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Abstract

Abstract. We give topological and algebraic characterizations as well as language theo-
retic descriptions of the following subclasses of first-order logic FO[<] for ω-languages: Σ2,
FO2, FO2 ∩ Σ2, and ∆2 (and by duality Π2 and FO2 ∩ Π2). These descriptions extend the
respective results for finite words. In particular, we relate the above fragments to language
classes of certain (unambiguous) polynomials. An immediate consequence is the decidabil-
ity of the membership problem of these classes, but this was shown before by Wilke [28]
and Bojańczyk [2] and is therefore not our main focus. The paper is about the interplay of
algebraic, topological, and language theoretic properties.

1 Introduction

The algebraic approach is fundamental for the understanding of regular languages. It has been
particularly fruitful for fragments of first-order logic over finite words. For example, a result of
Wilke and Thérien is that FO2 and ∆2 have the same expressive power [22], where the latter class
by definition denotes Σ2 ∩ Π2. Further results are language theoretic and (very often decidable)
algebraic characterizations of logical fragments, see e.g. [21] or [8] for surveys. Several results
for finite words have been extended to other structures such as trees and other graphs, see [26]
for a survey. More recently, FO2, ∆2, and Σ2 have been characterized for Mazurkiewicz traces
[9, 13]; ∆2 and the Boolean closure of Σ1 have been characterized for unranked trees [3, 4]. For
some characterizations over finite words, it has been shown that they cannot be generalized; e.g.
over unranked trees, it turned out that FO2 and ∆2 are incomparable [1]. For infinite words, the
expressive power of FO2 is not equal to ∆2, since saying that letters a and b appear infinitely
often, but c only finitely many times is FO2-definable, but there is neither a Σ2-formula nor a
Π2-formula specifying this language.

Our results deepen the understanding of first-order fragments over infinite words. A decidable
characterization of the membership problem for FO2 over infinite words has been given in the
habilitation thesis of Wilke [28]. Recently, decidability for Σ2 has been shown independently by
Bojańczyk [2]. Language theoretic and decidable algebraic characterizations of the fragment Σ1

and of its Boolean closure can be found in [15, 17].
We introduce two generalizations of the usual Cantor topology for infinite words. One of our

first results is a characterization of languages L ⊆ Γ∞ being Σ2-definable. This characterization
consists of two components: The first one is an algebraic property of the syntactic monoid and the
second part is requiring that L is open in some alphabetic topology. Both properties are decidable.

Our second result is that a regular language is FO2-definable if and only if its syntactic monoid
is in the variety DA. (The result is surprising in the sense that it contradicts an explicit statement
in [28]). Moreover, we show that FO2-definability can be characterized by being closed in some
further refined alphabetic topology and in terms of weak recognition by some monoid in DA.
In particular, weak recognition and strong recognition do not coincide for the variety DA. This
seems to be a new result as well. We also contribute a language theoretic characterization of
FO2 in terms of unambiguous polynomials with additional constraints on the letters which occur
infinitely often.

Other results of our paper are the characterization of FO2 ∩ Σ2 as the class of unambiguous
polynomials and of ∆2 in terms of unambiguous polynomials in some special form and also in
terms of deterministic languages. It follows already from this description that ∆2 is a strict subset
of FO2. Furthermore, we show that the equality of FO2 and ∆2 holds relativized to some fixed
set of letters which occur infinitely often. If this set of letters is empty, we obtain the situation
for finite words as a special case. Finally, we relate topological constructions such as interior and
closure with membership in the fragments under consideration. Among other results, we are going
to explain the following relations between the fragments FO2, Σ2, Π2, and ∆2 = Σ2 ∩ Π2 (for
completeness we included the fragments Σ1, Π1, and their Boolean closure BΣ1 in the picture):
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Here Γ = {a, b, c} and

L1 = “there exists a factor ab” = Γ∗abΓ∞,
L2 = “finitely many a’s” = Γ∗ {b, c}∞,
L3 = “finitely many a’s and infinitely many b’s” = L2 ∩ L8,
L4 = “the first a occurs before the first b” = c∗aΓ∗bΓ∞,
L5 = “some a occurs before some b but no c occurs before some a”

= Γ∗aΓ∗bΓ∞ ∩ {a, b}∗ a {b, c}∞ = L6 ∩ L7,
L6 = “some a occurs before some b” = Γ∗aΓ∗bΓ∞,
L7 = “no c occurs before some a” = {a, b}∗ a {b, c}∞ ∪ {b, c}∞,
L8 = “infinitely many b’s” = (Γ∗b)ω,
L9 = “there is no factor ab” = Γ∞ \ L1.

The intersection ∆1 = Σ1 ∩ Π1 contains only the trivial languages ∅ and Γ∞. It will turn out
that L8 is the closure of L3 within some alphabetic topology, whereas L2 is not the interior of L3

since L3 ( L2. In fact, the interior of L3 (as well as of any other language in Γω) with respect to
our topology is empty. A brief summary of the results for the various fragments can be found in
Section 7 at the end of this paper.

For basic notions on languages of infinite words we refer to standard references such as [15, 24].
Most results of the present paper are from its conference version [10], but for lack of space they
appeared in many cases without proof. The present journal version gives full proofs and some
new material. In particular, we give a new characterization of ω-regular ∆2-languages involving
deterministic and complement-deterministic languages, cf. Corollary 6.9.

2 Preliminaries

Words Throughout, Γ is a finite alphabet, A ⊆ Γ is a subset of the alphabet, u, v, w are finite
words, and α, β, γ are finite or infinite words. If not specified otherwise, then in all examples
we assume that Γ has three different letters a, b, c. By u ≤ α we mean that u is a prefix of
α. By alph(α) we denote the alphabet of α, i.e., the letters occurring in the sequence α. As
usual, Γ∗ is the free monoid of finite words over Γ. The neutral element is the empty word 1.
If L is a subset of a monoid, then L∗ is the submonoid generated by L. For L ⊆ Γ∗ we let
Lω = {u1u2 · · · | ui ∈ L for all i ≥ 1} be the set of infinite products. We also let L∞ = L∗ ∪ Lω.
A natural convention is 1ω = 1. Thus, L∞ = Lω if and only if 1 ∈ L.

We write im(α) for those letters in alph(α) which have infinitely many occurrences in α. The
notation has been introduced in the framework of so called complex traces, see e.g. [12] for a
detailed discussion of this concept. The notation im(α) refers to the imaginary part and we adopt
it here, but for our purpose it might be also convenient to remember im(α) as an abbreviation for
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letters which appear infinitely many times in α. A crucial role in our paper play sets of the form
Aim. By definition, Aim is the set of words α such that im(α) = A. Note that Γ∗ = ∅im. The set
Γ∞ is the disjoint union over all Aim.

Logic and regular sets We assume that the reader is familiar with basic concepts in formal
language theory. Our focus is on regular languages. If L ∩ Γ∞ is regular, then we may think that
its finitary part L∩Γ∗ is specified by some NFA and that its infinitary part L∩Γω is specified by
some Büchi automaton. For a unified model to accept regular languages in Γ∞ it is convenient to
consider an extended Büchi automaton which has a finite set of states Q and two types of accepting
states, a set of final states F ⊆ Q for accepting finite words and a set of repeated states R ⊆ Q for
accepting infinite words. Thus, this model yields also a natural definition of deterministic regular
languages in Γ∞, see below for more details.

We focus on regular languages which are given by first-order sentences in FO[<]. Thus, atomic
predicates are λ(x) = a and x < y saying that position x in a word α is labeled with a ∈ Γ
and position x is smaller than y, respectively. By FO2 we mean FO[<]-sentences which use at
most two names x and y as variables or the class of languages specified by such formulas. It is
well-known that three variable are sufficient to express any FO[<]-property (see e.g. [7]), whereas
FO2 is a strict subclass. Similarly, Σ2 means FO[<]-sentences which are in prenex normal form
and which start with a block of existential quantifiers, followed by a block of universal quantifiers
and a Boolean combination of atomic formulas. A Π2-formula means a negation of a Σ2-formula.
The notations Σ2 and Π2 refer also to the corresponding language classes. The class ∆2 means the
class of Σ2-formulas which have an equivalent Π2-formula. But the notion of equivalence depends
on the set of models we use.

If the models are finite words, then a result of Thérien and Wilke [22] states FO2 = ∆2.
Moreover, FO2 is the class of regular languages in Γ∗ which are recognized by some finite monoid
in the variety DA and a classical result of Schützenberger shows that DA also coincides with
unambiguous polynomials [18]. The variety DA has been baptized this way because it means
D-classes are aperiodic. More precisely, DA contains those finite monoids, where all regular D-
classes are aperiodic semigroups. We refer to [20, 8] for more background on the class DA. It is
also the class of finite monoids defined e.g. by equations of type (xy)ω = (xy)ωy(xy)ω. Another
characterization says that DA is defined by finite monoids M satisfying e = ese for all idempotents
e (i.e., e2 = e) and for all s = s1 · · · sn where e ∈ MsiM for each i, see e.g. [5, 25]. This is the
definition which we use below.

Saying that formulas are equivalent if they agree on all finite and infinite words refines the
notion of equivalence for formulas and changes the picture. This is actually the starting point
of this work. So, in this paper models are finite and infinite words. We are mainly interested
in infinite words, but it does no harm to include finite words, and this makes the situation more
uniform and the results on finite words reappear as special cases. See e.g. Theorem 5.10 which
means FO2 = ∆2 for finite words by choosing A = ∅.

Recognizability by finite monoids By M we denote a finite monoid. We always assume that
M is equipped with a partial order ≤ being compatible with the multiplication, i.e., u ≤ v implies
sut ≤ svt for all s, t, u, v ∈ M . If not specified otherwise, we may choose ≤ to be the identity
relation.

For an idempotent element e ∈ M we define Me = {s ∈M | e ∈MsM}∗, i.e., Me is the
submonoid of M which is generated by factors of e. If M has a generating set Γ, then Me

is generated by {a ∈ Γ | e ∈MaM}. We can think of this set as the maximal alphabet of the
idempotent e. We say that an idempotent e is locally top (locally bottom, resp.) if ese ≤ e
(ese ≥ e, resp.) for all s ∈Me. By DA we denote the class of finite monoids such that ese = e for
all idempotents e ∈ M and all s ∈ Me. Thus, it is the class of finite monoids where idempotents
are locally top and locally bottom.

Let L ⊆ Γ∞ be a language. The syntactic preorder ≤L over Γ∗ is defined as follows. We let
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u ≤L v if for all x, y, z ∈ Γ∗ we have both implications:

xvyzω ∈ L ⇒ xuyzω ∈ L and x(vy)ω ∈ L ⇒ x(uy)ω ∈ L.

Let us recall that 1ω = 1. Two words u, v ∈ Γ∗ are syntactically equivalent, written as u ≡L v, if
both u ≤L v and v ≤L u. This is a congruence and the congruence classes [u]L = {v ∈ Γ∗ | u ≡L v}
form the syntactic monoid Synt(L) of L. The preorder ≤L on words induces a partial order ≤L
on congruence classes, and (Synt(L),≤L) becomes an ordered monoid. It is a well-known classical
result that the syntactic monoid of a regular language L ⊆ Γ∞ is finite, see e.g. [15, 24]. Moreover,
in this case L can be written as a finite union of languages of type [u]L [v]ωL where u, v ∈ Γ∗ with
uv ≡L u and v2 ≡L v. In contrast to finite words, there exist non-regular languages in Γ∞ with a
finite syntactic monoid.

Now, let h : Γ∗ → M be any surjective homomorphism onto a finite ordered monoid M and
let L ⊆ Γ∞. If the reference to h is clear, then we denote by [s] the set of finite words h−1(s) for
s ∈M . We use the following notation.

• (s, e) ∈M ×M is a linked pair, if se = s and e2 = e.

• h weakly recognizes L, if

L =
⋃
{[s][e]ω | (s, e) is a linked pair and [s][e]ω ⊆ L}

• h strongly recognizes L (or simply recognizes L), if

L =
⋃
{[s][e]ω | (s, e) is a linked pair and [s][e]ω ∩ L 6= ∅}

• L is downward closed (on finite prefixes) for h, if [s][e]ω ⊆ L implies [t][e]ω ⊆ L for all
s, t, e ∈M where t ≤ s.

If L is regular, then the syntactic homomorphism hL strongly recognizes L.

Lemma 2.1 Let L ⊆ Γ∞ be a regular language and let hL : Γ∗ → Synt(L) be its syntactic
homomorphism. Then for all s, t, e, f ∈ M such that t ≤ s, f ≤ e, and [s][e]ω ⊆ L we have
[t][f ]ω ⊆ L. In particular, L is downward closed (on finite prefixes) for hL.

Proof: Let u ∈ [s], x ∈ [e] and let v ∈ [t], y ∈ [f ]. Now, uxω ∈ L implies vxω ∈ L, which in turn
implies vyω ∈ L. Since L is regular, hL strongly recognizes L; and we obtain [t][f ]ω ⊆ L, because
vyω ∈ [t][f ]ω ∩ L. 2

Deterministic, complement-deterministic, and arrow languages Intuitively, the best way
to define deterministic languages is to say that a language is deterministic, if it is recognized by
a deterministic extended Büchi automaton with final and repeated states as described above.
Therefore, a regular language L ⊆ Γ∞ is deterministic if and only if its ω-regular part L∩Γω can
be accepted by some deterministic Büchi automaton in the usual sense.

There is also a well-known tight connection to what we call here arrow languages
−→
W : For

W ⊆ Γ∗ we define
−→
W = {α ∈ Γ∞ | for every prefix u ≤ α there exists uv ≤ α with uv ∈W} .

Using Büchi automata, we see that a regular language L ⊆ Γ∞ is deterministic if and only
if we can write L ∩ Γω =

−→
W ∩ Γω for some regular W ⊆ Γ∗. Actually, a classical result of

Landweber yields a more precise statement: If L ⊆ Γω is ω-regular and L =
−→
W ∩ Γω for some

set W ⊆ Γ∗, then W can be chosen to be regular, too (which means L is deterministic) see e.g.
[24]. Therefore it is justified to take the weakest condition as a formal definition here. Moreover,
as we have not formally defined Büchi automata, we use the Landweber characterization as our
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working definition: If we speak about a deterministic language then we are content with L being
regular and L ∩ Γω =

−→
W ∩ Γω for some set W ⊆ Γ∗. It is called complement-deterministic, if

Γ∞ \ L is deterministic. It is well-known and easy to see (e.g. with our working definition) that
deterministic languages are closed under finite union and finite intersection.

For example, if W = Γ∗a, then
−→
W ∩Γω is the deterministic ω-regular language of words having

infinitely many a’s. Its complement is not deterministic (if |Γ| ≥ 2). Hence infinitely many a’s
is not complement-deterministic. In particular, deterministic languages do not form a Boolean
algebra, whereas the class of languages which are simultaneously deterministic and complement-
deterministic does. Note that the class of arrow languages is not closed under finite intersection:−−→
Γ∗a ∩

−→
Γ∗b is deterministic but no arrow language (in our sense) because the intersection is not

empty, e.g., it contains (ab)ω, but it does not contain any finite word.
Our definitions differ slightly from the notation used elsewhere, where

−→
W is commonly used as

the ω-language of those infinite words with infinitely many prefixes in W , which is the set
−→
W ∩Γω

in our notation. In our definition we have however a closure operator: W ⊆
−→
W = W ∪ (

−→
W ∩ Γω).

Moreover, the characterization of ∆2-languages is more natural in our definition. Also note that
if L =

−→
W , then W = L∩ Γ∗. If we only have L∩ Γω =

−→
W ∩ Γω, then there are uncountably many

choices for W , in general.

Finite ω-semigroups The notion of an ω-semigroup has been introduced as a tool for language
varieties of finite and infinite words. Their use is justified by the existence of an Eilenberg-type
theorem, see [15, 27]. This leads to another possible framework to express most of our results.
In the present paper a reformulation in terms of ω-semigroups would mean however to introduce
another technical concept which is not needed. Our focus is to transfer results from finite words to
infinite words using topology, so the classical theory of recognition by finite monoids is perfectly
suitable for our purposes.

To some extent it is a matter of taste to use one or another formalism to express the results.
So, our choice is to work with less technical prerequisites in order to understand the contents of
the paper. A conversion of our results to the terminology of ω-semigroups is left to the interested
readers familiar with the theory ω-semigroups. We refer to the textbook [15], where the theory
has been nicely presented in detail.

3 The alphabetic topology and polynomials

Topological information is crucial in our characterization results. Recall that a topology on a set X
is given by a family of subsets (called open subsets) such that a finite intersection and an arbitrary
union of open subsets is open. We define the alphabetic topology on the set Γ∞ by its basis, which
is given by all sets of the form uA∞ for u ∈ Γ∗ and A ⊆ Γ. Thus, a set L ⊆ Γ∞ is open if and only
if for each A ⊆ Γ there is a set of finite words WA ⊆ Γ∗ such that L =

⋃
WAA

∞. By definition, a
set is closed, if its complement is open; and it is clopen, if it is both open and closed. For example,
the sets uA∞ are clopen. In particular, the sets A∞ are clopen, too. A set of the form Aim is not
open unless A = ∅, it is not closed unless A = Γ.

Note that in the alphabetic topology every singleton u ∈ Γ∗ is open since u∅∞ = u {1} = {u}.
Thus, Γ∗ is an open, discrete, and dense subset of Γ∞. The alphabetic topology is a refinement
of the usual Cantor topology, where the languages {u} and uΓ∞ form a basis of (Cantor-)open
subsets for u ∈ Γ. The Cantor space Γ∞ is compact. As soon as Γ has at least two letters more
sets are open in the alphabetic topology than in the Cantor topology. For example, the sets uA∞

being clopen in the alphabetic topology are neither open nor closed in the Cantor topology for
∅ 6= A 6= Γ.

Remark 3.1 The space Γ∞ with the alphabetic topology is Hausdorff. It is compact if and only if
|Γ| ≤ 1. To see that it is not compact for Γ = {a, b} note that Γ∞ is covered by a∞ together with
open sets of the form ubΓ∞ with u ∈ Γ∗. But for no finite subset F ⊆ Γ∗ we have Γ∞ = a∞∪FbΓ∞.
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For a language L, its closure L is the intersection of all closed sets containing L. A word
α ∈ Γ∞ belongs to L if for all open subsets U ⊆ Γ∞ with α ∈ U we have U ∩ L 6= ∅. The
interior of L is the union of all open sets contained in L. It can be constructed as the complement
of the closure of its complement. For languages L and K we define the right quotient as a language
of finite words by L/K = {u ∈ Γ∗ | uα ∈ L for some α ∈ K}. In particular, we have

L/A∞ = {u ∈ Γ∗ | uα ∈ L for some α ∈ A∞} .

The following proposition gives a description of the closure in the alphabetic topology in terms
of arrow languages

−→
W plus some alphabetic restrictions.

Proposition 3.2 In the alphabetic topology we have Aim =
⋃
A⊆B B

im and

L =
⋃
A⊆Γ

(−−−−→
L/A∞ ∩Aim

)
=
⋃
A⊆Γ

(−−−−→
L/A∞ ∩Aim

)
.

Proof: It is straightforward to show Aim =
⋃
A⊆B B

im. We first show L ⊆
⋃
A⊆Γ

(−−−−→
L/A∞ ∩ Aim

)
.

Let α ∈ L with α ∈ Aim. For all prefixes u of α we find v such that α ∈ uvA∞. We have
uvA∞ ∩ L 6= ∅; and thus uv ∈ L/A∞. This shows α ∈

−−−−→
L/A∞.

The inclusion
⋃
A⊆Γ

(−−−−→
L/A∞ ∩Aim

)
⊆
⋃
A⊆Γ

(−−−−→
L/A∞ ∩Aim

)
is trivial.

Let now α ∈
−−−−→
L/A∞ ∩Bim with A ⊆ B. Since L/A∞ ⊆ L/B∞, we have α ∈

−−−−→
L/B∞ ∩Bim. Let

u ∈ Γ∗ with α = uβ and β ∈ B∞. We have to show uB∞ ∩L 6= ∅. Since α ∈
−−−−→
L/B∞ there is some

v ∈ Γ∗ with uv ≤ α and uv ∈ L/B∞. This means uvγ ∈ L for some γ ∈ B∞. Since β ∈ B∞ we
have v ∈ B∗. Hence vγ ∈ B∞ and thus uvγ ∈ uB∞ ∩ L 6= ∅ as desired. 2

The following corollary generalizes a well-known fact for the Cantor topology to the (finer)
alphabetic topology. This result will be used in Section 6.

Corollary 3.3 Let L ⊆ Γ∞ be a regular language. Then its closure in the alphabetic topology L
is deterministic.

Proof: Deterministic languages are closed under finite union and finite intersection. For a letter
a the language {a}im is deterministic as it is the language of words having infinitely many a’s.
Hence Aim =

⋂
a∈A {a}im is deterministic, too. The result follows. 2

Corollary 3.4 Given a regular language L ⊆ Γ∞, we can decide whether L is closed (open resp.,
clopen resp.).

Proof: We may assume that L is specified by some NFA for L∩Γ∗ and by some Büchi automaton
for L∩Γω. The construction of an NFA recognizing L/A∞ is standard. Since L/A∞ ⊆ Γ∗ we can
assume that the NFA is deterministic, and we can view it as a (deterministic) Büchi automaton
recognizing

−−−−→
L/A∞ ∩ Γω. Intersection with Aim yields a Büchi automaton for L ∩Aim and A 6= ∅.

Thus, we can test L ∩ Aim ⊆ L for all A. This implies that we can test L = L. The result for
open and clopen follows since regular languages are effectively closed under complementation. 2

Actually, we have a more precise statement than pure decidability. In the following, PSPACE
denotes as usual the class of problems which can be decided by some polynomially space bounded
(deterministic) Turing machine.

Theorem 3.5 The following problem is PSPACE-complete:
Input: A Büchi automaton A with L(A) ⊆ Γω.
Question: Is the regular language L(A) closed?
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Proof: We can check in PSPACE whether a regular language L ⊆ Γω is closed: Let L = L(A)
for some non-deterministic Büchi automaton A. We verify L = L using the characterization of L
given in Proposition 3.2. We can check in PSPACE whether two Büchi automata are equivalent,
see [19]. In particular, we can check in PSPACE whether L ∩Aim =

−−−−→
L/A∞ ∩Aim for all A ⊆ Γ.

It is PSPACE-hard to decide whether a regular language L ⊆ Γω is closed: We use a re-
duction of the problem whether L(A) = Γ∗ for some NFA A, see [14]. We can assume that
1 ∈ L(A). Let c 6∈ Γ be a new letter. We can construct a non-deterministic Büchi automa-
ton B such that L(B) = {w1cw2c · · · ∈ (Γ ∪ {c})ω | ∃i : wi ∈ L(A)}. The closure of L(B) is
K = {w1cw2c · · · ∈ (Γ ∪ {c})ω | ∀i : wi ∈ Γ∗} = (Γ∗c)ω. Hence, L(A) = Γ∗ if and only if L(B) = K
if and only if L(B) is closed. 2

According to Proposition 3.2 the alphabetic closure is a union over languages of type
−−−−→
L/A∞

or
−−−−→
L/A∞ ∩Aim. But these pieces need not to be closed, as we can see in the following example.

Example 3.6 Let A = {a}, B = {a, b}, and L = a∗(ab)∗baω. Then L/A∞ = a∗(ab)∗ba∗ and
L/B∞ is the set of all finite prefixes of words in L. We have

−−−−→
L/A∞ = a∗(ab)∗ba∞ and

−−−−→
L/A∞ ∩

Aim = a∗(ab)∗baω = L. The language
−−−−→
L/A∞ is open but neither

−−−−→
L/A∞ nor

−−−−→
L/A∞ ∩ Aim is

closed in the alphabetic topology, because (ab)ω belongs to both closures. We have
−−−−→
L/B∞ =

a∗(ab)∗ba∞∪a∗(ab)ω and
−−−−→
L/B∞∩Bim = a∗(ab)ω. Both sets are closed. Actually, L = L∪a∗(ab)ω

in the alphabetic topology.
The alphabetic closure L is not closed in the Cantor topology since aω 6∈ L, but every Cantor-

open neighborhood of aω contains a word an(ab)ω for some n ∈ N. 3

Frequently we apply the closure operator to polynomials. A polynomial is a finite union of
monomials. A monomial (of degree k) is a language of the form A∗1a1 · · ·A∗kakA∞k+1 with ai ∈ Γ
and Ai ⊆ Γ. In particular, A∗1a1 · · ·A∗kak is a monomial with Ak+1 = ∅. The set A∗ is a polynomial
since A∗ = ∅∞ ∪

⋃
a∈AA

∗a. It is not hard to see that polynomials are closed under intersection.
Thus, A∗1a1 · · ·A∗kakA∗k+1 = A∗1a1 · · ·A∗kakA∞k+1 ∩ Γ∗ is in our language a polynomial, but not a
monomial unless Ak+1 = ∅. A monomial P = A∗1a1 · · ·A∗kakA∞k+1 is unambiguous if for every
α ∈ P there exists a unique factorization α = u1a1 · · ·ukakβ such that ui ∈ A∗i and β ∈ A∞k+1. A
polynomial is unambiguous if it is a finite union of unambiguous monomials.

It follows from the definition of the alphabetic topology that polynomials are open. Actually,
it is the coarsest topology with this property. The crucial observation is that we have a syntactic
description of the closure of a polynomial as a finite union of other polynomials. For later use we
make a more precise statement by considering the closure with respect to different subsets B at
infinity.

Lemma 3.7 Let P = A∗1a1 · · ·A∗kakA∞k+1 be a monomial and L = P ∩ Bim for some B ⊆ Ak+1.
Then the closure of L is given by

L =
⋃

{ai,...,ak}∪B⊆A⊆Ai

A∗1a1 · · ·A∗i−1ai−1A
∞
i ∩Aim.

Proof: First consider an index i with 1 ≤ i ≤ k + 1 such that {ai, . . . , ak} ∪ B ⊆ A ⊆ Ai. Let
α ∈ A∗1a1 · · ·A∗i−1ai−1A

∞
i ∩ Aim. We have to show that α is in the closure of L. Let α = uβ

with u ∈ A∗1a1 · · ·A∗i−1ai−1A
∗
i and β ∈ A∞ ∩ Aim. We show that uA∞ ∩ L 6= ∅. Choose some

γ ∈ B∞ ∩ Bim. As B ⊆ Ak+1 holds by hypothesis, we see that uai · · · akγ ∈ P , and hence
uai · · · akγ ∈ uA∞ ∩ L.

Let now α ∈ L and write α ∈ uv1 · · · vk+1A
∞ ∩ Aim with alph(vj) = A. There exists γ ∈ A∞

such that uv1 · · · vk+1γ ∈ P ∩Bim. This implies B ⊆ A. Since uv1 · · · vk+1γ ∈ A∗1a1 · · ·A∗kakA∞k+1

there are some 1 ≤ i, j ≤ k + 1 such that uv1 · · · vj−1 belongs to A∗1a1 · · ·A∗i−1ai−1A
∗
i , vj ∈ A∗i ,

and vj+1 · · · vk+1γ ∈ A∗i ai · · ·A∗kakA∞k+1 ∩ A∞. Therefore {ai, . . . , ak} ⊆ A ⊆ Ai, too. It follows
that α ∈ A∗1a1 · · ·A∗i−1ai−1A

∞
i ∩Aim. 2
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As usual, let L ⊆ Γ∞ be a regular language. Let us define tfω ≤L seω for linked pairs (s, e),
(t, f) by the implication:

[s][e]ω ⊆ L ⇒ [t][f ]ω ⊆ L.

With this notation we can give an algebraic characterization of being open.

Lemma 3.8 A regular language L ⊆ Γ∞ is open in the alphabetic topology if and only if for all
linked pairs (s, e), (t, f) of M = Synt(L) with t, f ∈Me we have stfω ≤L seω.

Proof: Let L be open and α ∈ [s][e]ω ⊆ L. We find a finite prefix u ∈ [s] of α such that
α ∈ uA∞ ⊆ L. Since t, f ∈Me we may assume alph(vw) ⊆ A for some v ∈ [t] and w ∈ [f ]. Hence,
uvwω ∈ [st][f ]ω ⊆ L. This shows stfω ≤L seω.

For the converse, suppose that for all linked pairs (s, e), (t, f) of M = Synt(L) with t, f ∈ Me

we have stfω ≤L seω. Let α ∈ [s][e]ω ⊆ L. Write α = uβ with u ∈ [s] and β ∈ [e]ω ∩ A∞ ∩ Aim.
Now, any γ ∈ A∞ can be written as γ ∈ [t][f ]ω for some linked pair with t, f ∈ Me. Indeed,
we have A∗ ⊆ [Me]: consider a ∈ A and let p, q ∈ A∗ such that paq ∈ [e]. Then a ∈ [Me] and
therefore A ⊆ [Me]. Since Me is a submonoid, [Me] is a submonoid of Γ∗ and hence A∗ ⊆ [Me].
By assumption uγ ∈ [st][f ]ω ⊆ L. It follows uA∞ ⊆ L, i.e., L is open. 2

4 The fragment Σ2

By a (slight extension of a) result of Thomas [23] on ω-languages we know that a language L ⊆ Γ∞

is definable in Σ2 if and only if L is a polynomial. However, this statement alone does not yield
decidability. It turns out that we obtain decidability by a combination of an algebraic and a
topological criterion. (This decidability result has also been shown independently by Bojańczyk
[2] using different techniques.) We know that polynomials are open. Therefore, we concentrate on
algebra.

Lemma 4.1 If L ⊆ Γ∞ is a polynomial, then all idempotents of Synt(L) are locally top.

Proof: By hL we denote the syntactic homomorphism Γ∗ → Synt(L). Let n ∈ N such that L is a
finite union of monomials of degree less than n. Let hL(e) be idempotent; in particular en ≡L e.
For e ≡L f we may assume that alph(f) ⊆ alph(e). This means we take the maximal possible
alphabet for e. Let s ∈ alph(e)∗. We want to show that xeseyzω ∈ L if xeyzω ∈ L.

Suppose u = xenyzω ∈ A∗1a1 · · ·A∗kakA∞k+1 ⊆ L and k < n. Since there are at most n−1 letters
ai, some factor e of u lies completely within one of the A∗i or within A∞k+1, i.e., alph(e) ⊆ Ai for
some 1 ≤ i ≤ k + 1. Hence, ese ∈ A∗i and xen1sen2yzω ∈ A∗1a1 · · ·A∗kakA∞k+1 ⊆ L for some
n1, n2 ≥ 1. Since hL(e) is idempotent, it follows that xeyzω ∈ L implies xeseyzω ∈ L. Similarly,
x(ey)ω ∈ L implies x(esey)ω ∈ L and therefore ese ≤L e for all s ∈ alph(e)∗, i.e., hL(e) is locally
top. 2

Theorem 4.2 Let L ⊆ Γ∞ be a regular language. The following five assertions are equivalent:

1. L is Σ2-definable.

2. L is a polynomial.

3. L is open in the alphabetic topology and all idempotents of Synt(L) are locally top.

4. The syntactic monoid M = Synt(L) and the syntactic order ≤L satisfy:

(a) For all linked pairs (s, e), (t, f) with t, f ∈Me we have stfω ≤L seω.

(b) e = e2 and s ∈Me implies ese ≤L e.

5. The following three conditions hold for some homomorphism h : Γ∗ → M which weakly
recognizes L:
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(a) L is open in the alphabetic topology.

(b) All idempotents of M are locally top.

(c) L is downward closed (on finite prefixes) for h.

Proof: “1 ⇔ 2”: This is a slight modification of a result by Thomas [23].
“2 ⇒ 3”: By definition, polynomials are open in the alphabetic topology. In Lemma 4.1 it has

been shown that all idempotent elements are locally top.
“3 ⇔ 4”: The equivalence of L being open and “4a” is Lemma 3.8. Property “4b” is the

definition of all elements being locally top.
“4⇒ 5”: Let h = hL be the syntactic homomorphism onto the syntactic monoid M = Synt(L).

Since L is regular, the homomorphism h strongly recognizes L. Applying Lemma 3.8, property
“5a” follows from “4a” and “5b” trivially follows from “4b”. The condition “5c” holds for Synt(L)
by Lemma 2.1.

“5⇒ 2”: Consider α ∈ L with im(α) = A. By “5a” the language L is open. Hence, there exists
a prefix u of α such that α ∈ uA∞ ⊆ L. From the case of finite words and the hypothesis “5b” on
M , we know that P = {v ∈ Γ∗ | h(v) ≤ h(u)} is a polynomial. We can assume that all monomials
in P end with a letter. We define the polynomial Pα = PA∞. Clearly, L ⊆

⋃
{Pα | α ∈ L} and

this union is finite since M is finite. It remains to show that Pα ⊆ L for α ∈ L. Let v ∈ P and
β ∈ A∞. We know uβ ∈ L and there exists a linked pair (s, e) such that uβ ∈ [s][e]ω ⊆ L. Now,
there exists wγ = β such that uw ∈ [s] and γ ∈ [e]ω. By definition of P , we have h(v) ≤ h(u) and
therefore t = h(vw) ≤ h(uw) = s. It follows vβ = vwγ ∈ [t][e]ω ⊆ L by “5c”. This shows Pα ⊆ L
and thus L =

⋃
{Pα | α ∈ L}. 2

Corollary 4.3 It is decidable whether a regular language is Σ2-definable.

Proof: The syntactic congruence is computable and the conditions in “3” (or “4”) of Theorem 4.2
are decidable. 2

Remark 4.4 An ω-language L ⊆ Γω is Σ2-definable, if L = {α ∈ Γω | α |= ϕ} for some ϕ ∈ Σ2.
This is equivalent with L ∪ Γ∗ being Σ2-definable as a subset of Γ∞. Thus, the decidability of
Corollary 4.3 transfers to ω-regular languages.

Of course, complementation yields dual results for the fragment Π2. In particular, Π2-definable
languages are closed in the alphabetic topology.

5 Two variable first-order logic

Etessami, Vardi, and Wilke have given a characterization of FO2 in terms of unary temporal logic
[11]. In the same paper, they considered the satisfiability problem for FO2. In this section, we
continue the study of FO2 over infinite words.

The following lemma can be proved essentially in the same way as for finite words. The result
is also (implicitly) stated in the habilitation thesis of Wilke [28].

Lemma 5.1 Let L ⊆ Γ∞ be FO2-definable. Then the syntactic monoid Synt(L) is in DA.

Proof: Let L = L(ϕ) for some FO2-formula of quantifier depth n. Let e2 = e ∈ M = Synt(L)
and let s ∈ Me. We can choose words v, w ∈ Γ∗ such that hL(v) = s, hL(w) = e, and, moreover,
alph(v) ⊆ alph(w). Now, consider words of the form α = xwnvwnyzω, α′ = xwnyzω and β =
x(wnvwny)ω, β′ = x(wny)ω. An Ehrenfeucht-Fräıssé-game for FO2 shows that α ∈ L if and only
if α′ ∈ L. Analogously, β ∈ L if and only if β′ ∈ L. Thus, Synt(L) ∈ DA. 2

10



A set like Aim is FO2-definable, but it is neither open nor closed in the alphabetic topology,
in general. Therefore, we need a refinement of the alphabetic topology. As a basis for the strict
alphabetic topology we take all sets of the form uA∞ ∩Aim. Thus, more sets are open (and closed)
than in the alphabetic topology. Another way to define the strict alphabetic topology is to say
that it is the coarsest topology on Γ∞ where all sets of the form A∗1a1 · · ·A∗kakA∞k+1 ∩ Bim are
open. The strict alphabetic topology is not used outside this section, but it is essential here in
order to prove the converse of Lemma 5.1.

Lemma 5.2 If L ⊆ Γ∞ is strongly recognized by some homomorphism h : Γ∗ → M ∈ DA, then
L is clopen in the strict alphabetic topology.

Proof: Since h also strongly recognizes Γ∞\L as well, it is enough to show that L is open. Let α ∈ L
with α ∈ [s][e]ω for some linked pair (s, e) and let A = im(α). We show that [s]A∞ ∩ Aim ⊆ L.
Indeed, let β ∈ [s]A∞ ∩ Aim. Then we have β = uvγ with h(u) = s, h(v) = r, γ ∈ [f ]ω

where v ∈ A∗, alph(γ) = im(γ) = A, and (r, f) is a linked pair. Since M ∈ DA, we obtain
s = se = serfe = srfe and efe = e and fef = f . We have [sr][fef ]ω ∩ [srfe][efe]ω 6= ∅ and
[srfe][efe]ω = [s][e]ω ⊆ L. Since h strongly recognizes L, we have [sr][f ]ω = [sr][fef ]ω ⊆ L, too.
In particular, β ∈ L. 2

Lemma 5.3 If L is closed in the strict alphabetic topology and if L is weakly recognized by some
homomorphism h : Γ∗ → M ∈ DA, then L is a finite union of languages A∗1a1 · · ·A∗kakA∞k+1 ∩
Aim
k+1, where each A∗1a1 · · ·A∗kakA∞k+1 is an unambiguous monomial.

Proof: Let α ∈ L. Write α = uβ with β ∈ A∞ ∩ Aim for some A ⊆ Γ. There is a linked
pair (s, e) with α ∈ [s][e]ω ⊆ L and we may assume h(u) = s and β ∈ [e]ω. For A = ∅ we
have [s] ⊆ L and, using our knowledge about the finite case, we may include [s] in our finite
union of unambiguous polynomials. Therefore, let A 6= ∅. We may choose an unambiguous
monomial P = A∗1a1 · · ·A∗kak ⊆ [s] such that u ∈ P and each last position of every letter a ∈
{a1, . . . , ak} ∪ A1 ∪ · · · ∪ Ak occurs explicitly as some aj in the expression P . Note that [s] is a
finite union of such monomials. Moreover, we may assume that uv ∈ P for infinitely many prefixes
v ≤ β. Each such uv can uniquely be written as uv = v1a1 · · · vkak with vi ∈ A∗i . This yields a
vector in Nk by (|v1a1| , |v1a1v2a2| , . . . , |v1a1 · · · vkak|) for every uv ∈ P . By Dickson’s Lemma [6],
we may assume that this sequence of vectors is in no component decreasing when v gets longer.
Hence (after removing finitely many v’s) we may assume there is some i such that the component
|v1a1 · · · viai| is constant and |v1a1 · · · viaivi+1ai+1| is strictly increasing. It follows that we may
assume {ai+1, . . . , ak} ⊆ alph(vi+1) = A ⊆ Ai+1. In particular, α ∈ A∗1a1 · · ·A∗i aiA∞ ∩ Aim. It is
clear that this expression is unambiguous.

It remains to show A∗1a1 · · ·A∗i aiA∞ ∩Aim ⊆ L. Consider u′γ with u′ ∈ A∗1a1 · · ·A∗i ai and γ ∈
A∞ ∩Aim. Since L is closed, it is enough to show that u′γ belongs to the closure of L in the strict
alphabetic topology. Choose any prefix w ≤ γ. It is enough to show that u′wA∞∩Aim∩L 6= ∅. Let
z ∈ Γ∗ with alph(z) = A and h(z) = e. Since w ∈ A∗ ⊆ A∗i+1, we have u′wai+1 · · · ak ∈ P ⊆ [s].
Hence u′wai+1 · · · akzω ∈ [s][e]ω ⊆ L. 2

The next statement follows again as in the case of finite words.

Lemma 5.4 Every language Aim and every unambiguous monomial A∗1a1 · · ·A∗kakA∞k+1 is FO2-
definable.

Proof: The language of non-empty words in Aim is defined by the FO2-sentence∧
a∈A
∀x∃y : x < y ∧ λ(y) = a ∧

∧
b6∈A

∃x∀y : x < y ∧ λ(y) 6= b.

We use induction on k in order to show that P = A∗1a1 · · ·A∗kakA∞k+1 is FO2-definable. Clearly,
for k = 0 this is true. Let now k ≥ 1. By unambiguity, we cannot have {a1, . . . , ak} ⊆ A1 ∩Ak+1
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since for (a1 · · · ak)2 there would exist two different factorizations. First, suppose ai 6∈ Ak+1. Let
α = α1aiα2 ∈ P where ai 6∈ alph(α2). There are two possibilities: the last ai of α could be one of
the aj ’s, i ≤ j ≤ k, and then

α1 ∈ A∗1a1 · · ·A∗j , ai = aj , α2 ∈ A∗j+1aj+1 · · ·A∗kakA∞k+1

or it matches some A∗j , i < j < k + 1 and then

α1 ∈ A∗1a1 · · ·A∗j , ai ∈ Aj , α2 ∈ A∗jaj · · ·A∗kakA∞k+1.

In any case, the remaining four polynomials are unambiguous and their degree is strictly smaller
than k. Hence, by induction we have FO2-formulas describing them. Obviously, we can also
express intersections with languages of the form B∗ or B∞ for B ⊆ Γ. So there is a finite list
of FO2-formulas such that for each α ∈ P there are formulas ϕ and ψ from the list and a letter
a ∈ Γ with α ∈ L(ϕ)aL(ψ) ⊆ P and L(ψ) ⊆ (Γ \ {a})∞. Now, the last a-position x in every
α ∈ L(ϕ)aL(ψ) is uniquely defined by

ξ(x) = λ(x) = a ∧ ∀y : x < y ⇒ λ(y) 6= a.

Using relativization techniques, we now define FO2-sentences ϕ<a and ψ>a such that L(ϕ)aL(ψ) =
L
(
ϕ<a ∧ ∃x : ξ(x) ∧ ψ>a

)
. We give the inductive construction for ψ>a. The other one for ϕ<a is

symmetric. Atomic formulas are unchanged and Boolean connectives are straightforward. Exis-
tential quantification is as follows: (∃x : ζ)>a = ∃x : (∃y : y < x ∧ ξ(y)) ∧ ζ>a.

The case ai 6∈ A1 is similar (using a factorization of α at the first ai-position). 2

Theorem 5.5 Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is FO2-definable.

2. L is regular and Synt(L) ∈ DA.

3. L is strongly recognized by some homomorphism h : Γ∗ →M ∈ DA.

4. L is closed in the strict alphabetic topology and L is weakly recognized by some homomorphism
h : Γ∗ →M ∈ DA.

5. L is a finite union of sets of the form A∗1a1 · · ·A∗kakA∞k+1 ∩ Aim
k+1, where each language

A∗1a1 · · ·A∗kakA∞k+1 is an unambiguous monomial.

Proof: “1 ⇒ 2”: First-order definable languages are regular; Synt(L) ∈ DA by Lemma 5.1. “2
⇒ 3”: Trivial, since Synt(L) strongly recognizes L. “3 ⇒ 4”: Strong recognition implies weak
recognition; closure in the strict alphabetic topology follows by Lemma 5.2. “4⇒ 5”: Lemma 5.3.
“5 ⇒ 1”: Lemma 5.4. 2

Recall that if a language L ⊆ Γ∞ is weakly recognizable by some finite monoid, then it is also
strongly recognizable by a finite monoid. The same holds for aperiodic monoids, but Theorem 5.5
suggests that this fails for DA. Indeed, we have the following example.

Example 5.6 Let Γ = {a, b, c}. Consider the congruence of finite index such that each class [u] is
defined by the set of words v where u and v agree on all suffixes of length at most 2. The quotient
monoid of Γ∗ by this congruence is in DA. In fact, it is a very simple monoid within DA since it
is L-trivial (where L is one of Green’s relations, see e.g. [15]). Let L = [ab]ω = (Γ∗ab)ω. Then, by
definition, L is weakly recognizable in DA. But L is the language of all α which contain infinitely
many factors of the form ab. This is however not closed for the strict alphabetic topology since
(acb)ω /∈ L, but (acb)ω belongs to the strict alphabetic closure of L since every open set U with
(acb)ω ∈ U contains some (acb)m(cab)ω and [(acb)m(cab)] = [ab] for all m ≥ 0. 3
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5.1 Unambiguous polynomials and the fragment FO2 ∩Σ2

In this section, we show that the intersection of FO2 and Σ2 has very natural descriptions involving
topological notions or unambiguous polynomials.

Theorem 5.7 Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is both FO2-definable and Σ2-definable.

2. L is FO2-definable and open in the alphabetic topology.

3. L is a finite union of unambiguous monomials of the form A∗1a1 · · ·A∗kakA∞k+1.

4. L is the interior of some FO2-definable language.

Proof: “1 ⇒ 2”: Theorem 4.2.
“2 ⇒ 3”: Let α ∈ L ∈ FO2 ∩ Σ2. By Theorem 5.5 we choose an unambiguous monomial

P = A∗1a1 · · ·A∗kak (from a given finite set depending on L) and A ⊆ Γ such that PA∞ ∩ Aim is
unambiguous and α ∈ PA∞ ∩ Aim ⊆ L. W.l.o.g. A 6= ∅. Let A = {b1, . . . , bm} and Bi = A \ {bi}
and R = B∗1b1 · · ·B∗mbm. Let L be strongly recognized by h : Γ∗ → M . By Ramsey’s Theorem
there exists r ∈ N such that for every sequence v1 · · · vr with vi ∈ M there are 1 ≤ j ≤ ` ≤ r
with h(vj · · · v`) = e = e2 in M . Trivially, we have α ∈ PRrA∞. The monomial PRrA∞ is
unambiguous and for some fixed language L we consider only finitely many of them. We claim
that PRrA∞ ⊆ L. Let β ∈ PRrA∞ and write β = uv1 · · · vrγ with u ∈ P , vi ∈ R, and γ ∈ A∞.
Choose vj · · · v` = v such that h(v) is idempotent. Then uv1 · · · v`vω ∈ PA∞ ∩ Aim ⊆ L. Since L
is open and alph(v) = A we have uv1 · · · v`vsA∞ ⊆ L for some s ∈ N. By strong recognition and
by idempotency of h(v) we see that β ∈ uv1 · · · v`A∞ ⊆ L. Therefore, PRrA∞ ⊆ L.

“3 ⇒ 1”: Theorem 4.2 and Theorem 5.5.
“1 ⇔ 4”: This is the dual statement of Theorem 5.8. The proof of this theorem in turn uses

“2 ⇒ 1”, but this has just been shown. 2

5.2 The fragment FO2 ∩Π2

We have the following characterization of the class FO2 ∩ Π2 which also yields the missing part
“1 ⇔ 4” in Theorem 5.7.

Theorem 5.8 Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent:

1. L is both FO2-definable and Π2-definable.

2. L is FO2-definable and closed in the alphabetic topology.

3. L is the closure of some FO2-definable language.

Proof: “1 ⇒ 2”: This is the dual statement of “1 ⇒ 2” in Theorem 5.5.
“2 ⇒ 3” is trivial.
“3 ⇒ 1”: By Theorem 5.5 we may assume that L is the closure of P ∩ Bim where P =

A∗1a1 · · ·A∗kakA∞k+1 is an unambiguous monomial and B = Ak+1. By Lemma 3.7 we obtain

L =
⋃

{ai,...,ak}∪B⊆A⊆Ai

A∗1a1 · · ·A∗i−1ai−1A
∞
i ∩Aim.

Every monomial A∗1a1 · · ·A∗i−1ai−1A
∞
i is unambiguous, hence L and its complement are FO2-

definable. The complement of L is open. Thus, the complement is Σ2-definable by Theorem 5.7,
“2 ⇒ 1”, and therefore L is Π2-definable. 2
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We also have a characterization when certain unambiguous monomials are closed:

Proposition 5.9 Let A∗1a1 · · ·A∗kakA∞ be unambiguous with Ai ⊆ {ai, . . . , ak} for all 1 ≤ i ≤ k
and let P = A∗1a1 · · ·A∗kakA∞ ∩Bim for some B ⊆ A. The following assertions are equivalent:

1. There is no 1 ≤ i ≤ k such that B ⊆ {ai, . . . , ak} ⊆ Ai.

2. The unambiguous monomial P = A∗1a1 · · ·A∗kakA∞∩Bim is closed in the alphabetic topology.

Proof: “1 ⇒ 2”: Assume by contradiction that P is not closed. Let α /∈ P with im(α) = C
such that α is in the closure of P . Then, by Lemma 3.7, there is some 1 ≤ i ≤ k such that
{ai, . . . , ak} ∪ B ⊆ C ⊆ Ai. Thus, {ai, . . . , ak} = C = Ai since by hypotheses Ai ⊆ {ai, . . . , ak}.
Since α is in the closure of P we have B ⊆ C = {ai, . . . , ak} = Ai. This is a contradiction to “1”.

“2 ⇒ 1”: Assume by contradiction that B ⊆ {ai, . . . , ak} ⊆ Ai for some 1 ≤ i ≤ k. We
have a1 · · · ai−1(ai · · · ak)mB∞ ∩ Bim, ⊆ P for all m ≥ 1 because B ⊆ A. As P is closed
and B ⊆ {ai, . . . , ak} we see a1 · · · ai−1(ai · · · ak)ω ∈ P and hence {ai, . . . , ak} ⊆ A. But this
is a contradiction to the fact that P is unambiguous since {ai, . . . , ak} ⊆ Ai ∩ A implies that
a1 · · · ai−1(ai · · · ak)2 has two different factorizations. 2

Theorem 5.8 is not fully satisfactory since we do not have any direct characterization in terms
of polynomials. We might wish that if L is closed (and L ∈ FO2 ∩Π2), then it is a finite union of
languages K∩Bim where each K∩Bim is closed. But this is not true: Let L = Γ∗a∪Γω, then L is
closed and in FO2∩Π2, but cannot be written in this form because L = Γ∗a is not closed. We also
note that the closure of a language L in FO2∩Σ2 needs not to be in ∆2. A counter-example is the
language L = Γ∗abc. By Lemma 3.7, the closure of L is L = L ∪ Γim which is not Σ2-definable.

5.3 The relation between FO2 and Σ2 ∩Π2

For finite words we have the well-known theorem that FO2-definability is equivalent to ∆2-
definability. However, this does not transfer to ω-words where ∆2 forms a proper subclass of FO2.
Consider L = {a, b}im, then L is neither open nor closed, in general. Hence L ∈ FO2 \ (Σ2 ∪Π2).
The result for finite words is therefore somewhat misleading. The correct translation for the
general case is:

Theorem 5.10 For all A ⊆ Γ the following assertions are equivalent:

1. L ∩Aim is FO2-definable.

2. There are languages Lσ ∈ FO2 ∩ Σ2 and Lπ ∈ FO2 ∩Π2 such that

L ∩Aim = Lσ ∩Aim = Lπ ∩Aim.

3. There are languages Lσ ∈ Σ2 and Lπ ∈ Π2 such that

L ∩Aim = Lσ ∩Aim = Lπ ∩Aim.

Proof: “1 ⇒ 2”: By Theorem 5.5 we see that L∩Aim is a finite union of unambiguous monomials
A∗1a1 · · ·A∗kakA∞ ∩ Aim. We let Lσ be the finite union of the monomials A∗1a1 · · ·A∗kakA∞; by
Theorem 5.7 we obtain Lσ ∈ FO2 ∩ Σ2. Let K be the complement of L ∩ Aim. Then K and
K ∩Aim are FO2-definable. Thus, K ∩Aim = Kσ ∩Aim for some Kσ ∈ FO2 ∩ Σ2. Let Lπ be the
complement of Kσ. Then Lπ ∈ FO2 ∩Π2 and L∩Aim = Lπ ∩Aim. “2 ⇒ 3”: Trivial. “3 ⇒ 1”: If
L = Lσ ∩Aim, then a slight modification of the proof for Lemma 4.1 shows that all idempotents in
Synt(L) are locally top. Identically, if L = Lπ ∩ Aim, then all idempotents in Synt(L) are locally
bottom. Thus Synt(L) ∈ DA, and by Theorem 5.5 we see that L is FO2-definable. 2
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6 The fragment ∆2 = Σ2 ∩Π2

6.1 Clopen unambiguous monomials

Languages in Σ2 are open and languages in Π2 are closed. Hence, a language in ∆2 must be clopen
in the alphabetic topology. The first step towards a convenient characterization of ∆2 is therefore
a description of clopen unambiguous monomials.

Lemma 6.1 Let P = A∗1a1 · · ·A∗kakA∞ be an unambiguous monomial. The following assertions
are equivalent:

1. There is no 1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.

2. P is closed in the alphabetic topology.

3. P is clopen in the alphabetic topology.

Proof: “1 ⇒ 2”: For a moment let Ak+1 = A. By Lemma 3.7 we see that the closure of P is:⋃
{ai,...,ak}⊆B⊆Ai

A∗1a1 · · ·A∗i−1ai−1A
∞
i ∩Bim.

Since there is no {ai, . . . , ak} ⊆ Ai for 1 ≤ i ≤ k, we see that this union is just P itself. Therefore,
P is closed. “2 ⇒ 3”: is clear, because P is open. “3 ⇒ 1”: Assume by contradiction that
{ai, . . . , ak} ⊆ Ai for some 1 ≤ i ≤ k. We have a1 · · · ai−1(ai · · · ak)m ∈ P for all m ≥ 1. As P is
closed we see a1 · · · ai−1(ai · · · ak)ω ∈ P and hence {ai, . . . , ak} ⊆ A. But this is a contradiction to
the fact that P is unambiguous since {ai, . . . , ak} ⊆ Ai ∩A implies that a1 · · · ai−1(ai · · · ak)2 ∈ P
has two different factorizations. 2

Lemma 6.2 Let L ⊆ Γ∞ be a closed polynomial. For every unambiguous monomial

P = A∗1a1 · · ·A∗kakA∞ ⊆ L

there exist closed unambiguous monomials Q1, . . . , Q` such that P ⊆ Q1 ∪ · · · ∪Q` ⊆ L, i.e., there
exists a finite covering of P with closed unambiguous monomials in L.

Proof: We start with a normalization procedure in which we begin with making the last appear-
ances of the letters in A∗i explicit. We have B∗ = (B \ {b})∗ ∪ B∗b (B \ {b})∗ for every b ∈ B.
This yields the substitution rule of replacing A∗i in P by (Ai \ {a})∗ and also by A∗i a(Ai \ {a})∗
which gives two new monomials. After iterating this substitution rule a finite number of times,
we obtain unambiguous monomials of the form P ′i = B∗1b1 · · ·B∗s bsA∞ such that P =

⋃
P ′i and

Bi ⊆ {bi, . . . , bs} for every 1 ≤ i ≤ s. In the next phase of the normalization procedure we make
the first appearances of the letters in A∞ explicit. We have B∞ = (B \ {b})∞ ∪ (B \ {b})∗ bB∞
for every b ∈ B. As above, this yields a substitution rule and after a finite number of applications
to the P ′i we obtain unambiguous monomials of the form P ′′i = B∗1b1 · · ·B∗s bsB∗s+1bs+1 · · ·B∗t btA∞
such that P =

⋃
P ′′i and the following properties hold:

• Bi ⊆ {bi, . . . , bt} for every 1 ≤ i ≤ s.

• {bi, . . . , bt} 6⊆ Bi for all s+ 1 ≤ i ≤ t.

• A = {bs+1, . . . , bt}.

It suffices to prove the lemma for P = B∗1b1 · · ·B∗s bsB∗s+1bs+1 · · ·B∗t btA∞ with the above proper-
ties. If P is not closed, then by Lemma 6.1 there exists 1 ≤ i ≤ s such that Bi ⊇ {bi, . . . , bt}, and
hence A ⊆ Bi = {bi, . . . , bt} due to the normalization procedure. We fix the minimal index i with
this property.
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Next, we use a Ramsey argument. Let L be strongly recognized by h : Γ∗ → M and let r =
r(M) be the Ramsey number such that every complete edge-colored graph with r nodes and using
at most |M | colors contains a monochromatic triangle. We have B∗i = (Bi\{bj})∗∪(Bi\{bj})∗bjB∗i
and Bi \ {bj} is no longer a superset of {bi, . . . , bt}. Therefore, we only have to consider the case
where we replace the factor bi−1B

∗
i bi in P by bi−1(Bi \{bj})∗bjB∗i bi for some i ≤ j ≤ t. Repeating

this procedure we are left with a situation where we have replaced bi−1B
∗
i bi in P by bi−1R

rB∗i bi
in P where

R = (Bi \ {bi})∗bi(Bi \ {bi+1})∗bi+1 · · · (Bi \ {bt})∗bt.

Note that the resulting monomial P̃ is unambiguous and that the alphabet of every word in R is
Bi = {bi, . . . , bt}.

Now consider α = uv1 · · · vr ∈ B∗1b1 · · ·B∗i−1bi−1R
r, with vj ∈ R for all 1 ≤ j ≤ r. By

the choice of r being the Ramsey number for triangles we find some j1 ≤ j2 < j3 such that
h(vj1 · · · vj2) = h(vj2+1 · · · vj3) = h(vj1 · · · vj3) is idempotent in the monoid M . Since L is closed
we see that

uv1 · · · vj1−1(vj1 · · · vj2)ω ∈ L.

This is clear because for each prefix wm = uv1 · · · vj1−1(vj1 · · · vj2)m we have alph(vj1) = {bi, . . . , bt} =
Bi and wmbi · · · bt ∈ P ⊆ L.

Since L is open, there is some m such that wmB∞i ⊆ L. This follows again because alph(vj1) =
Bi. Since h strongly recognizes L and since h(wm) = h(uv1 · · · vj2) by idempotency of h(vj1 · · · vj2),
we have uv1 · · · vj2B∞i ⊆ L. In particular, uv1 · · · vrB∞i ⊆ L.

This is true for all α ∈ B∗1b1 · · ·B∗i−1bi−1R
r, hence

B∗1b1 · · ·B∗i−1bi−1R
rB∞i ⊆ L.

By construction, Q = B∗1b1 · · ·B∗i−1bi−1R
rB∞i is a closed unambiguous monomial and due to the

normalization, we have B∗i bi · · ·B∗t btA∞ ⊆ B∞i and hence P ⊆ Q. 2

6.2 Arrow languages and deterministic languages

We write sR t for monoid elements s, t ∈M if there exist x, y ∈M such that s = ty and t = sx,
i.e., if the right-ideals sM and tM are equal. The relation R is one of Green’s relations, see e.g.
[16].

The results of this section are very similar to results on deterministic and complement-determi-
nistic languages which can be found in [15], too. Moreover, the conditions in Proposition 6.4 and
Proposition 6.5 can be complemented by several other equivalent characterizations, see e.g. [15,
Theorems VI.3.7]. One of them is the class of finite Boolean combinations of regular Cantor-open
languages and another one is in terms of the second level of the Borel hierarchy over the Cantor
topology.

Lemma 6.3 Let L ⊆ Γ∞ be a deterministic language which is strongly recognized by some sur-
jective homomorphism h : Γ∗ → M onto a finite monoid M . Let s, e, t, f, x, y,∈ M such that
(s, e), (t, f) are linked pairs and s = ty and t = sx (thus, sR t). Assume that

[s][e]ω ∩ L ∩ Γω 6= ∅.

Then we have [t][yexf ]ω ⊆ L.

Proof: Let s0, e0, f0, x0, y0 ∈ Γ∗ be words which are mapped to the corresponding elements in
s, e, f, x, y ∈M . We choose e0 6= 1 nonempty, which we can do due to the assumption. Since L is
deterministic, there exists a set W ⊆ Γ∗ such that L ∩ Γω =

−→
W ∩ Γω. We are going to construct

sequences of words sn ∈ [s]
(
[xf ][ye]

)n and wn ∈W for n ∈ N such that

s0 < w0 < s1 < w1 < s2 < w2 < · · ·

16



where < denotes the strict prefix order on words. Thus, the limit defines an infinite word α

such that α ∈ [s]
(
[xf ][ye]

)ω ∩ −→W . In particular, α ∈ L. Moreover, since sxf = t we have
α ∈ [t][yexf ]ω ∩ L and hence [t][yexf ]ω ⊆ L due to strong recognition.

Thus, it is enough to define the sequences sn and wn for n ∈ N as above. The condition
s0 ∈ [s]

(
[xf ][ye]

)0 is satisfied by definition. Let n ∈ N. Inductively, we may assume that wk and
sm are defined as desired for k < n and m ≤ n. We are going to define wn and sn+1. Infinitely
many prefixes of snx0f0y0e

ω
0 are in W , because snx0f0y0e

ω
0 ∈ [s][e]ω ⊆ L. Thus we find wn ∈ W

and ` ≥ 1 such that
sn < wn < sn+1 = snx0f0y0e

`
0.

By induction we see that sn+1 ∈ [s]
(
[xf ][ye]

)n+1 because x0f0y0e
`
0 ∈ [xf ][ye] since e2 = e. 2

Proposition 6.4 Let L ⊆ Γ∞ be strongly recognized by some surjective homomorphism h : Γ∗ →
M onto a finite monoid M . Define

W =
⋃
{[s] ⊆ Γ∗ | [s][e]ω ⊆ L for some linked pair (s, e)} .

Then the following four assertions are equivalent:

1. L =
−→
W .

2. For all linked pairs (s, e), (t, f) with s R t we have

[s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

3. For every linked pair (s, e) we have

[s][e]ω ⊆ L ⇔ [s] ⊆ L.

4. Both L and its complement are arrow languages.

Proof: “1 ⇒ 2”: Let [s] ⊆ W and let (t, f) be a linked pair with s R t. It is enough to show
[t][f ]ω ⊆ L. If s = t, then [t][f ]ω ⊆

−→
W = L. For s 6= t we find x 6= 1 6= y with s = ty and t = sx. It

follows that [s][xy]ω ∩L∩ Γω 6= ∅. Lemma 6.3 yields [t][yexf ]ω ⊆ L for e = xy. But then [t] ⊆W
and [t][f ]ω ⊆

−→
W = L.

“2 ⇒ 3”: If [s][e]ω ⊆ L then by “2” we have [s][1]ω ⊆ L. Since [s] ⊆ [s][1]ω, it follows [s] ⊆ L.
Conversely, if [s] ⊆ L, then strong recognition yields [s][1]ω ⊆ L; and hence [s][e]ω ⊆ L by “2”.

“3⇒ 4”: The condition is symmetric in L and its complement. Therefore it is enough to show
that L is an arrow language. We show L =

−−−−→
L ∩ Γ∗. Let [s][e]ω ⊆ L. Then, by “3”, we see that

[s] ⊆ L and hence [s][e]ω ⊆
−→
[s] ⊆

−−−−→
L ∩ Γ∗. For the other inclusion, let α ∈

−−−−→
L ∩ Γ∗. Then α ∈

−→
[s] for

some s ∈ M with [s] ∩ L 6= ∅. We can find a linked pair (s, e) such that α ∈ [s][e]ω. By strong
recognition, [s] ⊆ [s][1]ω ⊆ L. By “3” we conclude [s][e]ω ⊆ L and α ∈ L.

“4 ⇒ 1”: Since L is an arrow language, it is enough to show L ∩ Γ∗ = W . The inclusion
L ∩ Γ∗ ⊆ W is trivial. For the converse assume by contradiction [s] ∩ L = ∅, but [s][e]ω ⊆ L for
some linked pair (s, e). Then [s] ⊆ Γ∗ \ L. Since the complement of L is an arrow language, we
have [s][e]ω ⊆

−→
[s] ⊆

−−−−→
Γ∗ \ L = Γ∞ \ L, which is a contradiction to [s][e]ω ⊆ L. Thus, W ⊆ L ∩ Γ∗.

2

The following result yields a simple proof for a Landweber type result in the special case of
deterministic and complement-deterministic languages.

Proposition 6.5 Let L ⊆ Γω be a deterministic language which is strongly recognized by some
surjective homomorphism h : Γ∗ →M onto a finite monoid M . Let

W =
⋃
{[s] ⊆ Γ∗ | [s][e]ω ⊆ L for some linked pair (s, e)}

and U = Γ∗ \W . Then
−→
W ∪

−→
U = Γ∞ and

−→
W ∩

−→
U = ∅, i.e., Γ∞ is a disjoint union of

−→
W and

−→
U .

Moreover,
−→
W ∩ Γω = L if and only if L is complement-deterministic, too.
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Proof: Clearly,
−→
W ∪

−→
U = Γ∞. Assume by contradiction that there is some α ∈

−→
W ∩

−→
U . Then

α ∈ Γω with α ∈
−→
[s] ∩

−→
[t] such that [s] ⊆W and [t] ⊆ U . Using the usual application of Ramsey’s

Theorem at those prefixes belonging to [s] or [t], respectively, we see that for some linked pairs
(s, e), (t, f) we have α ∈ [s][e]ω and α ∈ [t][f ]ω. We have s = ty and t = sx with x 6= 1 6= y
because s 6= t as U ∩W = ∅. Since [s][e]ω ∩ L ∩ Γω 6= ∅, by Lemma 6.3 we have [t][yexf ]ω ⊆ L.
This contradicts [t] ⊆ U = Γ∗ \W .

For the second statement of the proposition: If
−→
W ∩ Γω = L, then by the first statement of

this proposition we have Γω \ L =
−→
U ∩ Γω, i.e., L is complement-deterministic.

For the converse, let L be complement-deterministic. Clearly, L ⊆
−→
W ∩ Γω. Assume by

contradiction that there is some α ∈
−→
W \ L for some α ∈ Γω. Then α ∈

−→
[s] ∩ [t][f ]ω for [s] ⊆ W

and (t, f) is a linked pair with [t][f ]ω ⊆ Γω \L. We have s = ty and t = sx for some x, y ∈M . By
definition of W , we find a linked pair (s, e) such that [s][e]ω ⊆ L. We have [s][e]ω ∩L∩Γω 6= ∅ and
[t][f ]ω∩(Γ∞\L)∩Γω 6= ∅. Since both L and Γ∞\L are deterministic, we can apply Lemma 6.3 and
obtain [t][yexf ]ω ⊆ L and [s][xfye]ω ⊆ Γω \ L. This is a contradiction to strong recognizability,
since [t][yexf ]ω ∩ [s][xfye]ω 6= ∅. 2

6.3 Various characterizations of ∆2

Theorem 6.6 Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent.

1. L is ∆2-definable.

2. L is FO2-definable and L is clopen in the alphabetic topology.

3. L is a finite union of unambiguous closed monomials A∗1a1 · · ·A∗kakA∞, i.e., there is no
1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.

4. Synt(L) ∈ DA and for all linked pairs (s, e), (t, f) with sR t (i.e., there exist x, y ∈ Synt(L)
such that s = ty and t = sx) we have

[s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

5. L is weakly recognized by h : Γ∗ → M for some M ∈ DA, and for all linked pairs (s, e),
(t, f) with sR t in M we have [s][e]ω ⊆ L if and only if [t][f ]ω ⊆ L.

6. Synt(L) ∈ DA and both L and its complement Γ∞ \ L are arrow languages.

Proof: “1 ⇒ 2”: By Theorem 4.2 and its dual version for Π2, we see that Synt(L) ∈ DA and that
L is clopen in the alphabetic topology. From Theorem 5.5 it follows that L is FO2-definable.

“2 ⇒ 3”: By Theorem 5.7, L is a finite union of unambiguous monomials. Property “3” now
follows by Lemma 6.2 and Lemma 6.1.

“3 ⇒ 1”: Theorem 5.7 and Theorem 5.8.
“2 ⇒ 4”: By Theorem 5.5, we see that Synt(L) ∈ DA. Suppose [s][e]ω ⊆ L and let s = ty

and t = sx. Since L is closed we see that [s][exfy]ω ⊆ L and by strong recognition we conclude
[t][fyex]ω ⊆ L. Let A =

⋃
{alph(v) | v ∈ [f ]}. Since L is open and by strong recognition, there

exists r ∈ N such that [t][fyex]rA∞ ⊆ L. Moreover, t = tfyex and thus, [t]A∞ ⊆ L. In particular,
[t][f ]ω ⊆ L because [f ] ⊆ A∗.

“4 ⇒ 5”: Trivial with M = Synt(L) and h = hL.
“5 ⇒ 2”: If α ∈ [s][e]ω ∩ [t][f ]ω for linked pairs (s, e), (t, f), then s R t. Hence [s][e]ω ⊆ L and

[s][e]ω ∩ [t][f ]ω 6= ∅ implies [t][f ]ω ⊆ L. In particular, h strongly recognizes L.
Definability in FO2 follows by Theorem 5.5. By symmetry, it suffices to show that L is open.

Let α ∈ [s][e]ω ⊆ L for some linked pair (s, e) and write α = uβ with u ∈ [s] and β ∈ [e]ω∩A∞∩Aim

for some A ⊆ Γ. Let v ≤ β be a prefix such that v ∈ [e] and alph(v) = alph(β). We want to show
uvA∞ ⊆ L. Consider uvγ ∈ Γ∞ where γ ∈ A∞. We have uvγ ∈ [t][f ]ω for some linked pair (t, f).
Let v′ ≤ γ such that uvv′ ∈ [t]. Since Synt(L) ∈ DA we have vv′v ∈ [e] and s = t ·h(v). Together
with t = s · h(v′) it follows sR t and by “4” we obtain uvγ ∈ [t][f ]ω ⊆ L.

“4 ⇔ 6”: This equivalence follows from Proposition 6.4. 2
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Corollary 6.7 Let L ⊆ Γ∞ be a regular language such that Synt(L) ∈ DA. The following
assertions are equivalent:

1. L is clopen in the alphabetic topology.

2. Both L and its complement Γ∞ \ L are arrow languages.

Proof: The statement follows from the equivalence of “2” and “6” in Theorem 6.6 since by Theo-
rem 5.5 the language L is FO2-definable if and only if Synt(L) ∈ DA. 2

Remark 6.8 The statement of Corollary 6.7 does not need to hold outside the variety DA. For
example the aperiodic language L = (ab)ω ∪ (ab)∗a ⊆ {a, b}∞ is an arrow language and its com-
plement is also an arrow language, but it is not open.

6.4 The intersection of Σ2 and Π2 over infinite words

The next corollary gives a characterization of the fragment ∆2 for ω-languages, i.e., we consider
the intersection of Σ2 and Π2 over infinite words (instead of finite and infinite words). Note that
the language Γω ⊆ Γ∞ of all infinite words is Π2-definable, but not Σ2-definable as a subset of
Γ∞.

Corollary 6.9 Let L ⊆ Γω be an ω-regular language. The following assertions are equivalent:

1. L ∈ Π2 and there exists a language Lσ ∈ Σ2 such that L = Lσ ∩ Γω.

2. There exist languages Lσ ∈ Σ2 and Lπ ∈ Π2 such that L = Lσ ∩ Γω = Lπ ∩ Γω.

3. Synt(L) ∈ DA and L is deterministic and complement-deterministic.

4. There exists a language Lδ ∈ ∆2 such that L = Lδ ∩ Γω.

Proof: “1 ⇔ 2”: Trivial, since L = Lπ ∩ Γω is Π2-definable.
“2 ⇒ 3”: By Theorem 5.10 we see that L is FO2-definable and by Theorem 5.5 we conclude

Synt(L) ∈ DA. The complement of Lπ is Σ2-definable, hence Lπ is closed by Theorem 4.2. There-
fore, L = Lπ ∩Γω is closed too. By Corollary 3.3 it follows that L is deterministic. Symmetrically,
we deduce that Γω \ L is also deterministic.

“3 ⇒ 4”: Let W =
⋃
{[s] ⊆ Γ∗ | [s][e]ω ⊆ L for some linked pair (s, e)} and set Lδ =

−→
W . By

Proposition 6.5 we have L = Lδ∩Γω. Moreover, both Lδ and its complement are arrow languages.
Since Synt(Lδ) = Synt(L) we can apply Theorem 6.6 and conclude Lδ ∈ ∆2.

“4 ⇒ 2”: Trivial with Lσ = Lπ = Lδ. 2

6.5 On the construction of examples

Let h : Γ∗ → M be a surjective homomorphism onto a finite monoid M . By definition of weak
recognition, for every linked pair (s, e) the language [s][e]ω is weakly recognized by h and every
language which is weakly recognized by h is a union of such languages. We say that two linked pairs
(s, e), (t, f) are conjugated, if e = xy, f = yx, and t = sx for some x, y ∈ M . It is easy to verify
that conjugacy forms an equivalence relation on the set of linked pairs and that [s][e]ω∩ [t][f ]ω 6= ∅
if and only if the linked pairs (s, e) and (t, f) are conjugated. We define for a linked pair (s, e) the
class [s, e] as a language by:

[s, e] =
⋃
{[t][f ]ω | (s, e) and (t, f) are conjugated} ⊆ Γ∞.

The language [s, e] is strongly recognized by h; and every language, which is strongly recognized
by h, is a union of such languages.
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The set
−→
[s] is an arrow language which is weakly recognized by h since

−→
[s] =

⋃
{[s][f ]ω | (s, f) is a linked pair for some f ∈M}

If an arrow language L ⊆ Γ∞ is weakly recognized by h, then L is a union of languages of the form−→
[s] since L =

−−−−→
L ∩ Γ∗ and L ∩ Γ∗ =

⋃
{[s] | [s] ∩ L 6= ∅}. In general,

−→
[s] is not strongly recognized

by M .
For every s ∈M we denote by Rs the R-class of s, i.e., Rs = {t ∈M | sM = tM}. We have

−−→
[Rs] =

⋃
{[s, e] | there exists e ∈M such that (s, e) is a linked pair} .

By Proposition 6.4, both
−−→
[Rs] and its complement are arrow languages which are strongly recog-

nized by h. Conversely, if L and its complement are arrow languages which are strongly recognized
by h, then L is a union of languages of the form

−−→
[Rs]. Moreover, as shown in the proof of Theo-

rem 6.6, if L and its complement are arrow languages and if L is weakly recognized by h, then, in
fact, L is strongly recognized by h.

Therefore, for some given h : Γ∗ →M we find examples as follows:

• [s][e]ω are languages which are weakly recognizable by h.

• [s, e] are languages which are strongly recognizable by h.

•
−→
[s] are arrow languages which are weakly recognizable by h.

•
−−→
[Rs] are arrow languages whose complement is also an arrow language, and which are strongly
recognizable by h.

More concretely: If M ∈ DA then, by Theorem 5.5, the languages which are strongly recog-
nizable by h are FO2-definable, but by Example 5.6 weak recognition is not enough to guarantee
FO2-definability. By Theorem 6.6, languages L are ∆2-definable if they are strongly recognizable
by h and if both, L and Γ∞ \ L are arrow languages.

Therefore we can produce examples along the following line: We start with some linked pair
(s, e), this yields [s][e]ω which is weakly recognizable and [s, e] which is strongly recognized by h.
The arrow language

−→
[s] is incomparable with [s, e], in general. By definition,

−→
[s] is a deterministic

language. Moving to
−−→
[Rs] yields an arrow language, where its complement is an arrow language,

too. We have:

[s][e]ω

−→
[s]

[s, e]

−−→
[Rs]

⊆ ⊆

⊆ ⊆

Example 6.10 Let Γ = {a, b, c} and P = c∗aΓ∗bΓ∗c. The syntactic monoid of P is in DA,
because P is FO2-definable. We can write Synt(P ) = {1, a, b, ab, c, ac, bc, abc} where the elements
correspond to minimal length representatives of the classes induced by the syntactic congruence.
To see this observe that P = c∗aΓ∗bΓ∗ ∩Γ∗c. The syntactic monoid of c∗aΓ∗bΓ∗ has just the four
elements in {1, a, b, ab}. For Synt(P ) we copy these classes and add the information whether it rep-
resents a word ending in c. All elements of Synt(P ) are idempotent and its egg-box representation
(see e.g. [16]) is given by:
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∗1

∗c

∗a ∗ac

∗b ∗bc

∗ab ∗abc

We have P = [abc]. The language L = Pω = [abc]ω is weakly recognizable by Synt(P ), too. All
words in α ∈ L have infinitely many occurrences of the factor ca and im(α) = Γ. In particular,
L is not open in the strict alphabetic topology. By Lemma 5.2, the language L is not strongly
recognizable by any monoid in DA.

The conjugacy class of the linked pair (abc, abc) is {(ab, b), (ab, ab), (abc, bc), (abc, abc)} and
[abc, abc] = c∗aΓ∗bΓ∞∩(Γ∗b)ω. The language [abc, abc] is strongly recognizable by Synt(P ) ∈ DA.
By Theorem 5.5 it is FO2-definable. The set [abc, abc] is not open in the alphabetic topology. By
Theorem 6.6, [abc, abc] is not ∆2-definable.

The set
−−→
[abc] =

−→
P = c∗aΓ∗bΓ∞ ∩ (Γ∗c)ω is an arrow language which is weakly recognizable

by h. It is not strongly recognized by the syntactic homomorphism of P since [abc][abc]ω ⊆
−−→
[abc] ∩ [abc, abc] but [abc, abc] 6⊆

−−→
[abc]. On the other hand,

−−→
[abc] is FO2-definable, and therefore,

by Theorem 5.5, it is strongly recognizable by some other homomorphism onto a monoid in DA.
The R-class of abc is Rabc = {ab, abc}. Hence

−−−→
[Rabc] = c∗aΓ∗bΓ∞. By Proposition 6.4 the

complement of
−−−→
[Rabc] is also an arrow language; and by Theorem 6.6 the language

−−−→
[Rabc] is ∆2-

definable. Indeed, for
−−−→
[Rabc] it is enough to say that there is some b and there is some a with no

b to its left. This is a Σ2-sentence. The equivalent Π2-sentence says that there is some b and for
all b there exists some a to its left. It is also deterministic and complement-deterministic. 3

7 Summary

We have given language-theoretic, algebraic and topological characterizations for several first-
order fragments over infinite words. Since FO2 and ∆2 have the same expressive power only
when restricted to some fixed set of letters occurring infinitely often (Thm. 5.10), the picture
becomes more complex than in the case of finite words. By Pol we denote the language class
of polynomials, UPol are unambiguous polynomials, and restricted UPol is a proper subclass of
UPol. Simple polynomials are finite unions of languages of the form Γ∗a1 · · ·Γ∗anΓ∞. A language
L ⊆ Γ∞ is piecewise testable if there exists some k ∈ N such that for every α ∈ Γ∞ membership
in L only depends on the set of scattered subwords of α length ≤ k. The first-order fragment Σ1

consist of first-order sentences in prenex normal without universal quantifiers. Its Boolean closure
is BΣ1.

All of the below-mentioned algebraic properties are decidable, since the syntactic monoid of a
regular language is effectively computable [15, 24]. Together with the PSPACE-completeness of the
problem whether a language is closed in the alphabetic topology (Thm. 3.5), this yields decidability
of the membership problem for the respective first-order fragments as a corollary. Decidability
was shown before by Wilke [28] for FO2 and by Bojańczyk [2] for Σ2. The characterization for the
fragment Σ1 is due to Pin [17]; see also [15]. The same holds for the Boolean closure of Σ1 except
for the topological part of the “Algebra + Topology” characterization, which is a consequence of
Corollary 6.7.
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Logic Languages Algebra Topology

Σ2 Pol eMee ≤ e +
open
alphabetic Thm. 4.2

FO2 UPol + Aim DA Thm. 5.5

weak DA + closed
strict alphabetic

FO2 ∩ Σ2 UPol DA +
open
alphabetic Thm. 5.7

FO2 ∩Π2 DA + closed
alphabetic Thm. 5.8

∆2 restricted UPol DA + clopen
alphabetic Thm. 6.6

Σ1 simple Pol x ≤ 1 +
open
Cantor [15]

BΣ1 piecewise testable J -trivial + clopen
alphabetic

Cor. 6.7
and [15]

8 Outlook and open problems

By definition, Σ1-definable languages are open in the Cantor topology. We introduced an al-
phabetic topology such that Σ2-definable languages are open in this topology. Therefore, an
interesting question is whether it is possible to extend this topological approach to higher levels
of the first-order alternation hierarchy. To date, even over finite words no decidable characteriza-
tion of the Boolean closure of Σ2 is known. In case that a decidable criterion is found, it might
lead to a decidable criterion for infinite words simply by adding a condition of the form “L and
its complement are in the second level of the Borel hierarchy of the alphabetic topology”. An-
other possible way to generalize our approach might be combinations of algebraic and topological
characterizations for fragments with successor predicate suc such as FO2[<, suc] or Σ2[<, suc]. A
characterization of those languages which are weakly recognizable by monoids in DA is also open.
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