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Chapter 1

Abstract

Publish-subscribe supports asynchronous interactions among processes in a distributed
system. A process can describe its interest in messages by performing an operation called
subscribe and will be notified about messages which match the specific interest.

Provision of basic security mechanisms such as authentication of publishers and sub-
scribers and confidentiality of events and subscriptions is difficult in a publish-subscribe
system.

Authentication is difficult to achieve due to the decoupled nature of interactions be-
tween the publishers and subscribers. Similarly confidentiality conflicts with the content
based routing. Moreover, confidentiality is harder to address in broker-less environment,
where the subscribers are clustered according to their interest.

In this thesis, new techniques to provide confidentiality and authentication in a broker-
less content-based publish-subscribe built on P2P architecture are presented. Identity-
based-encryption is used to provide authentication of publisher and subscriber and confi-
dentiality of events. Furthermore, an algorithm is designed to cluster subscribers accord-
ing to their subscriptions while preserving a weaker notion of confidentiality. Evaluation
results show the feasibility of the technique in terms of dissemination latencies and mes-
sage overhead.
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Chapter 2

Introduction

Publish subscribe system is defined as "a wide-area communication infrastructure that
allows information dissemination across geographically distributed and potentially unlim-
ited number of publishers and subscribers" [2] , the roles in this system can be classified
into three categories:

1. Publisher: Producer of information (events) which sent to the network. These events
will be disseminated towards its destinations.

2. Subscriber: The consumer of the information sent by publishers. Subscribers specify
their interest in the form of (subscriptions) and send it to the network.

3. Broker: Responsible for information (events) dissemination to reach the right con-
sumers (subscribers) based on the subscriptions of these subscribers.

An important characteristic of the publish-subscribe system is the decoupling between
publishers and subscribers in time, space, and flow. This decoupling improves the scalabil-
ity and the effectiveness of the system. There are two classifications of publish-subscribe
system:

• Topic-based Publish-Subscribe System: In topic-based system the event sent by the
publishers marked with a topic and the subscribers subscribe to their interested
topics, brokers perform matching based on the topic to route these events to the
right subscribers.

• Content-based Publish-Subscribe System: Content-based system is more general
and powerful model, where the subscribers have the added flexibility of choosing
filtering criteria along multiple dimensions, using conditions and thresholds on the
contents of the event, rather than being restricted to pre-defined topic fields.
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Our interest in this thesis is the content-based publish-subscribe system. In traditional
content-based publish-subscribe systems, brokers are organized into acyclic topology, these
systems are simple but suffer from many scalability problems such as subscriptions are
flooded to maintain the routing state at each broker. In order to gain scalability, self-
organization and fault-tolerance, many content-based publish-subscribe systems are built
based on peer-to-peer (P2P) architecture where the subscribers are connected to each
others according to similarity of their interest.

Consider a publish-subscribe system disseminating confidential medical records of
many patients, these secret records must be comprehensible only to legal doctors in
the hospital. Patients subscribe to this system in order to receive some medical ad-
vices and remedies, patients prefer to keep their record secret and not revealed except
to their doctors. There are two important requirements needed in such content-based
publish-subscribe: keeping the subscriptions and events confidential and guarantee the
authentication of the events.

Keeping the events confidential in publish-subscribe system refers to preserve the con-
fidentiality of secret attributes in an event from unauthorized subscribers in the system.
For example, the secret attribute patientRecord in the following event
e = 〈〈topic, AidsTrial〉 , 〈age, 30〉 , 〈patientRecord, record〉〉 should be comprehensible to
only a subscriber S who has subscribed for: f = 〈〈topic,=, AidsTrial〉 , 〈age > 25〉〉, but
the other subscriber S

′

with subscription: f
′

= 〈〈topic,=, AidsTrial〉 , 〈age > 35〉〉 must
be unable to resolve this attribute. So the publish-subscribe network should be capable
of matching the routable attributes in an event e (topic and age in the above example)
against the restriction in the subscription filter f without obtaining any information about
the secret attribute patientRecord.

Publish subscribe system built on P2P overlay network clusters the subscribers ac-
cording to their interest, that’s to avoid false positive events, for example, all subscribers
interested in 〈〈topic, cancerRemedy〉〉 must be adjacent to each other, confidentiality of
subscriptions refers to preserve the subscription confidential between the adjacent sub-
scribers, for example, two patients S1 and S2 with subscriptions:
f1 = 〈〈topic,=, cancerRemedy〉 , 〈age > 10〉〉, f2 = 〈〈topic,=, cancerRemedy〉 , 〈age > 30〉〉
might be adjacent nodes on P2P network and they exchange many messages, but no one of
them able to discover that the other is a cancer patient. Publish subscribe system should
be capable of clustering these subscribers while keeping the subscriptions confidential.

Guarantee the authentication of the events refers to able any subscriber authenticates
whether the received event is valid or not, e.g. suppose a doctor with a subscription
fdoctor = 〈〈topic,=, AidsTrial〉 , 〈age > 25〉〉 receives the patientRecord for some patient,
he must be able to authorize that the received record is valid and right.

It is not trivial to provide confidentiality in content-based system, because it is against
the routing mechanism in such a system (how to route the secret events to subscribers
without knowing their subscriptions?). On the other hand, achieving authentication is
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against the decoupling needed in the system (how the subscriber authorizes the publisher
without knowing him and vice versa?)

The confidentiality and authentication for both publishers and subscribers must be
achieved without a big overhead to the scalability and the throughput of the system,
the main services and functions must be unaffected. Many algorithms were developed
to achieve such security requirements, related-work section shows and discusses that,
these solutions have many draw backs against the decoupling between publishers and
subscribers and the key management mechanism between them (renewing all the keys
when new subscriber joins or leaves the system). Furthermore, no one addressed the
issue of subscription confidentiality when subscribers are semantically clustered. In this
thesis, new techniques have been developed to achieve the basic security requirements
in publish-subscribe system. To verify their feasibilities they have been simulated and
evaluated using peersim simulator [1].

The rest of this report is organized as follows. Chapter 3 sketches our reference
publish-subscribe model and the threat model. Chapter 4 presents the related work. In
chapter 5 we introduce the identity based encryption, then we present how to use it in our
system in chapter 6. Chapter 7 contains the evaluations and results. And finally chapter
8 concludes the report with view on future work.
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Chapter 3

Background And System Model

3.1 Content-Based Publish-Subscribe Model

Peer-to-peer [3] system is a dynamic and scalable set of peers where they could join or
leave the system at any time. P2P overlay networks have interested much attention due to
desired characteristics for a large-scale distributed environment, it is characterized by the
direct sharing of resources among the peers in the network. Our content-based publish-
subscribe system is based on P2P overlay network, where the subscribers are clustered
according to similarity of their subscriptions. We classified all the nodes in the system
into two categories:

1. Publisher: producer of events.

2. Subscriber: consumer of events and responsible for routing events to the right
place(there are no brokers in our system).

In content-based publish-subscribe system [4] the notification is a set of pairs (at-
tribute,value), and the subscription is a conjunction of tuples (attribute,operator,value),
where operators ∈ {=, <,≤, >,≥}.

We assume content-based publish-subscribe system [3] provides a defined schema with
m attributes {A1, A2, A3, ...Am}. All these attributes form the event space of the sys-
tem, for example, a system with two attributes {temperature, humidity} where: 0 ≤
temperature ≤ 100, 0 ≤ humidity ≤ 50 has an event space as shown in figure 3.1.
In this event space, the publishers set values for their events and subscribers set re-
strictions to get their interested events, e.g. a subscriber S1 defines a subscription
[0 ≤ temperature ≤ 20, 25 ≤ humidity ≤ 50], and a publisher P1 creates a notification
[temperature = 10, humidity = 40], an event is matched a subscription if all attribute
values satisfy the restriction condition, the matching of notifications to the set of all sub-
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scriptions is done based on the contents (values of attributes), this is shown in figure
3.2.

Claim 3.1 subscription A is contained by subscription B if: all events matched to
subscriber subscribes for A are matched for a subscriber subscribes for B, or RegionA ≺
RegionB in the event space.

In figure 3.3 the subscription of the subscriber S1 contains the subscription of the
subscriber S2 = [5 ≤ temperature ≤ 15, 30 ≤ humidity ≤ 40].

The Idea of spatial indexing [4] mechanism in publish-subscribe system is to divide
the event space recursively into many regions as shown in figure 3.4, the first vertical
line divides the event space into two regions labeled 0 and 1, the second horizontal
line divides the event space again into four regions 00,01,10,11. The dividing axis is
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selected alternatively (1,2,1,2). Each region is represented by bit string (DZ), this bit
string is generated by dividing each axis in the event space alternatively (temperatureaxis,
humidityaxis, temperatureaxis, ....), the size of the region is related to the length of DZ,
e.g. "110" is smaller than "11" and "1".

This spatial-indexing concept can be applied to any number of dimensions, but for
simplicity reasons we discuss 2D spaces here. The mapping from the publish-subscribe
domain to the spatial domain is done in two steps:

1. N-dimensional space S is created, where N is the number of unique attributes in the
publish-subscribe domain.

2. Every attribute aj in the publish-subscribe domain maps to a dimension dj in the
space S.
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In our system we can perform two basic operations on the n-dimension spatial-indexing
space:

1. Advertise-to-area : where the publisher decides the area he will publish events on
it.

2. Publish-to-point: where the publisher can publish a message at a given point, re-
ceivable by all subscribers whose subscription areas cover this point.

3. Subscribe-to-area: where the subscriber can define his area (bit string (DZ)) of
interest in this space, so he will receive all events delivered by the publishers in his
subscription area.

In figure 3.5 the subscriber S1 with subscription [ 0≤ temperature≤ 50, 0≤ humidity
≤ 25 ] specifies his subscription by "00". Publications [ temperature = 10, humidity =
22 ] and [temperature = 70, humidity = 45] are represented by dots. Events sent by
publishers will be delivered to all subscribers whose subscription areas contain the pub-
lication dots, so in figure 3.5 the subscriber S1 will just receive the events related to
[temperature = 10, humidity = 22].

Claim 3.2 if n1 = length(DZ1) and n2 = length(DZ2) then:
if(n1 > n2) and DZ1 == DZ2(for length n2 ) → DZ2 contains DZ1

Figure 3.6 shows 2-Dimensional event space divided recursively into 14 regions ("0",
"1", "00"... "11", "000", "111" ), subscription region labeled By S01 contains both S010 and
S011. Figure 3.7 shows the containment relation between all regions of subscription space
in figure 3.6, the node with "*" subscription represents the whole subscription space.

Any subscriber subscribes for any region in figure 3.6 receives all the events related
to his subscription and to all regions he contains. Taking into account that each sub-
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scriber can connect to x subscribers with 1 parent and (x-1) children, we can connect the
subscribers in a topology like a tree where subscribers with a largest subscription region
located higher in the tree, and each parent contains the subscriptions of his children.
By this connection topology, we cluster the subscribers according to their subscriptions.
Consider the subscribers shown in the table in figure 3.7 with 3 connection space for each
subscriber includes one parent, the best way to connect these subscribers to each other is
shown in figure 3.8.

Definition 3.1 False Positive Event: an event received by a subscriber but it does not
match it’s subscription.

The topology of subscribers in figure 3.8 requires each subscriber knows the subscrip-
tion of his neighbors, any new subscriber wants to join the system sends his subscription
to random connected subscriber, this request will be forwarded through the network until
reach the right position to connect. Also when receive any event the subscriber forwards
this event to its neighbor based on their subscriptions.

In many content-based publish subscribe-system like the competitive system each sub-
scriber tries to hide his subscription from others, furthermore, each subscriber must be
able to authenticate the received events. Actually there are many security requirements
needed in many content-based publish-subscribe systems, these requirements which we
are trying to achieve in this thesis are:

1. Subscriptions Confidentiality: Confidentiality in networks means no illegal node
can resolve or read a data not belongs to it, the definition of illegal node depends on
the system. For our publish-subscribe system subscriptions confidentiality means
that the subscription of any subscriber is hidden and unknown to other nodes in
the system (subscribers and publishers). Achieving such subscription confidentiality
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is difficult because it is against the mechanisms of connect new subscriber to the
system and disseminate events to its right subscribers, in both of these mechanisms,
subscriber must reveal his subscription in order to connect and receive his event).

2. Publications Confidentiality: Publications confidentiality guarantees that just
the legal subscribers can reveal the sent events. This requirement is against the
routing mechanism in the system. In other words, how any subscriber decides the
next hop to forward the event while he cannot resolve it?

3. Publications Authentication: Authentication in networks means that any re-
cieved message is sent by the legal sender, the receiver must be able to detect
whether the received message is fake or not. In publish-subscribe system publica-
tions authentication means that any received event is just sent by the legal publisher,
so there must be an ability to the subscriber to decide whether the received event
is sent by the corresponding legal publisher. This is difficult to achieve while sus-
taining the decoupling between publishers and subscribers. In other words, how the
subscriber can detect whether the identity of the publisher is right even he does not
know him?

4. Subscriptions Authentication: Subscriptions authentication in our publish-subscribe
system means that no illegal node (publisher or subscriber) can subscribe for some
subscription and start receiving its corresponding events. So it must be a mech-
anism in publish-subscribe system to detect the identity of any subscriber and to
check whether he can subscribe for any subscription or not. This is again difficult to
achieve while sustaining the decoupling between publisher and subscribers. In other
words, how the publisher can detect the identity of the subscriber who receives his
event while he does not know him?

In case of achieving all these security requirements, we will gain a system that:

1. Subscriptions of subscribers are hidden, and no malicious node can

fabricate any subscription and pretend as legal subscriber.

2. Publications of publishers are hidden, and no malicious node can fab-

ricate any fake event and send it as legal one.

3. Any fake event will be stopped and will not be propagated through the

whole network, so prevent denial-of-service attackers who overwhelm

the network with huge number of fake events.

4. Building the subscriber’s tree and disseminating the events to the right

subscribers while keeping all the subscriptions hidden and without a big

overhead in the throughputs and performance latency in the system.
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3.2 Threat Model

Our system comprises of two entities: publishers and subscribers, here we present the
threat model and the trust assumptions our new algorithm assumes in all these entities
and in the underlying infrastructure network:

1. Publisher: We assume malicious publishers in our system. A malicious publisher
might try to fabricate some events, discovers subscriber’s subscriptions, discovers
other publisher’s events by trying to decrypt them or even by claiming that he is a
subscriber, e.g. a publisher of "1100" pretends he is a subscriber for "1010" in order
to discover the events sent by his competitive publisher.

2. Subscriber: We have an assumption of malicious subscribers in our system. A
malicious subscriber might try to fabricate some events, discovers other subscriber’s
subscription, whether by decrypting events not related to his subscription or even
claims that he is a subscriber for a certain event space region, e.g. a subscriber of
"101" claims that he is a subscriber for "111".

3. Subscribers are honest in routing nodes between publishers to subscribers, so there
is no intended event dropping in the system.

4. Subscribers don’t inform others about their decrypted events, or about their secret
keys.

5. The underlying IP-network may not provide confidentiality or authentication, but
the underlying domain name server, network routers, and the related network in-
frastructure is secure and cannot be corrupted by an adversary.

6. We are using identity-based-encryption algorithm in our solution, we assume that
we have a secure and protected trusted-third-party (TTP), and there is a secure
link between this TTP and other nodes in the system.

16



Chapter 4

Related Work

Many research and industrial projects focus on providing confidentiality and authentica-
tion in publish-subscribe system, this chapter gives an overview of some of these algo-
rithms.

4.1 EventGuard Mechanism

EventGuard mechanism [2] is a reliable framework and a set of protection mechanisms for
securing a publish-subscribe overlay service. It has two components, the first component
is a group of security guards that can be plugged-into a wide-area content-based publish-
subscribe system. The second component is a resilient publish-subscribe network design
that is suitable of secure message routing, preventing denial-of-service attacks and failure
of the nodes.

The reference model of EventGuard [2] supports:

1. Publish, advertise and un-advertise actions for the publishers. Publisher uses the
advertise action to announce that he wants to publish some event, the un-advertise
action means that the publisher will not send the corresponding event furthermore.

2. Subscribe and un-subscribe actions for the subscriber.

Figure 4.1 shows the architecture of EventGuard system, it is composed of many
layers. The lowest one is the network layer, this layer could be TCP or UDP which
used to exchange data between the nodes, the resilient publish-subscribe network used to
prevent dropping message denial of service attack.

Security guards located in the second layer responsible for achieving many security
requirements on different actions on EventGuard system. Figure 4.1 shows that this layer
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Figure 4.1: EventGuard Architecture [2]

is divided into: publisher, subscriber and router guards.

The higher layer is the replicated trusted Meta-Service. It is responsible for creating
some needed blocks for EventGuard such as: tokens, keys and signatures. These blocks
are used in different actions to secure the system. Tokens represent the topics in topic-
based publish-subscribe system. Publishers in such system publish a token to a topic,
and the subscribers subscribe for this token. Keys are essential to encrypt and decrypt
messages between publisher and subscriber, and signatures are used to authenticate the
received events.

Each security guard is responsible for securing different actions on the system:

1. Subscriber Guard: Subscribers handle the subscription process by corporation with
the trusted-meta-service(MS) layer. Subscribers send their filters to the MS layer,
which responds with a subscription permit, this permit allows the subscriber to
securely subscribe for any topic in the system, by this, the subscriber will guarantee
authentication, confidentiality of his subscription.

2. Advertise Guard: This guard is responsible for achieving authentication and con-
fidentiality of advertisement action. Publishers gain a permit from the MS which
used for their advertisements.

3. Publish Guard: Publisher uses the keys and tokens he gained from MS to make the
transformation of his event to a secure one. Just the legal subscribers who have the
corresponding decryption keys able to resolve this event.

4. Un-Subscribe and Un-Advertise guards: Legal subscribers and publishers have an
IDs which they gained from the MS layer. these IDs allow them to un-subscribe and
un-advertise respectively in a secure manner, so no malicious node able to fabricate
any fake un-subscription or un-advertisement message in the system.
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5. Routing Guard: This guard is responsible for preventing denial-of-service attack
against publish-subscribe network. Each routing node depends on the time relation
to prevent such attack, each EventGuard system message is signed by MS, there
is also a defined max-delay time in the system, the routing nodes stop route any
message that exceeds this maximum delay.

Figure 4.2 illustrates that, in this figure nodes B1 and B2 are malicious nodes, node
B1 performs the attack by send huge number of useless messages to other nodes
in network. Nodes G1, G2 and G3 prevent and stop these fake messages to be
propagated to others, but B2 moves these messages to G4 which stops it, so every
X labeled node is free of this attack.

6. R-Resilient Network Guard: It is mentioned that EventGuard defines a network
architecture in order to stop dropping-based denial-of-service attack. R-resilient
network guard is responsible for achieving that. Any network called r-resilient if
the percentage of the messages that the network can secure them from the dropping
attack is r. This resilient guard is aim to minimize the number of packets that are
affected by the dropping attack, also to reduce the load of the communication on the
network. This is done by implement a guard which creates a-ary trees to achieve
these goals, as a result there is more than one independent path (paths without
shared nodes) to route the message from publishers to subscribers

EventGuard mechanism achieves authentication and confidentiality for publishers,
subscribers and brokers. However, there are two important drawbacks in it: the first
one is that EventGuard mechanism is more suitable for topic-based publish-subscribe
system, it creates a token for each used topic. The second one is the unavoidable key
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management problem in this mechanism. The cost of key management depends on the
number of subscribers, so the solution will not be scalable.

4.2 PS-Guard Mechanism

PS-Guard [5] mechanism aims to secure the data exchange between publishers and sub-
scribers in publish-subscribe system. There are two related important factors this algo-
rithm aims to achieve : how to make a secure data exchange while keeping flexible key
management mechanism between nodes. Many other algorithms deal with key manage-
ment by grouping the subscribers according to their interests. PS-Guard tries to find a
solution where the key management does not depend on the number of subscribers, it
achieves that by using two keys:

1. Authorization key K(f), where f is the filter function of the subscriber.

2. Encryption key K(e), where e is the event.

These keys K(e) & K(f) used to encrypt and decrypt the related secrete attributes in
the event e respectively. This mechanism ensures that if the filter f for some subscriber
matches an event e, then the subscriber can derive K(e) by using K(f). The group key
K(e) is defined by the publisher based on the subscriber’s matching filter, so there are no
unauthorized nodes could get the secrete attributes for the event e.

PS-Guard uses siena publish-subscribe network [5], it also uses the KDC (Key Distri-
bution Center) [5] to handle authorization for the subscription, every subscriber has an
authorization key K(f) for its corresponding filter.

A time epoch id is defined in the system, every period all subscribers renew their
permissions, so any subscriber has to have the new K(f) for the new period if he inter-
ested in the events in the new epoch. This mechanism assumes un-guaranteed underlying
network and malicious publisher, subscriber and routing nodes model. For example, mali-
cious publisher attempts to discover publications of other publishers, malicious subscriber
tries to reveal events which he does not match, routing nodes are honest in routing data
towards its destination.

The main two algorithms used by PS-Guard are the key management and the secure
content based event routing, in the following a description of these algorithms is given:

1. Key Management: The encryption and the authorization keys used to achieve many
security goals by this mechanism. Key management algorithm is responsible for cre-
ating these keys, the basic idea of key management is to find a key space that each

20
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subscriber can use his K(f) to find K(e). This is done by using a hierarchal deriva-
tion, the produced key space is suitable for different publish-subscribe matching [5]:
string-prefix-suffix matching, category-based matching and numeric-attribute-based
matching.

Numeric-attribute-based matching supports the range condition between attributes
in the event e. For example, assume a subscription filter f=〈price ∈ (a, b)〉, this filter
match any event e= 〈price, c〉 if a≤c≤b. So every subscriber can easily derive K(e)
from K( f ) if a≤c≤b, otherwise it is very hard to derive K(e). Key management
achieves this by map K(e) and K(f) to a common key space by using numeric-
attribute-key-tree (NAKT).

Figure 4.3 shows an example of key-tree for a space consisting of one attribute (for
simplicity). The range of this attribute is [0-31]. The important property of this
key tree is: it is very easy to derive all child keys from the parent but not

the opposite. Publisher encrypts any event with the corresponding K(e) from this
tree based of the event space. Subscriber uses his K(f) to derive K(e) related to his
space and his children. As a result, no illegal subscribers can resolve events does
not match his subscriptions.

2. Secure Content-Based Event Routing: PS-Guard aims to achieve scalable key man-
agement and to exchange the data securely between nodes. There are two techniques
used for this secure data exchange, tokenization and the probabilistic multi path event
routing. By applying these techniques the malicious nodes can just discover if there
is a match between the event e and any subscription. Probabilistic multi path event
routing aims to break timing analysis attack, which basically depends on analyze
the frequency of the published events to reveal some secure data.

Tokenization aims to achieve content-based routing, any node can decide if there
is any match between the event e and the subscription filter f. Malicious routing

21



nodes may attempt to break the confidentiality of routed attributes in the publish-
subscribe message by observing the frequency of the events that match a given
subscription filter. Depending on the distribution’s frequency of different events, a
malicious node can guess the topic included in the event. This is just happened to
the routed attributes, but the secret attributes in an event are unaffected.

A probabilistic multi-path event routing constructs many independent paths used to
route data between publishers and subscribers. So there is no clear frequency of the
exchanged event. However, if there are many colluding nodes in the network, they
are able to corporate and exchange data in order to calculate the right frequency
of the exchanged event. To prevent that, the number of the independent paths
increased as needed, and the events distributed among them randomly in order to
prevent these colluding nodes resolve the event frequency. This technique minimizes
the effect of denial-of-service attacks but there is a clear side effect by increasing of
the communication load (cost).

PS-Guard guarantees the publication confidentiality because just the legal subscribers
have the decryption keys of the encrypted events. However, it does not provide any
subscription confidentiality of the subscribers.

4.3 Prefix-Preserving Encryption-Decryption Algo-

rithm

Prefix-Preserving Encryption-Decryption [6] algorithm guarantees confidentiality against
eavesdropper nodes in content-based publish-subscribe systems. In this scheme, events
and subscription-filters are encrypted meanwhile the publish-subscribe network can route
these encrypted events correctly based on the encrypted filters. As a result, these plain-
texts are not revealed in the infrastructure for the purpose of security. This algorithm
supports interval-matching as a filter function for subscriptions.

By assuming a content-based publish-subscribe systems that allow each filter function
to be range-based, composed of intervals mapped to the event space. And by decompos-
ing a subscription with multiple intervals into multiple subscriptions consisting of single
ranges, it is sufficient only to consider intervals. Even though this resulted with more sub-
scription cost, but string attributes (like names, not typically consisting of numbers) can
be indexed and linearized in some manner. The suitable publish-subscribe model for this
scheme is that where the filter function can only be interval-matching or exact-matching
[6].

Interval-matching is defined as a boolean function f[a,b] (y), which returns true if and
only if y ∈ (a, b). We assume that a,b and y are all nonnegative integers. The exact-
matching is a special case of interval-matching in which a is equal to b.
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This schema is targeting private publish-subscribe systems over networks, it is pro-
posed for those publish-subscribe systems in which publishers and subscribers are able
to share some secret data, this is practical when publishers and subscribers are all from
a same organization. This securing of events and subscriptions must be done while the
roting nodes able to make correct routing decisions. Because of these limited targets,
any group key distribution protocol can be used like ELK (Efficient Large-Group Key
Distribution) [7].

A cryptographic scheme can be defined and used as follows: with a secret key, de-
noted by k, publishers and subscribers build a one-to-one mapping FK : (x1, x2, ....xn)→
(y1, y2, ....yn). Where, (y1, y2, ....yn) are the encrypted events of (x1, x2, ....xn) and FK is
the encrypt function. Before publish an event, publisher encrypts it by applying FK , so
the sent event will be FK(event). The subscriber generates a set of encrypted events
represent his interest and subscribes to the network. Because the secret keys are shared
between publishers and subscribers, the encrypted events they generate will match as
long as the original events match. So the encrypted events can be routed correctly to sub-
scribers via brokers while the plain-texts of publications and subscriptions are protected,
after receiving an encrypted event, subscribers can resolve it because FK is a one-to-one
mapping.

One straightforward way to build the mapping FK is to pad attributes into a multiple
of 64-bit or 128-bit fields that is appropriate for applying standard encryption algorithms
like AES or DES [8], by applying the encryption algorithm, we can obtain encrypted
attributes, and the mapping FK is established. The drawback of this simple scheme
is that it can only provide exact-matching as a filter function. Interval-matching must
be represented by a set of exact-matchings which may generate an intractable number
of comparisons for each event. So we need a scheme that efficiently provides interval-
matching as a filter function (discussed below).

In the following an overview of this algorithm scheme is given, this is divided into three
parts: firstly, how an interval-matching problem can be converted into a set of prefix-
matching problems?, then the prefix-preserving encryption and decryption algorithms are
presented, finally a description of the protocol that enables content-based routing without
revealing the plain-texts to the infrastructure is given:

1. Converting interval-matching problem into a set of prefix-matching problems: the
transformation is based on the fact that an arbitrary interval can be mapped into
a union of prefix-ranges, where the prefix-range is one that can be expressed by
a prefix, e.g. the interval [32, 111], can be represented as 8-bit binary string:
[00100000, 01101111] which transformed into prefixes: {001∗, 010∗, 0110∗}, where
(001∗) represents (32, 63), (010∗) represents (64, 95) and (0110∗) represents (96, 111).
A recursive algorithm is used to transform any given interval into prefixes, then
prefix-preserving encryption-decryption algorithms can be simply used to efficiently
provide interval-matching as a filter function while keeping the confidentiality of the

23



publish-subscribe system.

2. Prefix-preserving encryption and decryption algorithms: This algorithm is depend
on the result of transformation interval-matching into prefix-matching, so the rout-
ing nodes can route encrypted publications based on encrypted subscriptions, this
is done by applying the encryption scheme proposed by Xu, Fan, Moon and Ammar
[9] for prefix-preserving IP address anonymization.

Figure 4.4(a) shows a plain-text tree of 4-bit plain-text. Prefix-preserving encryption
function can be described as determining a binary variable for each non-leaf node
(including the root node) of the plain-text tree, this variable determines whether
the encryption function flips this bit or not. This encryption function rearranges
this plain-text tree into a cipher-text tree, figure 4.4(c) shows the cipher-text tree
generating from the encryption function shown in figure 4.4(b). For more details
about encryption and decryption algorithms refer to [6].

3. Protocol that enables content-based routing without revealing the plain-texts to the
infrastructure: Publishers encrypt their attributes using the encryption algorithm
before they distribute them. When a subscriber wants to subscribe, he transforms
his intervals into the corresponding prefixes using the transformation algorithm,
before he subscribes, he applies the encryption function to every prefix. Routing
nodes can route encrypted events correctly based on encrypted filter functions.

This algorithm provides a mechanism for routing the encrypted events towards it’s
destination without resolve them. Brokers able to efficiently make correct routing de-
cisions based on encrypted events and predicate functions. However, an attacker can
eavesdrop the connections and download the encrypted messages (publications or sub-
scriptions). If he have certain number of (plain-text, cipher-text) pairs, he will be able to
infer information from other cipher-texts by prefix-matching, because the encryption is
prefix-preserving. Actually it is more dangerous when the number of (plain-text, cipher-
text) pairs gathers at the eavesdropper side, because it will lead to more prefix information
of encrypted messages to be revealed.
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Figure 4.4: Prefix Preserving Encryption Example [6]
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4.4 Anonymous Multi-Attribute Encryption with Range

Query and Conditional Decryption

In this section, we introduce the concept of Anonymous Multi-Attribute Encryption with
Range Query and Conditional Decryption (AMERQCD) [10]. In AMERQCD, a plain-
text is encrypted under a point in multidimensional space. The resulted cipher-text hides
both the plain-text and the point under which it is encrypted. In a range query, the
owner of the master key can release the decryption key for an arbitrary hyper-rectangle in
space, so, any cipher-texts encrypted under any point within the hyper-rectangle can be
decrypted. However, the user who has the decryption key cannot discover any information
on cipher-texts outside the range covered by his decryption key.

Searching on encrypted data recently captured a considerable amount of attention in
the community [10]. Because it is very important to provide both functionality and privacy
in any database application, some researchers proposed encryption schemes that allow
keyword-based and specific types of comparison-based searches. AMERQCD provides a
powerful technique that enables range query on encrypted data.

AMERQCD assumes the problem of designing an encryption scheme in which data
entries consist of a pair (X,Msg), where X is a point in a multi-dimensional lattice U∆,
and Msg is an arbitrary string. AMERQCD encrypts the data entries and aims to achieve
the followings:

1. Range Query and Conditional Decryption: Upon the request on a region B ⊆ U∇,
the owner of the master key frees a decryption key DKB such that given a cipher-
text C for some entry (X,Msg), using the key DKB, it is possible to decide whether
X ∈ B and to recover Msg from C iff X ∈ B.

2. Confidentiality: Given cipher-text C for entry (Msg,X), it is hard to learn Msg from
C, given that the decryption key for a region containing X is unknown.

3. Anonymity: Given cipher-text C for entry (Msg,X), suppose a malicious user queried
for regions B1, B2, ..., Bq all of which do not contain X, then he cannot learn anything
more about X from C, besides the fact that X does not fall in B1, B2, ..., Bq.

This problem is called the Anonymous Multi-Attribute Encryption with Range Query
and Conditional Decryption(AMERQCD). Here we want to introduce the algorithms of
AMERQCD(D) and AMERQCD(1) schemes. The needed definitions are mentioned in
details in [10]. AMERQCD scheme consists of the following polynomial-time randomized
algorithms:

1. Setup(
∑

, U∇): Takes a security parameter
∑

and D-dimensional lattice U∇ as an
inputs. It generates public key PK and master private key MK as an outputs.
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2. Encrypt(PK,X,Msg): Takes a public key PK, a point X, and a message Msg from
the message space M. It generates cipher-text C as an output.

3. DeriveKey(PK,MK,B): Takes a public key PK, a master private key MK, and a
hyper-rectangle B and outputs decryption key for hyper-rectangle B.

4. QueryDecrypt(PK,DK,C): Takes a public key PK, a decryption key DK, and a
cipher-text C and outputs either a plain-text Msg or ⊥, signaling decryption failure.

For each message Msg ∈ M, hyper-rectangle B ⊆ U∆, and point X ∈ U∆, the above
algorithm must fulfill the following constraints:

QueryDecrypt(PK,DK,C) =







Msg if X ∈ B

⊥ w.h.p., if X /∈ B

where C = Encrypt(PK,X,Msg) and DK = DeriveKey(PK,MK,B).

In the following, we introduce an efficient AMERQCD(1) scheme based on Anonymous
Identity Based Encryption (AIBE). Figure 4.5 shows the intuition of the AMERQCD(1)
construction. An interval tree is built over integers from 1 to T. Each leaf node in the
interval tree represents a unique integer in [1, T ]. Any internal node represents a range
covered by all leaf nodes in the subtree rooted at that node. In order to encrypt a message
Msg and a value x, a part of cipher-text is produced for each node on the path from the
root of the tree towards the leaf node representing x. Therefore, the cipher-text is O(log
T) in length.

To issue decryption keys for a range [s, t] ⊆ [1, T ], let Λ(s, t) represent a set of nodes
covering [s, t], portion of decryption key for each node in Λ(s, t) is issued. Because any
range can be represented by a collection of O(log T) nodes in the tree, the decryption key
has length O(log T).

The construction of AMERQCD(1) from an AIBE scheme is straightforward as shown
in figure 4.5, in order to encrypt a message Msg under a point x, Msg must be encrypted
under all nodes along the path P(x) from x towards the root, in order to liberate the
decryption keys for a range [s, t], the decryption keys for all node IDs in Λ(s, t) must be
released.

In order to be able to check whether a decryption is valid, prior to encryption, we

append a message Msg ∈ {0, 1}m with a series of trailing 0s, 0m
′

• Setup(
∑

, T ): calls Setup∗(Σ) and outputs PK and MK.

• Encrypt(PK, x,Msg): yields (c1, c2, ..., cL), where cl =Encrypt
∗(PK,Ll(x),Msg||0

m
′

)(1 ≤
l ≤ L).
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Figure 4.5: An AMERQCD (1) scheme. (a) Path from the leaf node to the root. (b)
Encryption to the point x = 3 and the keys released for the range [3,7]. [10]

• DeriveKey(PK,MK, [s, t]): yields a set {(lID, kID)|ID ∈ Λ(s, t)}, where

kID = DeriveKey∗(PK,MK, ID) and lID is the depth of node ID in Γ(T ), DK has
O(log T) size.

• QueryDecrypt(PK,DK,C): where C = (c1, c2, ..., cL), defined as below:

1. For each (l, kID) ∈ DK, compute:

V ← Decrypt∗(PK, kID, cl). if V is of the form M̂SG||0m
′

, then output M̂SG
as the decrypted message and exit.

2. If for all (l, kID) ∈ DK, the previous step fails to produce a plain-text, then
output ⊥.

AMERQCD(D) and AMERQCD(1) are efficient schemes in terms of encryption cost,
cipher-text size, decryption key size, and decryption cost. However, it is targeting different
problem than our and it does not guarantee any authentication. Also, the problem of
subscriptions confidentiality does not solved by these schemes.
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4.5 Enabling Confidentiality in Content-Based Publish-

Subscribe Infrastructures

This paper [11] makes a systematic analysis of providing subscribers and publishers confi-
dentiality in publish-subscribe system. It provides a formal security model and shows that
the maximum level of reachable security in this setting is restricted. It Tries to achieve
confidentiality for commonly used applications and subscription languages in content-
based publish-subscribe system.

This scheme aims to achieve confidentiality for both publishers and subscribers. The
approach used by this scheme depends on the structure of notifications. This approach
supports complex subscriptions composed from similar building blocks. By selecting the
attributes that the broker is allowed to match, the amount of leaked information can be
controlled.

This scheme supports confidentiality in content-based publish-subscribe system for
different types of subscriptions. It adapts a scheme from Dawn Song [11] to support
equality tests, it defines two novel schemes for range matches (numeric-valued attributes)
and it uses a scheme from Eu-Jin Goh [11] for keyword matching (string-valued attributes).

1. Equality filtering: Song proposed a solution that enables searching on encrypted
data. The idea of this scheme is to compute the secret value of an attribute by
passing its plain-text value to a pseudo-random function, this pseudo-random func-
tion is keyed with the secret key. The encrypted subscription is the hidden value
of the plain-text. Encrypted events are composed of two parts: a random nonce r,
generated by the publisher, and the result of feeding r to a pseudo-random function,
keyed with the hidden value of the notification’s plain-text. This Equal scheme is
shown in [11].

2. Keyword filtering: Substring matching is an important operation in content-based
publish-subscribe systems. Goh mechanism depends on breaking the string into
words and construct a bloom filter [11] to signal existence of a word in the string.
The algorithm of Goh is shown in [11].

An alternative scheme based on defining a dictionary that has one bit for every
possible word in the string. This dictionary is shuffled using a pseudo-random per-
mutation and blinded using pseudo-random functions and a random nonce. Events
include the blinded dictionary, along with the random nonce. And the subscription
contains the shuffled index of the word plus a “hidden” version of the index. The
Dictionary scheme is shown in [11]. Compared to Goh algorithm, Dictionary does
not generate false positive matches and does not impose any restrictions on the
number of words in the document.

3. Numeric filtering: Numeric attributes filtering is supported by many implemen-
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tations of content-based publish-subscribe systems. There are two forms of this
numeric attributes: inequality test and range test.

In case of an inequality test, there are many constraints:
{” > p1”, ” > p2”...” > pl”, ” < p1”, ” < p2”...” < pl”} defined in the system which
called the dictionary. Subscriptions will be approximated with one of these con-
straints. Each event is considered to be a document containing the words in the
dictionary that it matches. The Inequality scheme is defined in [11]. The overhead
of this scheme is due to the size of the dictionary, equal to 2*l.

To support range subscriptions, publishers and subscribers a-priori agree on a parti-
tioning P = {p1, p2...pl} of D. Publishers encrypt the index of the subset N belongs
to by using Equality filtering scheme defined above. The subscribers include as sub-
scriptions encrypted versions of the indexes of the subsets in the partition they are
interested in. In other words, several partitions of D, P1,...,Pm are created, with dif-
ferent subset sizes and different starting offsets. Then a dictionary is created, which
containing as words the index of the partition concatenated with the subset index,
for all m partitions. A notification can be represented as a document with this dic-
tionary by listing the subsets it is contained in. The subscription is approximated
with one of the subsets in these partitions. The range scheme is defined in [11].
This scheme creates trade-off between the subscriptions-size and matching-time on
one hand, and the number of false positives and the security achieved on the other
hand.

This scheme compromised the decoupling needed between publishers and subscribers
because it assumes the same keys for them and they have to priori agree on the parti-
tioning. Also, many subscribers receive false positive events and there is no mechanism
to achieve authentication between publishers and subscribers in this scheme.
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Chapter 5

Identity Based Encryption(IBE)

In order to provide the security requirements needed in our content-based publish-subscribe
we use the Identity Based Encryption(IBE) scheme for that.

5.1 Introduction

Public-Key Infrastructures (PKIs) [12], [13] and [14] were designed as mechanisms to han-
dle certificates, but they became to be heavy in deployment and unwieldy to use. Shamir
[15] tried to avoid the conventional problems associated with (PKIs) by introducing in 1984
the concept of identity-based cryptography where a public key can be any binary string
identifying its owner non-ambiguously. Shamir motivated to simplify key-management
and remove the need of public-key certificates the most that can be done. Since 1984
several practical solutions for identity based signatures (IBS) have been devised. But
no feasible identity based encryption scheme (IBE) proposed until 2001 when Cocks [16]
and Boneh Franklin [13] independently proposed schemes using quadratic residues and
bilinear maps respectively.

In his paper in 1985, Adi Shamir [15] proposed the idea of Identity-Based Encryption
(IBE) as a novel idea of a cryptographic scheme. This shceme enables any pair of users to
securely communicate and to verify each other’s signatures without the need to exchange
private or public keys and without keeping key directories. In [12] Identity-Based En-
cryption(IBE) defined as: "a public-key encryption scheme where any valid string, which
uniquely identifies a user, is the public key of the user".

Un-like the Public-Key Infrastructure (PKI) where a public-key certificate is required
to bind the key to its user. Instead, IBE requires a trusted central authority called a
Private-Key Generator (PKG) for generation and distribution of private keys to registered
identities, it removes several troubles associated with traditional PKI such as certificate
lookup, certificate-revocation lists, life-cycle management, and cross-certification issues
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Table 5.1: Differences Between IBE and Traditional Public-Key-Infrastructure(PKI) [12]

Features ID based Public-Key Infras-
tructure (PKI)

Certificate Based PKI

Key Certification NO Yes
Private Key Generation By Private Key Generator

(PKG)
By user or Certification Au-
thority(CA)

Key distribution Requires a private protected
channel and integrity for
distributing a new private
key from the TA to its
owner

Requires an integrity pro-
tected channel for distribut-
ing a new public key from
a user to his (Certification
Authority)CA

Public key Retrieval On the fly based on owner
identifier’s

From public directory or
key owner

Escrow facility Yes No (Unless Public key gen-
eration is by Certification
Authority(CA))

giving a greatly-simplified signature scheme and public-key encryption. Table 5.1 shows
many differences between Identity-Based-Encryption and traditional PKI:

Figure 5.1 shows the basic secure communication steps of identity based encryption
algorithm:

1. Alice encrypts the email using Bob’s e-mail address, bob@c.com, as the public
encryption key.

2. Bob contacts the key server, this key server asks a directory or other external au-
thentication source to authenticate Bob’s identity (ensures he is a valid user) and
establish any other policy elements.

3. The key server returns Bob’s private key, so Bob can decrypt the message, also he
can use this private key to decrypt all future received messages.

Any IBE scheme like Cocks and Boneh Franklin schemes is made up of four algorithms:

• "Setup: Generates system parameters params which are made public to all users
in the system and a master-key skPKG which is known only to the Private Key
Generator(PKG)."

• "Extract: Takes as input params, skPKG and any arbitrary ID and returns a private
key skID corresponding to that ID."
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Figure 5.1: Identity Based Encryption [12]

• "Encrypt: Takes as input params, the ID of the receiver and a plain-text message
M and returns a cipher-text C."

• "Decrypt: Takes as input params, the private key skID issued by the Private Key
Generator(PKG) and the cipher-text C and returns the plain-text message M."

5.2 Applicability To Content-Based Publish-subscribe

system

There are many reasons we choose IBE scheme to provide the security requirements needed
in our system. IBE has many advantages as:

1. No public key distribution infrastructure: Using the identity of the sender or re-
ceiver as sign key and encrypt key respectively eliminates the need for a public key
distribution infrastructure, the authenticity of the public keys is guaranteed implic-
itly as long as the transport of the private keys to the corresponding user is kept
secure.

2. Secure underlying cryptographic functions and secrecy at key generation center
(KGC): the secret cryptographic functions at KGC prevents attacker of resolving
and discovering the private keys.

3. Check of the identity before issuing private keys to the users, so prevent any illegal
sender tries to fabricate messages.

4. Preserving the required decoupling between publishers and subscribers needed in
our content-based publish-subscribe system.
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In this thesis, we focus on Brent Waters scheme [14], which provides an efficient IBE
scheme without random oracles. We use this scheme in the evaluation of our algorithm.

5.3 IBE Scheme Without Random Oracles

A Random Oracle is an oracle, for example, a theoretical black-box that responds to every
query with a truly random response chosen uniformly from its output domain. The first
efficient and secure method for identity-based encryption was put by Boneh and Franklin
[13]. They proposed a solution using efficiently computable bilinear maps that was shown
to be secure in the random oracle model. Since then, there have been schemes shown
to be secure without random oracles like Brent’s scheme [14]. In the next section, we
will give a brief introduction to bilinear maps, after that the Diffie-Hellman assumptions
which used to prove the security of Brent’s scheme will shown. Then we will describe
Brent’s scheme in details.

5.3.1 Introduction to Bilinear Maps [12]

A bilinear map is a function which is linear in both its arguments, we assume maps that
establish relationship between cryptographic groups, let G1 and G1 be cyclic groups of
order q, where q is some large prime, a bilinear map is a function e : G1 ∗ G2 such that
for all v,u ∈ G1 and a,b ∈ Z :

e(au,bv) = e(bu,av) = e(u, v)ab

These maps have another name as pairings because they connect a pair of elements
from group G1 to an element or a pair of elements in G2. These maps can be degenerate,
for example, maps all pairs G1 ∗G2 to the identity in G2. In cryptography the interested
maps are those which called admissible bilinear maps.

As mentioned in [12] the admissible bilinear map satisfies the following properties:

1. "Bilinear: we say that a map e
′

: G1∗G2 →G2 is bilinear if e
′

(au,bv) = e
′

(bu,av) =
e
′

(u, v)ab for all u,v ∈ G1 and all a,b ∈ Z".

2. "Non-degenerate: the map does not send all pairs in G1∗G1 to the identity in G2,
i.e. e

′

(u,v) 6= 1, for all u,v ∈ G1".

3. "Computable: there is an efficient algorithm to compute e
′

(u,v) for any u,v ∈ G1."

e
′

denoted the admissible bilinear map. G1 is implemented using the set of all points
on specific elliptic curve which form an additive group and G2 is is a multiplicative group
of large prime order.
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Compute [abg] ????

Figure 5.2: Computational Diffie-Hellman Assumption [12]

5.3.2 Computational Diffie-Hellman Assumption(CDH) [12]

Assume a cyclic group G of order q represented by the set of all points on an elliptic curve.
The CDH assumption states that given 〈g, ag, bg〉 for a randomly chosen generator g and
random a,b ∈ {0, 1....q − 1}, it is computationally intractable to compute the value 〈abg〉,
figure 5.2 illustrates that. The challenger stimulates the adversary by giving 〈G, g, ag, bg〉
parameters, depends on Computational Diffie-Hellman Assumption (CDH) assumption,
it is computationally very hard for the adversary to compute 〈abg〉.

5.3.3 Bilinear Diffie-Hellman Assumption(BDH) [12]

Assume G1 be an additive group of prime order p represented by the set of all points on an
elliptic curve and G2 be a multiplicative group of prime order q, if e

′

: G1∗G1→ G2 be an
admissible bilinear map and let P be a generator of G1. Then the Bilinear Diffie-Hellman
(BDH) Assumption in

〈

G1, G2, e
′

〉

can be expressed as follows: Given 〈P, aP, bP, cP 〉 for

some a,b,c ∈ Z∗q , it is computationally infeasible to compute W = e
′

(P, P )abc ∈ G2 if the
Computational Diffie-Hellman (CDH) problem is intractable, figure 5.3 shows that, in this
figure the challenger stimulates the adversary by giving 〈G1, G2, P, aP, bP, cP 〉 parameters,
depends on Bilinear Diffie-Hellman (BDH) assumption, it is is computationally very hard
for the adversary to calculate W = e

′

(P, P )abc ∈ G2.

5.3.4 Brent’s IBE Construction [14]

The construction of Brent’s scheme is a modification of the Boneh and Boyen [17] scheme.
For both crypto and signature scheme shown below, assume G be a group of prime
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Figure 5.3: Bilinear Diffie-Hellman Assumption [12]

order, p, for which there exists a computable bilinear map into G1. Let e : G×G → G1

denote the bilinear map and g be the corresponding generator. The size of the group
is determined by the security parameter. Identities will be represented as bit-strings
of length n, a separate parameter unrelated to p. Identities also can be bit-strings of
arbitrary length and n be the output length of a collision-resistant hash function, H :
{0, 1}∗ → {0, 1}n.

The Brent’s crypto scheme is:

• Setup: The system parameters are generated as follows. A secret α ∈ Zq is chosen
at random. A random generator, g ∈ G , is chosen and set the value g1 = gα and
choose g2 randomly in G. Moreover, the authority chooses a random value u

′

∈ G
and a random n-length vector U = (ui), whose elements are chosen at random from
G. The published public parameters are g, g1, g2, u

′

, and U. The master secret is gα2 .

• Key Generation: Let v be an n bit string representing an identity, vi denote the
ith bit of v, and ν ⊆ {1, ..., n} be the set of all i for which vi = 1. (That is ν is
the set of indicies for which the bit-string v is set to 1.) A private key for identity
v is generated as follows. First, a random r ∈ Zq is chosen. Then the private key is
constructed as:

dv =
(

gα2
(

u
′ ∏

i∈ν ui
)r
, gr
)

.

• Encryption: A message M ∈ G1 is encrypted for an identity v as follows. A value
t ∈ Zp is chosen at random. The cipher-text is then constructed as:
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Figure 5.4: Brent’s IBE Crypto-System

C =
(

e(g1, g2)
tM, gt,

(

u
′ ∏

i∈ν ui
)t
)

.

• Decryption: Assume C = (C1, C2, C3) be a valid encryption of M under the
identity v. Then C can be decrypted by dv = (d1, d2) as:

C1 (e (d2, C3)/e (d1, C2)) =M

Brent’s IBE crypto-system scheme can be used in any many-to-many system model.
Sender encrypts the secret message and only the legal receiver can decrypt it. Figure
5.4 shows that, the sender encrypts the message using the receiver identity as the public
encryption key (PeK). The legal receiver uses his identity to get the private decryption
key (PrdK) to decrypt the message. The trusted key generation party checks the identity
of the receiver before grant him the private decryption key (PrdK), the link to this trusted
party is secure and protected.

The Brent’s signature scheme is:

• Setup: The public key is generated as follows. A secret α ∈ Zq is chosen at
random. A random generator, g, is chosen and set the value g1 = gα and choose
g2 randomly in G. Moreover, the algorithm chooses a random value u

′

∈ G and a
random n-length vector U = (ui), whose elements are chosen at random from G.
The published public key is g, g1, g2, u

′

, and U. The master secret is gα2

• Signing: Let M be an n-bit message to be signed and Mi denote the ith bit of
M, and M ⊆ {1, ..., n} be the set of all i for which Mi = 1. A signature of M
is generated as follows. First, a random r ∈ Zq is chosen. Then the signature is
constructed as:
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σM =
(

gα2
(

u
′ ∏

i∈M ui
)r
, gr
)

.

• Verification: Suppose we wish to check if σ = (σ1, σ2) is a signature for a message
M. The signature is accepted if e(σ1, g)/e(σ2, u

′ ∏

i∈M ui) = e(g1, g2).

Using of Brent’s IBE signature scheme is illustrated in figure 5.5. The sender sign the
message with his private sign key (PrsK) which he got from the trusted key generation
party. The receiver authenticates the sender using his identity as public verify key (PvK).
The key generation party checks the identity of any sender before send him the private
sign key (PrsK) to prevent any malicious sender fabricates messages in the system.

So Brent’s IBE scheme achieves confidentiality and authentication of messages in any
many-to-many system models, in the next section we will describe how to use this scheme
in our content-based publish-subscribe system.
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Chapter 6

Authentication And Confidentiality
In Content-Based Publish-Subscribe
System

6.1 Basic Architecture And Construction Of Keys

We add the trusted third party(TTP) which is responsible for perform the basic crypto-
graphic functions needed to secure our system. Then, our system will be composed of
three components: publishers, subscribers and TTP. Figure 6.1 illustrates that. We aim
to build the subscriber’s tree and to disseminate the events to the right subscribers while
keeping the subscriptions of subscribers hidden. Moreover, subscribers must be able to
discover any fake event and stop it. We assume that the connection to TTP is secure and
protected.

Trusted Third Party(TTP) contains the key generation center(KGC) which is basically
responsible for creating different keys needed in our system. TTP maintains two keys:
public-key(PK) and master key(MK), it can be realized as:

1. Either grant each node a smart card when first joins the network, this smart card
contains the secret private keys.

2. Or central-server or group-of-servers to generate the secure keys for each node, the
link to the server(s) must be protected and secure.

We show before that any region in the event space in our content-based publish-
subscribe system can be represented by a bit-string (DZ) of 1’s or 0’s. This bit-string is
generated by dividing each axis in the event space alternatively. Regardless the number
of axis or the divisions, all regions can be represented by these bit-strings.
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S4
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S3
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P4

Subscribers Tree
Publishers

Send Events

Figure 6.1: Content-Based Publish-Subscribe System with Trusted Third Party(TTP)

Any region in this event space is used as the identity for the subscriber who
subscribes for it. To recognize that this identity is for the subscriber, we concatenate
it with a defined string equals "SUB". Figure 6.2 shows 2-dimensional event space and
the identities of different subscribers in it.

Any event in this event space is represented by a point, so it is located in many regions
started from the biggest region towards the smallest one. Publisher identities are
represented by all regions where his event located. To recognize their identities,
we concatenate them with a defined string equals "PUB". Figure 6.3 shows 2-dimensional
event space and the identities of different publishers in it.

Keys in our system can be classified as:

1. Public Encryption Key (PublicEncKey): The identity of the received subscriber
(any subscription region concatenated with "SUB"). This is a public key, any node
(publisher or subscriber) can simply generate it without connection to the TTP.

2. Private Decryption Key (PrivateDecKey): Generated by the TTP and owned
only by legal subscribers. Any subscriber asks TTP for this key by sending his
identity, (as shown in figure 6.2). TTP assures that he is a legal subscriber for the
event space region (included in the identity) before grant him this key.

3. Private Sign Key (PrivateSignKey): Generated by TTP and owned only by legal
publishers. A publisher asks TTP for his keys by sending his identities (as shown
in figure 6.3). TTP assures that this publisher is allowed to publish events in the
corresponding event space regions (included in the identities) before grant him the
sign keys.
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Figure 6.2: Subscribers Identity in 2-dimensional Event Space
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4. Public Verify Key (PublicV erifyKey): The identity of the sender publisher (any
subscription region concatenated with "PUB"), any node (publisher or subscriber)
can simply generate it without connection to the TTP.

6.2 Authentication

6.2.1 Authentication Of Publishers And Subscribers

Publishers and subscribers ask TTP for their secret private keys (PrivateSignKey and
PrivateDecKey respectively) as mentioned in the last section. Because TTP checks the
identity of publishers and subscribers before grant them their secret keys, the authenti-
cation of publishers and subscribers is guaranteed in the system. Publishers guarantee
that their events will just be received by the legal subscribers. Also, subscribers assure
that their received events were published from legal publishers. This authentication be-
tween publishers and subscribers is achieved while they are decoupled (do not know each
other’s).

Figure 6.4 represents the responses of TTP to different subscribers and publishers in
the system.
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Trusted Third PartyI am A, 
my identity is:

 "101SUB"
Valid Request, response with:
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Subscriber B,
with Identity:
 "101SUB"

I am X,
 my identities are:

 "*PUB"
"1PUB"
"10PUB"

Publisher X,
with Identities:

"*PUB"
"1PUB"
"10PUB"

I am Y,
my identities are:

 "*PUB"
"0PUB"
"10PUB"

Publisher Y,
with Identities:

"*PUB"
"1PUB"
"10PUB"

Un-Valid Request,
 response with:

NULL

Valid Request, response with:
1-PrKey for "*PUB"
2-PrKey for "1PUB"
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with Identity:
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PrKey: Private Key

Figure 6.4: TTP Responses To Subscribers And Publishers
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6.3 Confidentiality

6.3.1 Confidentiality Of Events

When the publisher wants to publish any event, he encrypts and signs it using PublicEncKey
and PrivateSignKey respectively. Encryption and signing are done using the keys corre-
spond to the region in the event space. Any legal events must end with 4 bytes of
zeros, so the publisher appends his events with these bytes.

Figure 6.5 shows an example of how the publisher (P010) builds his encrypted event. In
this figure, publisher (P010) encrypts and signs the event four times using the encryption
and singing keys correspond to ("*", "0", "01" and "010" ) event space regions. He puts
the encrypted events and their signatures in consecutive locations in the resulted packet,
starting from the largest region ("*") towards the smallest one ("010") in the event space
(figure 6.5(B)).

The publisher encrypts and signs the event logarithmic times (the number of his
identities). Algorithm 6.1 shows the Encrypt_and_Sign_Event_Algorithm executed by
publishers before disseminate events to the subscriber’s tree.

The Encrypted-And-Signed-Events packet shown in 6.5(B) is sent to the subscriber’s
tree (shown in figure 6.1) and disseminated to the right subscribers (the mechanism of
routing this packet is discussed later). When the subscriber receives an encrypted event,
he tries to decrypt it using his PrivateDecKey, also he checks the signature of this event
using PublicV erifyKey to assure it sent from a legal publisher.

Because the publisher inserts the encrypted events and their signatures in a consecu-
tive locations in Encrypted-And-Signed-Events packet, subscriber expects the loca-
tion of his presumed encrypted event and the signature for this event in the
this packet. For example, the presumed encrypted event for the subscriber with iden-
tity "*SUB" is the first item of Encrypted-And-Signed-Events packet, and the presumed
signature is the second item of this packet, on the other hand, subscribers with identi-
ties "0SUB" and "1SUB" expect their encrypted events at the third location and their
signatures at the fourth location of this packet and so on.

Any subscriber receives the Encrypted-And-Signed-Events packet tries to decrypt
the entry of this packet located at his presumed event location and verify
its signature in the consecutive location. A subscriber decides whether the
decrypted event is valid or not by checking the last four bytes of it (must
be 4 bytes of zeros for the valid event). Figure 6.6 shows an example of the S101
subscriber, the presumed encrypted event index for this subscriber is 6 (start indexing
from 0).

Algorithm 6.2 shows the Decrypt_and_Verify_Event_Algorithm executed by sub-
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Algorithm 6.1 (Encrypt_and_Sign_Event_Algorithm), Executed By Publisher.
Input: Plain-Text.
Output: Encrypted-And-Signed-Events Packet.

EventPlainText = Plain-Text.

EventPlainText.Append(”0000”Bytes)

Result = NULL

EncryptedResult = NULL

SignatureOFEncryptedResult = NULL

for all identity ∈ Publisher Identities do

EncryptedResult = Encrypt EventPlainText using PublicEncKey of identity.

SignatureOFEncryptedResult = Sign EncryptedResult using PrivateSignKey of identity.

Result.Add(EncryptedResult)

Result.Add(SignatureOFEncryptedResult)

end for

return Result.
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scribers when receive Encrypted-And-Signed-Events packet.
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Algorithm 6.2 (Decrypt_and_Verify_Event_Algorithm), Executed By Sub-
scriber.
Input: Encrypted-And-Signed-Events Packet (Indexing is started from 0)
Output: Matched-event or Un-Matched-Event.
Comments are between {}.

Received_Packet = Input.
EventPlainText = NULL
IndexOfEncyptedEvent = NULL
IndexOfSignature = NULL

if identity ≡ "*SUB" then
IndexOfEncyptedEvent = 0

IndexOfSignature = 1
else
IndexOfEncyptedEvent = 2 ∗ (identity.length− 3) {without the length of "SUB"}

IndexOfSignature = IndexOfEncyptedEvent + 1
end if
EventPlainText = Decrypt Received_Packet.GetAtIndex(IndexOfEncyptedEvent) using
PrivateDecKey.

if EventPlainText Ended with 4 bytes of "0000" then
Verify The Signature at Received_Packet.GetAtIndex(IndexOfSignature) using
PublicV erifyKey.

if Signature Is Valid then
Read The Event {Valid Event}

return Matched-Event
else

Ignore {Fake Event}

return Un-Matched-Event
end if

else
Ignore {The Event is not related to this subscriber}

return Un-Matched-Event
end if
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6.3.2 Subscriptions Confidentiality

Figure 6.1 shows the subscriber’s tree in our system. It is assumed that this tree is built in
a way that the subscribers with large subscription are in the higher level in this tree. Each
subscriber in this tree can connect to one parent and has a maximum number
of children equals n. We aim to cluster subscribers based on their subscriptions. Here,
we introduce the technique used to build the desired subscriber’s tree while keeping the
subscriber’s subscription confidential.

The mechanism used to enable any new subscriber joins the system is handled with
the corporation of TTP, we mentioned before that any subscriber joins the system asks
TTP for his PrivateDecKey, he further asks the TTP for another secure packet which we
called Connection Request(CR). This CR enables him to connect to the right position
in the subscriber’s tree.

Based on the idea that the subscriber with larger subscription area is higher in the
tree, then for each subscriber, there are some subscribers that he can connect to as a child.
We introduced in the Background section the meaning of Containment subscription. In
order to build the desired subscriber’s tree topology it is needed that any
subscriber must contain the subscriptions of his children. For example, subscriber
with identity "010SUB" can connect to other subscribers with identities ("*SUB", "0SUB",
"01SUB", "010SUB"). So, for each subscriber there is a logarithmic number of
subscribers he can connect to.

TTP performs the following when any subscriber asks for his CR:

1. Check if this subscriber is valid, does he want to subscribe for the right
subscription region?

2. Find all identities of other subscribers he can connect to. (Identities of
subscribers contain his subscription) (logarithmic number of subscribers).

3. Encrypt secret strings ended with 4 bytes of zeros using PublicEncKey of
these identities. (logarithmic number of encryptions).

4. Send this request to this legal subscriber.

Figure 6.7 shows an example of the subscriber S010 when he asks the TTP for his CR
in order to join the system. S010 sends his CR to random connected subscriber in the
subscriber’s tree. The receiver subscriber of the CR tries to decrypt any of the cipher-
texts (C.T 0, C.T 1, C.T 2,C.T 3) in figure 6.7(B), (the decryption is valid if the
last four bytes equal "0000"). Moreover, the connected subscriber must authenticate
that this CR is built by TTP by using the public parameters of TTP he has. In case the
receiver subscriber successfully decrypts and verifies the CR he accepts S010 as a child,
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actually just the subscribers with identities ("*SUB", "0SUB", "01SUB", "010SUB") can
do that.

In case new subscribers with identities "*SUB" or "1SUB" want to join the system.
Their CR sent by the TTP contains just one or two entries respectively, look at figure
6.8(A). Assume that there is an already connected subscriber (denoted by A) in the
system with identity "*SUB". In case A receive the CRs shown in figure 6.8(A), he can
simply discover the subscription of the sender. (If the sender identity is "*SUB" → the
subscription of the sender equals "*". If the sender identity is "1SUB" → the subscription
of the sender either "*", "1" or "0").

In order to prevent the received subscriber of expecting the identity (subscription)
of the sender subscriber, a random data is added to the CR. So the received subscriber
cannot detect the subscription of the sender based on the number of C.T in CR. This
is illustrated in figure 6.8(B). In this figure a random data is added to the CR shown in
figure 6.8(A).

There is an ability that the received subscriber detects the identity(subscription) of the
sender subscriber based on the index of the decrypted C.T in figure 6.8(B). For example,
the first C.T is for "*SUB", the second C.T belongs either to "1SUB" or "0SUB" and so
on, to avoid that TTP shuffles the CR request, so there is no indication between the index
of C.T and the identity of the sender subscriber, this is shown in figure 6.8(C).

As a result the building of CR by TTP modified to the following steps:

1. Check if this subscriber is valid, does he want to subscribe for the right
subscription region?

2. Find all identities of other subscribers he can connect to. (Identities of
subscribers contain his subscription) (logarithmic number of subscribers).

3. Encrypt secret strings ended with 4 bytes of zeros using PublicEncKey of
these identities. (logarithmic number of encryptions).

4. Add some random data to the CR.

5. Shuffle the whole CR packet randomly.

6. Send this request to this legal subscriber.

The subscriber who receives CR tries to decrypt and verify it using algorithm 6.3.
Based on the result of this algorithm the connected subscriber determine whether he can
accept the new subscriber as a child or not.

We said that the number of children per each subscriber is limited. So there is a
possibility that the connected subscriber accepts the connection of the new subscriber but
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Algorithm 6.3 (Decrypt_and_Verify_CR Algorithm), Executed By the Con-
nected Subscriber.
Input: CR (Indexing is started from 0)
Output: Accept or Reject the connection of the sender.
Comments are between {}.

EventPlainText = NULL

IndexC.T = 0 {Initialize to 0}

SizeOfCR = CR.Size()

for IndexC.T < SizeOfCR do

EventPlainText = Decrypt CR.GetAtIndex(IndexC.T ) using PrivateDecKey.

if EventPlainText Ended with 4 bytes of "0000" then

Verify That the CR is built by TTP using TTP_Public_Parameters

if CR Is Verified then

return Accept Connection {Valid and authorized CR}

end if
end if

end for

return Reject Connection {Can’t accept it as a child}
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he does not have free space for this connection. Moreover, the connected subscriber may
reject the received connection request. In order to make our system scalable enough to
accept the connection of any new subscriber regardless of his subscription, any connected
subscriber receives CR packet will execute algorithm 6.3. Based on the returned result of
this algorithm (accept or reject connection) the connected subscriber decides to:

1. Accept the connection of the subscriber as a child.

2. Make a swap with him (the receiver subscriber disconnects from his parent and be
a child of the new subscriber, and the new subscriber be a child of the old parent
of the receiver subscriber).

3. Forward the received CR to his parent or children.

4. Disconnect one of the children randomly, and accept the connection of the new
subscriber as a child.

In our system, we assume that we have a subscriber with identity "*SUB" initially
in the system. Any new subscriber can connect to the system by send his CR to one
subscriber selected randomly from the connected tree (just S* at the beginning). As a
result, the subscriber’s tree incrementally grows, figure 6.9 illustrates that. In order to
determine which decision to do, the connected subscriber executes algorithm 6.4. In the
following we discuss different cases resulted when any connected subscriber receives CR:

• Received CR decrypted successfully: if any connected subscriber decrypts CR suc-
cessfully and he has enough space, he accepts this new subscriber to connect to him
as a child. If he does not have enough space he will send this CR to his children.
If no one of the children accept or swap the connection with the new subscriber →
He will disconnect one of them randomly and accepts the new subscriber as a child.
Figure 6.10 shows these cases in more details.

• Received CR cannot be decrypted successfully: in case the connected subscriber
cannot decrypt the received CR, he checks whether it sent from his parent or not,
if it is not → He simply forwards this CR to his parent, this is represented in figure
6.10 using the abbreviation C.D.S.P.

In case the parent is the sender that means he can decrypt the CR but he has no
free space to connect to this new subscriber→ In this case the connected subscriber
sends his CR to the new subscriber, then there are two possible cases:

1. Either the new subscriber can’t decrypt the CR → In this case the child sends
a FailedConnection message to the parent, and the parent will disconnect one
of his children randomly as mentioned and shown in the previous note and
figure 6.10 respectively (he disconnect one of them if all of them reply with
FailedConnection message).
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Figure 6.9: Growing Of Subscribers Tree
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Algorithm 6.4 (Handling_CR_Algorithm), Executed By the Connected Subscriber.
Input:CR
Output: None.
Comments are between {}.

ResultReturned = NULL

ResultReturned = Decrypt_and_Verify_CR Algorithm(CR)

if ResultReturned == Accept Connection then
if There is enough space then

CONNECT.
else

Send CR to all child’s.
if All Child’s return FailedConnection then

Disconnect one of the child’s randomly and CONNECT.
end if

end if
else

if Received From Parent then
Send My CR to the source.
if Source’s Decrypt_and_Verify_CR Algorithm(CR) == Accept Connection
then

Swap.
else

Send FailedConnection to the parent.
end if

else
Send CR to the parent.

end if
end if
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2. Or the new subscriber successfully decrypts the connection, that means the new
subscriber covers the subscription of the connected subscriber→ The connected
subscriber will swap his position in the tree with this new subscriber, figure
6.11 illustrates the swap case in more details.

58



S"X" : Subscriber for identity X
D.S.C: Decrypted Successfully then Connect
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A B Connect A to B
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Finnaly

S"00SUB"

S"*SUB"

S"1SUB"
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D.S.C

A
B Dissconnect B from A

Figure 6.10: Growing Of The Subscribers Tree Using CR
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S"X" : Subscriber for identity X
D.S.C: Decrypted Successfully then Connect
C.D.S.P: Cant Decrypt then Send to Parent

D.S.N.S: Decrypted Successfully but No Space
then Send to all child’s

C.D.F.P.S: Cant Decrypt and sent
from Parent then try to Swap 

Maximum Number of child’s = 3

S"*SUB"

Initially

S"*SUB"

S"01SUB"

S"*SUB"

S"01SUB"

Send CR from A to BA B

A B Connect A to B

S"*SUB"

S"01SUB"

S"11SUB"

S"*SUB"

S"11SUB"

D.S.C

S"*SUB"

S"01SUB"

S"11SUB"
S"00SUB"

S"01SUB"

S"11SUB"

S"*SUB"
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A
B Dissconnect B from A

D.S.C

S"*SUB"

S"01SUB"

S"11SUB"

D.S.C

S"00SUB"

S"01SUB"

S"*SUB"

S"11SUB"

S"1SUB"

S"SUB01"

S"00SUB"

S"11SUB"

S"1SUB"

S"00SUB"

S"*SUB"

C.D.S.P

S"01SUB"

S"1SUB"

C.D.F.P.S

C.D.F.P.S

C.D.F.P.S
S"11SUB"
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S"*SUB"

S"01SUB"

S"1SUB"

D.S.C

Subscriber S"1SUB"
Accepts the connection of S"11SUB"

Then he will Swap with him,
S"*SUB" will be parent of S"1SUB"

and S"11SUB" will be a child of S"1SUB"

Figure 6.11: Swap Case In The Subscribers Tree
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Weak Notion Of Confidentiality

Even though our technique above builds the subscriber’s tree while keeping their subscrip-
tions confidential, there is a possibility that an attacker able to expect the subscriptions
of these subscribers based on the building rule of this tree: higher subscriptions are higher
in the tree:

Lemma 6.1 In case the attacker is the receiver of CR: If he decrypts the sender

connection request successfully
then
→ the sender subscription is less or equal attacker sub-

scription. Subscription confidentiality decreases when the receiver attacker moves towards
leaves in the subscriber tree.

Lemma 6.2 In case the attacker is the sender of CR: If he connects to the receiver

successfully
then
→ the receiver subscription is greater or equal attacker subscription. Sub-

scription confidentiality decreases when the sender attacker moves towards the root in the
subscriber tree.

6.3.3 Events Dissemination

In figure 6.1 we show the subscriber’s tree in our system and the publishers who send their
events to this subscriber’s tree. In the previous section, we introduce the technique respon-
sible for building this subscriber’s tree while keeping the subscriptions hidden between
these subscribers. In this section, we discuss the mechanisms used by these subscribers
in order to forward the events to their destinations.

In our system, the topology of subscriber’s tree needs every parent’s subscription covers
the children’s subscription, this topology makes providing an encryption mechanism that
guarantees confidentiality of subscription very difficult. The parent can decrypt every
event which he forwards to his children, by maintaining histories he can simply discover
the children’s subscription after a while. However, there are two mechanisms can be used
to mitigate this problem:

1. Subscribers can divide their subscription into many regions and connect to many

parents
DrawBacks
→ more decryption keys per subscriber and k-anonymous subscrip-

tion regions for each subscriber.

2. Forward all matching events to all children
DrawBacks
→ false positive events may hap-

pen, but it will be stopped in the next hop (we use this mechanism in our evaluation).

We present the mechanism of encrypting and signing events applied by publishers in
algorithm 6.1 and figure 6.5. Subscribers use algorithm 6.2 to decrypt and verify the
received events.
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After the publisher builds the desired event, he can forward it to some subscriber
selected randomly from the subscriber’s tree. When the subscriber receives the event, he
depends on the result of algorithm 6.2 to decide whether to forward the received event to
his neighbors (child’s and parent) or not, this is shown in algorithm 6.5.

Algorithm 6.5 (Event_Dissemination_Algorithm), Executed By the Connected
Subscriber.
Input: Encrypted-And-Signed-Events Packet.
Output: None.
Comments are between {}.

Returned-Result = Decrypt_and_Verify_Event_Algorithm(Input)

if Returned-Result == Matched-Event then
Send Input To:

1. Parent (Unless he is the sender of Input).

2. All Child’s (If the sender of Input is one of the children exclude that child).

else
if The sender of Input is the parent then

Ignore. {False-positive-event}
else

Send Input to parent.
end if

end if

Figure 6.12 shows an already built subscriber’s tree, and a publisher sends his event
to this tree. Each subscriber executes algorithm 6.5 to determine the next hop to forward
the Encrypted-And-Signed-Events packet.
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S"X" : Subscriber for identity X
P"x1,x2,x3,x4": Publishers for identities:

x1,x2,x3,x4
D.S.V.S: Decrypted Successfully and Verified Successfully

N.D.N.V: Not Decrypted or Not Verified
Maximum Number of child’s = 3
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Figure 6.12: Event Dissemination Example
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6.4 Algorithm Properties

Here we show the properties of our techniques which we used to build the subscriber’s
tree and to disseminate events to the right destinations.

1. Subscriptions Confidentiality: The subscriber’s tree is built and the events are
disseminated to the right destinations without revealing the subscription of any
subscriber. CRs are built by TTP and the received subscriber authenticates it using
TTP_Public_Parameters

so
→ No malicious node can build many fake CRs and use

them to discover the subscription of any subscriber. (e.g. the attacker builds many
CRs using different PublicEncKey and send them one after another until the receiver
accepts the connection → The subscription of the receiver equals the identity used
as a PublicEncKey in the CR which the receiver decrypt it.)

2. Publications Confidentiality: Any event is encrypted using the PublicEncKey
of the received subscribers, just the legal subscribers who have the corresponding
PrivateDecKey able to decrypt this event,

so
→ publications of the events are confiden-

tial.

3. Subscriptions Authentication: When any subscriber joins the system, he asks
the TTP for his PrivateDecKey and CR. TTP checks whether he is a legal subscriber
before grant him these secret stuffs. As a result all subscribers in the system are
authorized.

4. Publications Authentication: Legal publishers gain their PrivateSignKey keys
from the TTP. Subscribers authenticate the received events using PublicV erifyKey,
so
→ no malicious node can fabricate any fake event because it does not have the
corresponding PrivateSignKey keys.

In the event dissemination technique, there is no routing mechanism used by the
subscribers to determine whether the received encrypted event belongs to their children
or not. As a result, many false positive events may be received by many subscribers, we
will see that in the next section where we evaluate our techniques.

6.5 Forward And Backward Secrecy

Including the time in the subscription is an important feature in many content-based
publish-subscribe systems. For example, subscriber wants to subscribe for one month for
a specific event. We can easily include the time in our event space by add extra axis that
represents the whole epoch and divides it as needed. Publishers and subscribers define
their identities according to their interested period of time, and they must redefine it for
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Figure 6.13: Involve the Time-Axis to 1-dimension Event Space

the new epoch. Figure 6.13 illustrates the involving of the time in an event space with
one attribute (for simplicity).

This mechanism of modifying the identities and the secret keys of publishers and
subscribers according to their interested periods of time guarantees the backward and
forward secrecy in our system. For example, the new subscriber will not be able to
decrypt the previous events in the system (backward secrecy). And the subscriber who
left the system will not be able to discover and decrypt any future event sent after his
departure (forward secrecy).
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Chapter 7

Evaluation

The Evaluation chapter particularly deals with the question about the overhead resulted
by our techniques which we used to build the subscriber’s tree and to disseminate the
events to its right destinations while achieving the confidentiality of events and subscrip-
tions on one hand, and the authentication of publishers and subscribers, on the other
hand. We call our system, which uses these techniques described in the last chapter the
(Secure-system). We will compare it with another system where the subscriptions and
the events are not confidential and there is no mechanism to authenticate publishers or
subscribers, we call this system the (Unsecured-system). In the (Unsecured-system) each
subscriber knows the subscriptions of his neighbors (parent and children).

7.1 Experimental Setup

In order to simulate our system for extremely large scale number of subscribers and
publishers, we use the PeerSim [1] simulator with the following simulation setup:

1. The user defines the number of subscribers in the system denoted by Ns.

2. The user defines the number of publishers in the system denoted by Np.

3. The Event space is divided recursively four times into 31 regions represented by (*),
(0), (1), (00)...(11), (000)...(111), (0,0,0,0)...(1,1,1,1).

4. There is one subscriber with identity "*" initially in the system.

5. There are two mechanisms of assigning the subscription to the Ns subscribers, ran-
dom and uniform (discussed later).

6. There is one mechanism of assigning event regions for each publisher (discussed
later).
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7. Each subscriber has one parent and Log(Ns) children.

8. When any subscriber wants to connect to the system, he selects one subscriber from
the subscriber’s tree randomly.

9. When any publisher wants to publish an event, he selects the destination subscriber
form the subscribe’s tree randomly.

Assign event space regions to publishers

We have 16 smallest regions in the event space represented by (0,0,0,0), (0,0,0,1)...(1,1,1,1).
We assign these regions one per publisher starting from (0,0,0,0) towards (1,1,1,1) until
we finish assigning to the last publisher (if there are still un-assigned publishers we repeat
from (0,0,0,0) and so on.

Assign subscriptions to subscribers randomly

For each subscriber, we generate random subscription selected randomly from the 30
regions of the event space (exclude "*").

Assign subscriptions to subscribers uniformly

We have four levels of subscriptions according to the levels in the subscription tree:

1. First level: 2 regions with identities "0", "1".

2. Second level: 4 regions with identities "00", "01", "10", "11".

3. Third level: 8 regions with identities "000", "001", ..., "111".

4. Fourth level: 16 regions with identities "0000", "0001", ..., "1111".

We assign subscriptions to subscribers staring from the first level towards the fourth
level. At each level, we assign the following number of subscribers 2, 4, 6, 8 respectively
until we finish assigning all subscribers. If we reach the fourth level and there are still
some unassigned subscribers we repeat from the first level. Assigning subscriptions to the
subscribers at each level is done uniformly, for example, if there are 10 subscribers at the
first level then 5 will have the identity "0" and the other five will have the identity "0".
Now, suppose we have a system with Ns=110 then the subscribers located at these levels
like: 12 subscribers for the first level, 24 subscribers for the second level, 34 subscribers
for the third level and 40 subscribers for the fourth level. At each level, the subscription
regions are assigned uniformly to these subscribers.
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Table 7.1: Specifications of the notebook used for evaluation

CPU RAM HD OS Java

Centrino Duo 2.00 GHz 2GB 107GB WinXP SP2 JRE6

Encrypt

Time(ms)/
Size(MB)

Encrypt

Encrypt

Encrypt

TYPE

347/0.5

361/1

418/5

484/8

Decrypt

Time(ms)/
Size(MB)

Decrypt

Decrypt

Decrypt

TYPE

254/0.5

257/1

287/5

327/8

  Sign

Time(ms)/
Size(MB)

  Sign

  Sign

  Sign

TYPE

23/0.5

35/1

99/5

144/8

 Verify

Time(ms)/
Size(MB)

 Verify

 Verify

 Verify

TYPE

20/0.5

31/1

97/5

163/8

Figure 7.1: Throughput Of IBE-Java Library

To obtain the results, we use a notebook with the specifications denoted at table 7.1,
also we use an IBE-java library (nuim.cs.crypto which is supported by NUI Maynooth
Crypto Group) with throughputs shown in figure 7.1:
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Figure 7.2: Subscribers Connection Latency in the (Unsecured-system)

7.2 Evaluation Results

In the following, the evaluation results are shown, starting with the presentation of the
connection latency for the subscribers, then the event dissemination latency and the ratio
of the false positive events resulted from our techniques. Finally, we present the ratio of
the saved nodes which our system protects them from an DoS attacker. The values shown
in the figures represent the mean values of these measurements. The standard deviations
are represented by the vertical line at each value.

For subscribers connection and events dissemination evaluations, we compare the la-
tency between the (Secure-system) and (Unsecured-system).

7.2.1 Subscribers Connection

In the subscriber’s connection evaluation, we used the uniform way of assigning subscrip-
tions to the subscribers which we have shown in the Experimental Setup section. We
calculate the average time needed by each subscriber to connect to the system in both
(Unsecured-system) and (Secure-system), figures 7.2 and 7.3 represent the latency in both
systems respectively.
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Figure 7.3: Subscribers Connection Latency in the (Secure-system)

As shown in these figures the latency of subscribers to connect the system increases
when the (Unsecured-system) becomes (Secure) (from micro-seconds to seconds), that is
resulted from the encryption, decryption, signing and verification actions of connection
requests (CRs) needed in the (Secure-system). In both figures, we can note that the
average connection latency per each subscriber increased linearly when the number of
subscribers increased (300 to 1500), that is because there are more hops to reach the
right location to connect in the subscriber’s tree in case of the larger system.

The standard deviation increases when the number of subscribers increased. Sub-
scribers join the system early suffers of small latency (few subscribers → Few hops to
reach the right subscriber to connect). However, subscribers who join the system after
many others already connected will suffer higher latency because they need to route their
connection requests to many hops to reach the right destinations. The number of hops
in the large systems is higher than the systems with few subscribers → The standard
deviation value increases when the number of subscribers increased in both figures.

The change of the connection latency is linear when the number of subscribers in-
creased in the (Secure-system)

so
→ our technique of building the (Secure-system) is scalable

enough to be applied on large systems with large number of subscribers.
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Figure 7.4: Event Dissemination Latency in the (Unsecured-system)

7.2.2 Events Dissemination

In the events dissemination evaluation, we used the uniform way of assigning subscriptions
to the subscribers (Experimental Setup section), firstly the subscriber’s tree is built using
the secure connection technique, and after all subscribers connect to the system, publishers
start sending their events. We use the mechanism of assigning event space regions to the
publishers which defined in the Experimental Setup section. We have 160 publishers
assigned uniformly to the smallest regions in the event space, so there are 10 publishers
per each region. Each publisher publishes one event, so we have 160 events sent to the
system and all these events disseminated to the right subscribers. We calculate the average
time needed by each event to reach (decrypted and verified) to it’s right subscriber in both
(Unsecured-system) and (Secure-system), figures 7.4 and 7.5 represent the latency in both
systems respectively.

As shown in these figures the event dissemination latency increases when the (Unsecured-
system) becomes (Secure) (from micro-seconds to seconds), that is resulted from the
encryption, decryption, signing and verification actions of events needed in the (Secure-
system). The event latency needed in the (Secure-system) is shown in figure 7.5, this
latency increases (14 to 64 seconds) when the number of subscribers increased (300 to
1500), that is because in case of the larger systems the events routed into more hops before
it reaches the right destinations. For the same reason, the standard deviation increases

71



 90

 80

 70

 60

 50

 40

 30

 20

 10
 1500 1200 900 600 300

A
ve

ra
ge

 E
ve

nt
 D

is
em

in
at

io
n 

La
te

nc
y 

(S
ec

on
ds

),
 #

of
 e

ve
nt

s 
=

 1
60

Number Of Subscribers

Event Dissemination Latency in the Secure-system

Standard Deviation
Average Event Dissemination Latency

Figure 7.5: Event Dissemination Latency in the (Secure-system)

when the number of subscribers increased.

By using the same mechanism of assigning event space regions to the publishers and
use the random mechanism of assigning the subscriptions to the subscribers as presented
in Experimental Setup section, we calculate the ratio of false positive events received by
each subscriber. We calculate that for 1600 publishers (100 for each smallest region in the
event space and each one sends one event

so
→ There are 1600 events sent to the system).

Figure 7.6 shows that. The ratio of false positive events received per each subscriber is
relatively high because there is no mechanism for routing used in our event dissemination
technique. The parent subscriber sends all matched events (decrypted and verified) to all
children excluding the sender (see algorithm 6.5 in the last chapter).

7.2.3 Securing against DoS Attackers

In case we have attacker subscribers in the system who fabricates some events and over-
whelms the system of these events. Other subscribers in the system must be able to dis-
cover these fake messages and stop forwarding them. In case of the (Unsecured-system),
these events will never be discovered and stopped, so any subscriber receives this event
will handle it as a legal one and forward it to his neighbors

so
→ Overhead of processing

of these fake events on each subscriber receives it. On the other hand, in our (Secure-
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Figure 7.6: False Positive Ratio in the (Secure-system), with 1600 Publishers

system), the attacker can build the fake event by encrypt it using PublicEncKey but he can
not sign it by the PrivateSignKey which is just known to the legal publishers

so
→When any

legal subscriber successfully decrypts this event he can discover that this event is fake (by
verify it using the corresponding PublicV erifyKey). This legal subscriber will not forward
this fake event further. In case the subscriber unable to decrypt this fake event, he will
forward is to his parent (look algorithm 6.5 in the last chapter).

In order to calculate the ratio of subscribers our secure technique saves them of re-
ceiving these fake events, we consider the following system:

1. 1000 subscribers (the subscription is assigned uniformly) connected to each others.

2. There is a ratio that defines the number of attackers of these subscribers.

3. These attackers randomly connected to the system.

4. Each one of these subscribers fabricates one event and attacks the system by sending
it to all neighbors of him (parent and children), for example, in case the ratio of
attackers equals 0.1 there are 100 fake events.

We calculate the number of attacked subscribers in both (Unsecured-system) and
(Secure-system). Figure 7.7 represents the ratio of subscribers whom our (Secure-system)
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saves them of these fake events. For example, in the (Unsecured-system) the number of
attacked subscriber = 100, and it is 70 in the (Secure-system)⇒ The ratio of saved nodes

equals (100−70)
100

∗ 100% = 30%.

Looking at figure 7.7 we can notice that the ratio of saved subscribers varies between
(0.45 to 0.30). The subscribers which our (Secure-system) can not save them of receiving
fake events are unable to discover these fake events because they can not decrypt it. So
this fake event will be forwarded until any subscriber decrypts it and discovers that it is
not signed by the legal publisher and stops it. The ratio of saved subscribers decreases
when the ratio of attackers increased because there are more fake events overwhelmed to
the system by these attackers.
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Chapter 8

Conclusion And Future Work

In this thesis, a new approach for achieving confidentiality of events and subscriptions,
and authentication of publishers and subscribers in broker-less content-based pub/sub
system built on P2P architecture is presented. This approach enables subscribers and
publishers authenticate each other’s while they are decoupled. Moreover, events confi-
dentiality is guaranteed by allowing only legal subscribers resolve the sent events. Also,
the subscribers are connected and clustered according to their interests without revealing
their subscriptions.

This approach uses the identity based encryption (IBE) scheme to achieve the needed
confidentiality and authentication. By cooperating with the trusted-third-party (TTP),
four types of keys are generated in the system: private-sign-keys, public-verify-keys,
public-encryption-keys and private-decryption keys.

Publisher’s authentication is achieved by dedicating the private-sign-keys only to legal
publishers, these keys are used to sign the sent events, and the subscriber authenticates
the received event using the public-verify-key. On the other hand, authentication of
subscribers is guaranteed because TTP assures the identity of any subscriber before grant
him the private-decryption-key.

Moreover, publishers encrypt the events logarithmic times by public-encryption-keys,
because the private-decryption-keys are only known to legal subscribers → Event confi-
dentiality is guaranteed.

Based on his subscription, the new subscriber connects to the right position in the
subscriber’s tree without revealing his subscription. The trusted-third-party builds a con-
nection request (CR) with a logarithmic size for this new subscriber. This new subscriber
will connect to some subscriber in the subscriber’s tree without knowing his subscription
and vice versa. However, any attacker can expect the subscription possibilities of his
neighbors based on the position of this attacker in the subscriber’s tree.

In the evaluation chapter, the latencies for connection of any subscriber to the system
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and dissemination of the events to its right destinations are calculated, the results show
there is a slight overhead by executing our techniques.

Up to now, we consider subscription maps to a single region in the event space but
subscription with arbitrary ranges may map to many regions. This will increase the
number of keys managed by a subscriber. Future research is to modify the approach to
reduce the number of keys managed by subscriptions mapping to many regions.
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