Universitat Stuttgart

Fakultat Informatik, Elektrotechnik und Informationstechnik

Generating WS-BPEL 2.0 Processes from a
Grounded BPEL4Chor Choreography

Peter Reimann, Oliver Kopp,
Gero Decker, Frank Leymann

2008/07
(slightly updated on 2014-04-01)

Institut fir Architektur von
Anwendungssystemen

Universitatsstralle 38
70569 Stuttgart
Germany

CR:H.4.1,K.1

Contents

1. Introduction 5
2. Partner Links, Port Types, and Operations 9
2.1. Analyzing the Participant Topology 10
2.2. Analyzing the Participant Groundings 22
2.3. Converting the PBDs oo 41
2.4. Why not Using Pairs of Communicating Participant Types 52
3. Correlation Properties 55
4. Set-Based ForEach 63
4.1. Exemplifying the Conversion of a Set-Based ForEach 63
4.2. Refining our Procedureo 67
5. Generating WSDL Definitions of Partner Link Types 77
5.1. Endpoint References L. 81
6. Summary and Future Work 93
A. Summary of all Definitions 97
B. Summary of all Data Types and their Functions 101

1. Introduction

BPEL4Chor [DKLW07, DKLW09] is a choreography extension for WS-BPEL (BPEL for
short, [Org07]). BPEL4Chor consists of a participant topology, participant behavior
descriptions, and participant groundings. The participant behavior descriptions are
abstract BPEL processes and are not executable by themselves. To be portable across
multiple enterprises, the participant behavior descriptions do not contain any WSDL
specific information. This information is added at the participant grounding, which
is specific to the “deployment” of the choreography. Using the information of the
participant grounding, each participant behavior description can be mapped to an
abstract BPEL process following the “abstract process profile for observable behavior”.
Such a process can then serve as basis for an “executable completion” [Org07], where
additional constructs are added to enable the process to be executed on a workflow
engine. Figure 1 summarizes the necessary steps to get from a BPEL4Chor choreography
description to executable BPEL processes. This report deals with the third step and
describes how to automatically generate abstract BPEL processes containing the WSDL
information of the grounding.

The main issues of the transformation are:
e multiple port types for a service when creating partner links (cf. Section 2),
e declaring partner links in the right scopes (cf. Section 2),
e mapping transmitted references to variables or partner links (cf. Section 5.1),
e declaring newly created message variables in the right scopes (cf. Section 5.1).

To generate BPEL Abstract Processes from a BPEL4Chor choreography, we convert
the single participant behavior descriptions following the Abstract Process Profile for
Participant Behavior Descriptions into BPEL processes following the Abstract Process
Profile for Observable Behavior. Since the Abstract Process Profile for Participant Be-
havior Descriptions forbids the usage of partnerLink, portType, and operation attributes
at the BPEL constructs used for communication, these attributes and the declarations

Ground
Model Message Links Transform to Do an Deplov and
BPEL4Chor ge* Abstract BPEL Executable ploy
and Participant Run
Choreography References Processes Completion

1. 2.

Figure 1.: From a BPEL4Chor choreography to executable BPEL processes

1. Introduction

of partner links have to be generated during the transformation. This is described in
Section 2.

In correlation sets the NCNames of the correlation properties have to be replaced by
the QNames of the corresponding references to WSDL properties. This is described in
Section 3.

In BPEL4Chor a <forEach> activity may iterate over a set of participant references.
Since pure BPEL does not support of the concept of participant references, such a
<forEach> has to be converted into a <forEach> activity iterating over a variable
holding an endpoint reference. This is described in Section 4.

Section 5 presents how the WSDL definitions of partner link types are generated
automatically. They need to be generated since we create completely new partner link
declarations and partner link types (cf. Section 2). As we do not have any information
about the data types of the correlation properties which are referenced in the participant
groundings, we cannot generate their WSDL definitions automatically. They need to be
defined before starting the automated transformation. The definitions of port types and
operations, WSDL messages, properties and property aliases for endpoint references and
property aliases for correlation properties might be generated automatically, too. This
is out of scope for this work. We assume that these definitions have been generated
before starting the automated transformation.

Link passing mobility is accomplished in BPEL4Chor by forwarding participant references
over message links. In BPEL processes we need to pass on endpoint references. The
transmitted endpoint reference needs to be copied to the partnerRole of the partner link
between the receiver of the reference and the transmitted participant reference if they
want to communicate. So, we have to add an <assign> activity at the receiver side.
We do not integrate this part of the transformation into the automated transformation.
Therefore, we assume that in our BPEL4Chor choreography no participant references are
transmitted over message links. Section 5.1 presents conceptionally how the conversion
of transmitted participant references to endpoint preferences can be realized. The
integration into the automated transformation is subject to future work.

Finally, Section 5 presents how certain WSDL definitions may be generated or extended
automatically. These definitions are the partner link types, port types and operations.
The definitions of partner link types will be created newly. If the definitions of port
types and operations have been generated before starting the automated transformation,
they will be extended by definitions which are not included in them, but which are
referenced in the participant groundings of the BPEL4Chor description. Otherwise, they
will be created newly, too. As we do not have any information about the data types or
definitions of property aliases of the correlation properties or endpoint references which
are referenced in the participant groundings, we cannot generate their WSDL definitions
automatically. They need to be defined before starting the automated transformation.

The underlying procedure of the transformation is subdivided into four steps as pre-
sented below. As input it needs a completely grounded BPEL4Chor choreography (a
participant topology, a PBD for each defined participant type and complete participant
groundings) and WSDL definitions of port types and operations as well as WSDL
messages. Additionally, the input includes WSDL definitions of properties and property
aliases for correlation sets and endpoint references, if used. As output it produces
one BPEL process following the Abstract Process Profile for Observable Behavior for
each PBD. Furthermore, it produces WSDL definitions of partner link types. Figure 2
presents an overview of what is needed as input for the procedure and what is created
as output.

Four steps from BPEL4Chor to BPEL Abstract Processes:

1. Analyze the participant topology and store all relevant data needed to execute the
transformation. The data are amongst others the set of newly created partner link
declarations and their mapping to message constructs (BPEL constructs used for
communication) or the mapping of WSDL port types and operations to message
constructs.

2. Analyze the participant groundings and extend the stored data.

3. Convert the single PBDs to BPEL Abstract Processes following the Abstract
Process Profile for Observable Behavior as stated above (e.g. add declarations of
partner links). The missing information can be derived from the data stored in
steps 1 and 2.

4. Use the data stored in steps 1 and 2 to create WSDL definitions of partner link
types.

To describe the data stored in steps 1 and 2, we use definitions of mathematical sets and
functions and relations on this sets. Some of these definitions have been taken or derived
from [KMLO8]. This technical report describes an abstract syntax of a WS-BPEL 2.0
process. It is developed by the Institute of Architecture of Application Systems at the
University of Stuttgart. A summary of all definitions are summarized in Appendix A.

In the following, we use the notion “participant reference” for both a single participant
reference and a set of participant references. Furthermore, we mean by saying that
a participant reference sends a message to another participant reference, that the
participant bound to the sending participant reference sends a message to the participant
bound to the receiving participant reference.

We assume that there is exactly one name space prefix for each name space and vice
versa in the participant topology and the participant groundings. It is clear that there
is exactly one name space for each name space prefix, but it may happen that several
prefixes refer to the same name space. If this occurs, one of the prefixes has to be chosen
and the others have to be replaced by this one. Furthermore, we assume that there is

1. Introduction

BPEL4Chor choreography

Participant BPEL
topology Abstract
Processes

/

Transformation
PBDs i Partlcm_)ant
groundings
WSDL
definitions
WSDL
definitions

Figure 2.: Input and output of the transformation

no name space prefix which is defined in the participant topology or the participant
groundings and which is named by topologoyNS. Otherwise, it has to be renamed.
This prefix is used as a designated prefix referencing to the target name space of the
participant topology.

In the course of the transformation, we will add new name space declarations to the
PBDs. We assume that there are no conflicts with existing name space declarations
and the newly created ones. A conflict might e.g. be that that an existing name space
declaration defines the same name space prefix as a newly created one, but they refer to
different name spaces. Then, the existing declaration is overwritten. If any conflicts
occur, a renaming of name space prefixes has to be done. This is out of scope for this
work.

Furthermore, we assume that there are no naming conflicts with existing variable
declarations and newly created ones. Otherwise, a renaming of variables has to be done.
Again, this is out of scope for this work.

2. Partner Links, Port Types, and
Operations

The following definitions will be used to generate partner link declarations and add
partnerLink, portType, and operation attributes to the BPEL constructs used for com-
munication. Definitions 1 to 16 represent the data which is stored in step 1 of our
procedure and definitions 17 to 31 the data of step 2.

Partner link types and partner link declarations are created while analyzing the message
link declarations of the participant topology and the participant groundings. For each
new combination of communicating participant references we will create exactly one
partner link type if each reference is not realized by multiple port types. Otherwise,
we need more than one partner link type for the combination. Let n be the number of
port types by which the first participant reference(s) of the combination is realized, and
let m be the number of port types for the second participant reference(s). Then, we
need exactly max(n, m) partner link types for the combination of participant references.
For each partner link type we need to create two partner link declarations, one for
the first participant reference(s) of the combination and one for the second participant
reference(s).

A participant reference may be limited to a scope of any PBD by associating it with
this scope in its <participant> or <participantSet> declaration by a scope attribute. In
BPEL4Chor it is possible to associate a participant reference to a <forEach> activity
of any PBD. If the reference is a set of participant references, the <forEach> activity
will iterate over this set. If it is a single participant reference, it will represent the
current participant in each of the branches of the <forEach> activity. The latter is
limited to the scope nested in the <forEach> activity. The consequence of limiting a
participant reference to a scope is that other participant references may send messages
to this reference or receive messages from it only within the corresponding scope. It
also means that every time the scope is entered, the participant reference may be bound
to a different concrete participant. A partner link may be limited to one scope if the
participant reference with which another participant reference communicates over it is
limited to this scope, too. In such a case, we need to declare the partner link within
the corresponding scope. This guarantees that every time the scope is entered, a new
instance of the partner link is created.

Assume the code snippet of a message link declaration presented in listing 2.1. This
message link specifies several senders. The actual sender is bound to the participant
reference z. If the partner link declaration at receiver side needs to be declared within a

2. Partner Links, Port Types, and Operations

scope, we will commit the modeler to limit the participant reference z to this scope. This
goes for each message link having a senders attribute assigned. It makes our procedure
easier when associating a partner link declaration with a scope. Otherwise, the partner
link declaration needs to be associated with a set of scopes, if the participant references
s1, s2 and s3 are limited to different scopes. Then, the partner link needs to be declared
within the right of these scopes. This is out of scope for this work. Since a set of
participant references might only be specified as sender of a message link by using a
senders attribute, we simply ignore the fact that it may be limited to a scope by a scope
attribute in its <participantSet> declaration. So, only single participant references are
associated with a scope during our procedure. For the automated transformation we
furthermore assume that a participant reference is limited to at most one scope.

<messageLink name="severalSenders"
senders="sl s2 s3")
receiver="r"
bindSenderTo="z"

messageName="severalSenders"

/>...

Listing 2.1: Message link specifying several senders

There is an alternative way to create partner link types and partner link declarations.
In that way, they are created for each pair of communicating participant types instead
of combinations of participant references. A short discussion why we must not use this
alternative way is placed at Section 2.4.

2.1. Analyzing the Participant Topology

Definition 1 (set of name spaces).

The set NS is defined as the set containing all name spaces which are used in the
participant topology and the participant groundings of the BPEL4Chor choreography
and which are referenced by a name space prefix including the target name space of the
participant topology.

Definition 2 (set of name space prefixes).

The set NSPrefix is defined as the set containing all name space prefixes which are
used in the participant topology and the participant groundings of the BPEL4Chor
choreography and which refer to a name space contained in NS including a designated
element topologoyN S.

10

2.1. Analyzing the Participant Topology

The designated element topologoyN S € NSPrefix refers to the target name space of the
participant topology.

Definition 3 (the function assigning a name space to its name space prefix).

The function prefixryg : NSPrefix — NS is defined as the function that assigns a name
space to the corresponding name space prefix. The target name space of the participant
topology is assigned to the designated element topologoyN S.

BPEL constructs may be associated with the same wsu:id. If they are declared in the
same name space, they will be associated with the same partner link, port type and
operation (in the case of message constructs), or the same partner link declarations will
be added to them (in the case of <scope> or <forEach> activities). In the case of a
<forEach> activity, these partner link declarations are declared within the <scope>
activitiy nested directly in the <forEach> activity. If the constructs are declared in
different name spaces, they might be associated with different partner links, port types
or operations, or they might get different partner link declarations added. Therefore,
we need the sets NS and NSPrefiz and the function prefirys. They will be used later to
identify scopes and <forEach> activities which have a wsu:id attribute assigned and
message constructs within their processes and to add the proper partnerLink, portType
and operation attributes or partner link declarations to them (cf. Section 2.3). The
target name space of the participant topology will be used to create a new name space
for the WSDL definitions of partner link types (cf. Section 5). The name spaces and
name space prefixes which are used in the participant groundings will be used to add
name space declarations for port types and operations to the PBDs (cf. Section 2.3).

The identifiers of the sets NS and NSPrefiz are the names of the corresponding name
spaces or name space prefixes. Their elements and the function prefizys can be derived
from the declarations of name space references in the <topology> tag of the participant
topology (in step 1), from the <grounding> tag of the participant groundings (in step
2) and from the targetNamespace attribute of the participant topology (in step 1).

Since we assume that there is exactly one name space prefix for each name space and
vice versa in the participant topology and the participant groundings, the function
prefixys is bijective.

Example 3.1 (name spaces and name space prefixes of the participant topol-
ogy). In our participant topology we have the following name space references and
target name space.

targetNamespace="example"
xmlns:buyer="example:buyer"
xmlns:seller="example:seller"

11

2. Partner Links, Port Types, and Operations

We get the set NS = {example, example : buyer, example : seller} and the set NSPrefiz =
{topologoyN S, buyer, seller} and the function prefizys with prefixys(topologoyNS) =
example, prefizys(buyer) = example : buyer and prefizyg(seller) = example : seller.

Definition 4 (set of participant types).

The set PaType is defined as the set containing all participant types of the BPEL4Chor
choreography.

Definition 5 (set of processes).

The set Process is defined as the set containing all BPEL processes (PBDs) of the
BPEL4Chor choreography.

Definition 6 (the function assigning a PBD to each participant type).

The function processpapype : PaType — Process is defined as the function that assigns a
PBD to each participant type.

The function processp,rype is bijective since there is exactly one PBD for each participant
type and vice versa.

Definition 7 (the function assigning a name space prefix to each PBD).

The function nsprefixprocess : Process — NSPrefix is defined as the function that assigns
a name space prefix to each PBD of which the target name space is associated with this
name space prefix.

The sets and functions defined in definitions 4 to 7 can be derived from the <partic-
ipantTypes> declaration of the participant topology. The identifier of an element of
PaType is the NCName of the name attribute of the appropriate <participantType>
declaration. There has to be exactly one element of PaType for each <participantType>
declaration.

The value of the participantBehaviorDescription attribute of each <participantType>
declaration is a QName consisting of two colon-separated NCNames. The first NCName
is the name space prefix which refers to the target name space of the process of the
corresponding participant type. The second NCName is the local name of that process.
As identifier of an element of Process we use this QName. So, we have named an element
of Process uniquely since every BPEL process needs to be named uniquely within its
name space. There has to be exactly one element of Process for each PBD. The function
NSPTEfilprocess 15 set to the first NCName of the identifier of the corresponding element
of Process.

12

2.1. Analyzing the Participant Topology

Let patype € PaType be a participant type. Then, processp,myy.(patype) € Process
represents the PBD referenced by the participantBehaviorDescription attribute of the
<participantType> declaration which is represented by patype.

Example 3.2 (participant types and processes). The following code snippet of a
participant topology defines two participant types and associates each of them with one
PBD. The sets and functions of definition 1 to 3 are the same as in example 3.1.

<participantTypes>
<participantType name="Buyer"
participantBehaviorDescription="buyer:buyer" />
<participantType name="Seller"
participantBehaviorDescription="seller:seller" />
</participantTypes>

We get the sets PaType = { Buyer, Seller} and Process = {buyer : buyer, seller : seller}.
Furthermore, we get processp,pype(Buyer) = buyer : buyer, processpopype(Seller) = seller : seller,
NSPTEfiTprocess(buyer : buyer) = buyer and nsprefizprocess(seller : seller) = seller.

Definition 8 (set of participant references).

The set Pa is defined as the set containing all participant references of the BPEL4Chor
choreography. This set interprets sets of participant references and single participant
references equally. There is no differentiation between them.

Definition 9 (the function assigning a participant type to each participant
reference).

The function typep, : Pa — PaType is defined as the function that assigns a participant
type to each participant reference which is of this type.

Definition 10 (set of scopes).

The set Scope is defined as the set containing the scopes and <forEach> activities of
all PBDs having a wsu:id attribute assigned and that are referenced by one or more
single participant references. If different <scope> or <forEach> activities bear the
same wsu.id and are declared in the same name space, they will be represented by the
same element of the set Scope.

The following function will be used later to assign a partner link to a scope in which it
needs to be declared.

13

2. Partner Links, Port Types, and Operations

Definition 11 (the function indicating to which scope a participant reference
is limited).

The function scopep, : Pa — Scope U {_L} is defined as the function that assigns a scope
to each participant reference which is limited to this scope. Let pa € Pa be a participant
reference and let sc € Scope U {L} be a referenced scope or the element L. Then,
scopepq(pa) is set to sc if and only if one of the following three conditions holds:

1. pa is a single participant reference, and it is associated with sc by a scope attribute
in its <participant> declaration.

2. pa is a single participant reference, and it is associated with sc by a forFach
attribute in its <participant> declaration.

3. Neither condition one nor condition two holds, and we heve sc = L.

A single participant reference assigned to a forEach attribute is limited to the scope
nested in the appropriate <forEach> activity. So, we need to handle a referenced
<forEach> activity as like a referenced <scope> activity. This means that we need
to store it in the set Scope and modify the function scopep, of the single participant
reference to the <forEach> activity accordingly. Thus, the stored <forEach> activity
can be interpreted as the <scope> activity nested in it.

If a participant reference pa € Pa is not limited to an inner scope of any process, other
participant references will be able to communicate with pa within any scope of their
processes. In such a case, we set scopep,(pa) = L, which is expressed by the third
condition of definition 11.

The sets and functions defined in definitions 8 to 11 can be derived from the <partici-
pants> declaration of the participant topology. The identifier of an element of Pa is the
NCName of the name attribute of the appropriate <participant> or <participantSet>
declaration. The NCName of its type attribute identifies the element of PaType which
is assigned to the participant reference by the function typep,.

In [KMLOS8| Ajscope is the set of <scope> activities of one process and process € Aseope 1S
the <process> activity. Let A%, be the set Ascpe of process p € Process. Then, we have
Scope = (Upe Process(Aleope \ ({process} U {sc € AL, | no single participant reference is
associated with sc}))) = (Upeprocessisc € AL, | at least one single participant reference
is associated with sc}), while a single participant reference can be associated with a

scope sc € Scope either by a scope or a forFach attribute.

The identifier of an element sc € Scope is the QName of the appropriate scope or forFach
attributes which are associated with one or more single participant references. A QName
consists of two colon-separated NCNames. The first NCName is the name of the name
space prefix which refers to the name space which is the target name space of the process

14

2.1. Analyzing the Participant Topology

in which the <scope> or <forEach> activity is included, and the second NCName is
the value of the wsu:id attribute of the corresponding <scope> or <forEach> activity.
In that way, each element of Scope is named uniquely. For each scope and for each
<forEach> activity referenced in the <participants> declaration by a single participant
reference there has to be exactly one element of Scope. The elements of Scope can be
derived by traversing the <participants> declaration and adding each scope and each
<forEach> activity that is referenced by a single participant reference to Scope. We do
not need to check whether a newly added element of Scope has been added previously
since there cannot be any duplicates of elements in a mathematical set.

The function scopep, can be derived as follows. Let pa € Pa be the participant reference
of the current <participant> or <participantSet> declaration while traversing the
<participants> declaration. If pa is a single participant reference, and if it is associated
with a scope sc € Scope by a scope or forEach attribute, scopep,(pa) will be set to sc.
Otherwise, it will be set to L.

Example 3.3 (participant references and scopes). The following code snippet of
a participant topology defines two single participant references and one set of participant
references and limits one of the single references to a scope. The sets and functions of
definitions 1 to 7 are the same as in examples 3.1 to 3.2.

<participants>
<participant name="buyerref" type="Buyer" selects="sellerref" />
<participant name="sellerref" type="Seller"
scope="seller:innerscope" />
<participantSet name="sellers" type="Seller" />
</participants>

We get the set of participant references Pa = {buyerref, sellerref, sellers} and the func-
tion typep, with typep,(buyerref) = Buyer, typep,(sellerref) = Seller and typep,(sellers) = Seller.

The participant reference sellerref is associated with a scope named innerscope. The
value of the corresponding scope attribute is the QName seller:innerscope. Thus, we
get the set Scope = {seller : innerscope}. For the participant reference sellerref we
get scopep,(sellerref) = seller : innerscope. The participant references buyerref and
sellers are not associated with a scope in their <participant> or <participantSet>
declarations. So, we get scopep,(buyerref) = scopep,(sellers) = L.

Definition 12 (set of message constructs).

The set MC' is defined as the set containing the message constructs (BPEL constructs
used for communication) of all PBDs. If different message constructs bear the same
wsu:id and are declared in the same name space, they will be represented by the same
element of the set MC.

15

2. Partner Links, Port Types, and Operations

In [KMLO8] COpessage is the set of the message constructs of one process. Let CO?, ...
be the set CO pessage Of process p € Process. Then, we have MC' = Upe process COY,

message*

Definition 13 (set of message links).

The set ML is defined as the set containing all message links of the BPEL4Chor
choreography.

Definition 14 (the function assigning a send and a receive activity to each
message link).

The function constructsy, : ML — MC x MC is defined as the function that assigns
two message constructs to each message link. Let ml € ML be a message link and
constructsyy(ml) = (mey, mez). Then, me; is the send activity and mey the receive
activity of the message link ml.

The function constructsyy, is used to determine the message constructs of a message
link while analyzing the corresponding <messagelink> declaration in the participant
groundings. These message constructs then are associated with partner links, port types
and operations (cf. Section 2.2). This makes it possible to add partnerLink, portType
and operation attributes to the appropriate message constructs in the PBDs (cf. Section
2.3).

Definition 15 (the function assigning the sender(s) and the receiver to each
message link).

The function parefsyy, : ML — 2% x Pa is defined as the function that assigns a subset
of participant references (a subset of Pa) and a single participant reference to each
message link. Let ml € ML be a message link and parefsy(ml) = (A, p). Then, A
contains all participant references which are specified as a potential sender of ml, and p
is the participant reference which is specified as its receiver.

Definition 16 (the function assigning the actual sender to each message link).

The function bindSenderToyy, : ML — Pa U { L} is defined as the function that assigns
a participant reference to each message link of which the actual sender should be bound
to this reference indicated by a bindSenderTo attribute. Let ml € ML be a message
link. If ml has no bindSenderTo attribute assigned, bindSenderToyy(ml) will be set
to L. Otherwise, if ml has a bindSenderTo attribute assigned, and if the value of the
attribute is the identifier of the participant reference p € Pa, bindSenderToy,(ml) will
be set to p. Thus, the actual sender of ml is bound to the participant reference p.

16

2.1. Analyzing the Participant Topology

The functions parefsy;, and bindSenderToy;, are used to determine the combination of
communicating participant references of a message link while analyzing the corresponding
<messageLink> declaration in the participant groundings. Thus, they help us to create
partner link types and partner link declarations (cf. Section 2.2).

The sets and functions defined in definitions 12 to 16 can be derived from the <mes-
sageLinks> declaration of the participant topology by traversing all message links one
by one. The identifier of an element of ML is the NCName of the name attribute of the
corresponding <messageLink> declaration. There has to be exactly one element of M L
for each <messagelLink> declaration.

Each message link has exactly two message constructs referenced by its sendActivity
and receiveActivity attributes. The values of these attributes are NCNames. Since every
NCName is unique only within a name space, we cannot use them as identifier of the
elements of MC'. There might be several message constructs having the same NCName,
but which are declared in different name spaces. Instead, we use a QName. Its first
NCName is the name space prefix which refers to the target name space of the process
which uses the message construct. The second one is the NCName of the sendActivity
or receiveActivity attribute.

For each message link we add both the send and the receive activity to the set MC. The
only message construct occurring in two message links instead of one is a synchronous
<invoke> activity. It has to be the send activity in one of them and the receive activity
in the other message link. But since there cannot be any duplicates of elements in a
mathematical set, it will do no harm if we just add it twice to the set MC'. In that way,
it is not necessary to check whether a message construct is a synchronous <invoke>
activity or not, which cannot be seen from the declarations of message links directly.
The derivation of the sets and functions defined in definitions 12 to 16 is as follows.

Let ml € ML be the current message link, receiver the participant reference identified
by the NCName of the receiver attribute, receive Activity the NCName of the receive-
Activity attribute and sendActivity the NCName of the sendActivity attribute of ml.
Furthermore let sender;, senders, ..., sender, be the participant reference(s) of the
sender(s). If only one sender is specified in ml, we will have n = 1. Then, sender; is the
single participant reference identified by the NCName of the sender attribute. If a set
of potentially senders is specified in ml, we will have n > 1. Then, sender; to sender,
are the participant references identified by the NCNames of the senders attribute, and
n is the amount of these NCNames. If we have n = 1 additionally, sender; will be a set
of participant references.

First of all, we build the identifiers for the message constructs of ml and add them to
the set MC'. In sender,, and receiver,s we store the name space prefixes which refer to
the target name spaces of the processes of the sender(s) and the receiver. Thus, we get
receivery,s = NSPrefilprocess(Processpamype (typepq(receiver))). As each sender has to be

17

2. Partner Links, Port Types, and Operations

of the same participant type and thus is referenced to the same element of Process, we
can store the value nsprefitprocess(Processpamype(typepq(sender;))) for any 1 <i <n in
sender,,. No other participant reference needs to be called in for sender,,. Since sender,
always exists, we chose © = 1. The identifiers of both message constructs of ml can be
build by building the QNames sender,,s : sendActivity and receiver, : receive Activity.

After having added the message constructs to MC', we set constructsyy(ml) = (mey, mes)
with mc; = sender, : sendActivity and mcy = receiver,, : receiveActivity. Further-
more, we set parefsy(ml) = ({sender;, senders, ..., sendery,}, receiver). The value of
bindSenderToyy(ml) will be set to L if ml has no bindSenderTo attribute assigned.
Otherwise, it will be set to the NCName of the bindSenderTo attribute, which is an
identifier of a single participant reference.

Algorithm 1 states a procedure in pseudo code which executes the derivation of the sets
and functions defined in definitions 12 to 16 for one message link. This procedure has
to be called for each <messageLink> declaration. The procedures and functions of the
algorithms of this chapter use data types and functions which are similar to the data
types and functions of JDOM!. JDOM stores an xml-file as tree of Java objects. For
algorithm 1 we assume the following;:

e We assume QName to be a data type for QNames. QName inherits of the data type
String.

e We assume NCName to be a data type for NCNames. NCName inherits of the data
type String. There is the following function on elements of the type NCName

— buildQName(name :NCName) returns QName: this function builds a QName
by concatenating the NCName with a colon and the NCName name.

e We assume DT(S) to be a data type for the elements of the mathematical set S. S
may be any set of the definitions of this chapter. DT(S) inherits of the type of the
identifiers of the elements of S (NCName or QName).

e We assume Element to be a data type for a node of a tree which represents an
xml-file. So, an element of the type Element represents a tag within an xml-file.
There are the following functions on elements of the type Element:

— getAttributeValue(name :String) returns String: this function returns
the value of the attribute having the name name. It will return L if the
element has no attribute assigned having the name name.

Yhttp://www. jdom.org/

18

http://www.jdom.org/

2.1. Analyzing the Participant Topology

— getAttributeValueAsList(name :String) returns List(String): this func-
tion returns the value of the attribute having the name name as list of NC-
Names or QNames. FEach NCName or QName of the value of the attribute is
one element of the list. The function will return an empty list if the element
has no attribute assigned having the name name.

— hasAttribute(name :String) returns Boolean: this function will return
true if the element has an attribute assigned having the name name. Otherwise,
it will return false.

These assumptions hold for each algorithm of this chapter, and they will be extended
successively. A summary of all assumptions made for the algorithms of this chapter is
presented in Appendix B.

19

2. Partner Links, Port Types, and Operations

Algorithm 1 Analysis of one <messageLink> declaration of the participant topology

procedure ANALYZEMESSAGELINK(messagelink :Element)

// the input messageLink points on the current <messaglLink> tag

ml :DT(ML); // DT (ML) inherits of NCName
receiver, senderl :DT(Pa); // DT(Pa) inherits of NCName
senders :List(DT(Pa));

receiveActivity, send Activity :NCName;

receiverns, senderns :NCName; // name space prefixes receiver,s and sender
mcl, me2 :DT(MC); // DT(MC') inherits of QName

// mcl will be the send activity and mc2 the receive activity of the message link

begin

// add message link to ML
ml <—messagelLink.get AttributeValue("name");
ML <ML U ml;
// get participant references of the sender and the receiver
receiver <—messageLink.get AttributeValue('receiver");

if messageLink.hasAttribute("sender") then // only one sender is specified
senderl <—messageLink.getAttributeValue("sender");
else // more than one sender specified

// get participant references of the senders
senders <—messageLink.get AttributeValueAsList("senders");
senderl <—senders[1]; // the first element of senders
end if
// build identifiers for the message constructs and add them to the set MC
receiveActivity <—messagelink.getAttributeValue('receiveActivity');
sendActivity <—messageLink.get AttributeValue('sendActivity");
receiverns <—nsprefitprocess(Processpamype (type p(receiver)));
senderns <—nsprefiprocess(Processpamype (typep(senderl)));
mc2 <receiverns.buildQName(receiveActivity);
mcl <—senderns.build@QName(sendActivity);
MC <MC U me2;
MC +~MC U mcl;
/| derive functions of definitions 14 to 16
constructsyy,(ml) <—(mel, me2);
parefsyy,(ml) <—(senders, receiver); // senders is a set (list) of sender references
bindSenderToy,(ml) <—messageLink.get AttributeValue("bindSenderTo");
/| getAttributeValue returns L if BindSenderTo attribute does not exist

end procedure

20

2.1. Analyzing the Participant Topology

Example 3.4 (message links and message constructs). The following code snippet
of a participant topology defines three message links. The sets and functions of definitions
1 to 11 are the same as in examples 3.1 to 3.3.

<messagelLinks>

<messagelink name="ProductInformation"
senders="sellers"
sendActivity="SendPI"
receiver="buyerref"
receiveActivity="ReceivePI"
bindSenderTo="sellerref"
messageName="ProductInformation" />

<messagelLink name="PurchaseOrder"
sender="buyerref"
sendActivity="SendP0"
receiver="sellerref"
receiveActivity="ReceiveP0"
messageName="PurchaseOrder" />

<messagelLink name="POConfirmation"
sender="sellerref"
sendActivity="SendConf"
receiver="buyerref"
receiveActivity="ReceiveConf"
messageName="P0Confirmation" />

</messageLinks>

To derive the sets and functions of definition 12 to 16 we need to use the procedure
analyzeMessageLink on each of the three <messagelLink> declarations. In that way, we
get the following:

e ML = {ProductInformation, PurchaseOrder, POCon firmation, }

o MC = {seller : SendPI, buyer : ReceivePI, buyer : SendPO, seller : Receive PO, seller :
SendConf, buyer : ReceiveConf}

o constructsy,(ProductIn formation) = (seller : SendP1I, buyer : ReceivePI)

o constructsyy (PurchaseOrder) = (buyer : SendPO, seller : Reveive PO)

o constructsy,(POCon firmation) = (seller : SendConf, buyer : ReveiveConf)
o parefsyy,(ProductIn formation) = ({sellers}, buyerref)

o parefsyy(PurchaseOrder) = ({buyerref}, sellerref)

21

2. Partner Links, Port Types, and Operations

parefsy, (POCon firmation) = ({sellerref}, buyerref)

bindSenderToyy,(ProductIn formation) = sellerre f
bindSenderTopyy,(PurchaseOrder) = L
bindSenderToyy,(POCon firmation) = L

2.2. Analyzing the Participant Groundings

Until now, we have seen how the data which is stored in step 1 of our procedure can be
derived from the participant topology. Now, we describe the data of step 2. First of all,
when analyzing the participant groundings, we extend the sets NS and NSPrefiz and
the function prefizys by the name space references in the <grounding> tag.

Example 3.5 (name spaces and name space prefixes of the participant ground-
ings). In our participant groundings we have the following name space references. The
sets and functions of definitions 1 to 16 are the same as in examples 3.1 to 3.4

xmlns:buyerPTs="example:buyer:portTypes"
xmlns:sellerPTs="example:seller:portTypes"

We get the sets NS = NS U {example : buyer : portTypes, example : seller : portTypes}

and NSPrefic = NSPrefix U {buyer PTs, seller PTs}, and the function prefizyg is ex-

tended by the assignments prefizys (buyer PT's) = example : buyer : portTypes and prefizyg(seller]
: seller : portTypes.

The following definitions 17 to 31 represent the data which is stored in step 2 of our
procedure while analyzing the participant groundings of the BPEL4Chor choreography.

Definition 17 (set of WSDL port types).

The set PT is defined as the set containing all WSDL port types which are referenced
in the participant groundings of the BPEL4Chor choreography.

Definition 18 (the function assigning a name space prefix to each port type).

The function nsprefirpr : PT — NSPrefix is defined as the function that assigns a name
space prefix to each port type which is declared in the name space which is associated
with this name space prefix.

Definition 19 (set of WSDL operations).

22

2.2. Analyzing the Participant Groundings

The set O is defined as the set containing all WSDL operations which are referenced in
the participant groundings of the BPEL4Chor choreography.

Definition 20 (the function assigning a port type to each message construct).

The function portTypeyc : MC — PT is defined as the function that assigns a WSDL
port type to each message construct.

Definition 21 (the function assigning an operation to each message con-
struct).

The function operationy,c : MC — O is defined as the function that assigns a WSDL
operation to each message construct.

The functions of definitions 20 and 21 will be used later to add portType and operation
attributes to the message constructs.

The sets and functions defined in definitions 17 to 21 can be derived from the <mes-
sageLinks> declaration of the participant groundings by traversing each <messageLink>
declaration one by one. At each message link we add the port type and operation
referenced by the portType and operation attributes to the sets PT and O. The identifier
of an element of PT is the QName of the portType attribute. The first NCName of this
QName is the name space prefix that refers to the name space of the WSDL definitions
in which the port type is declared, and the second one is the local name of the port type.
The function nsprefizpr is set to the first NCName of the identifier of the corresponding
element of the set PT.

As identifier of an element of O we cannot use the NCName of the operation attribute
since it is unique only within the name space of the corresponding WSDL definitions.
Instead, we use a QName. Like in the case of an element of PT', the first NCName of
this QName is the name space prefix that refers to the name space of the appropriate
WSDL definitions. It can be derived from the function nsprefizpr and the port type
referenced by the portType attribute. The second NCName is the one being the value of
the operation attribute.

To derive the functions portTypeyc and operationyc, we first need to retrieve the mes-

sage constructs of the current message link. Let ml € ML be the current message link,

which can be found by using the name attribute of the <messageLink> tag. Then,

we get the message constructs by using the function constructsy,. Let (mecl, mc2) be
constructsyy,(ml), and let pt € PT and o € O be the port type and operation referenced

in the current <messageLink> declaration. Then, we set port Typeyc(mel) = port Typeyc(me2) = pt
and operationyc(mel) = operationyc(me2) = o.

23

2. Partner Links, Port Types, and Operations

Example 3.6 (port types and operations). The following code snippet of a partic-
ipant groundings presents three message links associated with WSDL port types and
operations. The sets and functions of definitions 1 to 16 are the same is in examples 3.1
to 3.5.

<messagelLinks>
<messagelLink name="ProductInformation"
portType="buyerPTs:buyerPT"
operation="getPI" />
<messagelink name="PurchaseOrder"
portType="sellerPTs:sellerPT"
operation="getP0"’ />
<messagelLink name="POConfirmation"
portType="buyerPTs:buyerPT"
operation="getConf" />
</messagelLinks>

We get the set PT = {seller PT's : seller PT, buyer PT's : buyer PT'}, the function nsprefizpr

with nsprefizpr(seller PT's : seller PT) = seller PT's and nsprefizpr(buyer PT's : buyer PT) = buye
Furthermore, we get the set O = {buyer PT's : getPI, seller PT's : get PO, buyer PT's : getConf}.
The message constructs of each message link can be derived from the function constructsy,

(cf. example 3.4) and we get the functions port Typeyc and operationyc as follows:

port Typeyrc(SendPI) = portTypeyc(Receive PI) = buyer PT's : buyer PT

operationyc(SendPI) = operationyc(Receive PI) = buyer PT's : get PI
port Typeyc(SendPO) = port Typeyc(Receive PO) = seller PT's : seller PT

operationyc(Send PO) = operationyc(Receive PO) = seller PT's : get PO

port Typeyc(SendCon f) = port Typeyc(ReceiveConf) = buyer PT's : buyer PT

operationyc(SendConf) = operationyc(ReceiveConf) = buyer PT's : getCon f

Definition 22 (set of partner link declarations).

The set PL is defined as the set containing all partner link declarations which are created
during our procedure.

The following function will be used later to add a partnerLink attribute to the message
constructs

Definition 23 (the function assigning a partner link declaration to each mes-
sage construct).

24

2.2. Analyzing the Participant Groundings

The function partnerLinkyc : MC — PL is defined as the function that assigns a partner
link declaration to each message construct which uses the corresponding partner link to
communicate with another message construct.

Definition 24 (the function limiting a set of partner link declarations to each
scope or process).

The function partnerLinksscop. : (Scope U Process) — 2P is defined as the function that
assigns a set of partner link declarations to each scope or process in which these partner
link declarations will be enclosed. If the empty set is assigned to a scope or process, no
partner links will be declared within it.

Let pl € PL be a partner link, sc € (Scope U Process) be a process or an inner scope of
a process, and let pl be an element of partnerLinksscope(sc). If sc € Scope, pl will be
declared in the scope sc. Otherwise, if sc € Process, pl will be declared in the outermost
scope of the process sc, which is the process itself.

The function of definition 24 is used to limit a partner link declaration to a scope. If a
partner link declaration needs to be limited to a scope or process sc € (Scope U Process),
we will add it to the set partnerLinksspe(sc). In step 3 of our procedure the partner link
declaration is declared within the scope or process sc (cf. Section 2.3). Initially, each
scope or process needs to be assigned to the empty set by the function partnerLinkscope.
This has to be done in step 1 of our procedure while deriving the elements of the sets
Scope and Process.

Definition 25 (set of partner link types).

The set PLType is defined as the set containing all partner link types which are created
during our procedure.

Definition 26 (the function assigning a partner link type to each partner link
declaration).

The function typepr, : PL — PLType is defined as the function that assigns a partner
link type to each partner link declaration which is of this type.

The function of definition 26 will be used later to add partnerLinkType attributes to the
<partnerLink> declarations.

Definition 27 (the relation Comm).

25

2. Partner Links, Port Types, and Operations

The relation Comm C (27¢ x (PT U{L})) x (Pa x PT) is defined as the relation that
assigns a subset of participant references and another participant reference to a pair
of port types which they use to communicate. Let ((A, ¢), (b, d)) be an element of the
relation Comm. Then, the participant references contained in A communicate with the
participant reference b while all participant references contained in A are realized by
the port type ¢, and the participant reference b is realized by the port type d. If c = 1,
the communication will be one-way. That means the participant references contained
in A send something to b, but not vice versa. If ¢ # 1, the communication will be
request /response. That means the participant references contained in A send something
to b and vice versa.

subset of participant participant reference b

references A

A\ 4
\ 4

Figure 3.: One-way communication and one port type

In Figure 3 a subset of participant references A C Pa sends one or more messages to a
single participant reference b (maybe using several message links), and b is realized by
the port type b_ptl to receive these messages. Since b does not send any message to
a participant reference contained in A, the latter does not need to be realized by any
port type. In that case, we store the element ((A, L), (b, b_ptl)) in the relation Comm.
Furthermore, we need to create one partner link type and two partner link declarations,
one for the sender(s) contained in A and one for the receiver b. Each of the partner link
declarations and the partner link type gets one role specified which is associated with
the port type b_ ptl. The partner link declaration of the participant references contained
in A gets a partnerRole and the partner link declaration of b a myRole assigned.

Figure 4 looks similar to Figure 3, but b is realized by two port types b_ptl and b pt2
with b_ptl # b_pt2 to receive the messages of the participant references contained in
A. In that case, we store the two elements ((A4, L), (b, b_ptl)) and ((A, L), (b, b_pt2))
in the relation Comm. We need to create one partner link type and two partner link
declarations for each of the two elements since b is realized by two different port types.
Like in the case of Figure 3, each of them gets one role specified.

26

2.2. Analyzing the Participant Groundings

subset of participant participant reference b
references A

send messages
message constructs

\ 4

A\ 4

b _pt1 message constructs

send messages
message constructs 9

b pt2 message constructs

I

Figure 4.: One-way communication and two port types

If we continue the last two examples and add one or more port types by which the
participant reference b is realized, we will get one element of Comm, one partner link
type and two partner link declarations for each newly added port type.

participant reference a participant reference b

send messages
message constructs

Py b _pt1 message constructs

send messages
message constructs a_pt1 < 9

message constructs

)
I

Figure 5.: Request/Response communication and two port types

In Figure 5 we see a request/response communication between the participant references
a and b. The participant references a is realized by the port type a_ptl and the
participant reference b by the port type b ptl to receive the messages sent to each other.
In that case, we store one element (({a}, a_ptl), (b, b_ptl)) in the relation Comm.
Since a partner link type and its partner links can be associated with two port types, one
for each partner, we can use the same partner link type and partner link declarations
for each direction of communication. Thus, we need to create, like in the case of Figure
3, one partner link type and two partner link declarations. But this time each of them
gets both roles specified. One role is associated with the port type a_ ptl and the other
with the port type b_ ptl.

Since the receiver of a message link in the participant topology of a BPEL4Chor

27

2. Partner Links, Port Types, and Operations

choreography has to be a single participant reference, we do not have multiple participant
references on any side of a request /response communication. If a message link specifies
more than one sender, this can be realized by a bindSenderTo attribute associated
with one single participant reference. The receiver of a message sent over the message
link may reply to it by sending a message to this single participant reference. This is
presented in listing 2.2.

<messageLink name"MessageLinkName"
senders="al a2 ... an'
sendActivity="send"
receiver="b"
receiveActivity="receive"
bindSenderTo="a'"?
messageName="MessageLinkName" />

Listing 2.2: Message link having a bindSenderTo attribute assigned

In this message link we have a subset A = {al, a2, ..., an} C Pa of potentially senders
with n > 1. The receiver is the participant reference b, and the actual sender is bound
to the participant reference a. If b wants to reply to a message sent over this message
link, it needs to send the reply to a. In such a case, we create partner link declarations
between the participant references a and b. Each participant reference contained in A
may use the partner link declaration of the participant reference a.

participant reference a participant reference b

send messages

b pt1 message constructs

\
\ 4

message constructs

send messages

message constructs

message constructs a_pt1 <

send messages

\4

bt

message constructs

»

b pt2 message constructs

Uil

Figure 6.: Request/Response communication and three port types
Figure 6 presents the same communication like Figure 5, but the participant reference

b is realized by two port types instead of one. The second one is b pt2. In addition
to the element (({a}, a_ptl), (b, b_ptl)), which we had in Figure 5, we store another

28

2.2. Analyzing the Participant Groundings

element (({a}, L), (b, b_pt2)) in the relation Comm. As this is a combination of the
communication seen in Figures 5 and 3, we also need to create a combination of partner
link types and partner link declarations of the communication of these figures. So,
we get two partner link types, one for each newly added element of Comm, and four
partner link declarations, two for each of the participant references involved. The partner
link type and the partner link declarations for the element (({a}, a_ptl), (b, b_ptl))
get both roles specified, but the partner link type and partner link declaration for
(({a}, L), (b, b_pt2)) get only one role specified like in the case of Figure 3.

Figures 5 and 3 have presented two elementary kinds of communication between com-
binations of participant references and Figures 4 and 6 a combination of these kinds.
We have seen that we get exactly one element of the relation Comm for each of the
two elementary kinds of communication and that a combination of the kinds results
in a combination of the elements of Comm. This can be carried on for any kind of
communication between a combination of participant references. If we have another
combination of communicating participant references, we will just get new elements of
Comm for it. Furthermore, we have seen that for each element of Comm we need to
create exactly one partner link type and two partner link declarations. The definitions
28 and 29 below are used to associate an element of Comm with its partner link type
and partner link declarations.

To associate a partner link with the scope or process in which it needs to be declared, we
can use the values of the function scopep, of definition 11 of the participant references
involved in the corresponding communication. Let ((A, A_pt), (b, b_pt)) be an element
of the relation Comm, let ply € PL be the partner link declaration for the subset
of participant references A, and let pl, € PL be the partner link declaration for the
participant reference b. If the participant reference b is limited to an inner scope of the
process of the sender(s), that is, we have scopep,(b) # L, the partner link declaration
pla will be limited to this scope, too. In that way, we guarantee that every time the
scope is entered, a new instance of the partner link is created. Then, the endpoint
reference of the concrete participant bound to b can be copied to the partner role of
this partner link instance without having any conflict with another endpoint reference
which is copied to a partner role of any partner link. Otherwise if scopep,(b) = L, the
participant reference b is not limited to an inner scope. In that case, pl, is limited to
the process of the participant type of the participant references contained in A.

If a message link has a senders attribute assigned and if the partner link declaration at
receiver side needs to be declared within a scope, we will need to assign a bindSenderTo
attribute to the appropriate message link declaration. The bindSenderTo attribute needs
to be associated with a single participant reference which is limited to the corresponding
scope (cf. beginning of Section 2). So, the set A is of the form A = {a} with a € Pa. If the
message link has a senders attribute assigned, a will be the single participant reference
associated with the bindSenderTo attribute. Otherwise, a will be the single participant

29

2. Partner Links, Port Types, and Operations

reference associated with the sender attribute. Again, if we have scopep,(a) # L, pl, will
be limited to this scope. Otherwise, it will be limited to the process of the participant
type of b.

Definition 28 (the function assigning a pair of partner link declarations to
each element of Comm).

The function partnerLinkscomm : Comm — PL x PL is defined as the function that as-
signs a pair of partner link declarations to each element of the relation Comm. Let
comm = ((A, ¢), (b, d)) be an element of the relation Comm, and let (ply, ply) € PL x PL
be partnerLinkscomm(comm). Then, pl; is the partner link declaration used by the par-
ticipant references contained in A and pl, the one used by the participant reference
b.

Definition 29 (the function assigning a partner link type to each element of
Comm).

The function pltcomm : Comm — PLType is defined as the function that assigns a partner
link type to each element of the relation Comm.

The function of definition 29 is bijective since there is exactly one element of PLType
for each element of Comm and vice versa. We will use this function later to add roles
and port types to the WSDL definitions of partner link types (cf. Section 5).

Definition 30 (the function assigning a myRole to each partner link declara-
tion).

The function myRolepy, : PL — PaU{L} is defined as the function that assigns a
participant reference to a partner link declaration which may be interpreted as its
myRole. If the value of this function is L the corresponding partner link declaration
will have no myRole specified.

Definition 31 (the function assigning a partnerRole to each partner link
declaration).

The function partnerRolepr, : PL — PaU{L} is defined as the function that assigns
a participant reference to a partner link declaration which may be interpreted as its
partnerRole. If the value of this function is 1 the corresponding partner link declaration
will have no partnerRole specified.

30

2.2. Analyzing the Participant Groundings

Let comm = ((4, ¢), (b, d)) be an element of the relation Comm, and let (ply, pla) € PL x PL

be partnerLinkscomm(comm). If ¢ = L, the element comm will specify a one-way commu-

nication. In that case, we set partnerRolep,(pll) = b and myRolepr(pl2) = b. The values
myRolepr,(pll) and partnerRolepr,(pl2) are set to L since the participant references con-

tained in A are not realized by any port type. If ¢ # L, the element comm will specify a

request /response communication. In that case, we have |A| = 1. Witha € Pa A A = {a}

we set myRolepr(pll) = a, partnerRolepr,(pll) = b, myRolepr,(pl2) = b and partnerRolepr,(pl2) = a.

The functions of definitions 30 and 31 will be used later to add myRole and partnerRole
attributes to the partner link declarations. As name of the corresponding role we use
the identifier of the participant reference associated with it.

The identifiers of the elements of PL and PLType are built as follows. Let comm =

((A, ¢), (b,d))with A ={as, as, ..., ay} € Pa, b€ Pa,ce€ PTU{L}and d € PT be an

element of the relation Comm. Furthermore, let (ply, pls) € PL x PL be partnerLinkscomm(comm),
and let plt € PLType be pltcomm(comm). As identifier of the partner link declaration ply

we use the character string "a;_as ... a, —b_isRealizedBy_d'". The last part d' of

this character string is the identifier of the port type d, but the colon in it is replaced by

an underline. The identifier of an element of PL is used as value of the name attribute

assigned to the corresponding partner link declaration (cf. Section 2.3). This value has

to be an NCName, but the identifier of a port type includes a colon. Thus, we need to

eliminate this colon. The same goes for the identifier of an element of PLType. 1t is used

as the second NCName of a QName. This QName is the value of the partnerLinkType
attributes assigned to the corresponding partner link declarations. Furthermore, it is

used as the value of the name attribute assigned to the corresponding <partnerLink-

Type> declaration in the WSDL definitions of partner link types (cf. Section 5). The

identifier of the partner link declaration ply is "b_isRealizedBy d — ay_as_..._a,".
Furthermore, we chose "a;_as ... a, —b_isRealizedBy d' — plt" as identifier of plt.

Since the port type c of the element comm might be changed while traversing the
<messageLinks> declarations of the participant groundings (see below), we do not
include its identifier in the identifiers of the elements of PL and PLType. Otherwise,
we would also need to change those identifiers. This is not allowed since an element of
a mathematical set has to be immutable. If it is not, it and the elements which are
associated with it by a function may not to be found after having changed its identifier.

The sets, functions and the relation defined in definitions 22 to 31 can be derived while
traversing the <messageLink> declarations of the participant groundings. Let ml € ML
be the current message link, and let (mcy, mee) € MC x MC be constructsy,(ml). Thus,
mcy is the send activity and mcs the receive activity of ml. Furthermore, let pt € PT
be the port type referenced in the portType attribute of the current <messagelLink>
declaration, and let (A, b) € 2P x Pa be parefsyy,(ml). This means that a participant
reference contained in A sends a message to the participant reference b, and that b is
realized by the port type pt to receive this message. If bindSenderToyy(ml) # L, we

31

2. Partner Links, Port Types, and Operations

will set A = {bindSenderToy(ml)}. Now, we need to traverse the relation Comm and
search for elements of it which include the subset of participant references A and the
participant reference b. In the process we distinguish between six different cases:

(1): Fecomm € Comm : (comm = ((A, ¢), (b,pt)) Nc € PTU{L}):

This means that we have already had a message link specifying the same direction of
communication of ml, and in which the participant reference b has been realized by
the same port type. So, we do not need to create new partner link declarations and a
new partner link type. Instead, we can use the ones which have been created for the
former message link. We just need to set the values of the function partnerLinkyc of
the message constructs mc; and mcy to the corresponding partner link declarations,
which can be derived from the function partnerLinkscomm. Let (pli, pla) € PL x PL
be partnerLinkscomm(comm). Then, we need to set partnerLinkyc(mey) = ply and
partnerLinkyc(mey) = pls since by definition 28 pl; is the partner link declaration used
by the participant references contained in A, and pl, is the one used by b.

(2): “(1))ANA={a} ANa € PaATcomm € Comm : (comm = (({b}, pt), (a,d)) Nd €
PT):

This means that we have already had at least two message links specifying a request /re-
sponse communication between the participant references a and b, and in which b has
been realized by the same port type as it is in the message link ml. As like in case
(1), we do not need to create new partner link declarations and a new partner link
type. We just need to assign the message constructs mc; and mcy to the partner link
declarations they will use. Let (ply, pla) € PL x PL be partnerLinkscomm(comm). By
definition 28 pl; is the partner link declaration used by the participant reference b, and
ply is the one used by the participant reference a. Since mc; is the message construct
used by a and mcy the one used by b, we need to set partnerLinkyc(me;) = plo and
partnerLinkyc(mey) = ply.

3): 7((1)v(2))NA={a}Na € PanTcomm € Comm : (comm = (({b}, L), (a,d)) A
de PT):

This means that we have already had a message link specifying a one-way communication
in the opposite direction of mil, but no message link specifying the same direction of
communication, and in which b has been realized by the same port type. In that case,
we can use the same partner link declarations and partner link type which have been
created for the former message link, and we need to change the one-way communication
into a request/response communication. Therefore, we set the port type ¢ of the
element comm to pt. The values partnerLinkyc(mey) and partnerLinkyc(mey) can
be set in the same way as in case (2). So, we will get partnerLinkyc(me;) = ply and
partnerLinkyc(meg) = ply if (ply, ple) € PL x PL is partnerLinkscomm(comm).

32

2.2. Analyzing the Participant Groundings

Since the participant reference b has not been realized by a port type formerly, the
values myRolepy(ply) and partnerRolepr(ply) have been set to L. Now, b is real-
ized by the port type pt. So, we need to specify the two roles. Therefore, we set
myRolepr,(ply) = partnerRolepr,(pls) = b.

(4): =((1)V(2)V(3))ATcomm € Comm : (comm = ((A, ¢), (b,d))A\c € PTU{L}Nd €
PT\A{pt}):

This means that we have already had a message link specifying the same direction
of communication of ml, but the participant reference b has been realized by another
port type. In addition, there has been no message link which would lead to the
creation of an element of the relation Comm for which one of the cases (1), (2) or
(3) holds. So, we need to create a new element of the relation Comm, new partner
link declarations and a new partner link type and store them in the corresponding
sets. The new element of the relation Comm is commye, = ((4, L), (b, pt)). Note
that this is a one-way communication. Let pl; be the newly created partner link
declaration used by the participant references contained in A, let ply be the one
used by the participant reference b, and let plt be the newly created partner link
type. With A = {a4, as, ..., a,} we have pl; ="a;_as ... a, —b _isRealizedBy pt'"",
ply ="b_isRealizedBy pt' — a1 _as ... a,"and plt ="a;_as ... a, —b_isRealizedBy pt' — plt".
As mentioned above, pt’ is the identifier of the port type pt, but the colon in it is replaced
by an underline.

The values partnerLinkyc(mey) and partnerLinkyc(mes) can be set in the same way
as in case (1). So, we get partnerLinkyc(mey) = ply and partnerLinkyc(mes) = ply if
(ply, pla) € PL x PL is partnerLinkscomm(comm)..

If scopep,(b) = L, it will be added to partnerLinksscop.(processparype(typeps(ai))). Note
that processpamype(typepq(ar)) is the process of the participant type of the participant ref-
erences contained in A. We can use the participant reference a; since all other participant
references contained in A have to be of the same participant type. If scopep,(b) # L, the
partner link declaration pl; will be added to partnerLinksscope(scopepa(b)). This means
that ply is declared within the scope scopep,(b).

If bindSenderToyy(ml) = L V scopep,(bindSenderToyy(ml)) = L, the sender will not
be bound to a single participant reference, or the participant reference to which the
sender will be bound is not limited to an inner scope of any process. In that case, we
add the partner link declaration ply to the process of the participant type of b. This
is partnerLinksscope(processparype (typepa(b))). Otherwise, we will add it to the scope to
which the single participant reference associated with the bindSenderTo attribute is
limited, which is partnerLinksscope(scopep,(bindSenderTopy(ml))).

Furthermore, we set the following:

e typepr(ply) = plt,

33

2. Partner Links, Port Types, and Operations

o typepr(ply) = plt,

o partnerLinkscomm(commye,) = (ply, pls),
o pltcomm(commy,e,) = plt,

1,

b,

o myRolepr(ply) =
e myRolepy(ply) =
e partnerRolep(ply) = b and
e partnerRolepy(ply) = L.

The values myRolepr,(ply) and partnerRolepr(pls) are set to L since the participant
references contained in A are not realized by a port type in the communication represented
by the element comm,e,,.

5): ~((1))Vv(2)V(B)VM4)NA={a} Na € Pa ANIJcomm € Comm : (comm =
(({b}, ¢), (a,d)) Nd € PT Nce PT\ {pt}):

This means that we have already had at least two message links specifying a request /re-
sponse communication between the participant references a and b, and in which b has
been realized by another port type than it is in the message link ml. Note that the
condition ¢ € PT \ {pt} implies ¢ # L. In addition, there has been no message link
specifying another kind of communication between the participant references a and b.
As like in case (4), we need to create a new element of the relation Comm, new partner
link declarations and a new partner link type and store them in the corresponding sets.
The new element of the relation Comm is again commy,e,, = ((A, L), (b, pt)). Let ply be
the newly created partner link declaration used by the participant reference a, let ply be
the one used by the participant reference b, and let plt be the newly created partner link
type. Then, we have pl; = "a — b_isRealizedBy_pt'", plo = "b_isRealizedBy pt' — a'
and plt = "a — b_isRealizedBy_pt' — plt". The character string pt’ is the same as in
case (4). The remaining steps are also the same as like in case (4).

(6): ~(1)V(2)vB)V#)V()):

This means that there has been no message link specifying any kind of communication
between the participant references contained in A and the participant reference b. In
that case, we need to do exactly the same as like in cases (4) and (5).

Note that a partner link declaration is associated with a scope or process by the function
partnerLinkss.p. only while it is created. So, each partner link declaration will be
limited to exactly one scope or process.

Algorithm 2 states a procedure in pseudo code which executes the derivation of the
sets, functions and the relation defined in definitions 17 to 31 for one message link.
This procedure has to be called for each <messageLink> declaration of the participant

34

2.2. Analyzing the Participant Groundings

groundings. It uses the procedure traverseComm of algorithm 3, which, for it part,
uses the procedure createPartnerLinkDeclarations of algorithm 4. In addition to the
assumptions made for algorithm 1, we assume the following:

e There is the following function modifying elements of the data type String, which
represents a data type of character strings:

— replaceColons(string :String) returns String: this function replaces
each colon in the character string string by an underline.

e We assume DT(Comm) to be a data type for the elements of the mathematical
relation Comm. There is the following function on elements of the type DT (Comm):

— changeFirstPortType(pt : DT(PT)): let comm = ((A, ¢), (b, d)) be an el-
ement of the relation Comm. If we use this function on the element comm,
the port type c of it will change to pt.

e There is the following function on elements of the type Element:

— getAttributeNamespacePrefix(name :String) returns NCName: this func-
tion returns the name space prefix of the attribute having the name name,
which will be the first NCName of its value if this is a QName. It will return
L if there is no attribute having the name name or if the attribute value does
not include a name space prefix.

The function repplaceColons is used on the identifiers of port types when building the
identifiers of partner link declarations and partner link types.

Example 3.7 (partner link declarations and partner link types). This example
illustrates the derivation of the sets, functions and the relation defined in definitions
22 to 31. The message link declarations of the participant groundings relating to this
example are the same as in example 3.6. The sets and functions of definitions 1 to 21
are the same as in examples 3.1 to 3.6.

To derive the sets, functions and the relation defined in definitions 22 to 31, we
need to use the procedure analyzeMessageLinkGrounding on each of the three <mes-
sageLink> declarations. In the first message link Productinformation the partici-
pant reference sellers sends a message to the participant reference buyerref. Since
bindSenderToyy,(ProductInformation) = sellerref, we set A = {sellerref}. The send
activity is seller : SendPI, and the receive activity is buyer : ReceivePI. When reach-
ing this message link, we have not created an element of the relation Comm before.
So, case (6) holds, and we need to create a new element of Comm, new partner link
declarations and a new partner link type. Consequently, we get the following:

o Comm = {(({sellerref}, L), (buyerref, buyer PT's : buyer PT))}

35

2. Partner Links, Port Types, and Operations

o PL = {sellerref—buyerref isRealizedBy buyerPT's : buyer PT, buyerref isRealized B
_buyerPTs : buyer PT — sellerref}

o PLT = {sellerref — buyerref _isRealizedBy_buyerPT's : buyer PT — plt}

e partnerLinkyc(seller : SendPI) = sellerref—buyerref isRealizedBy_buyer PT's :
buyer PT

o partnerLinkyc(buyer : Receive PI) = buyerref isRealizedBy_buyer PT's : buyer PT—
sellerref

Since the participant reference sellerref is limited to the scope seller : innerscope and
the participant reference buyerref to the process buyer : buyer (cf. examples 3.2 and
3.3), we get the following:

o partnerLinksscope (buyer : buyer) = {sellerre f—buyerref isRealizedBy buyerPT's :
buyer PT'}

o partnerLinksscope(seller : innerscope) = {buyerref isRealizedBy_buyerPT's :
buyer PT—
sellerref}

If we set pl1 to the partner link declaration sellerref — buyerref isRealizedBy buyerPT's :
buyer PT', pl2 to buyerref isRealizedBy buyerPT's : buyer PT' — sellerre f and plt to

the partner link type sellerref — buyerref isRealizedBy_buyer PT's : buyer PT — plt,

and if comm,.,, is the newly created element of Comm, we will get the following for the
message link ProductInformation:

o typep(pll) = plt

typepr(pl2) = plt

o partnerLinkscomm(commaye,) = (pl1, pl2)
o pltcomm(Commye,) = plt

e myRolepr(pll) = L

e myRolep(pl2) = buyerref

e partnerRolepr,(pll) = buyerref

e partnerRolep(pl2) = L

36

2.2. Analyzing the Participant Groundings

In the second message link PurchaseOrder the participant reference buyerref sends a
message to the participant reference sellerref and sellerref is realized by the port type
seller PT's : seller PT to receive this message. The send activity is buyer : SendPO, and
the receive activity is seller : Reveive PO. When reaching this message link, we have
already created an element of the relation Comm specifying a one-way communication in
the opposite direction (see message link ProductInformation). So, case (3) holds, and
we can use the same partner link declarations and partner link type again. After having
changed the one-way communication into a request/response communication we get the
following with pll = sellerref — buyerref isRealizedBy_buyer PT's : buyer PT and
pl2 = buyerref isRealizedBy__ buyer PT's : buyer PT — sellerref:

o Comm = {(({sellerref}, seller PT's : seller PT), (buyerref, buyer PT's : buyer PT))}
e myRolepy(pll) = sellerref
e partnerRolepy(pl2) = sellerref

Furthermore, the message constructs buyer : Send PO and seller : Reveive PO are set
to their partner link declarations as follows:

e partnerLinkyc(buyer : SendPO) = buyerref isRealizedBy _buyer PT's : buyer PT —
sellerref

o partnerLinkyc(seller : Reveive PO) = sellerre f—buyerref isRealizedBy_buyer PT's :
buyer PT

In the last message link POCon firmation the participant reference sellerref sends a
message to the participant reference buyerref, and buyerref is realized by the port type
buyer PT's : buyer PT to receive this message. This is the same kind of communication
as like in the first message link. So, case (1) holds, and we just need to assign the
message constructs seller : SendConf and buyer : ReveiveConf of this message link
to their partner link declarations as follows:

e partnerLinkyc(seller : SendConf) = sellerref—buyerref isRealizedBy_buyer PT's :
buyer PT

o partnerLinkyc(buyer : ReveiveConf) = buyerref isRealizedBy_buyerPTs :
buyer PT—
sellerref

37

2. Partner Links, Port Types, and Operations

Algorithm 2 Analysis of one <messageLink> declaration of the participant groundings

procedure ANALYZEMESSAGELINKGROUNDING (messageLink :Element)

// the input messageLink points on the current <messaglLink> tag

ml :DT(ML); // DT (ML) inherits of NCName
mcl, me2 :DT(MC); // DT(MC) inherits of QName
// mcl will be the send activity and mc2 the receive activity of the message link
pt :DT(PT);
o :DT(0); // DT(PT) and DT(O) inherit of QName
pt_ nsprefix :DT(NSPrefiz); // name space prefix of the port type pt
/| DT(NSPrefir) inherits of NCName
b :DT(Pa);
A :List(DT(Pa)); /| a set (list) of participant references

begin

/| get message link ml
ml <—messageLink.get AttributeValue("name");
// get port type of ml and store it in the set PT
pt <—messageLink.get AttributeValue("portType');
PT «PT U pt;
pt_ nsprefix «+—messageLink.get AttributeNamespacePrefix("portType');
nspreficpr(pt) <—pt_ nsprefix; // name space prefix of pt is set to pt_ nsprefix
// get operation of ml and store it in the set O
o <—pt_ nsprefix.build@QName(messageLink.get AttributeValue("operation"));
0O +0 U o;
// assign message constructs of ml to port type pt and operation o
(mcl, me2) < constructsy,(ml);
port Typeyrc(mel) <—pt;
port Typepc(me2) <—pt;
operationyc(mel) <—o;
operationyc(me2) <—o;
// derive definitions 22 to 31

(A, b) <—parefsy(ml); // sender /receiver combination of ml

if bindSenderToyy(ml) # 1 then // bindSenderTo attribute is specified
A «—{bindSenderTop (ml)};

end if

// traverse the relation Comm
TRAVERSECOMM; J/ call procedure traverseComm

end procedure

38

2.2. Analyzing the Participant Groundings

Algorithm 3 Procedure traverseComm
procedure TRAVERSECOMM
comm, comm_ new :DT(Comm);

pll, pl2 :DT(PL); // DT(PL) inherits of NCName
plt :DT(PLType); /| DT(PLType) inherits of NCName
begin

if condition (1) holds then
comm <first element of Comm for which condition (1) holds;
// assign message constructs of ml to their partner link declarations
(pl1, pl2) < partnerLinkscomm(comm);
partnerLinkyc(mel) «—pll;
partnerLinkyc(me2) <—pl2;
else
if condition (2) holds then
comm <—first element of Comm for which condition (2) holds;
// assign message constructs of ml to their partner link declarations
(pll, pl2) <—partnerLinkscomm(comm);
partnerLinkyc(mel) <—pl2;
partnerLinkyc(me2) <—pll;
else
if condition (3) holds then
comm <first element of Comm for which condition (3) holds;
// assign message constructs of ml to their partner link declarations
(pll, pl2) <—partnerLinkscomm(comm);
partnerLinkyc(mel) <—pl2;
partnerLinkyc(me2) <—pll;
// change communication into request/response communication
comm.changeFirstPort Type(pt);
myRolepr,(pll) <b;
parnter Rolepy (pl2) «b;
else
// one of condition (4) to (6) holds
// new partner link declarations, a new partner link type and a new element of
Comm need to be created
comm_ new < ((A, L), (b, pt));
Comm <+ Comm U comm_ new;
CREATEPARTNERLINKDECLARATIONS(comm_ new);
// call procedure createPartnerLinkDeclarations
end if
end if
end if
end procedure

39

2. Partner Links, Port Types, and Operations

Algorithm 4 Procedure createPartnerLinkDeclarations

40

of the string senders ids, senders_ ids results in the character string "a;_as ... a,

procedure CREATEPARTNERLINKDECLARATIONS(comm_ new :DT(Comm))

pll, pl2 :DT(PL); // DT(PL) inherits of NCName

plt :DT(PLType); /| DT(PLType) inherits of NCName

senders_ids :String «A[l]; // initially the identifier of the first participant
reference of A

a :DT(Pa); // DT (Pa) inherits of NCName

sc :QName; // sc will be used for elements of (Scope U Process)

begin

for alla € A\ A[1] do
senders ids <—senders ids + " " + a;
// adds an underline and the identifier of the participant reference a at the end
end for
/| create partner link declarations
pll <—senders ids + '-" + b + " _isRealizedBy " + replaceColons(pt);
pl2 <b + " isRealizedBy " + replaceColons(pt) + "-" + senders_ ids;
PL +PL U pll;
PL +PL U pl2;
// create partner link type
plt <—senders_ids + "-" + b + " _isRealizedBy_ " + replaceColons(pt) + "-plt";
// results in ay;_ay_ ... a, —b_isRealizedBy pt’' — plt
PLType <—PLType U plt;
// assign the message constructs of ml to their partner link declarations
partnerLinkyc(mel) <—pll;
partnerLinkyc(me2) <—pl2;
// assign partner link declarations to their scopes
if scopep,(b) = L then
SC <—processparype(typepa(All]));
else /| scopepq(b) # L
sc <—scopepy(b);
end if
partnerLinksseope(sc) <—partnerLinksgeope(sc) U pll;
if bindSenderToy,(ml) = LV scopep,(bindSenderToyy,(ml)) = L then
SC 4—processparype(typepqa(b));

else /| bindSenderToyy(ml) # LV scopep,(bindSenderToyy(ml)) # L
sc <—scopepy(bindSenderTop, (ml));
end if

partnerLinksscope(sc) <—partnerLinksgeope(sc) U pl2;
// modify the remaining functions
typepr,(pll) <plt;
typepr,(p12) <plt;
partnerLinkscomm(comm__new) <—(pll, pl2);
Pltcomm(comm__new) <—plt;
myRolepr,(pll) <—_L; /| no myRole specified
myRolepr,(pl2) <b;
partnerRolepr (pll) «b;
partnerRolepr(pl2) < L; // no partnerRole specified

end procedure

2.3. Converting the PBDs

2.3. Converting the PBDs

No. Definition Explanation

(1) NS The set of name spaces.

(2) NSPrefix The set of name space prefixes.

(3) prefitys : NSPrefiz — NS The bijective function that assigns a
name space to each name space prefix.

(4) PaType The set of participant types.

(5) Process The set of BPEL processes (PBDs).

(6) processpaype : PaType — Process The bijective function that assigns a

NSPTEfIT process - LT0CESS — NSPrefix

Pa
typep, : Pa — PaType

Scope

scopep, : Pa — Scope U { L}

MC

ML
constructsy, : ML — MC x MC

parefsyy, : ML — 2P x Pa

bindSenderToyy, : ML — Pa U {1}

PT

PBD to each participant type.

The function that assigns a name space
prefix to each PBD of which the tar-
get name space is associated with this
name space prefix.

The set of participant references.

The function that assigns a participant
type to each participant reference.
The set of the scopes and <forEach>
activities of all PBDs that have an
wsu:id and that are referenced by one
or more (single) participant references.
The function that assigns a scope to
each participant reference which is lim-
ited to this scope.

The set of the message constructs of
all PBDs.

The set of message links.

The function that assigns a send and
a receive activity to each message link.
The function that assigns a set of
senders and a receiver to each message
link.

The function that assigns a participant
reference to each message link of which
the actual sender should be bound to
this reference.

The set of WSDL port types.

41

2. Partner Links, Port Types, and Operations

(18)

(30)

(31)

nspreficpy : PT — NSPrefix

@)
portTypeyc : MC' — PT

operationyc : MC — O

PL
partnerLinkyc : MC' — PL

partnerLinksseop. : (ScopeU Process) —
2PL

PLType
typepr, : PL — PLType

Comm C (2P x (PTU{L})) x (Pa x
PT)

partnerLinkscomm : Comm — PLx PL

pltcomm : Comm — PLType

myRolepy, : PL — Pa U {1}

partnerRolepy, : PL — Pa U {1}

The function that assigns a name space
prefix to each port type which is de-
clared in the name space which is asso-
ciated with this name space prefix.
The set of WSDL operations.

The function that assigns a WSDL port
type to each message construct.

The function that assigns a WSDL op-
eration to each message construct.
The set of partner link declarations.
The function that assigns a partner link
declaration to each message construct.
The function that assigns a set of part-
ner link declarations to each scope or
process in which these partner link dec-
laration will be enclosed.

The set of partner link types.

The function that assigns a partner link
type to each partner link declaration.
This relation associates a combination
of participant references with a (pair
of) port type(s) which they use to com-
municate.

The function that assigns a pair of part-
ner link declarations to each element
of the relation Comm.

The bijective function that assigns part-
ner link type to each element of the
relation Comm.

The function that assigns a myRole to
a partner link declaration.

The function that assigns a partnerRole
to a partner link declaration.

Table 1.: Summary of definitions 1 to 31

Table 1 presents an overview of the definitions of this chapter. Now, we need to describe
how the data represented by these definitions can be used to convert the single PBDs into
BPEL processes including partner link declarations and having parnterLink, portType
and operation attributes assigned to the message constructs. Algorithm 5 states a
procedure in pseudo code which executes the conversion of one PBD. This procedure
has to be called for each PBD of the BPEL4Chor choreography. The procedures of

42

2.3. Converting the PBDs

algorithms 6 to 11 are also used during the conversion. In addition to the assumptions
made for algorithms 1 to 4, we assume the following:

e There is the following function on elements of the type QName:

removeNSPrefix() returns NCName: this function returns the second NC-
Name of the QName. This means that it removes the name space prefix from
the QName.

e There are the following functions on elements of the type Element:

new Element(name :String) returns Element: this function is a construc-
tor that creates a new element having the local name name.

getName () returns String: this function returns the local name of the ele-
ment, e. g. a <scope> activity will return the character string “scope”.

getChild(name :String) returns Element: this function returns the first
child element having the local name name. It will return L if there is no child
element having the name name.

getChildren() returns List(Element): this function returns a list of all
child elements of the element. It will return an empty list if there is no child
element.

addChild(element :Element): this function adds a new child element after
the existing child elements.

addPartnerLinks(): this function adds a <partnerLinks> declaration at the
right place of the element taking the BPEL specification ([Org07]) into
account. If the element already includes a <partnerLinks> declaration, it
will not be changed.

addAttribute(name :String, value :String): this function adds an at-
tribute having the name name and the value value. If an attribute having the
name name already exists, its value will be overwritten by value.

removeAttribute(name :String): this function removes the attribute hav-
ing the local name name.

The function addPartnerLinks is used on <process> or <scope> activities to create
a <partnerLinks> declaration and to put it to the right place within the BPEL code.
The single partner link declarations can be declared within such a <partnerLinks>
declaration. This guarantees that the resulting BPEL process does not violate the BPEL
specification.

43

2. Partner Links, Port Types, and Operations

Starting the conversion of one PBD at the corresponding <process> activity (cf. algo-
rithm 5), we first store the name space prefix referencing to the target name space of
the current process in the participant topology. It can be derived by using the inverse
function of the bijective function prefixyg on the value of the targetNamespace attribute
assigned to the <process> activity. We will use it later to get the elements of the sets
Process, Scope and MC by adding a colon and the local names of the corresponding
activities or constructs to it.

Afterward, we add the declaration of the name space of the WSDL definitions of partner
link types to the <process> activity. As name of this name space we use the target name
space of the participant topology concatenated by the character string “/partnerLink-
Types” (cf. Section 5). The target name space of the participant topology can be derived
by using the function prefizys on the designated element topologyNS € NSPrefix. As
name space prefix of the newly created name space we chose “plt”.

We assume that there is no other name space prefix in the PBD named by “plt” and
referencing to another name space than our newly created one (cf. beginning of Chapter 1).
Otherwise, the existing name space declaration would be overwritten.

Algorithm 5 Conversion of one PBD
procedure CONVERTPBD (process :Element)
// the input process points on the <process> activity of the current PBD
process_ nsprefix :DT(NSPrefix);
// the name space prefix of the target name space of the current PBD
nsprefixList :List(DT(NSPrefiz)) +0;
// a list of name space prefixes referencing to the name spaces of the WSDL
definitions of port types used in this process
begin
process_ nsprefix < prefizys ™' (process.get AttributeValue("targetNamespace'));
/| prefitys~ " is the inverse function of the bijective function prefizyg
// add the declaration of the name space of the partner link type definitions
process.addAttribute("xmlns:plt", prefixys(topologyNS) + "/partnerLinkTypes")
/| prefizys(topology N S) is the target name space of the participant topology
// start depth-first search
EXECUTEDEPTH-FIRSTSEARCH(process); J/ cf. algorithm 3.7
// add partner link declarations to the process
DECLAREPARTNERLINKS(process, process.getAttributeValue("name")); /] cf.
algorithm 3.6

// process.get AttributeValue('name") is the local name of the PBD

// add the declarations of the name spaces of the port type definitions

DECLARENAMESPACES(process, nsprefixList); /| cf. algorithm 3.8
end procedure

44

2.3. Converting the PBDs

To add <partnerLink> declarations to the <process> activity, we call the procedure
declarePartnerLinks of algorithm 6 with the <process> activity and the value of its
name attribute as input. This value is the local name of the <process> activity. The
procedure will later be used on <scope> activities, too. First, it builds the global name
of the current <scope> or <process> activity by concatenating the previously stored
name space prefix of the target name space of the PBD with a colon and the local
name of the activity. If the resulting QName is an element of (Scope U Process), it is
a <process> activity, or it is a <scope> activity and a single participant reference is
limited to it. In that case, the function partnerLinkss.p. can be used on it to determine
the partner link declarations that need to be declared within it.

Let partnerLinkList C PL be the set of partner link declarations associated with
the current scope or process by the function partnerLinkssp.. If it is the empty
list, no partner links need to be declared. Otherwise, we will add a <partnerLinks>
declaration to the <scope> or <process> activity. Furthermore, we add a <partnerLink>
declaration within the newly created <partnerLinks> declaration for each element
of partnerLinkList, and we add name, partnerLinkType, myRole and partnerRole
attributes to it, if necessary.

Let pl € partner LinkList be the current partner link declaration. Then, the value of the
name attribute is the identifier of pl. The partner link type of the current partner link
declaration can be determined by typepr,(pl). The resulting NCName is concatenated
to the character string “plt:”. This results in the global name of the partner link type
and the QName associated with the partnerLinkType attribute of the newly created
<partnerLink> declaration.

To add a myRole attribute to the <partnerLink> declaration of pl, the value of
myRolepr,(pl) can be used. If myRolepr(pl) = L, no myRole will be specified for pl.
In that case, no myRole attribute needs to be added to the partner link declaration.
Otherwise, let a € Pa be myRolepy,(pl). Then, the partner link declaration gets a myRole
attribute assigned having the identifier of the participant reference a as value. The
partnerRole attribute is added in the same way as the myRole attribute only using the
function partnerRolep;, instead of myRolepy,.

To modify the constructs nested in the <process> activity, a depth-first search with
backtracking is started traversing the tree of BPEL constructs having the <process>
activity as root (cf. algorithm 7). During this depth-first search we are searching for
message constructs, for <scope> activities having a wsu:id attribute assigned and for
<forEach> activities (cf. algorithm 9). Note that the depth-first search is started before
the partner links (and variables) are declared. These declarations are added to the
<process> activity when it is reached for the second time during the backtracking. The
same goes for <scope> activities (cf. algorithm 9). This guarantees that the newly
added declarations are not visited during the search, which makes it more efficient.

45

2. Partner Links, Port Types, and Operations

Algorithm 6 Procedure declarePartnerLinks
procedure DECLAREPARTNERLINKS(scope :Element, id :NCName)
// the input scope points on the scope or process in which the partner links need
to be declared, and the input id is the name or wsu:id of that scope or process or of
the corresponding <forEach> activity

sc :QName; // an element of (Scope U Process)
partnerLinkList :List(DT(PL)); // a set (list) of partner link declarations
pl :DT(PL); /| a single partner link declaration
partnerLinks, partnerLink :Element; // single BPEL constructs
role :DT(Pa); // a participant reference
s :NCName;

begin

sc <—process_ nsprefix.buildQName(id);
// the global name of the current scope or process and the corresponding element
of (Scope U Process)
if sc € (Scope U Process) then
// sc is a process or a single participant reference is limited to the scope sc
// thus the function partnerLinkss..p. can be used on sc
// determine the set of partner link declarations that need to be declared
partnerLinkList <—partnerLinksscop.(sc);
if partnerLinkList # () then // there are partner links to be declared
scope.addPartnerLinks(); // adding a <partnerLinks> declaration
partnerLinks <—scope.getChild("partnerLinks");
/| partnerLinks becomes the <partnerLinks> declaration
for all pl € partnerLinkList do
// create a new partner link declaration for pl
partnerLink <—new Element("partnerLink");
// add name, partnerLinkType, myRole and partnerRole attributes to it
partnerLink.add Attribute('name", p));
s «typepr(pl);
partnerLink.add Attribute("partnerLinkType', "plt:" + s);
// "plt" is the name space prefix of the name space of the partner link type
declarations

role <—myRolepr(pl); // the myRole of pl

if role # | then // a myRole is specified
partnerLink.addAttribute("myRole", role);

end if

role <—partnerRolepr(pl); // the partnerRole of pl

if role # L then /| a partnerRole is specified
partnerLink.add Attribute("partnerRole", role);

end if

// add the new partner link declaration to the <partnerLinks> declaration
partnerLinks.addChild (partnerLink);
end for
end if
end if
end procedure

46

2.3. Converting the PBDs

Algorithm 7 Procedure executeDepth-firstSearch

procedure EXECUTEDEPTH-FIRSTSEARCH (currentConstruct :Element)
// the input currentConstruct points on the tag of the current BPEL construct

constructList :List(Element); // a list of BPEL constructs
construct :Element; // a single BPEL construct
begin

constructList <—currentConstruct.getChildren();
for all construct € constructList do
MODIFYCONSTRUCT (construct); J/ cf. algorithm 9
end for
end procedure

If the current BPEL construct is a message construct, we will add partnerLink, portType
and operation attributes to it, and we will change the wsu:id attribute to a name attribute
if this is possible (cf. algorithm 10). The latter may only be done if the message construct
is an <invoke>, <receive> or <reply> activity since <onMessage> or <onEvent>
constructs are not allowed to have a name attribute assigned (cf. [Org07]).

Let mc be the element of MC of the current message construct. This element can be
derived by concatenating the previously stored name space prefix, which references to
the target name space of the current process in the participant topology, with a colon
and the value of the wsu:id attribute assigned to the message construct. The partner
link, port type and operation associated with mc can be derived from the functions
partnerLinkyc, portTypeyc and operationyc. The value of the partnerLink attribute
is the identifier of partnerLinkyc(mc) € PL. The value of the portType attribute is the
identifier of portTypeyc(mc) € PT. The value of the operation attribute has to be an
NCName (cf. [Org07]), which is the local name of the corresponding WSDL operation.
To get this local name, we need to use the function removeNSPrefix on the identifier of
operationyc(me) € O.

Since the value of the portType attribute is a QName, which includes a name space
prefix, we need to add the name space declaration of this name space prefix and the
corresponding name space to the <process> activity. To do so, we add the name
space prefix of the port type associated with the current message construct to a global
list of name space prefixes if it has not been added before. The name space prefix of
that port type can be derived by using the function nspreficpr on portTypeyc(me).
Having finished the depth-first search completely, a name space declaration is added
to the <process> activity for each element of the global list of name space prefixes (cf.
algorithm 8). The name of a name space can be derived by using the function prefizyg
on the current element of the global list.

47

2. Partner Links, Port Types, and Operations

Algorithm 8 Procedure declareNameSpaces
procedure DECLARENAMESPACES(construct :Element, nsprefixList
:List(DT(NSPrefix)))

// the input construct points on the tag of the current BPEL construct, and
nsprefixList includes the name space prefixes referencing to the name spaces which
need to be declared within construct

nsprefix :DT(NSPrefiz); // a single name space prefix
begin

// add each name space declaration to the construct
for all nsprefix € nsprefixList do
construct.addAttribute("xmlns:" + nsprefix, prefizys(nsprefix));
/| prefizys(nsprefix)) is the name space referenced by the name space prefix
nsprefix
end for
end procedure

Like in the case of the partner link types, we assume that there is no other name space
prefix having the same name as like any name space prefix stored in our global list (cf.
beginning of Chapter 1). Furthermore, there must not be any name space prefix in the
global list having the name "plt" since this name is reserved for the name space prefix
referencing to the target name space of the WSDL definitions of partner link types.

If the current message construct is modified completely, the depth-first search will be
continued on it if it is an <invoke> activity or an <onMessage> or <onEvent> construct
(cf. algorithm 9). This has to be done since an <onMessage> or <onEvent> construct
may contain other BPEL activities, and an <invoke> activity may contain <catch>
or <catchAll> constructs and a compensation handler, which, for it part, may contain
other BPEL activities (cf. [Org07]). The subtree of a <reply> or <receive> activity
must not contain any other BPEL activities or message constructs. So, the depth-first
search can be stopped at them. Note that the depth-first search may be continued on
<invoke> activities or <onMessage> or <onEvent> constructs after having modified
them. This does not affect the efficiency of our procedure since no BPEL constructs are
added to the message constructs during the modification.

When reaching a <scope> activity having a wsu:id attribute assigned, we need to
declare partner links within it, if necessary. To declare partner links, the procedure
declarePartnerLinks is called with the <scope> activity and the value of its wsu.id
attribute as input. The latter is the local name of the <scope> activity.

When reaching a <forEach> activity having a wsu:id attribute assigned, we need to
declare partner links within the <scope> activity nested in the <forEach> activity, if
necessary. To do so, the procedure declarePartnerLinks is called with the <scope>

48

2.3. Converting the PBDs

activity and the value of the wsu:id attribute assigned to the <forEach> activity as
input.

Since no subtree of another BPEL construct nested in the <forEach> activity may
contain BPEL activities or message constructs (cf. [Org07]), we only need to continue
the depth-first search on the <scope> activity. This may also be done at <forEach>
activities having no wsu:id attribute assigned. A <scope> activity nested in a <forEach>
activity may have a wsu:id attribute assigned, too. In that case, additional partner link
declarations may be limited to this scope. Therefore, we need to call the procedure
modifyConstruct and not the procedure executeDepth-firstSearch on such a <scope>
activity. Otherwise, only its child elements would be analyzed. So, the additional
partner link declarations would not be added to the <scope> activity.

The execution time of the depth-first search rises at an exponential rate with the depth
of the tree of BPEL constructs. Our depth-first search could possibly be more efficient
if we stop it at more BPEL constructs of which the subtree must not contain any BPEL
activities or message constructs. Such a construct is e.g. the <variables> construct.
But we argue that this would even be more costly since an additional comparison at
algorithm 7 would be needed whether the subtree of a BPEL construct may contain any
BPEL activities or message constructs. Furthermore, the subtrees of such constructs
only have a depth of at most one (cf. [Org07]). So, it is even more efficient just to
traverse the whole subtree until each node of it has been reached.

49

2. Partner Links, Port Types, and Operations

Algorithm 9 Procedure modifyConstruct
procedure MODIFYCONSTRUCT(construct :Element)
// the input construct points on the tag of the current BPEL construct
constructName :String <—construct.getName(); // the name of the current BPEL
construct
fEScope :Element; // a single BPEL construct
begin
if (constructName = "invoke" V constructName = "onMessage' V constructName
= "onEvent") then
J/ construct is an <invoke> activity or an <onMessage> or <onEvent>

construct
MODIFY MESSAGECONSTRUCT(construct, constructName); // cf. algorithm 10
// continue depth-first search
EXECUTEDEPTH-FIRSTSEARCH(construct); J/ cf. algorithm 7
else
if (constructName = "receive" V constructName = "reply") then
// construct is a <receive> or <reply> activity
MODIFY MESSAGECONSTRUCT(construct, constructName); // cf. algorithm
10
else
if (constructName = "scope" A construct.hasAttribute("wsu:id")) then
// construct is a <scope> activity having a wsu:id attribute assigned
// continue depth-first search

EXECUTEDEPTH-FIRSTSEARCH(construct); // cf. algorithm 7
// add partner link declarations to the scope
DECLAREPARTNERLINKS(construct, con-

struct.get AttributeValue("wsu:id"));
/| cf. algorithm 6
else
if constructName = "forEach' then
J/ construct is a <forEach> activity
fEScope <—construct.getChild("scope');
// fEScope points on the <scope> activity nested in the <forEach> activity
// continue depth-first search on the scope
MODIFYCONSTRUCT (fEScope); // recursion
if construct.hasAttribute("wsu:id") then
// add partner link declarations to the scope
DECLAREPARTNERLINKS(fEScope, con-
struct.get AttributeValue("wsu:id"));
J/ cf. algorithm 6
end if
else
// construct may be any BPEL construct, e.g. a structured activity
// continue depth-first search
EXECUTEDEPTH-FIRSTSEARCH(construct); // cf. algorithm 7
end if
end if
end if
end if
end procedure

20

2.3. Converting the PBDs

Algorithm 10 Procedure modifyMessageConstruct
procedure MODIFYMESSAGECONSTRUCT(construct :Element, constructName
:String)
// the input construct points on the tag of the current message construct, and
constructName is the local name of it

mc :DT(MC); // the current element of MC
construct]D :NCName <—construct.getAttributeValue("wsu:id");

pl :DT(PL); // a single partner link declaration
pt :DT(PT); /| a single port type
op :DT(0); // a single operation

pt_ nsprefix :DT(NSPrefix) < nsprefixpr(pt); // the name space prefix of the port
type pt
begin
// change the wsu:id attribute to a name attribute if possible
if (constructName # "onMessage" A” constructName # "onEvent") then
// <onMessage> and <onEvent> constructs are not allowed to have a name
attribute assigned
construct.removeAttribute("wsu:id");
construct.addAttribute("name", constructID);
end if
mc <—process_ nsprefix.build@QName(constructID);
// mc becomes the global name of the current message construct and the
corresponding element of M
// add a partnerLink attribute to the message construct
pl < partnerLinkyc(mc);
// pl becomes the partner link declaration used by the current message construct
construct.addAttribute("partnerLink", pl);
// add a portType attribute to the message construct
pt <—port Typeyc(me);
construct.addAttribute("port Type", pt);
// add the name space prefix of pt to the global list nsprefixList if it has not
been added before
if pt_nsprefix ¢ nsprefixList then
nsprefixList <—nsprefixList U pt_ nsprefix;
end if
// add an operation attribute to the message construct
op «operationyc(me);
construct.addAttribute("operation", op.removeNSPrefix());
// the operation attribute needs to be associated with the local name of the
operation
end procedure

51

2. Partner Links, Port Types, and Operations

2.4. Why not Using Pairs of Communicating
Participant Types

In Section 2 we have mentioned that there is an alternative way to create partner link
types and partner link declarations. In contrast to our approach, this way creates them
for pairs of communicating participant types instead of combinations of communicating
participant references. Again, if each participant type of the pair is not realized by
multiple port types, exactly one partner link type and two partner link declarations will
be created for this pair. Otherwise, let n be the number of port types by which the
first participant type is realized, and let m be the number of port types for the second
participant type. Then, we need exactly max(n, m) partner link types and 2 x maz(n,m)
partner link declarations for the pair of participant types. Figure 7 states a counter
example that shows why this alternative way is not suited to the transformation of a
BPEL4Chor choreography into BPEL Abstract Processes.

Airline 1 pt1
3. send message over
L message construct mc_1
1a.
send/receive
messages
A

2. send participant references of Airline 1

and Airline 2
Travel Agency > Traveler
4
1b.
send/receive
messages
y 3. send message over
message construct mc_2
#mc_1
Airline 2 pt1 &=

Figure 7.: A counter example

In this example there are four communicating participants: a travel agency, two airlines
and a traveler. We assume that each of them is bound to a different participant reference
and that both airlines are of the same participant type. Initially, the travel agency
knows both the airlines and the traveler. The airlines and the traveler only know the
travel agency. First, the travel agency communicates with both airlines either in parallel
or in sequence. Then, it forwards their participant references to the traveler. Afterward,

o2

2.4. Why not Using Pairs of Communicating Participant Types

the traveler sends a message to each airline using different message constructs. These
message constructs are executed in parallel, e. g. they are nested in a <flow> activity.
Both airlines are realized by the same port type to receive the corresponding message.

Using the approach presented in Section 2, we get two partner link declarations on the
side of the traveler, one for each airline, since they are bound to different participant
references. In that case, each of the two transmitted endpoint references is copied to
the partnerRole of a different partner link. So, the communication can take place in
parallel.

Using the alternative way, we get one partner link declaration on the side of the traveler.
This partner link declaration is used to communicate with both airlines since the latter
are of the same participant type and are realized by the same port type. In that case,
both transmitted endpoint references will be copied to the partnerRole of the same
partner link if its declaration is not nested in a separate <scope> activity. Since the
communication takes place in parallel, this leads to an overwriting of endpoint references
on a partner link. Then, both messages are sent only to one of the airlines. So, the
traveler is not able to communicate with both airlines in parallel.

This contradiction has shown that the alternative way to create partner link types
and partner link declarations is not suited to the transformation of a BPEL4Chor
choreography into BPEL Abstract Processes.

93

3. Correlation Properties

The following definitions will be used to replace the NCNames of the correlation properties
in the PBDs by the QNames of the corresponding references to WSDL properties. Since
the binding of these NCNames to the appropriate QNames is done in the participant
groundings, the data which is represented by these definitions is stored in step 2 of our
procedure.

Definition 32 (set of NCNames of correlation properties).

The set CorrPropName is defined as the set containing all NCNames that are used
as names of correlation properties and that are referenced to WSDL properties in the
participant groundings.

Definition 33 (set of WSDL properties).

The set Property is defined as the set containing all WSDL properties which are referenced
in the participant groundings.

Note that the set Property contains both WSDL properties associated with correlation
properties and WSDL properties associated with transmitted participant references (cf.
Section 5.1).

Definition 34 (the function assigning a property to each property name).

The function propertycorrpropname : CorrPropName — Property is defined as the function
that assigns a WSDL property to each name of a correlation property which is referenced
to the property in the participant groundings.

The function propertycorpropname Will be used later to replace the names of correlation
properties in the PBDs by their references to WSDL properties. We can assume that each
name of a correlation property used in the PBDs is included in the set CorrProp Name and
thus is referenced to a WSDL property since the BPEL4Chor choreography is assumed
to be completely grounded. This includes that each name of a correlation property used
in the PBDs is referenced to a WSDL property in the participant groundings.

Definition 35 (the function assigning a name space prefix to each WSDL
property).

%)

3. Correlation Properties

The function nsprefizpropery : Property — NSPrefiz is defined as the function that assigns
a name space prefix to each WSDL property which is declared in the name space
referenced by the name space prefix.

The function nsprefizproperty Will be used later to add name space declarations to a PBD.
These name space declarations refer to the name spaces in which the WSDL properties
are declared which are referenced by the QNames of the correlation properties used
within the converted PBD. The WSDL files including the declaration of these properties
need to be included in the input of our procedure (cf. beginning of Chapter 1). The
corresponding elements of NSPrefix have been created while extending the sets NS and
NSPrefir and the function prefixyg by the name space references in the <grounding>
tag of the participant groundings (cf. Section 2.2).

The sets and functions defined in definitions 32 to 35 can be derived from the <properties>
declaration of the participant groundings by traversing each <property> declaration
one by one. At each <property> declaration we add the property name referenced
by the value of the name attribute to the set CorrPropName. Furthermore, we add
the WSDL property referenced by the value of the WSDLproperty attribute to the
set Property. The identifier of an element of CorrPropName is the NCName of the
respective name attribute. The identifier of an element of Property is the QName of the
respective WSDLproperty attribute. The first NCName of this QName is the name space
prefix that refers to the name space of the WSDL definitions in which the corresponding
property is declared, and the second one is the local name of that property.

The functions propertycorrpropName and nsprefitproperty, of definitions 34 and 35 can be
derived as follows. Let propName € CorrPropName and property € Property be the
property name and WSDL property referenced in the current <property> declaration.
Then, propertycorrpropname(PropName) is set to property, and nsprefipoper, (property)
is set to the first NCName of the QName property.

Algorithm 11 states a procedure in pseudo code which executes the derivation of the
sets and functions defined in definitions 32 to 35 for one <property> declaration. This
procedure has to be called for each <property> declaration within the <properties>
declaration of the participant groundings. For this algorithm we assume the same data
types and functions as we did for algorithms 1 to 10.

Example 3.8 (property names and WSDL properties). The following code
snippet of a participant groundings presents a <properties> declaration including two
<property> declarations. We assume that the name space prefix prop is included
within a name space declaration in the <grounding> tag and thus is included in the set
NSPrefix.

<properties>

o6

Algorithm 11 Analysis of one <property> declaration of the participant groundings
procedure ANALYZEPROPERTYGROUNDING (construct :Element)
// the input construct points on the current <property> tag

propName :DT(CorrPropName); // DT(CorrPropName) inherits of NCName
property :DT(Property); // DT(Property) inherits of QName
begin
/| get property name and WSDL property
propName «—construct.getAttributeValue("name");
property <—construct.getAttributeValue("WSDLproperty");
// add them to the sets CorrPropName and Property
CorrPropName < CorrPropName U propName;
Property < Property U property;
// assign property name to its WSDL property
PTOPETtY CorrPropName (propName) <property;
// assign WSDL property to its name space prefix
NSPTefiproperty(Property) <—construct.get AttributeNamespacePrefix("WSDLproperty");
end procedure

<property name="ProcessID" WSDLproperty="prop:ProcessID" />
<property name="InstanceID" WSDLproperty="prop:InstanceID" />
</properties>

To derive the sets and functions defined in definitions 32 to 35, we need to use the pro-

cedure analyzePropertyGrounding on each of the two <property> declarations. This re-

sults in the sets CorrPropName = { ProcessI D, Instancel D} and Property = {prop : ProcessID, prop :
Instancel D}. Furthermore, we get the functions propertycorpropName and nsprefitproperty

as follows:

PTOPETLY CorrPropName (ProcessI D) = prop : ProcessID

PTOPETLY CorrPropName (Instancel D) = prop : Instancel D

nspreﬁxproperty (pTOP . PTOC€SSID> = prop

nspreﬁmeperty (p?“op . InstanceID) = prop

To replace the NCNames of the correlation properties in the PBDs by the QNames of
the corresponding references to WSDL properties, the depth-first search in step 3 of
our procedure (cf. Section 2.3) needs to be refined. In addition to message constructs,
<scope> activities having a wsu:id attribute assigned and <forEach> activities, we
also search for <correlationSets> constructs. Algorithm 12 on page 59 presents the

57

3. Correlation Properties

resulting refined procedure modifyConstruct of algorithm 9 on page 50. The beginning
and the end of the code section which is added to the procedure is indicated by extra
comments. For the sake of simplicity, some code elements of the original procedure have
been left out, which is indicated by three dots. The procedure of algorithm 12 uses the
procedure modifyCorrelationSet of algorithm 13. In addition to the assumptions made
for algorithms 1 to 11, we assume the following:

e There is the following function on elements of the type Element:

— addAttribute(name :String, value :List(String)): this function adds
an attribute having the name name. The input variable value needs to be
either a list of NCNames or a list of QNames. As value the attribute gets
the corresponding list, while each element of it is separated by a space. If an
attribute having the name name already exists, its value will be overwritten
by the list value accordingly.

Note that this new function addAttribute differs from the one assumed before (cf.
Section 2.3) by the type of the input variable value.

When reaching a <correlationSets> construct during our depth-first search, we use
the function modifyCorrelationSet of algorithm 13 on each <correlationSet> construct
nested in the current <correlationSets> construct. Since a <correlationSets> construct
must not include other BPEL constructs than <correlationSet> constructs, the current
list of <correlationSet> constructs is just the list of all child elements of the current
<correlationSets> construct.

To modify a <correlationSet> construct, we first get the list of property names as-
sociated with the properties attribute of the construct. Then, we use the function
PropertycorrpPropName Of definition 34 on each property name included in the list to get
the corresponding list of WSDL properties. Note that the latter is a list of QNames.
Later, the value of the properties attribute will be overwritten by it. In that way, we
have replaced each property name by its reference to a WSDL property.

Furthermore, we need to add some additional name space declarations to the <process>
activity of the current PBD. These name space declarations refer to the name spaces in
which the WSDL properties are declared which are referenced by the currently regarded
correlation properties. To do so, we will add the name space prefixes associated with
these WSDL properties by the function nsprefitpropery of definition 35 to the global
list of name space prefixes nsprefixList if they have not been added before. The
corresponding name space declarations are added to the <process> activity after having
finished the depth-first search (cf. algorithms 5 and 8).

We assume that the PBD has not included any name space declarations before in which a
name space prefix is used which has been added to the global list nsprefixList currently

o8

Algorithm 12 Refined procedure modifyConstruct

procedure MODIFYCONSTRUCT(construct :Element)
// the input construct points on the tag of the current BPEL construct

constructName :String <—construct.getName(); // the name of the current BPEL
construct
begin

if (constructName = "invoke" V constructName = "onMessage" V constructName =

"onEvent") then
// construct is an <invoke> activity or an <onMessage> or <onEvent> construct

else
if (constructName = "receive" V constructName = "reply") then
// construct is a <receive> or <reply> activity

else
if (constructName = "scope" A construct.hasAttribute("wsu:id")) then
// construct is a <scope> activity having a wsu:id attribute assigned

else
if constructName = "forEach" then
// construct is a <forEach> activity

// here the refinement begins
else
if constructName = "correlationSets" then
// construct is a <correlationSets> construct
// it includes one or more <correlationSet> constructs (and nothing else)
corrSet :Element; // a single BPEL construct
corrList :List(Element) <—construct.getChildren();
// corrList becomes the list of <correlationSet> constructs nested in the current
<correlationSets> construct
// modify each of these <correlationSet> constructs
for all corrSet € corrList do
MODIFYCORRELATIONSET (corrSet); // cf. algorithm 13
end for
// here the refinement ends

else
// construct may be any BPEL construct, e.g. a structured activity

end if
end if
end if
end if
end if
end procedure 59

3. Correlation Properties

(cf. beginning of Chapter 1). Furthermore, there must not be any currently added name
space prefix having the name “plt” since this name is reserved for the name space prefix
referencing to the target name space of the WSDL definitions of partner link types.

Example 3.9 (modifying correlation sets). The following code snippet of a PBD
presents a declaration of one correlation set. The sets, relations and functions of
definitions 1 to 35 are the same as like in examples 3.1 to 3.8.

<correlationSets>
<correlationSet name="correlationSetName"
properties="ProcessID InstanceID" />
</correlationSets>

After having converted the whole PBD, the property names ProcessID and IncstanceID
have been changed to the references to WSDL properties prop:ProcessID and prop: IncstancelD.
Thus, the resulting declaration of the correlation set looks like as follows:

<correlationSets>
<correlationSet name="correlationSetName"
properties="prop:ProcessID prop:InstanceID" />
</correlationSets>

60

Algorithm 13 Procedure modifyCorrelationSet

procedure MODIFY CORRELATIONSET(corrSet :Element)
// the input corrSet points on the tag of the current <correlationSet> construct

propNameList :List(DT(CorrPropName)); // a list of property names

propName :DT(CorrPropName); // a single property name

propertyList :List(DT(Property)) +0; // a list of WSDL properties

// initially the empty list

property :DT(Property); // a single WSDL property

nsprefix :DT(NSPrefiz); // a single name space prefix
begin

// get the list of property names of the current correlation set
propNamelList «—corrSet.get AttributeValueAsList("properties");

J/ use the function propertycorpropname t0 get the corresponding list of WSDL
properties
for all propName € propNameList do

property <—propertycorrpropName(PropName);
propertyList <—propertyList U property;

// add the name space prefix of the current WSDL property to the global list
nsprefixList of name space prefixes if it has not been added before

// the corresponding name space declaration is added to the <process> activity
after having finished the depth-first search (cf. algorithms 5 and 8)

nsprefix <—nsprefizproperty (property);
if nsprefix ¢ nsprefixList then
nsprefixList <—nsprefixList U nsprefix;
end if
end for
// change the property names to the corresponding references to WSDL
properties
corrSet.addAttribute("properties", propertyList);
/| the properties attribute is overwritten
end procedure

61

4. Set-Based ForEach

A set-based <forEach> activity is a <forEach> activity iterating over a set of participant
references. The set and the iterator are specified in the participant topology. In a BPEL
process a set-based <forEach> activity is not allowed. It has to be converted into a
<forEach> activity iterating over a variable, and the amount of iterations needs to be
defined by a combination of a <startCounterValue> and a <finalCounterValue>. If the
owner of the <forEach> activity sends one or more messages to the iterator, the endpoint
reference which refers to the iterator needs to be copied to the corresponding partner
link at each branch of the <forEach> activity. In Section 4.1 the matter of converting a
set-based <forEach> activity is exemplified. Afterward, Section 4.2 describes how our
procedure has to be refined to accomplish this conversion.

4.1. Exemplifying the Conversion of a Set-Based
ForEach

Assume the code snippet of a participant topology of listing 4.1 and the set-based
<forEach> activity of listing 4.2. This <forEach> activity is used by the participant
reference p. It iterates over the set of participant references set, and the iterator is the
single participant reference 1.

<participants>
<participant name="p" type="p"/>
<participantSet name="set' type="q"' forEach="s:forEachl">
<participant name="i" type="q" forEach="s:forEachl" />
</participantSet>
</participants>

Listing 4.1: Topology for a set-based <forEach> activity

<forEach wsu:id="forEachl">
<scope>
. nested activity ...
</scope>
</forEach>

Listing 4.2: Set-based <forEach> activity used by participant reference p

63

4. Set-Based ForEach

We assume that the participant reference p sends one or more messages to the iterator i
at each branch of the <forEach> activity. Then, the <forEach> activity is rewritten to
the <forEach> activity presented in listing 4.3. The partner link declaration in this
listing has been created formerly (cf. Section 2). For the sake of clearness, it has been
enclosed to the listing, too. It creates a partner link between the participant references
p and i. We assume that i is realized by the port type PTs:pt to receive the messages
sent by p. So, the partner link declaration gets the name p-i_isRealizedBy_PTs_pt
and the type p-i_isRealizedBy_PTs_pt-plt. Note that the colon in the name of the
port type is replaced by an underline since the name of a partner link declaration or a
partner link type has to be an NCName (cf. Section 2). The partnerRole of the partner
link declaration is i. Its myRole may be p if i responds to the messages sent by p.
Otherwise, the myRole will not be specified. Note that the partner link declaration is
enclosed to the <scope> activity nested in the <forEach> activity. So, a new partner
link is created at each branch of the <forEach> activity.

First of all, we need to add a counterName attribute to the <forEach> activity. This
generates a counter variable for the loop which is declared implicitly within the <scope>
activity (cf. [Org07]). The value of the attribute and the name of the counter variable
is the character string "i_ " concatenated by the value of the wsu:id attribute of the
<forEach> activity ("i forEachl" in listing 4.3). We assume that there is no other
variable declared within the <scope> activity and having the same name as like the
counter variable (cf. beginning of Chapter 1).

<forEach wsu_id="forEachl"' counterName="i forEachl">
<startCounterValue>0</startCounterValue>
<finalCounterValue>count ($set/)-1</finalCounterValue>
<scope>
<partnerLinks>
<partnerLink name="p—i_isRealizedBy_ PTs pt"
type="plt:p—i_isRealizedBy_ PTs_ pt—plt"
partnerRole="i" myRole="p"? />
</partnerLinks>
<sequence>
<assign>
<copy>
<from variable="set">
<query>[$i_forEachl]</query>
</from>
<to partnerLink="p—i_isRealizedBy PTs_ pt" />
</copy>
</assign>
. nested activity ...
</sequence>
</scope>
</forEach>

64

4.1. Exemplifying the Conversion of a Set-Based ForEach

Listing 4.3: Rewritten <forEach> activity

The variable set in listing 4.3 is a variable containing an array of endpoint references.
It needs to include exactly those endpoint references that refer to the endpoints of the
participants bound to the participant references contained in the set set of listing 4.1.
Furthermore, it is declared globally in the <process> activity. Its name is the name
of the corresponding set of participant references specified in the participant topology.
We assume that there is no other variable declared in the hierarchical path between
the process and the scope of the <forEach> activity and having the same name (cf.
beginning of Chapter 1).

The variable set can be filled in two ways. The first way is a UDDI query nested in a
<while> activity. But this is part of the executable completion of the BPEL processes
(step 3 of Figure 1 on page 5). Thus, it is out of scope for this work. The second way
is to receive it from another participant transmitting a set of participant references.
In that case, the endpoint references are copied to the variable set after the relevant
receive activity (cf. Section 5.1).

The syntax of the XML Schema definition describing the data type of the newly created
variable set can be seen in listing 4.4.

<srefs:service-refs>
<sref:service-ref ... />+
</srefs:service-refs>

Listing 4.4: Syntax for service-refs

sref :service-ref is the data type used to store a single endpoint reference, while
the name space prefix sref refers to the name space http://docs.oasis-open.org/
wsbpel/2.0/serviceref .service-ref (cf. [Org07]). The data type srefs:service-refs
is a container for a sequence of single endpoint references, while the name space pre-
fix srefs refers to the name space http://www.bpeldchor.org/service-references.
Since a service reference needs to be added to the set, an XSL transformation needs to be
specified enabling this insertion. The provisional style sheet can be seen in listing 4.5. Its
completion and the creation of the new XML Schema definition and the corresponding
name space is out of scope for this work.

<xsl:transform version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ...
targetNamespace="http://www.bpeldchor.org/service—references"
xsl:name="add.xsl" >
<xsl:param name="NewSRef">
<sref:service-reference />
</xsl:param>

65

http://docs.oasis-open.org/wsbpel/2.0/serviceref.service-ref
http://docs.oasis-open.org/wsbpel/2.0/serviceref.service-ref
http://www.bpel4chor.org/service-references

4. Set-Based ForEach

<xsl:template match="sref:service—reference">
<xsl:copy-of select="." />
<xsl:if test="position()=last()">
<xsl:copy-of select="$NewSRef" />
</xsl:if>
</xsl:template>
</xsl:transform>

Listing 4.5: XSL style sheet to append a service reference to a sequence of service
references

To set the amount of iterations of the <forEach> activity, we need to add both a
<startCounterValue> and a <finalCounterValue> construct to it. The <startCoun-
terValue> is set to zero and the <finalCounterValue> to the amount of elements in
the variable set minus one. The latter can be derived by using the XPath expression
count ($set/)-1 (cf. [CD99]). In the first iteration the counter variable will be set
to zero. Each subsequent iteration will increment the previously initialized counter
variable value by one until the final iteration has been reached where it will be set to
the <finalCounterValue>. In that way, the <forEach> activity will be executed exactly
count ($set/) times (cf. [Org07]).

To copy the proper endpoint reference to the partner link p-i_isRealizedBy_PTs_pt,
an <assign> activity is added before the nested activity of the <scope> activity. This
<assign> activity copies the endpoint reference from the array set having the value
of the counter variable as index to the partner link between p and i. The index can
be derived by using the XPath expression [$i_{forEach1}]. As the counter variable is
assigned to each integer value between zero and the amount of elements of the array
set minus one, each endpoint reference is copied to a partner link exactly once. In
that way, the participant bound to the participant reference p communicates with each
participant bound to the set of participant references set of listing 4.1 exactly once, too.
Note that the <assign> activity and the nested activity are rewritten to a <sequence>
activity. This guarantees that the endpoint reference is copied to the partner link before
the participant reference p can send a message to the iterator i.

If the participant bound to p does not send a message to the iterator i in any branch of
the <forEach> activity, there will be no partner link to which the respective endpoint
reference may be copied. Thus, the <assign> activity must not be enclosed to the
<scope> activity in that case. We just need to declare the variable set and add
the counterName attribute and the <startCounterValue> and <finalCounterValue>
constructs to the <forEach> activity. This results in the <forEach> activity presented
in listing 4.6.

<forEach wsu_id="forEachl" counterName="i forEachl">
<startCounterValue>0</startCounterValue>
<finalCounterValue>count ($set/)-1</finalCounterValue> %$

66

4.2. Refining our Procedure

<scope>
. nested activity ...
</scope>
</forEach>

Listing 4.6: Rewritten <forEach> activity without an <assign> activity

Note that the participant bound to p will send one or more messages to the iterator i
if and only if a partner link declaration between them exists (cf. Section 2). This fact
is used in Section 4.2 to determine whether the <assign> activity has to be added or
not.

The owner of a <forEach> activity might send several messages to its iterator over
several message links. If the iterator is realized by multiple port types to receive these
messages, there will be more than one partner link declaration between them. In that
case, the owner of the <forEach> activity is possibly not able to send all messages to
the iterator since an endpoint reference is associated with only one port type. Hence,
we restrict that the iterator is realized by one port type to receive messages from the
owner of the <forEach> activity (cf. Section 5.1). This implies that there is at most one
partner link declaration between the owner and the iterator. Consequently the <assign>
activity will only be added before the nested activity if and only if there is exactly one
partner link declaration between the owner and the iterator.

A <forEach> activity has a parallel attribute assigned, which is set either to the value
yes or to the value no. If it is set to yes, the branches of the <forEach> activity will be
executed in parallel. Otherwise, they will be executed in sequence (cf. [Org07]). Since
the partner link and the counter variable are declared within the <scope> activity, the
<forEach> activity can be converted similarly in both cases. So, the parallel attribute
needs not to be removed or changed.

The optional <completionCondition> evaluates to an integer value B. If at least B
branches of the <forEach> activity have been completed, the <completionCondition>
will be triggered. Then, no other branches will be started, and, in the case of a paral-
lel <forEach> activity, all still running branches need to be terminated (cf. [Org07]).
We forbid that the unsigned-integer expression of a <completionCondition> includes
something which is specified in the participant topology or the participant ground-
ings since both will not be reachable to the converted PBDs. Then, the usage of a
<completionCondition> does no harm to our conversion.

4.2. Refining our Procedure

The following definition will be used to get the name of the variable of endpoint references
used within a converted set-based <forEach> activity.

67

4. Set-Based ForEach

Definition 36 (the function assigning a set of participant references to each
<forEach> activity).

The function setorgach : Scope — Pa U {L} is defined as the function that assigns a set
of participant references to each set-based <forEach> activity which iterates over this
set. Let sc € Scope be a <scope> or <forEach> activity, and let set € PaU{L} be a
set of participant references or the element L. Then, sets,macn(sc) is set to set if and
only if one of the following two conditions holds:

1. scisa <forEach> activity, set is a set of participant references, and set is associated
with sc by a forEach attribute in its <participantSet> declaration.

2. scis a <scope> activity, and we have set = L.

Note that a set of participant references can be associated with more than one <forEach>
activitiy by a forFach attribute, but a <forEach> activity can be associated with at
most one set of participant references. Otherwise, the activity would iterate over more
than one set, which does not make sense. If a set of participant references is associated
with more than one <forEach> activity, each of them will iterate over the same set of
participant references.

The function defined in definition 36 can be derived while analyzing the <participants>
declaration of the participant topology. Let sc € Scope be a <scope> or <forEach>
activity. If sc is associated with a participant reference by a scope attribute, sets,;gach(sc)
will be set to L. If sc is associated with a set of participant references by a forFach
attribute, setforpqecn(sc) will be set to the name of the set.

In Section 2.1 we have specified that a <forEach> activity will only be added to the
set Scope if it is associated with a single participant reference by a forFEach attribute.
Now, we specify that it will only be added to the set Scope if it is associated with
a set of participant references. Otherwise, we would set the function sets, gacy, for
<forEach> activities that have not been added to Scope yet since the <particpantSet>
declarations are above the <particpant> declarations of the iterators. Actually, the same
set Scope is generated by both variants since a <participantSet> declaration having
a forFach attribute assigned must contain exactly one <participant> declaration for
every <forEach> activity listed with a matching forEach attribute.

Algorithm 14 presents the refined procedure modifyConstruct of algorithms 9 and 12.
Again, the beginning and the end of the code section which is refined is indicated by
extra comments, and some code elements of the original procedure are left out indicated
by three dots. The procedure uses the procedure modifyForEach of algorithm 15 to
modify a set-based <forEach> activity in the way described in Section 4.1. Algorithm 17
on page 73 presents the refined procedure convertPBD of algorithm 5. In addition to the
original procedure, the list PaSetList is declared as list of sets of participant references

68

4.2. Refining our Procedure

over which the set-based <forEach> activities in the current process iterate. They are
used as names of variables containing an array of endpoint references. To declare these
variables the procedure declareSrefVariables of algorithm 18 is called at the end of
the procedure convertPBD. In addition to the assumptions made for algorithms 1 to 13,
we assume the following:

e There are the following functions on elements of the type Element:

— addContent (text :String): adds the character string stored in the variable
text to the content of the element.

— addVariables(): this function adds a <variables> declaration at the right
place of the element taking the BPEL specification ([Org07]) into account.
If the element already includes a <variables> declaration, it will not be
changed.

— removeChild(element :Element): this function removes the child element
element. If element is not a child element of the current element, the latter
will not be changed.

— removeChildren(): this function removes all child elements of the element.

If the current <forEach> activity has a wsu:id attribute assigned, the procedure
modifyForEach will be started with the <forEach> activity, the <scope> activity and
the value of the wsu.id attribute of the <forEach> activity as input. Note that the value
of the wsu:id attribute is now used twice. Therefore, it is stored in a variable. In that way,
we only need one access to the attribute instead of two. The procedure modifyForEach
first builds the global name of the current <forEach> activity by concatenating the
previously stored name space prefix of the target name space of the PBD with a colon
and the local name of the activity. If the resulting QName is an element of Scope,
a set of participant references will be associated with the <forEach> activity by a
forEach attribute. Thus, it is a set-based <forEach> activity. Otherwise, it will not be
a set-based <forEach> activity and does not need to be changed.

Afterward, the counterName attribute is added to the <forEach> activity. Then, the
<startCounterValue> and <finalCounterValue> constructs are created. The name of
the set of participant references over which the <forEach> activity iterates can be
determined by using the function sets,gecn on the element of Scope representing the
activity. This name will be added to the global list PaSetList if it has not been added
before. The corresponding variable containing an array of endpoint references will be
declared later (cf. algorithms 16 and 17). The <startCounterValue> and <finalCoun-
terValue> constructs need to be enclosed before the optional <completionCondition>
construct and the <scope> activity of the <forEach> activity (cf. [Org07]). To do
so, the <completionCondition> construct and the <scope> activity are removed from

69

4. Set-Based ForEach

the activity. After having added the <startCounterValue> and <finalCounterValue>
constructs, they are added to the end of the <forEach> activity again.

In Section 4.1 we have mentioned that the <assign> activity needs to be enclosed
before the nested activity if and only if there is exactly one partner link declaration
between the owner and the iterator of the <forEach> activity. Let fe € Scope be a
<forEach> activity. If fe is a set-based <forEach> activity, there will be exactly one
set of participant references over which fe iterates. Furthermore, there is exactly one
single participant reference being the iterator of fe. Since the iterator is the only single
participant reference which may be associated with the <forEach> activity by a forEach
attribute, the set partnerLinksseop.(fe) only includes partner link declarations between
the owner and the iterator of the <forEach> activity. If the amount of elements in this
set is not one, the <assign> activity must not be enclosed before the nested activity (cf.
Section 4.1). Otherwise, the procedure addAssignsToForEach will be started having the
<scope> activity, the set of participant references over which the <forEach> activity
iterates, the first and only element of the set of partner link declarations limited to the
<forEach> activity and the value of its wsu:id attribute as input.

First, the nested activity is stored in a variable and removed from the <scope> activity.
Then, the <copy> construct is specified and added to the new <assign> activity as
described in Section 4.1. Afterward, the <assign> activity and the nested activity are
added to the <sequence> activity in that order. Finally, the <sequence> activity is
added to the <scope> activity.

If variables containing an array of endpoint references need to be declared, a name
space declaration will be added to the <process> activity. This name space declaration
associates the name space prefix sref with the name space http://www.bpel4chor.
org/service-references. We assume that there is no other name space declaration
associating the name space prefix sref with another name space (cf. beginning of
Chapter 1). After the declaration of the name space, a <variables> construct will be
added to the <process> activity if it does not already include one. For each element of
the global list PaSetList a <variable> construct is added to the <variables> construct.
The name of the variable is the name of the corresponding set of participant references
stored in the list PaSetList. The type of each variable is sref :service-refs (cf. Section
4.1).

70

http://www.bpel4chor.org/service-references
http://www.bpel4chor.org/service-references

4.2. Refining our Procedure

Algorithm 14 Refined procedure modifyConstruct
procedure MODIFYCONSTRUCT(construct :Element)
// the input construct points on the tag of the current BPEL construct
constructName :String <—construct.getName(); // the name of the current BPEL
construct
fEScope :Element; // a single BPEL construct
begin

if constructName = "forEach" then
/| construct is a <forEach> activity
fEScope «construct.getChild("scope");
// fEScope points on the <scope> activity nested in the <forEach> activity
// continue depth-first search on the scope
MODIFYCONSTRUCT (fEScope); // recursion
if construct.hasAttribute("wsu:id") then

// here the refinement begins
id :String <—construct.getAttributeValue("wsu:id");
/| the value of the wsu:id attribute is stored in id since it is used twice

// modify the set-based <forEach> activity
MODIFYFOREACH (construct, fEScope, id); J/ cf. algorithm 15

// add partner link declarations to the scope
DECLAREPARTNERLINKS(fEScope, id); // cf. algorithm 6
// here the refinement ends

end if
else

end if
end procedure

71

4. Set-Based ForEach

Algorithm 15 Procedure modifyForEach
procedure MODIFYFOREACH(forEach, fEScope :Element, id :NCName)
// the input forEach points on the tag of the current <forEach> activity, the
input fEScope on the tag of the <scope> activity nested in the <forEach> activity, and
the input id is its wsw:id

fe :DT(Scope); // DT (Scope) inherits of QName

set :DT(Pa); // DT (Pa) inherits of NCName

startCounter :Element <—new Element("startCounter Value"); // the
<startCounterValue>

finalCounter :Element <—new Element("finalCounterValue"); // the <finalCounterValue>
completionCondition :Element <forEach.getChild("completionCondition");
// the optional <completionCondition> construct of the current <forEach> activity
begin
fe «—process_ nsprefix.buildQName(id);
// the global name of the current <forEach> activity and the corresponding element
of Scope
if fe € Scope then
// a set of participant references is associated with fe by a forEach attribute
// thus it is a set-based <forEach> activity
// add the counterName attribute
forEach.addAttribute("counterName', "i_" + id);
// add the contents to the <startCounterValue> and the <finalCounterValue>
startCounter.addContent("0");
set esetforEach(fe);
finalCounter.addContent("count($" + set + "/)-1");
/| s€tforBach(fe) is the name of the set of participant references over which the current
<forEach> activity iterates
// add this name to the global list PaSetList if it has not been added before
// The corresponding variable containing an array of endpoint references will be
declared later (cf. algorithms 16 and 17)
if set ¢ PaSetList then
PaSetList «PaSetList U set;
end if
// enclose the <startCounterValue> and the <finalCounterValue> constructs before
the <completionCondition> construct and the <scope> activity of the <forEach> activity
forEach.removeChild(completionCondition);
forEach.removeChild(fEScope);
forEach.addChild(start Counter);
forEach.addChild(finalCounter);
forEach.addChild(completionCondition);
forEach.addChild(fEScope);
// add the <assign> activities to copy the endpoint references on the partner links
plList :List(DT(PL)) <partnerLinksscope(fe);
if |plList| = 1 then
ADDASSIGNSTOFOREACH(fEScope, set, plList[1], id); J/ cf. algorithm 16
end if
end if
72end procedure

4.2. Refining our Procedure

Algorithm 16 Procedure addAssignsToForEach
procedure ADDASSIGNSTOFOREACH(fEScope :Element, set :DT(Pa), pl :DT(PL),
id :NCName)

// the input fEScope points on the tag of the <scope> activity nested in the
current <forEach> activity, the input set is the set participant references over which
the <forEach> activity iterates, the input pl is the partner link declaration between
the owner and the iterator of the <forEach> activity, and the input id is its wsu:id

nestedActivity :Element <—fEScope.getChildren().last();
J/ the last child of the <scope> activity — this is the nested activity
sequence :Element <—new Element("sequence'); // the new <sequence> activity

assign :Element <—new Element("assign"); // the new <assign> activity

copy :Element <—new Element("copy"); // the new <copy> construct

from :Element <—new Element('from"); // the new <from> construct

query :Element <—new Element("query"); // the new <query> construct

to :Element<—new Element("to"); // the new <to> construct
begin

// remove the nested activity
fEScope.removeChild(nestet Activity);

J/ specify the <copy> construct
from.addAttribute("variable', set);
query.addContent("[$i_" + id + "]");
to.addAttribute("partnerLink", pl);

// arrange the <copy> construct and add it to the <assign> activity
from.addChild(query);
copy.addChild(from);
copy.addChild(to);
assign.addChild(copy);

// add the <assign> activity to the new <sequence> activity
sequence.addChild(assign);
// add the nested activtiy to the new <sequence> activity
sequence.addChild(nested Activity);
// add the <sequence> activity to the <scope> activity
fEScope.addChild(sequence);
end procedure

73

4. Set-Based ForEach

Algorithm 17 Refined procedure convertPBD
procedure CONVERTPBD (process :Element)
// the input process points on the <process> activity of the current PBD

PaSetList :List(DT(Pa)) «0;
// a list of sets of participant references over which the set-based <forEach>
activities in this process iterate
// they are used as names of variables containing an array of endpoint references
begin

// here the refinement begins

/| declare the variables containing an array of endpoint references

DECLARESREF VARIABLES(process, PaSetList); J/ cf. algorithm 18
end procedure

74

4.2. Refining our Procedure

Algorithm 18 Procedure declareSrefVariables
procedure DECLARESREF VARIABLES(construct :Element, PaSetList :List(DT(Pa)))
// the input construct points on the tag of the current BPEL construct, and
PaSetList is the list of sets of participant references for which a variable containing
the corresponding array of endpoint references needs to be declared

variables, variable :Element; // single BPEL constructs

PaSet : DT(Pa); // a participant reference
begin

if PaSetList # () then // there are variables to be declared

// add the name space declaration for the data type service-refs
srefsNamespace :String «"http://www.bpeldchor.org/service-references";
construct.addAttribute("xmlns:srefs", srefsNamespace);

// add a <variables> declaration
construct.add Variables();
variables <—construct.getChild("variables");
J/ variables becomes the <variables> declaration
/| declare all necessary variables
for all PaSet € PaSetList do
variable «<—new Element("variable");
/| variable becomes a new <variable> declaration
// add a name and a type attribute to the <variable> declaration
variable.add Attribute("name", PaSet);
variable.addAttribute("type", "srefs:service-refs");
// add the <variable> declaration to the <variables> declaration
variables.addChild(variable);
end for
end if
end procedure

75

5. Generating WSDL Definitions of
Partner Link Types

The WSDL definitions of partner link types are written to a new WSDL file. The root
element of this file is a <wsdl:definitions> tag. The name space prefix wsdl refers to
the name space http://schemas.xmlsoap.org/wsdl/ (cf. [Org07]).

Algorithm 19 presents a procedure in pseudo code which adds one partner link type
declaration for each element of the set PLType to the new WSDL file. It is used on the
newly created <wsdl:defnitions> tag. To add roles to the partner link type declarations,
the procedure declareNewRole of algorithm 20 is used. For algorithms 19 and 20 we
assume the same data types and functions as we did for algorithms 1 to 18.

First of all, the <wsdl:definitions> tag gets a name and a targetNamespace attribute
assigned. The value of the name attribute is “partnerLinkTypes”. As target name
space of the declarations of partner link types we chose the target name space of the
participant topology concatenated by the value “/partnerLinkTypes” (cf. algorithm 5 in
Section 2.3). We assume that there are no conflicts with existing name spaces and the
newly created one (cf. beginning of Chapter 1).

Afterward, the name space declarations for the name space prefixes wsdl and plnk are
added to the <wsdl:definitions> tag. The name space prefix wsdl needs to refer to the
name space http://schemas.xmlsoap.org/wsdl/ and the name space prefix plnk to
the name space http://docs.oasis-open.org/wsbpel/2.0/plnktype (cf. [Org07]).

For each element of the set PLType a new <plnk:partnerLinkType> declaration needs
to be added to the <wsdl:definitions> tag. Let plt € PLType be the current partner link
type. Then, the name of the new <plnk:partnerLinkType> declaration is the identifier
of plt. Since each element of the set PLType is named uniquely, there are no naming
conflicts between the individual partner link type declarations.

The roles of the partner link type declaration can be derived from the element of the
relation Comm which is associated with plt by the function pltcy,,, of definition 29. Let
((A, ¢), (b,d)) € Comm be pltcomm ™ ' (plt). Since pltcomm is a bijective function, it inverse
function can be used. Each role is declared in a <plnk:role> construct added to the
current <plnk:partnerLinkType> construct. The name of the first role is the identifier
of the participant reference b. The value of its portType attribute is the identifier of the
port type d. Note that b is an NCName, and d is a QName.

If we have ¢ = 1, the participant references contained in A will not receive any messages
from the participant reference b. In that case, the second role must not be declared.

7

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://docs.oasis-open.org/wsbpel/2.0/plnktype

5. Generating WSDL Definitions of Partner Link Types

If we have ¢ # 1, A will contain only one participant reference since the receiver of a
message link has to be a single participant reference (cf. Section 2). In that case, the
name of the second <plnk:role> construct is the identifier of the first and only element
of the subset of participant references A. The value of its portType attribute is the
identifier of the port type c.

After having declared each partner link type with its roles, we need to add name space
declarations to the <wsdl:defintions> tag. These name space declarations refer to the
name spaces of the WSDL definitions of port types associated with the roles. To do so,
we will add each name space prefix of a currently associated port type to the global list
of name space prefixes nsprefixList if it has not been added before. The name space
prefix of a port type can be derived using the function nsprefixpr of definition 3.18 on it.
Later, the procedure declareNameSpaces of algorithm 8 is used on the <wsdl:definitions>
tag and the list nsprefixList to add the relevant name space declarations.

78

Algorithm 19 Procedure declarePartnerLinkTypes

procedure DECLAREPARTNERLINKTYPES(definitions :Element)
// the input definitions points on the <wsdl:definitions> tag of the newly created WSDL file

plt :DT(PLType); // DT(PLType) inherits of NCName
partnerLinkType, role :Element; // single BPEL constructs
A :List(DT(Pa)) // a list of participant references
b :DT(Pa); // DT(Pa) inherits of NCName
¢, d :DT(PT); // DT(PT) inherits of QName

nsprefixList :List(DT(NSPrefiz)) <0;
// a list of name space prefixes referencing to the name spaces of the WSDL definitions of port
types used by the new partner link types
begin
// add a name attribute to the <definitions> tag
definitions.add Attribute("name", "partnerLinkTypes");
// declare the target name space for the WSDL definitions
targetNS :String «+ prefizys(topologyNS) + "/partnerLinkTypes";
/| prefizns(topologyNS) is the target name space of the participant topology
definitions.add Attribute("targetNamespace', targetNS); // cf. algorithm 5
// add the name space declarations for the name space prefixes wsdl and plnk (cf. [Org07])
definitions.add Attribute("xmlns:wsdl", "http://schemas.xmlsoap.org/wsdl/");
pInkNS :String +"http://docs.oasis-open.org/wsbpel/2.0/pluktype";
definitions.add Attribute("xmlns:plnk", plnkNS);

// add a partner link type declaration for each element of PLType
for all plt € PLType do
// create a new <plnk:partnerLinkType> construct
partnerLinkType <—new Element("plnk:partnerLinkType");
// add a name attribute to the new partner link type declaration
partnerLink Type.addAttribute('name", plt);

// get the element of the relation Comm of the current partner link type

((Ac),(b,d)) pltcomm " (plt); /] Pltcomm is a bijective function
// create the first role element and add it to the partner link type declaration
role + DECLARENEWROLE(b, d); // cf. algorithm 20

partnerLink Type.addChild(role);
// the second role must not be declared if we have ¢ = L
if ¢ # 1 then
role <~DECLARENEWROLE(A[1], ¢); // cf. algorithm 20
// in this case, A includes only one participant reference (cf. Section 2)
partnerLinkType.addChild(role);
end if
// add the partner link type declaration to the <definitions> construct
definitions.addChild(partnerLinkType);
end for
// add the declarations of the name spaces of the port type definitions
DECLARENAMESPACES(definitions, nsprefixList); // cf. algorithm 8
end procedure

79

d.

Generating WSDL Definitions of Partner Link Types

Algorithm 20 Function declareNewRole

function DECLARENEWROLE(pa :DT(Pa), pt :DT(PT)) returns Element
// the input pa is the participant reference which may be interpreted as the new
role, the input pt is the port type of this role
// this function returns the new <plnk:role> construct
role :Element <—new Element("plnk:role"); // a new <plnk:role> construct
pt_ nsprefix :DT(NSPrefix) < nsprefizpr(pt); // the name space prefix of the port

type pt

begin
// add the name attribute to the role
role.addAttribute("name", pa); // pa is an NCName
// add the portType attribute to the role
role.addAttribute("portType', pt); // pt is a QName

// add the name space prefix of pt to the global list nsprefixList if it has not
been added before
if pt_ nsprefix ¢ nsprefixList then
nsprefixList <—nsprefixList U pt_ nsprefix;
end if
// return the new <plnk:role> construct
return role;
end function

80

5.1. Endpoint References

5.1. Endpoint References

In a completely grounded BPEL4Chor choreography each transmitted participant refer-
ence is associated with a WSDL property in the participant groundings. In the case of a
single participant reference, the type of such a property is sref:service-ref. The name
space prefix sref refers to the name space http://docs.oasis-open.org/wsbpel/2.0/
serviceref .service-ref (cf. [Org07]). This universal container for storing an endpoint
reference allows the usage of different versions of service referencing or endpoint address-
ing schemes within BPEL (cf. [Org07]). If the transmitted reference is a set of participant
references, the type of the property will be srefs:servicerefs. The name space prefix
srefs refers to the name space http://www.bpeldchor.org/servicereferences (cf.
Section 4.1). In a BPEL process we need to pass on endpoint references instead of
participant references. If the receiver of a participant reference sends a message to the
transmitted reference, the corresponding endpoint reference needs to be copied to the
partnerRole of the partner link between the receiver and the reference. This ensures
that the message is sent to the right participant.

In the following, we distinguish explicitly between two different cases regarding the
behavior of the receiver of a transmitted participant reference. The first case is presented
in Figure 8, and the second one in Figure 9. Figure 10 presents a combination of both
cases.

participant send participant reference z .| participant
reference a reference b

send messages
know each other

h J

participant
reference z

Figure 8.: Sending and using a participant reference

In the scenario of Figure 8 a participant reference a knows another participant reference
z and sends it to the participant reference b. The latter uses the transmitted participant
reference to send one or more messages to it.

The scenario of Figure 9 differs from the one of Figure 8 in that the participant reference
b does not use the transmitted participant reference z to communicate with it. Instead,

81

http://docs.oasis-open.org/wsbpel/2.0/serviceref.service-ref
http://docs.oasis-open.org/wsbpel/2.0/serviceref.service-ref
http://www.bpel4chor.org/servicereferences

5. Generating WSDL Definitions of Partner Link Types

participant
reference a

send participant reference z o

Y

participant
reference z

know each other

Figure 9.: Sending and forwarding a participant reference

participant
reference b

forward reference z

it forwards z to another participant reference c.

participant
reference a

send participant reference z _

know each other

participant
reference b

forward reference z

participant
reference c

A

participant
reference z

send messages

participant
reference ¢

Figure 10.: Sending, using and forwarding a participant reference

Finally, Figure 10 presents a scenario in which the participant reference b both sends one
or more messages to the transmitted participant reference z and forwards it to another

participant reference c.

A WSDL property can be found in the messages in which it is transmitted. The property
is connected to the messages by property aliases also defined in WSDL. For each WSDL
property there has to be one property alias definition for each WSDL message in which
the property should be found (cf. [Org07]). If a send activity sending or forwarding a
participant reference is reached, it will be assumed that the corresponding endpoint
reference is stored in the message. Therefore, nothing additional can be done before or

in the send activity.

82

5.1. Endpoint References

If a participant reference uses the transmitted reference to send one or more messages to
it, the corresponding endpoint reference needs to be copied to the partner link between
them. Therefore, an <assign> activity has to be added after the receive activity. Note
that the receiver of a participant reference will send one or more messages to it if and
only if a partner link declaration between them exists (cf. Section 2). This fact can be
used to determine whether the <assign> activity has to be added or not.

A single transmitted participant reference is associated with exactly one single endpoint
reference. With this restriction the receiver of a reference actually receives only one
endpoint reference. Thus, if the participant bound to the transmitted participant
reference is realized by multiple port types, the receiver of the reference will possibly not
be able to send him all messages. Hence, we furthermore restrict that the transmitted
participant reference is realized by one port type when the reference is used to send
messages to it. This implies that there is at most one partner link declaration between
the receiver of a participant reference and the reference itself.

Furthermore, an endpoint reference is associated with a concrete port to which a message
may be sent. The partnerRole of the partner link declaration to which the reference
is copied needs to be associated with the port type of this port. Each transmitted
participant reference may be realized by multiple port types. Thus, it is usually not
known at design time with which concrete port type a transmitted endpoint reference
is associated. If there are multiple partner link declarations between the receiver of a
participant reference and the reference itself, we need to determine the partner link
declaration which is associated with the correct port type. This is not always possible
before the runtime of the process. Future work will investigate how multiple endpoint
references can be transmitted using one participant reference.

Assume the participant references defined in listing 5.1 and the message links of listing
5.2. There are three single participant references. The pariticipant reference a sends the
participant reference z to the participant reference b. Afterward, b sends a message to
Z.

<participants>
<participant name="a" type="A" />
<participant name="b" type="B"' />
<participant name="z" type="Z" />
</participants>

Listing 5.1: Participant references in our example

<messageLinks>
<messagelink name="a—b"
sender="a" sendActivity="sa'
receiver="b" receiveActivity="rb"
messageName="a—Db"

participantRefs="z" />

33

5. Generating WSDL Definitions of Partner Link Types

<messagelink name="b—z"
sender="b" sendActivity="sb"
receiver="z" receiveActivity="rz"
messageName="b—z" />

</messageLinks>

Listing 5.2: Message links including a transmitted participant reference

The groundings of these message links is presented in listing 5.3. The transmitted
participant reference z is associated with the WSDL property z:prop.

<messageLinks>
<messagelink name="a—b'"
portType="b:pt" operation="op" />
<messageLink name="b—z"
portType="z:pt" operation="op" />
</messageLinks>
<participantRefs>
<participantRef name='"z"
WSDLproperty="z:prop" />
</participantRefs>

Listing 5.3: Code snippet of the participant groundings of our example

Listing 5.4 presents the new <assign> activity which needs to be added to the receive
activity rb. In this example rb is a <receive> activity. Note that it might also be an
<onMessage> or <onEvent> construct or a synchronous <invoke> activity. In each of
the four cases, the <assign> activity has to be added after the message construct in
the same way. Assume the receive activity stores the received message in the variable
rb_variable. Then, the <assign> activity reads the endpoint reference out of that
variable and copies it to the appropriate partner link. Since the participant reference z
is realized by the port type z:pt to receive the messages from b, this partner link has
the name b-z_isRealizedBy_z_pt (cf. Section 2). To read the endpoint reference out of
the variable, a property alias of the property z:prop is used.

The <receive> and the <assign> activity in listing 5.4 are rewritten to a <sequence>
activity. The optional links of the original <receive> activity are moved to the new
<sequence> activity (indicated by the three dots). This ensures that the received
endpoint reference is copied to the partner link after it has been received. In the PBD
the semantics of the message links implied that behavior. In an abstract BPEL process,
this behavior must be made explicit. The only way is to tie the <assign> activity to
the <receive> activity in order to execute them as a group.

<sequence ...>
<receive name="rb" variable="rb_ variable' ... />
<assign>

84

5.1. Endpoint References

< Copy>
<from variable='"rb_ variable' property="z:prop" />
<to partnerLink="b—z_isRealizedBy_z_pt" />
</copy>
</assign>
</sequence>

Listing 5.4: Copying the endpoint reference to a partner link

If the transmitted participant reference is a set of participant references, the receiver
cannot send a message to the whole set since the receiver of a message link has to be a
single participant reference. Instead, the set can be forwarded to another participant
reference (cf. Figure 9), or it can be used as set for a set-based <forEach> activity (cf.
Section 4). In such a case, the endpoint references associated with the set need to be
copied to a variable of the type srefs:servicerefs. To do so, the <to> construct of
the <copy> construct needs to be adjusted. The target is not a partner link, but the
corresponding variable. Assume that a message construct called receive receives the
set of participant references set. Furthermore assume that set is associated with the
WSDL property s:prop. Then, the <assign> activity copying the endpoint references
to a variable is presented in listing 5.5.

<sequence ...>
<receive name='"receive' variable="receive variable" ... />
<assign>
<copy>

<from variable='receive_variable" property="s:prop" />
<to variable="set" />
</copy>
</assign>
</sequence>

Listing 5.5: Copying the endpoint references to a variable

The name of the variable is the name of the corresponding set of participant references.
It is declared globally in the <process> activity. We assume that there are no naming
conflicts with existing variables (cf. beginning of Chapter 1).

The transmitted participant reference may be stored in another participant reference
after its reception. This is indicated by a copyParticipantRefsTo attribute assigned to
the message link declaration. Assume the modified message link declarations of listing
5.6. At the side of the receiver b, the transmitted participant reference z is stored in the
participant reference x. Afterward, b sends a message to x using the message link b-x.
In that case, the <to> construct of the <copy> construct in listing 5.4 uses the partner
link between b and x as target. Note that now there has to be exactly one partner link
declaration between b and x.

85

5. Generating WSDL Definitions of Partner Link Types

<messageLinks>

<messagelink name="a—b'"
sender="a" sendActivity="sa'
receiver="b" receiveActivity="rb"
messageName="a—b'"
participantRefs="z"
copyParticipantRefsTo="x" />

<messageLink name="b—x"
sender="b" sendActivity="sb"
receiver="x" receiveActivity="rx"
messageName="b—x" />

</messageLinks>

Listing 5.6: Message links including a copyParticipantRefsTo attribute

Again, if b only forwards the stored participant reference x and if x is a single participant
reference, nothing additional can be changed at the side of b. If the transmitted
participant reference is a set of participant references, the name of the variable which is
the target of the <to> construct will change to x.

If more than one participant reference is transmitted over a message link, one <copy>
construct for each reference needs to be added to the new <assign> activity. Each
<copy> construct copies the corresponding endpoint reference to the relevant partner
link or variable as described above.

Until now, we have described how the endpoint references are copied from the message
variables to the partner links or variables containing an array of endpoint references.
But some message constructs in the PBDs may have no message variables specified. In
that case, a new variable needs to be created for both the send and the receive activity
of a message link if endpoint references need to be copied either to partner links or to
variables after the receive activity. The name of a newly created variable is the value
of the wsu:id attribute of the message construct concatenated by the character string
" variable". We assume that there are no naming conflicts with existing variables (cf.
beginning of Chapter 1).

A synchronous <invoke> activity occurs both as send and receive activity of two
different message links. Its inputVariable is associated with the outgoing message
and its outputVariable with the incoming message (cf. [Org07]). If both variables
need to be created newly in the way described above, they will get the same name.
Thus, we employ a different naming for these variables. We concatenate the character
string "__inputVariable" to the wsu:id of the <invoke> activity to get the name of
the inputVariable. The name of the outputVariable is the wsu:id concatenated by the
character string " outputVariable". For the sake of simplicity, this may be done for
each <invoke> activity either being synchronous or asynchronous.

86

5.1. Endpoint References

Different message constructs of one process may have the same wsu:id assigned. Since
such message constructs are associated with the same WSDL operation, their message
variables need to get the same message type assigned. Furthermore, they cannot be
executed in parallel since at most one message may be sent over a message link at
the same point in time. Thus, these message constructs may get the same message
variables assigned without creating any conflict regarding different message types or the
overwriting of endpoint references on variables.

In a BPEL process following the Abstract Process Profile for Observable Behavior the
declarations of message variables may be omitted. Nevertheless, we present how these
declarations can be created automatically. If a message variable is declared, its message
type must match the type of the corresponding WSDL message. The latter can be
derived from the WSDL definition of the operation assigned to the relevant message link.
Note that both the outgoing variable of the send activity and the incoming variable
of the receive activity of a message link need to get the same message type assigned
(cf. [Org07]). If the receive activity is a synchronous <invoke> activity (and the send
activity is a <reply> activity), the output message of the relevant WSDL operation
needs to be used. Otherwise, we need to use the input message of this operation.

Note that the message variables of the PBDs may have already been declared by the
modeler. In that case, it needs to be checked whether he has chosen the right message
types. The declarations can be created automatically for newly created message variables.
The same goes for message variables which have been assigned to message constructs,
but which have not been declared before the automated transformation.

In which scopes the message variables need to be declared, depends on which scopes
the transmitted participant references are limited to. Again, if the modeler has already
declared a message variable, it needs to be checked whether it is declared in the right
scope. Otherwise, this can be done automatically. Declaring the variables in their
respective scopes prevents an overwriting of endpoint references in the messages if they
are sent in parallel.

Assume that the participant reference a sends the participant reference z to the partici-
pant reference b as presented in listing 5.2. For the message variables, we do not need
to distinguish between a single participant reference and a set of participant references
explicitly. Thus, z can either be a single participant reference or a set of participant
references. Furthermore assume that b does not store z into another participant refer-
ence using a copyParticipantRefsTo attribute. Then, we need to look at the following
limitations regarding z:

1. z is not limited to any scope nested in the processes of a or b.

2. z is limited to a scope nested in the process of a, but not to any scope nested in
the process of b.

87

5. Generating WSDL Definitions of Partner Link Types

3. z is limited to a scope nested in the process of b, but not to any scope nested in
the process of a.

4. z is limited to both a scope nested in the process of a and a scope nested in the
process of b.

In case 1 both the outgoing variable of the send activity and the incoming variable of the
receive activity may be declared globally in the respective <process> activities. In case
2 the outgoing variable of the send activity needs to be declared in the corresponding
scope. The incoming variable of the receive activity may be declared globally in the
<process> activity of b. In case 3 the incoming variable of the receive activity needs
to be declared in the corresponding scope. The outgoing variable of the send activity
may be declared globally in the <process> activity of a. In case 4 both the outgoing
variable of the send activity and the incoming variable of the receive activity need to be
declared in their respective scopes.

Now we assume that z is again a single participant reference, but that b does store it into
another participant reference x # z using a copyParticipantRefsTo attribute. Copying z
to x is done only at the side of b. Thus, any limitation of x to a scope nested in the
process of a does not force us to declare the outgoing variable of the send activity in this
scope. At the side of a only the limitations regarding z have to be taken into account.

If x is not limited to any scope nested in the process of b, the incoming variable of the
receive activity may be declared globally in the <process> activity of b. Otherwise,
it needs to be declared in the corresponding scope. Note that only the limitations
regarding x have to be taken into account. The participant reference z may be limited
to any scope at the side of b. But since the participant bound to z at the side of a
is copied to x, such limitations do not force us to declare the variable in any scope.
Actually, another participant than the transmitted one may be bound to the participant
reference z at the side of b.

A participant reference may be limited to multiple scopes nested in the same process. In
that case, the relevant message variables need to be declared in each of these scopes in
which the send or respectively the receive activity of the message link is nested directly.
The same goes if multiple participant references are transmitted over one message link
and each of them is limited to a different set of scopes. Note that both the send and
the receive activity can be found in their process multiple times having the same wsu:id
assigned.

The <toPart> and <fromPart> constructs are an alternative way to variable attributes
in message constructs. A <fromPart> construct is used to copy the content of a
part of the incoming message to a BPEL variable. It can be used in <reveive> or
synchronous <invoke> activities or in <onMessage> or <onEevent> constructs. It
creates an anonymous temporary WSDL variable being of the type specified by the

38

5.1. Endpoint References

relevant WSDL operation’s output or input message (cf. [Org07]). A <fromPart>
construct must not be used to copy an endpoint reference to a partner link. Thus, if a
receive activity receives a participant reference and the corresponding endpoint reference
needs to be copied to a partner link, it will be mandatory that the activity has an
incoming BPEL variable assigned by a wvariable or outputVariable attribute. In that case,
the <fromPart> constructs need to be converted into an equivalent <assign> activity
including one <copy> construct for each <fromPart> construct (cf. [Org07]).

Assume the <receive> activity presented in listing 5.7. It uses two <fromPart> con-
structs. The first construct copies the part messagePart1 of the incoming message to
the BPEL variable variablel. The second one does the same for the message part
messagePart2 and the BPEL variable variable2. The three dots within the <receive>
activity indicate its optional links.

<receive name='r" ...>

<fromParts>
<fromPart part="messagePartl"' toVariable="variablel" />
<fromPart part="messagePart2" toVariable="variable2" />
</fromParts>
</receive>

Listing 5.7: <receive> activity including <fromPart> constructs

Listing 5.8 presents the modified <receive> activity. Its <fromPart> constructs are
removed. Instead, we get a new message variable (called r_variable) and a new
<assign> activity including two <copy> statements. The first <copy> statement copies
the message part messagePart1 from the new message variable to the BPEL variable
variablel. The second one does the same for the message part messagePart2 and the
BPEL variable variable2. Thus, the new <assign> activity is equivalent to the original
<fromParts> construct.

Again, the <receive> and the <assign> activity are rewritten to a <sequence> activity.
The optional links of the original <receive> activity are moved to the new <sequence>
activity. This ensures that the message parts are copied to the relevant BPEL variables
after the message has been received. The <copy> statements copying endpoint references
to partner links or variables can be added to the new <assign> activity as described
above.

<sequence ...>
<receive name="r" variable="r variable" ... />
<assign>
<copy>

<from variable="r_variable' part="messagePartl" />
<to variable='"variablel" />
</copy>

39

5. Generating WSDL Definitions of Partner Link Types

<C0py>
<from variable='r_variable' part="messagePart2" />
<to variable="variable2" />

</copy>
<!-- here the <copy> statements copying endpoint references to partner links or
variables can be added -—>
</assign>
</sequence>

Listing 5.8: Converting the <fromPart> constructs into an equivalent <assign> activitiy

If a set of participant references set is transmitted over the message link, it is not
necessary to convert the <fromPart> constructs into a new <assign> activity. Listing
5.9 presents how a new <fromPart> construct can be used to copy the endpoint
references to the corresponding variable of the type srefs:servicerefs. Assume that
EPRs is the part of the message in which the endpoint references are transmitted. Then,
the third <fromPart> construct copies this message part to the variable set containing
the array of endpoint references.

n_.n

<receive name=T1 ...>

<fromParts>
<fromPart part="messagePartl" toVariable="variablel" />
<fromPart part="messagePart2" toVariable="variable2" />
<fromPart part="EPRs' toVariable="set" />
</fromParts>
</receive>

Listing 5.9: <receive> activity with a new <fromPart> construct

This alternative way in the case of a set of participant references requests knowledge about
the definitions of WSDL messages and their message parts. Optionally, the <fromPart>
constructs can be converted into an <assign> activity as described in listing 5.8, too.
In that case, the locating mechanism of WSDL properties and their property aliases can
be used to find the endpoint references in the message. Since <fromPart> constructs,
as a group, act as a single virtual <assign> activity (cf. [Org07]), the same semantics
is achieved by both variants. Which variant should be used, depends on the degree of
knowledge about WSDL definitions of messages and message parts and on the attitude
of the converter. The properties can be derived directly from the participant groundings.
To get the message parts, we also need to analyze the WSDL definitions of messages.
Furthermore, there might be more than one message part for an array of endpoint
references in the same message. Then, the definitions of properties and property aliases
need to be analyzed in order to determine which set of participant references is associated
with witch message part. Therefore and for the sake of simplicity, we recommend the
first alternative way converting the <fromPart> constructs into an <assign> activity.

90

5.1. Endpoint References

A <toPart> construct is used to copy the content of a BPEL variable to a part of the
outgoing message. It can be used in <invoke> or <reply> activities. It creates an
anonymous temporary WSDL variable being of the type specified by the relevant WSDL
operation’s input or output message (cf. [Org07]). If an endpoint reference needs to
be copied from a variable to the message, an additional <toPart> construct can be
used for this. Similar to a <fromPart> construct, a <toPart> construct must not be
used to copy an endpoint reference from a partner link to the message. Again, if a send
activity sends a participant reference and the corresponding endpoint reference needs to
be copied from a partner link to the message, it will be mandatory that the activity
has an outgoing BPEL variable assigned by a wvariable or inputVariable attribute. In
that case, the <toPart> constructs need to be converted into an equivalent <assign>
activity including one <copy> construct for each <toPart> construct (cf. [Org07]). As
mentioned above, it is assumed that this has already been done beforehand. It can
be done in a similar way as in the case of <fromPart> constructs, but the <assign>
activity has to be added before the send activity. This ensures that the message parts
are copied to the message before it is sent.

91

6. Summary and Future Work

This work has described how the PBDs of a BPEL4Chor choreography can be transformed
into BPEL processes following the Abstract Process Profile for Observable Behavior.
The next two sections state a summary of this work and an outlook to future work.

Summary

The main task of this work was to find an automated procedure that fulfills the
transformation. In Section 2 we have described how parter link declarations and the
partnerLink, portType, and operation attributes at the message constructs are generated.
Section 3 has dealt with replacing the NCNames of correlation properties by the
corresponding QNames of WSDL properties and Section 4 with converting a set-based
<forEach> activity into a <forEach> activity iterating over a BPEL variable. Section
5 has presented how the WSDL definitions of partner link types can be generated
automatically. All other WSDL definitions (WSDL messages, port types, operations
and properties and property aliases for endpoint references and correlation sets) have
to be generated before starting the automated transformation. Finally, transmitted
participant references have to be converted into the corresponding endpoint references.
A transmitted endpoint reference needs to be copied to the partnerRole of the partner
link between the receiver of the reference and the transmitted participant reference if
they want to communicate. This has been described conceptionally in Section 5.1. The
integration of this part of the transformation is out of scope for this work.

The underlying procedure of the transformation is subdivided into four steps. In the first
step the participant topology is analyzed, and all relevant data needed to execute the
transformation are stored. Afterward, the participant groundings are analyzed, and the
data are extended. The third step represents the transformation of the PBDs into BPEL
Abstract Processes following the Abstract Process Profile for Observable Behavior. The
missing information for this step is derived from the data stored in the first two steps.
In the last step the WSDL definitions of partner link types are created and written to a
new WSDL file.

93

6. Summary and Future Work

Future Work

The transformation introduced in Chapter 1 represents step 2 of Figure 1. Future work
will include detailed investigations whether steps 1 and 3 can be realized by an automatic
or semi-automatic transformation.

As example for Figure 1, we are going to model the RosettaNet PIPs in BPEL4Chor
and show their transformation into BPEL Abstract Processes. Rania Khalaf of the IBM
TJ Watson Research Center in Hawthorne, New York has developed another procedure
transforming RosettaNet PIPs to BPEL Executable Processes (cf. [Kha07]). In the
context of modeling the PIPs in BPEL4Chor, this procedure will be compared to our
procedure.

Some points regarding the transformation from BPEL4Chor to BPEL are out of scope
for this work. They can serve as basis for future work. These points are the following:

e The conversion of participant references to endpoint references (cf. Section 5.1)
needs to be completed and integrated into the automated transformation. The
points which need to be included in the transformation are amongst others that
<assign> activities need to be added to the send activities sending or forwarding
participant references. These <assign> activities copy the endpoint references
from partner links or variables to the respective messages.

e A transmitted participant reference is associated with exactly one endpoint refer-
ence. This will create a conflict if the transmitted participant reference is realized
by multiple port types, and if the reference is used to send messages to it (cf.
Section 5.1). Future work will investigate how multiple endpoint references can
be transmitted using one participant reference, and how this can be used in the
transformation.

e In the case of a senders attribute assigned to a message link, we will committ the
modeler to assign a participant reference to the message link by a bindSenderTo
attribute if the partner link declaration at receiver side needs to be declared within
a scope (cf. Section 2). The participant reference associated with the bindSenderTo
attribute needs to be limited to the relevant scope. As subject to future work, one
could investigate whether there is an alternative way to declare the partner link
declaration of the receiver within a scope. If the sending participant references are
limited to different scopes, the partner link declaration may be associated with a
set of scopes. Then, it has to be declared in the right of these scopes.

e Over and above that, a participant reference may be limited to multiple scopes.
In the automated transformation this has been disregarded (cf. Section 2). Thus,
it also needs to be integrated.

94

In top-down scenarios, we usually start with an abstract business process description
which will be converted into executable processes (cf. Figure 1). In such scenarios, the
WSDL definitions of messages, port types, operations and properties and property aliases
for endpoint references and correlation sets do not exist. Thus, it is desirable to generate
them automatically. As we do not have any information about the data types of the
correlation properties, their WSDL definitions cannot be generated automatically from a
BPEL4Chor choreography. This has to be done beforehand. The automatic generation
of the other WSDL definitions may be integrated as switch for the procedure.

In the context of the transformation, we have assumed that the BPEL4Chor choreography
is correct regarding its semantics. An example for missing correctness is that a participant
receives a participant reference and does not use it for anything (cf. Figure 11). To
verify a BPEL4Chor choreography, an additional tool may be developed.

participant send participant reference z > participant
reference a reference b

know each other

participant
reference z

Figure 11.: Sending and not using or forwarding a participant reference

Acknowledgments

This work is a modified version of the student thesis by Peter Reimann [Rei07]. Oliver
Kopp is funded by the German Federal Ministry of Education and Research (project
Tools4BPEL, number 01ISE08B).

95

A. Summary of all Definitions

No. Definition Explanation

(1) NS The set of name spaces.

(2) NSPrefic The set of name space prefixes.

(3) prefizys : NSPrefic — NS The bijective function that assigns a
name space to each name space prefix.

(4) PaType The set of participant types.

(5) Process The set of BPEL processes (PBDs).

(6) processparype : PaType — Process The bijective function that assigns a

NSPTEfiT ppocess - FrOCESS — NSPrefix

Pa
typep, : Pa — PaType

Scope

scopep, : Pa — Scope U {1}
MC

ML

constructsyy, - ML — MC x MC

parefsyy, : ML — 2P% x Pa

bindSenderToyy, : ML — Pa U {1}

PT

PBD to each participant type.

The function that assigns a name space
prefix to each PBD of which the tar-
get name space is associated with this
name space prefix.

The set of participant references.

The function that assigns a participant
type to each participant reference.
The set of the scopes and <forEach>
activities of all PBDs that have an
wsu:id and that are referenced by one
or more (single) participant references.
The function that assigns a scope to
each participant reference which is lim-
ited to this scope.

The set of the message constructs of
all PBDs.

The set of message links.

The function that assigns a send and
a receive activity to each message link.
The function that assigns a set of
senders and a receiver to each message
link.

The function that assigns a participant
reference to each message link of which
the actual sender should be bound to
this reference.

The set of WSDL port types.

97

A. Summary of all Definitions

(18)

(30)
(31)

(32)

98

nspreficpy : PT — NSPrefix

@)
portTypeyc : MC' — PT

operationyc : MC — O

PL
partnerLinkyc : MC' — PL

partnerLinksseop. : (ScopeU Process) —
2PL

PLType
typepr, : PL — PLType

Comm C (2P x (PTU{L})) x (Pa x
PT)

partnerLinkscomm : Comm — PLx PL

pltcomm : Comm — PLType

myRolepy, : PL — Pa U {1}
partnerRolepy, : PL — Pa U {1}

CorrPropName

Property

propertyOorrPropName
CorrPropName — Property

The function that assigns a name space
prefix to each port type which is de-
clared in the name space which is asso-
ciated with this name space prefix.
The set of WSDL operations.

The function that assigns a WSDL port
type to each message construct.

The function that assigns a WSDL op-
eration to each message construct.
The set of partner link declarations.
The function that assigns a partner link
declaration to each message construct.
The function that assigns a set of part-
ner link declarations to each scope or
process in which these partner link dec-
laration will be enclosed.

The set of partner link types.

The function that assigns a partner link
type to each partner link declaration.
This relation associates a combination
of participant references with a (pair
of) port type(s) which they use to com-
municate.

The function that assigns a pair of part-
ner link declarations to each element
of the relation Comm.

The bijective function that assigns part-
ner link type to each element of the
relation Comm.

The function that assigns a myRole to
each partner link declaration.

The function that assigns a partnerRole
to each partner link declaration.

The set of NCNames that are used
as names of correlation properties and
that are referenced to WSDL proper-
ties in the participant groundings.
The set of WSDL properties which are
referenced in the participant ground-
ings.

The function that assigns a property
to each property name.

(35) nsprefitproperty : Property — NSPrefiz The function that assigns a name space
prefix to each WSDL property.

(36) setformach : Scope — Pa U {1} The function that assigns a set of par-
ticipant references to each <forEach>
activity which iterates over this set.

Table 2.: Summary of all Definitions

99

B. Summary of all Data Types and
their Functions

e There is the following function modifying elements of the data type String, which
represents a data type of character strings:

— replaceColons(string :String) returns String: this function replaces
each colon in the character string string by an underline.

e We assume QName to be a data type for QNames. QName inherits of the data type
String. There is the following function on elements of the type QName:

— removeNSPrefix() returns NCName: this function returns the second NC-
Name of the QName. This means that it removes the name space prefix from
the QName.

e We assume NCName to be a data type for NCNames. NCName inherits of the data
type String. There is the following function on elements of the type NCName

— buildQName(name :NCName) returns QName: this function builds a QName
by concatenating the NCName with a colon and the NCName name.

e We assume DT(S) to be a data type for the elements of the mathematical set S. .S
may be any set of the definitions of this chapter. DT(S) inherits of the type of the
identifiers of the elements of S (NCName or QName).

e We assume DT(Comm) to be a data type for the elements of the mathematical
relation Comm. There is the following function on elements of the type DT (Comm):

— changeFirstPortType(pt : DT(PT)): let comm = ((A, ¢), (b, d)) be an
element of the relation Comm. If we use this function on the element comm,
the port type ¢ of it will change to pt.

e We assume Element to be a data type for a node of a tree which represents an
xml-file. So, an element of the type Element represents a tag within an xml-file.
There are the following functions on elements of the type Element:

— new Element(name :String) returns Element: this function is a construc-
tor that creates a new element having the local name name.

— getName () returns String: this function returns the local name of the ele-
ment, e.g. a <scope> activity will return the character string "scope".

101

B. Summary of all Data Types and their Functions

— getAttributeValue(name :String) returns String: this function returns
the value of the attribute having the name name. It will return L if the
element has no attribute assigned having the name name.

— getAttributeValueAsList(name :String) returns List(String): this func-
tion returns the value of the attribute having the name name as list of NC-
Names or QNames. Each NCName or QName of the value of the attribute is
one element of the list. The function will return an empty list if the element
has no attribute assigned having the name name.

— getAttributeNamespacePrefix(name :String) returns NCName: this func-
tion returns the name space prefix of the attribute having the name name,
which will be the first NCName of its value if this is a QName. It will return
L if there is no attribute having the name name or if the attribute value does
not include a name space prefix.

— hasAttribute(name :String) returns Boolean: this function will return
true if the element has an attribute assigned having the name name. Otherwise,
it will return false.

— addAttribute(name :String, value :String): this function adds an at-
tribute having the name name and the value value. If an attribute having the
name name already exists, its value will be overwritten by value.

— addAttribute(name :String, value :List(String)): this function adds
an attribute having the name name. The input variable value needs to be
either a list of NCNames or a list of QNames. As value the attribute gets
the corresponding list, while each element of it is separated by a space. If an
attribute having the name name already exists, its value will be overwritten
by the list value accordingly.

— removeAttribute(name :String): this function removes the attribute hav-
ing the local name name.

— getChild(name :String) returns Element: this function returns the first
child element having the local name name. It will return _L if there is no child
element having the name name.

— getChildren() returns List(Element): this function returns a list of all
child elements of the element. It will return an empty list if there is no child
element.

— addChild(element :Element): this function adds a new child element after
the existing child elements.

102

addPartnerLinks (): this function adds a <partnerLinks> declaration at the
right place of the element taking the BPEL specification ([Org07]) into
account. If the element already includes a <partnerLinks> declaration, it
will not be changed.

addVariables(): this function adds a <variables> declaration at the right
place of the element taking the BPEL specification ([Org07]) into account.
If the element already includes a <variables> declaration, it will not be
changed.

removeChild(element :Element): this function removes the child element
element. If element is not a child element of the current element, the latter
will not be changed.

removeChildren(): this function removes all child elements of the element;

addContent (text :String): adds the character string stored in the variable
text to the content of the element.

103

Bibliography

[CD99)]

[DKLWO7]

[DKLW09]

[Kha07]

[KMLOS]

[Org07]

[Rei07]

J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0. World Wide
Web Consortium Recommendation, November 16th, 1999.

G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending
BPEL for Modeling Choreographies. In ICWS, pp. 296-303. IEEE Computer
Society, 2007.

G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From
specification to execution. Data & Knowledge Engineering, 68(10):946-972,
2009. doi:10.1016/j.datak.2009.04.003.

R. Khalaf. From RosettaNet PIPs to BPEL processes: A three level approach
for business protocols. Data € Knowledge Engineering, 61(1):23-38, 2007.

O. Kopp, R. Mietzner, F. Leymann. Abstract Syntax of WS-BPEL 2.0.
Technical Report 2008/06, Universitat Stuttgart, Fakultdt Informatik, Elek-
trotechnik und Informationstechnik, Germany, 2008.

Organization for the Advancement of Structured Information Standards

(OASIS). Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 2007.

P. Reimann. Generating BPEL Processes from a BPEL4Chor Descrip-
tion. Student Thesis: University of Stuttgart, Institute of Architecture of
Application Systems, 2007.

105

	Introduction
	Partner Links, Port Types, and Operations
	Analyzing the Participant Topology
	Analyzing the Participant Groundings
	Converting the PBDs
	Why not Using Pairs of Communicating Participant Types

	Correlation Properties
	Set-Based ForEach
	Exemplifying the Conversion of a Set-Based ForEach
	Refining our Procedure

	Generating WSDL Definitions of Partner Link Types
	Endpoint References

	Summary and Future Work
	Summary of all Definitions
	Summary of all Data Types and their Functions

