

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

A Model-Driven Approach to Implementing
Coordination Protocols in BPEL

Oliver Kopp, Branimir Wetzstein, Ralph Mietzner,
Tobias Unger, Stefan Pottinger, Dimka Karastoyanova,

Sabine Michael, Frank Leymann

Report 2008/02

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

CR: H.4.1, K.4.4

Abstract WS-Coordination defines a framework for establishing protocols for coor-
dinating the outcome agreement within distributed applications. The framework is
extensible and allows support for multiple coordination protocols. To facilitate the
realization of new coordination protocols we present a model-driven approach for the
generation of BPEL processes used as implementation of coordination protocols. We show
how coordination protocols can be modeled in domain-specific graph-based diagrams.
Then we describe how to transform such graphs into abstract BPEL process models
representing the behavior of the coordinator and the participants in the protocol. We
present a prototypical implementation of the approach.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 3

1 Introduction

Web services are the most recent middleware technology for application integration
within and across enterprises [CLS+05]. Through the use of standards like SOAP,
WSDL, UDDI, and BPEL this technology enables interoperable service interactions in
heterogeneous environments. Coordination is an important technology used in distributed
computations with multiple participants that must jointly agree on the outcome of
the computation. A well-known example for the use of coordination are distributed
transactions using atomic commitment protocols to agree on the success or failure of a
transaction [JG93]. The aspect of coordination in the domain of Web services is addressed
by WS-Coordination [OAS07d]: it defines an extensible framework for coordinating the
outcome of a set of Web services contributing to a distributed computation using a
generalized notion of a coordinator and so called coordination protocols. In the context
of WS-Coordination, coordination protocols describe the messages exchanged between
the coordinator and the participants of a distributed computation and thus realize
a one-to-many coordination. Two types of protocols (aka coordination types) have
already been defined to cover “traditional” atomic transactions (WS-AtomicTransaction)
and long-running business transactions (WS-BusinessActivity). However, the use of
WS-Coordination is not restricted to transaction processing systems. Other types of
protocols can also be defined for distributed computations such as protocols describing
auctions [LP05], protocols for split BPEL loops and split BPEL scopes [KL07] and
protocols for externalizing the coordination of BPEL scopes as a whole [PML07].

Coordination protocols can be quite complex. The coordinator has to deal with a
variable number of participants. Each participant is in a well-defined state which poten-
tially differs from the state of another participant at the same time. The implementation
of a coordination protocol is difficult and error-prone. To simplify and accelerate the
implementation, and eliminate errors, we propose a model-driven approach (MDA) in
this paper.

The protocol is first modeled as a state-based graph, which we call coordination
protocol graph (CPG). A CPG captures the different states and state changes based on
the messages exchanged between coordinator and participant. The graph diagram is the
domain specific language (DSL) we use for specifying coordination protocols. It contains
only those elements which are needed for coordination protocol modeling and is therefore
well suited for protocol designers. In MDA terms a coordination protocol graph specifies
a Platform Independent Model (PIM) [Fra03]. The CPG is independent of any hardware
or programming platform.

In general, coordination protocols define a sequence of steps and messages to be
exchanged between participants in a coordinated interaction, timing issues, and how
exceptional situations must be tackled. In that respect, modeling coordination protocols
is similar to modeling business processes. The standard language for Web services based
process descriptions is BPEL. In this work we generate abstract BPEL processes for both
the coordinator and the participant roles in coordination protocols. These BPEL process

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 4

models capture the essential parts of the message exchange between the parties and the
resulting protocol state changes. The generated code reduces the need for tedious and
error-prone programming concerning the communication between the coordinator and
participants in the protocol. Additional protocol logic, which cannot be captured in the
CPG, has to be manually added by the programmer.

The generated BPEL process models are platform specific models (PSM): they
are compositions of Web Services and hence focus on the Web Services Platform, as
the participants in a WS-Coordination protocol are assumed to be Web Services. As
an alternative for the implementation of coordination protocols, Java code could also
be generated. BPEL, however, enables programming on a higher abstraction level
which makes the code generation easier. It has native WSDL support needed for
interoperability and native support for concurrency, backward and forward recovery.
BPEL engines persistently store all events related to process execution in an audit log
and thus automatically support reliable recording of protocol execution out of the box.
The audit log enables checking the execution of coordination for compliance [SM01].

The rest of the paper is organized as follows: Section 2 gives an overview of BPEL and
WS-Coordination. In Section 3 we present the syntax and semantics of the coordination
protocol graph (CPG). After depicting our model-driven approach in Section 4, we
describe the generation of the BPEL process models in Section 5. In Section 6 we
describe how we implemented the approach as an Eclipse plug-in. We finalize with the
discussion of related work, conclusion and future work.

2 Background

2.1 WS-Coordination

WS-Coordination [OAS07d] defines an extensible framework for coordinating interactions
between Web services. Coordinated interactions are called (coordinated) activities in the
context of WS-Coordination. The framework enables participants to reach agreement on
the outcome of distributed activities using a coordinator and an extensible set of coordi-
nation protocols. Two specifications already exist that build on WS-Coordination and
define transaction protocols, namely the WS-AtomicTransaction [OAS07a] specification
for atomic (2PC) transactions and the WS-BusinessActivity [OAS07b] specification for
long-running transactions.

The framework defines three services a coordinator has to provide: activation service,
registration service, and protocol services. When an application, in the role of an initiator,
wants to start a coordinated activity, it requests a coordination context from an activation
service. The coordination context contains an activity identifier, the coordination type
(e.g. atomic transaction) as requested by the initiator, and the endpoint reference of the
registration service. When the initiator distributes work, it sends the coordination context
with the application message to the participant. Before starting work, the participant

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 5

registers at the registration service of the coordinator. At some later point the protocol
service is started which coordinates the outcome according to the specific protocol of the
coordination type.

While the logic of the activation and registration service are fixed, the framework
allows the definition of arbitrary coordination types, which specify different protocol
services. In this paper we demonstrate how these protocol services can be implemented
automatically using a model-driven approach. The implementation of the protocol
services in this work is in BPEL. In the following when referring to “coordinator” and
“participant”, we mean the protocol service implementations at the coordinator and
participant, respectively.

2.2 BPEL

The Web Services Business Process Execution Language [OAS07c] is an orchestration
language for Web services. A BPEL process is a composition of Web services, which
are accessed through partner links referencing WSDL port types. The process is itself
exposed as a Web service.

The BPEL process model comprises two types of activities: basic activities cope
with invoking other Web services (invoke), providing operations to other Web services
(e.g. receive and reply), timing issues and fault handling; structured activities nest other
activities and deal with parallel (flow) and sequential execution (sequence), conditional
behavior and event processing. Process data is stored in variables, while the assign
activity is used for data manipulation. Activities can be enclosed in scopes to denote
sets of activities that are to be dealt with as a unit of work. Scopes can be modeled to
ensure all-or-nothing behavior, support data scoping, exception handling, compensation,
and sophisticated event handling. Instance management is done using correlation sets.
Correlation sets define which fields in incoming messages are to be used as identifiers
to route the messages to one of possibly several running instances of the same process
model.

BPEL processes can be either abstract or executable. An executable BPEL process
provides a process model definition with enough information to be interpreted by a BPEL
process engine. An abstract BPEL process hides some of the information needed for
execution. Abstract process profiles define what information may be hidden. The profile
used in our approach is the abstract process profile for templates. It allows marking
sections of the process model as “opaque” using opaque tokens. It is thus explicitly
specified which sections of the process model have to be later replaced by concrete
activities, expressions etc. to make the process executable.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 6

Active

Canceling

Exiting

Completed

Compensating Ended

Closing

Failing
Cancel

Canceled

Exit

Completed Close

ClosedCompensate

Fail

Compensated

Exited

Failed

Coordinator generated Participant generated

Fail

NotCompleting

Fail

NotCompletedCannot Complete

Figure 1: WS-BA with Participant Completion Protocol [OAS07b]

3 Modeling Coordination Protocols

There is no standard notation for modeling coordination protocols. The specifications in
this area use either a proprietary or a generic diagram type (e.g. UML sequence diagram),
or a combination of these. For modeling coordination protocols we have adopted the
diagram type from the WS-AtomicTransaction (WS-AT) and WS-BusinessActivity (WS-
BA) specifications. This diagram type can be seen as a domain specific language
for modeling coordination protocols. WS-BA contains two protocols: WS-BA with
Participant Completion, where the participant signals when it has completed its work and
WS-BA with Coordinator Completion, where the coordinator notifies the participant when
it has to complete his work. Figure 1 shows the WS-BA with Participant Completion
protocol as an example, which we will also use in the rest of the paper for illustration of
mapping concepts. It is important to note that it is possible to use any coordination
protocol graph as input, such as the ones presented in [PML07].

The diagram defines a state-based graph, which we name coordination protocol graph
(CPG). A CPG is a directed graph with labeled edges and labeled nodes. The nodes
denote the states of the coordination protocol between a coordinator and a participant.
The node labels describe the semantics of the states. The edges depict the messages
exchanged by the protocol parties; the edge labels describe the semantics of the message.
Since messages can be sent by a participant and by a coordinator, the set of all edges
is divided into two disjoint sets: edges denoting coordinator messages (solid lines) and
edges denoting participant messages (dashed lines). Each CPG has exactly one node

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 7

with no incoming edges (source) and at least one node without outgoing edges (sink).
No two coordinator edges or participant edges with the same label may leave the same
node, because this would lead to non-determinism. A CPG does not contain cycles.

The semantics of the graph is as follows: A CPG models a state machine which
describes the states and possible state changes of the protocol between the coordinator
and one participant registered for the coordination activity. At a certain point in time
each participant can be in a different states. For example, one participant can be in
the state “Failing” while another is in the state “Closing”. Since coordinator usually
interacts with more than one participant, the coordinator has to hold the state of each
state machine.

Outgoing edges of a CPG denote messages which may be sent and each state denotes
the possible state of a participant. The sender of the message (participant or coordinator)
transitions to the next state when sending a message. The recipient of the message
transitions to the next state when receiving the message. For the period of time when
the message is transported, the coordinator and participant thus are in different states.
In addition to the obvious behavior of state changes there are three special cases: (i)
ignoring same messages which are sent more than once, (ii) precedence of participant
messages over coordinator messages, (iii) invalid messages.

If the message leading to a new state is received more than once, it is simply ignored.
For example, if the coordinator being in state “Exiting” receives the message “Exit”
again, that message is ignored. This case can arise, when messages are resent because it
is suspected that the first message hasn’t been transmitted successfully.

If a state has both outgoing participant and coordinator messages, then it can happen
that the coordinator sends a protocol message and enters the corresponding new state,
but later receives a protocol message from the participant which is consistent with the
former state. This can happen when both the coordinator and the participant send their
messages at about the same time, which leads to different views on the protocol state on
coordinator and participant side. In that case the participant messages have precedence
over coordinator messages. In Figure 1 the state is “Active” at the beginning of the
protocol. Let us assume the coordinator sends “Cancel” to the participant and sets the
state to “Canceling”. At the same time, however, the participant sends the message
”Completed” and changes his state to “Completed”. When the coordinator receives the
message “Completed” while being in state “Canceling” for the participant, he has to
revert to the former state “Active”, accept the notification “Completed” and change the
state to “Completed”. The participant on the other side just discards the coordinator
message “Cancel”.

Finally, if in a state other messages than the allowed ones are received, a fault message
should be generated and sent to the sender of the invalid message. The protocol execution
is aborted.

It is important to note, that a CPG captures only the possible interactions and state
changes between the coordinator and participant. A CPG does not capture the reason
of these state changes. For example, if a participant is in the state “Completed” it can

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 8

receive either a “Close” or a “Compensate” message from the coordinator. Which of the
two messages is sent, is part of the protocol logic. For example, if another participant
has failed and all-or-noting semantics is needed a “Compensate” message would be sent.
Because not all of the protocol logic is captured by the graph, it has to be additionally
implemented after the generation of the BPEL process.

The CPG and its semantics are derived from WS-BA and WS-AT protocols. In
summary, the CPG graph captures the exchanged messages between a coordinator and a
participant, and the resulting state changes, however not the cause of the state changes.

4 Model-Driven Implementation Approach

For the implementation of coordination protocols we adopt a model-driven approach.
Our goal is to model the coordination protocol using a domain-specific language suitable
for coordination protocol designers, and then generate BPEL code which implements the
coordination protocol.

The DSL, in our case the CPG, is used for creating a platform-independent model
(PIM) of the coordination protocol. The PIM can be transformed to platform-specific
models (PSM) for different kind of platforms. In this paper we use BPEL and the Web
service platform, in particular WS-Coordination as the coordination framework.

As the CPG does not contain enough information to be executed, the additional
information has to be added to the PSM after generation. We thus do not achieve 100%
BPEL code generation, but still avoid much of tedious and error-prone programming.
The use of a model-driven approach ensures higher productivity in development and
better quality of the implemented code.

We have decided to use BPEL as the platform for the implementation of coordination
protocols. It has several benefits when compared to a 3GL programming language such
as Java. BPEL enables programming on a higher abstraction level which makes the
generation easier in our case. As BPEL supports graph-based models, coordination
protocol graphs can be more easily and naturally transformed into BPEL. BPEL has
native WSDL support needed for interoperability in WS-Coordination and native support
for concurrent execution, which is more difficult to implement in Java. A BPEL engine
persistently stores all events related to process execution in an audit log and thus
automatically supports reliable recording of coordination protocol execution out of the
box. The audit log enables checking the execution of coordination for compliance with
the protocol. A BPEL engine typically also provides a monitoring tool, which enables
observing the execution of coordination protocols in real-time. Finally, as the state of a
BPEL process instance is persistently saved after each state transition, the coordination
protocol can be stopped and resumed at any time using a monitoring tool.

The approach is shown in Figure 2. In the first step, the CPG is created using a
corresponding graphical CPG modeling tool. The CPG models the interaction between
the coordinator and the participant in a platform-independent way.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 9

1

CPG
• Domain-specific Language
• Platform-Independent Model
• Marking: WSDL names

Abstract
Coordinator

Process Model

Abstract
Participant

Process Model

WSDL
Definitions

Executable
Coordinator

Process Model

Executable
Participant

Process Model

• Automatic generation from CPG
• Abstract BPEL processes
• WSDL interfaces for coordinator and

participant process

• Manual refinement from abstract BPEL
processes

• Replacing opaque tokens with concrete
BPEL code

Figure 2: Model-Driven Implementation Approach

In the next step, the CPG is transformed into two abstract BPEL processes, one for
the coordinator and one for the participants. Therefore, the abstract BPEL processes and
corresponding WSDL definitions are generated. If the WSDL definitions already exist, as
for example in the case of the WS-AT and WS-BA specification, then the CPG has to be
correspondingly marked. One has to specify the names of the WSDL port types for both
the participant and coordinator process, the WSDL message and operation names, which
correspond to the labels of the state transitions in the CPG, etc. That ensures that the
generated BPEL processes and WSDL descriptions are compliant to the already existing
probably standardized ones. The two corresponding WSDL interface descriptions of the
processes can be completely generated. Using standardized WSDL interfaces ensures that
the coordinator process can be used to coordinate arbitrary protocol participants apart
from the generated BPEL-based participants. This is also the case for the generated
participants, which can be used with another protocol-compliant coordinator. Thus, our
approach supports heterogeneous environments.

As discussed in the previous section, the generated process models cannot be exe-
cutable, because the CPG does not capture the whole protocol logic. The locations in the
process model where missing logic has to be added are “marked” in the generated BPEL
code using opaque tokens, as defined in the abstract process profile for templates [OAS07c].
These opaque tokens show to the developer where additional logic has to be added to
make the process executable. The abstract BPEL process profile for observable behav-
ior [OAS07c] cannot be used, since it does not allow the addition of interaction activities
with existing partner links when replacing opaque activities. However, that is needed
in certain cases: For example, in the coordinator process after the interaction activity
receiving a “Fail” from one participant, one might want to add interaction activities
(BPEL invoke) which send “Cancel” notifications to other participants.

As already described in Section 2.1, WS-Coordination defines three services a coor-
dinator has to provide: activation, registration, and protocol services. While protocol

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 10

services can be additionally defined in separate specifications such as WS-BA, the im-
plementation of the activation and registration services stays the same. The activation
and registration service of the coordinator can thus be fully generated. Both services in
addition to the protocol service are implemented by the coordinator process model (see
Section 5.3).

After generation, the abstract process models are refined manually by a developer
who replaces the opaque tokens by the missing coordination protocol logic. The resulting
executable BPEL process models can finally be deployed on a BPEL engine.

5 Generating BPEL Process Models

In the following we describe in detail how CPG graphs are transformed to abstract BPEL
process models. We generate two abstract BPEL process models, one for the coordinator
and one for the participants.

We have chosen different approaches for the generation of the two process models.
For the participant process model, we keep the graphical structure of the CPG in the
BPEL process model by mapping the CPG graph directly to a BPEL flow. The BPEL
flow activity together with BPEL links enables graph-based workflow modeling. The
generated BPEL process structure closely resembles the CPG structure and thus increases
the readability of the process.

For the coordinator process model the participant approach is not feasible, since
the coordinator holds a different state for each participant (Section 5.3). In the second
approach we define global event handlers for each message that can be received by the
coordinator. That means, we implement a state-machine by specifying rules of the form:
if received message x, then perform some logic which handles that message x.

5.1 Generation of the Participant Process Model

The general idea of the mapping is to keep the graphical structure of a CPG in the BPEL
process model (Figure 3): the CPG graph as a whole is mapped to a BPEL flow element;
each state of the CPG is mapped to a BPEL scope which internally implements the logic
of that state; each edge of the CPG is mapped to a BPEL link connecting two scopes.
The navigation through the process model is driven using a state variable evaluated in
the transition conditions of the links. The protocol logic inside the scope determines the
next state of the protocol and sets the value of the state variable correspondingly. The
transition conditions are mutually exclusive, because only one scope can be active at a
time.

BPEL employs a concept called dead path elimination (DPE) which has to be activated
in our case. DPE is a mechanism that propagates the disablement of activities down the
execution path so that following activities do not wait forever (deadlock). The activation
of DPE leads to following behavior: If a scope is not entered because the transition

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 11

tc
BPEL link with transition condition

Name BPEL scope

BPEL flow activity$state =
"Exiting"

$state =
"Completed"

$state =
"Closing"

$state =
"Compensating"

$state =
"Ended"

$state =
"Ended"

Active

Canceling

Exiting

Completed

Compensating Ended

Closing

Failing

NotCompleting

$state =
"Failing"

$state =
"Failing"

$state =
"Failing"

$state =
"Canceling"

$state =
"NotCompleting"

$state =
"Ended"

$state =
"Ended"
$state =
"Ended"

Figure 3: Participant process model

condition of the incoming links is false, the transition conditions of the outgoing links
are fired and automatically set to false. As an activity cannot start until of its incoming
links have fired, DPE ensures that an activity doesn’t wait forever for the firing of its
incoming links. After all incoming links have fired, an activity uses a join condition to
evaluate the transition conditions of its incoming links. The default join condition, which
is sufficient for our process models, is a disjunction on all incoming links, i.e. at least
one of the transition conditions has to evaluate to true. If for example the participant
wants to go from the state “Active” into the state “Failing”, the state variable is set to
“Failing” and the corresponding link fired, however the scope “Failing” cannot be started,
until also the other incoming links from “Canceling” and “Compensating” have fired.
These links are activated by the DPE mechanism. For a detailed explanation of DPE in
general see [CKLW03].

Thus, each state in the CPG can be mapped to a BPEL scope and connected by
links which are derived from the edges connecting the states in the CPG. The transition
conditions on the links ensure that the target scope will only be activated if the protocol
has reached the state represented by the target scope. The incoming links to the scope
ensure that the scope is only executed, if all paths to the scope are visited (either by
execution or by disablement).

The generation of the process model can be done by traversing the CPG in a depth-first
search generating the scopes as soon as the corresponding nodes are visited.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 12

The implementation of the scopes copes with the communication between coordinator
and participant and the resulting state changes. The places where protocol specific logic
not captured by the CPG has to be implemented are marked with opaque activities.

In the following sections we will describe the implementation of the scopes in detail.
For the sake of simplicity and because of verbosity of BPEL code we will not use the
complete BPEL syntax. For example, we use $state := successor state i instead
of following syntax:

<assign>
<copy>
<from>i</from>
<to>$sate</to>

</copy>
</assign>

5.2 Scope Implementation in the Participant Process Model

The communication allowed between coordinator and participant in a particular state is
described by the state’s outgoing edges; the incoming edges are handled by the predecessor
scopes. In case of an outgoing participant message, the scope in the participant process
model has to send a message to the corresponding scope in the coordinator process
model. In case of an outgoing coordinator message it has to receive a message from the
coordinator. For the generation of scopes, four cases have to be distinguished:

(i) The state has no outgoing edges.

(ii) The state only has outgoing participant edges.

(iii) The state only has outgoing coordinator edges.

(iv) The state has both outgoing coordinator and participant edges.

All states belonging to the first case are end states. All other states may be start states
or states on a path from a start state to an end state.

Independent of these cases, the WS-BA specification requires that invalid coordinator
messages have to be handled. For example, the message “Close” must not be sent to a
participant in the state “Active”. Thus, for each invalid coordinator message, an event
handler for that message is generated in the respective state. If the coordinator message
is valid for the previous state, the message is ignored. Otherwise, the event handler
replies to the message with the “Invalid State” fault defined in WS-Coordination. To
handle the “getStatus” message, another event handler is added. The current status is
read from the status variable and sent back to the coordinator. For each given CPG
graph, a this additional logic is generated.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 13

opaque protocol logic

<scope name="state">
 <targets> … </targets>
 <opaqueActivity/>
</scope>

Graphical BPEL code representation Generated BPEL code

Figure 4: Generated scope for a state with no outgoing messages

1. opaque protocol logic
2. send message to coordinator
3. set state according to sent message

...

...
<scope name="state">
 <targets>…</targets>
 <sources>…</sources>
 <variables>…</variables>
 <sequence>
 <opaqueActivity/>
 <if>
 <condition opaque="yes"/>
 <invoke coordinator, m1_op />
 $state := successor state 1

// one elseif for successor state 2 to i-1
 <elseif> … </elseif>

 <else> … </else>
 </if>
 </sequence>
</scope>

Conceptional behavior Generated BPEL code

Figure 5: Generated scope for a state with outgoing participant messages

Case (i): State without Outgoing Messages For a state without outgoing edges,
no send or receive logic has to be implemented. The scope thus contains only an opaque
activity, which is used to denote that the programmer can insert protocol logic there
(Figure 4).

Case (ii): State with Outgoing Participant Messages Only In this case, there
are no coordinator message received, but a message sent to the coordinator. The scope
is implemented as follows: The participant first executes some opaque protocol logic
corresponding to the state. There it decides what message to send, for example whether
to commit or abort a transaction. Finally it sends this message to the coordinator and
assigns the corresponding successor state to a global state variable. That global state
variable holds the state of the protocol and is used in the transition conditions to navigate
to the next scope. For each outgoing participant message an if-branch with an opaque
condition is generated. The last branch (the else branch) does not contain any condition
to ensure that a message is sent in all cases (Figure 5).

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 14

1. opaque protocol logic
2. receive message from coordinator
3. set state according to received message

<scope name="state">
 <targets>…</targets>
 <sources>…</sources>
 <variables>…</variables>
 <sequence>
 <opaqueActivity/>
 <pick>

 // for each coordinator message
 <onMessage message i>
 state := successor state i
 </onMessage>

 </pick>
 </sequence>
</scope>

Conceptional behavior Generated BPEL code

Figure 6: Generated scope for a state with outgoing coordinator messages

Case (iii): State with Outgoing Coordinator Messages Only In this case, where
no message may be sent, but a coordinator message is received, a BPEL pick activity is
used. For each coordinator message an onMessage handler is generated (Figure 6). The
variables used to store the received messages are defined at the beginning of the scope.
Before the coordinator message is processed, the participant is executing protocol logic
corresponding to the state. After a message is received, the corresponding state is set.

Case (iv): State with Both Outgoing Participant and Coordinator Messages
This case is addressed by the construct presented in Figure 7. There are two paths of
execution now, which are executed in parallel. (i) Executing the participant protocol
logic and (ii) Handling incoming coordinator messages. (i) As in the other cases, the
main path first executes some opaque protocol logic. Based on an opaque condition it is
decided whether a message has to be sent to the coordinator or a coordinator message has
to be received. If a coordinator message is to be received and it hasn’t yet arrived, the
main path is waiting for it using a pick activity. (ii) The other path of execution is needed
for handling a message from the coordinator, which can arrive during the execution of
the opaque activity in the main path. The coordinator message is received using a BPEL
event handler attached to the opaque activity. When the coordinator message is received
by the event handler, the opaque activity can (a) ignore the coordinator message, (b) set
variables to signal the receipt of the message to the main path, or (c) decide to cancel
processing and to move to the state belonging to the coordinator message. If the third
option is chosen, the opaque condition on the link at the event handler evaluates to
“true” and the successor state i fault is thrown. This cancels the execution of the other
activities in the scope. The opaque activity in the fault handler allows a clean up after
canceling the processing.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 15

...

...

opaque activity

 send message i to coordinator
 $state := successor state i

pick:
 // for each coordinator message
 on message i
 $state := successor state i

Message
to coordinator
has to be sent

No message
to coordinator
has to be sent

Event Handlers

On Coordination Message i

Fault Handlers

On successor_state_i fault

##opaque condition

opaque activity

throw fault
"successor_state_i"

opaque activity

 $state :=
successor state i

Figure 7: Generated scope for a state with outgoing participant and outgoing coordinator
messages

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 16

5.3 Generation of the Coordinator Process Model

The participant mapping approach is not feasible for the coordination process model.
The coordinator has to be able to cope with several participants. The coordinator cannot
leave the scope “Active” until all registered participants have been handled for that
scope. In the meantime, however, several participants could have declared that they
want to exit the protocol by sending the message “Exit” to the coordinator. In that case
the coordinator should immediately send the notification “Exited” to the participant.
However, this is not possible, since the coordinator is in the scope “Active” and waits for
other participants to complete their work. When the coordinator finally leaves the scope
“Active”, a new participant could register for the protocol. Since the scope “Active” has
already finished, the new participant cannot be handled.

Figure 8 illustrates the pattern for the implementation of the coordinator scope. An
instance of the coordinator process model is started when a new WS-Coordination activity
is created. This is done by an application by sending a “CreateCoordinationContext”
message to the coordinator endpoint which replies with a “CreatedCoordinationContext”
message to indicate successful creation of the context.

Having received such a message the coordinator process is now ready to accept
registration messages from participants that wish to participate in the coordination, and
to react on messages sent by participants that have already registered. The coordinator
leaves this state if the application determines that the coordination should end and sends
a corresponding message.

The abstract BPEL process template for the coordinator is generated as follows:
In order to manage the participants for the activity an array is generated that holds
the status of all participants of the activity as well as the endpoint references of the
participants. The endpoint references are obtained during registration and are needed to
send coordination messages to the right endpoints.

Regarding the control flow, at first a process instance creating receive activity is added
that is triggered by WS-Coordination “CreateCoordinationContext” messages. The user
can then replace the following opaque activity by inserting arbitrary BPEL activities
that handle the message. Afterwards the confirmation for the successful creation of the
coordination context is sent. The control-flow now enters the scope that handles the
coordination protocol specific messages as well as the registration of participants for the
activity. Both types of messages are received and handled via event handlers.

We place opaque activities throughout the process template during generation to allow
the actual coordination logic to be inserted as needed. We do not explicitly mention those
in the following discussion, but Figure 8 shows where the opaque activities are placed
in detail. In the following description we concentrate on the control flow and leave out
details such as correlation of messages to the right process instance. For now, we assume
that upon reception of each message the coordinator knows which participant has sent
the message and that messages only are received by coordinator process instances that
handle the participant that has sent the message. Means to ensure these assumptions

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 17

isolated scope
flow

Coordination
handling Scope

Receive
CreateCoordination
Context Message

opaque activity

opaque activity

Receive
endCoordination

message

opaque activity

Variables:
participantArray
- participantId
- participantState
- participantEPR
- previousState

Event Handlers

isolated scope
opaque activity

assign new
participant to

participantArray

On Message register

opaque activity

reply with registered
message

opaque activity

reply with fault
"Invalid State"

Message valid in
participant state

Message not valid
in participant
state

opaque activity opaque activity

assign new state to
participant

send next message
in protocol

##opaque condition

opaque activity

On Coordination Message i

Reply with
CreatedCoordination

Context Message

opaque activity

Figure 8: Pattern for the generation of coordinator scopes

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 18

are presented in Section 5.4.

Registration of Participants As shown in Figure 8 registration of participants is
handled via a dedicated event handler. The event handler includes an assign activity
that adds the new participant into the participant array and sets its current state to the
first state that follows registration in the coordination protocol the coordinator has been
created for. Afterwards the event handler responds with a “Registered” message. Both
“Register” and “Registered” messages are defined in WS-Coordination. Opaque activities
allow the handling of special cases by special coordination logic. Such a case may be
the reception of registration messages after other participants have already faulted or
completed. For example, WS-BA demands that such cases are allowed.

Handling of Protocol Specific Messages For each protocol specific message the
coordinator can receive (i.e., for each dashed line in a CPG) a separate event handler
is created that handles that type of message. Upon receipt of a participant message,
one out of two paths can be followed: The first path is followed if the message is not
allowed in the state of the participant. In that case the “Invalid State” message is sent
back. In case the message is allowed in the current state, the state of the participant
is updated via an assign activity. The generated model contains opaque activities that
can be replaced by arbitrary BPEL activities that perform the actual coordinator logic.
For example, one or more invoke activities can be inserted that send the corresponding
messages that follow the received message in the coordination protocol. However, the
decision on whether a message is sent and which message in particular is sent depends on
the actual coordinator logic and therefore is marked as opaque and needs to be completed
during the customization of the template.

The second path also handles two special cases: (i) ignoring messages which were resent
by the participant, (ii) reverting to a previous state. Both the WS-AtomicTransaction and
the WS-BusinessActivity specification demand that not only messages that are allowed
in the current state of the participant are allowed but also messages corresponding to
the previous state of the participant. In order to comply with this demand an additional
field in the array is introduced that stores the previous state. On reception of a message
a new assign activity is introduced that reverts the state of a participant if a message
corresponding to that state is received. Then the control flow can proceed as if it had
originally received the message in the correct state.

Concurrent Reception of Messages All messages that can be received concurrently
by the coordinator are handled by event handlers. Thus, we ensure that the BPEL
engine can deal with the concurrent message reception. However in order to ensure
that concurrent access to shared variables, such as the participant arrays, and resulting
problems are avoided the logic of the event handlers is placed in isolated scopes. An
isolated scope is a BPEL means to synchronize parallel access to variables.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 19

5.4 Correlation Issues

When a coordinator sends a message to a participant or vice versa, the BPEL engine has
to know to which process instance this message has to be routed to. This is because (i)
in the coordinator case several coordinated activities and thus process instances can be
active at the same time; (ii) in the participant case several participants can be involved
in a coordination activity. This problem is handled by BPEL’s correlation mechanism.

When a new coordination activity is to be created, the initiator sends a “CreateCo-
ordinationContext” message to the coordinator process endpoint. A new coordinator
process instance is created, and a coordination context identifier for the new coordination
activity is generated. Together with the endpoint reference (EPR) of the registration
service it is sent back to the initiator. When an application decides to participate in
the coordination activity it creates a new participant process instance by sending the
EPR and the coordination context identifier it got from the initiator to the participant
process endpoint. A new participant process is created and after generating a participant
identifier, the participant process sends it together with the coordination context identifier
to the registration service, which is again implemented by the coordinator process model.
The coordinator saves the EPR of the participant and the participant identifier in the
participant array as described in Section 5.3.

For the correlation to work, the coordinator process model creates a correlation
set which includes the coordination context identifier; the participant process model
includes additionally the participant identifier in the correlation set. Both identifiers
are transported in message headers as defined by WS-Addressing [W3C06]. The BPEL
engine has to support WS-Addressing and access to the message headers in the process
model. The messages which are exchanged between the coordinator and the participant
thus have to contain the coordination context identifier and the participant identifier in
the message header.

6 Implementation

We have implemented a graphical CPG editor as an Eclipse plug-in based on the EMF1

and GEF2 frameworks [Mic06]. The editor supports the creation of CPG graphs and
the generation of the abstract BPEL process models and the corresponding WSDL files.
The WSDL namespace, port type, operation and message names can be specified in the
editor by setting the corresponding attributes. If not explicitly specified, the operation
and message names are derived from the edge labels in the CPG.

After generation of the abstract process models, the additional logic can be inserted
into the process models replacing the opaque activities by using a BPEL editor like the

1Eclipse Modeling Framework. http://www.eclipse.org/emf/
2Graphical Modeling Framework. http://www.eclipse.org/gmf/

http://www.eclipse.org/emf/
http://www.eclipse.org/gmf/

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 20

ActiveBPEL Designer3 or a BPMN-based BPEL Designer [Sch08].

7 Related Work

There are several approaches to map business processes modeled graphically to BPEL
(e.g. [MLZ06, ODBH06]). The approaches are similar to our work, since they are
also generating BPEL processes, but the authors deal with generating a single BPEL
process: they focus on orchestrations only. Hence, these approaches do not tackle the
communication between processes as it is the case between the coordinator and the
participant process.

In contrast to orchestrations, choreographies provide a global view on the interactions
of all participants involved. If a coordination protocol is modeled in a choreography
language, the messages from a coordinator to the participants have to be explicitly
modeled. For example, if the coordinator receives the message “Fail” from one participant,
it has to send out “Cancel” to all participants in the state “Active” and “Compensate”
to all participants in the state “Completed”. That implies that the modeling language
has to offer constructs to model states of participants and the possibility to model the
state change. In addition, the participants are unknown in advance. Thus, the modeling
language has to be capable of modeling sets of participants with a-priori unknown size of
the set.

Currently, there are two kinds of choreography models: (i) interconnection models
and (ii) interaction models [DKB08]. An interconnection model contains the observable
behavior description of each participant and an interconnection between each behavior
description. BPMN [Obj08] and BPEL4Chor [DKLW07] are the most popular languages
realizing interconnection models. Both of them support to model sets of participants:
BPMN by extensions [DP07] and BPEL4Chor natively. However, both of them do not
offer modeling constructs to express that a participant is removed from one set and put
into another set. In contrast to interconnection models, interaction models describe the
message exchanges between the participants. Two languages realizing interaction models
are WS-CDL [KBRL05] and Let’s Dance [ZBDH06]. While there is a mapping to BPEL
available for WS-CDL [MH05], WS-CDL does not support modeling a choreography
with an a-priori unknown number of participants [DOZ06]. Let’s Dance supports the
modeling of choreographies without the need to explicit state the concrete participants.
Sets of participants are modeled using different types. It is not possible to assign a new
type to a participant. All in all, none of the existing choreography approaches can be
used to model coordination protocols.

Another approach to model transactions is the UN/CEFACT’s Modeling Methodology
(UMM, [UN/06]). While UMM can be mapped to BPEL [HHL+07], UMM does not
support modeling of sets of a-priori unknown participants.

3ActiveBPEL Designer 2.0. http://www.activebpel.org

http://www.activebpel.org

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 21

8 Conclusions and Future Work

The main contributions of this report are: (i) the introduction of a model-driven approach
for implementing coordination protocols, (ii) the concrete transformation of the CPG
graph to abstract BPEL process models.

We have shown how a WS-Coordination-based coordination protocol can be modeled
as a CPG graph. A CPG graph captures the essence of a coordination protocol: the states
of the protocol and messages produced by both the coordinator and the participant. The
generated BPEL processes are abstract and comply with the abstract process profile for
templates. Opaque activities and expressions mark the locations where the programmer
can include additional protocol logic not captured by the CPG to make the processes
executable.

We have defined the CPG to be acyclic. The protocols described in WS-AtomicTransaction
and WS-BusinessActivity also do not use cycles. However, there are coordination proto-
cols such as the protocol for split loops [KL07]. We intent to adopt the work of [ZHB+06]
to address this issue in our future work.

References

[CKLW03] F. Curbera, R. Khalaf, F. Leymann, S. Weerawarana. Exception Handling in
the BPEL4WS Language. In W. M. P. V. der Aalst, A. H. M. T. Hofstede,
M. Weske, editors, Business Process Management, volume 2678 of Lecture Notes
in Computer Science, pp. 276–290. Springer, 2003. doi:10.1007/3-540-44895-0
19.

[CLS+05] F. Curbera, F. Leymann, T. Storey, D. Ferguson, S. Weerawarana. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, 2005.

[DKB08] G. Decker, O. Kopp, A. Barros. An Introduction to Service Choreographies.
Information Technology, 50(2/2008), 2008.

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL
for Modeling Choreographies. In I. C. Society, editor, Proceedings of the IEEE
2007 International Conference on Web Services (ICWS 2007), Salt Lake City,
Utah, USA, July 2007, pp. 296–303. IEEE Computer Society, Salt Lake City,
2007. doi:DOI:10.1109/ICWS.2007.59.

[DOZ06] G. Decker, H. Overdick, J. M. Zaha. On the Suitability of WS-CDL for
Choreography Modeling. In EMISA. 2006.

[DP07] G. Decker, F. Puhlmann. Extending BPMN for Modeling Complex Choreogra-
phies. In CoopIS. 2007.

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 22

[Fra03] D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003.

[HHL+07] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, M. Zapletal. Deriving exe-
cutable BPEL from UMM Business Transactions. In IEEE SCC, pp. 178–186.
IEEE Computer Society, 2007. doi:10.1109/SCC.2007.49.

[JG93] A. R. Jim Gray. Transaction Processing: concepts and techniques. Morgan
Kaufman Publishers, 1993.

[KBRL05] N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, 2005.
http://www.w3.org/TR/ws-cdl-10.

[KL07] R. Khalaf, F. Leymann. Coordination Protocols for Split BPEL Loops and
Scopes. Technical Report Computer Science 2007/01, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Technol-
ogy, Germany, University of Stuttgart, Institute of Architecture of Application
Systems, 2007.

[LP05] F. Leymann, S. Pottinger. Rethinking the Coordination Models of WS-
Coordination and WS-CF. In Third IEEE European Conference on Web
Services (ECOWS 2005), pp. 160–169. IEEE Computer Society, 2005. doi:
10.1109/ECOWS.2005.20.

[MH05] J. Mendling, M. Hafner. From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. In OTM. 2005.

[Mic06] S. Michael. Generierung von BPEL mit Hilfe von koordinierten
Kommunikations-Graphen auf Basis transaktionaler Protokolle für Web Ser-
vices. Diploma thesis, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, 2006.

[MLZ06] J. Mendling, K. B. Lassen, U. Zdun. Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages. In XML4BPM.
2006.

[OAS07a] OASIS. Web Services Atomic Transaction (WS-AtomicTransaction). Version
1.1, 2007. http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.

pdf.

[OAS07b] OASIS. Web Services Business Activity Framework (WS-BusinessActivity).
Version 1.1, 2007. http://docs.oasis-open.org/ws-tx/wstx-wsba-1.

1-spec-os.pdf.

http://www.w3.org/TR/ws-cdl-10
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf

A Model-Driven Approach to Implementing Coordination Protocols in BPEL 23

[OAS07c] OASIS. Web Services Business Process Execution Language Version 2.0 –
OASIS Standard. Technical report, Organization for the Advancement of
Structured Information Standards (OASIS), 2007.

[OAS07d] OASIS. Web Services Coordination (WS-Coordination) Version 1.1, 2007.
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf.

[Obj08] Object Management Group. Business Process Modeling Notation, V1.1 – OMG
Available Specification, 2008.

[ODBH06] C. Ouyang, M. Dumas, S. Breutel, A. ter Hofstede. Translating Standard
Process Models to BPEL. In Advanced Information Systems Engineering,
volume 4001, pp. 417–432. Springer Berlin / Heidelberg, 2006. doi:10.1007/
11767138 28.

[PML07] S. Pottinger, R. Mietzner, F. Leymann. Coordinate BPEL Scopes and Processes
by Extending the WS-Business Activity Framework. In R. Meersman, Z. Tari,
editors, Proceedings of the 15th International Conference on Cooperative In-
formation Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer
Science, pp. 336–352. Springer, 2007. doi:10.1007/978-3-540-76848-7 22.

[Sch08] D. Schumm. Graphische Modellierung von BPEL Prozessen unter Verwendung
der BPMN Notation. Diploma thesis, University of Stuttgart, Faculty of Com-
puter Science, Electrical Engineering, and Information Technology, Germany,
2008.

[SM01] M. Sailer, M. Morciniec. Monitoring and Execution for Contract Compliance.
Technical Report HPL-2001-261, Hewlett Packard Laboratories, 2001.

[UN/06] UN/CEFACT. UN/CEFACT’s Modeling Methodology (UMM), UMM Meta
Model - Foundation Module, 2006. Technical Specification V1.0, http://www.
unece.org/cefact/umm/UMM_Foundation_Module.pdf.

[W3C06] W3C Recommendation. Web Services Addressing Version 1.0, 2006.

[ZBDH06] J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede. A Language for Service
Behavior Modeling. In CoopIS. Montpellier, France, 2006.

[ZHB+06] W. Zhao, R. Hauser, K. Bhattacharya, B. R. Bryant, F. Cao. Compiling
business processes: untangling unstructured loops in irreducible flow graphs.
International Journal of Web and Grid Services, 2:68–91, 2006. doi:10.1504/
06.8880.

All links were last followed on May 8, 2008.

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf
http://www.unece.org/cefact/umm/UMM_Foundation_Module.pdf
http://www.unece.org/cefact/umm/UMM_Foundation_Module.pdf

	Introduction
	Background
	WS-Coordination
	BPEL

	Modeling Coordination Protocols
	Model-Driven Implementation Approach
	Generating BPEL Process Models
	Generation of the Participant Process Model
	Scope Implementation in the Participant Process Model
	Generation of the Coordinator Process Model
	Correlation Issues

	Implementation
	Related Work
	Conclusions and Future Work

