
On the Iterated Hairpin Completion

Steffen Kopecki

Universität Stuttgart,

Institut für Formale Methoden der Informatik

Universitätsstr. 38, D-70569 Stuttgart, Germany

steffen.kopecki@fmi.uni-stuttgart.de

May 5, 2010

Abstract

The hairpin completion is a natural operation on formal languages
which has been inspired by biochemistry and DNA-computing. In this
paper we solve two problems which were posed first in 2008 and 2009,
respectively, and still left open:

1.) It is known that the iterated hairpin completion of a regular lan-
guage is not context-free in general, but it was open whether the iterated
hairpin completion of a singleton or finite language is regular or at least
context-free. We will show that it can be non-context-free. (It is of course
context-sensitive.)

2.) A restricted but also very natural variant of the hairpin completion
is the bounded hairpin completion. It was unknown whether the iterated
bounded hairpin completion of a regular language remains regular. We
prove that this is indeed the case. Actually we derive a more general
result. We will present a general representation of the iterated bounded
hairpin completion for any language using basic operations. Thus, each
language class closed under these basic operations is also closed under
iterated bounded hairpin completion.

Keywords: Formal Languages, Hairpin Completion

1 Introduction

The inspiration of the hairpin completion is rooted in DNA-computing and bio-
chemistry, where it appears naturally in chemical reactions. It turned out that
the corresponding operation on formal languages gives rise to very interesting
and quite subtle decidability and computational problems. The focus of our
paper is therefore on these formal language theoretical results. However, let us
sketch the biochemical origin of this operation first.

A DNA strand (or simply strand) is a polymer composed of nucleotides which
differ from each other by their bases A (adenine), C (cytosine), G (guanine) and
T (thymine). A strand can be seen as a finite sequence of bases. By Watson-
Crick base pairing two base sequences can bind to each other if they are pairwise
complementary where A is complementary to T and C to G. The hairpin
completion is best explained by Figure 1. By the base sequence α we mean to

1

read α from right to left and complement its bases. During chemical processes
a strand which contains a sequence α and ends on the complementary sequence
α (a) can form an intramolecular base-pairing, which is known as hairpin (b).
By complementing the unbound sequence γ, the hairpin completion (c) arises.

γ α β α

(a) strand

γ α
β

α

(b) hairpin

γ α
β

αγ

(c) hairpin completion

Figure 1: Hairpin completion of a DNA-strand.

On an abstract level a strand can be seen as a word and a (possibly infinite)
set of strands is a language. The hairpin completion of formal languages has
been introduced in [1]. In several papers the hairpin completion and some
familiar operations have been studied, see [1, 2, 4–8]. Here we focus on the
iterated versions of the hairpin completion and the bounded hairpin completion.
For the latter operation we assume the length of the γ-part to be bounded. A
formal definition of both operations is given in Section 2.1.

The class of iterated hairpin completions of singletons (HCS) has been in-
vestigated in [6]. HCS is included in the class of context-sensitive languages
since context-sensitive languages are closed under iterated hairpin completion,
see [1]. However, the questions if HCS contains non-regular or non-context-free
languages has been unsolved. In Section 3 we answer both questions with “yes”.

In Section 4 we state a general representation for the iterated bounded hair-
pin completion of a formal language using the operations union, intersection
with regular sets, and concatenation with regular sets. As a consequence all
language classes which are closed under these basic operations are also closed
under iterated bounded hairpin completion. This solves the problem whether
the iterated bounded hairpin completion of a regular language is always regular
which was stated in [4].

An extended abstract of this work will be presented at the 14th International
Conference on Developments in Language Theory (DLT 2010).

2 Notation

We assume the reader to be familiar with the fundamental concepts of formal
language theory, see [3]. Our focus is on regular and context-free languages.

An alphabet is a finite set of letters. In this paper the alphabet is always
Σ. The set of words over Σ is denoted by Σ∗ as usual, and the empty word is
denoted by 1. We consider Σ with an involution, this is a bijection : Σ → Σ
such that a = a for all a ∈ Σ. In DNA-biochemistry Σ = {A,C,G, T} with
A = T and C = G. We extend the involution to words w = a1 · · · an by
w = an · · · a1. (Just like taking inverses in groups.) Let L be a formal language,
by L we denote the language {w | w ∈ L}.

Given a word w, we denote by |w| its length. If w = xyz for some x, y, z ∈ Σ∗,
then x, y, and z are called prefix, infix, and suffix, respectively. For the prefix
relation we also use the notation x ≤ w. Note that, if z is a suffix of w, then z
is a prefix of w or z ≤ w.

2

2.1 The hairpin completion

If a word w has a factorization w = γαβα, then the suffix α can bind to the infix
α to form a hairpin and the new suffix γ can be created, again see Fig. 1. The
word γαβαγ is called a right hairpin completion of w. Since in biochemistry a
hairpin is stable only if the complementary parts are long enough, we fix a small
constant k ≥ 1 and ask |α| = k.

Symmetrically, if w has a factorization w = αβαγ then γαβαγ is a left
hairpin completion of w. If we simply speak of a hairpin completion we mean
either a left or a right hairpin completion. The hairpin completion of a formal
language L is the union of all hairpin completions of all words in L.

Instead of defining the bounded hairpin completion as it was defined in
former works, we will use a more general operation. This will come in handy
in Section 4. The parameterized hairpin completion is a variant of the hairpin
completion where we allow length-bounds for the γ-parts. For ` ≥ 0 let Γ` =
{γ ∈ Σ∗ | |γ| ≤ `} be the language containing all words of at most length ` and
let α be some word of length k. The left- and right-sided parameterized hairpin
completion of a language L are defined as

Hα(L, `, 0) =
⋃
γ∈Γ`

γ(L ∩ αΣ∗αγ) and Hα(L, 0, r) =
⋃
γ∈Γr

(L ∩ γαΣ∗α)γ

for `, r ≥ 0, respectively. The (two-sided) parameterized hairpin completion is
their union

Hα(L, `, r) = Hα(L, `, 0) ∪Hα(L, 0, r).

For the constant k let

Hk(L, `, r) =
⋃
α∈Σk

Hα(L, `, r).

In this paper we are interested in three variants of the hairpin completion:

1. The one-sided (unbounded) k-hairpin completion

os-Hk(L) =
⋃
r≥0

Hk(L, 0, r) = {γαβαγ | γαβα ∈ L ∧ |α| = k} .

2. The (two-sided unbounded) k-hairpin completion

Hk(L) =
⋃
`,r≥0

Hk(L, `, r)

= {γαβαγ | (γαβα ∈ L ∨ αβαγ ∈ L) ∧ |α| = k} .

3. The `-bounded k-hairpin completion

Hk(L, `, `) = {γαβαγ | (γαβα ∈ L ∨ αβαγ ∈ L) ∧ |γ| ≤ ` ∧ |α| = k}

for a bound ` ≥ 0.

3

By applying an arbitrary number of parameterized hairpin completions to a
language we obtain the iterated parameterized hairpin completions

H∗α(L, `, r) =
⋃
i≥0

Hiα(L, `, r) and

H∗k(L, `, r) =
⋃
i≥0

Hik(L, `, r)

where

H0
α(L, `, r) = L, Hiα(L, `, r) = Hα(Hi−1

α (L, `, r), `, r),

H0
k(L, `, r) = L, and Hik(L, `, r) = Hk(Hi−1

k (L, `, r), `, r) for i ≥ 1.

If a word z is included in Hik({w} , `, r) we say that z can be created with
i hairpin completions from w. Fig. 2 shows an example how a word can be
created with three hairpin completions from αuαvα where |α| = k. In each step
the dotted part is the newly created prefix or suffix.

|
α

|
u

|
α

|

v

|

α
||

α
|

u

|
α

|
u

|
α

|
v

|
α

|

u

|

α
||

α
|

u
|

α
|

v
|

α
|

u
|

α
|

v
|

α
|

uαvαu
|
α
||

α
|
u

|
α

|
v

Figure 2: Example for the iterated hairpin completion.

Again, the three cases

1. iterated one-sided k-hairpin completion

os-H∗k(L) =
⋃
r≥0

H∗k(L, 0, r),

2. iterated k-hairpin completion

H∗k(L) =
⋃
`,r≥0

H∗k(L, `, r),

3. and iterated `-bounded k-hairpin completion H∗k(L, `, `)

are of main interest.

3 The iterated hairpin completion of singletons

In this section we will state a singleton whose iterated hairpin completion is
not context-free. This solves the problem whether the class HCS contains non-
regular or non-context-free languages which was stated in [6]. Moreover, we
will show that the result also holds if we consider the iterated one-sided hairpin
completion.

Theorem 3.1. The iterated one- and two-sided hairpin completion of a single-
ton (or finite language) is context-sensitive and is not context-free in general.

4

Proof. It is simple to construct a linear bounded automaton (LBA) which ac-
cepts the iterated one- or two-sided hairpin completion of a finite language.
This yields the membership to the class of context-sensitive languages. (Or
see [1] where the closure of context-sensitive languages under iterated hairpin
completion is proved.)

Now we present a witness that the iterated hairpin completion of a singleton
may be non-context-free. Let Σ =

{
a, a, b, b, c, c

}
, α = ak and

w = akbakakakcak = αbαααcα.

We will prove that the languagesH∗k({w}) and os-H∗k({w}) are non-context-free.
Since context-free languages are closed under intersection with regular sets, it
is enough to show that for some regular set R the intersections R ∩ H∗k({w})
and R∩ os-H∗k({w}) are non-context-free.

Let u = ααbα and v = bα. Note that v ≤ u ≤ w. Let

R = wv+uv+wv+w.

and consider a word z ∈ R:

z = αbαααcα︸ ︷︷ ︸
w

(bα)r︸ ︷︷ ︸
vr

ααbα︸ ︷︷ ︸
u

(αb)s︸ ︷︷ ︸
vs

αcαααbα︸ ︷︷ ︸
w

(αb)t︸ ︷︷ ︸
vt

αcαααbα︸ ︷︷ ︸
w

with r, s, t ≥ 1. We will show that z can be created with hairpin completions
from w if and only if r = s = t.

The word w is a prefix of z and it occurs at no other position in z (there
is only one c in z). The only way to create z from w is by using right hairpin
completions. Hence, z ∈ H∗k({w}) if and only if z ∈ os-H∗k({w}) and

R∩H∗k({w}) = R∩ os-H∗k({w}).

In every step we have to bind the suffix α to some infix α. This leads to two
possible hairpin completions for

wvj = αbα
I
αα
II
cα(bα)j

with j ≥ 0. (We ignore the useless option of binding the suffix to the prefix.)
Option I creates the new suffix v and option II creates the new suffix u. The
prefix wvru can be created from w in exactly one way: Use r times option I
and then one time option II.

Now we have a third option for the hairpin, the prefix α of u:

wvru = αbα
I
αα
II
cα(bα)r α

III
αbα.

Every right hairpin completion creates a new suffix xbα for some x ∈ Σ∗. Since
there are only two occurrences of bα in

vswvtw = (αb)sαcαααbα(αb)tαcαααbα,

z has to be created with two hairpin completions from wvru which is only
possible by using option III two times and if r = s = t. (After the first use of

5

option III we get a lot more options for the last hairpin completion but, as you
can easily verify, none of the other options will lead to z.)

We conclude that a word wvruvswvtw with r, s, t ≥ 1 is in H∗k({w}) if and
only if r = s = t, and the intersections

R∩H∗k({w}) = R∩ os-H∗k({w}) = {wvruvrwvrw | r ≥ 1}

belong to a family of context-sensitive languages which are well known to be
non-context-free. Hence, the iterated one- and two-sided hairpin completion of
the singleton {w} is non-context-free, too.

After having proved that HCS contains non-regular and non-context-free
languages two new questions naturally arise:

1. Does a singleton exits whose iterated hairpin completion is context-free
but non-regular?

2. Can we decide whether the iterated hairpin completion of singleton is
non-regular (or non-context-free)?

4 The iterated parameterized hairpin comple-
tion

In this section we will give another representation for the iterated parameterized
hairpin completion.

Theorem 4.1. Let L be a formal language and `, r ≥ 0. The iterated parame-
terized hairpin completion H∗k(L, `, r) can be represented by an expression using
L and the operations union, intersection with regular sets, and concatenation
with regular sets.

Consequentially, all language classes which are closed under these operations
— which includes the classes in the Chomsky Hierarchy — are closed under it-
erated parameterized hairpin completion. From [4] it has been known that the
classes of context-free, context-sensitive, and recursively enumerable languages
are closed under iterated bounded hairpin completion, but it has been left open
whether this is also true for regular languages. Since the iterated bounded hair-
pin completion is a special case of the iterated parameterized hairpin completion
we proved that this is indeed the case.

Corollary 4.2. The class of regular languages is closed under iterated bounded
hairpin completion.

Another interesting problem for HCS is the question if one can decide
whether the iterated hairpin completions of two singleton languages have a
non-empty intersection. Since the results of this paper yield that the iterated
bounded hairpin completion of a singleton is regular and an NFA accepting this
language can effectively be constructed, we can at least decide this problem for
the bounded case.

6

4.1 α-prefixes

Let us introduce the concept of α-prefixes which is essential for the represen-
tation of the iterated parameterized hairpin completion. Let α be a word of
length k. For p, w ∈ Σ∗ we say p is an α-prefix of w if pα ≤ w. We denote the
set of all α-prefixes of a maximal length ` by

Pα(w, `) = {p | pα ≤ w ∧ |p| ≤ `} .

We can use this notation to represent the (non-iterated) parameterized hair-
pin completion of a singleton. Let ` ≥ 0 and w ∈ αΣ∗ with |w| ≥ ` + 2k. The
left hairpin completion of {w} is

Hα({w} , `, 0) = Pα(w, `)w.

Symmetrically, let r ≥ 0 and w ∈ Σ∗α with |w| ≥ r + 2k. The right hairpin
completion of {w} is

Hα({w} , 0, r) = wPα(w, r).

For the proof of Theorem 4.1 we mainly consider α-prefixes of words which
have α as a prefix. In this case some useful properties arise.

Lemma 4.3. Let α ∈ Σk, ` ≥ 0, and w ∈ αΣ∗.

1. For all p ∈ Pα(w, `) we have α ≤ pα.

2. For all p1, p2 ∈ Pα(w, `) we have

|p1| ≤ |p2| ⇔ p1α ≤ p2α ⇔ p1 ∈ Pα(p2α, |p2|).

3. If vα is a prefix of some word in Pα(w, `)∗α then v ∈ Pα(w, `)∗.

Proof. If two words x, y are prefixes of w and |x| ≤ |y|, then x ≤ y. This yields
property 1 and 2.

For property 3 let vα ≤ p1 · · · pmα where p1, . . . , pm ∈ Pα(w, `). We can
factorize v = p1 · · · pi−1v

′ such that v′ ≤ pi for some 1 ≤ i ≤ m. By property 1
and induction, we see that α is a prefix of pi+1 · · · pmα and therefore v′α ≤
piα ≤ w. Moreover, v′ ∈ Pα(w, `) and v ∈ Pα(w, `)∗.

4.2 Proof of Theorem 4.1

Let the language L and `, r ≥ 0 be fixed for the rest of this section. We
will state a representation for H∗k(L, `, r). Every word w in the (non-iterated)
parameterized hairpin completion Hk(L, `, r) has a factorization w = γδβδγ
where |δ| = k. Let α be the prefix of length k of w then α is a suffix of w. If we
apply one parameterized hairpin completion to w this will lead to a new word

w′ ∈ Hk({w} , `, r) = Hα({w} , `, r) ⊆ wPα(w, r) ∪ Pα(w, `)w ⊆ αΣ∗α.

For the second inclusion we use Lemma 4.3. By induction,

H∗k({w} , `, r) = H∗α({w} , `, r) ⊆ αΣ∗α.

For α ∈ Σk let
Lα = Hk(L, `, r) ∩ αΣ∗α.

7

With the observations made above, it is plain that

Hk(L, `, r) =
⋃
α∈Σk

Lα,

H∗k(Lα, `, r) = H∗α(Lα, `, r) ⊆ αΣ∗α,

and each language Lα has a representation using L and the operations union,
intersection with regular sets, and concatenation with regular sets. The iterated
parameterized hairpin completion of L is

H∗k(L, `, r) = L ∪H∗k(Hk(L, `, r), `, r)

= L ∪H∗k
(⋃
α∈Σk

Lα, `, r
)

= L ∪
⋃
α∈Σk

H∗α(Lα, `, r).

In order to prove Theorem 4.1 we will state a representation for H∗α(Lα, `, r)
for any α ∈ Σk. From now on let α ∈ Σk be fixed. For the rest of the proof
we will heavily rely on the fact that every word in H∗α(Lα, `, r) has the prefix α
and the suffix α. We will define the representation recursively. Note that

H∗α(Lα, 0, 0) = Lα.

By symmetry we may assume ` ≥ r and ` ≥ 1. Let

z ∈ H∗α(Lα, `, r) \ H∗α(Lα, `− 1, r).

This word can be created with s ≥ 1 hairpin completions from some word in
w ∈ H∗α(Lα, `− 1, r) such that the first hairpin completion creates a new prefix
x1 of length `. Hence, z has a factorization

z = xs · · ·x1wy1 · · · ys

where for all 1 ≤ i ≤ s:

1. If the i-th hairpin completion is a left hairpin completion, then yi = 1 and
xi is the prefix that is created. Therefore |xi| ≤ ` and

xi−1 · · ·x1wy1 · · · yi−1 ∈ αΣ∗αxi.

2. If the i-th hairpin completion is a right hairpin completion, then xi = 1
and yi is the suffix that is created. Therefore |yi| ≤ r and

xi−1 · · ·x1wy1 · · · yi−1 ∈ yiαΣ∗α.

The crucial point is that the word x1wy1 has the prefix x1α, the suffix αx1,
and |x1| = ` ≥ r. Therefore, the words x2, . . . , xs and y2, . . . , ys are controlled
by x1, `, and r.

Lemma 4.4. For all 1 ≤ i ≤ s we have xi ∈ Pα(x1α, `)
∗ and yi ∈ Pα(x1α, r)

∗.

8

Proof. Obviously x1 ∈ Pα(x1α, `)
∗ and y1 = 1 ∈ Pα(x1α, r)

∗.
Let 2 ≤ i ≤ s. By induction, we may assume that xj ∈ Pα(x1α, `)

∗ and
yj ∈ Pα(x1α, r)

∗ for all 1 ≤ j < i.

1. If the i-th hairpin completion is a left hairpin completion, we have yi =
1 ∈ Pα(x1α, r)

∗ and, by induction hypothesis,

xiα ≤ yi−1 · · · y1x1α ∈ Pα(x1α, r)
∗x1α ⊆ Pα(x1α, `)

∗α.

Together with Lemma 4.3 property 3 this leads to xi ∈ Pα(x1α, `)
∗.

2. Otherwise we have xi = 1 ∈ Pα(x1α, `)
∗ and

yiα ≤ xi−1 · · ·x1α ∈ Pα(x1α, `)
∗α,

hence yi ∈ Pα(x1α, `)
∗. Since |yi| ≤ r, all the factors of yi which are

included in Pα(x1α, `) are also at most of length r and therefore yi ∈
Pα(x1α, r)

∗.

Now let us define the languages

Lα(x, `, r) = Pα(xα, `)∗x (H∗α(L, `− 1, r) ∩ αΣ∗αx)Pα(xα, r)
∗
.

By Lemma 4.4, the word z is included in Lα(x1, `, r). Since every word

z′ ∈ H∗α(Lα, `, r) \ H∗α(Lα, `− 1, r)

has a factorization as above, there exists an x′ ∈ Σ` such that z′ ∈ Lα(x′, `, r)
and, moreover,

H∗α(Lα, `, r) ⊆ H∗α(Lα, `− 1, r) ∪
⋃
x∈Σ`

Lα(x, `, r).

Of course we intend to replace the inclusion by an equal sing.

Lemma 4.5. Lα(x, `, r) ⊆ H∗α(Lα, `, r) for all x ∈ Σ`.

Proof. For some x ∈ Σ` consider a word z ∈ Lα(x, `, r) with the factorization

z = us · · ·u1wv1 · · · vt

where

• w ∈ x (H∗α(L, `− 1, r) ∩ αΣ∗αx) ⊆ H∗α(Lα, `, r) ∩ xαΣ∗αx,

• u1, . . . , us ∈ Pα(xα, `), and

• v1, . . . , vt ∈ Pα(xα, r).

We will prove that z can be created with s+ t hairpin completions from w.
Let p be the longest α-prefix of xα which is equal to one of the factors

u1, . . . , us or v1, . . . , vt and let m be the largest index such that um = p (or
0 if no such index exists). Respectively, let n be the largest index such that

9

vn = p. The word w′ = um · · ·u1wv1 · · · vn can be created with m + n hairpin
completions as follows:

Since αx is a suffix of w and u1, . . . , um ∈ Pα(xα, `), we can create the word
um · · ·u1w with m hairpin completions from w. The new word has a prefix
pα (even if m = 0 since pα ≤ xα) and since |vi| ≤ |p| for all 1 ≤ i ≤ n, we
have vi ∈ Pα(pα, r), cf. Lemma 4.3. Hence, w′ can be created with n hairpin
completions from um · · ·u1w.

Now, z = ut · · ·um+1w
′un+1 · · ·ut where

• w′ ∈ H∗α(Lα, `, r) ∩ pαΣ∗αp,

• um+1, . . . , us ∈ Pα(pα, |p| − 1), and

• vn+1, . . . , vt ∈ Pα(pα,min {|p| − 1, r}).

We can resume to create z from w′ inductively.

By Lemma 4.5, if ` ≥ r the iterated parameterized hairpin completion of Lα
can be represented by

H∗α(Lα, `, r) = H∗α(Lα, `− 1, r) ∪
⋃
x∈Σ`

Lα(x, `, r).

Symmetrically, if r > ` let us define

Rα(y, `, r) = Pα(yα, `)∗ (H∗α(L, `, r − 1) ∩ yαΣ∗α) yPα(yα, r)
∗
.

The iterated parameterized hairpin completion of Lα can be represented by

H∗α(Lα, `, r) = H∗α(Lα, `, r − 1) ∪
⋃
y∈Σr

Rα(y, `, r).

Hence, we can give a representation for the iterated parameterized hairpin
completion using L and the operations union, intersection with regular sets, and
concatenation with regular sets.

Acknowledgements

I would like to thank Volker Diekert for many suggestions on the presentation of
this paper, Florin Manea for numerous helpful discussions, and the anonymous
referees of the DLT committee for several useful comments.

References

[1] D. Cheptea, C. Martin-Vide, and V. Mitrana. A new operation on words
suggested by DNA biochemistry: Hairpin completion. Transgressive Com-
puting, pages 216–228, 2006.

[2] V. Diekert, S. Kopecki, and V. Mitrana. On the hairpin completion of regular
languages. In M. Leucker and C. Morgan, editors, ICTAC, volume 5684 of
Lecture Notes in Computer Science, pages 170–184. Springer, 2009.

10

[3] J. E. Hopcroft and J. D. Ulman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[4] M. Ito, P. Leupold, and V. Mitrana. Bounded hairpin completion. In LATA
’09: Proceedings of the 3rd International Conference on Language and Au-
tomata Theory and Applications, pages 434–445, Berlin, Heidelberg, 2009.
Springer-Verlag.

[5] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In
S. B. Cooper, B. Löwe, and A. Sorbi, editors, CiE, volume 4497 of Lecture
Notes in Computer Science, pages 532–541. Springer, 2007.

[6] F. Manea, V. Mitrana, and T. Yokomori. Some remarks on the hairpin
completion. In E. Csuhaj-Varju and Z. Esik, editors, 12th International
Conference AFL 2008 Proceedings, pages 302–312, 2008.

[7] F. Manea, V. Mitrana, and T. Yokomori. Two complementary operations
inspired by the dna hairpin formation: Completion and reduction. Theor.
Comput. Sci., 410(4-5):417–425, 2009.

[8] V. Mitrana, F. Manea, and C. Mart́ın-Vide. On some algorithmic problems
regarding the hairpin completion. Electronic Notes in Discrete Mathematics,
27:71–72, 2006.

11

	Introduction
	Notation
	The hairpin completion

	The iterated hairpin completion of singletons
	The iterated parameterized hairpin completion
	-prefixes
	Proof of Theorem 4.1

