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Abstract

We introduce partially ordered two-way Biichi automata over infinite words. As for finite
words, the nondeterministic variant recognizes the fragment Y5 of first-order logic FO[<]
and the deterministic version yields the As-definable w-languages. As a byproduct of
our results, we show that deterministic partially ordered two-way Biichi automata are
effectively closed under Boolean operations.

In addition, we have coNP-completeness results for the emptiness problem and the
inclusion problem over deterministic partially ordered two-way Biichi automata.
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1 Introduction

We combine partially ordered two-way (po2) automata with the Biichi acceptance condition.
For this new subclass of two-way Biichi automata, we characterize the expressive power of the
nondeterministic and the deterministic versions. Moreover, we show that nondeterministic
po2-Biichi automata have a small model property. This leads to NP-completeness results of
the non-emptiness problem for both nondeterministic and deterministic po2-Biichi automata,
and to the coNP-completeness of the inclusion problem for deterministic po2-Biichi automata.

Biichi automata have been introduced in order to decide monadic second-order logic over
infinite words [2]. Today, they have become one of the most important tools in model-checking
sequential finite state systems, see e.g. |1, 3|. Biichi automata are nondeterministic finite
automata, accepting infinite words if there exists an infinite run such that some final state
occurs infinitely often. A generalization are two-way Biichi automata; Pécuchet has shown
that they have the same expressive power as ordinary Biichi automata [9]. Alternating two-
way Bichi automata have been used for model checking of temporal logic formulas with
past modalities [6, 15]. These automata, too, can recognize nothing but regular w-languages.
With the usual padding technique, the succinctness result for two-way automata over finite
words [5] immediately yields an exponential lower bound for the succinctness of two-way Biichi
automata.

We characterize the expressive power of po2-Biichi automata in terms of fragments of
first-order logic FO[<]. The fragment ¥y consists of all FO[<]-sentences in prenex normal
form with one block of existential quantifiers followed by one block of universal quantifiers
followed by a propositional formula. The fragment IIs contains the negations of ¥o-formulas.
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By abuse of notation, we identify logical fragments with the classes of w-languages they define.
Hence, it makes sense to define Ay = Yo N 1Ils, i.e., an w-language is Ao-definable if it is Xo-
definable and TIa-definable. Therefore, A is the largest subclass of X9 (or II3) which is closed
under complementation. Various characterizations of Yo and of Ay over infinite words are
known [14, 4]. Note that it makes a difference whether we require that a ¥o-formula and a II3-
formula have the same w-word models, or whether they coincide on finite word models. In some
sense, Ao over infinite words is weaker than As over finite words. For example over finite words,
Ay has the same expressive power as first-order logic with only two variables [13], whereas
over infinite words, Ag is weaker than first-order logic with two variables [4]. Moreover, As
over finite words coincides with a language class called unambiguous polynomials [10|, whereas
over infinite words, only some restricted variant of unambiguous polynomials is definable in
Ag [4].

Schwentick, Thérien, and Vollmer introduced po2-automata over finite words [11]; cf. |7]
for further characterizations of such automata. A po2-automaton is a two-way automaton
with the property that once a state is left, it is never entered again. Every such automaton
admits a partial order on its states such that transitions are non-decreasing. In fact, one could
use a linear order on the states, but this would distort the length of a longest chain, which
in some cases is a useful parameter. Nondeterministic po2-automata recognize exactly the
Yo-definable languages over finite words whereas deterministic po2-automata correspond to
As-definable languages [11].

In this paper, we present analog results over infinite words. More precisely, for L C I' we
show that

e [ is recognized by some nondeterministic partially ordered two-way Biichi automaton if
and only if L is definable in 39 (Theorem 1),

e [ is recognized by some deterministic partially ordered two-way Biichi automaton if and
only if L is definable in Ay (Theorem 3).

In particular, nondeterministic po2-Biichi automata are more powerful than deterministic
po2-Biichi automata, and nondeterministic po2-Biichi automata are not closed under comple-
mentation. The proof of Theorem 1 is a straightforward generalization of the respective result
for finite words. It is presented here for the sake of completeness. The proof of Theorem 3 is
new. It is based on a language description from [4]| rather than on so called turtle languages as
in [11]. The main step in our proof is to show that deterministic po2-Biichi automata are effec-
tively closed under Boolean operations (Theorem 2). This is non-trivial, since the approach of
starting a second automaton after the first one has completed its computation does not work
for Biichi automata. To this end, we simulate two deterministic po2-Biichi automata simulta-
neously, and we have to do some bookkeeping of positions if the two automata walk in different
directions. In Section 5, we show that various decision problems over po2-Biichi automata are
coNP-complete: the emptiness problem for deterministic and for nondeterministic po2-Biichi
automata; and the universality, the inclusion, and the equivalence problem for deterministic
po2-Biichi automata. Note that for (non-partially-ordered) one-way Biichi automata, both
the inclusion problem and the equivalence problem are PSPACE-complete [12].



2 Preliminaries

Throughout this paper, I' denotes a finite alphabet. For A C I', the set of finite words over A
is A* and the set of infinite words over A is A“. If we want to emphasize that o € I'“ is an
infinite word, then we say that « is an w-word. The empty word is e. We have 0* = {¢} and
()« = 0. The length of a finite word w € T'* is denoted by |w/|, i.e., lw| =n if w =aj---a,
with a; € T'. We set |a] = oo if o € . The alphabet of a word o = ajay--- € T* UT¥ is
denoted by alph(«). It is the set of letters occurring in . We say that a position i of « is an
a-position of a if a; = a.

A language is a subset of I'* or a subset of I'Y. As for w-words, we emphasize that
L C T contains only infinite words by saying that L is an w-language. A monomial (of degree
k) is a language of the form Aja;--- AjaxAj ;. It is unambiguous if each word w in the
monomial has a unique factorization w = wiay - - - ugarugy1 with u; € A7, Similarly, an w-
monomial is an w-language of the form Aja; --- Ajyar Ay | and it is unambiguous if each word
a € Ajay - -~ Ajap AR, has a unique factorization uyay - - - ugag S with u; € A} and 8 € A7 ;.
A restricted unambiguous w-monomial is an unambiguous w-monomial Aja; --- Ajap Ay
such that {a;,...,ar} ,CZ A; forall 1 <i<k. A polynomial is a finite union of monomials and
an w-polynomial is a finite union of w-monomials. A restricted unambiguous w-polynomial is
a finite union of restricted unambiguous w-monomials.

By FO[<] we denote the first-order logic over words interpreted as labeled linear orders.
As atomic formulas, FO[<] comprises T (for true) and L (for false), the unary predicate
A(z)=a for a € T, and the binary predicate < y for variables x and y. The idea is that
variables range over the linearly ordered positions of a word and A\(x) = a means that z is an a-
position. Apart from the Boolean connectives, we allow quantifications over position variables,
i.e., existential quantifications 3z : ¢ and universal quantifications Vz: ¢ for ¢ € FO[<]. The
semantics is as usual.

Every formula in FO[<] can be converted into a semantically equivalent formula in prenex
normal form by renaming variables and moving quantifiers to the front. This gives rise to the
fragment 3o (resp. Ilz) consisting of all FO[<]-formulas in prenex normal form with only two
blocks of quantifiers, starting with a block of existential quantifiers (resp. universal quantifiers).
Note that the negation of a formula in Y5 is equivalent to a formula in IIs and vice versa. The
fragments Yo and Ils are both closed under conjunction and disjunction.

A sentence in FO[<] is a formula without free variables. Since there are no free variables
in a sentence ¢, the truth value of a |= ¢ is well-defined. The w-language defined by ¢ is
L(p) = {a eT¥ | a = ¢}. We frequently identify logical fragments with the respective classes
of languages. For example, Ay = ¥oNII5 consist of all languages L such that L = L(p) = L(v)
for some ¢ € 39 and 9 € g, i.e., a language L is As-definable if there are equivalent formulas
in Y9 and in Ily defining L. The notion of equivalence depends on the models and it turns
out to be a difference whether we use finite or infinite words as models, cf. [4, 13]. Unless
stated otherwise, we shall only use infinite word models. In particular, for the remainder of
this paper Aj is a class of w-languages.

2.1 Partially Ordered Two-way Biichi Automata

In the following, we give the Biichi automaton pendant of a two-way automaton. This is
basically a Biichi automaton that may change the direction in which it reads the input. A
two-way Biichi automaton A= (Z,T,6, Xo, F') is given by:



a finite set of states Z = X UY,

a finite input alphabet T'; the tape alphabet is T' U {>}, where the left end marker > is a
new symbol,

a transition relation 6 C (Z xI' x Z) U (Y x {p} x X),
e a set of initial states Xy C X, and
e a set of final states F' C Z.

The states Z are partitioned into “neXt-states” X and “Yesterday-states” Y. The idea is that
states in X are entered with a right-move of the head while states in Y are entered with a left-
move. For (z,a,z2’) € § we frequently use the notation z -% 2’. On input o = ayag--- € T
the tape is labeled by >« i.e., positions ¢ > 1 are labeled by a; and position 0 is labeled by .
A configuration of the automaton is given by a pair (z,4) where z € Z is a state and i € N is
the current position of the head. A transition (z,1) - (2/,j) on configurations (z,4) and (2’, j)
exists, if

e 2% 2 for some a € I'U{>} such that i is an a-position, and
e j=i+lifzeX andj=i—1if 2 €Y.

The >-position can only be encountered in a state from Y and left via a state from X. In
particular, A can never overrun the left end marker . Due to the partition of the states Z,
we can never have a change in direction without changing the state. A configuration (z,7)
is initial, if z € Xo and i = 1. A computation of A on input « is an infinite sequence of
transitions

(Zo,i(]) F (Zl,il) F (ZQ,ig) e

such that (zp,7p) is initial. It is accepting, if there exists some state y € F which oc-
curs infinitely often in this computation. Now, A accepts an input « if there is an ac-
cepting computation of A on input a. As usual, the language recognized by A is L(A) =
{a € ¥ | A accepts a}.

A two-way Biichi automaton is deterministic if |Xo| = 1 and if for every state z € Z
and every symbol a € T'U {>} there is at most one 2z’ € Z with z -2 2/. A two-way Biichi
automaton is complete if for every state z € Z and every symbol a € I' there is at least one
2 € Z with z %, 2/, and for every z € Y there is at least one 2’ € X with z > 2/,

We are now ready to define partially ordered two-way Biichi automata. We use the abbre-
viation “po2” for “partially ordered two-way”. A two-way Biichi automaton A is a po2-Biichi
automaton, if there is a partial order < on the set of states Z such that every transition is
non-descending, i.e., if z -2 2/ then 2z < 2/. In po2-Biichi automata, every computation enters
a state at most once and it defines a non-decreasing sequence of states. Since there can be no
infinite chain of states, every computation has a unique state z € Z which occurs infinitely
often and this state is maximal among all states in the computation. Moreover, z € X since
the automaton cannot loop in a left-moving state forever. We call this state z stationary. A
computation is accepting if and only if its stationary state z is a final state. In particular, we
can always assume F' C X in po2-Biichi automata.



3 Nondeterministic po2-Biichi Automata

In this section, we show that nondeterministic po2-Biichi automata recognize exactly the class
of ¥y-definable languages. Moreover, it turns out that nondeterministic po2-Biichi automata
and nondeterministic partially ordered one-way Biichi automata (i.e., Y = ) in our definition
of nondeterministic po2-Biichi automata) have the same expressive power. The proof is a
straightforward extension of the respective result for finite words [11]. It is presented here
only for the sake of completeness.

Theorem 1 Let L CT. The following assertions are equivalent:
1. L is recognized by a nondeterministic po2-Biichi automaton.
2. L is Ya-definable.

3. L is recognized by a nondeterministic partially ordered Biichi automaton.

Proof: “1 = 2" Let A be a partially ordered two-way Biichi automaton. It suffices to
show that L(A) is an w-polynomial, since every w-polynomial is Yo-definable. This fol-
lows from Lemma 1 below (with A = B). “2 = 3" Every Ys-definable w-language is an
w-polynomial [14]. The w-monomial Aja; --- AjarA},, is recognized by the following Biichi
automaton:

Ayt

Ay A
\% al ak—lé\:) aj

Now, every w-polynomial can be recognized by a finite union of such automata. “3 = 1™
Every partially ordered one-way Biichi automaton is a special case of a po2-Biichi automaton.
O

Lemma 1 Let A and B be complete po2-Biichi automata and let n 4 and ng be the lengths of
the longest chains in the state sets of A and B, respectively. Then for every a € L(A) N L(B)
there exists an w-monomial P, of degree at most ng4+ng—2 such that o € P, C L(A)NL(B).
In particular,
LANLB) = |J Pa
a€L(A)NL(B)

is an w-polynomial, since there are only finitely many w-monomials of degree at most n4 +
ng — 2.

Proof: Let o € L(A) N L(B) and consider an accepting computation of A and an accepting
computation of B. For these computations, we define the factorization a = uqaq - - - ugag with
a; € ', u; € ', and B € I'* such that the positions of the markers a; are exactly those where
a state change happens in at least one of the computations. In each traversal of one of the
factors u; and 3, the letters in these factors correspond to self-loops on the respective states
in both computations. Hence, P, = Ajai--- AjapBY with A; = alph(u;) and B = alph(f)
satisfies o € P,, P, C L(A), and P, C L(B). O



4 Deterministic po2-Biichi Automata

This section contains the main contribution of our paper, namely that the class of languages
recognizable by deterministic po2-Biichi automata is exactly the fragment As of first-order
logic. Our proof relies on a characterization of Ay in terms of restricted unambiguous w-
polynomials [4].

As an intermediate step, we show in Theorem 2 that deterministic po2-Biichi automata are
effectively closed under Boolean operations. The proof is split into two parts: First, we show
the closure under complementation in Lemma 2. This result is surprising in the sense that for
general deterministic one-way Biichi automata (not necessarily partially ordered), the same
result does not hold. Proposition 1 gives an effective construction on deterministic po2-Biichi
automata recognizing the union and the intersection of two languages given by deterministic
po2-Biichi automata.

Theorem 2 The class of languages recognized by deterministic po2-Biichi automata is effec-
tively closed under complementation, union, and intersection.

Proof: Effective closure under complementation of po2-Biichi automata will be shown in
Lemma 2. Effective closure under positive finite Boolean combinations is Proposition 1. [

Lemma 2 The class of languages recognized by deterministic po2-Bichi automata is effec-
tively closed under complementation. Moreover, the complement automaton has at most one
additional state and it can be computed in polynomial time.

Proof: Let A be a complete deterministic po2-automaton. For every word «@ we have a unique
computation. Therefore, every word a uniquely determines a stationary state x,, and « is
accepted by A if and only if z, is final. Thus complementing the set of final states yields
a deterministic po2-automaton A with L(A) = I' \ L(A). We note that complementing F'
with respect ot the right-moving states X instead of all states Z is sufficient. Obviously, the
necessary computations can be done in polynomial time. We might need to add one state in
order to make A complete. O

Proposition 1 The class of languages recognized by deterministic po2-Biichi automata is ef-
fectively closed under union and intersection.

Proof: Let A; and As be complete deterministic po2-Biichi automata. We give a product
automaton construction A recognizing L(A;) N L(Az2). With a different choice of the final
states, the same automaton also recognizes L(A;) U L(Az). We start with a description of
the general idea of our construction. Details are given below. The automaton A operates in
two modes: the synchronous mode and the asynchronous mode. In the synchronous mode A
executes both automata at the same time until at least one of them changes to a left-moving
state. Then A changes to the asynchronous mode by activating a left-moving automaton
and suspending the other one. The position where this divergence happens is called the
synchronization point. We stay in the asynchronous mode until the synchronization point is
reached again. In a complete partially ordered automaton this must happen eventually. If the
two automata now agree on going to the right, we switch back to the synchronous mode; else
the process is repeated.



In order to recognize the synchronization point while executing the active automaton in
the asynchronous mode, A administers a stack of letters and a pointer on this stack. The stack
records the letters which led to a state change during synchronous mode in at least one of the
automata. The corresponding positions of the word are called marker positions and its labels
are markers. Let a1 ---a, be the sequence of markers encountered during the computation
and let p; < -+ < p,, be the respective marker positions. Changing from synchronous mode to
asynchronous mode involves a state change of one of the automata A; and As. In particular,
if A is in the asynchronous mode, then a,, is the label of the synchronization point p,,. Since
both automata are deterministic, we have that for every 1 < k < m the prefix of the input of
length py is the shortest prefix admitting a; - - - ax as a (scattered) subword. Our construction
takes advantage of this observation for detecting the synchronization point and in order to
keep the pointer up to date while simulating the active automaton. The semantics of the
pointer is as follows: If it points to a marker ay then the current position ¢ of A is in the
interval [pg—1; pm] and moreover, ay - - - an, is a scattered subword of the factor induced by the
interval [¢; p,,,|. Here, we set pg = 0 to be the position of the left end marker > for convenience.
If the head is on an a,,-position and the pointer points to this marker, i.e., to the top of the
stack, then we can deduce g = p,,, i.e., that we have reached the synchronization point. Now,
if A is at an ap_1-position and moves to the left afterward, then it is quite possible that we are
to the left of pr_1. But we cannot be to the left of py_o and we know that now the subword
ag—1 - - - @y appears before py,. Thus we adjust the pointer to ax_1. On the other hand, if we
scan ay, then we know that we are at a position > p; since a; cannot appear in the interval
(pk—1;Px). Moreover, the subword agq - - - ay, still appears before p,,. Therefore, we adjust
the pointer to agy1, if after reading ay the automaton moves to the right.

What follows are the technical details of this construction. For i € {1,2} let A; =
(Zi,T,6;,29, F;) with Z; = X; UY;. We construct A = (Z,T,6,2° F) with Z = X UY
satisfying the following constraints:

o 7 C(IMxXyxXo)U(I™xZy x Zy x Nx{A1,Az}). The states of the first term in the
union are for the synchronous mode. The first component is the stack of markers. Its
size is bounded by |X7|+ |X3|. For the asynchronous states, the fourth component is the
pointer to the stack of markers and the fifth component specifies the active automaton.

e Y =ZN([*"xY1xZyx Nx {4} )UT*x Z; x Yo x Nx {A4})) and X = Z\ Y.
So the left-moving states of A are exactly those where in asynchronous mode the active
component is left-moving.

o 20 = (g, x?, xg), i.e., at the beginning A is in the synchronous mode, the stack of markers
is empty, and both automata are in their initial state.

e For recognizing the intersection we set ' = Z N (I'* x F} x Fy). For recognizing the
union we set F'=Z N (T* x Fy x X2) U (T* x X1 x Fy)).

Next, we describe the transitions z -2 2’ of A. Let z = (w, 21, 22) when A is in synchronous
mode, and z = (w, 21, 22, k,C) otherwise. Furthermore, let z; -% 2] in A; and let 29 -% 2} in
As. Suppose that A is in synchronous mode, i.e., z € I'* x X7 x X5. Let

w =

s / /
, w if 2] = 21 and 25 = 29,
wa  else,



i.e., push the symbol to the stack if the state of at least one automaton changes. We set

/ / / : / /
) ) )
(W', 21, 25) if 21 € X7 and z5 € X»
(w, 21, 22) % ¢ (W', 21, 29, |W'|, A1) if 24 € Y7,

(W', 21, 25, |w'|, A2)  else,

i.e., we stay in synchronous mode if both automata agree on moving right for the next step, we
suspend the second automaton if A; wants to move to the left (independent of the direction
of Aj3), and we suspend the first automaton when it wants to move to the right but .4s wants
to move to the left. Consider now an asynchronous state z € I'* x Z; x Zy x N x {41, As}.
First we deal with the special case of reading the last remaining letter of the stack, i.e., a is
the last letter of w and the pointer is |wl:

(w, 21, 25) if 2} € X7 and 2} € Xy,
(w,zl,22,|w|,C)i> (’lU,Zi,ZQ,‘U)LAl) if Zi EH,

(’lU,Zl,Zé, ‘w|7~/42) else.

The first case is that both automata now agree on the direction of moving to the right and
then we change to synchronous mode. If not, the right-moving automaton is suspended. If
both are left-moving, then As is suspended. For the other situations we only consider the case
of C = A; being active. The case C = As is similar.

(w, 2}, 20,k —1, A1) if 2} € Y] and a_1 = q,
(w, 21,20, k, A1) % { (w, 2, 20,k + 1, A1) if 2] € X1 and a; = a,
(w, 21,20,k , A1) else.

Since A; is active, we simulate this automaton. The fourth component never gets greater
than |w|, since scanning the last remaining symbol is treated differently.

One can verify that A is partially ordered. The main idea is that between any increase
and any decrease of the pointer (and also between any decrease and any increase), the state
of the active automaton changes.

Let n; and ny be the length of a maximal chain of states in X; and Xs, respectively.
The size of the stack in the first component is bounded by n = ny + ne — 2. Therefore,
the construction can be realized by an automaton with at most |T'|"|Z1||Z2|(1 4 2n) states.
Moreover, the construction is effective. ]

Proposition 2 FEvery restricted unambiguous w-monomial is recognized by a deterministic
po2-Biichi automaton.

Proof: Let L = Aja--- Ajar Ay, be unambiguous such that {a;,...,ar} € A; for all 1 <
1 < k. This implies a; ¢ Ay for some ¢ > 1. Let i be minimal with this property. For each
a € L we consider the factorization o = wa; 5 with a; € alph(u). There are two cases:

u€ Ajay--- A7, e Al a4 ApapAf,  or
u€ Ajay--- A, a; € Ay, B € Ajaj- - Apag Ay,

with 2 < j <. In each case, the expression B = AJa; - -- Afar Ay, | is unambiguous, because
L is. Moreover, it is shorter than the expression for L, and we have {ay,...,ar} € Ay for



all j < ¢ < k. By induction, B is recognized by some complete deterministic po2-Biichi
automaton B.

The unambiguous monomials A = Ajay --- A7N(I'\ {a;})" are accepted by a deterministic
po2-Biichi automaton A operating on finite words [11]. We modify this automaton in order
to use the letter a; instead of < as a right end marker.

From these two automata, we now construct a new automaton C accepting the w-language
Aa;B. First, C checks whether there exists some a;-position. If so, C returns to the first letter
of the word and starts a simulation of A. If this automaton accepts the word, i.e., u € A,
then C moves its head to the position after the first a;-position and starts an automaton B'.
The automaton B’ simulates B but ensures that left-scanning for a letter is only successful if
this letter is found before the first a;, i.e., if there is still an a; on the left. There are at most
1 cases from above for a word @ € L and therefore, L is a union of finitely many languages
of the form Aa; B recognized by deterministic po2-Biichi automata. Using Proposition 1 the
statement follows.

In the following, we describe the construction of B’ from B. The basic idea is that before
we make a transition from a left-moving state to a right-moving state, we verify that there is
an a; on the left-hand side. If this verification is successful, then the automaton returns to the
position from where it started the verification (this is possible since B is deterministic), and
finally, the automaton makes the original transition of B. Note that in a left-moving state,
there must eventually be a transition to a right-moving state, since B is complete.

For a state z of B, we define B, to be the automaton induced by all states which occur in
some path from the initial state to z. Consider a transition y -2 z from y € Y to z € X in
B. We replace this transition by a sequence of transitions checking that there is an a; to the
left of the current position. If this is successful, we return to the first a; and give control to
B, which brings the automaton directly to the position where the procedure started (without
any occurrence checking of a; involved). Finally, we add a transition § -2, 2 where § is the
state corresponding to y in B,. This transition is eventually performed in B’ if the transition
y -2,  is performed in B and thereafter B’ continues simulating B. O

The following lemma shows the converse of Proposition 2. Our proof reuses techniques
from the proof of Lemma 1 which in turn yields a different proof as the one for finite words
in [11].

Lemma 3 Let A be a deterministic po2-Biichi automaton. Then L(A) is a restricted unam-
biguous w-polynomial.

Proof: Let a € L(A) and consider the accepting computation of A4 on . For this computation,
we define the factorization @ = wujaq---urarpf with a; € T', u; € I'*, and 8 € T'“ such
that the positions of the markers a; are exactly those where a state change happens in the
computation. In each traversal of one of the factors u; and of the suffix 3, the letters in
these factors correspond to self-loops on the respective states in the accepting computation.
Hence P, = Ajai--- AfapBY C L(A) for A; = alph(w;) and B = alph(8). Moreover, P, is
unambiguous, since A is deterministic. When moving from the starting position 1 to some
a;-position with a state change, then there exists a state change at some marker a; with j > i
and a; ¢ alph(u;), otherwise there would be no marker positions after the factor u;. Hence,
P, is a restricted unambiguous w-monomial. It follows

LA = ] P

acL(A)

9



and this union is finite, since the degree of each w-monomial P, is bounded by the number of
states in A and there are only finitely many w-monomials of bounded degree. O

Theorem 3 Let L CI'Y. The following assertions are equivalent:
1. L is recognized by a deterministic po2-Bichi automaton.

2. L is Ag-definable.

Proof: An w-language L is As-definable if and only if L is a restricted unambiguous w-
polynomial [4]. The implication “1 = 2” is Lemma 3. For “2 = 17 let L be a restricted un-
ambiguous w-polynomial, i.e., a finite union of restricted unambiguous w-monomials. Propo-
sition 2 shows that each of these w-monomials is recognized by a deterministic po2-Biichi
automaton, and Proposition 1 yields an automaton for their union. ]

Example 1 The w-language L = {a,b}" a0*c{c}” is a restricted unambiguous w-monomial.
By Theorem 3 it is recognized by a deterministic po2-Biichi automaton. Moreover, L is not
recognizable by a deterministic partially ordered one-way Biichi automaton. Hence, the class
of w-languages recognizable by deterministic partially ordered one-way Biichi automata is a
strict subclass of the class recognizable by deterministic po2-Biichi automata. %

5 Complexity Results

In this section, we prove some complexity results for the following decision problems (given
po2-Biichi automata A and B):

e INCLUSION: Decide whether L(A) C L(B).
e EQUIVALENCE: Decide whether L(A) = L(B).
e EMPTINESS: Decide whether L(A) = 0.

e UNIVERSALITY: Decide whether L(A) =T%.

Theorem 4 EMPTINESS is coNP-complete for both nondeterministic and deterministic po2-
Biichi automata. INCLUSION, EQUIVALENCE and UNIVERSALITY are coNP-complete for de-
terministic po2-Biichi automata; for INCLUSION this still holds for nondeterministic A.

Lemma 4 INCLUSION is in coNP for nondeterministic A and deterministic B.

Proof: Let Z 4 and Zg be the states of A and B, respectively. We have L(A) C L(B) if and only
if L(A)\ L(B) = 0. By Lemma 2 we see that we can easily compute a deterministic po2-Biichi
automaton B such that L(B) =T\ L(B). If L(A) N L(B) # 0, then, by Lemma 1, there is a
word u with |u| < |Z4|+ |Zg| and a letter a € T such that ua® € L(A)NL(B) = L(A)\ L(B).
We might have to add one state in each of A and B for making them complete. Therefore,
in order to test L(A) € L(B), it suffices to guess a word u of length at most |Z 4| + |Z5]

and a letter a € T with ua® € L(A) N L(B). Hence, non-inclusion can be verified in NP, i.e.,
INCLUSION is in coNP. U
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Lemma 5 EMPTINESS is coNP-hard for deterministic po2-Biichi automata.

Proof: We shall reduce the complement of satisfiability to EMPTINESS. Let ¢ be a proposi-
tional formula and let vy,..., v, be the variables used in ¢. We give the construction of a
deterministic po2-automaton A, over the alphabet {0,1} such that L(A,) = 0 if and only
if there is no valuation satisfying . The idea is that we identify the position ¢ of the input
with the valuation of variable ¢ for 1 < i < m. The rest of the input has no effect on the
computation.

Inductively we construct an automaton with the following characteristics: There are two
distinguished states x; and zy with a loop for both letters 0 and 1. No other right-moving
state has a self-loop. The state x; is eventually entered if ¢ evaluates to true under the input,
else zy is eventually entered. Moreover, z; and zy are only entered by transitions reading >
and x; is the sole final state. Hence an input is accepted if and only if eventually x; is entered,
i.e., the input defines a satisfying valuation of ¢. In case it is rejected it eventually enters x;.

For variables v; the automaton A,, skips the first ¢ — 1 letters of the input, remembers
the letter a; at position ¢ and returns to the beginning of the word. If a; = 1 then A enters
xy else it enters zy. For the negation we simply swap the states x; and x;. For ¢ A ¢ we
compose the automata A, and Ay in the following way: The states z; and x; of A, are
deleted. Transitions of A, leading into state zy are redirected to the corresponding state
xy of Ay; transitions leading into state x; are redirected to the initial state of A,. With a
similar composition, we get an automaton for ¢ V 1. All these constructions can be done in
polynomial time in the size of the input formula. (|

Proof (Theorem j): Taking L(B) = (), Lemma 4 yields that EMPTINESS is in coNP for
nondeterministic po2-Biichi automata. Lemma 5 shows that EMPTINESS is coNP-hard even
for deterministic po2-Biichi automata.

From INCLUSION € coNP for deterministic po2-Biichi automata, we immediately get
that EQUIVALENCE and UNIVERSALITY are in coNP. Moreover, the trivial reductions from
EMPTINESS to UNIVERSALITY to EQUIVALENCE and from EMPTINESS to INCLUSION show
that all problems under consideration are coNP-hard for deterministic po2-Biichi automata.

For nondeterministic A and deterministic B, Lemma 4 shows that INCLUSION is in coNP
and of course it is coNP-hard since this is already true if both automata are deterministic. [J

6 Conclusion

In this paper, we introduced partially ordered two-way Biichi automata (po2-Biichi automata).
The nondeterministic variant corresponds to the fragment Y5 of first-order logic, whereas the
deterministic variant is characterized by the fragment As = Y5 N1Ils. The characterization of
nondeterministic automata uses similar techniques as for finite words [11|. For deterministic
automata, our proof uses new techniques and it relies on a novel language description of As
involving restricted unambiguous w-polynomials [4]. As an intermediate step it turns out that
the class of w-languages recognized by deterministic po2-Biichi automata is effectively closed
under Boolean operations.

The complexity of the EMPTINESS problem for both deterministic and nondeterministic
po2-Biichi automata is coNP-complete. For deterministic po2-Biichi automata the decision
problems INCLUSION, EQUIVALENCE, and UNIVERSALITY are coNP-complete. To date, no
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non-trivial upper bounds are known for these decision problems over nondeterministic au-
tomata. Moreover, the complexity of the decision problems for general two-way Biichi au-
tomata as well as the succinctness of this model have not yet been considered in the literature.

Considering fragments with successor would be a natural extension of our results. An

automaton model for the fragment As with successor over finite words has been given by
Lodaya, Pandya, and Shah [8] in terms of deterministic partially ordered two-way automata
with look-around. We conjecture that extending such automata with a Biichi acceptance
condition yields a characterization of Ay with successor over infinite words.
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