

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

Events Make Workflows Really Useful

Matthias Wieland, Daniel Martin,
Oliver Kopp, Frank Leymann

Report 2008/09

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

CR: H.4.1

2 Events Make Workflows Really Useful

Contents

1 Introduction 3

2 Architecture 4

3 Related Work 5
3.1 Data Stream Processing . 6
3.2 Process Modeling . 7
3.3 Transformation of EPC to BPEL . 8

4 Scenarios and Use-Cases 10
4.1 Modeling Use-Cases . 12

5 Concept of Mapping Specification to Execution Artifacts 12
5.1 Step 1: Process Definition . 16
5.2 Step 2: Complex Event Extraction . 16
5.3 Step 3: Mapping Process Definition to Workflow Template 16
5.4 Step 4: Specify the Complex Event Processing Rules 23
5.5 Step 5: Make Executable . 24

6 Complete Example with All Mapping Steps 26
6.1 Step 1: Define Process as EPC . 26
6.2 Step 2: Identify the Needed Complex Events 26
6.3 Step 3: Transform the Process Definitions to Workflow Templates 27
6.4 Step 4: Specify How the Complex Events Should be Evaluated 30
6.5 Step 5: Do the Runtime Configuration and Deployment 31

7 Conclusion and Future Work 32

8 The Complete Listings 32

Events Make Workflows Really Useful 3

1 Introduction

Events are a widely used abstraction to facilitate asynchronous communication in IT
systems. Although the terminology might vary slightly across different domains, the
concept of an event and event communication are omnipresent. Events are used for
disseminating information in e.g. mobile environments and sensor networks, application
integration through messaging middleware and monitoring to control and govern large
and diverse installations of IT infrastructure.

On an abstract level, an event is defined as “any happening of interest in a computer
system” [MFP06], e.g. values reported by sensors, timers, caused by human interaction
with the system or generally any detectable state change that can be described in a
computer processable manner. The main characteristic of event-based systems is their
inherent asynchronous nature, decoupling sender (producer) and receiver (consumer) of
an event in the dimensions of time, reference and location [AADH05]. With the rise of
RFID and the ubiquity of computing devices, event-based systems recently gained a lot
of attention in the area of manufacturing and retail e.g. in form of the METRO Future
Store1.

Naturally, these industries also have a strong interest in Business Process Management
(BPM) technology to align and support their business processes with IT infrastructure.
Business processes are expressed using specialized business process languages. The
standards commonly used in that area are the Web Service Business Process Execution
Language [OAS07] (WS-BPEL or BPEL for short) and the Business Process Modeling
Notation [Obj08] (BPMN). Both standards are implementations of the orchestration
layer of a service-oriented architecture (SOA) and make heavy use of services as the
level of individual business functionality.

The main problem this report deals with is the question how the service-oriented
and event-driven architecture paradigm can be combined using BPM as the vehicle
and driver for integration. Our proposal is centered around Event-driven Process
Chains [STA05, KNS92] (EPC), an event-centric business process modeling language
that treats events as “first class citizens”, i.e. the occurrence of events are fundamental
elements of the business process.

EPCs are part of the ARIS framework [Sch03], a “holistic modeling approach” to
design and document architectures of integrated information systems from a business’
perspective. In ARIS, EPCs are used in the “control view” to describe business processes,
allowing for integration and reuse of elements from other views of a model. EPCs consist
of four main elements: (i) events (depicted as hexagons), (ii) functions (depicted as
rounded boxes), (iii) connectors (depicted as circles) and (iv) control-flow edges. Events
in EPCs are passive, i.e. they represent a state change in the system, but do not cause

1http://www.future-store.org/

http://www.future-store.org/

4 Events Make Workflows Really Useful

it (e.g. they do not provide decisions, but represent decisions taken). Events trigger
functions, which are active elements that represent the actual work and again raise
events upon completion. Connectors are used to join and split control flow, represented
by edges in the EPC graph. An EPC starts and ends with one or more events, process
control flow itself strictly follows an alternating sequence of functions and events, possibly
with connectors specifying the kind of control flow join and split in between.

EPCs are in strong contrast to other established process languages such as BPEL or
BPMN, which are rather Web service centric and do not enforce to use events as an
integral part already at the modeling level. In this report, we therefore use EPCs as the
basis for integration of process logic with event-based systems, building a common view
that integrates process and event-logic.

Consequently, this report is organized as follows: in Section 2 we give an overview on
the high-level architecture of the proposed system and explain how events and complex
event processing can be added to the process level. In Section 3 we provide an overview
of related work and discuss state-of-the-art in related research areas today. Section 4
follows, and introduces our scenario and the running example we use throughout the
report. This is followed by an in-depth, stepwise discussion of our proposed methodology
describing the usage of a service-oriented and event-driven architecture. Section 6
provides an complete walk-through over all steps and with an in-dept discussion of all
source files included. Section 7 concludes this report and gives an outlook on future
work.

2 Architecture

Figure 1 depicts the overall architecture of the proposed system: Workflow technology
traditionally distinguishes between specification and execution layers, an approach we
follow in our architecture. To specify the workflow, designers use EPCs and refine
the events from the workflow definition using a complex event description language
(right-hand side of Figure 1). Since the process itself is modeled on an abstract level,
it must be possible to define complex events on the same abstract level in order to
make it possible for the domain expert to define the process and the complex events
himself. So the complete specification can be done by the domain expert who has the
expert knowledge in the domain the process is defined for. That specification has a
defined structure in order to allow a good automated support for transforming it to the
execution layer. However the generated artifacts (the BPEL workflows for the workflow
engine and the CEP statements for the CEP system) are not executable directly because
some execution information about the IT infrastructure has to be added manually by
an IT expert. After adding the execution information the system can start working by
sending event notifications from the CEP engine to workflow instances running in the

Events Make Workflows Really Useful 5

CEP System

Function
f1

Event e1

Event e2

Business process relevant
complex events

s1 s2m1

e1 e2

f1e

Specification
layer

Execution
layer

BPEL engine

<process>
 <recieve e1 ... >
 <invoke f1 ...>
 <revieve e2 ...>
</process>

Event e1:
select avg(price) from
OrderEvent.win:time

(30 sec)

Low Level Events

event specification

event specificationautom
atic

transform
ation

event
notification

Figure 1: System overview

BPEL engine. An event can that trigger the instantiation of a new workflow or it can
be consumed by an already running workflow.

3 Related Work

Common Base Event (CBE) [Bri04] is an XML-based standard that defines the structure
and content of events coming from disparate sources of enterprize systems in a consistent
and common format. Logging, tracing, management and business events are described
consistently over different systems that emit them, allowing for easier automated situation
handling and correlation by providing a common data structure to work with. In our
scenario, CBE significantly lowers efforts at the level of the Event-Processing Engine; it
reliefs us from the burden of writing data transformation logic for each different event
source and format, effectively leading to a much cleaner design and implementation of
the overall system. In cases were event sources do not produce events in CBE form,
adapter logic needs to be written, but this logic does not transform the data to another
proprietary format but to a standard format that may be reused and feed into other
event-consuming systems as well.

Many works are available on combining Service-Oriented Architecture and Event-Driven

6 Events Make Workflows Really Useful

Architecture (e.g. IBM: [Mar06], HP: [WALD07], Academic: [LC08]). In summary, they
state that it is important to combine these architecture styles. They also state that it is
difficult to develop applications for such a combined architecture. As a step towards
solving that problem this report we presents in our knowledge the first methodology
(SOEDA) supporting the development of such service-oriented event-driven applications.
Of course there exist many island solutions for parts of the methodology. Because of
that SOEDA tried to build on available solutions where possible.

Event-driven Process Chains (EPCs) offer a superset of possible process instantiation
patterns in comparison to BPEL processes [DM08]. Therefore, all approaches mapping
EPCs to BPEL have to constrain the semantics of start events to the semantics offered
by BPEL.

Workflow engines produce events to signal what currently happens in the process [IBM08].
We present in [KKS+06] a generalized BPEL event model, which abstracts from engine
specific events and provides general events. These events in turn can be used to implement
arbitrary applications as shown in [KKL07]. Using the events in a process model it is
possible to react on state changes in the current process instance.

Patterns for evaluating event specification languages are presented in [BDG07]. In this
report, we do not propose a new event definition language, but show how events can be
used to drive control-flow of a process.

3.1 Data Stream Processing

There exist many systems on the market for handling data streams. All of the following
systems could be used for realizing the example scenarios and for the processing of
complex events:

• Aurora (Brandeis University, Brown University and MIT)

• Borealis (Brandeis University, Brown University and MIT)

• STREAM (Stanford University)

• Telegraph (UC Berkeley)

• SASE (UC Berkeley/UMass Amherst)

The disadvantage in using such a data stream system is that process control flow is
scattered around the whole data steam processing system. That means that each services
in the process chain knows themselves to which service they have to pass their output
data to. This is the complete opposite of the idea of service-oriented business processes,
where the process coordinates the services and the services themselves are “dumb” and do

Events Make Workflows Really Useful 7

not know anything about the control flow. This has the advantage of central monitoring,
execution control of the ongoing processes.

3.2 Process Modeling

3.2.1 EPC

To execute an EPC model on a workflow machine, there are two general ways: (i) give
the EPC an execution semantics or (ii) define a mapping to a workflow language with
an execution semantics.

The inherent problem of giving a semantics to an EPC is the OR-join: it is hard to
decide how long an OR-join should block the control flow. It is especially hard in
processes containing cycles [ADK02, Kin06]. Most discussions debate whether this
should be resolved through local knowledge, i.e. by introducing additional arcs in the
model or “negative control tokens” that make it possible to unblock and evaluate the
join condition when it is clear that no more tokens can arrive. On the other hand,
execution engines have been proposed that decide—by looking at the global state of
the process—if a join can be unblocked since no more tokens will arrive on the input
arcs. An extensive presentation and comparison of the proposed semantics can be found
in [Men07,MA07,AH05,Weh07,WEAH05].

By mapping the EPC to a workflow language with a defined execution semantics, the
EPC is also given an execution semantics: the semantics of the workflow language used.
The Web Services Business Process Execution Language (BPEL, [OAS07]) is the current
de-facto standard for workflow execution. Thus, the current approach in SOEDA is to
map EPCs to BPEL.

3.2.2 BPMN

The Business Process Modeling Notation (BPMN, [Obj08]) is a graphical notation to
model business processes. It exists in parallel to the EPC notation, but offers different
control flow constructs. In [DGB07] the Business Event Modeling Notation (BEMN)
is introduced. It is a language to specify events using a graphical notation inspired by
BPMN. However, the link to an event infrastructure is not given.

3.2.3 BPEL

A BPEL workflow defines an orchestration of Web services and consists of structured
and basic activities. The actual business functions are not implemented by BPEL itself,

8 Events Make Workflows Really Useful

but by Web services, where the business data is sent to and received from using messages
(events are represented as messages too). Hence, the most important basic activities
are invoke and receive. An invoke activity is used to send a message to a Web service.
A receive activity is used to receive a message. The structured activity pick realizes
a one-out-of-m choice of messages to receive: the first arrived message wins and the
other messages are ignored at that activity. Control flow itself is either modeled block-
structured using if and sequence activities or using graph-based constructs realized
by the flow activity. In a flow activity, activities are connected using links. Each link
carries a transition condition. If the transition condition evaluates to true, the link
status is true and false in the other case. Each activity carries a join condition. As
soon as the status of all incoming links is clear, the join condition is evaluated. If it
evaluates to true, the activity is executed and subsequently the transition conditions
of all outgoing links evaluated. If the join condition evaluates to false, the activity is
skipped and the status of all outgoing links is set to false. In all cases, the successors
are visited. This behavior is called “Dead-path Elimination”, which is formally defined
in [LR00], specified for BPEL in [OAS07] and explained in detail in [CKLW03].

A BPEL process does not need to be executable by itself. The BPEL specification
offers to model abstract processes, which may hide operational details. So called opaque
activities can be used to model left-out behavior. Each abstract process is assigned to
an abstract process profile. There are two abstract process profiles defined in the BPEL
specification: one for specifying observable behavior and one for specifying templates.
The allowed changes to go from an abstract BPEL process to an executable BPEL
process are described by the so called executable completion. For example, new activities
may only be added at marked places in the control flow and not anywhere in the process.

3.3 Transformation of EPC to BPEL

In [MLZ08], different transformation strategies to transform EPCs to BPEL are presented.
The presented transformations consider start events, functions, connectors and end events
only. The transformations only distinguishes between empty, terminate and other basic
activities. An empty activity does nothing by itself and the terminate activity terminates
the whole process regardless of any activities running in parallel. In all transformations
following properties hold: Intermediate events are ignored. Each start event is mapped
to a general basic activity, end events are mapped to a terminate activity. Functions
are mapped to general basic activities. The different transformation strategies differ in
the transformation of connectors. In the strategy “Element-Preservation”, each element
of the EPC is mapped to a BPEL element: Connectors get empty activities and the
control-flow edges are mapped to control links. As pre-condition, the input EPC has to
be acyclic. In the strategy “Element-Minimization”, the joining and split behavior of
connectors is put in the respective preceding or subsequent function. Thus, the number

Events Make Workflows Really Useful 9

of activities is reduced, but the join and split behavior is preserved. In the strategy
“Structure-Identification”, the structures if, sequence, while and parallel (modeled by
a flow activity without any links) are identified. As pre-condition, the input EPC has
to be structured as defined in [KHB00]. In the strategy “Structure-Maximization”,
as much as possible structured are identified. If that is not possible, the remaining
control-flow connectors are transformed to control links. The input EPC may only have
loops with one entry and one exit. In the strategy “Event-Condition-Action-Rules”,
arbitrary EPCs are transformed: first, as much as possible structured are identified. If
that is not possible, event-condition-action rules (ECA rules) are applied as presented
in [ODBH06].

A taxonomy for model transformations is provided in [MG06]. The most important
criteria is the distinction between horizontal and vertical transformation. In a horizontal
transformation, the model is transformed to another model on the same abstraction level.
In a vertical transformation, the target model resides on a different level of abstraction.
In general, transformations of unmarked EPCs are horizontal transformations, whereas
transformations of marked EPCs are vertical transformations [SKI08]. A general overview
of all available transformations from EPCs to BPEL and their classification using the
taxonomy of [MG06] is given in [SKI08].

The transformation implemented in the ARIS SOA Designer follows the “Structure-
Identification” strategy [SI07]. Functions are transformed to invoke activities. Inter-
mediate events are dropped. A single start event is mapped to a receive. If there are
multiple start events, they are mapped depending on the subsequent connector c: If c is
of type and, the start events are mapped to receive activities nested in a flow. If c is
of type xor, the start events are mapped to a pick activity. Connector type or is not
supported. End events are transformed to invoke activities.

The work of [VVK08] applies the “Structure-Maximization” strategy to graphs with
nodes and edges. The main characteristic of the algorithm is that a local change of the
graph also leads to a local change in the resulting BPEL process. Since the source meta
model is different from EPCs and does not distinguish functions and events, the mapping
does not deal with events. The work presented in [ODBH06] presents a mapping of
BPMN to BPEL. It follows the “Event-Condition-Action-Rules” strategy. The works
of [VVL08] and [VVK08] present how to detect single-entry-single-exit (SESE) fragments
in a business process and how to form a process structure tree out of this information.
The work of [GB08] extends the work and presents a technique for determining the
type of a SESE region. Sample types of a SESE region are among others “sequence” or
“repeat-until”. Using the work of [VVK08] and [GB08] together, each arbitrary graph
can be decomposed into SESE regions annotated with their type.

In [ZM05], the transformation from EPCs to BPEL is based on the Element-Preservation
strategy, but does not ignore intermediate events. The work distinguishes between
data-based XOR-splits and event-based XOR-splits. If a XOR-split is data-based, the

10 Events Make Workflows Really Useful

each subsequent event is transformed to a transition conditions on the respective link. If
a XOR-split is event-based, the split is transformed to a pick activity, having each event
as one branch. For OR-splits, they only support data-based splits. In summary, they
explicitly distinguish between data-based events and incoming events: data-based events
are triggered by a change of process-internal data. If a function has changed something
externally, an event happened which in turn triggered the incoming event.

In contrast to other approaches, both [ZM05] and [KUL06] generated BPEL processes
capturing more information than the control-flow of the input EPC: variables, partner
links and operations are also generated. However, the generated processes still do not
contain enough information to be fully executable: they are still abstract (and not
executable) BPEL processes.

The work presented in [LLSG08] focuses on user-interface generation out of processes
described in EPCs. Functions of EPCs are marked with a type to distinguish between
functions executed by Web services and functions executed by humans. Each function can
be decomposed into a sub-process modeled by an EPC again. Out of a EPC describing
human tasks only, a user-interface is generated. The start and end events are used to
trigger the display of the UI and to signal the finish of the task. The synchronization
with the main process is done by a server emitting and receiving these events. The EPC
itself is also executed by this server. To model asynchronous communication, markers
are introduced to distinguish Web service reception, UI events and other EPC events.
The work leaves open how these Web service events are produced. Furthermore, it is
not described how the server deals with “other EPC events”.

Handling unstructured loops is an important aspect when transforming business processes.
In [ZHB+06] it is shown how arbitrary cycles can be transformed to structured cycles
“with controlled code complexity” without applying ECA rules. Current transformation
approaches do not use this idea, but use Event-Condition-Action-Rules to transform
unstructured loops into BPEL.

4 Scenarios and Use-Cases

Throughout the report following two very contrary scenarios are used. The first scenario
is from one of the main fields of application of EPCs: order processing. Fig. 2 shows an
excerpt of the order processing EPC presented in [STA05].

The second scenario comes from pervasive environments. Here many sensors and actors
are deployed in the environment and can be accessed for observing or manipulating the
state of the environment. Sensors produce big amount of data (in form of data streams)
due to their sampling rate and their quantity. Fig. 3 shows as examples what can be done
with that kind of sensor data three simple processes controlling the room temperature

Events Make Workflows Really Useful 11

Item CompletedManufacture ItemManufacturing
Plan Completed

(Supplier)
Order Processed

Figure 2: Detailed excerpt of the business process “order processing” [STA05]

Average
Temperature
AboveLimit

(> 30°)

Average
Temperature

> 17°

Start Maintenance
Process

Average
Temperature
Below Limit

(< 10°)

Average
Temperature

> 25°

Average
Temperature

< 17°

Start Cooling Start Heating

Average
Temperature

< 25°

Stop Cooling Stop Heating

Temperarture
Still Exeeds
Prescriptive

Limits

Cooling Process Heating Process Maintenance Process

Heating Turned
Off

Air Conditioning
System Turned

Off

XOR

Maintenance
Successfully
Completed

XOR

XOR

Figure 3: Exemplary temperature control processes based on sensor observation

to keep it between optimal values. With normal workflow systems such control loops
systems cannot be managed due to the amount of messages per second and the data
stream handling possibilities. Using the concepts described in this report BPM is enabled
to manage also processes like these. The stream handling and message reduction is done
by complex event processing and so the workflow system can concentrate on handling
the control flow and only receives single process relevant messages. The example shown
here is of course not of practical use, it is only a simple example that would be realized in
practice with a normal climate control unit. However for example in business processes
the cold chain could be observed in order to meet rules defined for the handling of food
or a production could be observed for quality prediction of the produced products.

12 Events Make Workflows Really Useful

4.1 Modeling Use-Cases

The EPC specification can be applied in following two different use-cases. The first
use-case is valid for newly modeled processes. The second one can be applied if already
a lot processes are modeled based on the methodology presented in that report.

1. The standard use-case: A domain expert describes the processes he wants to
implement as EPCs. Then using that EPCs the complex events needed for the
process execution are derived from the EPC events. How the complex events are
observed has to be implemented by an IT expert.

2. The second use-case builds up on the first. If already many EPCs have been defined
in an company there exist as direct consequence a lot of complex event definitions.
That definitions can be collected in an repository and then if the domain expert
is modeling an new process he can use that already existing definitions. Which
means that the modeling of new processes is done as follows: When the domain
expert needs an event in his EPC he searches in the event-repository if already an
event is defined for that purpose and than uses that event in the process. That
has the advantage that the processes are waved together through the events. For
example the order processing EPC has the last event “item completed”. Now the
process modeler wants to specify the item shipping then he can use the “item
completed” event as start event of the new process. Furthermore in the shipping
process the temperature observation can be reused e.g. for monitoring of a cooling
chain. In this case only the values of the average temperature have to be changed
in the event definitions. All other work can be reused.

5 Concept of Mapping Specification to Execution

Artifacts

The goal of the concept is to provide a automatic transformation from the EPC specifi-
cation to the needed artifacts for execution. The EPC models are usually not detailed
enough for a direct execution. Because of that EPC modeling is called semantic business
process modeling. The execution details are not modeled for purpose that the processes
are better understandable. They are used mainly for discussion between people with
is comparable to the specification of an software system. Therefore, the automatic
transformation cannot produce directly executable artifacts. The artifacts have to be
refined later by an IT-expert for execution.

For the explanation, we have to define the syntax of EPCs, BPEL and complex events.
Definition 1 presents the syntax of EPCs. The definition is based on [Kin06]. We extended

Events Make Workflows Really Useful 13

E
xe

cu
ta

bl
e

pr
oc

es
s

m
od

el
s

S
ys

te
m

-
ge

ne
ra

te
d

pr
oc

es
s

m
od

el
s

S
em

an
tic

pr

oc
es

s
m

od
el

lin
g

EPC Diagram

Event definitionsAbstract BPEL Flow

Executable BPEL CEP Esper Querys

Event
names

Function
flow

Wiring ToolTransformation
Patterns

Adding execution information to BPEL flow Mapping of event definitions to Esper Querys

au
to

m
at

ic

ge
ne

ra
tio

n
do

ne
 b

y
IT

 e
xp

er
t

Modelled by Domain expert

Figure 4: System overview

the labeling function ι to also label the events and functions. Formal definitions of the
properties of EPCs have been omitted and can be found in [Kin06].

Definition 1: EPC Syntax
An EPC M is a tuple (EEPC , FEPC , CEPC , AEPC ,Σ, ι) having following properties:

• EEPC denotes the set of events.
• FEPC denotes the set of functions.
• CEPC denotes the set of connectors.
• The sets EEPC , FEPC and CEPC are disjoint.
• AEPC ⊂ (EEPC ∪ FEPC ∪ CEPC) × (EEPC ∪ FEPC ∪ CEPC) is a binary relation

denoting the control flow arcs connecting the events, functions and connectors.
• (EEPC ∪ FEPC ∪CEPC , AEPC) forms a graph which at least one source and at least

one sink. A source is a node without incoming arcs and a sink is a node without
outgoing arcs.
• There is no control flow cycle consisting of connector nodes only.
• All events have at most one incoming and one outgoing control flow arc.
• All functions have to take one incoming and one outgoing control flow arc.
• Functions and events have to alternate.
• Σ denotes a set of labels.
• ι : (EEPC ∪FEPC ∪CEPC)→ {and , or , xor}∪Σ is the labeling function. A label of a

connector is either and, or or xor. A label of an event or a function is an element
out of Σ. A connector labeled with and having more than one outgoing control
flow arc is called AND-split. A connector labeled with or having more than one
outgoing control flow arc is called OR-split. A connector labeled with xor having
more than one outgoing control flow arc is called XOR-split. A connector labeled

14 Events Make Workflows Really Useful

with and having more than one incoming control flow arc is called AND-join. A
connector labeled with or having more than one incoming control flow arc is called
OR-join. A connector labeled with xor having more than one incoming control flow
arc is called XOR-join.

The BPEL specification specifies the serialization format of a BPEL process as well as
the semantics of this serialization. The serialization is block-structured, but BPEL itself
offers both, block-structured and graph-based specification of workflows [KMWL08]. A
complete abstract syntax for BPEL is provided in [KML08]. Since the transformation
maps to a subset of the BPEL syntax, we present this subset in Definition 2. Besides
formalizing the required activities only, the simplified BPEL syntax skips the declaration
of variables, operations and port types.

Definition 2: Simplified BPEL Syntax
A BPEL workflow B is a tuple (A, typeA, N , nameA, E , HR, L, tc, LR, jc, assignCopy,
V , outputVar, PL, partnerLinkCO, O, nameO, operationCO) having following properties:

• A denotes the set of all activities.
• The function typeA : A → {scope,flow ,while, repeatUntil , pick , receive,empty ,assign,

opaqueActivity} assigns a type to an activity.
• For simplicity, At denotes all activities of type t. For example, Aempty contains all

activities a ∈ A, where typeA(a) = empty.
• N denotes the set of all NCNames.
• The function nameA : A → N assigns a name to an activity.
• E denotes the set of message events. A message event is used to denote the

incoming message for each branch of a pick activity.
• COreceiving = Areceive ∪ E is the set of all constructs for receiving messages. These

are invoke-activities, receive activities and onMessage constructs. onMessage

constructs are children of pick activities.
• COmessage = COreceiving∪Ainvoke is the set of all constructs for sending and receiving

messages.
• The nesting of the activities is denoted by the hierarchy relation HR ⊆ A× (E ∪
{⊥})×A. (a1, x, a2) denotes that a1 is connected to a2 by the label x. In case of
branches of a pick activity, an event out of E is used as label. Hence, x denotes
the received message. In case of a flow, the empty label (⊥) is used.
• The set L is the set of links. A link is used in a flow activity to define the control

flow graph.
• The set of C is the set of all expressions returning a Boolean value.
• The function tc : L → C ∪ {⊥} assigns a transition condition to a link. ⊥ denotes

the default transition condition true.
• The relation LR ⊆ A × L × A denotes the link relation including the transition

condition.

Events Make Workflows Really Useful 15

• The function jc : A → Ex∪{⊥} assigns a join condition to an activity. ⊥ denotes
the default join condition, which is a logical OR over all incoming links.
• The function assignCopy : Aassign → Ex assigns an assignment expressions to an

assign activity. This is a simplification of the whole capabilities of BPEL’s assign

activity, which can contain multiple copy statements and other types of assignment.
Ex denotes the set of all expressions. We use an E4X-based syntax. E4X provides
XML processing for JavaScript [Ecm05].
• V denotes the set of all variables
• The function outputVar : COreceiving → V assigns an output variable to a receiving

construct.
• PL denotes the set of partner links. A partner link is used to establish the relation

between a BPEL process and the partner Web service. In the case of the receive

activity, the partner link is used to denote the WSDL port type to be used to receive
the message
• The function partnerLinkCO : COmessage → PL is a function assigning a partner

link to a message construct.
• The set O is the set of WSDL operations.
• The function nameO : O → N assigns a name to an operation.
• The function operationCO : COmessage → O assigns an operation to a message

construct.

Definition 3: Event Sets
• Set of complex event names CEN consists of all names of complex events available

in the system. They are identical to the names of the EPC events.
• Set of complex event definitions CED consists of descriptions for the deduction of

all complex events out of event adapters and conditions.
• Set of complex event queries CEQ(Esper) contains concrete implementations of

all ced ∈ CED for a specific complex event processing system, e.g. Esper.
• Set of event sources ES contains all sensors or other data producers of raw source

events.
• Set of event adapters EA contains all services that make the event sources technically

accessible. An event adapter ea ∈ EA is similar to a web-service that is the other
way round which means it produced output only. Is used for getting messages from
an event source awaited by the receive of a BPEL flow.

The complete methodology how to map the specification to the execution artifacts is
presented in Fig. 4. Following subsections describe each step of the methodology in
detail. The first and second step have to be done in sequential order. The third and
fourth step can be done in parallel. The fifth and last step can be done after all other
steps have been finished.

16 Events Make Workflows Really Useful

5.1 Step 1: Process Definition

The first step is the creation of the EPC specification by the domain experts. We
propose EPC as high level process definition language in that case because it provides
events as a integral part. That has the big advantage in contrast to other modeling
languages like for example BPMN that a alternation between event based processing
and workflow based control flow is prescribed by the process model. Of course the EPC
process definitions are not executable as workflows directly because they require a lot of
refinement for that. In a very short summary all the EPCs have to specify is the control
flow between called services (EPC functions) and how to observe when the functions are
completed or new environmental states appear that have to be treated (EPC events).

5.2 Step 2: Complex Event Extraction

The second step is the extraction of all event names from the EPC specification. That
event names are inserted as complex event expression names to CEN , CEN=EEPC .
That events are the complex events that have to be deducted from the available event
sources. Also that events are the only events the process has to be notified of later in
the execution phase.

5.3 Step 3: Mapping Process Definition to Workflow Template

The third step is the automatic EPC function flow to abstract BPEL flow transformation.
The algorithm and patterns needed for that are described in Section 5.3.1.

The basic transformation idea is that EPC functions are mapped to opaque activities2

in BPEL and are later possibly refined to invoke activities calling the specified EPC
modules. The EPC events are mapped to BPEL receive activities that wait for messages
notifying the occurrence of the specific event.

An main goal of that transformation is that both flows have a similar structure to enable
domain expert understand the the executed workflows due to the similarity to the EPC
they modeled as specification. This allows business activity monitoring to be done
without additional efforts directly in the BPEL flow. To achieve that goal, we follow the
“Element-Preservation” strategy [MLZ08]. The difference of our transformation to the
presented strategy is the treatment of events: Instead of ignoring events, we map EPC
events to message receiving constructs. Functions are mapped to opaque activities. Each

2The BPEL activity representing an opaque activity is named opaqueActivty. While writing
“opaqueActivity activity” is consistent to write “invoke activity”, we prefer to write “opaque activity”
to increase readability.

Events Make Workflows Really Useful 17

f1

XOR

XOR

XOR

Sequence
Pick

Repeat-
Until

e2e1

e4e3

Figure 5: Process Structure Tree of the Maintenance Process

opaque activity has to manually be refined in the executable completion. The message
receiving constructs are directly executable.

5.3.1 Transformation Algorithm

Graphs are enforced to be acyclic in BPEL workflows. To express loops, the repeatUntil

and while activities are offered. In addition, a choice between multiple incoming messages
has to be modeled by a pick activity. In contrast to a BPEL workflow, an EPCs is allowed
to be a cyclic graph. To map EPCs to BPEL workflows, we keep the original graph
structure as much as possible in the resulting BPEL workflow. To detect the structures
which have to be mapped to the block-structures offered by BPEL, we combine the
techniques presented in [VVK08] and [GB08]. [VVK08] presents a technique to identify
the structure of a graph, called “Process Structure Tree” (PST). The structures of the
tree can be classified as types such as repeat-until-loop by using the technique presented
in [GB08]. Fig. 5 presents the process structure tree for the maintenance process. In
the case a structure cannot directly be expressed using BPEL constructs, we map this
structure into an opaque activity. We use transformation patterns to transform identified
structures. A transformation pattern consists of the source EPC structure and target
BPEL structure.

The general idea is presented in Fig. 6: the function is transformed to an opaque activity
and the event is transformed to a receive. Note that functions such as typeA are

18 Events Make Workflows Really Useful

Function
f1

Event e1 A = fprocess; °ow; f1; e1g
typeA = f(f1; opaqueActivity); (e1; receive);

(process; scope); (°ow;mathitflow)g
N = fFunctionF1g
nameA = f(f1;FunctionF1)g
HR = f(process;?; °ow);

(°ow;?; f1); (°ow;?; e1)g
L = fl1g

A = fprocess; °ow; f1; e1g
typeA = f(f1; opaqueActivity); (e1; receive);

(process; scope); (°ow;mathitflow)g
N = fFunctionF1g
nameA = f(f1;FunctionF1)g
HR = f(process;?; °ow);

(°ow;?; f1); (°ow;?; e1)g
L = fl1g

BPEL work°ow B =
(A; typeA;N ; nameA; ;; HR;L; tc; LR; ;; ;;V ; outputVar;
PL; partnerLinkCO;O; nameO; operationCO)

BPEL work°ow B =
(A; typeA;N ; nameA; ;; HR;L; tc; LR; ;; ;;V ; outputVar;
PL; partnerLinkCO;O; nameO; operationCO)

tc = f(l1;?)g
LR = f(f1; l1; e1)g
V = fEvent1g
outputVar = (e1;Event1)
PL = fEventsPLTg
partnerLinkCO = f(e1; EventsPLT)g
O = fEventE1g
nameO = f(EventE1 ;EventE1)g
operationCO = f(e1;EventE1)g

tc = f(l1;?)g
LR = f(f1; l1; e1)g
V = fEvent1g
outputVar = (e1;Event1)
PL = fEventsPLTg
partnerLinkCO = f(e1; EventsPLT)g
O = fEventE1g
nameO = f(EventE1 ;EventE1)g
operationCO = f(e1;EventE1)g

Figure 6: General idea of the transformation. The syntax of BPEL is expressed in using
the simplified BPEL syntax

represented as a relation. The opaque activity and the event are connected using a link
l1, which takes no transition condition (tc(l1) = ⊥). The name of the link is made unique
throughout the BPEL process. The name of the BPEL opaque activity is the camel case
version of the name of the EPC function (nameA(a) = camelCase(ι(f))). The receive

does not get a name assigned. The name of the partner link is always EventsPLT. The
name of the operation is the camel case version of the event (nameO(o) = camelCase(ι(e))).
The name of the output variable is Event<i>, where <i> is replaced by an unique number
(operationCO(v) = uniqueEventVariableName(U)). In the case, onMessage branches of pick
activities are generated, the partnerLink, operation and variable fields are generated
the same way as in the case of the receive activity.

In the following, we present the transformation patterns used to transform the EPC. In
case a structure cannot be mapped by a pattern, the structure is collapsed to an opaque

activity, which has to be defined manually after the mapping.

Fig. 7 presents the transformation for the most likely case of one start event. The start
event is mapped to a receive activity. Fig. 8 presents the transformation of multiple
start events which are joined via an AND join. The semantics of that fragment is that all
of the events have to occur. Therefore, we map each event to a receive activity without
any incoming links. Thus, the receives are executed concurrently. Fig. 9 presents the
transformation of multiple start events which are joined via an XOR join. The semantics
of that fragment is that one of the events have to occur. Thus, we map that fragment
to a pick activity, where each event is put as one onMessage branch. Each onMessage

branch contains one empty activity which is connected to an empty activity. That empty

activity is the mapped XOR connector and contains the mapped outgoing control-flow
arcs of the XOR connector.

Regarding the mapping of intermediate events, we demand that they are immediately
preceded by a function, an AND split or a XOR split. If an event is preceded by a

Events Make Workflows Really Useful 19

<receive partnerLink="EventsPL"

 operation="EventE1" variable="Event1" >

 <sources><source linkName="l"/></sources>

</receive>

<opaqueActivity name="FunctionF1">

 <targets><target linkName="l"/></targets>

</invoke>
Function f1

Event e1

Figure 7: Mapping of a single start event

 <receive partnerLink="EventsPL"

 operation="EventE1" variable="Event1">

 <sources><source linkName="l1"/></sources>

 </receive>

 ...

 <receive partnerLink="EventsPL"

 operation="EventEn" variable="Eventn">

 <sources><source linkName="ln"/></sources>

 </receive>

 <empty>

 <sources>

 <source linkName="li">

 ...

 <source linkName="lk">

 </sources>

 </empty>

...

li lk
...

l1 ln

Event e1 Event en

V

Figure 8: Mapping of multiple start events

<pick>

 <sources><source linkName="l"/></sources>

 <onMessage partnerLink="EventsPL"

 operation="EventE1" variable="Event1">

 <empty />

 </onMessage>

 ...

 <onMessage artnerLink="EventsPL"

 operation="EventEn" variable="Eventn">

 <empty />

 </onMessage>

</pick>

<empty>

 <targets><target name="l" /></targets>

 <sources>

 <source linkName="li">

 ...

 <source linkName="lk">

 </sources>

</empty>

...

li lk
...

l1 ln

Event e1 Event en

XOR

Figure 9: Mapping of exclusive start events

20 Events Make Workflows Really Useful

Function
f1

Event e1 A = fprocess; °ow; f1; e1g
typeA = f(f1; opaqueActivity); (e1; receive);

(process; scope); (°ow;mathitflow)g
N = fFunctionF1g
nameA = f(f1;FunctionF1)g
HR = f(process;?; °ow);

(°ow;?; f1); (°ow;?; e1)g
L = fl1g

A = fprocess; °ow; f1; e1g
typeA = f(f1; opaqueActivity); (e1; receive);

(process; scope); (°ow;mathitflow)g
N = fFunctionF1g
nameA = f(f1;FunctionF1)g
HR = f(process;?; °ow);

(°ow;?; f1); (°ow;?; e1)g
L = fl1g

BPEL work°ow B =
(A; typeA;N ; nameA; ;; HR;L; tc; LR; ;; ;;V ; outputVar;
PL; partnerLinkCO;O; nameO; operationCO)

BPEL work°ow B =
(A; typeA;N ; nameA; ;; HR;L; tc; LR; ;; ;;V ; outputVar;
PL; partnerLinkCO;O; nameO; operationCO)

tc = f(l1;?)g
LR = f(f1; l1; e1)g
V = fEvent1g
outputVar = (e1;Event1)
PL = fEventsPLTg
partnerLinkCO = f(e1; EventsPLT)g
O = fEventE1g
nameO = f(EventE1 ;EventE1)g
operationCO = f(e1;EventE1)g

tc = f(l1;?)g
LR = f(f1; l1; e1)g
V = fEvent1g
outputVar = (e1;Event1)
PL = fEventsPLTg
partnerLinkCO = f(e1; EventsPLT)g
O = fEventE1g
nameO = f(EventE1 ;EventE1)g
operationCO = f(e1;EventE1)g

Figure 10: Mapping of an event preceded by a function

<empty name="AND">

 <sources>

 <source linkName="li">

 ...

 <source linkName="lk">

 </sources>

</empty>

<receive partnerLink="EventsPL"

 operation="EventE1" variable="Event1">

 <targets><target linkName="li"></targets>

 <sources><source linkName="l1"/></sources>

</receive>

...

<receive partnerLink="EventsPL"

 operation="EventEn" variable="Eventn">

 <targets><target linkName="lk"></targets>

 <sources><source linkName="ln"/></sources>

</receive>

...

...l1 ln

li lk...

Event e1 Event en

V

Figure 11: Mapping of an event preceded by an AND split

single function, the event is transformed to a receive activity as shown in Fig. 10. If
the events are preceded by an AND split, the fragment is transformed as shown in
Fig. 11: the AND is transformed to an empty activity, the events are transformed to
receive activities and connected via links. If the events are preceded by an XOR split,
the fragment is transformed to a pick activity as shown in Fig. 12: each event gets
an onMessage branch in the pick activity. Each onMessage branch consists of an empty

activity, where the outgoing links of the respective events are connected to.

Repeat-until loops are transformed as shown in Fig. 13. To indicate whether the loop
has to be run, the indicator variable doRepeatUntilLoop1 is used. Three types of loop
events are distinguished: (i) the loop event, (ii) events without successors and (iii) events
with successors. Since these events are mutually exclusive, they can be catched in one
pick activity. If the event is the loop event, the indicator variable is set to true. If the

Events Make Workflows Really Useful 21

 <pick>

 <onMessage partnerLink="EventsPLT" operation="EventE1"

 variable="EventN">

 <empty>

 <sources><source linkName="l1"/></sources>

 </empty>

 </onMessage>

 ...

 <onMessage partnerLink="EventsPLT" operation="EventEn"

 variable="EventN’">
 <empty>

 <sources><source linkName="ln"/></sources>

 </empty>

 </onMessage>

 </pick>

...

...l1 ln

li lk...

Event e1 Event en

XOR

Figure 12: Mapping of exclusive events

<repeatUntil> <targets><target name="l1"/></targets>

 <sources>

 <source name="lk" transitionCondition="EventEiHappened" />

…
 </sources>

 <sequence>

…mapping of sub-structure 1…
 <pick>

 <onMessage partnerLink="EventsPLT" operation="EventEL" variable="EventL">

 <assign>doRepeatUntil = true</assign>

 </onMessage>

 <onMessage partnerLink="EventsPLT" operation="EventEi" variable="Event1">

 <assign>doRepeatUntil1 = false; EventEiHappend=true</assign>

 </onMessage>

…
 <onMessage partnerLink="EventsPLT" operation="EventEn" variable="Eventn">

 <assign>doRepeatUntil1 = false</assign>

 </onMessage> </pick> </sequence>

 <condition>doRepeatUntil1</condition> </repeatUntil>

Event eL

XOR

Sub-
Structure 1

...Event ei Event ej

XOR
li lj

lk ll

... Event enEvent em

lnlm

Sub-
Structure 2

Sub-
Structure 3

l1

Figure 13: Mapping of a repeat-until loop

event is an event is an event without successors, the indicator variable is set to false. If
the event is an event is an event with successors, the indicator variable is set to false

and a Boolean variable is set to true. This variable is used as transition condition on
the link connecting the repeatUntil with the mapped sub-structure belonging to the
event.

Fig. 14 presents how a while loop is mapped. The transformation idea is the same as for
repeat-until loops: the loop events are catched by a single pick activity. The difference
to the repeat-until transformation is the placement of the pick activity. We do not want
to duplicate code. Therefore, the looping variable is set to true and the first activity in
the while loop is the pick activity. Here, the decision whether the loop should really
run or the loop should be exited is taken. The subsequent activity is an if activity
checking whether the loop body should be run. The concrete loop body is nested in that
if activity.

22 Events Make Workflows Really Useful

<while>

 <targets><target linkName="l1"/></targets>

 <sources>

 <source name="lk" transitionCondition="EventEiHappened" />

 ...

 </sources>

 <condition>doWhile1</condition>

 <sequence>

 <pick>

 <onMessage partnerLink="EventsPLT" operation="EventEL" variable="EventL">

 <assign>

 doWhile1 = true

 </assign>

 </onMessage>

 <onMessage partnerLink="EventsPLT" operation="EventEi" variable="Event1">

 <assign>doWhile1 = false; EventEiHappend=true</assign>

 </onMessage>

 ...

 <onMessage partnerLink="EventsPLT" operation="EventEn" variable="Eventn">

 <assign>doWhile1 = false</assign>

 </onMessage>

 </pick>

 <if>

 <condition>doWhile1</condition>

…mapping of sub-structure 1…
 </if>

 </sequence>

</while>

Event eL

...Event ei Event ej

XOR
li lj

lk ll

... Event enEvent em

lnlm

Sub-
Structure 2

Sub-
Structure 3

Sub-
Structure 1

Sub-
Structure 1

l1

Figure 14: Mapping of a while loop

Sub-Structure 1

Sub-Structure 2

Sequence
 <flow>

 <links><link name="l1"/></links>

 <sub-structure1>
 <sources><source name="l1"/></sources>

...mapping of first sub-structure...

 </sub-structure1>

 <sub-structure2>
 <targets><target name="l1"/></targets>

...mapping of second sub-structure...
 </sub-structure2>
 </flow>

l1

Figure 15: Transformation of a sequence

The transformation of sequences is presented in Fig. 15: the sub-structures in a sequence
are connected using links carrying the default transition condition true.

If an event is used by a transformation pattern, the mapping of that event is defined
by that pattern. For example, this is the case at the event “Maintenance Successfully
Completed” in the maintenance process. That event is transformed by the repeat-until
pattern and not any other pattern. To ensure correct processing order, the process
structure tree is processed from the leaves to the source and each element of the EPC is
marked whether it has been transformed.

Events Make Workflows Really Useful 23

Complex Events
(CEn)

Event
Sources (Es)

OP

Es,1

Es,2

CEn,1

CEn2

condition

condition

condition

Es,3
condition

CED,1

CED,2

Figure 16: Wiring of Source-Events to Complex-Events

5.4 Step 4: Specify the Complex Event Processing Rules

The fourth step is the wiring between the low level event sources and all complex events
with an wiring tool or other existing supporting software. This software writes out the
event definitions CED which are the names and the dependencies to the event sources
for evaluation.

Wiring of source-events to complex events, i.e. the specification of the rules how com-
plex events are created, is defined using a dedicated event wiring tool. The resulting
specification is targeted to communicate these complex event generation rules to the
actual developer who implements code for the event system that aggregates basic events
to the complex events with the specified semantics.

Fig. 16 shows an example of how the graphical wiring for the complex event “Aver-
ageTemperatureAboveLimit” may look like. Generally, the event definition is always a
tree with the complex event as the root node and the source events or other complex
events as leave nodes. Intermediary nodes are operators. Up to now a language such as
BEMN [DGB07] could be used. However, the event wiring tool also has to specify how
correlation is initiated in the case of a start event and how events and process instances
are correlated using e.g. a correlation ID.

Please note that it is not necessary to have a dedicated modelling tool at hand in order to
be able to carry out this task. Any graphical modelling tool that is able to draw simple
graphs and annotate them with textual description suffices. Since natural language is
used for the definition of all CED:

1. Each ES needs to be identified, i.e. it must be clear which actual source of events
(a sensor for instance) should be used.

24 Events Make Workflows Really Useful

2. Each arc has to denote a condition that is used to filter events flowing through.

3. OP may be any kind of functionality, e.g. a logical operator or set operation that
performs actions on all incoming events.

4. Each complex event CEN therefore is specified through basic events and a combi-
nation of operators. All information necessary to deduct the complex event must
be included.

5.5 Step 5: Make Executable

The last and fifth step is a technical step. This step is done by IT experts and only adds
technical execution information. On the one hand an IT-expert has to map all CED

definitions to queries for the used CEP system for execution CEQ. Also event adapters
EA for all needed event sources ES have to be provided (installed or implemented). On
the other hand the generated BPEL flow is abstract that means it cannot be executed
directly. The missing execution information and refinements needed for execution have
to be added by the IT-exert. For example variables and assigns for the process internal
data flow and also selecting the web service interfaces (WSDL) that should be used in
the invokes activities. That runtime aspects are described in detail in the following.

The information as provided until now is not enough for the whole system to be
automatically executed. In this section, we therefore list each area where information is
missing and propose ways to fill the gap towards a fully machine executable system. We
start by looking at the event sources and discuss the missing pieces of the systems that
process them on their way to the final destination, the business process.

Modify Event Sources In order to be able to be notified of state changes in the
environment, various resources need to be able to communicate source events to
the event engine that processes and aggregates them to complex events via rules.
Event sources include, amongst others:

• Sensors of any kind that report state changes in either a continuous stream
of events (like a temperature sensor) or single event per state change

• Triggers in a database system, e.g. when data was modified or inserted

• Human interaction with systems, e.g. pressing a button or editing an electronic
form

• State changes in application programs such as Electronic Resource Planning
(ERP) or Electronic Manufacturing Systems (EMS).

• The process engine itself that is running the business processes in a factory.
Events include state changes in the lifecycle of activities, start and completions

Events Make Workflows Really Useful 25

of processes, etc.

All of those sources need to be modified or adapted in such a way that they emit
their information in a canonical and standardized format. While this may sound
like a tremendous amount of work, much is done already in this direction through
the availability of Common Base Events (CBE) [Bri04] and similar standards.
Furthermore, a generic adapter to industrial standards such as CAN / CANOpen3

can solves this problem in a generic way, so that sensors itself do not even have to
be touched at all. Moreover, large industrial infrastructures building upon those
bus systems are transformed into event sources using a single adapter.

Map source events to complex events In Step 4 (Section 5.4) we proposed a simple
graphical language to aggregate source events to complex events using various
operators. For this step however we do not enforce the use of a particular graphical
language. The only requirement we have is that the graphical representation can
be transformed to rules understood by the event engine, so that complex events
according to the graphical specification are generated.

This step might as well use another graphical event definition language such as
the one proposed in [DGB07] or even the graphical representation of event rules
such as the Event Processing Language (EPL)4.

Communicate Complex Events to the Process Engine Since BPEL relies upon
WSDL for communication with services and also provides its service interfaces
in WSDL form, complex events from the event engine to the BPEL engine are
communicated using Web service mechanisms. The BPEL process offers one
portType for all events (in the form of receive operations) of the original EPC.
Each complex event is represented by a different operation with the name of the
event as the name of the operation and the payload of the event as payload. The
WSDL/SOAP binding style [CCMW01] we propose to use is document/literal.

Provide executable completions for the BPEL process The transformation from
EPCs to BPEL results in an abstract BPEL file that resembles the structure and
control-flow semantics of the original EPC model, but is not yet executable. The
EPC model does not contain all the necessary details to be able to directly generate
executable BPEL. Information that is missing includes:

• PartnerLink, PortType and Operation definitions for Web service interaction
activities such as invoke, receive or reply. Generally, all respective WSDL
files for the Web service definitions of the process need to be created and
linked to process activities.

• Definitions of process variables

3http://www.canopen.org/
4See http://esper.codehaus.org/

http://esper.codehaus.org/

26 Events Make Workflows Really Useful

• Copy expressions in assign activities

• Transition- and join conditions

Another part of the executable completion is message and event correlation: Since
multiple complex events are targeted at the same process instance, a mechanism is
needed to dispatch each event to the right process instance. e.g. if a new complex
event arrives at the process engine that is already running two process instances,
it must be clear which process instance finally receives the event or if a new
instance must be created to handle it. Through correlation identifiers in the event
message, e.g. a sensor id, correlation sets can be created in the BPEL definition
that allows the event to be correctly dispatched. Another solution is to inject
artificial correlation information (such as a unique correlation id shared across
complex events that belong to the same incident) into the complex directly at the
event processing engine. In both cases, the process engine has enough information
at hand to decide whether a new process instance needs to be created or the event
is targeted at an already running instance.

6 Complete Example with All Mapping Steps

For a complete understanding how the described methodology is used this chapter
presents a step by step example. For every step the results produced based on the
concepts in Section 5 are shown.

6.1 Step 1: Define Process as EPC

For this task any EPC modeling tool can be used. There are many available in different
scale. Examples are the ARIS Toolset, the Oryx framework [KDW08] and Microsoft
Visio EPC stencil sets. For later automation purposes it is important that the EPC can
be stored in an exchangeable file format.

The EPCs processes for the examples can be found in Section 4. The “Order Processing”
(see Fig. 2) and the “Maintenance Process” (see third EPC in Fig. 3) process are used
as example to show the steps of the methodology.

6.2 Step 2: Identify the Needed Complex Events

The Events extracted from the “Order Processing” are: “Order Processed”, “Manufac-
turing Plan Completed”, “Item Competed”. The events extracted from “Maintenance
Process” are: “Average Temperature Below Limit”, “Average Temperature Above

Events Make Workflows Really Useful 27

Figure 17: Eclipse BPEL editor view of “Template-MaintenanceProcess.bpel”

Limit”, “Temperature Still Exceeds Prescriptive Limits”, “Maintenance Successfully
Completed”. The result of this step is shown in Listing 1.

Listing 1 ...

CEN={OrderProcessed, ManufacturingPlanCompleted, ItemCompeted, AverageTemper-
atureBelowLimit, AverageTemperatureAboveLimit, TemperartureStillExeedsPrescrip-
tiveLimits, MaintenanceSuccessfullyCompleted}

6.3 Step 3: Transform the Process Definitions to Workflow
Templates

Using the PST and patterns defined in Section 5.3.1 the EPC process definition can be
transformed automatically to an BPEL workflow template. A BPEL template is not

28 Events Make Workflows Really Useful

executable but contains the complete control flow structure. The additional information
needed for execution is added in step 5 (Section 6.5). The process structure tree for the
maintenance process is shown in Fig. 5. The identified sequence is transformed to a
flow activity, where the contained activities are connected using links. The pick-block
at the beginning is transformed to a pick activity. The repeat-until loop is transformed
as described above. The generated BPEL template for the “Maintenance Process” is
shown in Fig. 17, which is a screenshot of the BPEL file opened in the Eclipse BPEL
designer5. It is important to note that the transformation is a vertical transformation,
in the sense that not only the control flow structure is mapped, but also the events are
enriched by a connection to Web services. For the two examples the result of the EPC
to BPEL transformation is presented in Listing 6.3 and Listing 6.3.

Listing 2 BPEL Process Template for “Order Processing”

1 <process xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
2 name="Order Processing" targetNamespace="http://www.example.com/company/"/>
3 <flow name="Flow">
4 <links>
5 <link name="Link1"/>
6 <link name="Link2"/>
7 <link name="Link3"/>
8 <link name="Link4"/>
9 </links>

10 <receive createInstance="yes" partnerLink="EventsPLT"
11 operation="SupplierOrderProcessed" variable="Event1">
12 <sources>
13 <source linkName="Link1"/>
14 </sources>
15 </receive>
16 <receive createInstance="yes" partnerLink="EventsPLT"
17 operation="ManufacturingPlanCompleted" variable="Event2">
18 <sources>
19 <source linkName="Link2"/>
20 </sources>
21 </receive>
22 <empty name="And">
23 <targets>
24 <joinCondition>$Link1 and $Link2</joinCondition>
25 <target linkName="Link1"/>
26 <target linkName="Link2"/>
27 </targets>
28 <sources>
29 <source linkName="Link3"/>
30 </sources>
31 </empty>

5http://www.eclipse.org/bpel/

http://www.eclipse.org/bpel/

Events Make Workflows Really Useful 29

32 <opaqueActivity name="ManufactureItem">
33 <targets>
34 <target linkName="Link3"/>
35 </targets>
36 <sources>
37 <source linkName="Link4"/>
38 </sources>
39 </opaqueActivity>
40 <receive partnerLink="EventsPLT" operation="ItemCompleted" variable="Event3">
41 <targets>
42 <target linkName="Link4"/>
43 </targets>
44 </receive>
45 </flow>
46 </process>

Listing 3 BPEL Process Template for “Maintenance Process”

1 <process xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
2 exitOnStandardFault="yes" name="RepeatMaintenanceProcess"
3 targetNamespace="http://www.example.com/company/">
4 <flow name="Flow">
5 <links>
6 <link name="Link1"/>
7 </links>
8 <pick createInstance="yes">
9 <sources>

10 <source linkName="Link1"/>
11 </sources>
12 <onMessage partnerLink="EventsPLT"
13 operation="AverageTemperatureBelowLimit" variable="Event1">
14 <empty />
15 </onMessage>
16 <onMessage partnerLink="EventsPLT"
17 operation="AverageTemperatureAboveLimit" variable="Event2">
18 <empty />
19 </onMessage>
20 </pick>
21 <repeatUntil>
22 <targets>
23 <target linkName="Link1"/>
24 </targets>
25 <sequence>
26 <opaqueActivity name="StartMaintencanceProcess"/>
27 <pick>
28 <onMessage partnerLink="EventsPLT"

30 Events Make Workflows Really Useful

29 operation="TemperartureStillExeedsPrescriptiveLimits" variable="Event3">
30 <assign>
31 doRepeatUntilLoop1 = true
32 </assign>
33 </onMessage>
34 <onMessage partnerLink="EventsPLT"
35 operation="MaintenanceSuccessfullyCompleted" variable="Event4">
36 <assign>
37 doRepeatUntilLoop1 = false
38 </assign>
39 </onMessage>
40 </pick>
41 </sequence>
42 <condition>not(doRepeatUntilLoop1)</condition>
43 <!-- repeats until condition equals true -->
44 </repeatUntil>
45 </flow>
46 </process>

For a better understanding of the generated BPEL “Maintenance Process” a screen-shot
of the BPEL file opened in the Eclipse BPEL designer is shown in 17 on page 27. The
two start events of the EPC are transformed to a BPEL pick, since they are connected
by an “exclusive or”. If the exclusive or had been an “and” another pattern would be
used. The loop is represented in BPEL as repeatUntil, since the loop starts with an
activity. If the loop started with an event if would be a while activity.

6.4 Step 4: Specify How the Complex Events Should be Eval-
uated

Complex Events
(CEn)

Event
Sources (Es)

Item
Completed

match
correlationID

CED,2

Factory Manager
Reports

MES System
Messages extract

item ID

item
completed

match
correlationID Correlation uses

ItemID

Figure 18: Event Wiring Example for “AverageTemperatureAboveLimit”’

In this step the definition of the CED have to be made. The wire descriptions specifies
how event sources ES are accessed through event adapters EA to evaluate a complex

Events Make Workflows Really Useful 31

Complex
Events (CEn)

Event
Sources (Es)

avg. last
50 sec.

Average
Temparature
AboveLimit

temp
in °C

CED,1 (AverageTemperatureAboveLimit)

temperature
sensor 3temperature
sensor 2temperature
sensor 1

avg. last
50 sec.

temp
 in °C

avg. last
50 sec.

temp
in °C

>30°

> 30°

> 30°

Initiate Correlation
using Temp Sensor ID

Figure 19: Event Wiring Example for “ItemCompleted”

event CE. Fig. 18 shows the wire description for AverageTemperatureAboveLimit.
Here all sensors in a building are monitored and the average temperature in 50 seconds
are taken as raw events. That raw events are in forehand filtered for degree Celsius and
afterwards for the value bigger than 30. The correlation works on the sensor ID. Fig. 19
shows the wire description for ItemCompleted′. Here a factory manager can directly
report a item as completed or a message from a MES (Manufacturing Execution System)
is used as raw event.

6.5 Step 5: Do the Runtime Configuration and Deployment

To make the process template executable following further steps are required.

• First a WSDL file can be automatically generated containing the PortType and
all Operations for the events in the process.

• Then a further WSDL file is generated containing the PartnerLinkTypes for the
Complex Event System using the previously defined PortType.

• Afterwards, the BPEL template can be extended to an executable BPEL file
by: importing the WSDL definitions, adding variables for handling the incoming
events, define PartnerLinks for the PartnerLinkType with myRole as EventCon-
sumer, describing all receives and onMessages where a event is received with the
corresponding operation.

• Until now all this is generic and can be done automatically. The last step has
to be done by hand: Mapping the opaque activities to something executable. In
the example the opaque activity is mapped to a invoke activity that starts the
MaintenanceSystem.

32 Events Make Workflows Really Useful

Now the BPEL process can be deployed on a BPEL engine. The CEP system has to
be set up to send the event messages to that engine. The executable BPEL files and
WSDL listings can be found in Listing 8. The needed PartnerLink Types integrating
both are generated as follows:

Listing 4 PartnerLinkType definitions

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <definitions xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"

xmlns:tns="http://www.example.com/company/Artifacts"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
xmlns:wsdl="test.com" name="ExecutableMaintenanceProcessArtifacts"
targetNamespace="http://www.example.com/company/Artifacts"
xmlns="http://schemas.xmlsoap.org/wsdl/">

3 <plnk:partnerLinkType name="ComplexEventSystemPTL">
4 <plnk:role name="EventConsumer"

portType="wsdl:MaintenanceProcess_IncomingMessages"/>
5 <plnk:role name="EventProvider"/>
6 </plnk:partnerLinkType>
7 <import location="ExecutableMaintenanceProcess.wsdl" namespace="test.com"/>
8 </definitions>

7 Conclusion and Future Work

We presented a new methodology that helps to cope with the yet unsolved challenge how
to specify complex events and their effects on workflows. The prove for applicableness of
the introduced method is shown in the report by presenting a complete walk-through of
all steps based on two examples of contrary application areas. Regarding the mapping
of EPC to BPEL, that work combine the work of [VVK08] and [GB08] to provide a
complete mapping including support of loops and workflow instantiating start events.

Future work is to do research on how provide good tool support for the presented
methodology. There are different areas of tools that would help a domain expert to
use the proposed methodology: First an integrated modeling tool that allows to model
EPC processes, BPEL processes and transformation patterns. Secondly a complex event
wiring tool that allows the specification of the complex events based on the available
sensors.

8 The Complete Listings

Listing 5 Executable BPEL Process for the “Maintenance Process”

Events Make Workflows Really Useful 33

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <bpws:process xmlns:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema" exitOnStandardFault="yes"
4 name="MaintenanceProcess" targetNamespace="http://www.example.com/company/"
5 xmlns:ns1="http://www.example.com/company/Artifacts" xmlns:ns="test.com">
6 <bpws:import namespace="test.com" location="TestArtifacts.wsdl"
7 importType="http://schemas.xmlsoap.org/wsdl/"></bpws:import>
8 <bpws:import namespace="http://www.example.com/company/Artifacts"
9 location="ExecutableMaintenanceProcessArtifacts.wsdl"

10 importType="http://schemas.xmlsoap.org/wsdl/"></bpws:import>
11 <bpws:import namespace="test.com" location="ExecutableMaintenanceProcess.wsdl"
12 importType="http://schemas.xmlsoap.org/wsdl/"></bpws:import>
13 <bpws:partnerLinks>
14 <bpws:partnerLink name="EventsPLT" partnerLinkType="ns1:ComplexEventSystemPTL"
15 myRole="EventConsumer" partnerRole="EventProvider"></bpws:partnerLink>
16 <bpws:partnerLink name="MaintenanceSystem" partnerLinkType="ns:Test"
17 partnerRole="TestProvider" myRole="TestRequester"></bpws:partnerLink>
18 </bpws:partnerLinks>
19 <bpws:variables>
20 <bpws:variable name="doLoopRepeatUntil1" type="xsd:bool" />
21 <bpws:variable name="Event1" element="ns:EventMessage"></bpws:variable>
22 <bpws:variable name="Event2" element="ns:EventMessage"></bpws:variable>
23 <bpws:variable name="Event4" element="ns:EventMessage"></bpws:variable>
24 <bpws:variable name="Event3" element="ns:EventMessage"></bpws:variable>
25 <bpws:variable name="MaintenanceSystemRequest"
26 messageType="ns:TestRequestMessage"></bpws:variable>
27 <bpws:variable name="MaintenanceSystemResponse"
28 messageType="ns:TestResponseMessage"></bpws:variable>
29 </bpws:variables>
30 <bpws:flow name="Flow">
31 <bpws:links>
32 <bpws:link name="Link1" />
33 </bpws:links>
34 <bpws:pick createInstance="yes" name="Pick">
35 <bpws:sources>
36 <bpws:source linkName="Link1" />
37 </bpws:sources>
38 <bpws:onMessage partnerLink="EventsPLT"
39 operation="AverageTemperatureBelowLimit"
40 portType="ns:MaintenanceProcess_IncomingMessages" variable="Event1">
41 <bpws:empty/>
42 </bpws:onMessage>
43 <bpws:onMessage partnerLink="EventsPLT"
44 operation="AverageTemperatureAboveLimit"
45 portType="ns:MaintenanceProcess_IncomingMessages" variable="Event2">
46 <bpws:empty />
47 </bpws:onMessage>
48 </bpws:pick>
49 <bpws:repeatUntil name="RepeatUntil1">
50 <bpws:targets>

34 Events Make Workflows Really Useful

51 <bpws:target linkName="Link1" />
52 </bpws:targets>
53 <bpws:sequence>
54 <bpws:invoke name="StartMaintencanceProcess"
55 partnerLink="MaintenanceSystem" operation="initiate"
56 portType="ns:Test"
57 inputVariable="MaintenanceSystemRequest"
58 outputVariable="MaintenanceSystemResponse"></bpws:invoke>
59 <bpws:pick>
60 <bpws:onMessage partnerLink="EventsPLT"
61 operation="MaintenanceSuccessfullyCompleted"
62 portType="ns:MaintenanceProcess_IncomingMessages"
63 variable="Event3">
64 <bpws:assign name="Do not repeat"
65 validate="no">
66 <bpws:copy>
67 <bpws:from>false</bpws:from>
68 <bpws:to variable="doLoopRepeatUntil1" />
69 </bpws:copy>
70 </bpws:assign>
71 </bpws:onMessage>
72 <bpws:onMessage partnerLink="EventsPLT"
73 operation="TemperartureStillExeedsPrescriptiveLimits"
74 portType="ns:MaintenanceProcess_IncomingMessages"
75 variable="Event4">
76 <bpws:assign name="Repeat"
77 validate="no">
78 <bpws:copy>
79 <bpws:from>true</bpws:from>
80 <bpws:to variable="doLoopRepeatUntil1" />
81 </bpws:copy>
82 </bpws:assign>
83 </bpws:onMessage>
84 </bpws:pick>
85 </bpws:sequence>
86 <bpws:condition><![CDATA[not(doLoopRepeatUntil1)]]></bpws:condition>
87 </bpws:repeatUntil>
88 </bpws:flow>
89 </bpws:process>

Listing 6 WSDL Definitions for the “Maintenance Process”

1 <?xml version="1.0"?>
2 <definitions name="Test"
3 targetNamespace="test.com"
4 xmlns:tns="test.com"

Events Make Workflows Really Useful 35

5 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
6 xmlns="http://schemas.xmlsoap.org/wsdl/"
7 xmlns:p="http://www.w3.org/2001/XMLSchema"
8 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
9

10 <types>
11 <schema attributeFormDefault="unqualified"
12 elementFormDefault="qualified"
13 targetNamespace="test.com"
14 xmlns="http://www.w3.org/2001/XMLSchema">
15 <element name="EventMessage" type="xsd:anyType"></element>
16 </schema>
17 </types>
18

19 <message name="AverageTemperatureBelowLimitRequest">
20 <part name="payload" element="tns:EventMessage"></part>
21 </message>
22 <message name="AverageTemperatureAboveLimitRequest">
23 <part name="payload" element="tns:EventMessage"></part>
24 </message>
25 <message name="MaintenanceSuccessfullyCompletedRequest">
26 <part name="payload" element="tns:EventMessage"></part>
27 </message>
28 <message name=" TemperartureStillExeedsPrescriptiveLimitsRequest">
29 <part name="payload" element="tns:EventMessage"></part>
30 </message>
31

32 <portType name="MaintenanceProcess_IncomingMessages">
33 <operation name="AverageTemperatureBelowLimit">
34 <input message="tns:AverageTemperatureBelowLimitRequest">
35 </input>
36 </operation>
37 <operation name="AverageTemperatureAboveLimit">
38 <input message="tns:AverageTemperatureAboveLimitRequest">
39 </input>
40 </operation>
41 <operation name="MaintenanceSuccessfullyCompleted">
42 <input message="tns:MaintenanceSuccessfullyCompletedRequest">
43 </input>
44 </operation>
45 <operation name="TemperartureStillExeedsPrescriptiveLimits">
46 <input message="tns:TemperartureStillExeedsPrescriptiveLimitsRequest">
47 </input>
48 </operation>
49 </portType>
50

51 <binding name="BPELengineBinding"
52 type="tns:MaintenanceProcess_IncomingMessages">
53 <soap:binding style="document"
54 transport="http://schemas.xmlsoap.org/soap/http" />

36 Events Make Workflows Really Useful

55 <operation name="AverageTemperatureBelowLimit">
56 <soap:operation
57 soapAction="test.com/AverageTemperatureBelowLimit" />
58 <input>
59 <soap:body use="literal" />
60 </input>
61 </operation>
62 <operation name="AverageTemperatureAboveLimit">
63 <soap:operation
64 soapAction="test.com/AverageTemperatureAboveLimit" />
65 <input>
66 <soap:body use="literal" />
67 </input>
68 </operation>
69 <operation name="MaintenanceSuccessfullyCompleted">
70 <soap:operation
71 soapAction="test.com/MaintenanceSuccessfullyCompleted" />
72 <input>
73 <soap:body use="literal" />
74 </input>
75 </operation>
76 <operation name="TemperartureStillExeedsPrescriptiveLimits">
77 <soap:operation
78 soapAction="test.com/TemperartureStillExeedsPrescriptiveLimits" />
79 <input>
80 <soap:body use="literal" />
81 </input>
82 </operation>
83 </binding>
84

85 <service name="BPELengine">
86 <port name="EnginePort" binding="tns:BPELengineBinding">
87 <soap:address location="http://www.example.org/" />
88 </port>
89 </service>
90 </definitions>

Listing 7 Message Definitions for the “Maintenance Process”

1 <?xml version="1.0"?>
2 <definitions name="Test"
3 targetNamespace="test.com"
4 xmlns:tns="test.com"
5 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
6 xmlns="http://schemas.xmlsoap.org/wsdl/"
7 xmlns:p="http://www.w3.org/2001/XMLSchema"

Events Make Workflows Really Useful 37

8 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
9

10 <types>
11 <schema attributeFormDefault="unqualified"
12 elementFormDefault="qualified"
13 targetNamespace="test.com"
14 xmlns="http://www.w3.org/2001/XMLSchema">
15 <element name="EventMessage" type="xsd:anyType"></element>
16 </schema>
17 </types>
18

19 </definitions>

References

[AADH05] L. Aldred, W. M. van der Aalst, M. Dumas, A. H. ter Hofstede. On the
Notion of Coupling in Communication Middleware. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, volume
3761/2005 of LNCS, pp. 1015–1033. Springer, 2005. doi:10.1007/11575801 6.
URL http://www.springerlink.com/content/8m702qh8xvkxvr5r/.

[ADK02] W. M. P. van der Aalst, J. Desel, E. Kindler. On the Semantics of EPCs:
A Vicious Circle. In EPK 2002. 2002.

[AH05] W. M. P. van der Aalst, A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

[BDG07] A. Barros, G. Decker, A. Grosskopf. Complex Events in Business Processes.
In Business Information Systems, volume 4439/2007 of LNCS, pp. 29–
40. Springer, 2007. doi:10.1007/978-3-540-72035-5 3. URL http://www.

springerlink.com/content/f00777104222w515/.

[Bri04] D. Bridgewater. Standardize messages with the Common Base Event model.
IBM DeveloperWorks, 2004.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services
Description Language (WSDL) 1.1, 2001. http://www.w3.org/TR/2001/
NOTE-wsdl-20010315.

[CKLW03] F. Curbera, R. Khalaf, F. Leymann, S. Weerawarana. Exception Handling in
the BPEL4WS Language. In International Conference on Business Process
Management, volume 2678 of LNCS, pp. 276–290. 2003.

http://www.springerlink.com/content/8m702qh8xvkxvr5r/
http://www.springerlink.com/content/f00777104222w515/
http://www.springerlink.com/content/f00777104222w515/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

38 Events Make Workflows Really Useful

[DGB07] G. Decker, A. Grosskopf, A. Barros. A Graphical Notation for Modeling
Complex Events in Business Processes. In EDOC ’07: Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing Conference,
p. 27. IEEE Computer Society, Washington, DC, USA, 2007.

[DM08] G. Decker, J. Mendling. Instantiation Semantics for Process Models. In
Proceedings of the 6th International Conference on Business Process Man-
agement (BPM), LNCS, pp. 164–179. 2008.

[Ecm05] Ecma International. Standard ECMA-357 - ECMAScript for XML (E4X)
Specification, 2nd edition edition, 2005.

[GB08] L. Garćıa-Bañuelos. Pattern Identification and Classification in the Trans-
lation from BPMN to BPEL. In On the Move to Meaningful Internet
Systems: OTM 2008, volume 5331/2008 of LNCS, pp. 436–444. Springer,
2008. doi:10.1007/978-3-540-88871-0 30. URL http://www.springerlink.

com/content/415211u321845582/.

[IBM08] IBM. WebSphere Process Server - Extension names for business process
events, 2008. URL http://publib.boulder.ibm.com/infocenter/

dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.websphere.bpc.610.

doc/doc/bpc/rmonitor_process_extensionnames.html.

[KDW08] S. Krumnow, G. Decker, M. Weske. Modellierung von EPKs im Web mit
Oryx. In Proceedings of the 7th GI-Workshop Geschäftsprozessmanagement
mit Ereignisgesteuerten Prozessketten (EPK). 2008.

[KHB00] B. Kiepuszewski, A. H. M. ter Hofstede, C. Bussler. On structured workflow
modelling. In CAiSE. Springer, 2000.

[Kin06] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the
Vicious Circle. Data Knowl. Eng, 56(1):23–40, 2006. doi:10.1016/j.datak.
2005.02.005.

[KKL07] R. Khalaf, D. Karastoyanova, F. Leymann. Pluggable Framework for
Enabling the Execution of Extended BPEL Behavior. In Proceedings of the
3rd International Workshop on Engineering Service-Oriented Application
(WESOA 2007). Springer-Verlag, 2007.

[KKS+06] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, F. Ley-
mann. BPEL Event Model. Technical Report Computer Sci-
ence 2006/10, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, Uni-
versity of Stuttgart, Institute of Architecture of Application Sys-
tems, 2006. URL http://www.informatik.uni-stuttgart.de/cgi-bin/

NCSTRL/NCSTRL_view.pl?id=TR-2006-10&engl=1.

http://www.springerlink.com/content/415211u321845582/
http://www.springerlink.com/content/415211u321845582/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.websphere.bpc.610.doc/doc/bpc/rmonitor_process_extensionnames.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.websphere.bpc.610.doc/doc/bpc/rmonitor_process_extensionnames.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.websphere.bpc.610.doc/doc/bpc/rmonitor_process_extensionnames.html
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2006-10&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2006-10&engl=1

Events Make Workflows Really Useful 39

[KML08] O. Kopp, R. Mietzner, F. Leymann. Abstract Syntax of WS-BPEL 2.0. Tech-
nical Report Computer Science 2008/06, University of Stuttgart, Faculty
of Computer Science, Electrical Engineering, and Information Technology,
Germany, University of Stuttgart, Institute of Architecture of Applica-
tion Systems, 2008. URL http://www.informatik.uni-stuttgart.de/

cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2008-06&engl=1.

[KMWL08] O. Kopp, D. Martin, D. Wutke, F. Leymann. On the Choice Between Graph-
Based and Block-Structured Business Process Modeling Languages. In Mod-
ellierung betrieblicher Informationssysteme (MobIS 2008), CEUR Workshop
Proceedings. CEUR, 2008. URL http://www.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-92&engl=1.

[KNS92] G. Keller, N. Nüttgens, A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report
Heft 89, Universität des Saarlandes, 1992. Veröffentlichungen des Instituts
für Wirtschaftsinformatik (IWi).

[KUL06] O. Kopp, T. Unger, F. Leymann. Nautilus Event-driven Process Chains:
Syntax, Semantics, and their mapping to BPEL. In Proceedings of the 5th
GI Workshop on Event-Driven Process Chains (EPK 2006). 2006.

[LC08] Z. Laliwala, S. Chaudhary. Event-driven Service-Oriented Architecture.
In International Conference on Service Systems and Service Management.
2008. doi:10.1109/ICSSSM.2008.4598452.

[LLSG08] D. Lübke, T. Luecke, K. Schneider, J. M. Gomez. Using event-driven process
chains for model-driven development of business applications. International
Journal of Business Process Integration and Management, 3(2):109–117,
2008.

[LR00] F. Leymann, D. Roller. Production Workflow: Concepts and Techniques.
Prentice Hall PTR, 2000.

[MA07] J. Mendling, W. M. P. van der Aalst. Formalization and Verification of
EPCs with OR-Joins Based on State and Context. In CAiSE. 2007.

[Mar06] J.-L. Maréchaux. Combining Service-Oriented Architecture
and Event-Driven Architecture using an Enterprise Service Bus.
http://www.ibm.com/developerworks/library/ws-soa-eda-esb/, 2006.

[Men07] J. Mendling. Detection and Prediction of Errors in EPC Business Pro-
cess Models. Ph.D. thesis, Vienna University of Economics and Business
Administration, 2007.

[MFP06] G. Muehl, L. Fiege, P. R. Pietzuch. Distributed Event-Based Systems.
Springer, 2006.

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2008-06&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2008-06&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-92&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-92&engl=1

40 Events Make Workflows Really Useful

[MG06] T. Mens, P. V. Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006. doi:10.1016/j.
entcs.2005.10.021.

[MLZ08] J. Mendling, K. B. Lassen, U. Zdun. On the Transformation of Control Flow
between Block-Oriented and Graph-Oriented ProcessModeling Languages.
Int. J. Business Process Integration and Management (IJBPIM), 3(2):96–
108, 2008.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[Obj08] Object Management Group. Business Process Modeling Notation, V1.1,
2008. URL http://www.omg.org/spec/BPMN/1.1/PDF.

[ODBH06] C. Ouyang, M. Dumas, S. Breutel, A. H. M. ter Hofstede. Translating
Standard Process Models to BPEL. In CAiSE. Springer, 2006.

[Sch03] A.-W. Scheer. ARIS-Modellierungs-Methoden, Metamodelle, Anwendungen.
Springer, 2003.

[SI07] S. Stein, K. Ivanov. EPK nach BPEL Transformation als Voraussetzung für
praktische Umsetzung einer SOA. In Software Engineering 2007, volume
105 of LNI, pp. 75–80. GI, Hamburg, Germany, 2007.

[SKI08] S. Stein, S. Kühne, K. Ivanov. Business to IT Transformations Revisited.
In MDE4BPM. 2008.

[STA05] A.-W. Scheer, O. Thomas, O. Adam. Process-Aware Information Systems:
Bridging People and Software Through Process Technology, chapter Process
Modeling Using Event-Driven Process Chains, pp. 119–146. Wiley & Sons,
2005.

[VVK08] J. Vanhatalo, H. Völzer, J. Koehler. The Refined Process Structure Tree.
In BPM. Springer, 2008.

[VVL08] J. Vanhatalo, H. Völzer, F. Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition.
In Service-Oriented Computing - ICSOC 2007, volume 4749/2008 of LNCS,
pp. 43–55. Springer, 2008. doi:10.1007/978-3-540-74974-5 4. URL http:

//www.springerlink.com/content/7w6170q3t6q56861/.

[WALD07] M. Wei, I. Ari, J. Li, M. Dekhil. ReCEPtor: Sensing Complex Events
in Data Streams for Service-Oriented Architectures. Technical Report
HPL-2007-176 20071102, HP, 2007.

[WEAH05] M. T. Wynn, D. Edmond, W. M. P. van der Aalst, A. H. M. ter Hofstede.
Achieving a General, Formal and Decidable Approach to the OR-Join in

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/1.1/PDF
http://www.springerlink.com/content/7w6170q3t6q56861/
http://www.springerlink.com/content/7w6170q3t6q56861/

Events Make Workflows Really Useful 41

Workflow Using Reset Nets. In Applications and Theory of Petri Nets. 2005.
doi:10.1007/11494744 24. URL http://www.springerlink.com/content/

g41avg6f8xfmdyph/.

[Weh07] J. Wehler. Boolean and free-choice semantics of Event-driven Process Chains.
In EPK. 2007.

[ZHB+06] W. Zhao, R. Hauser, K. Bhattacharya, B. R. Bryant, F. Cao. Compiling
business processes: untangling unstructured loops in irreducible flow graphs.
International Journal of Web and Grid Services, 2:68–91, 2006. doi:10.1504/
06.8880. URL http://www.inderscience.com/link.php?id=8880.

[ZM05] J. Ziemann, J. Mendling. EPC-Based Modelling of BPEL Processes: a
Pragmatic Transformation Approach. In Proceedings of the 7th International
Conference Modern Information Technology in the Innovation Processes of
the Industrial Enterprises (MITIP 2005). Genova, Italy, 2005.

All links were last followed on 2008-11-21.

http://www.springerlink.com/content/g41avg6f8xfmdyph/
http://www.springerlink.com/content/g41avg6f8xfmdyph/
http://www.inderscience.com/link.php?id=8880

	Introduction
	Architecture
	Related Work
	Data Stream Processing
	Process Modeling
	Transformation of EPC to BPEL

	Scenarios and Use-Cases
	Modeling Use-Cases

	Concept of Mapping Specification to Execution Artifacts
	Step 1: Process Definition
	Step 2: Complex Event Extraction
	Step 3: Mapping Process Definition to Workflow Template
	Step 4: Specify the Complex Event Processing Rules
	Step 5: Make Executable

	Complete Example with All Mapping Steps
	Step 1: Define Process as EPC
	Step 2: Identify the Needed Complex Events
	Step 3: Transform the Process Definitions to Workflow Templates
	Step 4: Specify How the Complex Events Should be Evaluated
	Step 5: Do the Runtime Configuration and Deployment

	Conclusion and Future Work
	The Complete Listings

