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Abstract. Andersen’s analysis is the most influential pointer analysis
known so far. This paper, which contains parts of the author’s upcoming
PhD thesis, for the first time presents a flow-sensitive version of that
analysis. We prove that the flow-sensitive version still has the same cubic
complexity. Thus, the higher precision comes without loss of asymptotic
scalability. This contradicts common wisdom of flow-sensitivity being
substantially more expensive.
Compared to other flow-sensitive pointer analyses, we have no expensive
data-flow problem on the CFG. Instead, we simply propagate pointer
targets along data-flow relations which we determine during the analysis.
Our analysis in fact combines the computation of the interprocedural
SSA data-flow representation and the uncovering of pointer targets. It
also integrates the computation of control-flow relations. The analysis
thus presents a new, sparse approach for the flow-sensitive solution of
the central problems for data-flow based program analyses.
This paper also presents two extensions for higher precision. The first
extension shows how the analysis can detect strong updates without
increasing the complexity. The second extension describes a context-
sensitive version which excludes unrealizable paths. Together this yields
the first analysis of that precision which only has a complexity of O(n4).
This is a substantial improvement over the previous O(n6) bound found
by Landi.
Thus, in summary this report describes several theoretical advances in
the field of flow-sensitive pointer analysis. It also provides details on the
algorithms used for incremental SSA construction and context-sensitive
pointer propagation.

1 Introduction

Powerful data-flow analyses rely on control-flow and pointer information to be
precise. Consequently, many published approaches discuss the problem of deter-
mining pointer targets. To solve this problem one can benefit from an already ex-
isting data-flow representation. Thus we have interdependencies between pointer
analysis (PTA) and data-flow analysis. This paper presents a combined analysis
which benefits from the interactions between these analyses.
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Surprisingly, the basic concept behind our analysis is very simple and ele-
gant: alternating steps of determining data-flow edges and propagating pointer
targets along these edges solve the problem. Remarkably, each of these steps uses
unsound results from the other analysis, but a standard fixpoint iteration over
the combination of them yields sound results. This approach is very simple and
in fact related to the most influential pointer analysis known so far: Andersen’s
analysis [And94] basically is the flow-insensitive (FI) counterpart of our analysis
in that it replaces the data-flow relations with the constraint graph. Although our
generalization of Andersen’s analysis seems simple and straight-forward, neither
Andersen nor other researchers so far, to the best of our knowledge, were able
to find a flow-sensitive (FS) version in that way. Moreover, compared to other
FS-PTAs, our FS-Andersen has the advantage that it operates on the data-flow
graph instead of the control-flow graph. This removes many problems related to
the classical CFG-based approach.

The significance of our work is that is lifts the most influential PTA to
the higher FS precision without increasing the complexity. It also describes an
asymptotically faster FS-MOVP solution than previously known. We thus ex-
pect more interest in flow-sensitivity, and affordable higher precision for many
important applications based on points-to analyses (e.g., finding bugs).

The contributions of this paper are:

– We solve the long-standing problem of making the most influential PTA,
namely Andersen’s analysis, flow-sensitive.

– We describe an extension to that flow-sensitive Andersen analysis which
supports strong updates.

– We show that FS-Andersen has cubic complexity both with and without
strong updates.

– We combine FS-Andersen with the construction of interprocedural SSA form.
For data-flow analysis this yields a cubic algorithm to construct SSA from
scratch with FS precision for real-world programs. For points-to analysis this
gives a truly sparse FS-PTA.

– We extend FS-Andersen to compute the meet-over-all-valid paths (MOVP)
solution, based on ideas of the IFDS framework. This for the first time applies
IFDS to a (sparse) FS-PTA.

– We show how the FS-MOVP-Andersen can support strong updates and prove
that both MOVP versions have complexity O(n4). This is a substantial im-
provement over the previous O(n6) bound found by Landi.

2 Related Work

The problem of determining pointer targets is central to static analyses and thus
has attracted many researchers. This resulted in a large body of publications,
so that we can only discuss a small portion of them here. An older article by
Hind [Hin01] gives an overview and also introduces some dimensions of precision
that help to classify PTAs. Unfortunately, this article also made the opinion
popular that flow-sensitivity probably is not worth the price we have to pay for it.
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This was based on earlier articles by Hind and Pioli [HP98,HP00]. However, these
articles only considered small programs and did not combine flow-sensitivity with
field- or context-sensitivity. Moreover, they compared their CFG-based FS-PTA
with an FI-PTA that is more precise than usual in that it computes a solution per
object and function. And finally, they did not investigate the benefits of higher
precision for subsequent client analyses which clearly benefit from smaller points-
to sets. Thus, we should be careful with the interpretation of their results. We
hope that this paper reinforces the interest in flow-sensitivity, because our new
analysis has several advantages over prior FS-PTAs.

Andersen’s analysis [And94] is the most famous FI-PTA and probably the
most influential PTA today. It uses a fixpoint iteration which repeatedly detects
new constraints (over-estimated data-flow relations between objects) and propa-
gates them to detect pointer targets at dereferences. The propagation, which ba-
sically solves the problem of dynamic transitive closure (for selected roots of the
constraint graph), dominates the costs and makes it a cubic algorithm. Ander-
sen also investigated the problem of making this approach flow-sensitive [And94,
p. 147]. However, he did not succeed and just mentioned problems with that idea.
This paper for the first time solves the challenge and thus opens the world of
higher precision for the most influential PTA.

Many researchers used Andersen’s simple approach and extended it in some
way. The most popular idea to accelerate it was the detection and contraction
of cycles in the constraint graph [FFSA98,HT01,HL07]. Reps [Rep98] showed
how to apply the IFDS framework [RHS95] to a variant of Andersen’s anal-
ysis to compute a FI-MOVP solution instead of the context-insensitive MOP
(meet-over-all-paths) solution. Pearce developed an efficient field-sensitive ver-
sion for C [Pea05,PKH07] which in the following was used by several other re-
searchers. We also use his approach for the field-sensitive version of FS-Andersen.

Hasti and Horwitz [HH98] tried to make an FI-PTA flow-sensitive in that
they iteratively construct SSA form on the PTA’s result and then use the new
variable names to improve the precision towards flow-sensitivity. However, no-
body ever proved that this in fact results in a FS-PTA, and recently [HL09] even
conjectured this being not the case. Also, the approach seems to be unable to
support strong updates, an important benefit of FS-PTAs. In comparison, our
analysis does not start with over-estimated results, trying to reduce the degree
of over-estimation; instead, we start with unsound results and add more targets
until we have a sound solution.

Real FS-PTAs are traditionally seen as classical data-flow problems. Conse-
quently, researchers published approaches which solve the pointer analysis as a
problem on the CFG [CWZ90,HP98]. However, using the CFG as a basis causes
some problems. For example, strong updates prevent the problem from being
monotone and distributive, and the analysis has to propagate and store points-to
relations for several objects at every CFG node. Thus publications tried to move
towards more data-flow oriented structures like the SEG or VDG [CBC93,Ruf95].
However, they were only able to use over-estimated data-flow because the detec-
tion of data-flow relations itself requires pointer targets. Our analysis elegantly
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Preparat ion ;
while not Fixpoint Reached loop

Update Propagation Graph ; −− s t e p 1
Propagate Po inter Target s ; −− s t e p 2

end loop ;
F i n a l i z a t i o n ;

Fig. 1. Outline of generalized Andersen analysis

copes with this mutual dependency and for the first time uses the real data-flow
relations as the basis. On the data-flow graph we simply have the problem of
dynamic transitive closure, which is monotone and distributive.

[HL09] is a recent FS-PTA which uses SSA form for those variables that
cannot be pointer targets. However, for other variables and heap objects they
fall back to the classical, expensive CFG-model. [Tok07] describes an idea how
the online construction of SSA form can accelerate an existing FS-PTA. However,
the FS-PTA in his approach still solves a data-flow problem on the CFG and does
not use SSA edges for propagation. We will use Tok’s ideas for the incremental
SSA construction in our approach.

[LR92] published a FS-PTA which achieves some context-sensitivity through
inspection of alias sets. The runtime of this analysis, however, is in O(n6). This
paper improves the upper bound for the FS-MOVP problem to O(n4).

[Kah08] described a pipeline of pointer analyses in which each stage reduces
the input for the next stage. Our analysis is orthogonal to such ideas and thus
can be combined with the pipeline approach to yield a faster algorithm.

In the past few years, researchers used binary decision diagrams (BDDs) to
represent points-to sets [BLQ+03,HL07,Wha07,WL04,ZC04,Zhu02,Zhu05,HL09].
Publications based on them showed considerable speed-ups. In the worst case,
however, BDDs require exponential costs, and the behaviour depends on the
variable ordering. A good variable ordering seems to require a lot of experi-
mentation [BLQ+03,Wha07]. In this paper, we use traditional data structures
to achieve a more predictable analysis behaviour, including a cubic worst case.
However, the analysis can also be used together with BDDs.

3 Generalization of Andersen’s Analysis

Figure 1 shows an outline of our analysis. We use the propagation graph as gen-
eralization of Andersen’s constraint graph. FI-Andersen still uses the constraint
graph for this, while FS-Andersen uses the data-flow graph. Only step 1 differs
for FS-/FI-Andersen: it adds new constraints (FI) or data-flow relations (FS) to
the propagation graph. Step 2 updates its transitive closure. We briefly sketch
how the analysis addresses several dimensions of precision.

Preparation: This part addresses the dimension of field-sensitivity. It extracts
the program’s (initial) objects and modifies the intermediate representation (IR).
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Field-insensitive: creates objects of composite type, but not for fields. Accesses
to fields are mapped to accesses of the composite object.
Field-sensitive [PKH07]: creates objects for fields, but not for composites. Ac-
cesses to the struct are mapped to accesses to the first field (except for struct
copies, which map to copies for all fields).

Step 1: This part addresses the dimension of flow-sensitivity.
Flow-insensitive: Assignments (including parameter passing) are used to infer
constraints between objects at newly discovered definitions and uses.
Flow-sensitive: Assignments (including parameter passing) yield data-flow edges
from uses to definitions. Additionally, control-flow paths yield edges from defini-
tions to uses (reaching definitions). Here we optionally respect strong updates.
Section 4 will provide more details on how this can be implemented efficiently.

Step 2: This part addresses the dimension of context-sensitivity.
Context-insensitive: Standard approaches to compute the dynamic transitive
closure compute the MOP solution. For example, we could annotate each node
(in SSA: each definition and φ node) with a bitvector, having one bit per possible
target. The propagation then uses a depth-first search starting at every new edge
to update these bits. Here, strategies to contract cycles can be used optionally.
Context-sensitive: The IFDS-based idea to compute the MOVP solution is to
compute summary edges for functions. They help to identify the call sites to
which a target should (not) be propagated back. Section 5 will provide more
details on how this can be implemented efficiently.

Finalization: This part prepares the results for following client analyses. FS it
may prune the resulting SSA graph, and FI it may use one FS step to construct
an SSA graph with FI pointer targets.

Using the FI version of step 1 gives one possible formulation of Andersen’s
analysis. In this paper, we focus on using the FS version. We will prove the
correctness of this variant and discuss strong updates and MOVP propagation
as extensions to that FS-Andersen analysis.

4 Sparse Flow-Sensitive Andersen Analysis

The flow-sensitive counterpart of Andersen’s constraint graph is the data-flow
graph. We use an interprocedural SSA form (ISSA) as the concrete shape of that
graph to have a sparse analysis. This section first briefly describes ISSA form,
then provides details on its incremental construction in step 1 of the analysis.

4.1 Interprocedural SSA Form

Interprocedural SSA form extends SSA [CFR+91] to include representations for
parameter passing and side-effects. We call these extensions (sub)entries and
(sub)exits: entries are nodes in a function’s CFG entry and represent artificial
definitions for parameters, uninitialized variables and may-use side-effects. Exits
are nodes in the CFG’s exit and represent artificial uses for the return value and
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may-def side-effects. Subexits are located right before a call and complement the
callee’s entries; locally in the caller they act as use nodes. Subentries are located
immediately after a call and complement the callee’s exits; locally in the caller
they act as definition nodes.

A definition may be weak or strong. ISSA represents weak updates as defini-
tions with an incoming edge (similar to a φ node with one predecessor). Suben-
tries can also be weak or strong, depending on whether they represent a may- or
must-def side-effect. At direct calls, we always model them as strong updates: In
case a subentry v actually represents a may-def, there will be a data-flow path
d → u

∗→ v through the called function, where d is the reaching definition of v
and u a subexit at the same call site as v. This interprocedural path propagates
values (and thus pointer targets) like a local edge from d to v. Appendix A shows
an example ISSA graph. Notice that, for the purpose of propagating pointer tar-
gets, we could also use a reduced form only containing all kinds of definitions.

We briefly recap important SSA properties that will be used in our incremen-
tal ISSA construction: a definition (including φ nodes, entries and subentries)
dominates all of it uses, and a use node has exactly one definition. φ nodes reside
in the iterated dominance frontier of such a definition. We can treat a φ node as
combination of a definition and one use node per preceding basic block.

4.2 Incremental ISSA Construction

As with Andersen’s constraint graph, we construct the ISSA graph incrementally
during the analysis. Each iteration updates the graph based on new definitions
and uses reported by the previous propagation step. In the first iteration, we
treat all direct definitions and uses as new nodes in this sense.

The FS step 1 of our analysis loops over all new nodes and dispatches to
expert functions for every kind of node. These experts might add induced nodes
(such as φ nodes) to the set of new nodes, which will then be handled later in the
same step 1. The actions executed in the expert functions to update the ISSA
graph are inspired by Tok’s work [Tok07].

Some of them have to find the reaching definition for the new node. This is
where we benefit from the dominance properties and optionally respect strong
updates. The reaching definition has to dominate the new node; thus we can
use the CFG’s dominance tree: walking up that tree until we find a definition
(including φ nodes etc.) for the new node’s object is an efficient solution. Figure 2
shows this function, using Is Reaching Def to compare the objects of N and
IDom. It returns the reaching definition (if found) and a flag indicating whether
a potential strong update resides in between that definition and the new node.
If such a potential strong update later turns out to be in fact a strong update, it
will be the reaching definition instead of the returned node. We therefore do not
directly create the edge from the returned definition to the new node if indirect
strong updates should be supported. Section 4.3 will provide more details on
this strategy.

If the function could not find a reaching definition, we have to create an
artificial one, namely an entry node. For a local variable of a non-recursive
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function Find Reaching Def (N : Node ) return (Node , Boolean )
i s

IDom : Node := N. Dominator ; Blocked : Boolean := False ;
begin

while IDom 6= null loop
i f I s Reach ing Def (IDom , N) then return (IDom , Blocked ) ;
i f Support Strong Updates and not Blocked and IDom ∈ B then

Add N to IDom . Blocked Nodes ;
Blocked := True ;
i f not I s Gene ra l De f (N) then return (IDom , Blocked ) ;

end i f ;
IDom := IDom . Dominator ;

end loop ;
return (none , Blocked ) ;

end Find Reaching Def ;

Fig. 2. Searching the reaching definition via dominance tree

subprogram, this represents an uninitialized variable; otherwise it represents a
may-use side-effect on a non-local object and also causes a subexit at all call
sites to the function (the side-effect is propagated).

The following paragraphs provide details on the algorithms used to handle
the different kinds of nodes. For all of them, let n be the new node in function f .

New use nodes, subexits, and exits. Use Find Reaching Def to determine the
reaching definition d. If there is no potential strong update along the data-flow
edge d → n, then create the edge (if d =none, create an entry node and use it
as d). If n is an exit node on a non-local object, add corresponding subentries
at all relevant call sites, and link n to them.

New definitions and subentries. Add φ nodes in the dominance frontier of n
(it is not necessary to place them in the iterated dominance frontier: this will
happen automatically because the φ nodes in turn create other φ nodes in their
dominance frontier). Search the reaching definition d via Find Reaching Def. If
found, use the method shown in Figure 3 to adjust data-flow edges. Namely, if
u is some use node attached to d with n dom u (assuming explicit use nodes
at the end of preceding basic blocks for φ nodes), then move u from d to n: n
now resides in between d and u, and a new search for the reaching definition of
u would find n. This necessity for adjusting the data-flow edges is the reason
why Find Reaching Def returns a reaching definition even if there is a potential
strong update in between.

In case n is a weak update, insert a new edge d → n if there is no poten-
tial strong update in between. (To support indirect strong updates, an indirect
definition with exactly one target is seen as must-def; if later a second target
arrives, we also add this edge for the first target.) And finally, in case n defines
a non-local object, create an exit node if it not already exists.
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procedure Move Dominated Uses (From : Node ; To : Node )
i s
begin

for a l l U ∈ succ (From) loop
i f To dom U then

move U i n to succ (To ) ;
end i f ;

end loop ;
end Move Dominated Uses ;

Fig. 3. Move dominated use nodes to the new definition

New φ nodes. A new φ node acts like a definition in its basic block and like a use
node in all preceding basic blocks (the “entries” of n). Compared to a definition,
there are basically two differences:

1. No need to create an exit node for a side-effect (because the definition in-
ducing n already did it)

2. Use nodes of the reaching definition d for an entry of n may only be captured
by n if d dom n.

That is, as for a new definition, first create the induced φ nodes in the dominance
frontier. Then search the reaching definition d for every entry of n. If none found
and no potential strong update was found on the way, create an entry and use
it as d. Create the edge from d to the entry, if not blocked by a potential strong
update. In case d dom n (can happen for at most one definition), inspect their
use nodes to adjust the data-flow edges with Move Dominated Uses (d,n).

New entries. If n represents a non-local object, add the corresponding subexit
nodes at call sites to f and link them to n.

We emphasize that these simple actions result in flow-sensitive side-effects
without any complication by callgraph cycles. Moreover, there is no need for
a precomputed callgraph approximation or the computation of some traversal
order, as for example required by [CRL99].

We discussed one possible implementation for the problem of finding the
reaching definition. It is basically a linear search in the CFG’s dominance tree.
It might improve efficiency in practice if one does not search along the CFG’s
dominance tree, but instead uses different, small dominance trees per object
and function. Assume a pre- and postorder numbering of the CFG’s dominance
tree as for example used to perform dominance tests as constant-time interval
inclusion tests [TGL06]. This also assigns an interval to every definition. These
intervals can then be used to construct the reduced dominance tree per object
which only includes the object’s local definitions. Now the search for the reaching
definition at some node n basically locates n’s interval in the reduced dominance
tree for n’s object. This in general reduces the steps needed for the search.
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Replacing the CFG-based search also is in line with our general idea of
switching from the CFG to the data-flow representation. In fact, the reduced
dominance tree per object can be used as a compact representation of the ob-
ject’s data-flow. However, when potential strong updates should be respected,
an additional strategy of looking up the last node in B (see next subsection)
between two given intervals is needed. This amounts to representing the graph
B according to dominance relation using the intervals, too.

4.3 Support For Indirect Strong Updates

The basic idea of our strong updates extension is to treat potential strong up-
dates as real strong updates until the opposite is proven (by a second pointer
target). In the course of the analysis the number of pointer targets for an in-
direct definition increases monotonically. Therefore we only consider indirect
definitions without targets and with a single target as potential strong updates.
If there is already a single target, the indirect definition can only affect data-flow
edges for that target, and only if the single target allows strong updates (e.g.,
this excludes heap objects and locals of recursive programs). If there is no target
yet, we have to assume that the indirect definition might affect all objects for
which we support strong updates and which can be targets of pointers (it for
example cannot affect stack objects of which the address is never taken).

In a real execution, every definition d is a strong update and prevents the
data-flow from preceding definitions of the same object to subsequent uses. A
static analysis as ours overestimates the possible flows of control of all executions
and thus has no linear ordering of definitions and uses as in an execution. There-
fore, we have to restrict the set of “preceding” definitions and “subsequent” uses
to definitions definitively preceding d and uses definitively following d in all ex-
ecutions. These relations are mainly captured by the notion of interprocedural
dominance: we may only prevent data-flow edges from definitions p to use nodes
u with p dom d and d dom u.

For indirect definitions with a single target, we can fall back to local domi-
nance because of having side-effects and treating subentries as strong updates.
For indirect definitions without a target, we use a so-called blocking graph B to
achieve the same. A node in B represents a CFG position where a strong update
or a node induced by such a definition might appear. As shown in Figure 2,
the search for the reaching definition basically stops at such a node to prevent
data-flow edges from preceding definitions. Once a first target for an indirect
definition is found, it (and induced nodes) will be removed from B. Then we
restart the search for the reaching definition for all nodes remembered in the
removed nodes’ sets Blocked Nodes. Edges in the blocking graph point from a
node to nodes induced by it.

To create B, we initially (in the preparation) add all indirect definitions. Then
we create the closure of induced nodes: if a node v ∈ B residing in function f
dominates f ’s CFG exit, all call sites to f have to be added to B because
a subentry for a must-def side-effect might appear there (v will be executed
definitively when the call site is reached). Moreover, for all v ∈ B, the beginning

9



procedure Create Blocking Graph
i s
begin

Nodes := Edges := Phis := Phi Pred ( ·) := ∅ ;
for a l l v ∈ I n d i r e c t D e f i n i t i o n s loop

add v to Nodes ;
end loop ;
−− add nodes induced by new nodes
for a l l new v ∈ Nodes loop

for a l l w ∈ DF (v) loop
i f w ∈ Nodes then

for a l l p ∈ pred (w ) , v dom p loop
add v → w[p] to Edges ;

end loop ;
else

i f w ∈ Phis then
for a l l p ∈ pred (w ) , v dom p loop

add v to Phi Pred (w, p ) ;
end loop ;
i f Phi Pred (w, p) 6= ∅ ∀p ∈ pred (w ) then

move w to Nodes and Phi Pred (w, ·) to Edges ;
end i f ;

else
add w to Phis ;
for a l l p ∈ pred (w ) , v dom p loop

Phi Pred (w, p) := {v} ;
end loop ;

end i f ;
end i f ;

end loop ;
i f v dom CFG Exit (func(v)) then

for a l l c ∈ c a l l s to func(v) loop
i f c 6∈ Nodes then

add c to Nodes ;
end i f ;
add v → c to Edges ;

end i f ;
end i f ;

end loop ;
use Tarjan ’ s a lgor i thm to compute SCC−DAG;

end Create Blocking Graph ;

Fig. 4. Construction of the initial blocking graph
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of basic blocks in the iterated dominance frontier for v has to be added to B
because a φ node might appear there. However, we may only include places where
the potential φ node would be created because of nodes in B for all preceding
basic blocks (otherwise it will not be a strong update).

procedure Update Blocking Graph (V : Node )
i s
begin

for a l l (N, E) ∈ V. Blocked Nodes loop
−− r e s t a r t search f o r reach ing d e f i n i t i o n
i f I s Phi Node (N) then

Postponed New Phi (N, E) ;
e l s i f I s D e f i n i t i o n O r S u b e n t r y (N) then

Postponed New Def (N) ;
else

Postponed New Use (N) ;
end i f ;

end loop ;
remove V from Nodes (B ) ;
for a l l S ∈ succ(V ) loop

S . Incoming Edges := S . Incoming Edges − 1 ;
i f S . Incoming Edges = 0 then

Update Blocking Graph (S ) ;
e l s i f I s Ph i Candidate (S) and then

not ∀p ∈ pred (S) ∃pred (S, p)∈ B
then

Update Blocking Graph (S ) ;
end i f ;

end loop ;
end Update Blocking Graph ;

Fig. 5. Updating the blocking graph when a first target arrives at V

Figure 4 presents the algorithm for creating B. Notice that we compute the
SCC-DAG of B to be able to update i correctly in case of cycles. Figure 5 shows
the function we call once a first target arrives at an indirect definition. This
function updates B (using the SCC-DAG) to remove the indirect definition and
all induced nodes. For every node removed in this way, we reconsider the blocked
nodes (which in turn basically searches the reaching definition again).

5 Context-Sensitive Propagation Step

Reps [Rep98] already showed how IFDS [RHS95] can be used to achieve MOVP
precision for FI-Andersen. We focus on applying IFDS to FS-Andersen. For this
purpose, this section describes the MOVP version of step 2 for the analysis.
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5.1 IFDS

IFDS was designed to compute the MOVP solution for data-flow problems on
the interprocedural CFG (ICFG; “supergraph” in [RHS95]). For that, it creates
the exploded ICFG by duplicating each ICFG node with all possible data-flow
facts (adding one special fact λ). The problem’s transfer functions then translate
to minigraphs connecting the data-flow fact nodes for two subsequent ICFG
nodes. Together they constitute the exploded ICFG’s edges. Finally, the so-
called tabulation algorithm solves a special graph reachability problem on the
exploded ICFG to compute the MOVP solution.

In our case, we have to compute the MOVP solution on the ISSA graph.
Analogously to the ICFG version, we create the exploded ISSA graph in an-
notating each node with all possible pointer targets. The transfer functions are
simple, namely the identity for most ISSA edges, and a constructor for a given
pointer target if the node creates it via address-taking or heap allocation.

However, applying the tabulation algorithm to this only computes the tran-
sitive closure for the current iteration. We need the dynamic transitive closure,
and there seems to be no good incremental version of the tabulation algorithm.
Moreover, we want to optionally distinguish heap allocations in the calling con-
text. This and the desire to have an algorithm similar to the depth-first search
(DFS) used for the MOP solution led us to a new algorithm.

5.2 Propagation with Abstract and Concrete Targets

Our approach distinguishes abstract and concrete pointer targets. An abstract
target is always connected to some entry node: it is a placeholder for all pointer
targets of that entry and thus represents a set of context-dependent targets. An
abstract target for an entry of function f is only used at ISSA nodes in f . Once
an abstract target for entry e arrives at a local exit node x, we have a summary
edge e → x that we store at e. Likewise we store shortcut edges from entries
to local subexits and to local dereferences. Definitions (including φ nodes etc.)
now have both a set of concrete and abstract targets to denote their points-to
set. At a dereference pointing to an abstract target, we create ISSA nodes for
all targets of the corresponding entry.

The propagation of pointer targets correspondingly consists of two different
DFS routines: one for concrete targets, and the other one for abstract targets.
Concrete targets are context-independent and thus basically propagated as usual;
the exception is at call sites where they should be translated into an abstract
target for the callee. Here we distinguish two cases:

1. If the callee’s entry has not been visited yet, we simply process it using the
DFS for abstract targets.

2. Otherwise we use the entry’s summary and shortcut edges:
– If the concrete target is not already known at the entry, propagate it to

dereferences (locally and in transitive callees) using shortcut edges.
– For all exits reachable via summary edges from the entry, continue the

DFS for the concrete target at the caller’s subsequent subentry.
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The propagation of abstract targets has to translate the target both at call
sites and after returning from the function. Let e be the entry of function f to
which the current abstract target is connected. At a call site, we proceed similar
to a concrete target, except that we have to use the shortcut edges for all targets
of e if there is no current concrete target (may happen in the incremental setup).
At an exit node x, we now respect the semantics of function calls: at a subentry
node following x in some caller, the abstract target translates to all targets of e
coming from that call site. To realize this, we simply inspect the points-to set of
the subexit preceding e at the given call site (stored at the subexit’s definition).

The differentiation of abstract and concrete targets allows us to distinguish
context-dependent and context-independent targets. This in turn allows us to
distinguish heap allocations in the calling context: if a concrete target at some
exit node stems from a locally allocated heap object, we can create subobjects
per subentry following the exit node. For a subobject, the subentry then acts as
the allocation site, so that the simple strategy also works transitively. However,
we have to be careful within callgraph cylces and if more than one exit of the
same function propagates the same heap object (here we should use only one
subobject per caller).

This sketches our new algorithm. Notice that strong updates can be sup-
ported as in the context-insensitive version, since that only affected step 1. It is
not difficult to derive an incremental version of the propagation: for this, step 1
of the analysis collects a list of new edges, and step 2 processes this list. For each
new edge u→ v, the propagation starts for all concrete and abstract targets of
u not yet present at v, with some care at interprocedural edges (to simulate
the actions described above). Appendix C contains an example to illustrate our
ideas.

Figures 6 and 7 show the general algorithms for the two DFS. The current
concrete target is stored in the global variable Current Target, whereas the cur-
rent abstract target is stored in Current Entry. The function Heap Refinement
is used to distinguish heap allocations in the context. It basically creates a new
subobject for the given heap object. The Visit * Node functions for definitions
check whether we already visited that node with the current target, to avoid
endless recursion and doing the same work again. At a dereference, the current
target is used to create a new ISSA node. The context-sensitive case is shown in
Figure 8.

At an exit node, the propagation for an abstract target executes the special
actions shown in Figure 9 to respect the semantics of function calls. At a subexit,
both kinds of propagations have to translate the current target into the abstract
target of the callee, if not yet visited. Otherwise shortcut and summary edges
must be used. Figure 10 shows these actions for the context-sensitive case, while
Figure 11 shows it for the case of a concrete target arriving at the subexit. The
utility function to use shortcut edges is shown in Figure 12.
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procedure V i s i t C I (V : Node ) i s
begin

i f I s D e r e f e r e n c e (V) then
Add Target (V, Current Target ) ;

e l s i f I s S u b e x i t (V) then
V i s i t C I S u b e x i t (V) ;

e l s i f I s E x i t (V) and then
I s L o c a l l y A l l o c a t e d (V, Current Target )

then
Heap Refinement (V) ;

else
i f Vis i t CI Node (V) then

return ;
end i f ;
for a l l S∈succ (V) loop

V i s i t C I (S ) ;
end loop ;

end i f ;
end V i s i t C I ;

Fig. 6. DFS for the propagation of concrete targets

procedure Vis i t CS (V : Node ) i s
begin

i f I s D e r e f e r e n c e (V) then
Vis i t CS Dere f e r ence (V) ;

e l s i f I s E x i t (V) then
Vis i t CS Ex i t (V) ;

e l s i f I s S u b e x i t (V) then
Vis i t CS Subex i t (V) ;

else
i f Visit CS Node (V) then

return ;
end i f ;
for a l l S∈succ (V) loop

Vis i t CS (S ) ;
end loop ;

end i f ;
end Vis i t CS ;

Fig. 7. DFS for the propagation of abstract targets
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procedure Vis i t CS Dere f e r ence (V : Node ) i s
begin

Add V to Dere f s ( Current Entry ) ;
i f Current Target = None then

for a l l T∈Targets ( Current Entry ) loop
Add Target (V, T) ;

end loop ;
else

Add Target (V, Current Target ) ;
end i f ;

end Vis i t CS Dere f e r ence ;

Fig. 8. Actions for an abstract target at a dereference

procedure Vis i t CS Ex i t (V : Node ) i s
Old Entry : constant Entry := Current Entry ;

begin
Add V to Exi t s ( Current Entry ) ;
for a l l S∈Succ (V) loop

P := Pred ( Old Entry ) at C a l l s i t e (S ) ;
for a l l T∈Abstract Targets (P) loop

Current Entry := T;
Vis i t CS (S ) ;

end loop ;
i f Current Target = None then

for a l l T∈Targets (P) loop
Current Target := T;
V i s i t C I (S ) ;

end loop ;
Current Target := None ;

e l s i f Current Target∈Targets (P) then
V i s i t C I (S ) ;

end i f ;
end loop ;
Current Entry := Old Entry ;

end Vis i t CS Ex i t ;

Fig. 9. Respecting function call semantics at an exit node
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procedure Vis i t CS Subex i t (V : Node ) i s
Old Entry : constant Entry := Current Entry ;

begin
Add V to Subex i t s ( Current Entry ) ;
for a l l S∈Succ (V) loop
−− S i s an entry node
i f #Targets (S) = 0 then

i f Current Target = None then
for a l l T∈Targets ( Old Entry ) loop

Add T to Targets (S ) ;
end loop ;

else
Add Current Target to Targets (S ) ;

end i f ;
Current Entry := S ;
Vis i t CS (S ) ; −− c r e a t e s summaries , v i s i t s s u c c e s s o r s

else −− use summaries
−− propagate t a r g e t ( s ) down
i f Current Target = None then

for a l l T∈Targets ( Old Entry ) loop
i f T6∈Targets (S) then

Propagate Down (S , T) ;
end i f ;

end loop ;
else

i f Current Target 6∈Targets (S) then
Propagate Down (S , Current Target ) ;

end i f ;
end i f ;
−− cont inue propagat ion at curren t c a l l s i t e
for a l l X∈Exit s (S) loop

N := Succ (X) at C a l l s i t e (V) ;
Vis i t CS (N) ;

end loop ;
end i f ;

end loop ;
Current Entry := Old Entry ;

end Vis i t CS Subex i t ;

Fig. 10. Actions when an abstract target arrives at a subexit
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procedure V i s i t C I S u b e x i t (V : Node ) i s
begin

for a l l S∈Succ (V) loop
−− S i s an entry node
i f #Targets (S) = 0 then

Add Current Target to Targets (S ) ;
Current Entry := S ;
Vis i t CS (S ) ; −− c r e a t e s summaries , v i s i t s s u c c e s s o r s

else −− use summaries
−− propagate t a r g e t down
i f Current Target 6∈Targets (S) then

Propagate Down (S , Current Target ) ;
end i f ;
−− cont inue propagat ion at curren t c a l l s i t e
for a l l X∈Exit s (S) loop

N := Succ (X) at C a l l s i t e (V) ;
V i s i t C I (N) ;

end loop ;
end i f ;

end loop ;
end V i s i t C I S u b e x i t ;

Fig. 11. Actions when an concrete target arrives at a subexit

procedure Propagate Down (E : Entry ; T : Object ) i s
begin

for a l l S∈Dere f s (E) loop
Add Target (S , T) ;

end loop ;
for a l l X∈Subex i t s (E) loop

for a l l S∈succ (X) loop
i f #Targets (E) > 0 and then

T6∈Targets (E)
then

Propagate Down (S , T) ;
end i f ;

end loop ;
end loop ;

end Propagate Down ;

Fig. 12. Using shortcut edges to propagate a new target for an entry
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6 Correctness of the Flow-Sensitive Andersen Analysis

Termination of the analysis is obvious: the data-flow graph grows monotonically
(since an edge is only replaced or refined by a path), and a finite upper bound
is given by the complete graph using every object as possible pointer target.
However, using unsound intermediate results requires a closer look at the cor-
rectness of the analysis. We thus provide a formal correctness proof, at first for
the context-insensitive version without strong updates. Strong updates will be
considered later, and the correctness of the context-sensitive version stems from
that of IFDS.

Let E be an execution of the program being analyzed, executing read and
write accesses V = v1, . . . , vn in this order. For each vi ∈ V let mem(vi) be
the memory location accessed (extensions to structured memory blocks can be
added easily). For a read access vi ∈ V let def(vi) be the write access on the
same memory location having the largest subscript smaller than i, thus defining
the value read by vi. In case there is no such write access, and for vi being a
write access, let def(vi) undefined.

Definition 1. The execution graph Gexe(E) consists of the nodes V and the
edges given by def(vi)→ vi for all i ≤ n such that def(vi) is defined.

For simplicity, we assume a language without pointer arithmetics or parallelism.
We also require the full intermediate representation (IR) or suitable summaries
for missing parts to be available to the analysis. We assume E does not derefer-
ence a pointer without valid target, because then the behaviour is undefined.

Let O be a mapping from memory locations to analysis objects, assigning
a single analysis object to every mem(vi). Applying O normally maps several
different memory locations to the same object, merging different nodes of Gexe

into one.

Definition 2. Two nodes vi, vj ∈ Gexe are equivalent if they are the same kind
of access, have the same position in the IR, and if O(mem(vi)) = O(mem(vj)).
We denote the equivalence class of vi by [vi].

Now define G′exe to be the execution graph where equivalence classes of nodes
are collapsed into single nodes. Let Gana be the data-flow graph computed by our
analysis (irrespective of the concrete shape, i.e. we may assume direct connec-
tions between definitions and uses instead of ISSA form). We inductively show
G′exe ⊆ Gana, thereby proving correctness. The induction considers the vi in turn
and shows both [vi] ∈ Gana and that we know the pointer target of this node
in case it is a pointer access. Assuming correctness of the reaching-definitions
analysis, this implies that Gana also includes the edges of G′exe.

The induction starts with v1. v1 as the first action in E cannot be pointer-
indirect, thus [v1] is included in the initial data-flow graph. If v1 is a pointer
definition, the target must be literally there in the source code and is thus known
to the analysis.
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Symbol Meaning

n, m nodes / edges of the ISSA graph
tcalls targets for indirect calls
nir nodes in the input IR
tinitial potential targets
f, c subprograms and call sites
g non-local objects
i number of iterations

Table 1. Symbols used to determine the complexity

Now consider some vi ∈ Gexe. If vi is not the result of some pointer derefer-
ence, [vi] is already added toGana at the beginning. Otherwise there is a vj , j < i,
being a pointer dereference resulting in vi. Inductively, we have [vj ] ∈ Gana and
know the target, i.e., O(mem(vi)). But this results in the creation of the pointer-
indirect node [vi] in step 2 of some iteration.

Thus in all cases, [vi] ∈ Gana, and by applying a reaching-definitions analysis
also [def(vi)] → [vi] ∈ Gana for a read access. By induction we then know the
target of [def(vi)], and thus the next execution of step 2 propagates this target
to [vi]. Similarly, the target for a write access is either literally given or comes
from the (use node of the) right-hand side of the assignment. This proves:

Theorem 1. The analysis terminates with sound results.

6.1 Correctness with Strong Updates

Consider [vj ] → [vi] ∈ G′exe for some vi, vj ∈ Gexe with j < i. By induction,
we still have [vi], [vj ] ∈ Gana, and we know the pointer target at [vj ]. The
edge [vj ] → [vi] now might be delayed by an indirect definition without targets
or with a single target. But because of interprocedural dominance, E executed
that indirect definition as some vk before vi (k < i), and likewise j < k. By
induction, we already know at least one target for [vk]; thus, if the data-flow
edge is affected, O(mem(vk)) = O(mem(vi)) and therefore vj 6= def(vi). That
means: it is correct for that situation not to create [vj ]→ [vi] if we have exactly
one target for [vk]. If E later executes other elements of the same equivalence
class, a second target for [vk] (if applicable) makes the indirect definition weak
and also creates the edge.

7 Complexity of the Flow-Sensitive Andersen Analysis

We use the symbols explained in table 1 to compute the size of the results and the
flow-sensitive analysis’ complexity. It is reasonable to assume that, as programs
grow, the number of subprograms increases – but neither the number of param-
eters nor the number of statements per subprogram. Under this assumption,
the number of parameters as well as the size of dominance trees and dominance
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frontiers are bounded by constants per subprogram. We again start with the
context-insensitive version without strong updates, and add these aspects later.
For the field-sensitive version, g grows, but can still be bound by nir, so that we
assume no impact on the asymptotic complexity.

7.1 Size of the results

Lemma 1. The ISSA graph has at most n ∈ O(g ∗ f) nodes.

Proof. Within a subprogram, there is at most one node per expression (two for
calls) for a locally accessed object. Additionally, there can be one φ node per
object and basic block. The number of local nodes for an object is thus linear in
the size of a subprogram, which is a constant. At most g + const many objects
are locally visible per subprogram.

In the following, let |CG| = f + c + tcalls be the size of the callgraph. In
practice we find tcalls � nir and thus a linear bound on |CG|.

Lemma 2. The ISSA graph has at most m ∈ O(g ∗ |CG|) edges.

Proof. For a call edge we have only constantly many edges for parameter pass-
ing and two per non-local object. The number of interprocedural edges is thus
bounded by O(g ∗ (c + tcalls)). There are only constantly many edges for copy
assignments in a subprogram, and thus at most O(f) of them in total. Defini-
tions, uses, subexits, and exits have at most one incoming edge. φ nodes have
one incoming edge per preceding basic block, but this again is a constant. With
the previous lemma we therefore have at most O(g ∗ f) intraprocedural edges.

7.2 Runtime

Theorem 2. The runtime is in O(tinitial ∗ g ∗ |CG|).

Proof. Instead of counting iterations and determining the costs per iteration, we
compute the sum for step 1 of all iterations (σ1) and likewise the sum for step
2 of all iterations (σ2). Initialization is linear in the program size. It is therefore
negligible and the complexity is given by σ1 + σ2.

Step 1. Step 1 considers every node of the final ISSA graph once, giving n
steps through the worklist. Searching for a reaching definition has constant costs
because of the constant height of a (precomputed) dominance tree. All these
searches therefore have total costs of O(n) (constantly many searches per node).
Adding subentries, subexits, and their connections to exits and entries costs
O(g ∗ |CG|). The size of a (precomputed) dominance frontier is a constant. The
costs for adding φ nodes are thus given by O(n). The number of uses connected
to a definition, φ node, entry, or subentry is a constant because there are at most
constantly many nodes per subprogram and object. Since a dominance test is in
O(1), capturing dominated uses therefore has costs of O(n). Using the lemmas
we thus find σ1 ∈ O(n+m) = O(g ∗ |CG|).
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Step 2. Let us assume an incremental propagation which operates on the list of
newly added edges and stores already propagated targets at all kinds of defini-
tions. It considers every edge only once as new and thus as starting point for a
propagation of targets. But because we store the targets at the nodes, an edge is
visited only once per target over all iterations. Then σ2 = O(tinitial ∗ (n+m)),
which proves the theorem.

Corollary 1. FS-Andersen has the same complexity as FI-Andersen.

Proof. Using tcalls � nir, we have tinitial, g, f, c, tcalls � nir.

Thus, as with FI-Andersen, the propagation dominates the runtime and
makes both FI-Andersen and FS-Andersen cubic algorithms. FS-Andersen of
course offers higher precision and additionally comes up with a full data-flow
representation. In practice, online cycle detection proved useful to accelerate FI-
Andersen, so we expect similar benefits for FS-Andersen; however, it does not
improve the complexity.

7.3 Complexity with Strong Updates

Treating indirect definitions with a single target as strong updates does not cause
any more costs. For indirect definitions without targets, we have the costs of
managing the blocking graph B and restarting the search for a reaching definition
once a first target is known.

Creating and maintaining the blocking graph B adds and removes every indi-
rect definition, call site, and basic block beginning at most once. It is thus linear
in the size of the callgraph (without indirect calls) plus the number of indirect
definitions. In terms of complexity, this is already captured by the initialization’s
complexity.

The search for a reaching definition of some node u can be restarted several
times, but at most once for all local dominators. This number is a constant, and
a single search also has constant costs. Respecting indirect definitions without
targets thus adds costs of O(n).

Summing all up, we can see that the strong updates extension actually does
not increase the analysis’ complexity.

7.4 Complexity for Context-Sensitive Version

The context-sensitive extension computes summary edges which we add to m.
We can have at most g2 summary edges per call site. Thus, we now have m ∈
O(g ∗ |CG| + g2 ∗ c). We consider the version without context-sensitive heap
allocations.

Propagating concrete targets is a normal DFS if we ignore the actions at
subexits. We therefore account for it with costs O(tinitial ∗ (n + m)). This also
holds for abstract targets if we ignore the actions at (sub)exits and entries, but
this time we visit a node at most once per local entry. Since there are at most
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g entries per function, this adds O(g ∗ (n + m)). An entry is visited once per
initial target; the down-propagation along shortcut edges visits at most all local
subexits from every entry. The terms used so far for the propagation thus already
account for these costs.

At an exit, we at most loop over all successors of the exit for all g entries.
Here we have costs g per edge to a successor, so we add O(g2 ∗ (c+ tcalls)). At
a subexit we inspect reachable exits if the following entry e was already visited.
When the summary edges to these exits were stored at e, the subexit did not
carry the abstract or concrete target that we currently propagated to the subexit.
Thus, the costs are accounted for by doubling the costs for exits. Summing all
up gives the time bound of

O((g + tinitial)(n+m) + (c+ tcalls)g2).

Again, the incremental version of the propagation achieves the same time
bound over all iterations as one run over the final graph would have. With the
bounds for n and m, and using tinitial < g, we find:

Theorem 3. FS-MOVP-Andersen has the complexity O(g2 ∗ |CG| + g3 ∗ c),
which is in O(n4

ir).

8 Summary, Future Work and Conclusions

In this paper we presented a novel combined analysis which simultaneously com-
putes pointer targets and a data-flow representation. From a pointer analysis
perspective, it is a sparse flow-sensitive version of the most influential analysis
as invented by Andersen. Despite the higher precision it has the same cubic com-
plexity and thus might clear the way for widespread use of flow-sensitivity. From
a data-flow analysis perspective, it is a cubic algorithm to compute interproce-
dural SSA form (including side-effects) from scratch, respecting pointer-indirect
operations with high precision.

In contrast to most other flow-sensitive pointer analyses, our analysis is truly
sparse: it does not solve an expensive (non-monotone, non-distributive) data-flow
problem on the CFG, but instead solves (monotone and distributive) standard
dynamic transitive closure on the data-flow graph. To be even more sparse, we
were able to use SSA form as the shape of this data-flow graph for all objects.
Operating on a data-flow graph has the advantage that we have to store the
targets for the single object represented at a data-flow node only. In contrast,
CFG-based analyses have to manage points-to relations for all objects at all
CFG nodes. Moreover, CFG-based propagation is more complicated, while we
have to solve a standard problem. We expect that the numerous published ideas
to accelerate the computation of dynamic transitive closure for FI-Andersen are
also highly applicable to our FS-Andersen analysis.

This directly leads over to the next step of our work, namely an empirical
evaluation. We are currently in the progress of implementing and evaluating the

22



generalized analysis as outlined in Section 3. This will allow us to directly com-
pare FI-Andersen and FS-Andersen with different settings for field- and context-
sensitivity. Preliminary results show that FS-Andersen is able to analyze at least
200 KLoC even without BDDs and any cycle detection or similar accelerations.
This would be substantially better than previous non-BDD-based flow-sensitive
analyses.

The context-sensitive version of our analysis for the first time gave a O(n4)
bound on the FS-MOVP pointer problem. This improves the previous O(n6)
bound found by Landi. Future work will try to use our abstract targets to im-
prove the precision even further with two ideas:

1. In alias-free situations we might use abstract targets as objects for ISSA
nodes, not just for pointer targets. This reduces the size of the graph and
allows a more precise propagation of side-effects to only those callers that
cause the side-effect.

2. Abstract targets might also be useful in the search for strategies to support
strong updates for heap objects: a single abstract target at a dereference may
be used to detect a local strong update irrespective of the entry’s concrete
targets. However, the side-effect might not be strong, so that additional
strategies are needed.

Our promising results encourage us to investigate further the benefits of our
combined analysis as a solution to the hot core topics of program analysis. The
work presented in this report is part of the author’s PhD thesis which is expected
to be finished in summer 2009. The thesis will describe the ideas of this report
in more detail and it will contain the results of our empirical evaluation.
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Appendices

A Example ISSA Graph

Figure 13 shows an excerpt of an example program that we use throughout the
appendices to illustrate the analysis. Both h and k call g which in turn calls
f . The most interesting points are the indirect definitions in f and g and the
impact of how precise we capture them.

int ∗∗p , ∗∗q ;
int ∗x ,∗ y ;
int a , b ;
void f ( ) {∗∗p = 1 ; q = p ;}
void g ( ) {x = &a ; f ( ) ; ∗x = 3 ;}
void h ( ) {a = 4 ; p = &x ; g ( ) ; x = ∗q ; b = a ;}
void k ( ) {b = 2 ; p = &y ; y = &b ; g ( ) ; y = ∗q ;}

Fig. 13. Example program

Figure 14 shows the interprocedural SSA graph for the example as computed
with the context-insensitive FS-Andersen analysis. We can see a few (sub)entries
and (sub)exits for side-effects as well as the definitions and uses for direct and
indirect operations. Edges are oriented in data-flow direction and are also shown
for the data-flow from right to left at an assignment. We do not show interpro-
cedural edges in order to avoid an overcrowded diagram. They would connect a
caller’s subexits with the callee’s entries, and the callee’s exits with the caller’s
subentries.

The context-insensitive version determines both x and y as targets for p and
q. In f , this results in an indirect definition for both a and b. The corresponding
side-effects propagate back to all callers. Context-insensitive, dereferencing q in
h and k yields two targets, but one of them is a result of invalid paths. Without
the support for strong updates, all indirect definitions are weak. This causes the
indirect definition for a in g to be weak although in fact we have only one target
that would allow a strong update.

Notice that, if for example the use(q) in h is considered first in iteration 1, it
causes a local entry(q) to be created; later, once the side-effect on q is propagated
(within the same iteration), the corresponding subentry(q) captures the use
node. The final pruning then removes entry(q) because it has no outgoing edges.
Similarly, there is no subentry(b) in h because the final pruning removed it. The
ISSA graph shown in the figure assumes that all exit nodes of h and k are used
in some caller; otherwise, pruning would affect them, too.
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entry (p) entry (x) entry (y) entry (a) entry (b)

use (p) use (x) use (y) def (b)def (a)
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exit (x)

def (a)

h

Fig. 14. ISSA graph for the example program without interprocedural edges
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B Example with Strong Updates

Table 2 shows the initial blocking graph B for the example program. It contains
all indirect definitions and the side-effects that could be induced by them. As
soon as a target for an indirect definition is found, it will be removed from the
graph, including outgoing edges and induced nodes which then no longer have
incoming edges.

The effect of the blocking graph as respected in the search for the reaching
definition is for example that the use(a) in h will be blocked at the preceding call
to g. The table also shows this set of blocked nodes per node in B. Remember
that only ISSA nodes for potential pointer targets can be blocked. Since the
program never takes the address of p and q, they cannot be targets. Thus, all
nodes referring to them will never be blocked.

Node Position Induced nodes Blocked Nodes

1 **p = 1 3 -
2 *x = 3 4, 5 exitg(x)
3 subentry after call to f 4, 5 useg(x)
4 subentry after call to g

in h
- useh(a), useh(q)

5 subentry after call to g
in k

- usek(q), exitk(y), exitk(b), exitk(x)

Table 2. Initial blocking graph and nodes blocked in iteration 1

Delaying the search for a reaching definition (temporarily) reduces the num-
ber of data-flow edges and thus the paths along which pointer targets are propa-
gated. In this case, the first iteration still propagates both x and y as targets for
p to **p = 1, but no targets arrive at any indirect definition. The second itera-
tion transitively connects the indirect uses for x and y in f with their definitions
in g and k, respectively. This allows the propagation of a and b as targets for the
indirect definition in f . This in turn removes nodes 1 and 4 from the blocking
graph. The following step 1 then again searches the definition for the previously
blocked node useg(x) (and succeeds), which also allows the propagation of the
single target a to *x = 3. At this time, all remaining nodes will be removed
from B. *x = 3 then has only one target and is thus considered a strong update
– no edge to the preceding subentry for a will be created, and this will remain
in effect until the fixpoint is reached. As a consequence, the subentry has no
outgoing edge and can be pruned, which in turn also prunes all nodes of a in f
as they are unused. Continuing the pruning removes all remaining nodes of a in
g and then determines the definition for a in h as unused; in k, subexit and entry
for a will be removed. Thus, in the end the small improvement of respecting the
indirect strong update removes a substantial part of the ISSA graph. Figure 15
shows the resulting graph, again without interprocedural edges.
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Fig. 15. ISSA graph for the example when strong updates are supported
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C Context-Sensitive Example

Using our context-sensitive propagation increases the precision for the example
both with and without strong updates. Let us first consider the situation without
strong updates. In function f we now propagate the abstract target correspond-
ing to entryf (p) to q’s definition and thus to exitf (q). At the call site in g,
this translates to whatever we passed as targets to entryf (p) – in this case, the
abstract target corresponding to entryg(p). This in turn arrives at exitg(q) and
needs to be translated similarly at the call sites in h and k. That is where the in-
creased precision comes in: in h, we only had x as a target, and in k we only had
y. Therefore, q in both functions now only points to a single target, whereas the
context-insensitive version determined two targets. A subsequent optimization
now could remove both y = *q and x = *q because they only assign a variable
to itself. Figure 16 shows the result. For clarity we also annotated the definitions
and subentries with their points-to sets. Notice that although we were able to
improve the points-to sets, for example the side-effect on y is still propagated to
both h and k.

Figure 17 shows the result for the combination of both extensions, strong
updates and context-sensitive propagation. Here the effects also combine: the
indirect strong update for a allows to prune several nodes, and the higher pre-
cision in propagation reduces the targets for q.
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Fig. 16. ISSA graph for the example with context-sensitive propagation
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Fig. 17. ISSA graph with context-sensitive propagation and strong updates
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