
Shortest Paths and Negative Cycle Detection in

Graphs with Negative Weights

—

I: The Bellman-Ford-Moore Algorithm Revisited

Stefan Lewandowski

Universität Stuttgart, FMI
Universitätsstr. 38

70569 Stuttgart, Germany
Lewandowski@fmi.uni-stuttgart.de

Technical Report No. 2010/05

August 3, 2010

Abstract: Since the mid 1950’s when Bellman, Ford, and Moore deve-
lopped their shortest path algorithm various attempts were made to beat
the O(n ·m) barrier without success. For the special case of integer weights
Goldberg’s algorithm gave a theoretical improvement, but the algorithm
isn’t competative in praxis. This technical report is part one of a summary
of existing n-pass algorithms and some new variations. In this part we
consider the classical algorithm and variations that differ only in the data
structure used to maintain the set of nodes to be scanned in the current and
following pass. We unify notation and give some experimental results for
the average case on various graph classes.

Keywords: shortest path, negative weights, negative cycle detection

1 Introduction

Since Bellman, Ford, and Moore ([Bel58], [For56], [Moo59]) developped their
O(nm) single source shortest path algorithm it’s an open problem whether
there exist o(nm) algorithms for the general case. Dijkstra ([Dij59], [FT87])
introduced his near linear time algorithm, but this is valid for graphs with
non-negative weights only. Goldberg’s scaling algorithm [Gol95] for graphs

1

with integer weights greater γmin ≤ − 2 gives a theoretical improvement
(O(

√
nm log(|γmin|))) unless |γmin| is very large.

The negative cycle detection problem is closely related to the shortest paths
problem – in fact most algorithms solve the negative cycle detection problem
by implicitely solving a shortest path problem from an external node that’s
adjacent to all other nodes by zero cost arcs. The solution of a shortest
path problem gives a proof that there’s no negative cycle – if there’s a neg-
ative cycle the shortest path algorithm also has to find it. Recent literature
has introduced the name shortest path feasability problem (FP). We will
describe all algorithms from this point of view.

This paper is organized as follows: section 2 introduces the basic definitions,
section 3 presents the n-pass algorithm, negative cycle detection strategies,
and the considered variations. Section 4 describes the experimental setup,
section 5 the experimental results. Section 6 closes this report with the
conclusions and an outlook.

2 Definitions and Notation

Let R be the set of real numbers. A directed weighted graph G = (V, E, γ)
consists of the set of nodes V , the set of edges E ⊆ V × V , and the weight
function γ : E → R. The shortest distance from source node s to any node
v is denoted by ds(v) and upper bounds (used in the algorithms) by Ds(v)
(most often we omit the subscript s as we use an additional start node v0 or
s is given by context). Let π be a potential function, we denote the reduced
weights with γπ(u, v) = π(u) + γ(u, v) − π(v).

The solution of the shortest path feasibility problem (FP – given a graph
G = (V, E, γ)) is either a negative cycle in G or a proof that there is none
(by a potential function π which holds ∀ (u, v) ∈ E : γπ(u, v) ≥ 0).

The solution of a shortest path problem in the graph G′ = (V ∪̇ {v0},
E ∪ {(v0, v) | v ∈ V }, γ′), γ′(u, v) = γ(u, v), (u, v) ∈ E, γ′(v0, v) = 0, v ∈ V
implies a solution for FP because π(v) = dv0

(v), v ∈ V along with the
triangle inequality dv0

(v) ≤ dv0
(u)+γ(u, v) implies π(u)+γ(u, v)−π(v) ≥ 0

(non-negative reduced weights for all arcs). Note, that we won’t explicitely
construct G′, but will modify the initialisation of the algorithms as if these
were running on G′.

The reduced cost for paths γπ(v1, . . . , vk) = π(v1) + γ(v1, . . . , vk) − π(vk)
implies that G has a negative cycle if and only if it has one with reduced
weight arcs using any potential function.

2

3 Algorithms – a Detailed Survey

The classical algorithm by Bellman, Ford, and Moore (BFM) scans nodes
first-in-first-out. Scanning a node u is to check for every succeeding node v
whether the path length to v decreases via u. If the path length decreased,
we add v to the queue of nodes to be scanned if it isn’t already in there.

This naturally leads to n-pass algorithms

• we scan each node at most once per pass

• init the queue with start node (external node in the FP context)

• pass i scans all nodes that were inserted into the queue during pass
i − 1

In the n-pass algorithm we explicitely distinguish between the set A to be
scanned in the current pass and set B to be scanned in the following pass.
The BFM algorithm doesn’t need this splitting, but other algorithms will
use those two sets separately.

Most information used by the algorithms is stored directly in the graph –
arc lengths are stored in the data type for arcs, additional info for nodes
include distance estimates D, parent pointers of the shortest path tree, flags
for efficient testing whether a node is in a set of nodes, and even the queues
are stored within the nodes (note, that each node is in a queue at most
once at a time, hence, we need just one pointer per node). This gives better
performance – we totally avoid repeated memory allocation (also recursion
is often avoided). Additional memory used is linear in the number of nodes.

Though most data is stored within the nodes, in the algorithms data is
written like it was an array or a function.

function n_pass_algorithm

in: graph G = (V,E, γ) without negative cycles

out: potential function π with γπ(u, v) ≥ 0, (u, v) ∈ E

5 variables:

set of nodes A,B

node u,v
begin

B := V ; D(v) := 0, v ∈ V ; parent(v) := null, v ∈ V ;

10 repeat

A := B; B := ∅;
repeat

u := getElement(A); A := A \ {u}; // remove an arbitrary node

for all edges (u, v) ∈ E // and "scan it"

15 if D(u) + γ(u, v) < D(v) then

D(v) := D(u) + γ(u, v); parent(v) := u;

3

if v 6∈ A ∪ B then

B := B ∪ {v};
end if;

20 end if;

end for;

until A=∅;
until B=∅;
π(v) := D(v), v ∈ V ;

25 end;

Algorithm 3.1: a generic n-pass algorithm

The first-in-first-out order of the BFM algorithm doesn’t matter for correct-
ness, nodes within one pass may be scanned in any order. This generalization
was first introduced by Glover et. al [GKP85]. It unifies correctness proofs
for all n-pass algorithms: after pass k shortest paths with k edges are correct
(by induction the second last node on that path was set to the correct value
in pass j < k and was scanned either in pass j (in case it was in A at that
moment or it was added to B and scanned in pass j +1 ≤ k (and set the last
node on the path to the correct value)). At any time each node is in the
queue at most once, so each node is scanned at most once per pass, therefore
each arc is used at most once per pass and we get O(n+m) per pass (O(m)
if we assume the graph to be connected). We can have at most n−1 passes,
otherwise there’s a negative cycle (through any node that’s still in B at that
moment) – we’ll take care of detecting negative cycles in section 3.1.

Instead of always adding a decreased node to B, we may also add it to A

provided that it hasn’t been scanned in this pass yet (replace lines 17–19
of algorithm 3.1 with the code of algorithm 3.2). The proof for correctness
doesn’t change. But we have to maintain a flag scanned for every node and
set it to false at the beginning of each pass. After the distance of a node
v was decreased it has to be added to either A or B.

if v 6∈ A ∪ B then

if not scanned(v) then

A := A ∪ {v};
else

B := B ∪ {v};
end if;

end if;

Algorithm 3.2: modified insertion of node in sets A and B

Note, that all our implementations ensure that a node v is always in at most
one of the sets A and B. Having v in both sets means that after scanning it
in A it would possibly be scanned again in the next pass while its distance
is unchanged – this wouldn’t make sense.

4

3.1 Negative cycle detection

Waiting for pass n is an easy way to detect negative cycles, but it’s not
practical unless we expect that most graphs have no negative cycles (so this
would just make the algorithm fail-proof without cost, we disregard this
method here). We review two general strategies for finding negative cycles.

The parent pointers used in algorithm 3.1 define a subgraph of G with
O(n) arcs. We can adapt depth-first search [Tar72] to detect a cycle on
parent pointers in O(n) (a cycle of parent pointers corresponds to a nega-
tive cycle in G). So we can check once for negative cycles after each pass
without increasing the asymptotic O(nm) running time (after line 22 in
algorithm 3.1).

The number of nodes scanned in each pass may differ and be small, so
for practical performance it’s important to count node scans and check for
negative cycles only if the number of node scans since the last check is Ω(n)
(see experiments in section 4 and 5).

Because every node has just one outgoing arc in the subgraph, we can further
simplify the depth-first search algorithm.

function negative_cycle_detected

in: subgraph Gparent with at most one outgoing arc per node

// given by parent pointers of the shortest path tree

out: true if Gparent has a negative cycle, false otherwise

5

variables:

node p;

begin

scanned(v) := -1, v ∈ V ; // -1 means "not scanned yet"

10 // scanned(u) = x means

// "scanned when followed parents started from node x"

for all nodes v ∈ V
p := v;
while (p 6=null) loop

15 if (scanned(p)=-1)

scanned(p) := v;
p := parent(p);

elsif (scanned(p)=v)
return true; // negative cycle found

20 else

break; // p was already visited by another node

end if;

end loop;

end for;

25 return false;

end;

Algorithm 3.3: negative cycle detection by following parent pointers

5

Tarjan [Tar81] introduced subtree disassembly in 1981. When we intend
to scan a node v, but have its parent u in the queue, then u’s distance was
reduced after v was added to the queue, therefore the distance of v will be
reduced again and needn’t to be scanned now. Following this idea scanning
any successor in the shortest path subtree of v is unnecessary, i. e., when we
add v to the queue, we can remove all of its successors.

As a side effect subtree disassembly gives us an easy way to detect negative
cycles. When we scan u, update the distance of v (making it a new child
of u) and find u in the subtree of v, we have a negative cycle, because on the
path from v to u no distance changed (otherwise we would have removed
u from v’s subtree), i. e., the reduced weight distance (with D(·) used as
potential function) of u is equal to that of v, but now the edge (u, v) reduces
v’s distance, hence there’s a negative cycle. We remove all nodes x of v’s
subtree from the sets A or B, respectively. While we scan node u (iteration
over successor nodes v), we keep u’s flag (for being in set A) true. If that flag
is set to false during subtree disassembly starting at one of the successor
nodes v, then u was removed from v’s subtree and we can detect the negative
cycle by one single if statement (otherwise we continue and set u’s flag to
false after the scan is completed as we removed u from A).

The time for subtree disassembly doesn’t increase asymptotic running times.
In fact we have amortized O(1) cost for maintaining the tree structure (pay-
ing O(1) for the actual insertion and O(1) for building a potential). Delet-
ing a subtree is paid from the built potential (linear in size of the subtree).
Subtree disassembly reduces the number of node scans on a wide variety of
graphs.

We have implemented two data structures for subtree disassembly, details
are given in section 3.2 (note that the parent pointers follow the wrong
direction – we can’t use them here).

Each algorithm can be combined with any negative cycle detection strategy,
but of course we’ll use the one that uses the least overhead (depending on
the algorithm). When we do subtree disassembly (to reduce the expected
number of node scans), we get negative cycle detection almost for free (it’s
just that one single if statement). Algorithms that use depth-first search
to scan set A in a specific order will use this to detect negative cycles with
little overhead (the algorithms considered in this report don’t use depth-
first search, though). Algorithms that neither use subtree disassembly nor
depth-first search will use the adapted depth-first search (algorithm 3.3).
None of these methods will increase the O(nm) total running time.

6

3.2 Subtree disassembly

The algorithms that use subtree disassembly maintain a representation of
the shortest path tree. We need only two operations on this tree:

• adding a leaf

• deleting a node and its complete subtree

We give details of two possible implementations.

Data structure 1 uses 4 pointers per node and stores the tree in a straight
forward way:

• pointer to parent (identical to the parent-pointer in any n-pass algo-
rithm)

• pointer to one of the children

• pointers to left and right siblings (circular doubly-linked list)

Adding a leaf means to either add a first child to its parent (left and right
siblings of the leaf point to itself) or add the leaf as an additional child (into
the circular doubly-linked list). Deleting a node with its subtree means to
remove the node from its circular doubly-linked list (maybe changing the
first child pointer of its parent) and traverse the subtree (recursive calls
for all children). Costs are just setting very few pointers per node and it’s
straight forward to implement.

function delete_a_subtree

in: node v // its subtree has to be deleted

effect: shortest path tree data structure modified accordingly

5 variables:

node vc;

begin

if (v 6= null)

remove v from sets A and B;

10 for all children vc

delete_a_subtree(vc);

end for;

remove v from shortest path tree;

end if;

15 end;

Algorithm 3.4: deleting a subtree (subtree disassembly, data structure 1)

7

Data structure 2 directly maintains a preorder traversal of the tree, so it
uses just two pointers for previous and next node in the traversal. To avoid
special cases like deleting the first or last node of the preorder, we suggest
inserting a dummy node as first / last node in the traversal. Inserting a
new leaf is easy as it can be inserted directly after its parent. Deleting all
nodes of a subtree means to begin with the subtree’s root and delete the
succeeding nodes in the list. In order to be able to detect the end of the
subtree, we maintain the level (number of nodes on the path to the root)
for each node: when inserting a leaf its level is one more than its parent’s
level. A subtree ends when the succeeding node has a level lower (or equal)
than the subtree’s root.

function delete_a_subtree

in: node v // its subtree has to be deleted

with shortest path tree preorder

effect: shortest path tree preorder modified accordingly

5

variables:

node in shortest path tree preorder prev,curr;

integer lowlevel;

begin

10 prev := v->prev;
lowlevel := level(v);
remove v from sets A and B;

curr := v->next;
while (level(curr)>lowlevel) loop

15 remove curr from sets A and B;

curr := curr->next;

end loop;

curr->prev := prev;

prev->next := curr;

20 end;

Algorithm 3.5: deleting a subtree (subtree disassembly, data structure 2)

Data structure 2 has an interesting property – we don’t need to maintain
any parent pointers. We could omit changing the parent pointers in any of
the n-pass algorithms and – if needed – reconstruct them after the algorithm
terminates (traverse the preorder and store every node in an array at the
index corresponding to its level, the pointer to its parent can be read from
the array at the index minus one (at index 0 we store the null pointer), this
can be done in O(n) time).

8

1

2 2

3 3

2

0

a) original tree b) data structure 1 c) data structure 2

Figure 3.1: data structures for subtree disassembly

function reconstruct_parent_pointers

in: shortest path tree preorder sptp // beginning with dummy node,

providing levels

effect: parent(v) correctly set, v ∈ V

5 variables:

array (0..n) of nodes help;

node in shortest path tree preorder dummy;

begin

help(0) := null;

10 dummy := sptp; sptp := sptp->next;
while sptp 6=dummy loop

help(level(sptp)) := sptp;
parent(sptp) := help(level(sptp)-1);
sptp := sptp->next;

15 end loop;

end;

Algorithm 3.6: reconstruct parent pointers

On some algorithms it doesn’t matter which version of subtree disassembly
we use, on others it makes a difference. The first data structure inserts a
new leaf as a last child in the circular doubly-linked list, the second data
structure inserts it as a first child. Hence the preorder traversal differs, and
depending on this and on the way the sets A and B are maintained in the
n-pass algorithm, the order in which nodes are scanned can change. We can
easily change data structure 1 to behave like the second one with setting
the parents first child pointer to the newly added leaf (just one additional
assignment) – the other way round would cause too much overhead. We
consider the effect in the experiments in section 4 and 5.

9

3.3 The BFM algorithm and its naturally derived heuristics

There have been several evaluation reports on shortest paths and the fea-
sibility problem, e. g., [CGR96], [CG99], [NPX99], [WT05], and [CGG+09].
Though some abbreviations are common, it’s not always obvious which ver-
sion the authors are talking about. The most confusing ones are the BFM
algorithms derivated from the n-pass algorithm 3.1. There are two sets A

and B, each can be either a queue or a stack. Furthermore we can either
always add a decreased node to B or add it to A if possible. When we always
insert decreased nodes to the set B, it doesn’t make a difference whether set
A is a queue or a stack – we scan the nodes from top to bottom or first to
last, respectively. So, there’s six combinations: two queues and insert to B

only (this is the original BFM algorithm), same, but B maintained as a stack,
four more combinations of queue or stack with queue or stack and nodes are
added to set A if not scanned in the current pass yet. Each of these six can
be combined with any negative cycle detection strategy: waiting for pass n,
following parent pointers, or using subtree disassembly. We name these al-
gorithms by BFM-XYZC with X, Y being S or Q (stack and queue for sets A

and B, respectively), Z∈ {1,2} (algorithm may insert into first set A or always
inserts into second set B). And finally negative cycle detection strategy C=W

for simply waiting for pass n, C=P for depth-first seach on parent pointers
(algorithm 3.3) or C=T for Tarjan’s subtree disassembly (use a subscript to
distinguish between different subtree disassembly implementations). Hence,
BFM-SQ1T is a n-pass algorithm using a stack for A, a queue for B, allows
decreased nodes to be inserted in A where appropriate, and uses subtree
disassembly. The family of BFM algorithms using subtree disassembly is
denoted by BFM-T (omitting the specifications for the sets A and B). Sub-
families are denoted by ommitting the corresponding value. Subvariants are
denoted by subscripts.

The classical Bellman-Ford-Moore algorithm (denoted as BFM in many pa-
pers) is now BFM-QQ2W when we wait for pass n to detect negative cycles
or BFM-QQ2P. It maintains the sets to be scanned in first-in-first-out order
(nodes that are already in the queue remain at their position instead of be-
ing moved to the end of the queue or added twice). We also consider the
five other natural variants BFM-QS2P, BFM-QQ1P, BFM-QS1P, BFM-SQ1P,
and BFM-SS1P with detecting negative cycles by following parent pointers.

Note, that the classical algorithms by Pape [Pap74] and Pallottino [Pal84]
are similar to BFM-SQ1 and BFM-QQ1, respectively, but not identical. Those
two algorithms don’t use passes in the sense of n-pass algorithms. A de-
creased node is inserted to A if it was scanned at least once before (if it was
labeled, i. e., its distance got a finite value, but not scanned yet, it’s not
added twice). It’s not checked how often a node was scanned yet. While
these algorithms are practical on many graphs, their running times may

10

deteriorate to O(n2m) for Pallottino’s algorithm and even to O(n2n) for
Pape’s algorithm.

A simple variant of Tarjan’s subtree disassembly is the parent heuristic
BFMPH introduced by Cherkassky et. al [CGR96]. When we intend to scan
node u, but find its parent p in the queue, p’s distance was reduced after u
was added to the queue. Therefore we can skip u, it will be added to the
queue again by scanning p. Because we maintain a flag for any node v being
in the queue anyway, this parent heuristic is easy to implement by an addi-
tional if statement (enclosing the node scan, lines 14–21 in algorithm 3.1)
and the condition can be checked in constant time. There’s no need to
maintain any additional data for using this heuristic.

The BFMPH heuristic significantly reduces the number of node scans on most
graphs. Instead of disabling node u (we could also have removed it from the
queue as soon as u’s parent was added to the queue again) the BFM-T

algorithm uses subtree disassembly to remove all nodes of the shortest path
subtree of the node that we intend to add to the queue. Instead of actually
removing nodes from the queue we just set a flag to mark those nodes
deactivated. When a deactivated node is added to the queue again, we
rather remove that flag than adding that node to the end of the queue.
The subtree disassembly heuristic often reduces the number of node scans
by a large amount that more than compensates the necessary more costly
maintainance of the shortest path tree.

The BFM-TUP heuristic (BFM-T with updates) is a natural variant of BFM-T.
When we remove all nodes of v’s shortest path subtree after we decreased
v’s distance by ∆, we know that the distances of all nodes in the subtree will
later decrease by at least ∆. We can update the distances while removing
the subtree’s nodes during disassembly with little overhead (note, that we
have to traverse the tree also in BFM-T to adjust flags, it’s not sufficient to
skip the subtree in the shortest path tree data structure). Cherkassky et. al
([CGR96],[CGG+09]) suggest to decrease the distances by ∆ − 1 to avoid
additional bookmarking which nodes must eventually be scanned later at
least once more. By this trick they achieve that those nodes are unlikely
unnecessarily added to the queue, ensuring at the same time that any of
those nodes will be added to the queue (and scanned) once more (the update
by ∆ − 1 can be inserted before lines 11 and 14 in algorithms 3.4 and 3.5,
respectively, the decrease by ∆ of the subtree’s root node is already done
outside in the main algorithm). The number of node scans is often a bit
lower than in BFM-T, but the updates need an additional overhead – see
details in our experiments.

Note, that ∆−1 assumes integer arc lengths (as used in all our experiments),
otherwise we’d have to replace −1 by the smallest possible difference of path
lengths.

11

Also note, that it’s not possible to update distances by ∆ and simply keep
the nodes in the tree (and queue). While correctness wouldn’t be affected, we
couldn’t guarantee O(nm) anymore. Remember that traversing the subtree
is paid from the built potential which can be used just once. Therefore we
have to update the distances by some smaller value than ∆. Otherwise we’d
have to ensure that the subtree isn’t traversed again and would have to save
all those nodes to be scanned once more or ensure the O(nm) running time
by some other amortization of maintaining the shortest path tree. Updating
by ∆ and removing the subtree also implies that those nodes may not be
added to the queue again and the shortest path tree wouldn’t be rebuilt.
Removing the subtree and keeping the nodes in the queue could result in
subsequently trying to add a node v as new child of its parent p while p
itself isn’t in the tree.

As the scan order doesn’t depend on the representation of the shortest path
tree (remember that we (de)activate a node in the queue or stack by setting
a flag) the number of node scans doesn’t differ between data structure 1
and 2 (ref. subsection 3.2). Running time differences are in the order of
measuring accuracy.

3.4 More heuristics using other data structures for the sets

A and B

With other data structures, like heaps or arrays, it’s not useful to consider all
combinations. If set A is a heap, the order of nodes in set B doesn’t matter, so
we’ll use a method with least overhead (if the heap is array based, B will be an
array). Combining anything with a heap as set B doesn’t seem to make sense
(furthermore it wouldn’t be clear whether to sort nodes in set B first). We’ll
consider a family of BFM-HA algorithms with different strategies for negative
cycle detection. The robust dijkstra algorithm – suggested by [CGG+09] –
is BFM-HRDA1TUP. The heap order used is by biggest improvement since
the last scan, so we have to save another value with each node, used as
reference value (we use subscript RD, an abbreviation used for the algorithm
in [CGG+09]). At the beginning of the algorithm we initialize this reference
value to 0 for all nodes. In each iteration after swapping the sets A and B

we’ll heapify the nodes in the array A. The idea is to scan nodes with big
improvements first, so that these improvements will propagate through the
graph. Another natural heap order considered is by lowest potential (use
subscript LP). A third and fourth variant passes on a heap order – these are
BFM-AA (which behaves very similar to BFM-SS – we copy new nodes to the
end and remove from the end of the arrays, the only difference is when using
subtree disassembly where we remove nodes from the array, but only disable
them in the stack), and BFM-RA which chooses the node to be scanned next
randomly from set A (remove a random element and fill the position with

12

the array’s last element). And finally we try to avoid the logarithmic cost
of heap operations in BFM-HRDA by making the array a heap but work
with it like an array afterwards – we call it BFM-ARDA (the heap order
will be more and more void as the algorithm proceeds until the next pass
begins with a correct heap again). All five variants are reviewed with always
adding decreased nodes into set B or allowing to insert into set A combined
with detecting negative cycles by parent pointers or with both versions of
subtree disassembly without and with update (making this a total of 50
variants). Unlike in the queue and stack versions we actually remove nodes
from the heap or array during subtree disassembly as using flags in the array
is unnecessary (we just copy the last element at the deleted position), and
deleting elements from the heap keeps the heap smaller. With arrays and
heaps the order in which nodes are removed has an effect on the resulting
data structure and therefore on the order in which nodes are scanned.

For BFM-HRDAT we also implemented versions that disable nodes in the
heap during subtree disassembly, but keep them there (just like we did in
the queue and stack versions) – when a node to be scanned is disabled, we
simply skip it – these versions are denoted with a subscript BFM-HRD,DAT.
We’ll give details in section 5. Note, that this has a special effect in the
BFM-HRDA2T algorithms – when we remove a node from set A and try to
add it again in the same pass, the BFM-HRDA2T algorithm will add it to
set B, but BFM-HRD,DA2T just flips the flag and the node is back in set A

again and can still be scanned in the current pass.

4 Experimental Setup

To be able to get reproducible results we use the pseudo random number
generator TT800 (Mersenne Twister, [MK94]).

The main focus of this series of technical reports is on difficult graphs, so we
tried to give a class of graphs which have deep shortest path trees which are
well hidden. A hamiltonian path is randomly generated to avoid any (dis-)
advantages concerning the order of nodes in the adjacency list. Arcs on this
path have cost -1. All other arcs have cost in the interval [n, 2n[. In order
to have many negative arcs, but no negative cycle, we use a high random
potential to hide the hamiltonian path. The potential is chosen randomly
from the interval [0, n2[– so almost half of the edges have negative cost after
applying the potential. Besides the complete graphs, we also have graphs
with a hamiltonian path, but less arcs.

13

This class of graphs (which we call “deep tree”) is tested with

• 500, 1000, 2500, 5000, and 10000 nodes on a complete graph

• 2500, 5000, 10000, 25000, and 50000 nodes, with m = n · ⌊√n⌋ edges

• 10000, 25000, 50000, 100000, and 250000 nodes, with m = 4n edges

See results in subsection 5.2. It’s possible to have a hamiltonian cycle in-
stead. The graphs generated are identical (when TT800 is initialized with
identical seed) except the one edge closing the hamiltonian path. The cost
of this one edge is chosen to have a cycle of length -1. See results in subsec-
tion 5.3.

We also tested graphs without deep hidden paths, with the same number of
nodes and edges. Arc weights are chosen randomly from the interval [0, n[
with potential in [0, n2[.

Two more graph classes were tested (to compare with the difficult graph
with m = 4n arcs): We have 4-regular graphs (the adjacent nodes are
chosen randomly) and a lattice on a torus (also 4 arcs per node, one in
each direction). Arc costs and potential are chosen from [0, n[and [0, n2[,
respectively. All these are tested without negative cycles in subsection 5.4
and with negative cycles in subsection 5.5.

All these combinations were tested on 250 graphs each.

In the FP context we initialize set B with all nodes (in the first pass these
are scanned in ascending order of their ids – this is different from other
evaluation papers that initialize set B only with nodes with negative outgoing
arcs, but don’t consider the time for this preprocessing – the way we do it,
the first iteration does this “preprocessing”, we think this better reflects the
total work needed in the algorithms). The hamiltonian path of the deep-
tree graphs is a random permutation, hence, we won’t find it at the first
glance. Nevertheless, the order of arcs in the adjacency list may matter –
we consider two natural orders, that is concerning ascending and decreasing
ids of the arcs’ tail nodes.

The first experiments consider graphs without negative cycles. To get graphs
with negative cycles, we change the deep-tree class to close the hamiltonian
path to a cycle with cost −1. On the other random graphs we reduce
all edge weights by an offset, i. e., choosing edge weights from the interval
[offset, offset + n[. With offset 0 there can’t be a negative cycle (this is the
setting in subsection 5.4), with offset −n there will be a negative cycle. The
critical offset that leads to negative cycles depends on the graph class. We’ll
then examine the correlation between offset and running times: First going
from the critical offset to more negative arcs (to analyse influence of negative
arcs – the smaller the offset, the more and shorter (in terms of number of
edges) negative cycles can be found in the graphs. Then going from the

14

critical offset to offset zero (so there’s still many negative arcs due to the
high potential used, but no negative cycles), and finally going from offset
zero to positive offsets (so the graphs will have less negative arcs). This is
done in subsection 5.5.

All tests were performed on an Intel Dual Xeon 3.06 GHz processor system
with 4 GB RAM running Linux (Gentoo) with kernel 2.6.28. All programs
were compiled with gcc 4.1.2 using the -O4 optimization option.

5 Experimental Results

Instead of giving some tables with average running times or number of node
scans, we tried to determine a function t(n) = c · nk that describes the
data well. We used linear regression on a doubly-logarithmic chart. With
log(t(n)) = log c + k · log(n) we can use the method of least squares (the
coefficient of determination R2 was > 0.997 for all experiments (> 0.9995
for most), so the method seems reasonable enough). As the cost per node
scan differs (using heaps is more costly than arrays, subtree disassembly
has an overhead that’s different from negative cycle detection by following
parent pointers, . . .), we should base our analysis on real running times
rather than using node scans. Nevertheless there may be slight variations
that can’t be totally avoided. In fact, the experiments showed effects of
the processor cache (more cache hits on smaller graphs) that lead to some
distorition. So we begin with functions describing the number of node scans
for the considered graph classes and will take into account the real running
times in a final comparison.

For every algorithm and graph class we used five quantiles (0.1, 0.3, 0.5, 0.7,
and 0.9), determined the values for c and k by the method of least squares for
each quantile, and displayed these as a line in the figures. A short line means
that there’s low variation on the number of node scans, a longer line means
higher variation. Note, that due to limitations on the number of experi-
ments, we have to take care when interpreting the results. Often there’s just
a slight difference in c and k where k is slightly larger and c is slightly lower,
which may be rather a result of randomness due to the random graphs con-
sidered. Also polynomials of less degree affect the constants. To give an idea
of the effect, we consider the “measured points” (500,247500), (1000,995000),
(2500,6237500), (5000,24975000), (10000,99950000) (i. e., t(n) = n2 − 5n).
The function determined here is t(n) = 0.973·n2.003. To give an idea of the ef-
fect that cache hits may have on the evaluation, we consider a 20% reduction
on small graphs (n = 500 and n = 1000) for points (n, n2) (i. e., (500,20000),
(1000,800000), (2500,6250000), (5000,25000000), (10000,100000000)), we get
t(n) = 0.454·n2.09. If we assumed a 50% reduction for n = 500 and n = 1000,
we even get t(n) = 0.086·n2.281, which shows an obviously wrong bias. Note,

15

that the latter effect concerns running times only and the effect is similar on
all algorithms! We can compare the determined degrees for node scans and
running times – these should differ by about the average degree (number of
arcs considered per node scan) in terms of nk, but as we will see the effect
of the processor cache is much larger.

5.1 General results

Tests concerning the order of arcs in the adjacency list showed no significant
difference. It’s just important to take care, that a constructed shortest path
is hidden by permutation (otherwise we could find it in the first iteration by
following the n nodes for example in ascending order – the way we initialized
set B).

Also there was no significant difference comparing the two data structures
for subtree disassembly. The number of node scans may be affected only in
algorithms that explicitely remove nodes from the sets A and B. But also
there, we measured no significant difference. Running times were also almost
identical (within accuracy of measurement). Data structure 2 has a little
more overhead during initialization, but slightly less on each insertion or
removing of a node. The memory requirements are the same when we also
use parent pointers for the shortest path tree along with data structure 2
(maintainance of the preorder traversal). Taking the code, data structure 2
should show a slight advantage – but we could measure this (small) effect
only on bigger graphs.

An interesting detail is the comparison of family BFM-SS with BFM-AA.
The first implements the stack via pointers that are part of the node data
structure, the second uses an array of pointers and behaves like a stack
(the node to be scanned is taken from the end of the array, newly added
nodes are copied to the end). As the stack scans the nodes in increasing
order of their ids in the first iteration, but the array in decreasing order, we
have a comparison if the order in the initialization makes a difference – but
there was no significant difference. The algorithms differ when using subtree
disassembly because the stack versions disable nodes (but leave them at their
position in the stack) while the array versions actually remove the node (by
copying the last node of the array to the deleted position). The number of
node scans needed is almost identical on the average. Furthermore, there’s
no real difference in terms of running time (very slight advantage for the
stack version using a pointer within the node data structure – this may be
different on other computer architectures).

16

5.2 Graphs with deep shortest path tree

We considered graphs with a deep shortest path tree with n(n − 1), n
√

n,
and 4n arcs, respectively. It’s constructed by a hamiltonian path (random
permutation) with arcs of cost −1, the remaining arcs have cost in [n, 2n[
(as arc costs are ≥ n there can’t be negative cycles), and it’s modified by
random potential in [0, n2[. Due to this random potential the actual shortest
path tree depth is often slightly below n (the 0.1-quantile is at ≈ 0.98n on
complete graphs, and ≈ 0.93n on graphs with 4n arcs – this reduction in
depth happens when potential leads to positive reduced cost of the first
arcs of the hamiltonian path). This leads to many passes in the classical
Bellman-Ford-Moore algorithm. And in fact, the classical algorithm needed
Θ(nm) node scans and time on all of these graphs. Let’s first take a more
detailed look on the class BFM-P with queues and / or stacks and following
parent pointers for detecting negative cycles.

 0.05

 0.1

 0.2

 0.5

 1

 2

 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-(Q/S)(Q/S)P, graph class: complete graph with deep shortest path tree

BFM-QQ2P
BFM_ph-QQ2P

BFM-QS2P
BFM-QQ1P
BFM-QS1P
BFM-SQ1P
BFM-SS1P

The first picture shows the result for complete graphs. The y-axis shows the
constant factor, the x-axis the exponent of the polynomial (keep in mind that
a node scan takes O(n) steps on complete graphs). So the closer to the point
of origin, the better. We see significant differences between algorithms that
always insert into the second queue (worst), and furthermore a significant
advantage of the BFMSQ1 and BFMSS1 algorithm. The picture is the same
for graphs with deep shortest path trees with n

√
n nodes (the exponent

ranges from 1.26 via 1.52 to 1.74) and 4n nodes (exponent 1.18 via 1.30

17

to 1.44). We also see that the parent heuristic just gives a constant factor
over the original algorithm of about 12% on thin graphs to about 21% for
complete graphs.

 0.05

 0.1

 0.2

 0.5

 1

 2

 5

 1 1.2 1.4 1.6 1.8 2

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-?AP, graph class: complete graph with deep shortest path tree

BFM-AA2P
BFM-RA2P

BFM-A_rdA2P
BFM-H_lpA2P
BFM-H_rdA2P

BFM-AA1P
BFM-RA1P

BFM-A_rdA1P
BFM-H_lpA1P
BFM-H_rdA1P

The heap and array combinations also show significant differences. Again
algorithms which insert decreased nodes always into set B are worst. From
the remaining variants the BFM-HRDA1P performs best and shows least vari-
ance (short line in the picture). This is still true by far when we take into
account the running times (despite of the more costly heap operations). The
second best BFM-AA1P is almost identical to BFM-SS1P – followed closely
by BFM-ARDA1P. Using heaps (with lowest potential having highest priority)
and choosing nodes randomly are worse. Again on graphs with less arcs we
get similar pictures with the same clusters (exponents range from 1.08 via
1.28 and 1.50 to 1.75 and 1.08 via 1.19 and 1.29 to 1.43 for graphs with n

√
n

and 4n nodes, respectively).

When we add subtree disassembly, we hope to reduce the number of node
scans. In the family BFM-T this gives an advantage over BFM-P for all
algorithms but the previous best ones using a stack for set A (BFM-SS1P

and BFM-SQ1P) where number of node scans and running times are almost
identical. The algorithm BFM-HRD,DA1T performs best (with the other BFM-

HRDA1 algorithms being about 15% behind) both in terms of node scans and
running times. Again the same picture for graphs with m = n

√
n and

m = 4n nodes (BFM-HRD,DA1T and BFM-HRDA1TUP being the fastests, re-

18

 0.3

 0.5

 0.7

 1

 1.5

 2

 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-(Q/S)(Q/S)T, graph class: complete graph with deep shortest path tree

BFM-SQ1P
BFM-SS1P
BFM-QQ2T
BFM-QS2T

BFM-QQ2T_up
BFM-QS2T_up

BFM-QQ1T
BFM-QS1T
BFM-SQ1T
BFM-SS1T

BFM-QQ1T_up
BFM-QS1T_up
BFM-SQ1T_up
BFM-SS1T_up

 0.5

 1

 2

 5

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-?AT, graph class: complete graph with deep shortest path tree

BFM-AA2T
BFM-A_rdA2T
BFM-H_lpA2T
BFM-H_rdA2T

BFM-H_rd,dA2T
BFM-AA2T_up

BFM-A_rdA2T_up
BFM-H_lpA2T_up
BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-AA1T
BFM-RA1T

BFM-A_rdA1T
BFM-H_lpA1T
BFM-H_rdA1T

BFM-H_rd,dA1T
BFM-AA1T_up
BFM-RA1T_up

BFM-A_rdA1T_up
BFM-H_lpA1T_up
BFM-H_rdA1T_up

BFM-H_rd,dA1T_up

spectively, but without a perfomance gap that we measured on complete
graphs). The algorithm BFM-HRDA1P without subtree disassembly has no

19

disadvantage! The hope that BFM-ARDA1P could help getting rid of loga-
rithmic factors wasn’t appropriate. We may have the right heap order at the
beginning of a pass, but new nodes are just added to the top of the “heap”
instead of being inserted at the right position, so it resembles more a stack
which corresponds with our experiments on graphs with deep shortest path
trees.

While subtree disassembly shows more benefit when using other data struc-
tures than HRD, it shows no real advantage for the BFM-HRDA1 family on
these graphs with deep shortest path tree.

5.3 Graphs with hard to find negative cycles

This class is almost identical to the class with deep shortest path tree – we
just change the length of the arc that closes the hamiltonian path, such that
the cycle gets length -1. It’s obviously the only negative cycle. We compared
only the algorithms which allow to insert a node to set A where approriate
(family BFM-1 dominated BFM-2 (using identical data structures) on this
class of graphs). We take a closer look at the figure for complete graphs
again.

 0.5

 1

 2

 5

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM, graph class: complete graph with hidden long negative cycle

BFM-SQ1P
BFM-SS1P
BFM-QQ1T
BFM-QS1T
BFM-SQ1T
BFM-SS1T

BFM-QQ1T_up
BFM-QS1T_up
BFM-SQ1T_up
BFM-SS1T_up

BFM-AA1P
BFM-A_rdA1P
BFM-H_rdA1P

BFM-AA1T
BFM-RA1T

BFM-A_rdA1T
BFM-H_lpA1T
BFM-H_rdA1T

BFM-H_rd,dA1T
BFM-AA1T_up
BFM-RA1T_up

BFM-A_rdA1T_up
BFM-H_lpA1T_up
BFM-H_rdA1T_up

BFM-H_rd,dA1T_up

We see some clusters, all BFM-HRDA1 are best, followed closely by BFM-

AA1T(UP) and BFM-ARDA1T(UP), from the remaing algorithms those with

20

stack-like data structures for set A show better performance, but all those
are by far worse than BFM-HRDA1.

 2.5

 3

 3.5

 4

 4.5

 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM, graph class: complete graph with hidden long negative cycle

BFM-H_rdA1P
BFM-AA1T

BFM-A_rdA1T
BFM-H_rdA1T

BFM-H_rd,dA1T
BFM-AA1T_up

BFM-A_rdA1T_up
BFM-H_rdA1T_up

BFM-H_rd,dA1T_up

A close-up of the best algorithms shows a picture almost identical to the one
in graphs without negative cycle – all BFM-HRDA1 algorithms are in front,
the only of these that shows slightly better performance is – again – BFM-

HRD,DA1T (without update only – advantage is about 15%, the other three
subtree disassembly variants are within a 3% range). Also when considering
runtime, it’s the best – comparing it with the best non-heap algorithm BFM-

AA1TUP the difference of node scans (21653 opposed to 44700 on an average
for n = 5000) and runtime (2.41 opposed to 4.9 seconds) suggests that the
heaps are small on these graphs and won’t lead to much overhead, but in
fact, the heaps are not small, but nodes don’t move much levels in the heap,
and often nodes aren’t moved at all).

We see a difference between disabling (and maybe later reenabling) a node
in the heap and removing (and maybe later reinserting). This needs some
further research. One possible explanation is a different behaviour for heap
elements with equal priority. Removing and later reinserting may change
the order of two nodes with equal priority, while disabling and reenabling
doesn’t change it. At least for these complete graphs with hamiltonian
negative cycles, this seems to be an advantage.

On graphs with less arcs, we have the same picture, but we see a bit more
impact of the heap operations on graphs with higher number of nodes. Com-

21

paring the best one (here BFM-HRDA1TUP, the other BFM-HRDA1 algorithms
are behind within a 20% range) with the best non-heap algorithm BFM-

AA1TUP the difference of node scans (981094 opposed to 1912686 on an
average for n = 100000) and runtime (1.39 opposed to 1.68 seconds) shows
the higher cost per node scan on graphs with many nodes.

The performance of all algorithms included for finding hamiltonian negative
cycles was almost identical to those without this negative cycle. While
this isn’t too astonishing at the first glance, we could have hoped that,
e. g. the algorithms that detect negative cycles by following parent pointers
could have begun finding the cycle from different points putting the parent
pointers together to a cycle, but the subtree disassembly would destroy all
but one path that is finally closed to the negative cycle. This hope didn’t
come true on these graphs with just one hidden long cycle.

5.4 Random graphs without negative cycles

If we choose all arc lengths randomly, we often get shallow trees. While on
complete graphs with deep shortest path tree we had depth of nearly n, on
random graphs we had only measured about 0.26 log2 n (on graphs with 4n
arcs the depth measured was about 1.6 log n). So we’ll have very few passes
compared to the number nodes and the differences between the algorithms
are much less apparent. We show the figures for graphs with m = 4n arcs
(those for n

√
n arcs and complete graphs look very similar).

The algorithms without subtree disassembly are all dominated by others
and all have identical performance within a small range. The BFMph gives a
slight advantage but it’s still dominated by the subtree disassembly versions.

Using arrays and heaps, but no subtree disassembly BFM-HRDA1P is the best
once more. While this is true for the number of node scans, we must be more
specific concerning running time. On dense graphs we see that the advantage
in terms of node scans remains in terms of running time. When we compare
BFM-HRDA1P to BFM-AA1P on graphs with m = n

√
n arcs, we have less

node scans, but these even out with expenses of the heap operations. With
thin graphs (m = 4n arcs), let’s give numbers for n = 100000 nodes, BFM-

HRDA1P needs about 400000 node scans and 0.81 seconds while BFM-AA1P

needs about 585000 node scans, but only 0.51 seconds. On graphs with
shallow shortest path trees the advantage of node scans for BFM-HRDA1P

isn’t big enough to also have faster running times. On graphs with deep
shortest path tree BFM-HRDA1P was in a family of the fastest algorithms.

If we add subtree disassembly to the stack and queue versions, we note that
on the random graphs there’s no advantage to add decreased nodes to set A.
While the difference is very small in terms of node scans, it get’s more visible
in terms of running times. When we always insert into set B, we don’t have

22

 1.5

 2

 2.5

 3

 1.06 1.065 1.07 1.075 1.08 1.085 1.09 1.095

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-(Q/S)(Q/S)P, graph class: random graph with 4*n arcs

BFM-QQ2P
BFM_ph-QQ1P

BFM-QS2P
BFM-QQ1P
BFM-QS1P
BFM-SQ1P
BFM-SS1P

 2

 2.25

 2.5

 2.75

 3

 1.04 1.05 1.06 1.07 1.08

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-?AP, graph class: random graph with 4*n arcs

BFM-AA2P
BFM-RA2P

BFM-A_rdA2P
BFM-H_lpA2P
BFM-H_rdA2P

BFM-AA1P
BFM-RA1P

BFM-A_rdA1P
BFM-H_lpA1P
BFM-H_rdA1P

to maintain a flag whether a node was already scanned in the current pass.
In our experiments this effect seemed to have been multiplied with the effect

23

 1.75

 2

 2.25

 2.5

 1.04 1.05 1.06 1.07 1.08 1.09

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-(Q/S)(Q/S)T, graph class: random graph with 4*n arcs

BFM-QQ2T
BFM-QS2T

BFM-QQ2T_up
BFM-QS2T_up

BFM-QQ1T
BFM-QS1T
BFM-SQ1T
BFM-SS1T

BFM-QQ1T_up
BFM-QS1T_up
BFM-SQ1T_up
BFM-SS1T_up

of cache hits / misses. While the number of node scans differs just slightly
between BFM-QQ2TUP and BFM-QQ1TUP (e. g. about 8% less), savings in
running times are more than 25% on an average.

From the remaining algorithms BFM-HRDA2TUP has the least number of node
scans (note, that the on the picture BFM-HRDA1TUP has a smaller exponent,
but bigger constant – for all graph sizes used in these experiments the small
advantage in the exponent isn’t big enough to compensate the bigger con-
stant factor – this may also be an effect of the linear regression model along
with variations in the measured data). Again the running times are worse
by a factor due to higher cost of the heap operations.

Overall experiments on random graphs without negative cycles the simplest
algorithm (the original BFM-QQ2) combined with subtree disassembly with
update gives the best results in terms of node scans and running times.

The comparison of the results of random graphs (with 4n arcs) with 4-regular
graphs suggests that the additional structure is too weak to have an effect
on node scans and / or running times. The differences are within accuracy
of measurement. So again, on these graphs with shallow shortest path trees
the simple BFM-QQ2TUP algorithm is the best one. As on graphs with 4n
arcs the difference between the best and worst algorithm tested considering
number of node scans is a mere factor of about 2 (for n = 100000). And
again, the algorithm BFM-HRDA2TUP needs about the same number of node
scans as BFM-QQ2TUP, but running time is much slower (factor 2.85 on an

24

 2

 2.5

 3

 1.04 1.06 1.08 1.1 1.12

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

family: BFM-?AT, graph class: random graph with 4*n arcs

BFM-AA2T
BFM-RA2T

BFM-A_rdA2T
BFM-H_lpA2T
BFM-H_rdA2T

BFM-H_rd,dA2T
BFM-AA2T_up
BFM-RA2T_up

BFM-A_rdA2T_up
BFM-H_lpA2T_up
BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-AA1T
BFM-RA1T

BFM-A_rdA1T
BFM-H_lpA1T
BFM-H_rdA1T

BFM-H_rd,dA1T
BFM-AA1T_up
BFM-RA1T_up

BFM-A_rdA1T_up
BFM-H_lpA1T_up
BFM-H_rdA1T_up

BFM-H_rd,dA1T_up

average for n = 100000 nodes). We show two figures – one showing the
number of node scans, the other running times – for 12 algorithms (which
include the algorithms which needed the least number of node scans and the
fastest ones). We can see how all variants using heaps suffer from the higher
cost per node scan due to the necessary heap operations.

On lattice graphs (square grid on a torus) the simple algorithms BFM-QQ2T

and BFM-QS2T (with and without updates during subtree disassembly) dom-
inate all others – in terms of node scans as well as in terms of running time.
The algorithms that use heaps are again competative in terms of node scans
but suffer from higher cost per node scan.

Both comparisons between number of node scans and running time show
quite big effects of processor cache. On small graphs bigger parts of the
graphs are held within the cache and reduce running time. Due to this
effect the determined polynomials have a higher exponent on running time
than on node scans. The logarithmic factor (250000 nodes on the biggest
graphs opposed to 10000 nodes on the smallest for these two graph classes)
is ≈ 1.35 which would be ≈ 0.09 in the calculated exponent. But most nodes
move only very few levels in the heap (if any at all) – the real error in the
exponent (due to heap operations) is much less.

While the determined polynomials (concerning node scans) can be repro-
duced, the effects of processor cache depend much on what else the computer
is doing and even on what was done on it before the experiment started.

25

 2

 2.25

 2.5

 2.75

 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

node scans, family: BFM (selected), graph class: 4-regular random graph

BFM-QQ2P
BFM-QS2P
BFM-QQ2T

BFM-QQ2T_up
BFM-QS2T

BFM-QS2T_up
BFM-QQ1T_up
BFM-QS1T_up
BFM-AA2T_up
BFM-H_rdA2T

BFM-H_rdA2T_up
BFM-H_rd,dA2T_up

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 1.18 1.2 1.22 1.24 1.26 1.28 1.3

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

running time, family: BFM (selected), graph class: 4-regular random graph

BFM-QQ2P
BFM-QS2P
BFM-QQ2T

BFM-QQ2T_up
BFM-QS2T

BFM-QS2T_up
BFM-QQ1T_up
BFM-QS1T_up
BFM-AA2T_up
BFM-H_rdA2T

BFM-H_rdA2T_up
BFM-H_rd,dA2T_up

On the figure that shows running times on lattice graphs the bigger expo-
nent on the BFM-HRD,DA2TUP algorithm is mostly due to a smaller running
time on small graphs (compared to the other algorithms using heaps). So
making 250 experiments on each graph class in a row may also reflect the

26

 0.5

 1

 2

 1 1.05 1.1 1.15 1.2 1.25 1.3

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

node scans, family: BFM (selected), graph class: square grid (wrapped on a torus)

BFM_ph-QQ2P
BFM-QQ2T

BFM-QQ2T_up
BFM-QS2T

BFM-QS2T_up
BFM-QQ1T

BFM-QQ1T_up
BFM-QS1T_up

BFM-H_lpA2T_up
BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-H_rd,dA1T

 2.5e-08

 5e-08

 1e-07

 2e-07

 4e-07

 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

c
(in

 t(
n)

=
c*

n^
k)

k (in t(n)=c*n^k)

running time, family: BFM (selected), graph class: square grid (wrapped on a torus)

BFM_ph-QQ2P
BFM-QQ2T

BFM-QQ2T_up
BFM-QS2T

BFM-QS2T_up
BFM-QQ1T

BFM-QQ1T_up
BFM-QS1T_up

BFM-H_lpA2T_up
BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-H_rd,dA1T

state of memory before the experiment – more than the real effect of the
data structure. The number of node scans (and therefore almost all figures
shown in this report) isn’t affected. We will consider the effect of processor
cache on experiments like these in another technical report [Lew10].

27

5.5 Random graphs with negative cycles

This section shows the correlation between “negativeness” of a graph and
the node scans needed to detect negative cycles (or prove there is none). In
our graph generator we can shift all arc weights up or down by any constant.
What we do is to determine the lowest offset for a graph, such that it has
no negative cycle, but it does have some when the offset is one less. From
this “critical offset” we examine how the algorithms’ performance changes
with the offset going in both directions.

Again, we begin with complete random graphs, choosing arc lengths from
[0, n[, random potential in [0, n2[. An offset of −1 made the graphs having
negative cycles on all instances. We choose the offsets −√

n, −8, −4, −2,
−1, 0,

√
n, n, and n

√
n for each of 250 graphs and show the average total

number of node scans – here for n = 2500 nodes.

The choice of the depicted algorithms was done such that it includes those
that need the least number of node scans and the fastest – for the critical
offset, offset 0 (if different), the lowest and highest offset tested. The al-
gorithms are listed in order of increasing number of node scans needed for
graphs with critical offset. For each class of graphs we show one figure with
node scans and another with real running times.

It’s obvious how – on complete graphs – we get many cycles even with
little negative offset. Algorithms with subtree disassembly benefit more
(comparing offset 0 and −1) than those with following parent pointers (not
seen in the figure due to the inferiority of following parent pointers on these
graphs) – following parent pointers always needs one complete iteration,
i. e., scanning at least n nodes before we check for negative cycles for the
first time. Subtree disassembly allows to find negative cycles after no more
than 2 node scans, on graphs with many negative cylces all algorithms using
subtree disassembly get near zero node scans opposed to at least 2500 node
scans in our example for algorithms with following parent pointers. Despite
of the bigger constant in initialization when using heaps (but still linear)
the advantage in the number of node scans of the BFM-HRDA2T family is
retained concerning running times on graphs with some negative cycles (we
measured an average number of below 350 node scans with offset −8). An
explanation for the behaviour of the heaps was already discussed in the
previous subsection. It’s important to note the difference between graphs
with and without negative cycles. While BFM-2 algorithms are faster and
need less node scans on graphs without negative cycles, BFM-1 algorithms
get superior when the graph has many negative cycles (offset −50 in our
example).

With less arcs (m = n
√

n and m = 4n) the critical offset gets less. The
number −37 mustn’t be taken literally – we measured this average critical

28

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

-50 -8 -4 -2 -1 0 50 2500 125000

no
de

 s
ca

ns

arc length offset

node scans on complete random graphs with n=2500 nodes

BFM-H_rdA2T_up
BFM-H_rdA2T
BFM-RA2T_up
BFM-AA2T_up

BFM-A_rdA2T_up

BFM-RA2T
BFM-A_rdA2T

BFM-AA2T
BFM-H_lpA2T

BFM-H_rd,dA2T_up

BFM-H_rdA1T_up
BFM-A_rdA1T_up

BFM-AA1T_up
BFM-A_rdA1T

BFM-AA1T

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-50 -8 -4 -2 -1 0 50 2500 125000

ru
nn

in
g

tim
e

[s
]

arc length offset

running time on complete random graphs with n=2500 nodes

BFM-H_rdA2T_up
BFM-H_rdA2T
BFM-RA2T_up
BFM-AA2T_up

BFM-A_rdA2T_up

BFM-RA2T
BFM-A_rdA2T

BFM-AA2T
BFM-H_lpA2T

BFM-H_rd,dA2T_up

BFM-H_rdA1T_up
BFM-A_rdA1T_up

BFM-AA1T_up
BFM-A_rdA1T

BFM-AA1T

offset of −37 (for graphs with n = 10000 and m = n
√

n = 106). We
determined the critical offset c for each graph and used as offsets for this
test suite 4c − 1, 2c − 1, c − 1, c, c/2, c/4, 0, n, n

√
n. Those resulted on an

average in the numbers shown in the picture, though the individual graphs

29

 0

 10000

 20000

 30000

 40000

 50000

-149 -75 -38 -37 -18 -9 0 10000 1000000

no
de

 s
ca

ns

arc length offset

node scans on random graphs with n=10000 nodes, m=1000000 arcs

BFM-H_rdA2T_up
BFM-RA2T_up
BFM-H_rdA2T
BFM-AA2T_up

BFM-H_lpA2T_up

BFM-A_rdA2T_up
BFM-A_rdA2T

BFM-RA2T
BFM-AA2T

BFM-QQ2T_up

BFM-QQ1T_up
BFM-QS2T_up
BFM-QS1T_up

BFM-QQ2T
BFM-QS2T

 0

 0.05

 0.1

 0.15

 0.2

-149 -75 -38 -37 -18 -9 0 10000 1000000

ru
nn

in
g

tim
e

[s
]

arc length offset

running time on random graphs with n=10000 nodes, m=1000000 arcs

BFM-H_rdA2T_up
BFM-RA2T_up
BFM-H_rdA2T
BFM-AA2T_up

BFM-H_lpA2T_up

BFM-A_rdA2T_up
BFM-A_rdA2T

BFM-RA2T
BFM-AA2T

BFM-QQ2T_up

BFM-QQ1T_up
BFM-QS2T_up
BFM-QS1T_up

BFM-QQ2T
BFM-QS2T

may have had different offsets. Most algorithms perform much better even
when the critical offset was exceeded by 1 only, exceptions are the algorithms
following parent pointers. The time needed for graphs with the critical offset
is about 30% above time needed with offset 0. We discussed the graphs

30

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

-18965 -9483 -4742 -4741 -2370 -1185 0 50000 11150000

no
de

 s
ca

ns

arc length offset

node scans on random graphs with n=50000 nodes, m=200000 arcs

BFM-H_rdA1T_up
BFM-H_rd,dA1T

BFM-H_rd,dA1T_up
BFM-H_rdA1T

BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-QQ2T_up

BFM-H_lpA2T_up
BFM-A_rdA2T_up

BFM-QS2T_up

BFM-QQ2T
BFM-QQ1T_up

BFM-QS2T
BFM-AA1T_up

BFM-AA2P

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-18965 -9483 -4742 -4741 -2370 -1185 0 50000 11150000

ru
nn

in
g

tim
e

[s
]

arc length offset

running time on random graphs with n=50000 nodes, m=200000 arcs

BFM-H_rdA1T_up
BFM-H_rd,dA1T

BFM-H_rd,dA1T_up
BFM-H_rdA1T

BFM-H_rdA2T_up

BFM-H_rd,dA2T_up
BFM-QQ2T_up

BFM-H_lpA2T_up
BFM-A_rdA2T_up

BFM-QS2T_up

BFM-QQ2T
BFM-QQ1T_up

BFM-QS2T
BFM-AA1T_up

BFM-AA2P

with offset 0 already. Tree depth of graphs with critial offset is higher (58
on an average opposed to 20 for graphs with offset 0 for n = 10000 nodes).
We observe again differences between number of node scans and running
times – we see that BFM-QQ2TUP and BFM-QS2TUP perform better than the

31

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

-18921 -9461 -4731 -4730 -2365 -1182 0 50000 11150000

no
de

 s
ca

ns

arc length offset

node scans on 4-regular random graphs with n=50000 nodes

BFM-H_rdA1T_up
BFM-H_rd,dA1T

BFM-H_rd,dA1T_up
BFM-H_rdA1T

BFM-H_rd,dA2T_up

BFM-QQ2T_up
BFM-H_rdA2T_up
BFM-H_lpA2T_up
BFM-A_rdA2T_up

BFM-QS2T_up

BFM-QQ2T
BFM-QQ1T_up

BFM-QS2T
BFM-AA1T_up

BFM-AA1T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-18921 -9461 -4731 -4730 -2365 -1182 0 50000 11150000

ru
nn

in
g

tim
e

[s
]

arc length offset

running time on 4-regular random graphs with n=50000 nodes

BFM-H_rdA1T_up
BFM-H_rd,dA1T

BFM-H_rd,dA1T_up
BFM-H_rdA1T

BFM-H_rd,dA2T_up

BFM-QQ2T_up
BFM-H_rdA2T_up
BFM-H_lpA2T_up
BFM-A_rdA2T_up

BFM-QS2T_up

BFM-QQ2T
BFM-QQ1T_up

BFM-QS2T
BFM-AA1T_up

BFM-AA1T

BFM-HRDA2 family though the latter needs less node scans. This advantage
dissolves on graphs with many negative cycles. If we lower the offset more,
we observe the same phenomenon that BFM-1 algorithms get faster.

On thin graphs the advantage of BFM-1 algorithms is already visible on

32

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

-397 -199 -100 -99 -49 -24 0 50176 11239424

no
de

 s
ca

ns

arc length offset

node scans on random lattice graphs with n=50176 nodes (224 nodes per row)

BFM-QQ2T_up
BFM-QQ2T

BFM-QS2T_up
BFM-QS2T

BFM-H_rd,dA2T_up

BFM-H_rdA2T_up
BFM-H_rd,dA1T
BFM-QQ1T_up

BFM-QQ1T
BFM-QS1T_up

BFM-SS1T_up
BFM-SQ1T_up

BFM-SS1T
BFM-AA2P
BFM-QQ2P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-397 -199 -100 -99 -49 -24 0 50176 11239424

ru
nn

in
g

tim
e

[s
]

arc length offset

running time on random lattice graphs with n=50176 nodes (224 nodes per row)

BFM-QQ2T_up
BFM-QQ2T

BFM-QS2T_up
BFM-QS2T

BFM-H_rd,dA2T_up

BFM-H_rdA2T_up
BFM-H_rd,dA1T
BFM-QQ1T_up

BFM-QQ1T
BFM-QS1T_up

BFM-SS1T_up
BFM-SQ1T_up

BFM-SS1T
BFM-AA2P
BFM-QQ2P

graphs with offset near but above the critical offset (graphs without negative
cycles). Otherwise we made similar observations – the BFM-HRDA family
needs the least number of node scans, but the higher cost per node scan
makes the BFM-QQT and BFM-QST families superior. On graphs with many

33

negative cycles BFM-AA1TUP is the fastest again (though the BFM-HRDA

family needs less node scans).

The comparison with 4-regular graphs suggests that the additional structure
is too weak to have an effect on node scans and / or running times.

If we switch from 4-regular graphs to the fixed structure of lattice graphs
we observe the most extreme behaviour at the critical offset. The average
number of node scans decreases by a factor of nearly 10 for most of the
algorithms! It’s a step from an average tree depth of 122 (n ≈ 50000) to
some cycles with few edges that are found in the first pass by some of the
subtree disassembly algorithms. It should be noted, that the variance in
the number of node scans is small on graphs without negative cycles, but is
big as soon as we go beyond the critical offset. The range of the number of
node scans for the best algorithm BFM-QQ2TUP with critical offset is about
145000 (0.1-quantile) to 160000 (0.9-quantile), but with critical offset minus
one we only need 7700 node scans at the 0.1-quantile, but still 102000 at
the 0.9-quantile. The behaviour is similar for all algorithms on this class of
graphs. Also the behaviour concerning the offset between critical offset and
0 is quite peculiar. While on other graph classes, the algorithms get faster,
we don’t see this effect on lattice graphs.

The high running times of BFM-HRDA family can’t be explained by higher
cost of heap operations. As the number of passes is low such that the higher
cost of initialization of a pass (building the heap) can’t be responsible, we
assume some weird effect of cache misses due to removing nodes from the
heap and adding nodes in some other memory area.

6 Conclusions and Outlook

We gave some more detailed insight on the running time behaviour of the
classical BFM algorithm and its variations. Especially, our experiments
showed dependencies on the shortest path tree depth and length of shortest
cycles. For graphs with shallow shortest path tree or few negative cycles
with few edges BFM-2 algorithms that add a node always to set B seem to be
superior. On graphs where the algorithm may follow deep shortest paths or
long negative cycles BFM-1 algorithms are better despite of the extra main-
tainance needed to decide whether a node was scanned in the current pass
yet. This advantage is especially noticeable when comparing to BFM-2 algo-
rithms that need to build a heap when initializing a pass, those algorithms
need much more passes – and time – than their BFM-1 relatives.

While the family BFM-HRDA needs the least number of node scans on many
graphs, it’s not necessarily the fastest due to higher cost per node scan.
Attempts like the BFM-ARDA family to adapt the heap behaviour at lower

34

cost didn’t lead to competitive algorithms yet. One may try to develop a
relaxed heap property with lower cost per operation.

Further experiments are needed to give some more detailed insight and to
show dependencies on tree depth, average degree of the shortest path tree
and similar properties.

We’ve also seen big effects of processor cache on running times, this topic is
considered more detailed in [Lew10].

We included only straight forward variations of the classical Bellman-Ford-
Moore algorithm in this technical report. Next to well known heuristics,
e. g. Goldberg-Radzik [GR93], we also didn’t include combined algorithms
here like switching from BFM-SS1TUP to BFM-QQ2TUP after the first iteration
(called HYB in [CGG+09]). These and other algorithms will be considered
in another technical report.

References

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[CG99] Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle
detection algorithms. Mathematical Programming, 85:277–311,
1999.

[CGG+09] Boris V. Cherkassky, Loukas Georgiadis, Andrew V. Goldberg,
Robert E. Tarjan, and Renato F. Werneck. Shortest-path feasi-
bility algorithms: An experimental evaluation. J. Exp. Algorith-
mics, 14:2.7–2.37, 2009.

[CGR96] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest paths algorithms: Theory and experimental evaluation.
Mathematical Programming, 73:129–174, 1996.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(4):269–271, 1959.

[For56] L. R. Ford. Network flow theory. Technical Report P-923, The
Rand Corporation, Santa Monica, CA, August 1956.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps
and their uses in improved network optimization algorithms.
Journal of the ACM, 34(3):596–615, 1987.

[GKP85] F. Glover, D. Klingman, and N. Phillips. A new polynomi-
ally bounded shortest path algorithm. Operations Research,
33(1):65–73, 1985.

35

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths
problem. SIAM Journal on Computing, 24(3):494–504, June
1995.

[GR93] Andrew V. Goldberg and Tomasz Radzik. A heuristic improve-
ment of the bellman-ford algorithm. Applied Mathematics Let-
ters, 6(3):3–6, 1993.

[Lew05] Stefan Lewandowski. Vereinheitlichte Darstellung von Techniken
zur effizienten Kürzeste-Wege-Suche. Dissertation, Fakultät für
Informatik, Elektrotechnik und Informationstechnik, Universität
Stuttgart, 2005.

[Lew10] Stefan Lewandowski. Processor cache effects on running time –
an experimental study, 2010. unpublished yet.

[MK94] Makoto Matsumoto and Yoshiharu Kurita. Twisted
GFSR generators II. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 4(3):254–266, 1994.
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html.

[Moo59] E. F. Moore. The shortest path through a maze. In Proc. of the
Int. Symp. on the Theory of Switching, pages 285–292. Harvard
University Press, 1959.

[NPX99] M. Nonato, S. Pallottino, and B Xuewen. Spt l shortest-
path algorithms: Reviews, new proposals, and some
experimental results. Technical Report TR-99-16, Di-
partmento di Informatica, Pisa University, Italy, 1999.
http://compass2.di.unipi.it/TR/files/TR-99-16.ps.gz.

[Pal84] Stefano Pallottino. Shortest-path methods: Complexity, interre-
lations and new propositions. Networks, 14:257–267, 1984.

[Pap74] U. Pape. Implementation and efficiency of moore-algorithms for
the shortest route problem. Mathematical Programming, 7:212–
222, 1974.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[Tar81] R. E. Tarjan. Shortest paths. Technical report, AT&T Bell
Laboratories, Murray Hill, NJ, 1981.

[WT05] Chi-Him Wong and Yiu-Cheong Tam. Negative cycle detection
problem. In Algorithms - ESA 2005, pages 652–663, 2005.

36

