
Report 2008/01 Institute of Architecture of Application Systems (IAAS)

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

Using Variability Descriptors to
Describe Customizable SaaS

Application Templates

Ralph Mietzner

Technischer Bericht (Report) 2008/01
January 18, 2008

Institut für Architektur von
Anwendungssystemen

 Universitätsstr. 38
70569 Stuttgart
Germany

CR: D.2.1, H.4.1

 Page 1 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

Summary
Customizable applications play an important role in software as a service (SaaS)
scenarios. SaaS application providers want to exploit economies of scale by
offering the same basic application to many customers. As customers have
different requirements for the same type of application, SaaS vendors must offer
so-called application templates that can be customized by their customers to be
tailored exactly to their needs. Therefore variability points (i.e., points in an
application template that can be customized) need to be made explicit and
constraints for these variability points need to be specified. We introduce
variability descriptors as a means to describe variability points for SaaS
application templates independent of the artifacts (such as GUI components,
workflows, configuration files, etc.) that make up the application.

 Page 2 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

1. Introduction

Software as a Service (SaaS) is a new delivery model for software. Software in a
Software as a Service is hosted at a SaaS provider’s data center and accessed by
customers via the Internet. The advantage of this model for the customer over
traditional “on premise” software (i.e., software that is run and maintained at the
customer’s own data center) is that the customer that wants to use the software
does not need to maintain a data center but can outsource the whole application
to a provider. The customer therefore does not need to make big initial
investments in order to buy the necessary hardware and middleware
infrastructure to run the application. From a customer’s point of view the
application can be used “on demand”. The customer only pays for the application
on a pay-per-use basis, i.e., only when he really needs the application.
The provider, however can exploit economies of scale by offering the same
software to many customers and thus optimizing data center usage. Additionally,
the required middleware and hardware infrastructure can be used to host
different applications thus further increasing the utilization of the IT
infrastructure. From a provider’s point of view the resulting compute model is
called “utility computing”. Similar to a traditional utility, such as a water or
electricity provider that provide water or electricity on demand a SaaS provider
provides applications on demand. Users can subscribe and unsubscribe from
these applications as they need them.
In the Application Service Provider (ASP) [20] model, one application is run for
one customer on a dedicated server and middleware stack at an application
service provider. The customer accesses the application via a network such as the
Internet. Most of the time the applications, that are run in an ASP model are not
even made to be accessed via the Internet in the first place, resulting in a lot of
development effort to make them Web accessible. Since one application is run for
one customer on a dedicated IT-Infrastructure ASPs face the same problems as
traditional on-premise software. The underlying IT-Infrastructure must be
provisioned for the peak load of that one customer resulting in a lot of resource
overhead for the times where peak load is not reached. Additionally, the addition
of new customers that want to use the same application results in the set up of a
new instance of the application including the corresponding IT-infrastructure.
Since the SaaS provider runs the same application for several customers on the
same IT-infrastructure, the ASP model now scales. SaaS applications are
applications that have been developed following a so-called multi-tenant
architecture. Multi-tenant architecture means that several tenants (customers)
can access the same application instance but the application behaves for each
tenant as if it was a separate instance of that application. Thus two tenants A
and B that are using the same SaaS application do not interfere with each other,
especially tenant A cannot access the data from tenant B and vice versa. Using
such a multi-tenant architecture results in applications where new tenants can
be added and removed easily as they subscribe and unsubscribe to the
application.
However, as different tenants have different requirements for an application the
software must be configurable on a per-tenant basis. A SaaS software developer

 Page 3 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

therefore must annotate the software to be offered as a service with points that
mark where the software can be customized by a tenant. We call these points,
variability points, similar to those variability points (or variation points) that are
introduced in software product line engineering. We call an application, that has
been annotated with variability points, an application template. Tenants, can
now start from that application template, customize it (i.e., bind the variability
points) and then the application is run on the SaaS provider’s infrastructure. A
customized application template is called an application solution. Application
solutions can be deployed in the data center of a SaaS provider. In this report we
will focus on applications that are based on a service oriented architecture using
Web service and workflow technology. In particular we consider applications that
consist of a set of Web services that have been developed in any programming
language. These Web services are orchestrated into business processes using WS-
BPEL [11], the standard for the modeling and execution of business processes in
the Web service world. In order to include people in the processes WS-Human
Task [3] and BPEl4People [2] are used. Additionally the applications we consider
have a user interface that is specified in the form of portlets and (X)HTML pages.
Figure 1 illustrates the notion of templates and solutions, as well as the artifacts
that we consider to be customizable in such an application in this report, namely
the GUI artifacts, the workflows and configuration data for the services..

Figure 1: Transforming an application Template into a solution by

customizing it

In this report we introduce a model and XML-based language to describe
variability points in application templates, so-called variability descriptors. We
describe the requirements for such a variability descriptor as well as the relation
to software product line engineering.

 Page 4 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

2. Related Work and Motivation

[5] introduce four SaaS maturity levels, relating to the fact on how well the
application scales to many customers. In level 0 an application is specifically run
for one customer at a SaaS provider. This level corresponds to the traditional
ASP level. Starting from level 1 the SaaS application is customizable via
configuration on a per-tenant basis but still in level 1 one instance of the software
serves only one customer. In level 2 only a single instance of the SaaS application
serves multiple tenants. Separate configuration metadata is used to configure the
application to the need of the particular tenants. In order to achieve level 3, the
SaaS application is developed as a single instance multi-tenant application and
several instances are run in a load-balanced farm. In level 3 load is balanced via
a tenant-load-balancer that spreads the load over the various servers the
application runs on.

In the field of software engineering, software reuse is important topic. Software
product families as one possibility for software reuse [12], [13] have been under
extensive research in the software engineering community.
Variation points have been introduced in [6] and are one of the key concepts for
software product lines to express variability. Variation points, often also called
variability points or points of variability, allow the specification of points in a
software design that can be customized in order to create new product line
members. This is a similar problem to the problem we face in customizable SaaS
applications, where different tenants can create different “solution versions” of an
application template by filling the variability points offered by this template.

WS-BPEL employs a similar concept to variability points in its abstract
processes. Abstract processes allow the specification of so-called “opaque tokens”.
The notion of opaque tokens in abstract BPEL is very similar to the notion of
variability points in product family engineering. These opaque tokens are
variability points that are left open by explicitly marking them as opaque or
implicitly by omitting them. Opaque tokens need to be defined (“bound”) before
the process becomes executable and can be deployed in a BPEL engine. In BPEL
the “binding” of opaque tokens and the refinement of abstract processes into
executable processes is called executable completion.

The BPEL specification defines two profiles for abstract processes. The first
profile, the profile for observable behavior is intended to describe the
communication of a service (that can for example be a BPEL process) with the
outside. The second profile, the template profile describes a template process
with certain points of variability. Both profiles differ in the locations, where
opaque tokens are permitted. Furthermore different kinds of modifications are
permitted during executable completion of the different abstract profiles. For
example, during executable completion of an abstract process of the observable
behavior profile new activities can be added everywhere where BPEL permits it,
whereas during the executable completion of a template profile abstract process
new activities can only be added as replacement for previously defined opaque

 Page 5 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

activities. Opaque tokens are a way in BPEL to specify variability points,
however they lack fundamental capabilities needed in a SaaS scenario. It is for
example not possible to specify dependencies between opaque tokens or to specify
alternative values for an opaque token. Dependencies between variability points
are an important mechanism to specify complex configuration possibilities in a
product line [7].
In related work the Pesoa project coined the term “process family engineering”
for families of business processes and introduced a notation how to model these
families in BPMN [15]. Flexible Workflows and workflow variants have been
extensively researched within the context of run-time process variants [18],
configurable workflow models in [1] and configurable EPCs (C-EPCs) in [14]. An
XML exchange format to express these C-EPCs is introduced in [9]. In [8] a
formal model to define customizations for BPEL processes is introduced. Our
approach differs from these approaches as it is not focused on process models but
on the documents that make up an application. Our approach therefore natively
supports not only processes but other parts of an application such as
configuration files, interface descriptions and deployment descriptors. Compared
to [15] and C-EPCS where alternatives are modeled in BPMN or EPCs, we
introduce variability points on the implementation level. Variabilities on the
implementation level (in our case BPEL) are necessary to generate applications
that can be directly deployed in corresponding middleware (i.e., BPEL engines).
Furthermore we introduce a concept how the introduced variability descriptors
can be mapped to a customization process model. An instance of this
customization process model can then be used by a customer to generate a new
solution out of the template.
The Reusable Asset Specification (RAS) [10] defines a model and format to
describe reusable assets including variability points similar to the one we present
here, however the notation is fairly generic and therefore is not directly suitable
for the specification of SaaS application templates. Furthermore, it is more
geared towards design-time rather than customization for SaaS scenarios.
However, the variability point description element in a RAS manifest file
contains an optional reference attribute. “The optional reference attribute points
to an external document that could further explain the variability point.” [10].
The variability descriptors described in this report can be integrated into RAS
using this reference mechanism.

Schematron [19] is a language that can be used to specify constraints on XML
documents that go further than those that can be introduced with XML Schema.
Schematron could be used to describe points of variability for XML documents.
However, Schematron does not allow to specify dependencies between the single
constraints and the approach is limited to XML files while our approach offers
dependencies on variabilities and introduces extension points to deal with non-
XML files as well.

3. Introductory Example

TaaS (Travel as a Service) is a travel agency that offers a travel booking service
in a SaaS business model to small and medium sized enterprises. The travel

 Page 6 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

booking service contains a WS-BPEL booking process that is essentially
comprised of the following simplified steps.

1. The user submits a travel request via a web front-end
2. A request-for-approval is sent via e-mail to the manager of the user
3. Upon successful approval the trip is booked via a third-party travel agency
4. The itinerary is sent to the user

Travel Request Process

Template

Receive Travel Details

Invoke Travel Agency

Send Out Itinerary

Travel Request Process
Solution for Company A

Receive Travel Details

Always Ask Manager for
Approval

Invoke Travel Agency

Send Out Itinerary

Travel Request Process
Solution Company B

Receive Travel Details

Invoke Travel Agency

Send Out Itinerary

Travel Request Process
Solution Company Evil

Receive Travel Details

Invoke Travel Agency

Send Out Itinerary

Charge Customer

or

orAsk Manager for Approval if a
certain price threshold is

reached

Customization

Do nothing

Specify the threshold

Always Ask Manager for
Approval

Figure 2: Taas Travel Request Process Template and possible derived

Solutions

The requirements for such a process might be quite different for different
companies. One company for example needs approval by a manager only if the
travel costs exceed a certain sum, while another company permits its employees
to book any trip while others always need manager approval. However, all these
different processes can be derived from the same basic abstract application
template by defining concrete values for variability points offered in the
template.
Figure 2 shows the Travel Request Process template including a variability point
at the second activity that allows to either specify that nothing is done here or
that the manager always needs to confirm the travel request or that a certain
price threshold is needed for manager confirmation. In case the manager
approval is needed after a certain threshold the threshold can be specified. As the

 Page 7 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

example shows one decision at a variability point might trigger other decisions.
Figure 2 also shows different solutions for the template. Whereas the first two
solutions (company A and company B) are valid customizations, the third
solution (company Evil) is an invalid customization since the process document
has been modified at a location where no variability point is present.
Customers that want to use the travel booking service for their enterprise can
register over the web for the service. They are then guided through the
customization process by a wizard, after customization the travel booking service
the created solution specific for that company is automatically deployed in the
TaaS data center. We show in section 6 how this scenario can be specified with
the variability descriptors we introduce in this report.

4. Variability Descriptors

Derived from [4],[12],[7],[15] and the example above we capture the following
requirements for variability points:

1. Explicitly mark a variability point in order to tell the customizer where
customization is needed and allowed.

2. Describe constraints for a variability point. Constraints specify allowed
values for the variability point.

3. Describe dependencies between two variability points in order to allow the
specification of an order in which variability points need to be bound.
Furthermore conditions must be described that allow to activate and
deactivate certain possible values for a variability point dependent on the
values filled in during the binding of another variability point.

A straightforward means to define variability descriptors would be to address
these requirements as extensions directly in the files making up the application.
For example, one could add variability points via opaque tokens and extensions
in a BPEL file. However, our approach is to provide a separate variability-
descriptor XML document that describes the variability points and their
properties and points into the file to be customized. The advantage of the second
approach is that for different customers, different variability descriptors can be
introduced. For example certain alternatives might be only allowed for premium
customers.
Similar to WS-Policy [16] where policies can be provided as a separated WS-
Policy Attachment document we attach a variability descriptor to a SaaS
application. This approach also allows variability attachments to be attached to
documents and programming languages that have not been developed with
extensibility in mind and that do not allow the specification of variability
descriptors in their own language. Additionally using an external variability
descriptor allows describing variability point dependencies for variability points
in different documents of different types. For example one can describe a
variability point in a BPEL file where the customization has impact on a
variability point in a deployment descriptor file for that BPEL process.

4.1 Basic Elements of a Variability Descriptor

The variability descriptor consists of a set of variability points and dependencies.
A variability point describes a single variability point including locators that

 Page 8 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

point into documents and possible values and restrictions for the binding of this
variability point. In the dependency section of the variability descriptor the
dependencies between the variability points declared in the variability descriptor
are specified. Figure 3 shows the basic elements of a variability descriptor. The
XML-Schema for the variability descriptor document can be found in Appendix A.
An XML document, describing a complete variability descriptor is shown in
Section 6.

Figure 3: Sample Application artifacts and basic elements of a variability
descriptor

The top-level element variability descriptor is serialized to XML as shown in
Listing 1. The variabilityDescriptor element is the top-level element of the
variability descriptor document.

Attributes:
The optional expressionLanguage attribute defines the language in which
expressions (such as those used for locators or expression alternatives) are
specified. We use the mechanism used in BPEL [11] to identify these languages
via a URI.
The default URI is urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0 denoting
that XPath is used as the expression language. Individual elements can overwrite
the expressionLanguage specified in the top-level variabilityDescriptor element.
The mandatory targetNamespace attribute defines the namespace for which this
variability document is declared.

Elements:
The variability descriptor element contains two sub-elements variabilityPoints
and dependencies that describe a list of variability points and dependencies
respectively. The variabilityPoints element must contain at least one

 Page 9 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

variabilityPoint element whereas the dependencies element can also contain
zero dependency elements.

<?xml version="1.0" encoding="UTF-8"?>
<variabilityDescriptor
 xmlns="http://www.iaas.uni-stuttgart.de/schemas/VD"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.iaas.uni-stuttgart.de/schemas/VD VD.xsd"
 expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"
 targetNamespace="http://www.iaas.uni-stuttgart.de/schemas/taasVD”>
 <variabilityPoints>
 <variabilityPoint name="VP1">
 …
 </variabilityPoint>
 <variabilityPoint name="VP2">
 …
 </variabilityPoint>
 </variabilityPoints>
 <dependencies>
 <dependency>
 …
 </dependency>
 </dependencies>
</variabilityDescriptor>

Listing 1: XML representation of the variability descriptor
element

4.2 Variability Points

A variability point element describes a variability point. It consists of a set of
locators that point into locations in a document where the variability point is
meant to be. The second part of the variability point declares the possible values
that are allowed to fill the variability point. We call these the alternatives.
Listing 2 shows the XML representation of a variability point element.

Attributes:
The variability point element has one mandatory attribute, the name attribute.
The name attribute uniquely identifies a variability point within the namespace of
the variability descriptor it is declared in. Therefore two variability points
declared in the same variability descriptor cannot have the same name.
Corresponding tooling must enforce this.

Elements:
A variability point element has three sub-elements:
An optional import element containing an expression. The expression points to a
variability point declaration in another variability descriptor document. The
import element denotes a textual inclusion of the variability point the expression
points to. The import element has one attribute “expressionLanguage” that can be
used to overwrite the expression language set by the top-level variability

 Page 10 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

descriptor document. For example an XPath expression (including the document()
function introduced in XSLT [17]) can be used to point to a variability point
declaration in another variability descriptor document. In case a variability point
is imported via the import element, the locators and variability elements of the
variability point extend the imported variability point.

A mandatory locators element representing a list of locators. The locators

 mandatory alternatives element representing a list of alternative values for

4.3 Locators

ocators describe how a variability descriptor is attached to a variability point. A

Attributes:
 element has one optional attribute: expressionLanguage. The

element can have zero or more locator sub-elements. In case the import element
is omitted for a variability point it must have at least one locator specified.

A
that variability point. The alternatives element can contain zero or more
alternative elements representing values that can be used to fill the variability
point. In case the import element is omitted the variability point must have at
least one alternative specified.

 <variabilityPoint name="VP1">
 <locators>
 <locator>
 document("myProcess.bpel")//bpel:opaqueActivity[@name="payment"]
 </locator>
 </locators>
 <alternatives>
 <alternative name="Alternative1">
 …
 </alternative>
 <alternative name="Alternative2">
 …
 </alternative>
 <alternative name="Alternative3">
 …
 </alternative>
 </alternatives>
 </variabilityPoint>

Listing 2: XML representation of the variability point element

L
locator element contains an expression that specifies a pointer into a specific
location or several locations in a document where the variability is located.
Listing 2 shows the XML representation of a locator element that contains an
XPath expression that points to an opaque activity inside a BPEL document.

The locator

expressionLanguage attribute denotes the expression language in which the
expression contained in the locator is specified. In case the attribute is omitted
the expressionLanguage from the top-level variabilityDescriptor element is
assumed. The standard expression language is XPath. Again the document()

 Page 11 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

function introduced in XSLT [17] can be used to point into the respective
documents.

Elements:
 element is an extensible element; therefore arbitrary sub-elements

 locator based on XPath can reference multiple nodes in an XML document; for

usly reference

4.4 Alternatives

lternatives are a means to specify one or more possible values for a variability

the XML representation of an alternative.

The locator
from other namespaces can be nested in the locator element. This feature can be
used for example to describe locators that can point into text-files. Listing 3
shows an example of a text locator pointing into line 3 of the database.properties
file.

<locator
 expressionLanguage="urn:iaas:uni_stuttgart:variability:textLocator">
 <tl:textLocator
 xmlns:tl="http://www.iaas.uni-stuttgart.de/schemas/VDTextLocator">
 <tl:document>database.properties</tl:document>
 <tl:line>3</tl:line>
 </tl:textLocator>
</locator>

Listing 3: Example of a text locator

A
example, all non-specified partner link attributes of invoke activities.
Furthermore, it is allowed to specify multiple locators for one variability point.
Referencing multiple locations in one or more documents allows the filling of
variation points that have the same set of alternatives in one step.
In case of an XPath based locator it must be possible to unambiguo
the node or the set of nodes the locator points to. For example in case the locator
points into a BPEL document, activities cannot be unambiguously referenced
since they do not contain a unique id attribute. Therefore sometimes it might be
necessary to add unique ids to extensible documents in order to allow them to be
referenced by an XPath locator.

A
point. This can either be done explicitly by specifying the possible values for the
variability point, or implicitly based on an expression that retrieves the possible
values from another part of the same or a different document. In order to allow a
part of a document referenced by a variability point to be specified as optional,
i.e. to allow that the variability point can be filled with an empty string, the
empty alternative is introduced. Free alternatives denote that a variability point
can be filled by any user input. The last type of alternatives, the locator
alternative, allows specifying that the values of the locations inside a document,
referenced by the locators of the variability point are alternative values too.
Each variability point can have a set of alternatives that is made up of arbitrary
combinations of alternatives from the different alternative types. Listing 4 shows

 Page 12 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

Attributes:
Each alternative has a name attribute that identifies it uniquely within its

rnative can be the default alternative
ough the value of the optional attribute. If the

n alternative can have one of the following sub-elements:
lternative, denoting that the alternative is an empty alternative,

n

• ive, denoting that the alternative depends on user input and

 values for the variability point

led with an empty

t most one empty alternative. The empty alternative

tives whose values
are specified at design time. Listing 6 shows the XML representation of an

ive contains a piece of BPEL code that

variability point. Additionally an alte
indicated thr default default

attribute is omitted, the alternative is not a default alternative. Each variability
point can have at most one default alternative. Listing 4 shows the standard
attributes for alternatives

Elements:
A

• emptyA

• explicitAlternative, denoting that the alternative is an explicitly declared
alternative,

• expressionAlternati , denoting that the alternative depends on ave

expression,
freeAlternat

• locatorAlternative, denoting that the values referenced by a locator are
also possible

<a e
 …
</alternative>

lt rnative name="Alternative1" default="true">

Listing 4: XML representation of an alternative

4.4.1 Empty alternatives

Empty alternatives denote that the variability point can be fil
string. These alternatives can be used to mark optional parts in a document. A
variability point can have a
can also be the default alternative. Listing 5 shows the XML representation of an
empty alternative.

<alternative name="Alternative1">
 <emptyAlternative/>
</alternative>

Listing 5: XML representation of an alternative

4.4.2 Explicitly declared alternatives

Explicitly declared alternatives are a means to specify alterna

explicit alternative. The explicit alternat
can be used to fill the variability point the alternative belongs to. Since the
explicitly declared alternative contains an xsd:any sub-element of multiplicity
unbounded and is of type mixed, arbitrary XML nodes and text can be placed inside
the explicitAlternative element.

 Page 13 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

Expression based alternatives specify alternatives whose values are determined
d alternatives permit to specify an expression

Free alternatives are a way to denote that a customizer can fill the variability
text. However, a corresponding tool must check that the free

attribute. We show an XPath expression in Listing 8. The alternative presented

<alternative name="Alternative2">
 <explicitAlternative>
 <bpel:invoke
 xmlns:bpws="http://docs.oasis-open.org/
 wsbpel/2.0/process/executable"
 xmlns:lns="http://www.iaas.uni-stuttgart.de/someWSDL"
 partnerLink="assessor" portType="lns:riskAssessmentPT"
 operation="check" inputVariable="request"
 outputVariable="risk">
 </bpws:invoke>
 </explicitAlternative>
</alternative>

Listing 6: XML representation of an explicit alternative

Expression based alternatives

by an expression. Expression base
that references a set of values in the variability descriptor document or other
documents that can be used to fill the variability point. Listing 7 shows how to
define an alternative pointing a BPEL document that allows the names of all
BPEL partner links of a specific scope to be possible values for a variability point.
 As with the locators we allow different expression languages to describe
expression based alternatives. The language that is used to describe the
expression based alternative is declared in the optional expressionLanguage
attribute. In case the attribute is omitted the expression language of the top-level
variability descriptor element is used which is XPath per default. The most
convenient method for XML-based documents is the XPath based expression
alternative that is shown in Listing 7. Other expression based alternatives can be
plugged-in. For example, a regular expression alternative can be used to define
expressions on string-based documents.
Expression based alternatives might return more than one possible value to fill a
variability point.

<alternative name="Alternative3">
 <expressionAlternative>
document("myProcess.bpel")//bpws:scope[@name="payment"]/bpws:partnerLinks
 </expressionAlternative>
</alternative>

Listing 7: XML representation of an expression based
alternative

Free Alternatives

point with any free
text entered by a customizer corresponds to the data type of the variability point.
I.e. if a variability point points to an attribute that is specified as an integer, the
tool must allow a customizer to enter only an integer value as a free text.
Optionally constraints on the allowed values can be added via expressions. Again
arbitrary expression languages can be added via the optional expressionLanguage

 Page 14 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

in Listing 5 denotes that a value must be entered that is between 1 and 10000. In
order to allow arbitrary XPath expressions we introduce the variable $value that
represents the value entered by the user. Tooling must then replace the $value
variable with the value entered, during constraint checking.

enced by the
locator(s) of the variability point the alternative is declared in, are valid values

. For example if the locator of a variability point points to

cument affected by a

In order to describe dependencies between different variability points the
s introduced. A dependency element can have multiple

ources and one target. The sources are the variability points that the target

<alternative name="Alternative4">
 <freeAlternative>$value >=1 and $value <= 10000</freeAlternative>
</alternative>

Listing 8: XML representation of a free alternative

Locator Alternatives
Locator alternatives are a means to denote that the values refer

for the variability point
an operation attribute inside an invoke activity inside a BPEL document that
already has an operation name assigned to it, a locator alternative for that
variability point denotes, that this operation name is also an alternative value for
that operation attribute. In case a locator points to several artifacts inside a
document or different documents or several locators are specified for a variability
point, the semantics of the locator alternative is as follows:
In case a customizer selects the locator alternative, the values referenced by the
locators are not touched in the original documents during the customization. This
mechanism allows for example to define the values in a do
variability point as default values by using the locator alternative and by setting
this alternative’s default attribute to true. Listing 9 shows the XML
representation of a locator alternative.

<alternative name="Alternative5">
 <locatorAlternative/>

 </alternative>

Listing 9: XML representation of a locator alternative

4.4 Dependencies

dependency element i
s
variability point is dependent on. During customization, these variability points
must be bound or disabled before the target variability point can be bound. It is
not allowed to have a circle in the dependencies, i.e., a variability point cannot be
the (transitive) target of a dependency if it is contained in the set of (transitive)
sources of the dependency. Dependencies contain so-called enabling conditions
that further specify the dependency. Listing 10 shows the XML representation of
a dependency.

 Page 15 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

lements
A dependency element has three sub-elements. The sources element represents a

e variability points; the target element contains the target variability

ition elements that define conditions under which

.5 Enabling Conditions

dency is not enough, an “enabling condition” that
nables alternatives of a variability point based on a condition is needed. For

An element has two sub-elements, the condition element
e condition that must be true in order to enable the alternatives

riability descriptor, the condition can be in any

 <dependency>
 <sources>
 <variabilityPointRef>tvd:VP1</variabilityPointRef>
 </sources>
 <target>
 <variabilityPointRef>tvd:VP2</variabilityPointRef>
 </target>
 <enablingConditions>
 <enablingCondition>
 …
 </enablingCondition>
 <enablingCondition>
 …
 </enablingCondition>
 </enablingConditions>
 </dependency>

Listing 10: XML representation of a dependency

E

list of sourc
point. Both the sources and the target element contain variabilityPointRef sub-
elements. The target element however, must contain exactly one
variabilityPointRef element whereas the sources element can contain zero or
more variabilityPointRef elements. A variabilityPointRef element contains the
name of a variability point that identifies one of the variability points declared in
the variability descriptor.
The enablingConditions element contains zero or more enabling conditions
specified via enablingCond
certain alternatives of the target variability point are enabled.

4

In some cases a simple depen
e
example, an alternative might only be enabled if another alternative has been
taken in a variability point that has been bound before.

Elements:
enablingCondition

specifying th
specified in the enabledAlternatives list that is represented via the
enabledAlternatives element.
The mandatory condition element contains the condition. As with all other
expression elements in the va
expression language. The expression language is specified via the optional
expressionLanguage attribute. In case the attribute is omitted the expression

 Page 16 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

language of the top-level variabilityDescriptor element applies which is XPath
by default.
The mandatory enabledAlternatives element contains zero or more

isting 11 shows the XML representation of two enabling conditions. In case

ondition is

 enabling conditions in a dependency, which

 to facilitate the specification of XPath based enabling conditions we

tion points to the variability point that
is specified with the respective QName. A compliant implementation must

alternativeRef elements that reference an alternative of the target variability
point of the dependency the enablingCondition is located in. The alternativeRef
element can only contain the QName of an alternative, if that alternative is
declared in the target variability point of the dependency the enabling condition
is declared in. In case no enabledAlternative element is contained in the
enabledAlternatives list the semantics during customization are as follows: The
variability point is considered disabled and must not be bound by the customizer.

L
alternative “Alternative1” was selected for variability point “VP1” alternatives
“alt1” and “alt2” are selected for the target variability point, whereas otherwise
(denoted by the empty condition) only alternative “alt2” is enabled and can be
selected by the customizer.

 <enablingConditions>
 <enablingCondition>
 <condition>
 selectedAlternative("tvd:VP1","tvd:Alternative1")
 </condition>
 <enabledAlternatives>
 <alternativeRef>tvd:alt1</alternativeRef>
 <alternativeRef>tvd:alt2</alternativeRef>
 </enabledAlternatives>
 </enablingCondition>
 <enablingCondition>
 <condition></condition>
 <enabledAlternatives>
 <alternativeRef>tvd:alt2</alternativeRef>
 </enabledAlternatives>
 </enablingCondition>

Listing 12: XML representation of enabling conditions

The semantics of the enabling condition is the following: In case the c
true, the set of activities declared in the enabled alternatives can be used to fill a
variability point by a customizer.
We define an ordering over the
affects the evaluation semantics. The first condition is the one evaluated first, if
the condition is true the set of variants that are marked as enabled in that
condition can be selected for the variability point. If the condition evaluates to
false the next condition is evaluated. An empty condition denotes that the
corresponding alternatives are enabled regardless of any condition; it corresponds
to the else branch of traditional programming language’s if-then-else constructs.
In case all enabling conditions evaluate to false (and no empty condition is
present) the variability point is considered disabled and does not need to be
bound.
In order
introduce some shortcut XPath functions:

• variabilityPoint(QName)– This func

 Page 17 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

replace the variabilityPoint function with the locators of the variability
point that is specified with the QName.
selectedAlternative(variabilityPointQName,alternativeQName) – In orde
to allow constraints to be specified on alt

• r
ernatives and other variability

n

n tool

only be

 Customization Validation

n the customized application a tool must
nsure that the customization (i.e. the binding of the variability points)

. Example Variability Descriptor

s the variability descriptor for the
xample in Section 3. It includes two variability points that operate on a BPEL

points we introduce a new function that denotes that the variant with the
name of a variability point with the name variabilityPointQName has bee
taken. The expression selectedAlternative(“vp1:vp1”,”vp1:alt3”)
denotes that the alternative “alt3” at variability point “vp1” of namespace
“vp1” has been selected. A compliant variability descriptor generatio
must enforce that this function can only be added to variability points that
are dependent on the variability point with the given id. Otherwise
deadlocks could arise where a customization tool waits for the evaluation
of an enabling condition that references a variability point that will
bound after the enabling condition has been evaluated.

5

In order to being able to actually ru
e
performed by the customizer is valid. Valid means that all variability points have
been filled with values that are allowed. Therefore after customization, all
constraints imposed on a variability point by an expression alternative must
evaluate to true. Additionally variability points for which alternatives are
specified, must have been filled with one of the alternatives, otherwise the
executable completion is not valid. In order to correctly validate the constraints, a
tool must consider the dependencies and validate the variability points in the
order of the dependencies. Which means that the tool must start to validate all
independent variability points first (i.e., those that are not dependent on any
other variability points) and then follow the dependencies. The variability points
that are not activated (because of enabling conditions that all evaluate to false)
must not be validated. We assume in this report that all solutions that can be
produced by doing a valid executable completion lead to an application that itself
can be run on the corresponding middleware. For example all valid
customizations of the TaaS process will produce a BPEL process that can be
executed by a WS-BPEL engine. Generation of templates that ensure this is out
of the scope for this report and is subject to future work.

6

The following variability descriptor describe
e
file (“taasProcess.bpel”). The first variability point points to an opaque activity
(“managerApproval”) and allows a customizer:

• To delete it, using alternative “noManagerApproval”, an empty alternative.

 Page 18 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

• To replace it with an assign activity and a BPEL4People people activity.

• k

Havin

hold” which is a locator alternative, denoting

• ld” which is a free alternative that allows to

Other ne of the two other alternatives in

The assign activity sets the threshold for the price for which the manager
approval is needed. The two activites are connected with a link that
contains a transition condition that disables the people activity containing
the task for the manager to approve if the price is less than the threshold.
This is alternative “managerApprovalWThreshold”, an explicit alternative.
To replace it with a BPEL4People people activity that contains a tas
asking the manager for approval, using the explicit alternative
“managerApprovalWithoutThreshold”

g bound variability point “VP1” the customizer can now bind variability
point “VP2” which is connected to “VP1” via a dependency. In case the customizer
chose “managerApprovalWThreshold” in the variability point “VP1” he must now
decide between two alternatives:

• Alternative “defaultThres
that the default threshold of 1000 applies (as defined in the explicit
alternative from “VP1”) or
Alternative “customThresho
enter any integer value greater than 0.
wise (in case the customizer has chosen o

variability point “VP1”) he cannot specify the threshold. No alternatives are
enabled in this case which denotes that the variability point is disabled and does
not need to be bound.

<?xml version="1.0" encoding="UTF-8"?>
<variabilityDescriptor
 xmlns="http://www.iaas.uni-stuttgart.de/schemas/VD"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tvd="http://www.iaas.uni-stuttgart.de/schemas/taasVD"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:b4p="http://www.example.org/BPEL4People"
 xmlns:htd="http://www.example.org/WS-HT"
 xsi:schemaLocation="http://www.iaas.uni-stuttgart.de/schemas/VD VD.xsd "
 expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"
 targetNamespace="http://www.iaas.uni-stuttgart.de/schemas/taasVD">
 <variabilityPoints>
 <variabilityPoint name="VP1">
 <locators>
 <locator> document("taasProcess.bpel")//
 bpel:opaqueActivity[@name="managerApproval"]
 </locator>
 </locators>
 <alternatives>
 <alternative name="noManagerApproval">
 <emptyAlternative />
 </alternative>
 <alternative name="managerApprovalWThreshold">
 <explicitAlternative>
 <bpel:flow>
 <bpel:links>
 <bpel:link name="L1" />
 </bpel:links>
 <bpel:assign name="assignApprovalThreshold">
 <bpel:sources>
 <bpel:source linkName="L1">
 <bpel:transitionCondition>

 Page 19 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 $NewMessageRequest/price <= $ApprovalThreshold
 </bpel:transitionCondition>
 </bpel:source>
 </bpel:sources>
 <bpel:copy>
 <bpel:from>
 <bpel:literal>1000</bpel:literal>
 </bpel:from>
 <bpel:to variable="ApprovalThreshold" />
 </bpel:copy>
 </bpel:assign>
 <bpel:extensionActivity>
 <b4p:peopleActivity name="askManagerForApproval"
 inputVariable="request" outputVariable="decision"
 isSkipable="yes">
 <bpel:targets>
 <bpel:target linkName="L1" />
 </bpel:targets>
 <htd:task name="managerApprovalTask">...</htd:task>
 ...
 </b4p:peopleActivity>
 </bpel:extensionActivity>
 </bpel:flow>
 </explicitAlternative>
 </alternative>
 <alternative name="managerApprovalWithoutThreshold">
 <explicitAlternative>
 <bpel:extensionActivity>
 <b4p:peopleActivity name="askManagerForApproval"
 inputVariable="request" outputVariable="decision"
 isSkipable="yes">
 <htd:task name="managerApprovalTask">...</htd:task>
 ...
 </b4p:peopleActivity>
 </bpel:extensionActivity>
 </explicitAlternative>
 </alternative>
 </alternatives>
 </variabilityPoint>
 <variabilityPoint name="VP2">
 <locators>
 <locator>document("taasProcess.bpel")//bpel:
 assign[@name="assignApprovalThreshold"]
 /bpel:copy/bpel:from/bpel:literal
 </locator>
 </locators>
 <alternatives>
 <alternative name="defaultThreshold" default="true">
 <locatorAlternative />
 </alternative>
 <alternative name="customThreshold">
 <freeAlternative>$value >=0</freeAlternative>
 </alternative>
 </alternatives>
 </variabilityPoint>
 </variabilityPoints>
 <dependencies>
 <dependency>
 <sources>
 <variabilityPointRef>tvd:VP1</variabilityPointRef>
 </sources>
 <target>

 Page 20 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 <variabilityPointRef>tvd:VP2</variabilityPointRef>
 </target>
 <enablingConditions>
 <enablingCondition>
 <condition>
 selectedAlternative("tvd:VP1","tvd:managerApprovalWThreshold")
 </condition>
 <enabledAlternatives>
 <alternativeRef>tvd:defaultThreshold</alternativeRef>
 <alternativeRef>tvd:customThreshold</alternativeRef>
 </enabledAlternatives>
 </enablingCondition>
 <enablingCondition>
 <condition></condition>
 <enabledAlternatives />
 </enablingCondition>
 </enablingConditions>
 </dependency>
 </dependencies>
</variabilityDescriptor>

7 Conclusions and Future Work

 this report we introduce a model and an XML format to describe variability

6 References

] Van der Aalst W. M. P, Dreiling A., Gottschalk F., Rosemann M., Jansen-

[2] ension

In
descriptors that can be used to annotate SaaS applications with variability
points. We describe the concept of variability points that can be connected via
dependencies to describe complex customization options for SaaS applications.
The concept of locators is introduced to attach a variability point that is specified
in a variability descriptor document to a document that needs to be customized.
Such documents can be XML files, in case the XPath based locator specified in
this document is used or can be any other format in case other locators are
specified that extend the basic framework we introduce here. In order to describe
the values permitted to fill a variability point we introduce alternatives.
Alternatives describe allowed values for the filling of a variability point. In order
to describe constraints and complex dependencies between variability points we
introduce the concept of dependencies and enabling conditions. All these
elements of a variability descriptor can be extended by users to incorporate their
requirements. Therefore we introduce an extensible framework that offers
plugging points where extensions to the basic framework described in this report
can be made.

[1

Vullers M. H.: Configurable Process Models as a Basis for Reference
Modeling. Business Process Management Workshops 2005: 512-518
Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG, WS-BPEL Ext
for People specification v1.0,

 Page 21 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/ (2007)

[3] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP AG, WS-BPEL Extension
for People specification v1.0,
http://www.ibm.com/developerworks/webservices/library /specification/ws-
bpel4people/, 2007

[4] Bosch, J. (2000), Design and use of software architectures: adopting and
evolving a product-line approach, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA.

[5] F. Chong, G. Carraro. ”Building Distributed Applications Architecture
Strategies for Catching the Long Tail”, MSDN architecture center, 2006.
http://msdn2.microsoft.com/en-us/library/aa479069.aspx

[6] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley, 1997

[7] Jaring, M. & Bosch, J., “Variability Dependencies in Product Family
Engineering”, in Software Product-Family Engineering, pp. 81-97.
Springer Berlin / Heidelberg (2003)

[8] Lazovik A., Ludwig H., “Managing Process Customizability and
Customization: Model, Language and Process,” Web Information Systems
Engineering – WISE 2007, 2007

[9] Mendling, J., Recker, J., Rosemann, M., and van der Aalst, W. (2005).
“Towards the Interchange of Configurable EPCs: An XML-based Approach
for Reference Model Configuration,” Proceedings of the Workshop on
Enterprise Modelling and Information Systems Architectures. University of
Klagenfurt, Austria 2005,

[10] Object Management Group (OMG), Reusable Asset Specification, Version
2.2,2005

[11] Organization for the Advancement of Structured Information Standards
(OASIS), Web Services Business Process Execution Language Version 2.0,
2007

[12] Parnas, D. L., On the Design and Development of Program Families, IEEE
Transactions on Software Engineering SE-2(1), 1-9. 1976

[13] Pohl, K.; Böckle, G., van der Linden, F. J. Software Product Line
Engineering: Foundations, Principles and Techniques, Springer, 2005.

[14] Rosemann, M. and van der Aalst, W. M. P. “A configurable reference
modelling language.” Inf. Syst. 32, 1Mar. 2007, 1-23.

[15] Schnieders, A. and Puhlmann, F., “Variability Mechanisms in E-Business
Process Families,” in BIS, 2006 pp. 583-601.

[16] W3C Member Submission, Web Services Policy 1.2 - Framework,
http://www.w3.org/Submission/WS-Policy/ (2006)

[17] W3C Recommendation, XSL Transformations Version 1.0,
http://www.w3.org/TR/xslt

[18] Sadiq, S. W., Orlowska, M. E., Sadiq, W., “Specification and validation of
process constraints for flexible workflows.” Inf. Syst. 30, 5, 2005, 349-378.

[19] Schematron “A language for making assertions about patterns found in
XML documents” Specification available at
http://www.schematron.com/spec.html

[20] Tao L., “Shifting Paradigms with the Application Service Provider Model”
IEEE Computer, 34(10), pp. 32-39, 2001.

 Page 22 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 Page 23 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

Appendix A: Variability Descriptor Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 targetNamespace="http://www.iaas.uni-stuttgart.de/schemas/VD"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.iaas.uni-stuttgart.de/schemas/VD"
 elementFormDefault="qualified" blockDefault="#all">
 <xsd:annotation>
 <xsd:documentation>
 Schema for Variability Descriptors Last Edited: 11.1.2008
 </xsd:documentation>
 </xsd:annotation>
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd" />

 <xsd:element name="variabilityDescriptor"
 type="VariabilityDescriptorType">
 </xsd:element>

 <xsd:complexType name="ExtensibleElementsType" mixed="true">
 <xsd:sequence>
 <xsd:element ref="documentation" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="documentation" type="DocumentationType" />

 <xsd:complexType name="DocumentationType" mixed="true">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="source" type="xsd:anyURI" />
 <xsd:attribute ref="xml:lang" />
 </xsd:complexType>

 <xsd:complexType name="VariabilityDescriptorType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element name="variabilityPoints"
 type="VariabilityPointListType" maxOccurs="1"
 minOccurs="1">
 </xsd:element>
 <xsd:element name="dependencies" type="DependencyListType"
 maxOccurs="1" minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="expressionLanguage" type="xsd:anyURI"
 default="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 </xsd:attribute>
 <xsd:attribute name="targetNamespace"
 type="xsd:anyURI"></xsd:attribute>
 </xsd:extension>

 Page 24 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="DependencyListType">
 <xsd:sequence>
 <xsd:element name="dependency" type="DependencyType"
 maxOccurs="unbounded" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="VariabilityPointListType">
 <xsd:sequence>
 <xsd:element name="variabilityPoint" type="VariabilityPointType"
 maxOccurs="unbounded" minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="DependencyType">
 <xsd:sequence>
 <xsd:element name="sources" type="SourceListType"></xsd:element>
 <xsd:element name="target" type="TargetType"></xsd:element>
 <xsd:element name="enablingConditions"
 type="EnablingConditionListType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="VariabilityPointType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element name="import" type="ExpressionType" maxOccurs="1"
 minOccurs="0">
 </xsd:element>
 <xsd:element name="locators" type="LocatorListType">
 </xsd:element>
 <xsd:element name="alternatives" type="alternativeListType">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName"
 use="required"></xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="LocatorListType">
 <xsd:sequence>
 <xsd:element name="locator" type="ExpressionType"
 maxOccurs="unbounded" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="alternativeListType">
 <xsd:sequence>
 <xsd:element name="alternative" type="AlternativeType"
 maxOccurs="unbounded" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 Page 25 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 <xsd:complexType name="ExpressionType" mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded">
 </xsd:any>
 </xsd:sequence>
 <xsd:attribute name="expressionLanguage" type="xsd:anyURI"
 default="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="LocatorType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element name="xPathLocator" type="ExpressionType">
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="AlternativeType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:choice>
 <xsd:element name="explicitAlternative"
 type="ExplicitAlternativeType">
 </xsd:element>
 <xsd:element name="freeAlternative" type="ExpressionType">
 </xsd:element>
 <xsd:element name="expressionAlternative"
 type="ExpressionType">
 </xsd:element>
 <xsd:element name="emptyAlternative"
 type="EmptyAlternativeType">
 </xsd:element>
 <xsd:element name="locatorAlternative"
 type="LocatorAlternativeType">
 </xsd:element>
 <xsd:any namespace="##other" processContents="lax"></xsd:any>
 </xsd:choice>
 <xsd:attribute name="name" type="xsd:NCName"
 use="required"></xsd:attribute>
 <xsd:attribute name="default" type="xsd:boolean" use="optional"
 default="false">
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ExplicitAlternativeType" mixed="true">
 <xsd:sequence>
 <xsd:any processContents="lax" namespace="##other" minOccurs="0"
 maxOccurs="unbounded">
 </xsd:any>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="EmptyAlternativeType"></xsd:complexType>

 Page 26 of 27

Report 2008/01 Institute of Architecture of Application Systems (IAAS)

 <xsd:complexType name="LocatorAlternativeType"></xsd:complexType>

 <xsd:complexType name="TargetType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element ref="variabilityPointRef" maxOccurs="1"
 minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="SourceListType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element ref="variabilityPointRef" maxOccurs="unbounded"
 minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="variabilityPointRef" type="xsd:QName"></xsd:element>

 <xsd:complexType name="EnablingConditionListType">
 <xsd:sequence>
 <xsd:element name="enablingCondition" type="EnablingConditionType"
 maxOccurs="unbounded" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="EnablingConditionType">
 <xsd:sequence>
 <xsd:element name="condition" type="ExpressionType"></xsd:element>
 <xsd:element name="enabledAlternatives"
 type="EnabledAlternativeListType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="EnabledAlternativeListType" mixed="true">
 <xsd:complexContent>
 <xsd:extension base="ExtensibleElementsType">
 <xsd:sequence>
 <xsd:element name="alternativeRef" type="xsd:QName"
 maxOccurs="unbounded" minOccurs="0">
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:schema>

 Page 27 of 27

	3. Introductory Example
	4. Variability Descriptors
	4.1 Basic Elements of a Variability Descriptor
	Attributes:
	Elements:

	4.2 Variability Points
	Attributes:
	Elements:

	4.3 Locators
	Attributes:
	Elements:

	4.4 Alternatives
	Attributes:
	Elements:
	4.4.1 Empty alternatives
	4.4.2 Explicitly declared alternatives
	Expression based alternatives
	Free Alternatives
	Locator Alternatives

	4.4 Dependencies
	Elements

	4.5 Enabling Conditions
	Elements:

	5 Customization Validation
	6. Example Variability Descriptor
	7 Conclusions and Future Work
	6 References
	Appendix A: Variability Descriptor Schema

