join in BPEL. Dead path elimination (DPE) is
the technique of propagating the disablement of an activity so that activities downstream
do not wait forever for its completion. The propagation is needed, because each activity
carries a join condition which is evaluated on the status of the incoming link. In this
section, we will show aspects of DPE making data-flow analysis non-trivial. For a detailed
explanation of DPE see [CKLW03].

1

1

2

1

1 1

2

2

4

3

2

1

w activity writing to variable x
r activity reading from variable x
a activity not reading or writing
jc join condition
tc link with transition condition
l link without transition condition

Figure 1: A process illustrating the challenges of DPE

Figure 1 presents activities in a BPEL flow. A flow is a compound activity that
contains activities and control dependencies between them (i.e., a directed acyclic graph).
The contained activities are represented as annotated nodes. The annotation shows
whether the activity is reading from the variable x, writing to the variable x, or neither
reading from nor writing to it.

Consider the join condition jc1. Whether w1’s write reaches r1 depends on the value
of join condition jc1. Suppose tc1 evaluates to false. Then w2 is marked as dead and
the status of l1 is set to false. If jc1 is an AND over the status of all incoming links,
r1 will be disabled and will therefore never read the data written by w1. However, w1

can still be a valid writer for a subsequent read, after r1: Consider that the status of
l4 evaluates to true, leading to r2 being executed even though w2 and r1 are disabled.
Since w1 has been executed, a def-use edge from w1 to r2 must be created.

Now suppose jc1 is instead an OR1. The evaluation of jc1 will always return true,
regardless of tc1, since l2 has no transition condition assigned and a1 is never dead. If tc1

evaluates to false, w2 is not executed. Thus, r1 reads the value written by w1 and not
the value written by w2.

1We use the term “jc is an OR” a shortcut for “jc is a Boolean OR function over the status of all
incoming links”. Similar for “jc is an AND”.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 5

3 Related Work

Current data-flow analysis algorithms do not treat graph-based programs as a new concept,
but as a special case of structured programming languages. Thus, the current approaches
take BPEL as input and treat control links as a special case. The work of [MMG+07]
transforms BPEL into a Concurrent Static Single Assignment Form (CSSA, [LMP97])
representation. In the case of sequential execution of activities in a flow activity, their
algorithm returns too many possible writers. For example, if their algorithm is applied to
the example presented in Figure 1 with jc1 being an AND, the algorithm returns {w1,w2}
as the set of possible writers for r1. Our algorithm is more precise and returns w2 as
the only possible writer for r1. Their algorithm treats each activity with incoming links
as an if statement with the join condition as condition. The activity is executed if the
condition evaluates to true. An artificial joining node (called “Phi-node”) after the if
statements joins the information from both paths. Thus, every activity in a flow can be
skipped. This does not reflect the idea of dead path elimination, where the dead status
propagates through the graph. The work of [Hei03] is based on the work of [CC76] and
provides data-flow equations for BPEL activities. However, it does not consider transition
conditions, join conditions and dead path elimination. Both [MMG+07] and [Hei03] do
not deal with complex types and thus offer room for improvement besides dead path
elimination.

[BFG05] showed that it is undecidable whether a given XPath expression is satisfiable.
Since standard BPEL allows arbitrary XPath expressions to be used as transition
conditions, it follows immediately that an exact determination of data dependencies
in BPEL processes is undecidable. The result of our algorithm is an improvement in
comparison to other approaches, since the algorithm follows the semantics of DPE.

4 The Algorithm

We presented the challenges of dead-path elimination for data-flow analysis in section 2.
In this section, we present an algorithm which realizes a reaching definition analysis on
BPEL processes and respects dead-path elimination behavior.

To stay close to existing syntax formalizations of BPEL, our notation is based on the
one presented in [OVA+05], where a detailed explanation of the notation can be found.
The used notation is presented in tables 1, 2 and 3. The idea of the formalization is to
connect nested elements with the HR relation. The child a of a while loop w is connected
to w with a condition c: (w, c, a) ∈ HR. The children of a flow activity f are connected
with ⊥ to f , since the children of a flow activity are nested without any condition. The
links in the flow activity are explicitly modeled by the set L. A compensation handler is
connected with a compensation event to a scope. Finally, the fault handler is connected
with a fault event to the scope.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 6

Notation Meaning

Abasic The set of all basic activities
process The process element
Aflow The set of all flow activities
Ascope The set of all scope activities. process ∈ Ascope

Awhile The set of all while activities
A = Abasic ∪ Aflow ∪ Ascope ∪ Awhile The set of all activities
C Set of all Boolean conditions
πi(t) Returns the projection to the ith component of

a tuple t
HR ⊆ A× B ×A The hierarchy relation denoting the nesting of

activities. Let h = (a, c, a′) ∈ HR. Then a is a
parent of a′. The execution order of activities
nested in a flow activity is specified by the
(control) links L.

L All (control) links (i.e., edges in flow activities)
LR = A× L×A The control link relation
℘(S) Denotes the power set of a set S.
Lin : A → ℘(L) Returns the set of all incoming links of an ac-

tivity.
Lout : A → ℘(L) Returns the set of all outgoing links of an ac-

tivity.
V Set of all variables
jc : A → C ∪ {⊥} Returns the join condition of the given activ-

ity. “⊥” denotes an undefined join condition
defaulting to the logical OR of all incoming
links.

L : C ∪ {⊥} → ℘(L) If L used as function, it returns the set of used
links in a condition.

tcex : L → B Returns true iff there is a transition condition
on the given link.

Table 1: Notations used

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 7

Notation Meaning

B = E ∪ C ∪ {⊥} The set of connecting labels
E The set of all events
TE ={fault , compensation} The set of all event types
typeE : E → TE Returns the type of the given event
Ecompensation The set of all events e, where typeE(e) =

compensation
Efault The set of all events e, where typeE(e) = fault
children : A → ℘(A) Returns the set of all children of the given activity

with respect to the hierarchy relation.
descendants : A → ℘(A) Returns the set of all transitive children of the given

activity with respect to the hierarchy relation.
clan : A → ℘(A) Returns the set of all transitive children of the given

activity and the given activity itself with respect to
the hierarchy relation.

Acompensation
H : Ascope → ℘(A) Returns the set of all activities used to handle

the compensation event of the given scope. s 7→
{a | ∃(s, e, ach), e ∈ Ecompensation , a ∈ clan(ach)}

Table 2: Details of the hierarchy relation HR

4.1 Handling Complex Types

Variables in BPEL processes are accessed using queries. Let QV denote the set of all
queries for accessing locations of variables. In the context of XPath [W3C99], such a
query is a location path. If the whole variable is accessed, the query is empty (ε). We
define VQV ⊆ V ×QV to denote all tuples of variables and valid queries on each variable.
In the subsequent sections, each element in VQV is called variable element to ease reading.
A variable element is put into VQV if an activity in the analyzed process reads or writes
to that variable element.

Let $var be a variable of a complex type and thus being of the form presented in
Figure 2. Assume now three writers w1, w2, w3 in a sequence with following writes: w1:
$var, w2: $var/car, w3: $var/car. w3 overwrites the data written by w2, but it does
not overwrite all data written by w1. Thus, w1 is still a writer to take into account for a
subsequent read on $var, where the data written by w1 and w2 has to be merged.

Figure 2: Variable of a complex type

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 8

Notation Meaning

V Set of all variables including the variable implictly declared
at fault handlers

faultVariableE : Efault → V Is the function which returns the variable declared by the
given fault event. The result of the function corresponds
to the content of the faultVariable element in a catch

block of a fault handler.
QV Set of all queries (i.e., XPath location paths) for accessing

locations in variables. QV includes ‘ε’ to denote “empty
query”, i.e., the whole variable is accessed

VQV ⊆ V ×QV The set of tuples of a variable v and a (valid) query q on
v. Every element in VQV is called “variable element” ease
reading.

VQVr ⊆ VQV Is the set of variable elements read by reading activities
VQVw ⊆ VQV Is the set of variable elements written by writing activities
w : A× VQV → B Returns true iff the given activity completely changes the

given variable element. Cf. section 4.1
r : A ∪ L× VQV → B Returns true iff the given activity or link completely reads

the given variable element.

Table 3: Notation related to variables

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 9

A writer has to be removed from the set of possible writers if its written data is
overwritten by a subsequent write (cf. section 4.4 on page 13). Therefore, every writer
writing to a variable element ve also has to be considered as a writer to elements being
subelements of ve. To formally define the subelement-relation, we can interpret the
structure of each variable v as a lattice. Assume the comparison operator of the lattice to
be “A”. Then, n A m returns true iff n is a parent of m in the structure of the variable
v, where n and m are parts of the variable. Thus, A forms the subelement-relation.

XPath location paths may reference more than one location in the structure of a
variable. The presented approach for handling elements in the variable structure works
for single elements only. Therefore, we restrict XPath location paths not to contain any
variable reference and to return exactly one element in a variable. In consequence, the
location path does not contain any variable reference, and returns an lvalue.

We distinguish between the variable elements addressed at readers and writers. VQVr is
the set of variable elements addressed at reading activities and VQVw is the set of variable
elements addressed at writing activities.

Assume poss◦ : (A∪L)×VQV → ℘(A) being the function returning the set of possible
writers for a given activity or link and variable element during program execution (cf.
definition 1 on the next page). An activity is contained in poss◦ if it completely writes to
ve. As shown above, a read of an activity a on a variable element ve also has to read
all data written to children of ve. Therefore, the function W6 ‖ : A ∪ L × VQV → ℘(A)
returning the set of possible writers, including partial writers, is defined as follows:

W6 ‖ : (x, ve) 7→ {a′ | a′ ∈ poss◦(a, v
′
e), v

′
e v v, r(x, ve) = true}

r : A∪L×VQV → B returns true iff the given activity a directly reads the given variable
element ve.

4.2 Abstract Interpretation of a BPEL Process

The BPEL process definition is abstractly interpreted, where the results of all possible
executions are merged. The merge does not contain writes on parallel branches, but
supports parallel execution. This means that the result of parallel branches is joined at a
node where the branches join. However, writes on a branch are not considered as writes
on parallel branches. For example, in the BPEL process presented in Figure 3 on the
following page, wa and wb are considered as writers for rb, but wb is the only writer for ra.

The result of the abstract interpretation can be used to determine W‖, where writes
in parallel branches are also considered. Since the restrictions ensure that there may be
no writes happening in parallel to reads on the same variable, W‖ does not need to be
determined.

The idea of the abstract interpretation is to distinguish between three states of a
writing activity: possible, disabled and invalid. A writing activity w is a possible writer
at an activity a if the data written by w can reach a. For example, w2 is a possible writer

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 10

wa wb

rb

ra

Figure 3: Parallel writes on a variable

for r1 in the BPEL process presented in Figure 1 on page 4. w is a disabled writer if it
is overwritten by a subsequent writer. For example, w1 is a disabled by w2. If the join
condition jc1 is an AND, w1 will also remain disabled at r1: If tc1 evaluates to false, w2

is dead. Thus, the status of l1 is false and jc1 subsequently evaluates to false. Thus,
r1 is dead and will not read the value written by w1. A disabled writer can be a possible
writer again, which happens for w1 at r2, if jc1 is and AND. Since l4 does not contain
a transition condition, the status of l4 is true and the join condition at r2 evaluates to
true even if the status of l3 is false. Thus, the data written by w1 does not reach r1,
but r2. A writer can also be disabled completely and thus become invalid. Assume tc1 is
true. Then w2 always overwrites the value written by w1 and thus w1 is invalid at all
activities following w2.

To store the state of a writing activity, three lattices and a Boolean value are used:
One lattice for the possible writers, one lattice for the disabled writers, one lattice for
the invalid writers, and one Boolean value for marking the current activity to be possibly
dead. Each lattice is formed in the same way: Each element of the lattice is a subset
of the set of all activities, and the containment relation forms the lattice relation. The
current state of the writes to the given variable element is assigned to every link and
activity by the function writes◦. The function writes• returns the current states of the
writes after the activity or the link has been interpreted.

writes◦ : (A ∪ L)× VQV → ℘(A)× ℘(A)× ℘(A)× B
writes• : (A ∪ L)× VQV → ℘(A)× ℘(A)× ℘(A)× B

To ease reading, the following functions are used to access each tuple element:

Definition 1: poss◦(x, ve)
poss◦(x, ve) := π1(writes◦(x, ve)) returns the activities which are possible writes to the
variable element ve at position x in the BPEL process. A position x can be an activity or
a link. “poss” stands for “possible”.

Definition 2: dis◦(x, ve)
dis◦(x, ve) := π2(writes◦(x, ve)) returns the activities which were overwritten by preceding
writes from a path leading from the root to position x. “dis” stands for “disabled”.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 11

The writers contained in dis◦ are those writers, which may get possible writers at a
subsequent OR join.

Definition 3: inv◦(x, ve)
inv◦(x, ve) := π3(writes◦(x, ve)) returns the activities which can never be revived at position
x. “inv” stands for “invalid”.

The writers contained in inv◦ are needed for an efficient construction of concurrent reads,
which is future work.

Definition 4: mbd◦(x, ve)
mbd◦(x, ve) := π4(writes◦(x, ve)) returns true iff x can be disabled on a path from any
directly preceding writer (or from the root node if there is no directly preceding writer) to
x. “mbd” stands for “may be dead”.

mbd◦(x, ve) is needed to decide if a writer x disables preceding possible writers or if x
makes them invalid. “Directly preceding writer” is defined as follows:

Definition 5: Directly preceding writer
A writer w is a directly preceding writer if there is no other writer on the path from w to
x.

poss•, dis•, inv• and mbd• are defined on writes• similarly to poss◦, dis◦, inv◦ and mbd◦
on writes◦.

4.3 Depth-first Search Covering All Possible Executions

The abstract interpretation executes a depth-first search (DFS) which covers all possible
executions. Since the links in the program graph can contain a transition condition, the
DFS visits the links explicitly. A DFS is started for every variable element ve ∈ VQVw as
shown in Algorithm 1. Each variable can be analyzed independently from the others,
since BPEL does not support aliasing of variables. “Aliasing” describes that two variables
can point to the same data place in memory. That means, if variable x is an alias of
variable y, x:=1 also sets y to 1.

After AnalyzeProcessModel completed, writes◦ and writes• are defined for all
variables and all queries on every variable. In section 4.10 on page 20 we present how to
use writes◦ to derive the def-use edges of the corresponding BPEL process.

The DFS is mainly implemented in HandleActivity and HandleLink. Section 4.9
on page 20 deals with HandleLink that visits the control links. The activities are
visited by HandleActivity. It calls HandleBasicActivity to handle basic activities,
HandleFlow to handle the flow activity, HandleWhile to handle the while loop and
finally HandleScope to handle a scope. HandleActivity itself checks whether all
the incoming links of the currently visited activity were handled and the parent activity
was visited. If not, it returns, since the activity will be reached via all non-visited links or

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 12

Algorithm 1 Analysis of a given BPEL process

procedure AnalyzeProcessModel(M)
Determine VQVw in the given BPEL process model M .
for all ve ∈ VQVw do
∀a ∈ A : visited(a)← false

∀l ∈ L : visited(l)← false

HandleActvity(process, ve) // process is the process activity in M
end for

end procedure

Algorithm 2 Handling of an activity

procedure HandleActivity(a,ve)
parentHandled← (a = process) ∨ visited(a′), (a′, b, a) ∈ HR

// (a′, b, a) ∈ HR denotes that a′ is the parent of a
if parentHandled ∧ (Lin(a) = ∅ ∨ ∀l ∈ Lin(a) : visited(l)) then

visited(a)← true

writes◦(a, ve)←


joinLinks(a, ve) |Lin(a)| > 0

writes◦(p, ve) ∃p : (p, c, a) ∈ HR

(∅, ∅, ∅, false) otherwise
if a ∈ Abasic then

HandleBasicActivity(a,ve)
else if a ∈ Aflow then

HandleFlow(a,ve)
else if a ∈ Ascope then

HandleScope(a,ve)
else if a ∈ Awhile then

HandleWhile(a,ve)
else if a = process then // Directly handle the contained activity

HandleActivity(a′,ve), (a,⊥, a′) ∈ HR
writes•(a)← writes•(a

′)
end if
for all l ∈ Lout(a) do

HandleLink(l,ve)
end for

end if
end procedure

via the parent activity again. If all incoming links and the parent activity were handled,
the information of the predecessors of the activity have to be put into writes•. If the
activity has incoming links, their information has to be joined, since the execution may

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 13

have reached the activity by these links. If the activity has no incoming links, it may
have a parent in the hierarchy tree. If that is the case, the information of writes◦ of the
parent has to be copied, since the current activity will be started right after the parent
activity and thus has the data of the parent activity available. If the current activity has
no incoming links and no parent activity (i.e., is the process element itself), writes◦ is
initialized to contain no writers. After writes◦ has been determined, the activity itself
is handled by the algorithms for handling the respective types of activities, which are
presented in the subsequent sections. After handling the activity itself, its outgoing links
are traversed by HandleLink which in turn calls HandleActivity for the target of
each link. It is important to note that this is the same order as a BPEL engine executes
the activities in a BPEL process. Note that BPEL does not allow control links to form a
cycle. Thus, all incoming links of an activity can always be visited before the activity
itself.

4.4 Joining the Information of Incoming Links

joinLinks : (a, ve) 7→ (P,D, I, d) is used in HandleActivity (Algorithm 2) to join the
information on the incoming links. P , D, I, and d are defined as follows:

Algorithm 3 Determining the set P of possible writers

if |Lin(a)| = 1∨ the join condition of a is AND over all incoming links then

P ←
⋃

l∈Lin (a)

poss•(l, ve) (1)

else
P ←

⋃
l∈Lin (a)

poss•(l, ve) ∪ dis•(l, ve) \
⋂

l∈Lin (a)

dis•(l, ve) (2)

end if

The set P of possible writers Case (1) in Algorithm 3 handles the situation in
which the join condition cannot re-enable any writes. It contains two subcases: (i) The
join condition is a logical AND over all incoming links, (ii) there is only one incoming
link. (i) If the join condition is a logical AND over all incoming links, and during process
execution the status of at least one incoming link is set to false, the activity itself is not
executed. Thus, any disabled writers cannot be re-enabled. A revival may happen later
as illustrated on activity r2 in figure 1 on page 4. (ii) If there is only one incoming link,
the current activity can only be reached over that path. If the status of the incoming
link is false, the activity itself is not executed and thus any disabled writers cannot be
re-enabled at this activity. If the status of the incoming link is true, the disabled writers
cannot be re-enabled either, since there is no alternative execution path reaching the
activity.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 14

Case (2) handles the case where the join can enable disabled writes. An active
incoming link not on the possible dead path from a last possible writer can set the state
of the current activity to active. Therefore, the data is not taken from the dead writer,
but from a preceding write disabled by the dead writer. For example, this is the case at
r2 in figure 1 on page 4, where w1 has to be enabled again.

All in all, disabled writes get enabled again at a join activity that does not have an
AND join condition. The only exception are writes that are disabled during the execution
on all paths reaching the current activity. These writes cannot be enabled again by an
incoming path and thus are not enabled again.

The set D of disabled writers The Algorithm 4 for determining D is similar to the
algorithm determining P , but handles disabled writers instead of enabled ones. If the
join cannot re-enable any writers (case (1)), the set of the disabled writers remains the
same. If the join enables disabled writers (case (2)), D is the set of writers that are not
re-enabled.

Algorithm 4 Determining the set D of disabled writers

if |Lin(a)| = 1∨ the join condition of a is AND over all incoming links then

D ←
⋃

l∈Lin (a)

dis•(l, ve) (1)

else
D ←

⋂
l∈Lin (a)

dis•(l, ve) (2)

end if

The set I of invalid writers The invalid writes are collected and not modified, since
they are used for the analysis of the concurrent writes only.

Algorithm 5 Determining the set I of invalid writers

I ←
⋃

l∈Lin (a)

inv•(l, ve)

State “dead” of an activity An activity a may be disabled on a path from any
directly preceding writer (or from the root node if there is no preceding writer) if the join
condition of a evaluates to false. A disabled activity is also known as a dead activity.

The decision logic presented in section 4.5 on page 16 uses the value of mbd◦(a, ve) to
decide whether possible writers get disabled or invalid: If mbd◦(a, ve) is true, then the

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 15

possible writers get disabled. Otherwise, they get invalid. A writer marked as “invalid”
will never be revived due to dead path elimination. Therefore, the set of possible writers
decreases if more writers get invalid. On the other hand, a writer may never be marked
as “invalid” if it can be a possible writer. Therefore, a one-sided error is acceptable:
mbd◦(a, ve) may return true, even if it should be false. But mbd◦(a, ve) may never
return false, if it should return true.

Therefore, we use following approximation to determine mbd◦(a, ve):
i) If the join condition always evaluates to true, mbd◦ is set to false.
ii) If the join condition contains negations, mbd◦ is set to true.

iii) Otherwise, the join condition is evaluated with the negated values of mbd• of each
incoming link.

For case i we define the function alwaystrue : C ∪ {⊥} → B to return true iff the
given join condition always evaluates to true. The function may have a one-sided error:
If the join condition always evaluates to true, alwaystrue may return false, but not the
other way round.

For case ii, we define the function negations : C ∪ {⊥} → B to return true, iff the
given join condition contains negations.

For case iii, we define the semantics operation [[a, ve]]
jc
¬mbd•

. It takes the negated
value of mbd•(l, ve) as the current status of each link l in the join condition of the given
activity a and evaluates the join condition. This ensures proper handling of the activity
with respect to the directly preceding writers: The join condition of a does not include
any negations. Due to the definition of mbd• on links, mbd•(l, ve) is true if l may be
dead. If mbd•(l, ve) is false, the link is surely not dead from any path from all directly
preceding writers (or the root node if there is no directly preceding writer). By using
the negated value of mbd•(l, ve), the status of the link is reflected: If a link is dead, the
status of the link is false during process execution. If the link is not dead, the status
of the link is true. Note that by using the negated value of mbd•(l, ve) we evaluate the
join condition in the case in which most links are dead in one process execution.

x

1

y

x,y

1 1

2

x,y

4

3

2

Figure 4: A process illustrating the usage of [[a, ve]]
jc
¬mbd•

We illustrate the use of [[a, ve]]
jc
¬mbd•

by the process presented in figure 4, which is
a modified version of the process presented in figure 1 on page 4. wx and wy write to
different variables x and y. Furthermore wx,y writes to both x and y. rx,y is reading from

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 16

both x and y. li are links without transition conditions. wx and wx,y both write to x.
Because of the transition condition tc1 and the AND join on wx,y, wx,y can be disabled
and the value of wx reach rx,y. On the other hand, the value written by wy never reaches
rx,y. If wy is disabled, wx,y is disabled, too. If wy is not disabled, wx,y is not disabled
either.

Note that we cannot use [[a, ve]]
jc
¬mbd•

to handle case ii, where the join condition
contains negations. Assume that the negation in a join condition of an activity b is
¬l. Thus, the join condition negates l. Furthermore, assume that mbd•(l, ve) = true.
Recall that mbd•(l, ve) = true denotes that there exists a path from the root node to
the current node, which disables link l. That disablement may happen in some cases, but
not in all. In a process execution, the activity b is executed iff the status of the incoming
link l evaluates to false.

[[b, ve]]
jc
¬mbd•

= ¬(¬mbd•(l, ve)︸ ︷︷ ︸
l

)

︸ ︷︷ ︸
join condition

= ¬(¬(true)) = true

The negated value of [[a, ve]]
jc
¬mbd•

is used in Algorithm 4.4 to determine d. In our case,

¬[[b, ve]]
jc
¬mbd•

= ¬true = false and thus d would be set to false, which means that
activity b is never dead. This contradicts the fact that the activity b is executed iff the
status of the incoming link l evaluates to false. That means, that [[a, ve]]

jc
¬mbd•

cannot
be used if the join condition of an activity contains negations.

Algorithm 4.4 presents the determination of d.

Algorithm 6 Determining whether an activity may be dead

d←


false alwaystrue(jc(a))

true negations(jc(a))

¬[[a, ve]]
jc
¬mbd•

otherwise

4.5 Handling Basic Activities

In this section, we describe the handling for basic activities. The term ‘writing activity’ is
used to refer to activities that can write data (receive, assign, . . .). To define writes•(a, ve),
an abstract interpretation of the activity is done regarding whether it writes to the given
variable element. If a is not a writing activity (e.g., empty or while activity), writes•(a, ve)
is the identity of writes◦(a, ve) (Case (1) in Algorithm 7 shown below).

If a is a writing activity, the result depends on the value of mbd◦(a, ve). If mbd◦(a, ve) =
true (i.e., a can be disabled on a path from any directly preceding writer, or from the

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 17

root node if there is no directly preceding writer, to a), the possible writes are added to
the disabled writes and a is put as the only writer (Case (2) in Algorithm 7). Assume w
to be a valid preceding writer for an activity a. At the activity a itself, the write of a is
the only valid write, since a definitely overwrites the write of w if a was executed. If w
was executed, a may be not be executed (mbd◦(a, ve) = true). Therefore, w has to be
stored as w can become valid again at a successor of a.

In the other case, where mbd◦(a, ve) = false, the possible writes can never be active
again and become invalid (Case (3) in Algorithm 7). Assume w being a valid preceding
writer for an activity a. If w was executed, a will also be executed (mbd◦(a, ve) = false).
If w was not executed, a will not be executed either. The write of w is always overwritten
by the write of a in this case.

If a is a writer to ve, mbd•(a, ve) is set to false in Algorithm 7. In this case, a is
the starting point of all paths from a to a subsequent writer. a is not disabled at the
beginning of each path starting at a. Thus, mbd• has to be false. On the other hand,
Algorithm 6 on the preceding page and Algorithm 11 on page 20 ensure that mbd◦ and
mbd• are set to true if the activity or the link may be dead and thus the write of a can
survive.

Algorithm 7 Handling a basic activity

procedure HandleBasicActivity(a,ve)
writes•(a, ve)←

writes◦(a, ve) ¬w(a) (1)
({a}, dis◦(a, ve) ∪ poss◦(a, ve), inv◦(a, ve), false) w(a, ve) ∧mbd◦(a, ve) (2)
({a}, dis◦(a, ve), inv◦(a, ve) ∪ pos◦(a, ve), false) w(a, ve) ∧ ¬mbd◦(a, ve) (3)

end procedure

4.6 Handling a Flow Activity

Algorithm 8 Handling a flow activity

procedure HandleFlow(f ,ve)
roots ← {a | a ∈ children(f) ∧ ¬∃l : (a′, l, a) ∈ LR : a′ ∈ descendants(f)}
for all r ∈ roots do

HandleActivity(r,ve)
end for
writes•(f, ve)←
(
⋃
a ∈ poss•(a

′, ve),
⋃
a ∈ dis•(a

′, ve),
⋃
a ∈ inv•(a

′, ve),
∨
a ∈ mbd•(a

′, ve)) ,
a′ ∈ {a | a ∈ children(f) ∧ ¬∃l : (a, l, a′′) ∈ LR : a′′ ∈ descendants(f)}

end procedure

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 18

The traversal of the activities nested in a flow activity starts from the roots of the
flow activity. A root of a flow activity is an activity in the flow with no incoming
links from any activities inside the flow. The outgoing links of the roots are tra-
versed in HandleActivity and thus all activities in the flow get visited. As soon as
HandleActivity returns, writes• is defined for all activities contained in the flow. The
information of the flow’s leaf activities has to be joined into the flow’s writes•. A leaf of
a flow is an activity with no outgoing links to any other activity inside the flow.

4.7 Handling While Activities

Algorithm 9 Handling of while activities

procedure HandleWhileActivity(w,ve)
Let n be the activity nested in the while loop. n : (w, c, n) ∈ HR
repeat

last ← writes◦(w, ve)
HandleActivity(n,ve)

writes◦(w, ve)←


π1(last) ∪ π1(writes•(n, ve)),
π2(last) ∪ π2(writes•(n, ve)),
π3(last) ∪ π3(writes•(n, ve)),
π4(last) ∨ π4(writes•(n, ve))


until last = writes◦(w, v)
writes•(w, v)← writes◦(w, v)

end procedure

In while activities, writes◦(w, ve) is not only joining the information of the incoming
links, but also takes into account the information produced by the nested activity. This
information is joined with the current information of writes◦(w, ve) until the previous
value of writes◦(w, ve) equals the current value, i.e., a fix point is reached. Termination
is guaranteed, since ℘(A) is a finite set and there are only elements added to the set
in HandleActivity. This abstract interpretation of the while activity is valid, since
BPEL also first executes the while activity until the loop condition is false and visits
the outgoing links afterwards. Note that the while activity itself does not write to any
variable. Thus the final value of writes◦ can be directly copied to writes•.

4.8 Handling Scope Activities

A scope first executes the nested activity. If the execution fails, a fault handler is
triggered. Since the restrictions state that the data to the fault handler is sent by the
coordinator, the only data which can reach the activities nested in the fault handler is the
data contained in the faultVariable. Since no sending/receiving blocks are created for
the faultVariable [Kha07], we are ignoring writers to the faultVariable and writers

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 19

writes◦(a, ve)←



joinLinks(a, ve) |Lin(a)| > 0

(∅, ∅, ∅, false) ∃(p, e, a) ∈ HR, typeE(e) = fault

writes•(p, ve) ∃(p, e, a) ∈ HR, typeE(e) = compensation

writes◦(p, ve) ∃p : (p, c, a) ∈ HR

(∅, ∅, ∅, false) otherwise

Figure 5: Modified writes◦ to handle the fault handling and compensation activity

not included in the fault handler. To support this, HandleActivity has to be adapted
to reset writes◦. The modified assignment to writes◦ is shown in figure 5. After the fault
handler runs, the data is available for the activities following the scope where the fault
handler is declared. Thus, writes•(s, ve) has to include the data written by each fault
handler fh. The inclusion of the results is done via the t operator, denoting the union of
each set in writes• and the disjunction of mbd•:

(a, b, c, d) t (a′, b′, c′, d′) := (a ∪ a′, b ∪ b′, c ∪ c′, d ∨ d′)

After the activity nested in the scope activity is finished, the compensation handler
will get a snapshot of the variable values in BPEL 1.1. Thus, the initialized value of
the compensation handler is writes•(s, ve) as shown in figure 5. If the compensation
handler is executed, it works on local copies of the variables. Thus, data written by
compensation handlers never crosses the border of the compensation handler and writes•
of the compensation handler may be ignored.

Algorithm 10 presents the complete handling of a scope activity.

Algorithm 10 Analysis of a scope activity

procedure HandleScope(a,ve)
HandleActivity(a′,ve), (a,⊥, a′) ∈ HR
writes•(a, ve)← writes•(a

′, ve)
FH ← {fh | (a, e, fh) ∈ HR, typeE(e) = fault}
for all fh ∈ FH do

HandleActivity(fh,ve)
end for
if ∃(a, e, ch) ∈ HR : typeE(e) = compensation then

HandleActivity(ch,ve)
end if
for all fh ∈ FH do

writes•(a, ve)← writes•(a, ve) t writes•(fh, ve)
end for

end procedure

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 20

4.9 Handling Links

A control link has exactly one source and target activity, therefore the analysis result of
the source activity can be directly taken as writes◦. Furthermore, a link l cannot perform
a write to a variable but may contain a transition condition, thus turning the subsequent
activity to dead. The subsequent activity may be dead, if the source of the link may be
dead or if there is a transition condition on link l.

A special case is the case when a transition condition always evaluates to true. In this
case, the value of mbd◦ does not change, since the transition condition has no influence
on whether the subsequent activity may be dead. In general, it is not possible to check
whether a transition condition always evaluates to true, since the satisfiability of XPath
expressions is undecidable [BFG05]. We define the function alwaysTrue to return true,
if the given transition condition always evaluates to true and false in all other cases.
This includes, that alwaysTrue returns false for undecidable cases. Thus, the algorithm
produces an over-approximation, as illustrated in section 4.4 on page 15.

After writes•(l, ve) is set, the link is marked as visited and the target activity is visited.
The complete handling is presented in Algorithm 11.

Algorithm 11 Handling a link

procedure HandleLink(l,ve)
a, a′ : (a, l, a′) ∈ HR
writes◦(l, ve)← writes•(a, ve)

writes•(l, ve)←

(
π1(writes◦(l, ve)), π2(writes◦(l, ve)), π3(writes◦(l, ve)),

π4(writes◦(l, ve)) ∨ (tcex (l) ∧ ¬alwaysTrue(tc(l)))

)
visited(l)← true

HandleActivity(a′,ve)
end procedure

4.10 Creating Def-Use Edges

Once the process model has been analyzed, poss◦(a, ve) returns the set of possible writers
for every given activity and variable element. As shown in section 4.1, a read of an
activity a on a variable element ve in a lattice (r(a, ve) = true) also has to read all data
written to children of ve. Thus, the function CE : A ∪ L → A×A returning the def-use
edges for an activity or a link is defined as follows:

CE : x 7→ {(a′, x) | a′ ∈ poss◦(a, v
′
e), v

′
e v ve, r(a, ve) = true}

The order in which the sources of the links complete has to be regarded at the target
activity. Otherwise stale data may overwrite fresh data written by a succeeding writer.
The rule ‘last writer to successfully complete wins’ can be used to resolve write conflicts.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 21

Upon splitting a process and distributing the fragments onto different network locations,
however, messages may get reordered on the network and there is no guarantee of timing.
In [KKL07], we combine the output of this algorithm along with control dependencies
between the writers to provide a solution for resolving conflicts across process fragments.
Since [KKL07] does not directly use def-use edges, but a special function Qs, we present
in the next section how to create Qs out of the result of the data-flow algorithm.

5 Creating Qs

The algorithm presented in [KKL07] demands a function Qs : A×V → ℘(℘(QV)×℘(A)).

Definition 6: The function Qs

The function Qs takes as argument an activity and a variable and returns a set of tuples
of queries and writers to all of these queries. The writers returned write to variable
elements read by the given activity or a transition condition of a link leaving the activity.

In other words, Qs(a, v) groups sets of queries on v with writers which may have written
to the same parts of x expressed in those queries by the time a is reached in the control
flow. Thus, Qs(a, v) returns a set of tuples, each containing a query set and a writer set.
Consider w1, w2 and w3 that write to v such that their writes are visible to a when a
is reached. Assume they respectively write to {v.b, v.c}, {v.b, v.c, v.d} and {v.d, v.e}.
Then the result of Qs(a, v) is as follows:

Qs(a, v) = {({.b, .c}, {w1, w2}),
({.d}, {w2, w3}),
({.e}, {w3})}

A property of an element (Q,A) ∈ Qs(a, v) is that all w ∈ A have written to each q ∈ Q.
Thus, there may be a (Q′, A′) ∈ Qs(a, v), (Q′, A′) 6= (Q,A), such that A′ ∩ A 6= ∅. In
the example, this is the case for w2 and w3, since the set of queries they write to are
not equal, but overlap. The difference between poss◦(a, v) (defined at definition 1 on
page 10) and Qs(a, v) is that the data of a writer contained in Qs is read at activity a,
whereas the data written by a writer in poss◦(a, v) may not necessarily be read by a.

[KKL07] excluded loops and scopes. However, the work of [KL06] is extended
in [Kha07] to support splitting of loops and scopes of BPEL-D processes. If loops and
scopes should be treated in the algorithm in [KKL07], certain writers have to be merged
or excluded from Qs. Therefore, we first present the construction of the helper function
Q∗s : A × V → ℘(℘(QV) × ℘(A)) out of the result of the data-flow analysis. If scopes
and loops are not regarded, Q∗s and Qs are the same functions. Otherwise, the result of
Q∗s has to be modified to return a Qs which can be treated by the algorithm presented
in [KKL07]. In section 5.3, we show how Q∗s is used by the function Qs to return the
required result. In the following, we present the construction of Q∗s.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 22

Note that a function f : A → B can also be written as a set of tuples f ⊂ A × B.
Each element in the range of Qs is of the form ℘(QV)× ℘(A). According to definition 6,
this tuple set is a function assigning queries to their writer. We use this property to
construct Q∗s: We define a function q : ℘(QV) → ℘(A) and stepwise add or modify it
with mappings from ℘(QV) to ℘(A).

The construction of Q∗s uses the function Qw : A×A× V → ℘(QV), which returns
the set of queries on the given variable that are written by the first activity and read at
the second activity or at transition conditions of the second activity. As presented in
section 4.1, a write to a variable element ve is also a write to every v′e @ ve. We therefore
remove each v′e, where v′e @ ve from the result, if ve is contained in the result (line 4 in
Algorithm 12).

Algorithm 12 The function Qw returning the set of queries on the given variable that
are written by the first activity and read at the second activity or at transition conditions
of links of the second activity

1: function Qw(aw,ar,v)

2:

R← {q ∈ QV | ∃v′e = (v, q)∃ve w v′e :

(r(ar, ve) ∧ aw ∈ poss◦(ar, v
′
e))∨

(∃l ∈ L : (ar, l, a
′) ∈ LR ∧ r(l, ve) = true ∧ aw ∈ poss◦(l, v

′
e))}

3: // Remove all obsolete queries
4: while ∃q, q′ ∈ R : q @ q′ do
5: R← R \ {q}
6: end while
7: return R
8: end function

Algorithm 13 on the following page presents the construction of Q∗s. Since Q∗s is
defined on an activity and a variable, the algorithm iterates over all activities (ar, r
stands for “reading”, line 3) and variables (v, line 4). Since an activity also reads the
variable elements needed by its outgoing links, the set PW is built to contain both the
possible writers for the activity and its outgoing links (line 6). In line 7, the activity itself
is removed from PW , since the value written by the activity (and read by its outgoing
links) is available at its links. Lines 8 to 16 iterate over all writers and check whether
there already is a set of writers for the set of queries the current writer (aw) is writing
to (Q, line 10). If not, the current writer is put as the only writer for Q in q (line 14),
otherwise the result of q is adopted for Q (line 11f.2). After the loop ran, q is defined for
all queries and writers on the queries for the reading activity ar and variable v. Since q
is a set of tuples with the same type as π3(Q

∗
s) (q ⊂ ℘(QV)× ℘(A)), it can be directly

used as π3(Q∗s) when adding the result for ar and v to Q∗s (line 17). Here, it is important
to note that a function g : C ×D → E may also be written as g ⊂ C ×D × E.

2“f.” stands for “and the subsequent line”

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 23

Algorithm 13 Iterative construction of Q∗s
1: procedure GenerateQ∗s
2: Q∗s ← ∅
3: for all v ∈ V do
4: for all ar ∈ A do
5: q ← ∅

6: PW ←
⋃

{
ve

∣∣∣ ve∈V
QV
w , ve=(v,q)

}
poss◦(ar, ve) ∪

⋃
{l | (ar,l,a′)∈LR}

poss◦(l, ve)


7: PW ← PW \ {ar}
8: for all aw ∈ PW do
9: Q← Qw(aw, ar, v)

10: if ∃(Q,W ′) ∈ q then
11: W ← W ′ ∪ {aw}
12: q ← q \ {(Q,W ′)} ∪ {(Q,W)}
13: else
14: q ← q ∪ {(Q, {aw})}
15: end if
16: end for
17: Q∗s ← Q∗s ∪ {(ar, v, q)}
18: end for
19: end for
20: end procedure

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 24

5.1 Treatment of Loops

For creating receiving flows for a loop l, the following cases have to be distinguished:

1. Data reaching the loop before the first iteration

2. Data produced in the current iteration reaching a reading activity in the loop

3. Data produced in the previous iteration reaching a reading activity in the loop

4. Data produced for activities following the loop

In case 1, the data is collected by a block before the loop. In case 2, the result of Qs

has only to contain those writers. The constructions for the other cases ensure that data
produced by other writers also reaches the reader. In case 3 the data is collected at the
end of the loop. In case 4, the data is collected by one fragment inside the loop and sent
after the loop completed to the readers. We call that sender for the data a collecting
writer wl. wl is added to the set of activities as soon as it is created. Since wl is used as
a writer for subsequent reads, we define the function w∑ : Awhile → A to return wl for
the given loop l.

To define the functions determining the required sets, we define the following functions:
path, path 6� and l. path : A×A → B returns true iff there is a path from the first given
activity to the second given activity. To ease the handling of compensation handlers, the
only path to a compensation handler is from the end of the scope to its compensation
handler. This definition ensures that the data for compensation handlers is correctly
collected by the collecting writers. path 6� : A×A → B returns true iff there is a path
from the first given activity to the second given activity (path(a, b) = true) without
considering paths introduced by looping. The formal definition of path and path 6� is out
of scope of this paper.

The function l : A → Awhile ∪ {⊥} returns the directly enclosing loop for the current
activity:

l : a 7→


l ∃l ∈ Awhile , a ∈ descendants(l)∧
6∃ l′ : l′ ∈ Awhile , a ∈ descendants(l′), |descendants(l′)| < |descendants(l)|

⊥ otherwise

Case 1: Data reaching the loop before the first iteration Data written before
the loop and needed inside the loop or at the loop condition is collected before the loop.
The function Qpreloop

s : Awhile × V → ℘(℘(QV)× ℘(A)) returns a set of tuples of queries
and writers to all of these queries for the given loop and variable. The writers returned
are located before the loop. All the Q∗s(a, v) of each activity a contained in the currently
regarded loop l have to be merged into one Qpreloop

s
′(l, v) first. Since the merging is also

needed for the compensation handler, we define Q∗,∪s : A×V → A×V×℘(℘(QV)×℘(A))
to union the Q∗s for the activities contained in the given activity and for the given variable.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 25

Algorithm 14 The function Q∗,∪s , which returns the union of Q∗s(a, v) for activities
contained in the given activity

1: function Q∗,∪s (a,v)
2: R← ∅ // R : ℘(℘(QV)× ℘(A))
3: for all a′ ∈ clan(a) do
4: (Q,W ′)← Q∗s(a′, v)
5: if ∃(Q,W) ∈ R then
6: R← R \ {(Q,W)} ∪ {(Q,W ∪W ′)}
7: else
8: R← R ∪ {(Q,W ′)}
9: end if

10: end for
11: return R
12: end function

The implementation is presented in Algorithm 14. The merging is used in line 2 in
Algorithm 15 on the next page, which implements Qpreloop

s . After the merging, all writers
in l have to be taken out from the result (line 5). Let lp be the parent loop of the l
currently regarded. Writers outside of lp have already been treated by the handling of
lp and may not be included in the result (line 7). Writers not preceding l have already
been treated by the handling of lp, too. Thus, these writers get removed, too (line 9).
Lines 10 to 12 deal with the collecting writers created for case 4. If lp contains other
loops li, then the writers in li have to be combined to wli , which has to be used instead
of the writers nested in li. If no lp exists, there is no treatment of the writers outside of
lp, but the writers contained in preceding loops have still to be combined.

Case 2: Data produced in the current iteration reaching a reading activity in
the loop In this case, only the writers contained in the current loop l and preceding
the given activity have to be returned by Qs. Algorithm 16 on the following page presents
the determination of the result of Qs(a, v) if a is directly nested in a loop. Lines 4 and 5
ensure that W only contains writers preceding the current activity. Lines 6ff.3 ensure
that collecting writers are used where appropriate.

Case 3: Data produced in the previous iteration reaching a reading activity
in the loop In this case, the data is collected at the end of the loop. The function
Qintraloop

s : Awhile × V → ℘(℘(QV)× ℘(A)) returns a set of tuples of queries and writers
to all of these queries for the given loop and variable required for the next loop iteration.
Algorithm 17 on page 27 presents the implementation. Lines 5f. ensure that W only
contains writers reaching a by looping. Lines 7ff. ensure that collecting writers are used

3“ff.” (et folii) stands for “and the subsequent lines”.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 26

Algorithm 15 The function Qpreloop
s , which returns Qs(l, v) for a new reader collecting

the data before the loop l starts

1: function Qpreloop
s (l,v)

2: Qpreloop
s

′ ← Q∗,∪s (l, v)
3: R← ∅
4: for all (Q,W ′) ∈ Qpreloop

s
′ do

5: W ′ ← W ′ \ clan(l)
6: if l(l) 6= ⊥ then
7: W ′ ← W ′ ∩ clan(l(l))
8: end if
9: W ← {w |w ∈ W ′, path 6�(w, l) = true}

10: while ∃w ∈ W : l(l) 6= l(w) do
11: W ← W \ {w} ∪ {w∑(w)}
12: end while
13: R← R ∪ {(Q,W)}
14: end for
15: return R
16: end function

Algorithm 16 The function Q�
s to determine Qs for activities nested in loops

1: function Q�
s (a,v)

2: R← ∅
3: for all (Q,W ′) ∈ Q∗s(a, v) do
4: W ′ ← W ′ ∩ clan(l(a))
5: W ← {w |w ∈ W ′, path 6�(w, a) = true}
6: while ∃w ∈ W : l(w) 6= l(a) do
7: W ← W \ {w} ∪ w∑(w)
8: end while
9: if W 6= ∅ then

10: R← R ∪ {(Q,W)}
11: end if
12: end for
13: end function

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 27

where appropriate.

Algorithm 17 The function Qintraloop
s , which determines Qs(l, v) for a new reader

collecting the data at the end of the loop l for the next iteration

1: function Qintraloop
s (l,v)

2: R← ∅
3: for all a ∈ descendants(l) do
4: (Q,W)← Q∗s(a, v)
5: W ← W ∩ clan(l)
6: W ← W \ {a′ | path 6�(a′, a) = true}
7: while ∃w ∈ W : l(w) 6= l do
8: W ← W \ {w} ∪ w∑(w)
9: end while

10: if ∃(Q,W ′) ∈ R then
11: R← R \ {(Q,W ′)} ∪ {(Q,W ′ ∪W)}
12: else
13: R← R ∪ {(Q,W)}
14: end if
15: end for
16: return R
17: end function

Case 4: Data produced for activities following the loop In this case, Q∗s of
activities which can be reached from the current loop l have to be checked whether they
contain a writer contained in the loop l. In the construction of Qs, this writer is replaced
with the collecting writer wl, which collects the data written in the loop. If a writer is
contained in a loop ln nested in l, the data of that writer is collected by wln . Nevertheless,
the data of wln has to be collected by wl. To create the collecting writer wl, we define
Qpostloop

s : Awhile × V → ℘(℘(QV)× ℘(A)). Qpostloop
s returns a set of tuples of queries and

writers to all of these queries. The writers returned are writing to variable elements read
by an activity after l. Algorithm 18 on the following page presents the implementation.
The algorithm iterates over all successors a of the loop (line 3). For each a, the algorithm
iterates over the result of Q∗s (line 4). If there exist writers in the loop l for the activity
a, they have to be handled (line 6ff.). Lines 7ff. ensure that collecting writers are used
where appropriate. The writers on the current set of queries Q are added to the result in
lines 10.

5.2 Treatment of Scopes

Recall from the introduction that the target application for this data flow analysis
algorithm restricts data flow into a fault handler of a split scope such that it may only

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 28

Algorithm 18 The function Qpostloop
s , which determines Qs(l, v) for a reader collecting

the data produced by the loop l

1: function Qpostloop
s (l,v)

2: R← ∅
3: for all a ∈ {a | ∃path(l, a) : a /∈ clan(l)} do
4: for all (Q,W) ∈ Q∗s(a, v) do
5: W ← W ∩ clan(l)
6: if W 6= ∅ then
7: while ∃w ∈ W : l(w) 6= l do
8: W ← W \ {w} ∪ w∑(w)
9: end while

10: if ∃(Q,W ′) ∈ R then
11: R← R \ {(Q,W ′)} ∪ {(Q,W ′ ∪W)}
12: else
13: R← R ∪ {(Q,W)}
14: end if
15: end if
16: end for
17: end for
18: return R
19: end function

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 29

come from the faulting activity. It is propagated at runtime via a coordinator using the
coordination protocols in [KL07]. writes◦ has been created to reflect that fact. Thus,
there is no additional special treatment for fault handlers needed.

For compensation handlers, the data needed in the compensation handler and written
outside the compensation handler has to be collected at the end of the belonging
scope [Kha07]. Thus, the writers have to be divided into two sets: Writers contained
and writers not contained in the compensation handler. This is comparable to the loop
cases 1 and 2, where data produced before and in the loop is distinguished. Since the
compensation handler itself does not iterate (and is not called multiple times), there is
no analogous case for loop case 3, where data produced in a previous iteration needs to
be collected. The compensation handler works on local copies of variables, therefore we
do not have to deal with data produced by the compensation handler for subsequent
activities, as it was the case in loop case 4.

To define the algorithms, we need the function ch : A → A∪ {⊥}, which returns the
activity a directly nested in the immediate enclosing compensation handler for the given
activity:

ch : a 7→


ach ∃(s, e, ach) ∈ HR : e ∈ Ecompensation , a ∈ clan(ach)∧

6∃ b : (s′, e′, a′) ∈ HR, e′ ∈ Ecompensation , a ∈ clan(a′),

|clan(a′)| < |clan(ach)|
⊥ otherwise

Data written outside a compensation handler and read inside is collected at the end
of the scope the compensation handler belongs to. This data is then stored by the BPEL
engine and made available to the compensation handler as soon as it is executed. If
the compensation handler is nested in a loop, only data written in the smallest loop
containing the handler has to be considered. All other data is already collected by the
collecting writers presented in the previous section.

The function Qprehandler
s : Ecompensation × V → ℘(℘(QV) × ℘(A)) is returning a set

of tuples of queries and writers to all of these queries. The writers returned write to
variable elements read in the given compensation handler. Algorithm 19 on the next
page presents the implementation. Line 4 merges the Q∗s of all activities nested in the
given compensation handler. Line 7 ensures that only writers not nested in the given
compensation handler are treated. If the compensation handler is nested in a loop, the
data of writers preceding the loop have already been collected during the handling of the
loop. Therefore, all writers outside the enclosing loop are removed (lines 8ff.). The writers
introduced by looping are also handled, therefore they get removed in line 11. Data can
still be written in loops executed before the end of the scope is reached. Therefore, the
collecting writers have to be used where appropriate (lines 12ff).

Algorithm 20 on page 31 presents the function Qhandler
s which is used to return Qs for

an activity nested in a compensation handler. Qhandler
s ensures that there are no writers

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 30

Algorithm 19 The function Qprehandler
s , which returns Qs(ch, v) for a new reader col-

lecting the data at the end of the scope where the compensation handler ch belongs
to

1: function Qprehandler
s (ch,v)

2: Let ach be the activity executed when the given compensation event occurs.
3: // (a′, ch, ach) ∈ HR
4: Qprehandler

s
′ ← Q∗,∪s (ach , v)

5: R← ∅
6: for all (Q,W ′) ∈ Qprehandler

s
′ do

7: W ′ ← W ′ \ clan(ach)
8: if l(ach) 6= ⊥ then
9: W ′ ← W ′ ∩ clan(l(ach))

10: end if
11: W ← {w |w ∈ W ′, path 6�(w, ach) = true}
12: while ∃w ∈ W : l(ach) 6= l(w) do
13: W ← W \ {w} ∪ {w∑(w)}
14: end while
15: R← R ∪ {(Q,W)}
16: end for
17: return R
18: end function

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 31

returned which are not part of the compensation handler (line 4). Lines 5ff. ensure that
collecting writers are used where appropriate.

Algorithm 20 The function Qhandler
s to determine Qs for activities nested in compensa-

tion handlers
1: function Qhandler

s (a,v)
2: R← ∅
3: for all (Q,W) ∈ Q∗s(a, v) do
4: W ← W ∩ clan(ch(a))
5: while ∃w ∈ W : l(w) ∈ clan(ch(a)) do
6: W ← W \ {w} ∪ w∑(w)
7: end while
8: if W 6= ∅ then
9: R← R ∪ {(Q,W)}

10: end if
11: end for
12: return R
13: end function

5.3 The Complete Algorithm

Now, the complete function Qs can be defined as presented in Algorithm 21. That
algorithm uses the function DetermineDirectNesting (Algorithm 22 on the following
page) whether a’s directly enclosing element, if only loops and compensation handlers
are regarded, is a loop or a compensation handler.

Algorithm 21 The function Qs

1: function Qs(a,v)
2: (nestedInCH , nestedInLoop)← DetermineDirectNesting(a)
3: if nestedInCH then
4: return Qhandler

s (a,v)
5: else if nestedInLoop then
6: return Q�

s (a,v)
7: else
8: return Q∗s(a, v)
9: end if

10: end function

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 32

Algorithm 22 Determination of the direct enclosing element

1: function DetermineDirectNesting(a)
2: // Check whether a compensation handler or a loop is directly enclosing a
3: nestedInCH ← false

4: nestedInLoop ← false

5: ach ← ch(a)
6: l← l(a)
7: if ach ∧ l 6= ⊥ then
8: if |clan(ach)| > |clan(l)| then
9: nestedInCH ← true

10: else
11: nestedInLoop ← true

12: end if
13: else if ach 6= ⊥ then
14: nestedInCH ← true

15: else if l 6= ⊥ then
16: nestedInLoop ← true

17: end if
18: return (nestedInCh, nestedInLoop)
19: end function

6 Conclusion and Future Work

In this paper, we strongly motivated that algorithms doing data-flow analysis on BPEL
processes should be aware of dead path elimination. Our presented algorithm allows for
determining def-use edges in BPEL processes, where dead path elimination is activated.
We showed how the join conditions can be used to reduce the amount of possible writers
for an activity. The presented algorithm is extensible to support arbitrary structured
activities, which is part of our ongoing work. Of particular interest are fault handlers
designed for catching a ‘joinFailure’ which is thrown if dead path elimination is not
active. Thus, future work will provide a complete algorithm to determine def-use edges
in arbitrary BPEL processes.

The algorithm executed a “Reaching Definitions Analysis” on a BPEL process graph.
One aspect in our ongoing work is to modify the lattice to support “Available Expressions
Analysis”. Another aspect is to investigate whether our treatment of join conditions
can be used to handle the reversed flow graph to support the “Very-busy Expressions
Analysis” and the “Life-variable Analysis”.

Acknowledgments. We thank Steffen Keul, Michele Mancioppi, Daniel Martin,
Ralph Mietzner, Simon Moser, Tobias Unger, Jussi Vanhatalo, Matthias Wieland, Andrea
Wöhr and Daniel Wutke for the discussions we had on the subject and their valuable
feedback. Oliver Kopp is funded by the German Federal Ministry of Education and

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 33

Research (project Tools4BPEL, project number 01ISE08).

References

[ALSU06] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 2006.

[BFG05] M. Benedikt, W. Fan, F. Geerts. Xpath satisfiability in the presence of dtds.
In PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 25–36. ACM
Press, New York, NY, USA, 2005. doi:10.1145/1065167.1065172.

[BK05] F. van Breugel, M. Koshkina. Dead-path-elimination in bpel4ws. acsd,
00:192–201, 2005. doi:10.1109/ACSD.2005.11.

[CC76] P. Cousot, R. Cousot. Static determination of dynamic properties of programs.
In 2nd International Symposium on Programming, Paris, France. 1976.

[CDG+03] F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business process execution
language for web services version 1.1, 2003.

[CKLW03] F. Curbera, R. Khalaf, F. Leymann, S. Weerawarana. Exception handling in
the BPEL4WS language. In W. M. P. van der Aalst, A. H. M. ter Hofstede,
M. Weske, editors, BPM 2003, volume 2678 of Lecture Notes in Computer
Science, pp. 276–290. Springer, 2003.

[Hei03] T. Heidinger. Statische Analyse von BPEL4WS-Prozemodellen, 2003. Studi-
enarbeit, Humboldt-Universität zu Berlin.

[Kha07] R. Khalaf. Note on syntactic details of split bpel-d business processes.
Technical Report Computer Science 2007/02, University of Stuttgart, Faculty
of Computer Science, Electrical Engineering, and Information Technology,
Germany, University of Stuttgart, Institute of Architecture of Application
Systems, 2007.

[KKL07] R. Khalaf, O. Kopp, F. Leymann. Maintaining data dependencies across
bpel process fragments. In B. J. Krämer, K.-J. Lin, P. Narasimhan, editors,
Service-Oriented Computing - ICSOC 2007, volume 4749 of LNCS, pp. 207–
219. Springer, 2007. doi:10.1007/978-3-540-74974-5 17.

[KL06] R. Khalaf, F. Leymann. Role-based decomposition of business processes
using BPEL. In ICWS 2006, pp. 770–780. IEEE Computer Society, 2006.
doi:10.1109/ICWS.2006.56.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 34

[KL07] R. Khalaf, F. Leymann. Coordination protocols for split BPEL loops and
scopes. Technical Report 2007/01, University of Stuttgart, Faculty of Com-
puter Science, Electrical Engineering, and Information Technology, Germany,
University of Stuttgart, Institute of Architecture of Application Systems,
2007.

[LA94] F. Leymann, W. Altenhuber. Managing business processes as an information
resource. IBM Systems Journal, 33(2):326–348, 1994.

[LMP97] J. Lee, S. P. Midkiff, D. A. Padua. Concurrent static single assignment form
and constant propagation for explicitly parallel programs. In Proceedings of
the 10th International Workshop on Languages and Compilers for Parallel
Computing, volume 1366 of Lecture Notes in Computer Science, pp. 114–130.
Springer, 1997.

[LR00] F. Leymann, D. Roller. Production Workflow – Concepts and Techniques.
Prentice Hall PTR, 2000.

[MMG+07] S. Moser, A. Martens, K. Görlach, W. Amme, A. Godlinski. Advanced
Verification of Distributed WS-BPEL Business Processes Incorporating CSSA-
based Data Flow Analysis. In Proceedings of IEEE International Conference
on Services Computing (SCC 2007). 2007.

[Muc97] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[NNH04] F. Nielson, H. R. Nielson, C. Hankin. Principles of Program Analysis.
Springer, 2004.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0 –
OASIS Standard. Technical report, Organization for the Advancement of
Structured Information Standards (OASIS), 2007.

[OVA+05] C. Ouyang, H. M. W. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
A. H. M. ter Hofstede. Formal semantics and analysis of control flow in
WS-BPEL (revised version), 2005.

[W3C99] W3C. XML path language (XPath) version 1.0. W3C Recommendation,
1999.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 35

A Example

In this section, we present an example illustrating the data-flow analysis. Figure 6
presents an example ordering process. The process supports one item per time and
charges the amount in four rates. Gold customers get 10% discount, Silver customers get
5% discount and all others any discount. After receiving the order (A) and calculating
the appropriate discount (C, D or neither), the order status is updated (E), the order
is processed (F), the customer account is billed in 4 weekly installments (while loop W
with G,H,I) and a response is sent back acknowledging the order and stating the discount
received (H).

orderInfo

numPayments

response

paymentInfo

orderInfo.status==”silver”orderInfo.status==”gold”

orderInfo.orderStatus=”price calculated”

response

response.text += “10% discount”
paymentInfo.amount =

paymentInfo.amount*0.9

response.text += “5% discount”
paymentInfo.amount =

paymentInfo.amount*0.95

paymentInfo.amount = orderInfo.itemPrice/4
paymentInfo.accountNumber = orderInfo.accountNumber

numPayments = 0
response.text = “Dear customer, ... ”

orderInfo

numPayments+=1

7 days

processPayment(paymentInfo)

numPayments<4

A

B

C

E

D

G

H

I

W

queueOrder(orderInfo)F

J

Figure 6: Example process. The upper left corner presents the used variables.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 36

Table 4 presents the reaching definition analysis results. The first two columns contain
the activity a and the current variable element ve. The next four columns contain the
value of poss(a, ve), dis(a, ve), inv(a, ve), mbd(a, ve). The index on a in the first column
denotes whether it is “poss◦” or “poss•”.

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

A◦ numPayments ∅ ∅ ∅ false

A◦ orderInfo.accountNumber ∅ ∅ ∅ false

A◦ orderInfo.itemPrice ∅ ∅ ∅ false

A◦ orderInfo.orderStatus ∅ ∅ ∅ false

A◦ oderInfo ∅ ∅ ∅ false

A◦ paymentInfo.accountNumber ∅ ∅ ∅ false

A◦ paymentInfo.amount ∅ ∅ ∅ false

A◦ paymentInfo ∅ ∅ ∅ false

A◦ response.text ∅ ∅ ∅ false

A◦ response ∅ ∅ ∅ false

A• numPayments ∅ ∅ ∅ false

A• orderInfo.accountNumber {A} ∅ ∅ false

A• orderInfo.itemPrice {A} ∅ ∅ false

A• orderInfo.orderStatus {A} ∅ ∅ false

A• orderInfo {A} ∅ ∅ false

A• paymentInfo.accountNumber ∅ ∅ ∅ false

A• paymentInfo.amount ∅ ∅ ∅ false

A• paymentInfo ∅ ∅ ∅ false

A• response.text ∅ ∅ ∅ false

A• response ∅ ∅ ∅ false

Continued on next page

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 37

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

B◦ numPayments ∅ ∅ ∅ false

B◦ orderInfo.accountNumber {A} ∅ ∅ false

B◦ orderInfo.itemPrice {A} ∅ ∅ false

B◦ orderInfo.orderStatus {A} ∅ ∅ false

B◦ orderInfo {A} ∅ ∅ false

B◦ paymentInfo.accountNumber ∅ ∅ ∅ false

B◦ paymentInfo.amount ∅ ∅ ∅ false

B◦ paymentInfo ∅ ∅ ∅ false

B◦ response.text ∅ ∅ ∅ false

B◦ response ∅ ∅ ∅ false

B• numPayments {B} ∅ ∅ false

B• orderInfo.accountNumber {A} ∅ ∅ false

B• orderInfo.itemPrice {A} ∅ ∅ false

B• orderInfo.orderStatus {A} ∅ ∅ false

B• orderInfo {A} ∅ ∅ false

B• paymentInfo.accountNumber {B} ∅ ∅ false

B• paymentInfo.amount {B} ∅ ∅ false

B• paymentInfo ∅ ∅ ∅ false

B• response.text {B} ∅ ∅ false

B• response ∅ ∅ ∅ false

C◦ numPayments {B} ∅ ∅ true

C◦ orderInfo.accountNumber {A} ∅ ∅ true

C◦ orderInfo.itemPrice {A} ∅ ∅ true

C◦ orderInfo.orderStatus {A} ∅ ∅ true

C◦ orderInfo {A} ∅ ∅ true

C◦ paymentInfo.accountNumber {B} ∅ ∅ true

C◦ paymentInfo.amount {B} ∅ ∅ true

C◦ paymentInfo ∅ ∅ ∅ true

C◦ response.text {B} ∅ ∅ true

C◦ response ∅ ∅ ∅ true

Continued on next page

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 38

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

C• numPayments {B} ∅ ∅ true

C• orderInfo.accountNumber {A} ∅ ∅ true

C• orderInfo.itemPrice {A} ∅ ∅ true

C• orderInfo.orderStatus {A} ∅ ∅ true

C• orderInfo {A} ∅ ∅ true

C• paymentInfo.accountNumber {B} ∅ ∅ true

C• paymentInfo.amount {C} {B} ∅ false4

C• paymentInfo ∅ ∅ ∅ true

C• response.text {C} {B} ∅ false4

C• response ∅ ∅ ∅ true

D◦ numPayments {B} ∅ ∅ true

D◦ orderInfo.accountNumber {A} ∅ ∅ true

D◦ orderInfo.itemPrice {A} ∅ ∅ true

D◦ orderInfo.orderStatus {A} ∅ ∅ true

D◦ orderInfo {A} ∅ ∅ true

D◦ paymentInfo.accountNumber {B} ∅ ∅ true

D◦ paymentInfo.amount {B} ∅ ∅ true

D◦ paymentInfo ∅ ∅ ∅ true

D◦ response.text {B} ∅ ∅ true

D◦ response ∅ ∅ ∅ true

D• numPayments {B} ∅ ∅ true

D• orderInfo.accountNumber {A} ∅ ∅ true

D• orderInfo.itemPrice {A} ∅ ∅ true

D• orderInfo.orderStatus {A} ∅ ∅ true

D• orderInfo {A} ∅ ∅ true

D• paymentInfo.accountNumber {B} ∅ ∅ true

D• paymentInfo.amount {D} {B} ∅ false

D• paymentInfo ∅ ∅ ∅ true

D• response.text {D} {B} ∅ false

D• response ∅ ∅ ∅ true

Continued on next page

4The existence of a transition condition between C and a succeeding write is reset to false.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 39

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

E◦ numPayments {B} ∅ ∅ false5

E◦ orderInfo.accountNumber {A} ∅ ∅ false

E◦ orderInfo.itemPrice {A} ∅ ∅ false

E◦ orderInfo.orderStatus {A} ∅ ∅ false

E◦ orderInfo {A} ∅ ∅ false

E◦ paymentInfo.accountNumber {B} ∅ ∅ false

E◦ paymentInfo.amount {B,C,D} {B}6 ∅ false

E◦ paymentInfo ∅ ∅ ∅ false

E◦ response.text {B,C,D} {B} ∅ false

E◦ response ∅ ∅ ∅ false

E• numPayments {B} ∅ ∅ false

E• orderInfo.accountNumber {A} ∅ ∅ false

E• orderInfo.itemPrice {A} ∅ ∅ false

E• orderInfo.orderStatus {E} ∅ {A} false

E• orderInfo {A} ∅ ∅ false

E• paymentInfo.accountNumber {B} ∅ ∅ false

E• paymentInfo.amount {B,C,D} {B} ∅ false

E• paymentInfo ∅ ∅ ∅ false

E• response.text {B,C,D} {B} ∅ false

E• response ∅ ∅ ∅ false

Continued on next page

5mbd•(B, numPayments)=false, mbd•(C, numPayments)=true, mbd•(D, numPayments)=true.
Thus ¬[[E, numPayments]]jc¬mbd•

= ¬(true ∨ false ∨ false) = ¬(true) = false. Thus
mbd◦(E, numPayments) = false.

6B appears both as possible and disabled writer. It was disabled by C and D, but is still a valid
writer if the execution directly reaches E and neither C or E are executed.

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 40

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

F◦ numPayments {B} ∅ ∅ false

F◦ orderInfo.accountNumber {A} ∅ ∅ false

F◦ orderInfo.itemPrice {A} ∅ ∅ false

F◦ orderInfo.orderStatus {E} ∅ {A} false

F◦ orderInfo {A} ∅ ∅ false

F◦ paymentInfo.accountNumber {B} ∅ ∅ false

F◦ paymentInfo.amount {B,C,D} {B} ∅ false

F◦ paymentInfo ∅ ∅ ∅ false

F◦ response.text {B,C,D} {B} ∅ false

F◦ response ∅ ∅ ∅ false

F• numPayments {B} ∅ ∅ false

F• orderInfo.accountNumber {A} ∅ ∅ false

F• orderInfo.itemPrice {A} ∅ ∅ false

F• orderInfo.orderStatus {E} ∅ {A} false

F• orderInfo {A} ∅ ∅ false

F• paymentInfo.accountNumber {B} ∅ ∅ false

F• paymentInfo.amount {B,C,D} {B} ∅ false

F• paymentInfo ∅ ∅ ∅ false

F• response.text {B,C,D} {B} ∅ false

F• response ∅ ∅ ∅ false

G◦ numPayments {B,H} ∅ {B} false

G◦ orderInfo.accountNumber {A} ∅ ∅ false

G◦ orderInfo.itemPrice {A} ∅ ∅ false

G◦ orderInfo.orderStatus {E} ∅ {A} false

G◦ orderInfo {A} ∅ ∅ false

G◦ paymentInfo.accountNumber {B} ∅ ∅ false

G◦ paymentInfo.amount {B,C,D} {B} ∅ false

G◦ paymentInfo ∅ ∅ ∅ false

G◦ response.text {B,C,D} {B} ∅ false

G◦ response ∅ ∅ ∅ false

Continued on next page

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 41

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

G• numPayments {B,H} ∅ {B} false

G• orderInfo.accountNumber {A} ∅ ∅ false

G• orderInfo.itemPrice {A} ∅ ∅ false

G• orderInfo.orderStatus {E} ∅ {A} false

G• orderInfo {A} ∅ ∅ false

G• paymentInfo.accountNumber {B} ∅ ∅ false

G• paymentInfo.amount {B,C,D} {B} ∅ false

G• paymentInfo ∅ ∅ ∅ false

G• response.text {B,C,D} {B} ∅ false

G• response ∅ ∅ ∅ false

H◦ numPayments {B,H} ∅ {B} false

H◦ orderInfo.accountNumber {A} ∅ ∅ false

H◦ orderInfo.itemPrice {A} ∅ ∅ false

H◦ orderInfo.orderStatus {E} ∅ {A} false

H◦ orderInfo {A} ∅ ∅ false

H◦ paymentInfo.accountNumber {B} ∅ ∅ false

H◦ paymentInfo.amount {B,C,D} {B} ∅ false

H◦ paymentInfo ∅ ∅ ∅ false

H◦ response.text {B,C,D} {B} ∅ false

H◦ response ∅ ∅ ∅ false

H• numPayments {H} ∅ {B} false

H• orderInfo.accountNumber {A} ∅ ∅ false

H• orderInfo.itemPrice {A} ∅ ∅ false

H• orderInfo.orderStatus {E} ∅ {A} false

H• orderInfo {A} ∅ ∅ false

H• paymentInfo.accountNumber {B} ∅ ∅ false

H• paymentInfo.amount {B,C,D} {B} ∅ false

H• paymentInfo ∅ ∅ ∅ false

H• response.text {B,C,D} {B} ∅ false

H• response ∅ ∅ ∅ false

Continued on next page

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 42

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

I◦ numPayments {H} ∅ {B} false

I◦ orderInfo.accountNumber {A} ∅ ∅ false

I◦ orderInfo.itemPrice {A} ∅ ∅ false

I◦ orderInfo.orderStatus {E} ∅ {A} false

I◦ orderInfo {A} ∅ ∅ false

I◦ paymentInfo.accountNumber {B} ∅ ∅ false

I◦ paymentInfo.amount {B,C,D} {B} ∅ false

I◦ paymentInfo ∅ ∅ ∅ false

I◦ response.text {B,C,D} {B} ∅ false

I◦ response ∅ ∅ ∅ false

I• numPayments {H} ∅ {B} false

I• orderInfo.accountNumber {A} ∅ ∅ false

I• orderInfo.itemPrice {A} ∅ ∅ false

I• orderInfo.orderStatus {E} ∅ {A} false

I• orderInfo {A} ∅ ∅ false

I• paymentInfo.accountNumber {B} ∅ ∅ false

I• paymentInfo.amount {B,C,D} {B} ∅ false

I• paymentInfo ∅ ∅ ∅ false

I• response.text {B,C,D} {B} ∅ false

I• response ∅ ∅ ∅ false

J◦ numPayments {B} ∅ ∅ false

J◦ orderInfo.accountNumber {A} ∅ ∅ false

J◦ orderInfo.itemPrice {A} ∅ ∅ false

J◦ orderInfo.orderStatus {E} ∅ {A} false

J◦ orderInfo {A} ∅ ∅ false

J◦ paymentInfo.accountNumber {B} ∅ ∅ false

J◦ paymentInfo.amount {B,C,D} {B} ∅ false

J◦ paymentInfo ∅ ∅ ∅ false

J◦ response.text {B,C,D} {B} ∅ false

J◦ response ∅ ∅ ∅ false

Continued on next page

Reaching Definitions Analysis Respecting Dead Path Elimination Semantics 43

Table 4: Analysis result

Activity Variable element possible
writers

disabled
writers

invalid
writers

may be
dead

J• numPayments {B} ∅ ∅ false

J• orderInfo.accountNumber {A} ∅ ∅ false

J• orderInfo.itemPrice {A} ∅ ∅ false

J• orderInfo.orderStatus {E} ∅ {A} false

J• orderInfo {A} ∅ ∅ false

J• paymentInfo.accountNumber {B} ∅ ∅ false

J• paymentInfo.amount {B,C,D} {B} ∅ false

J• paymentInfo ∅ ∅ ∅ false

J• response.text {B,C,D} {B} ∅ false

J• response ∅ ∅ ∅ false

W◦
7 numPayments {B,H}8 ∅ {B} false

W◦ orderInfo.accountNumber {A} ∅ ∅ false

W◦ orderInfo.itemPrice {A} ∅ ∅ false

W◦ orderInfo.orderStatus {E} ∅ {A} false

W◦ orderInfo {A} ∅ ∅ false

W◦ paymentInfo.accountNumber {B} ∅ ∅ false

W◦ paymentInfo.amount {B,C,D} {B} ∅ false

W◦ paymentInfo ∅ ∅ ∅ false

W◦ response.text {B,C,D} {B} ∅ false

W◦ response ∅ ∅ ∅ false

7The results for W◦ and W• are equal. The flow activity directly nested in W is not explicitly listed.
The values for that activity are also equal.

8B appears both as possible and disabled writer. This is valid: If the while loop is never executed, B
is a possible writer. If the while loop is executed, it gets disabled by H

	Introduction
	The Challenges of DPE for Data-flow Analysis
	Related Work
	The Algorithm
	Handling Complex Types
	Abstract Interpretation of a BPEL Process
	Depth-first Search Covering All Possible Executions
	Joining the Information of Incoming Links
	Handling Basic Activities
	Handling a Flow Activity
	Handling While Activities
	Handling Scope Activities
	Handling Links
	Creating Def-Use Edges

	Creating Qs
	Treatment of Loops
	Treatment of Scopes
	The Complete Algorithm

	Conclusion and Future Work
	Example

