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Zusammenfassung

Automobile Assistenzsysteme bergen grofies Potential bei der Vermeidung von Unféllen. Um
effektiv und effizient arbeiten zu kénnen, benotigen sie Informationen tiber ihre Umgebung.
Von zentraler Bedeutung ist hierbei das Wissen um die Existenz, Lage und Bewegung anderer
Verkehrsteilnehmer.

In dieser Arbeit wird ein echtzeitfdhiges System vorgestellt, welches in monokularen Ein-
zelbildern einer hinter der Windschutzscheibe angebrachten Kamera andere Fahrzeuge aller
Orientierungen detektiert (Multi-View Vehicle Detection). Neben der Existenz der Fahrzeuge
wird zusétzlich ihre Orientierung mit hoher Genauigkeit eingeschétzt. Ausgangspunkt hierfiir
bildet die von Viola und Jones vorgeschlagene Kaskadenstruktur, welche auf einen allgemeinen
Klassifikationsbaum erweitert wird.

Der entwickelte Decision-Boosted Cluster Boosted Tree (DB-CBT) nimmt im Gegensatz zur
Kaskadenstruktur eine weitergehende Trennung des Eingaberaums vor. Auf diese Weise wird
die Geschwindigkeit des Klassifikators erhoht, ohne Einbufien bei der Detektionsleistung hin-
nehmen zu miissen. Der Baumaufbau erfolgt wiahrend des Trainings direkt auf das Klassifikati-
onsproblem ausgerichtet, d. h. der gesamte Baum wird so aufgebaut, dass die Klassifikations-
aufgabe mit moglichst hoher Geschwindigkeit gelost werden kann. Hierfiir wird ein Giitemaf3
definiert, welches die Eignung einer Trennung des Eingaberaums misst. Anhand diesem wird
die Trennung gewdhlt, so dass eine schnellere Konvergenz von AdaBoost moglich ist. Um
die Geschwindigkeit zusédtzlich zu erhohen, wird durch einen zweistufigen Boosting-Prozess
(Decision-Boosting) die Anzahl zu traversierender Knoten des DB-CBT minimiert.

Die Vorteile des Ansatzes werden experimentell bestétigt. Bei vergleichbarer Detektionsleis-
tung ist die erwartete Laufzeit je Hypothese um 25 %, die maximale Laufzeit um 64 % geringer
als bei Einsatz eines Kaskadenklassifikators.
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Symbolverzeichnis

Allgemein

C={-11}
M

X

XY, Z

X,y

Menge der Klassen. ,—1" ist Hintergrund, , 1” ist Objekt.
Merkmalsraum.

Eingaberaum.

Weltkoordinaten in Metern.

Spalte bzw. Zeile im Eingabebild, beginnend in der linken, oberen Ecke.

Aspektwinkelschidtzung

I
r

P,0,¥
, B

Y1, 72
A,B,C,D
AL C
ab,c

Yi

d

w, |

L>-Norm (Euklidischer Abstand).

Schwellwert der Detektionsassoziation.

Roll-, Nick- und Gierwinkel.

Gesuchter Gierwinkel bzw. Gegenwinkel des gesuchten Gierwinkels.
Winkel, unter denen das Fahrzeug gesehen wird.
Mafigebende Fahrzeugkanten bzw. Eckpunkte des Fahrzeugs.
Bildpunkte der Fahrzeugeckpunkte A bzw. C.

Ortsvektoren der Punkte A’, B, C’.

i-te Komponente des Vektors y.

Distanz des Fahrzeugs zur Kamera (in Metern).

Breite bzw. Lange des Fahrzeugs (in Metern).
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AdaBoost und Kaskadenklassifikator

Ky Gewicht des in Runde t gewédhlten Weaklearners.

6 Akzeptanzschwelle des Stronglearners.

D Detektionsrate.

F Falschalarmrate.

Hr(.) Stronglearner.

WjjE Gewichteter Anteil an positiven/negativen Beispielen in der j-ten Teilmen-
ge des Eingaberaums.

Z(f) Z-Wert des Weaklearners f.

e () In Runde t gewéhlter Weaklearner.

w;(f) Gewicht des i-ten Beispiels in Runde t.

Decision-Boosted Cluster Boosted Tree

1 Mindestanzahl Positivbeispiele fiir eine Trennung des Eingaberaums.
A(L) Regularisierung der Giitefunktion e(.).

T Schwellwerte des Z-Werts.

bhat(pa, pp) Bhattacharyya-Koeffizient der Wahrscheinlichkeitsdichten p, und pj.
e(.) Giitefunktion zur Bewertung einer Zerlegung.

sep(A, B) Separierbarkeit zweier Mengen A und B.

Experimentelle Ergebnisse

Oaft Ahnlichkeitsschwellwert.
a(.,.) Distanzmaf fiir Winkelkategorien.
A max Maximal zuldssige Abweichung der Winkelkategorie (Toleranz).
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KAPITEL 1

Einleitung

The hardest single part of building a
software system is deciding
precisely what to build.

(Fred Brooks, No Silver Bullet)

Dieses Kapitel dient als Einleitung und gibt einen Uberblick iiber diese Arbeit. Zunéchst wird
die Problemstellung motiviert (Abschnitt 1.1) und die Ziele dieser Arbeit zusammengefasst
(Abschnitt 1.2). Im Anschluss daran werden grundlegende Begriffe definiert (Abschnitt 1.3),
ein Uberblick iiber das entwickelte System gegeben (Abschnitt 1.4) und die Ausgangsbasis
sowie die vorhandenen Hilfsmittel bei der Anfertigung dieser Arbeit erlautert (Abschnitt 1.5).
Abschlieend wird ein Uberblick {iber die folgenden Kapitel gegeben (Abschnitt 1.6).

1.1. Motivation

Im Jahr 2008 wurden in Deutschland tiber 409 000 Personen bei Verkehrsunfillen verletzt, 4477
verletzten sich dabei todlich [Sta09, S. 440 ff.]. Weltweit sterben jahrlich tiber 1 Mio. Menschen
an den Folgen von Verkehrsunfillen. Ein Grofiteil der Unfille hétte verhindert oder in den
Folgen abgemildert werden kdnnen, wenn geeignete Notmanover wenige Augenblicke friither
eingeleitet worden wéren [Sti07].

Assistenzsysteme, die den Fahrer eines Fahrzeugs bei seiner Aufgabe unterstiitzen und ihm
so helfen, in allen Situationen addquat und schnell zu reagieren, bergen grofles Potential bei der
Vermeidung von Unféllen. Um effektiv und effizient arbeiten zu kénnen, benétigen sie eine
Vielzahl von Informationen von verschiedenen Sensoren, mit deren Hilfe sie ein umfassendes
Umgebungsmodell erstellen konnen [Wen08],[Wal08].

Da Fahrer einen GrofSteil der Informationen visuell, d. h. mit den Augen, aufnehmen, ist
es naheliegend, diesen Informationskanal automobilen Assistenzsystemen zur Verfiigung zu
stellen. Die Erkennung anderer Fahrzeuge in Videostromen ist hierbei eine der Kernaufgaben
der Systeme. Neben der Erkennung der reinen Existenz anderer Fahrzeuge ist auch die korrekte
Einschdtzung ihrer Lage und Bewegung wichtig. Durch Kenntnis von Lage und Bewegung sind
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1. Einleitung

Riickschliisse tiber den moglichen Weg des erkannten Fahrzeugs und eventuelle Konsequenzen
daraus (bspw. einen bevorstehenden Zusammenstofs) moglich, was bessere Reaktionen des
Systems erlaubt. Damit diese Reaktionen rechtzeitig erfolgen kénnen, wird im automobilen
Umfeld die Echtzeitfdhigkeit der Systeme gefordert [SZ06]. Da Fehler wihrend der Fahrt fatale
Folgen haben kénnen, sind zudem die Anforderungen an die Robustheit und Zuverlassigkeit
von Assistenzsystemen sehr viel hoher als in anderen Bereichen wie bspw. der Consumer-
Elektronik [Gre08, S. 11.].

(d)

Abbildung 1.1.: Beispiele fiir Ansichten verschiedener PKW, die ein Assistenzsystem erken-
nen muss. Die Variabilitit zwischen den einzelnen Ansichten ist klar sichtbar.
Quelle: Bilddatenbank von Kuo und Nevatia [KN09].

Um die Lage erkannter Fahrzeuge korrekt zu beurteilen, miissen sie unter allen Aspekt-
winkeln (siehe Abb. 1.1 fiir einige Beispiele) durch das Assistenzsystem erkannt werden. Fiir
die Erkennung von Objekten in Videostromen ist im automobilen Umfeld die Klassifikati-
on mit dem von Viola und Jones vorgeschlagenen Kaskadenklassifikator [V]J01] — obwohl
urspriinglich fiir die Gesichtserkennung konzipiert — weit verbreitet, da er hohe Geschwin-
digkeit mit hoher Detektionsleistung verbindet. Beispiele fiir einen erfolgreichen Einsatz
sind die Erkennung von Insassen in einem Auto mit Hilfe einer omnidirektionalen Kame-
ra [Wen03],[WL04] sowie die Detektion von Fuigingern in Infrarotbildern [MOL"05]. Ist die
Variabilitat in den zu detektierenden Objekten allerdings grof3, reicht die Kaskadenstruktur
nicht mehr aus [ZZ10],[HALLO7]. Hier erweisen sich Baumstrukturen als flexibler und leis-
tungsfahiger [Wen03, S. 79 ff.],[Chr07, S. 7],[Wu08, S. 25 {.],[PSR10]. Bspw. mussten Viola und
Jones ihren urspriinglichen Ansatz auf eine Baumstruktur erweitern, um unterschiedliche
Profile erkennen zu kénnen (sog. Multi-view Face Detection) [JVO3].

Um eine ausreichende Detektionsleistung sicherzustellen, bietet es sich also an, auch bei der
optischen Lageschdtzung von Fahrzeugen einen baumbasierten Ansatz zu wihlen. Gleichzeitig
muss die hohe Geschwindigkeit der Kaskadenstruktur erhalten bleiben, um die Echtzeitan-
forderungen an automobile Assistenzsysteme zu erfiillen. In dieser Arbeit wird ein solcher
baumbasierter Ansatz entwickelt und vorgestellt sowie seine Detektionsleistung und Geschwin-
digkeit untersucht.
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1.2. Zielsetzung der Arbeit

Im Gegensatz zu bisherigen Ansitzen [Tu05],[BFSO84] bleiben die Starken des Kaskaden-
klassifikators erhalten. Durch einen automatischen Baumaufbau, basierend auf den Merkmals-
vektoren der Hypothesen, wird eine hohe Detektionsleistung sichergestellt. Aufiferdem wird
der Baumaufbau —im Gegensatz zu [Wen03],[Chr07],[WNO07] — direkt bzgl. der Klassifikations-
aufgabe optimiert und somit eine effizientere Klassifikation mit weniger Merkmalen ermoglicht.
Um die Geschwindigkeit zu erh6hen, wird zudem sichergestellt, dass die Anzahl der Knoten,
die eine Hypothese , besuchen” muss, so gering wie moglich ist. Dies wird durch ein Boosting
in zwei Phasen (Decision-Boosting, siehe Abschnitt 5.4) erreicht.

1.2. Zielsetzung der Arbeit

Ziel dieser Arbeit ist die Entwicklung eines Ansatzes zur Erweiterung der von Viola und Jones
in [V]J01] vorgeschlagenen Kaskadenstruktur auf einen allgemeinen hierarchischen Klassifikator
(siehe Kapitel 4). Dieser soll in der Lage sein, Fahrzeuge, d. h. sowohl PKW als auch LKW, unter
beliebigen Aspektwinkeln zu erkennen. Dabei sollen die Vorteile der Kaskadenstruktur (siehe
Abschnitt 3.4) — insbesondere die hohe Geschwindigkeit — erhalten bleiben.

Mit dem entwickelten Gesamtsystem soll es am Ende moglich sein, nicht nur Fahrzeuge in
den Eingabebildern zu detektieren, sondern auch ihre Orientierung bzgl. der Kamera — d. h.
den Gierwinkel (sieche Abschnitt 2.2) — mit hoher Genauigkeit und Geschwindigkeit zu schitzen.
Die Gesamtzeit, die fiir die komplette Bearbeitung eines Einzelbildes zur Verfiigung steht, ist
hierbei auf 100 Millisekunden beschrankt.

Abbildung 1.2.: Eingabebild, Einbauposition und Kamera des Systems. (a) Beispiel fiir ein
752 mal 480 Pixel grofses Eingabebild. (b) Versuchsaufbau zum Aufnehmen der
Sequenzen. Die Kamera wird zentral hinter der Frontscheibe angebracht. Der
gelbe Pfeil zeigt die Einbauposition. (c) Kamera des Herstellers Continental.
Quelle: (¢): www.conti-online.com

Das Training der einzelnen Knoten des Baums soll analog zum Training der Stufen einer Kas-
kade mit AdaBoost (siehe 3.1) erfolgen. Als Merkmale kommen neben den von Viola und Jones
eingesetzten Haarwavelets (siehe Abschnitt 3.2.1) auch die von Levi und Weiss vorgeschlagenen
[LWO04] Edge Orientation Histograms (siehe Abschnitt 3.2.2) zum Einsatz.

Als Eingabedaten fiir das realisierte System werden Mono-Bildsequenzen mit 8 Bit Grauwert-
bildern der Grofle 752 mal 480 Pixel (siehe Abb. 1.2(a) fiir ein Beispiel) verwendet. Die Bilder
stammen alle von einer Kamera des Herstellers Continental mit der Modellbezeichnung , MFC*
(Multi-Function Camera). Aufgenommen wird aus einem LKW heraus, die Einbauposition der
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1. Einleitung

Kamera ist hierbei zentral hinter der Frontscheibe. Abb. 1.2(b) zeigt die Einbauposition und
den aufnehmenden LKW, Abb. 1.2(c) zeigt die Kamera.

Die Implementierung des Ansatzes soll objektorientiert in C++ [Str00] erfolgen und sich in
die bestehende Software-Landschaft integrieren sowie diese ggf. erweitern. Fiir das Training ist
der Einsatz der Skriptsprache Python [Lut01] vorgesehen.

1.3. Grundbegriffe

Um Missverstdndnisse zu vermeiden, werden in diesem Abschnitt einige Grundbegriffe dieser
Arbeit definiert. Soweit nicht anders angegeben, gelten diese Definitionen fiir die gesamte
Arbeit.

Mit Fahrzeug sind sowohl PKW als auch LKW gemeint. Falls eine Unterscheidung zwischen
PKW und LKW bedeutsam ist, so wird explizit auf den korrekten Typ des Fahrzeugs einge-
gangen. Die Riickfront eines Fahrzeugs meint sowohl die Hinter- als auch die Vorderseite.
D.h. in dieser Arbeit wird keine Unterscheidung zwischen ,,Vorne” und ,Hinten” detektierter
Fahrzeuge vorgenommen.

Eine Hypothese ist ein rechteckiger Teilbereich des Eingabebildes. Der Raum aller moglichen
Hypothesen wird X oder Eingaberaum genannt. Hypothesen werden durch die Merkmalsextrak-
tion (engl. feature extraction) in den Merkmalsraum M abgebildet.

Ein Merkmal ist die Reduktion einer Hypothese auf einen skalaren Wert. Wie die Hypothe-
se auf einen skalaren Wert reduziert wird (die , Berechnungsvorschrift”), ist abhdngig vom
konkreten Merkmal (siehe auch Abschnitt 3.2). Der Vektor, der sich aus Kombinationen aller
Merkmalswerte ergibt, heifst Merkmalsvektor der Hypothese.

Als Klassifikation wird eine Abbildung

K:M—=C,Kix)=y

von M! auf ein Menge von Klassen C bezeichnet. Die Abbildung K wird Klassifikator oder
Modell?> genannt. y € C ist die Klasse, die durch den Klassifikator fiir den Merkmalsvektor
x € M vorgeschlagen wird.

Soweit nicht anders angegeben, wird in dieser Arbeit immer von bindirer Klassifikation
ausgegangen. In diesem Fall ist C = {—1,1}. Die Klassen ,,—1” und , 1" heiflen Hintergrund
bzw. Vordergrund oder Objekt. Die Aussage K(x) = 1 wird als Detektion bezeichnet, die Aussage
K(x) = —1 hei8t Zuriickweisung der zu x gehérenden Hypothese.

Als Training wird das Bilden eines Modells anhand von Beispielen bezeichnet. Beispiele
(synonym: Samples) sind Hypothesen, fiir die die korrekte Klasse bekannt ist. Beispiele der
Klasse , 1” heifsen Positivbeispiele, alle anderen Negativbeispiele. Die Unterscheidung zwischen
den Positiv- und den Negativbeispielen wird Klassifikationsaufgabe oder Klassifikationsproblem
genannt. Die Klassifikationsaufgabe ist also eine Trennung zweier Mengen (Positiv- gegen
Negativbeispiele). Durch das Training soll also ein Modell konstruiert werden, welches die
gegebene Klassifikationsaufgabe 10st.

IFiir manche Klassifikatoren gilt M = X, d.h. sie kombinieren Merkmalsextraktion und Klassifikation in einem
Schritt und arbeiten direkt auf den Hypothesen.

’Die Literatur unterscheidet zwischen diskrimininativen und generativen Modellen (vgl. z.B. [Bis06, S. 43],
[BKOS, S. 461 f.] und [EG09]). In dieser Arbeit sind alle Modelle ausschlieSlich diskriminativer Art.
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1.4. Aufbau des Systems

In der Phase der Anwendung werden die Hypothesen gemafs des im Training gewonnenen
Modells klassifiziert. Die tatsdchlichen Klassen sind in dieser Phase nicht bekannt.

Eine Sequenz ist eine Abfolge von hintereinander aufgenommenen Bildern, wobei zwischen
den einzelnen Bildern 40 Millisekunden liegen. Das entspricht 25 Bildern in der Sekunde. Eine
Sequenz ist bei den in dieser Arbeit verwendeten Daten immer genau 5 Sekunden —d. h. 125
Bilder —lang.

Die Performance eines Klassifikators ist seine Leistung (siehe auch Abschnitt 6.2) bzgl. der Klas-
sifikationsaufgabe (Falschalarmrate etc.). Sie ist nicht zu verwechseln mit der Geschwindigkeit,
die angibt wie schnell Eingaben verarbeitet werden konnen.

x und y (kleingeschrieben) sind Bildkoordinaten (in Pixeln). Hierbei ist x die Spalte, y die
Zeile im Bild. Der Ursprung ist die linke, obere Ecke. X, Y und Z (grofigeschrieben) sind
Weltkoordinaten (in Metern) im Weltkoordinatensystem (siehe Abschnitt 2.2).

1.4. Aufbau des Systems

Ziel dieser Arbeit ist die Entwicklung eines Systems, welches, basierend auf einer hierarchischen
Erweiterung der Viola-Jones-Kaskade, die Orientierung von Fahrzeugen bzgl. der Kamera
schatzt (vgl. Abschnitt 1.2).

Zu diesem Zweck werden sowohl das Gesamtfahrzeug als auch die Fahrzeugriickfront mit
dem entwickelten hierarchischen Klassifikator getrennt in den Eingabebildern detektiert. Im
Anschluss daran werden die gefundenen Fahrzeuge mit den gefundenen Riickfronten assoziiert,
d.h. jedem Fahrzeug wird die zugehorige Riickfront zugewiesen. Aus der so gewonnenen
Information (Position der Riickfront zur Position des zugehorigen Fahrzeugs) lasst sich die
gesuchte Orientierung bestimmen (siehe Abb. 1.3). Abb. 1.4 zeigt das entwickelte System im
Uberblick.

Abbildung 1.3.: Aus getrennter Detektion von Riickfront und Fahrzeug ladsst sich der
Aspektwinkel schitzen. Sind Riickfront (gelb) und Gesamtfahrzeug (rot) de-
tektiert, so lasst sich aus der Beziehung zwischen den Detektionen der Aspekt-
winkel schétzen.

1.5. Ausgangsbasis und Hilfsmittel

Ausgangspunkt dieser Arbeit ist der von Viola und Jones vorgestellte Kaskadenklassifikator
[V]JO1]. In der Arbeit von Kallenbach [Kal05] (eine Kurzfassung findet sich in [KSPLO06]) werden
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1. Einleitung

(i\ 2 N\ )
Winkel-

\ Detektion / \ Assoziation / \_ schitzung /

O @ 6

Abbildung 1.4.: Uberblick iiber das entwickelte Gesamtsystem. (1) Fahrzeuge und Fahr-
zeugriickfronten werden getrennt in den Eingabebildern detektiert. (2) Im
Anschluss daran werden den Fahrzeugen die zugehorigen Riickfronten zuge-
ordnet. (3) Die gewonnene Beziehung von Fahrzeug und zugehoriger Riick-
front ldsst sich nutzen, um eine Schitzung des Aspektwinkels vorzunehmen.

Eingabebilder

Ansidtze, die Viola-Jones-Kaskade um Multiklassenfdhigkeit zu erweitern, untersucht. Die
hierbei entwickelten Konzepte bilden die Grundlage dieser Arbeit. Wender [Wen03] (eine
Kurzfassung findet sich in [WL04]) liefert die Motivation fiir die Erweiterung der Kaskade auf
einen hierarchischen Klassifikator. Wender untersucht theoretisch und experimentell wie sich
eine Teilung der Trainingsbeispiele auf die Konvergenz von AdaBoost auswirkt. Die hierbei
gewonnenen Erkenntnisse sind die Motivation fiir das vorgestellte Konzept.

Das weiterentwickelte Konzept basiert in Teilen auf dem von Wu und Nevatia entwickelten
Cluster Boosted Tree [IWNO07] (ausfiihrlicher beschrieben in [Wu08]) sowie dessen Weiterentwick-
lung von Yang et al. (Voting Cluster Boosted Tree) [YHNO9].

Fiir die Umsetzung des Klassifikators stand eine Implementierung des RealAdaBoost-
Algorithmus [SS99] mit verbesserten Weaklearnern (siehe Abschnitt 3.4.2) in C++ zur Ver-
fiigung. Ferner waren Implementierungen der verwendeten Merkmale (siehe Abschnitt 3.2)
sowie der Hypothesengenerierung (siehe Abschnitt 3.5) bereits vorhanden. Zudem war ein
Beispiel fiir das Training einer Kaskade auf Basis der vorhandenen Einzelteile verfiigbar. Dieses
bildete den Ausgangspunkt fiir die entwickelte Software.

Um den entwickelten Klassifikator zu trainieren stehen 246 Sequenzen mit insgesamt ca.
35000 Bildern (ca. 58 Gigabyte komprimiert im TIFF-Format) zur Verfiigung. Die Bilder zeigen
typische Stralenszenen bei Tag und bei Dammerung. In jedem Bild sind die sichtbaren Fahrzeu-
ge und (soweit zu sehen) die zugehorige Riickfront bzw. Front durch umschlieffende Rechtecke
gelabelt. Die Label unterscheiden zwischen LKW und PKW. Zusétzliche Daten (Radar fiir
Distanzinformationen etc.) sind nicht verfiigbar.

1.6. Gliederung der Arbeit

Die restliche Arbeit ist wie folgt aufgebaut.
In Kapitel 2 werden die Schritte 2 und 3 des Gesamtsystems (siehe Abb. 1.4) beschrieben.
Hierfiir wird zundchst anhand eines Fahrzeugmodells untersucht, wie genau eine Aspektwin-
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1.6. Gliederung der Arbeit

kelberechnung maximal sein kann, d. h. wie grofs der inhédrente und damit unvermeidbare
Fehler bei einer Berechnung des Aspektwinkels ist. Darauf aufbauend wird die vereinfachte
Winkelschatzung mittels Kategorisierung in Winkelkategorien beschrieben. Ferner wird auf
das Verfahren zur Assoziation von Gesamtfahrzeug und Riickfront eingegangen.

In Kapitel 3 werden die Grundlagen, welche als Ausgangspunkt fiir den entwickelten Klassi-
fikator dienen, erldutert. Vertiefend wird hierbei auf den Lernalgorithmus AdaBoost sowie die
Viola-Jones-Kaskade eingegangen, da diese von zentraler Bedeutung fiir diese Arbeit sind.

Kapitel 4 gibt eine Einleitung in Klassifikationsbaume und stellt generelle Konzepte fiir die
Erweiterung der Viola-Jones-Kaskade auf einen Klassifikationsbaum vor. Die unterschiedlichen
Moglichkeiten werden diskutiert und ihre Vor- und Nachteile erldutert. Abschlieflend werden
Training und Anwendung hierarchischer Klassifikatoren erldutert.

Kapitel 5 beschreibt den entwickelten Klassifikationsbaum. Es wird auf die unterschiedlichen
Teilaspekte im Detail eingegangen sowie das Training und die Anwendung erldutert. Die
Leistungsfahigkeit des entwickelten Konzeptes wird in Kapitel 6 experimentell bestatigt.

Kapitel 7 gibt eine abschlieffende Zusammenfassung und dient als Ausblick fiir weitere
Entwicklungen.
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KAPITEL 2

Aspektwinkelschatzung

In diesem Kapitel wird untersucht, wie die Aspektwinkelschdtzung im realisierten Gesamtsys-
tem (vgl. Abschnitt 1.4) durchgefiihrt werden kann und was hierbei theoretische Untergrenzen
fiir die Genauigkeit der Winkelschiatzung sind.

Hierfiir wird das Koordinatensystem fiir die Winkelberechnung eingefiihrt (Abschnitt 2.2),
die Assoziation von zusammengehorigen Detektionen beschrieben (Abschnitt 2.3) sowie ein
vereinfachendes Fahrzeugmodell aufgestellt (Abschnitt 2.4). Dieses erlaubt die Berechnung des
Aspektwinkels auf verschiedene Arten (Abschnitte 2.5 und 2.6). Abschliefiend wird der Fehler
bei der (modellbasierten) Berechnung untersucht (Abschnitt 2.7) sowie das Vorgehen bei der
Einordnung von Detektionen beschrieben (Abschnitt 2.8).

2.1. Einleitung

Ziel dieser Arbeit ist u. a. die Schiatzung des Aspektwinkels detektierter Fahrzeuge. Zu diesem
Zweck werden Fahrzeugriickfront und Gesamtfahrzeug getrennt detektiert und anschlieffend
assoziiert. Die Position der Riickfront innerhalb der Detektion des Gesamtfahrzeugs lésst
Riickschliisse auf den Aspektwinkel des Fahrzeugs zu (vgl. Abschnitt 1.4).

In diesem Kapitel wird untersucht, wie genau eine modellbasierte Berechnung des Aspekt-
winkels auf dieser Basis sein kann. Hierfiir wird ein vereinfachtes Fahrzeugmodell aufgestellt,
mit dem der Aspektwinkel berechnet werden kann. Hierbei konnen zwei Ansitze unterschieden
werden:

e Der gesuchte Winkel kann aus Fahrzeugldnge oder -breite berechnet werden (Abschnitt
2.5).

e Das Verhiltnis von Fahrzeuglidnge zu -breite kann als Ausgangspunkt fiir die Berechnung

des Winkels dienen. In diesem Fall ist die Kenntnis von Fahrzeugliange bzw. -breite nicht
notig (Abschnitt 2.6).
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2. Aspektwinkelschdtzung

4

Abbildung 2.1.: Koordinatensystem nach DIN 70 000. Der Ursprung des Koordinatensystems
befindet sich mittig auf der Vorderachse. Die X, Y und Z-Achsen sind in
Fahrtrichtung, nach links bzw. nach oben ausgerichtet. Zusétzlich sind die
Winkel fiir die rotatorischen Bewegungen , Rollen” (®), ,,Nicken” (®) und
,Gieren” (¥) definiert. Fiir diese Arbeit ist der Gierwinkel ¥ detektierter Fahr-
zeuge mafgeblich.
Quelle: [Nem07, S. 6]

Die modellbasierten Berechnung des Aspektwinkels unterliegt einem unvermeidbaren Mo-
dellfehler. Dieser stellt die Untergrenze des Fehlers bei der Berechnung des Aspektwinkels dar.
Der Modellfehler wird anhand dreier Modellprobleme untersucht (Abschnitt 2.7).

2.2. Koordinatensystem

Um den Aspektwinkel detektierter Fahrzeuge schitzen zu kdnnen, ist das Weltkoordinaten-
system, in dem sie sich aus Sicht des detektierenden Fahrzeugs befinden, festzulegen. Die
geschitzte Lage detektierter Fahrzeuge bezieht sich auf dieses Weltkoordinatensystem.

In dieser Arbeit wird das im automobilen Umfeld {ibliche aufbaufeste Koordinatensystem
nach DIN 70000 verwendet. Der Ursprung des Koordinatensystems ist mittig zwischen den
vorderen Radern, auf Hohe der Radachse. Von diesem Ursprung ausgehend ist die X-Achse
in Fahrtrichtung, die Y-Achse nach links und die Z-Achse nach oben ausgerichtet (rechts-
hédndisches Koordinatensystem). Die Winkel zwischen den Koordinatenachsen sind jeweils
90°.

Zusétzlich zum Koordinatensystem legt DIN 70 000 noch drei rotatorische Bewegungen
,Rollen”, , Nicken” und ,Gieren” fest. Rollen ist als Drehung um die X-Achse, Nicken als
Drehung um die Y-Achse, Gieren als Drehung um die Z-Achse definiert. Die zugehorigen
Winkel heifien @ (Rollwinkel), ® (Nickwinkel) und ¥ (Gierwinkel). Die Drehrichtung ist der
mathematisch positive Sinn (gegen den Uhrzeigersinn). Abb. 2.1 zeigt das Koordinatensystem
sowie die definierten Drehbewegungen und -richtungen.
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2.3. Assoziation von Fahrzeug und Fahrzeugriickfront

=

®
A‘ D ¢ AB C D‘

(a) (b)

Abbildung 2.2.: Assoziation von Riickfronten und Gesamtfahrzeugen. (a) Perfekte Detektio-
nen. (b) Fiir das Gesamtsystem miissen Riickfronten (weif$) zu Gesamtfahrzeu-
gen (grau) assoziiert werden. Hierbei sind die unteren Ecken der Detektionen
(A, B, C und D) mafdgeblich. Entsprechen die Detektionen exakt den realen
Ausmafien von Gesamtfahrzeug bzw. Riickfront, sind entweder die Ecken A
und B oder die Ecken C und D deckungsgleich (rechte Seite).

Durch Angabe der Koordinaten (X,Y,Z )" und der Drehwinkel (®,©,¥)" ist ein Objekt
eindeutig im dreidimensionalen Raum lokalisier- und ausrichtbar (6 Degrees of Freedom, 6DoF)
[Nem07, S. 3£f.].

In diesem Kontext lasst sich die gesuchte Grofle , Aspektwinkel” detektierter Fahrzeuge wie
folgt fassen: Der Aspektwinkel ist der Gierwinkel ¥ detektierter Fahrzeuge, bezogen auf das
am detektierenden Fahrzeug angebrachte Koordinatensystem.

2.3. Assoziation von Fahrzeug und Fahrzeugrickfront

Detektionen von Gesamtfahrzeugen und Fahrzeugriickfronten miissen einander zugeordnet
werden, nachdem diese getrennt voneinander gefunden wurden (vgl. Abschnitt 2.1). PKW
werden PKW-Riickfronten zugeordnet, LKW werden mit LKW-Riickfronten assoziiert, d. h. die
Assoziation findet nicht zwischen verschiedenen Fahrzeugtypen statt.

Fiir die Zuordnung sind die unteren Ecken der Detektionen mafSgeblich (vgl. Abschnitt 2.4).
Abb. 2.2(b) stellt diese Ecken A, B, C und D dar. Die Detektion von Riickfront und Gesamtfahr-
zeug sind weifd bzw. grau dargestellt. Entsprechen die Detektionen exakt den realen Ausmafien
von Gesamtfahrzeug bzw. Riickfront, sind entweder die Ecken A und B oder die Ecken C und
D deckungsgleich (Abb. 2.2(b), rechte Seite).

Um auch nicht perfekt zueinander passende Detektionen zu assoziieren, wird die L;-Distanz
(Manhattan Distance) zwischen den Punkten A und B bzw. C und D berechnet. Der kleinere
der berechneten Abstande wird im Anschluss durch die Breite der Gesamtfahrzeugdetektion
dividiert, um den Abstand in Bezug zur absoluten Grofie der Detektionen zu setzen (Ska-
lierungsinvarianz). Ist die so berechnete Grofie kleiner als eine Schwelle I', so werden die
Detektionen einander zugeordnet. Bei mehreren moglichen Paaren wird ein best-fit-Ansatz
gewdhlt, d. h. die am besten zueinander passenden Paare werden assoziiert.
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2. Aspektwinkelschdtzung

Y

Abbildung 2.3.: Geometrische Ausgangssituation bei der Schitzung des Aspektwinkels. Bei
der Schitzung des Aspektwinkels sind drei Kanten (gelb) mafigeblich. Diese
entsprechen aus der Vogelperspektive betrachtet drei Punkten A, B und C.

2.4. Geometrische Ausgangssituation und Fahrzeugmodell

Da lediglich der Gierwinkel detektierter Fahrzeuge berechnet werden soll, werden der Roll-
und Nickwinkel nicht weiter untersucht. Unter Annahme eines ungekriimmten Erdbodens
(engl. Ground Plane, siehe 3.5) ldsst sich die Situation aus der Vogelperspektive betrachten.
Hierfiir ist Voraussetzung, dass waagrechte Linien im Bild auch tatsidchlich waagrechten Linien
in der Realitdt entsprechen, d. h. die Kamera anndhernd waagrecht verbaut ist. Das war beim
Versuchsaufbau dieser Arbeit der Fall (vgl. 1.2).

Fiir die Schatzung des Gierwinkels sind drei Fahrzeugkanten von Bedeutung. Diese sind
in Abb. 2.3 gelb hervorgehoben. Wird die Situation aus der Vogelperspektive betrachtet, so
entsprechen diese drei Punkten A, B und C. Ohne Einschrankung der Allgemeinheit ist hierbei
der Punkt A immer links, der Punkt B mittig und der Punkt C rechts. Abb. 2.3 rechts zeigt die
Situation im Weltkoordinatensystem aus der Vogelperspektive. Die Z-Achse kann in diesem
Fall vernachldssigt werden. Die Kamera ist im Ursprung angebracht und filmt in Fahrtrichtung,
d.h. entlang der X-Achse. Die Verbindungslinien zwischen den Punkten A, B und C und dem
Ursprung in Abb. 2.3 rechts sind die Sichtlinien der Kamera.

Es sind nicht immer drei Punkte sichtbar. Steht das Fahrzeug in einem bestimmten Winkel
zur Kamera, sind lediglich zwei Punkte zu sehen. Abb. 2.4 zeigt diesen Fall. Analog zum ersten
Fall seien dies die Punkte A und B. Ohne Einschrankung der Allgemeinheit ist A der linke und
B der rechte der Punkte.

Durch die perspektivische Projektion der Kamera gehen Tiefeninformationen verloren, d. h.
die X- und Y-Koordinaten der Punkte sind nicht genau bestimmbar. Alle Punkte werden auf
eine Bildebene in gleicher Tiefe abgebildet. Im hier verwendeten Modell sei diese durch den
Punkt B gehend, d. h. das Fahrzeug hat im Bild die in Abb. 2.5 rot eingezeichneten horizontalen
Ausmafle. Die Punkte A und C werden auf die Bildpunkte A" bzw. C” abgebildet. Die Ortsvek-
toren von A’, B und C’ seien a4, b und c. Die Distanz der Bildebene (= X-Koordinate des Punkts
B) sei mit d bezeichnet. Der gesuchte Winkel ist «. 8 ergibt sich als § = 90° — a.
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2.4. Geometrische Ausgangssituation und Fahrzeugmodell

Y

Abbildung 2.4.: Geometrische Ausgangssituation bei der Schitzung des Aspektwinkels.

Steht das Fahrzeug in einem bestimmten Winkel, sind nur zwei der drei maf3-
gebenden Kanten sichtbar.

A .

AN
fayy
9}

Abbildung 2.5.: Mafigebende Variablen bei der Berechnung des Aspektwinkels. Durch die
perspektivische Projektion auf eine Bildebene gehen Tiefeninformationen verlo-
ren. Die Bildebene sei durch den Punkt B gehend. Die Punkte A und C werden
auf die Bildpunkte A’ bzw. C” abgebildet. Die rote Linie zeigt die sichtbaren
Ausmafse des Fahrzeugs. Der gesuchte Winkel ist dann durch « gegeben.
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2. Aspektwinkelschdtzung

Die Breite w und die Lange | des Fahrzeugs konnen nur geschitzt werden. In der Realitét
weichen die angenommenen w und / von den tatsdchlichen Werten ab. D. h. bei der Berechnung
des Winkels ergibt sich ein inhdrenter Modellfehler, da keine Unterscheidung von Fahrzeugmo-
dellen (Smart versus S-Klasse etc.) vorgenommen wird. Die Auswirkungen des Modellfehlers
werden anhand dreier Modellprobleme untersucht (siehe Abschnitt 2.7).

2.5. Berechnung des Aspektwinkels aus Fahrzeuglange und -breite

Wird die Breite w oder die Lange [ eines Fahrzeugs als bekannt angenommen, lédsst sich der
gesuchte Winkel « (siehe Abschnitt 2.4) berechnen, wenn b und a bekannt sind. Ist ¢ statt
a bekannt, ist § berechenbar, womit a bestimmt werden kann. Im Folgenden wird auf die
Berechnung von « eingegangen. Das Bestimmen von p verlduft analog.

Sei A der Ortsvektor des Punkts A, ||.|| sei die Ly-Norm (Euklidischer Abstand), x; sei die i-te
Komponente eines Vektors x.

Da bekannt ist, dass ||A — b|| = I und es einen Faktor k gibt, fiir den A = ka gilt, lasst sich
die quadratische Gleichung

[ka — b|| = \/(kal —b1)?+ (kap — bp)? =1 (2.1)

aufstellen. Von den Losungen

(a1by + azby) £ \/2a1a2b1b2 — a2b3 + a312 — a3b? + a3]?

2 2
ar +a;

kip =

ist k1 das gesuchte k. k < k; ist eine Losung der Gleichung, bei der der Vektor a verkiirzt statt
verlangert wird (siehe Abb. 2.6(a)). Diese Losung kann ignoriert werden. Hat Gleichung (2.1)
keine Losung, weicht das angenommene [ so stark von der tatsdchlichen Lange des Fahrzeugs
ab, dass sich die Annahme nicht mehr in Einklang mit dem Bild bringen ldsst (siehe Abb. 2.6(b))
Mit dem Faktor k; ldsst sich a als Winkel zwischen den Vektoren (kjga — b) und (a — b)
berechnen. D. h.
(kg —b)(a—b)

X = arccos .
lkra —bl| fla — bl

2.6. Berechnung des Aspektwinkels aus dem Verhaltnis von
Fahrzeuglange und -breite

Statt w oder I direkt als bekannt anzunehmen, lédsst sich der Aspektwinkel auch aus dem
Verhiltnis von Fahrzeugliange zu Fahrzeugbreite berechnen. D. h. indem g mit

q:%

festgelegt wird, ist « berechenbar, ohne / und w zu kennen.

Hierfiir miissen — im Gegensatz zum ersten Ansatz (Abschnitt 2.5) — alle drei mafigebenden
Punkte A, B und C sichtbar sein. Sind lediglich zwei Punkte zu sehen, kann « nur in einem
Intervall angegeben werden (siehe Abschnitt 2.6.2).
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2.6. Berechnung des Aspektwinkels aus dem Verhéltnis von Fahrzeugldnge und -breite

(@) (b)

Abbildung 2.6.: Probleme bei der Berechnung des Aspektwinkels aus der Fahrzeuglinge.
(a) Bei der Berechnung des Aspektwinkels ergeben sich zwei mogliche Losun-
gen, von denen eine zu verwerfen ist. Sie ergibt den Faktor k;, welcher zum
Punkt Z fihrt, der ,vor” B liegt. Der gesuchte Faktor k; ergibt den korrek-
ten Punkt A. (b) Geometrisch entspricht die Losung von Gleichung (2.1) den
Schnittpunkten eines Kreises mit dem Radius w um den Punkt B mit der Sicht-
geraden durch den Punkt A’. Hat der (gedachte) Kreis keinen Schnittpunkt,
gibt es keine Losung. Dies kann geschehen, wenn das angenommene w zu
stark vom tatsdchlichen w,,; abweicht.

2.6.1. Berechnung des Aspektwinkels bei drei sichtbaren Punkten

Ahnlich zum ersten Ansatz miissen fiir die Berechnung von & zuerst die Faktoren k; , gefunden
werden, womit die Koordinaten der Punkte A = k12 und C = kyc berechnet werden konnen.

Die Dreiecke OBA und OBC bilden jeweils einen geschlossenen Vektorzug (siehe Abb. 2.7).
Damit lasst sich das System

b+1 (sm"‘> ~ka = 0
cos
sin 3 sin(90° — «)
2w (—COS[B) x=0Fw (—cos(90° - a)) 2 B

aufstellen. 0 ist hierbei der zweidimensionale Nullvektor (0,0)T. Durch Einsetzen der Gleichun-
gen

I = quw
sin(90° —a) = cosw
—cos(90° —a) = —sina

27



2. Aspektwinkelschdtzung

(@) (b)

Abbildung 2.7.: Die Dreiecke OBA und OBC bilden geschlossene Vektorziige. (a) Vektorzug
des Dreiecks OBA. (b) Vektorzug des Dreiecks OBC.

lasst sich das System auf die Form

kia; = by +qwsina (2.2)
kiay = by +qwcosa (2.3)
kocy = by +wcosua (2.4)
koco = by —wsina (2.5)

bringen. Elimination mittels (2.2) 4+ 4(2.5) und (2.3) — q(2.4) ergibt das lineare System

klﬂlz — kzb]C] = —qbl + bz
kiai +kogeo, = b1 +gby

mit der Losung

B qcaby — caby — bicp — gbacy
axcy + aicq
arby + qazbz + qa1b1 — a1 by
g(axcy + ajcq) '

Mit den so berechneten Faktoren k; » konnen, analog zum ersten Ansatz, die gesuchten Winkel
« und B berechnet werden.

Diese Berechnung von « setzt keine Kenntnis der Entfernung der Fahrzeugdistanz d voraus.
D.h. fiir die Berechnung kann ||b|| = 1 angenommen werden!. Dies ldsst sich damit erkliren,
dass das im Bild sichtbare Seitenverhaltnis als Folge des Strahlensatzes invariant gegentiiber
Streckungen und Stauchungen ist. Aus der sichtbaren Lange nur einer Seite ldsst sich nicht auf
den Winkel & schliefSen, ohne Distanzinformationen zu Hilfe zu nehmen. Daher wird fiir die
Berechnung mittels Ansatz 1 die Fahrzeugdistanz d benotigt.

ky =

ky =

IDie Vektoren 4 und ¢ sind in diesem Fall entsprechend zu skalieren.
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2.7. Vergleich der Ansitze der modellbasierten Aspektwinkelschédtzung

v 72\ C

V1 )4

(@) (b)

Abbildung 2.8.: Abschitzung des Aspektwinkels « bei nur zwei sichtbaren Punkten. Sind
nur zwei Punkte sichtbar, 1dsst sich der Winkel a nur in einem Intervall angeben.
Dieses ergibt sich geometrisch aus dem Spielraum, den ein Fahrzeug haben
kann, ohne dass drei Punkte sichtbar werden. (a) Untere Schranke 7. (b) Obere
Schranke 5.

2.6.2. Schatzung das Aspektwinkels bei zwei sichtbaren Punkten

Sind lediglich zwei der drei mafigebenden Punkte sichtbar, ldsst sich « ohne Kenntnis von w
und [ nicht berechnen. Ist nur g = % bekannt, kann lediglich ein Intervall fiir den Wert von «
angegeben werden.

Bei zwei sichtbaren Punkten ist @ durch die beiden Sichtwinkel 7 und -, eingeschrénkt, d. h.

71 << 7. (2.6)

Die Grenzen der Abschitzung (2.6) ergeben sich dabei geometrisch aus dem Spielraum, den
ein Fahrzeug haben kann, ohne dass einer der Punkte A oder C sichtbar wird. Abb. 2.8 zeigt
die Grenzfélle « = 1 und & = 2, zwischen denen sich a« bewegen kann.

2.7. Vergleich der Ansatze der modellbasierten
Aspektwinkelschatzung

Die beiden vorgestellten Ansidtze werden anhand dreier Modellprobleme verglichen, um
einen Eindruck tiber die Genauigkeit und Stabilitdt der Winkelschdatzung unter abweichenden
Fahrzeugldangen/-breiten in der Realitdt zu vermitteln.

Die Modellprobleme sind

1. Ein Fahrzeug mit einem Aspektwinkel von 45° (siehe Abb. 2.9(a)),
2. ein Fahrzeug mit einem Aspektwinkel von 90° (siehe Abb. 2.9(b)) und

3. ein Fahrzeug mit einem Aspektwinkel von 10° (siehe Abb. 2.9(c)).
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2. Aspektwinkelschdtzung

Die reale Fahrzeugbreite ist 3 Meter, die reale Lange 5 Meter; Die erwartete Fahrzeugbreite w
ist 3.1 Meter, die erwartete Lange [ 5.1 Meter. Das entspricht einer Modellabweichung von ca.
3 % in der Breite und 2 % in der Lange. Abb. 2.9 zeigt die drei Modellprobleme.

45° /

(@) (b)

10° .\

(©

Abbildung 2.9.: Modellprobleme. Um einen Eindruck von der Genauigkeit einer modellbasier-
ten Aspektwinkelschdtzung zu vermitteln, werden die vorgestellten Anséitze
anhand dreier Modellprobleme untersucht. Diese sind (a) ein Fahrzeug mit
Aspektwinkel 45°, (b) ein Fahrzeug mit Aspektwinkel 90° und (c) ein Fahrzeug
mit Aspektwinkel 10°.

Fiir die Untersuchung werden die in Abb. 2.9 dargestellten Fahrzeuge an alle Positionen
innerhalb des Sichtbereichs der Kamera verschoben. Der Kamera-Offnungswinkel ist hierbei
auf 90° festgelegt, die maximale Distanz betrdgt 100 Meter. An jeder Position wird mit beiden
Ansitzen der Winkel berechnet und anschlieffend die Abweichung vom tatsdchlichen Winkel
ausgewertet. Bei beiden Ansdtzen wird der Winkel a berechnet. Mit dem ersten Ansatz wére
es prinzipiell moglich, den Gegenwinkel B (mit Hilfe der Punkte B und C) zu berechnen.
Diese Option wird allerdings nicht weiter untersucht, um die Vergleichbarkeit der Ergebnisse
sicherzustellen.

Abb. 2.10 zeigt den Fehler beim ersten Modellproblem. Die rechte Graphik zeigt den Fehler
bei der Berechnung mit dem ersten Ansatz. Die Abweichung betréagt, je nach Position des
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2.7. Vergleich der Ansitze der modellbasierten Aspektwinkelschédtzung
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Abbildung 2.10.: Fehler (in Grad) der Aspektwinkel von Modellproblem 1. Bei der Berech-
nung durch die Fahrzeugliangen (linke Graphik) zeigt sich ein grofierer Fehler
als bei der Berechnung durch das Langenverhéltnis (rechte Graphik). Der
Fehler ist abhéngig von der Position des Fahrzeugs. Je ,spitzer” auf die mafs-
gebende Seite des Fahrzeugs geblickt wird, desto grofier ist der Fehler. Wird
statt des Winkels a der Gegenwinkel 8 berechnet, sind die grofien Fehler
am entgegengesetzten Ende des Sichtbereichs, da in diesem Fall rechts der
spitzere Winkel ist.

Fahrzeugs, bis zu 12°. Je spitzer die Seite des Fahrzeugs zu sehen ist, desto grofier ist der Fehler.
Bei der Berechnung mit dem zweiten Ansatz (rechte Graphik) ist der Fehler geringer als 2°. Fiir
das erste Modellproblem ist also der zweite Ansatz besser fiir die Berechnung geeignet.

Der Fehler beim zweiten Modellproblem (Abb. 2.11) ist bei beiden Ansdtzen gering. Bei
Berechnung aus den Fahrzeugldngen ist der maximale Fehler kleiner als 2°, wobei dieser Fall
nur am Rand des Sichtbereichs auftritt. Die Berechnung aus den Langenverhéltnissen weicht
nur marginal vom Sollergebnis ab. Somit ist auch fiir das zweite Modellproblem der zweite
Berechnungsansatz besser geeignet, wobei die Unterschiede weniger stark ausfallen.

Das dritte Modellproblem zeigt die grofiten Unterschiede zwischen den beiden Moglichkeiten
der Aspektwinkelberechnung. Wird « alleine aus der Fahrzeugbreite berechnet, so betrdgt die
Abweichung tiber 60°. Auch hier zeigt sich wieder der schon bei der Untersuchung von Modell-
problem 1 sichtbare Effekt, dass der Fehler umso grofser wird, je ,spitzer” auf die mafigebende
Seite geblickt wird. Beim dritten Modellproblem ist der korrekte Winkel mit 10° allerdings
deutlich spitzer als bei Modellproblem 1 (45°). Folgerichtig zeigt sich im dritten Modellproblem
dieses Problem sehr viel deutlicher. Wird der Aspektwinkel aus den Langenverhéltnissen be-
rechnet, liegt der Fehler, wie schon bei den beiden ersten Modellproblemen, deutlich unter dem
Fehler vom ersten Ansatz.

Insgesamt gesehen ist der zweite vorgestellte Ansatz deutlich robuster gegentiber Modellfeh-
lern. In allen untersuchten Modellproblemen ist der Fehler kleiner als bei der Alternative, der
Berechnung unter Annahme der Fahrzeuglinge/-breite. Zusétzlich miissen fiir den zweiten
Ansatz keine Entfernungsinformationen vorliegen, was im ersten Ansatz der Fall sein muss.
Nachteilig ist allerdings, dass fiir eine Berechnung immer alle drei mafigebenden Punkte sicht-
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2. Aspektwinkelschdtzung
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Abbildung 2.11.: Fehler (in Grad) der Aspektwinkel von Modellproblem 2. Der Modellfehler
wirkt sich beim zweiten Modellproblem nicht sehr stark aus. Bei beiden
Ansidtzen der Aspektwinkelberechnung ist er geringer als 2°, wobei der zweite
Ansatz (rechte Graphik) leicht besser abschneidet.

Berechnung aus Fahrzeugldangen Berechnung aus Langenverhiltnis
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Abbildung 2.12.: Fehler (in Grad) der Aspektwinkel von Modellproblem 3. Auch hier zeigt
sich der bereits beim ersten Modellproblem (Abb. 2.12) zu beobachtende
Effekt, dass sich der Modellfehler stark auswirkt, sobald die mafsgebende Seite
unter einem spitzen Winkel zu sehen ist. Wird der Askpektwinkel mit dem
ersten Ansatz berechnet (linke Graphik) fiihrt das zu einer Abweichung von
iiber 60°. Die Berechnung mit dem zweiten Ansatz (rechte Graphik) zeigt, wie
bei den anderen Modellproblemen ebenfalls, keine starken Abweichungen.
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2.8. Kategorisierung assoziierter Detektionen

left 16 left 14 left 12 straight  right12  right14 right16

Abbildung 2.13.: Beispiele fiir kategorisierte PKW. Wie zu sehen ist, spiegelt die vorgenom-
mene Kategorisierung den Aspektwinkel wider. Je grofier die Zahl, desto
,schrager” steht das Fahrzeug zur Kamera. Die Kategorien left bzw. right
geben die sichtbare Seite des Fahrzeugs an.

bar sein miissen. Sind nur zwei Punkte sichtbar, kann der Aspektwinkel lediglich nach oben
und unten abgeschitzt, jedoch nicht exakt berechnet werden (vgl. Abschnitt 2.6.2).

Die in diesem Abschnitt vorgenommene Untersuchung betrachtet lediglich den inhdrenten
Modellfehler, d. h. es wird angenommen, dass sich die Bildpunkte A’, B und C” exakt bestim-
men lassen. Dies ist in der Realitdt nicht der Fall. Da Detektionen von Fahrzeugen, die die
mafigebenden Kanten vorgeben (vgl. Abschnitt 2.4), nicht immer die exakten Ausmafle der
Fahrzeuge wiedergeben, weichen schon die Koordinaten von A’, B und C’ von den tatsdchlichen
Fahrzeugkanten ab. Der Modellfehler ist lediglich eine theoretische Untergrenze des Fehlers. In
der Praxis ist zu erwarten, dass der berechnete Winkel noch sehr viel starker vom tatsdchlichen
Winkel abweicht.

Da die Winkelberechnung nur mit sehr grofsen Ungenauigkeiten verbunden ist, wird im rea-
lisierten System keine exakte Winkelberechnung vorgenommen. Stattdessen werden Fahrzeuge
lediglich in grobe Kategorien eingeteilt (siehe Abschnitt 2.8), welche den Aspektwinkel detek-
tierter Fahrzeuge widerspiegeln, ohne die fehleranfillige und ungenaue Winkelberechnung
durchfiihren zu miissen.

2.8. Kategorisierung assoziierter Detektionen

Statt den Winkel direkt auszurechnen, werden im realisierten System den erkannten Fahr-
zeugen Kategorien zugewiesen. Diese spiegeln den gesuchten Aspektwinkel wider. Nach der
Assoziation (siehe Abschnitt 2.3) sind die Hohe und Breite von zusammengehorigen Detektio-
nen bekannt. Damit kann eine Kategorisierung wie folgt formuliert werden. Die Bezeichnungen
der Punkte beziehen sich auf Abb. 2.2.

¢ Sind die Punkte A und B deckungsgleich, bekommt das Fahrzeug die Kategorie right, sind
die Punkte C und D deckungsgleich, wird die Kategorie left vergeben. Gilt sowohl A = B
als auch C = D, wird die Kategorie straight vergeben. In diesem Fall fahrt das Fahrzeug in

gerader Linie von der Kamera weg bzw. auf sie zu?.

2Vorder- und Riickfront werden nicht unterschieden, vgl. Abschnitt 1.3.
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2. Aspektwinkelschdtzung

e Wird in Schritt 1 die Kategorie left oder right vergeben, lasst sich der Aspektwinkel genauer
fassen. Daher wird eine weitere Unterkategorie gewonnen, indem

o Breite der Fahrzeugdetektion (in Pixeln)
n Breite der Riickfrontdetektion (in Pixeln)

berechnet wird. Das so bestimmte k gibt die Abweichung von einer Ausrichtung in gerader
Linie zur Kamera an. Je grofier k, desto ,,schrager” steht das Fahrzeug zur Kamera.

Formal betrachtet ist eine Winkelkategorie ¢ ein Tupel
c = (c1,c2) € {right, left, straight} x IN.

Fiir Kategorien mit ¢; = straight wird c; = 10 gesetzt. Diese formale Definition ist bei der
Evaluation des Gesamtsystems von Bedeutung (siehe Abschnitt 6.2.4).

Abb. 2.13 zeigt Beispiele fiir PKW zusammen mit den ihnen zugewiesenen Kategorien. Es ist
zu sehen, wie die Kategorisierung den Aspektwinkel widerspiegelt.
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KAPITEL 3

Detektion von Fahrzeugen mit Kaskadenklassifikatoren

In diesem Kapitel werden die Grundlagen der Detektion von Fahrzeugen mit der Viola-Jones-
Kaskade beschrieben. Es wird auf den Algorithmus AdaBoost (Abschnitt 3.1), die verwende-
ten Merkmale (Abschnitt 3.2), das in dieser Arbeit zum Einsatz kommende Fensterkonzept
(Abschnitt 3.3), die Viola-Jones-Kaskade (Abschnitt 3.4) und das verwendete Verfahren zur
Generierung von Hypothesen (Abschnitt 3.5) eingegangen. Die vorgestellten Konzepte und
Verfahren bilden die Grundlage fiir die in dieser Arbeit entwickelte hierarchische Erweiterung
der Viola-Jones-Kaskade.

3.1. AdaBoost-basiertes Lernen

Boosting ist eine Methode, mehrere schwache Klassifikatoren (sog. Weaklearner) zu einem
starken Klassifikator, dem sog. Stronglearner zu kombinieren. Dabei ist es ausreichend, wenn
die Performance der Weaklearner wenig besser als zuféllig ist [MR03],[Web02, S. 294 £.]. Basie-
rend auf der Idee des Boosting, stellen Freund und Schapire in [FS95] mit AdaBoost (Adaptive
Boosting) den ersten praktisch einsetzbaren Algorithmus fiir die Konstruktion des Stronglear-
ners vor.

Im Folgenden wird zunéchst der urspriingliche Algorithmus aus [FS95] beschrieben (Ab-
schnitt 3.1.1) und einige grundlegende Aussagen iiber den Trainingsfehler sowie die statistische
Interpretierbarkeit (Abschnitt 3.1.2) erldutert. Abschlieflend wird der auf [FS95] basierende und
in dieser Arbeit eingesetzte Boosting-Algorithmus RealAdaBoost vorgestellt (Abschnitt 3.1.3).

Fiir eine ausfiihrlichere Einleitung in Boosting sei auf die Arbeit von Meir und Rétsch
[MRO03] sowie die Einfiihrung von Schapire [Sch02] verwiesen. Eine mathematische Analyse
von AdaBoost bieten die Arbeiten von Friedman et al. [FHTO00] und Schapire und Singer [S599].
Ein Uberblick iiber weitere Boosting-Algorithmen und aktuelle Entwicklungen findet sich in
der Arbeit von Zhang und Zhang [ZZ10].
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

3.1.1. Original AdaBoost von Freund und Schapire

Aus einer Menge von Beispielen

{(l]lyl)/"'/(EN/yN)}/ lz S M/ yl S C

mit einem Gewicht wq (i) = %, i=1,...,N fiir jedes der Beispiele wird durch AdaBoost ein

additives Modell
T
Z “tht(i)
t=1

konstruiert. Dieses kombiniert T Weaklearner /; : M — C linear zu einem Stronglearner. Bei
der Konstruktion des Modells geht AdaBoost iterativ vor. In jeder Iteration wird derjenige
Weaklearner mit dem kleinsten gewichteten Fehler bei der Klassifikation der Beispiele zum
finalen Stronglearner hinzugefiigt. AdaBoost gehort somit zur Klasse der Greedy-Algorithmen
[Sch01, S. 185 £f.],[MRO3]. Die Gewichtung «;, mit der /; in das Modell eingeht, wird hierbei
umso grofser gewdhlt, je geringer der gewichtete Trainingsfehler des Weaklearners ist.

Im Anschluss an die Auswahl des neuen Weaklearners /1; werden die Gewichte der Beispiele
angepasst. Das Gewicht derjenigen Beispiele, die durch den neuen Weaklearner falsch klassifi-
ziert wurden, wird erhoht; die korrekt klassifizierten Beispiele werden geringer gewichtet. So
wird der Fokus fiir die ndchste Iteration auf die bisher falsch klassifizierten Beispiele gelegt.

Der finale Stronglearner Hr ergibt sich nach T Runden zu

T
Hr: M — C, Hy(x) = sign ththt(g).
t=1

Abb. 3.1 zeigt den Ablauf von AdaBoost graphisch, Algorithmus 3.1 beschreibt AdaBoost in
Pseudocode. Die Begriindung der Berechnungsvorschriften von a; und w;1 (i) befindet sich in
Abschnitt 3.1.2.

3.1.2. AdaBoost als Minimierung des exponentiellen Fehlers

Friedman et al. liefern eine Erklarung fiir die Wahl von a; und w;1 (i) [FHT00]. Demnach lasst
sich AdaBoost interpretieren als schrittweise Minimierung der exponentiellen Fehlerfunktion

N
E(k) = ;eXp(—yiH'%(zi))- (3.1)

H§ ist hierbei das nach k von T Schritten (teilweise) konstruierte Modell
) k
Hr(x) = Z aghq(x).
q=1

Die Berechnungsvorschriften fiir a; und w;1 (i) ergeben sich von Gleichung (3.1) ausgehend,
wenn man die bisherigen «; und w;(i) (j = 1,...,k — 1) als konstant ansieht und E(k) bzgl.
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3.1. AdaBoost-basiertes Lernen

hi(x)  hy(x) h(x)

AN

T
Hy(x)=sign ) a,h,(x)

t=1

Abbildung 3.1.: Ablauf von AdaBoost. In jeder Runde wird ein Weaklearner h; basierend
auf den Beispielgewichten w; (i) ausgewdhlt (blaue Pfeile). Der Fehler von h;
beeinflusst die Gewichte der Beispiele fiir die ndchste Runde (griine Pfeile). Am
Ende werden alle ausgewédhlten Weaklearner linear zu einem Stronglearner
kombiniert (rote Pfeile).

Quelle: Darstellung basierend auf [Bis06, S. 658]

ax bzw. wy (i) minimiert [Bis06, S. 659 ff.]. Der Trainingsfehler A’t‘mm von H? ist in diesem Fall
durch

1 .
A]tcmin = N ‘{yl 7£ sign HIT("(XZ)}‘ < Aligmx (32)
k N
= H Z wq(i) eXP(_D‘qyihq (x1))
g=1i=1
k
- qu
g=1

beschrankt [SS99],[HALLO7]. Der Normalisierungsfaktor der Beispielgewichte Z; ist also eine
obere Schranke fiir den Trainingsfehler in Runde k. Es gilt zudem

Zk+1A17;1ax = Ak+1 < Ak

max — max

sowie

0< Ak, <1
und damit

Him, B =0

Folglich verschwindet bei Wahl eines ausreichend grofien T der Trainingsfehler [Sch02]. Fiir
einen ausfiithrlichen und kommentierten Beweis dieser Aussage sei auf [Wen03, S. 31 ff.] ver-
wiesen.

In der Praxis ist der tatsdchliche Fehler oftmals kleiner als die durch Gleichung (3.2) vorgege-
bene Schranke [Wen03, S. 62 f.]. Dadurch kann es allerdings sein, dass ein neu hinzugefiigter

Weaklearner hy 1 den Trainingsfehler A’t‘;;iln vergrofiert, ohne Gleichung (3.2) zu verletzen. Um

37



3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

Algorithmus 3.1 Original AdaBoost von Freund und Schapire

Eingabe :Beispiele: {(xy,11),..., (xn,UN)}, x;, €M, y; €C

Anzahl der Lernschritte: T
Ausgabe :Stronglearner Hr
Initialisiere: wy (i) + %, i=1,...,N
fort =1to T do
// Wahle Weaklearner /i; mit dem kleinsten gewichteten Fehler €
hy < arg;nin €j, mit € = YN wi(i) [hi(x;) # vil

j

// Bestimme Gewichtung des neuen Weaklearners
Ny — %ln (1_"”)

€t
// Adaptiere und normalisiere die Gewichte fiir die n&chste Runde
Zy YLy wi(i) exp(—aryihi(x;))
w1 (i) = 710 (1) exp(—ayih(x;))
end

// Stronglearner Hr ergibt sich zu:
Hr(x) = sign (L arhu(x))

dieses Phdnomen zu begrenzen und Weaklearner mit negativem Einfluss zu entfernen, schlagen
Li et al. einen Backtracking-Mechanismus vor [LZSZ02],[LZZ"02]. Eine ausfiihrliche Erklarung
des resultierenden FloatBoost-Algorithmus findet sich bspw. in [Ape05, S. 24 ff.]. AufsSerdem
setzt der Konvergenzbeweis die Existenz beliebig vieler Weaklearner, deren Performance besser
als zufallig sein muss, voraus. Diese Voraussetzung ist in der praktischen Anwendung nicht
gegeben; Praktisch existieren nur begrenzt viele Weaklearner. D. h. ab einer gewissen Runde
wird der Trainingsfehler nicht mehr kleiner werden.

3.1.3. RealAdaBoost von Schapire und Singer

Ausgehend vom urspriinglichen AdaBoost [FS95], entwickeln Schapire und Singer mit
RealAdaBoost [SS99] eine generalisierte Version des Verfahrens, das eine hohere Performance
als der Originalalgorithmus aufweist [LZZ102],[WAHLO04],[MKHO05]. Im Gegensatz zu diesem
geht RealAdaBoost von reellen Weaklearnern f; : M — R aus. Hierbei ist sign f;(x) die Klasse,
die f; fuir x vorschlagt; | f;(x)| ist interpretierbar als die Sicherheit (engl. confidence), die f; bei
dieser Aussage hat [FHT00].

Statt der exponentiellen Fehlerfunktion E (k) (Gleichung (3.1)) minimiert RealAdaBoost direkt
die durch Z; gegebene obere Schranke fiir den Trainingsfehler in Runde t. Da f;(x) reell ist,
lasst sich ohne Verlust der Allgemeinheit die Berechnung von a; in den Weaklearner verlagern.
Somit ldsst sich der vom gewdhlten Weaklearner f; abhéngige Fehler Z; schreiben als [SS99]

N
Zi(fr) = ;wt(i) exp(—yifi(x;)) - (3.3)
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3.2. Verwendete Merkmale

Mit diesem Maf3 ldsst sich ein iterativer Algorithmus formulieren: In jeder Runde wird derje-
nige Weaklearner ausgewdhlt und zum finalen Stronglearner hinzugefiigt, fiir den Gleichung
(3.3) minimal wird.

Beschrankt man sich auf eine bestimmte Klasse von Weaklearnern, die sog. Eingaberaum-
zerlegenden (engl. domain-partitioning) Weaklearner, ldsst sich diese recht allgemeine Aussage
noch konkretisieren und RealAdaBoost dazu nutzen, effiziente Weaklearner dieser Art zu
konstruieren.

Eingaberaum-zerlegende Weaklearner

Stiitzen die Weaklearner ihre Aussage allein auf eine Zerlegung des Eingaberaums, so ldsst sich
Gleichung (3.3) minimieren, indem fiir jeden Teilbereich ein spezieller Wert ¢; € R gewéhlt wird.
Beispiele fiir Weaklearner dieser Art sind Klassifikationsbaume (siehe Abschnitt 4.1) sowie die
von Viola und Jones [V]01] verwendeten Decision-stumps (siehe Abschnitt 3.4).

Sei ein auf einer Zerlegung des Eingaberaums basierender Weaklearner f gegeben durch

Flx) = { ¢j, falls x in einer bestimmten Teilmenge des Eingaberaums
= 0, sonst

wobei die Werte ¢; nicht ndher bestimmt sind und durch die Minimierung von Z; gefunden
werden. Sei weiter WjjE der (gewichtete) Anteil an positiven/negativen Beispielen in der be-
trachteten Teilmenge des Eingaberaums. Dann ist Z;( f) minimal, wenn

11 Wj+ 34

]

In diesem Fall ldsst sich Z;(f) durch

Zi(f) =2 Z VWITWS (3.5)
]

berechnen [SS99]. Zu beachten ist, dass hierbei keine Aussage iiber die Zerlegung selbst gemacht
wird. Die Wahl der ¢; geméfs Gleichung (3.4) minimiert Z; fiir eine beliebige Zerlegung; es bleibt
weiterhin Aufgabe des Weaklearners, diese zu finden.

Die mittels Gleichung (3.5) berechnete Grofie wird Z-Wert des Weaklearners f genannt und
kann als die ,Starke” oder ,Machtigkeit”, mit der f zwischen den Positiv- und Negativbeispie-
len unterscheiden kann, interpretiert werden [WIN07].

3.2. Verwendete Merkmale

In diesem Abschnitt werden die in dieser Arbeit zum Einsatz kommenden Merkmale vorgestellt.
Neben den von Viola und Jones verwendeten [V]01] Haarwavelets (Abschnitt 3.2.1) werden die
von Levi und Weiss eingefiihrten EOH-Merkmale (Abschnitt 3.2.2) [LW04] eingesetzt.

Eng mit den verwendeten Merkmalen verkniipft ist das dieser Arbeit zu Grunde liegende
Konzept der Merkmalsfenster. Auf dieses wird in Abschnitt 3.3 eingegangen.
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

3.2.1. Haarwavelets

Die von Oren et al. als Merkmal vorgeschlagenen [OPST97] und von Papageorgiou et al.
weiterentwickelten [POP98] Haarwavelets bestehen aus gewichteten Rechtecken, die Hellig-
keitsbeziehungen zwischen Bildregionen erfassen. Sie sind somit eine Verallgemeinerung des
klassischen Prewitt-Filters [Ja05, S. 365 ff.]. Analog zum Prewitt-Filter ergibt sich der Merk-
malswert, indem die Pixel unter den Rechtecken aufsummiert und durch die Rechteckgrofie

geteilt werden. Anschlieffend werden die so normalisierten Summen voneinander abgezogen
[Kal05, S. 6 ff.].

ljﬂzlj;jiﬂ

(M ) (3) 4)
@) @) ©) (10) (1 (12)

Abbildung 3.2.: Typen von Haarwavelets. Haarwavelets erfassen Helligkeitsunterschiede
in Bildern, indem sie die Pixel unter den weifien bzw. schwarzen Rechte-
cken aufsummieren, die entstehenden Werte durch die jeweilige Rechteck-
grofse teilen und anschliefSend voneinander abziehen [V]01],[Kal05, S. 6 ff.].
Die Abbildung zeigt mogliche Basistypen, die in verschiedenen Beitrdgen
[V]01],[Ape05],[LKPO03] vorgeschlagen wurden.

Quellen: (1) — (4): [V]JO1], (5) — (7): [Ape05], (8) — (12): [LKP03]

Einen Uberblick iiber die Basistypen an Haarwavelets, von denen ausgehend die verschie-
denen Merkmale definiert werden konnen, gibt Abb. 3.2. Zusatzlich zum Basistyp wird die
Position innerhalb des Merkmalsfensters (siehe Abschnitt 3.3) sowie die Skalierung in x- und
y-Richtung benétigt, um ein Merkmal eindeutig zu identifizieren. Abb. 3.3 zeigt beispielhaft
vier der moglichen Merkmale innerhalb eines quadratischen Merkmalsfensters.

Die Menge der moglichen Merkmale, die auf diese Weise definiert werden kénnen, ist sehr
grofs. Allein fiir die von Viola und Jones verwendeten Typen (1) — (4) konnen innerhalb eines 24
mal 24 Pixel grofsen Merkmalsfensters tiber 160 000 verschiedene Kombinationen unterschieden
werden [V]01].

Der Hauptvorteil der Verwendung von Haarwavelets als Merkmale ist die hohe Geschwin-
digkeit, mit der diese ausgewertet werden konnen. Mit dem von Viola und Jones verwendeten
Integralbild lasst sich ein normales, d. h. nicht-diagonales Haarwavelet mit nur vier atomaren
Rechenoperationen berechnen [V]J01]. Um zusitzlich die diagonalen Typen (9) — (12) effizi-

ent zu ermoglichen, erweitern Lienhart et al. die originale Datenstruktur auf ein diagonales
Integralbild [LKP03].
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3.2. Verwendete Merkmale

s/

(a) Typ (8) (b) Typ (4) (c) Typ (7) (d) Typ (9)

Abbildung 3.3.: Beispiele fiir mogliche Haarwavelets in einem quadratischen Merkmals-
fenster. Ein Merkmal ist definiert duch seinen Typ (siehe Abb. 3.2), der Skalie-
rung in x- und y-Richtung sowie der Position innerhalb des Merkmalsfensters.

Von den in Abb. 3.2 gezeigten Basistypen kommen in dieser Arbeit nur die Typen (1) — (8)
zum Einsatz. Auf die diagonalen Haarwavelets wurde verzichtet um die Gesamtanzahl der
Merkmale in einem beherrschbaren Bereich zu halten.

3.2.2. Edge Orientation Histograms

Merkmale, die auf orientierten Gradientenhistogrammen (Histogram of Oriented Gradients, HOG)
basieren, werden schon an verschiedenen Stellen, z. B. der Fufigdngererkennung [DT05] oder
um Objekte anhand lokaler Merkmale (sog. Keypoints) zu finden [Low04], erfolgreich einge-
setzt. Sie werden gebildet, indem in einer Bildumgebung Histogramme der Gradientenrichtung
aufgestellt werden (Abb. 3.4). Diese Histogramme erfassen die vorherrschenden Richtungen
und spiegeln somit die ,,Form” der Kanten in der betrachteten Umgebung wider [ZZ10]. Fiir
eine umfassende Einfiihrung in Gradientenhistogramme sei auf [Wal08, S. 66 ff.] verwiesen.

Gradientenbild  Gradientenhistogramm

Abbildung 3.4.: Merkmalsextraktion von Gradientenhistogrammen. Gradientenhistogram-
me werden gebildet, indem in einer Bildumgebung (rot) das Gradientenbild
berechnet wird. Damit kann das Histogramm der Gradientenrichtungen auf-
gestellt werden.

Um Gradientenhistogramme fiir das Training mit AdaBoost einsetzen zu kénnen, miissen
die eigentlich vektorwertigen Histogramme auf einen skalaren Wert reduziert werden. Diesen
Schritt vollziehen Levi und Weiss in [LW04]. Die von ihnen vorgeschlagenen Edge Orientation
Histograms (EOH) gehen von Gradientenhistogrammen aus und setzen die einzelnen Kompo-
nenten — sprich: die einzelnen Gradientenrichtungen — in Beziehung zueinander. Bspw. kann der
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

Anteil einer einzelnen Gradientenrichtung k an der gesamten Gradientenstérke aller Richtungen
ausgedriickt werden, indem
Ex(R)
Y Ei(R)
1

Ar(R) = (3.6)

berechnet wird [LW04]. Hierbei ist E;(R) der i-te Eintrag des Gradientenhistogramms der
Region R. Eine weitere Moglichkeiten ist die Beziehung zwischen zwei einzelnen Gradienten-
richtungen k und /, ausdrtickbar als

Ex(R)
Ei(R)

Bri(R) =

Durch diesen Ansatz konnen sehr viele verschiedene Merkmale innerhalb eines Merkmals-
fensters (siehe Abschnitt 3.3) definiert werden. Selbst bei Beschrankung auf die Beziehung von
Gleichung (3.6) sind fiir jede mogliche Umgebung innerhalb des Merkmalsfensters so viele
Merkmale, wie das zugrunde liegende Histogramm Eintrdge hat, moglich. Die Zahl der mogli-
chen EOH-Merkmale ist somit dhnlich grofs wie die Zahl der moglichen Haarwavelets. Aus
diesem Grund wird in dieser Arbeit lediglich die durch Gleichung (3.6) definierte Beziehung
verwendet.

Auch EOH-Merkmale lassen sich sehr effizient berechnen. Ahnlich zur Struktur des Integral-
bildes fiir Haarwavelets kommt hierbei fiir EOH-Merkmale das von Porikli [Por05] entwickelte
Integralhistogramm zum Einsatz.

Analog zur Definition der Haarwavelets ist ein EOH-Merkmal eindeutig durch die Position
und Skalierung in x- und y-Richtung sowie zusétzlich durch eine Gradientenrichtung, die in
Beziehung zu den anderen gesetzt wird, definiert. Als Umgebung wird hierbei immer von einer
quadratischen Grundform ausgegangen, die in x- und y-Richtung skaliert wird. Die Skalierung
erfolgt unabhédngig voneinander, d. h. es sind auch nicht-quadratische Formen moglich.

Die zum Einsatz kommenden EOH-Merkmale unterscheiden Gradientenrichtungen, jedoch
nicht Gradientenorientierungen (die Vorzeichen der Gradienten) [Wal08, S. 67 f.] bei der Extrakti-
on der Gradientenhistogramme. Die Anzahl Richtungen, die unterschieden werden, ist auf 5
festgelegt; Die Histogramme haben folglich 5 Eintrage.

3.3. Norm-, Merkmals- und Objektfenster

Um Merkmale eindeutig und skalierungsinvariant angeben zu konnen, muss die Beziehung
zwischen einem Merkmal, den Hypothesen und der Position des gesuchten Objektes innerhalb
einer Hypothese festgehalten werden. Hierfiir bedarf es eines Ansatzes, der Grofien- und
Positionsangaben fiir Merkmale innerhalb einer Hypothese skalierungsinvariant erlaubt. In
diesem Abschnitt wird das Konzept der Norm-, Merkmals- und Objektfenster erldutert. Es geht
zuriick auf [Kal05, S. 25 ff.].

Das Normfenster gibt das Seitenverhéltnis der Hypothesen vor. Es kann als normierte Hypo-
these angesehen werden. Innerhalb des Normfensters werden sowohl das Merkmalsfenster als
auch das Objektfenster pixelgenau definiert. Das Merkmalsfenster ist der Bereich innerhalb des
Normfensters, in dem sich die Merkmale (siehe Abschnitt 3.2) befinden. Das Objektfenster gibt
die Position des zu detektierenden Objektes, bezogen auf das Normfenster, an. Die Anzahl der
Merkmals- bzw. Objektfenster je Normfenster ist nicht begrenzt. Es ist daher moglich, mehrere
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3.3. Norm-, Merkmals- und Objektfenster

Merkmals- und Objektfenster fiir ein Normfenster zu definieren. Das ist bspw. dann sinnvoll,
wenn mehrere Objekt-Typen mit stark unterschiedlichem Seitenverhaltnis mit dem gleichen
Klassifikator erkannt werden sollen. Gemeinsame Merkmale miissen dann nur einmal ausge-
wertet werden (Feature Sharing [TMF07]). In [Kal05] werden auf diese Weise PKW gemeinsam
mit Fufigiangern detektiert. In dieser Arbeit wird diese Technik genutzt, um LKW gemeinsam
mit PKW zu verarbeiten (siehe Abschnitt 6.1.2).

(a) (b)

Abbildung 3.5.: Norm-, Merkmals- und Objektfenster. (a) Norm- (blau, dufleres Fenster),
Merkmals- (rot, mittleres Fenster) und Objektfenster (schwarz, grau hinter-
legt) geben pixelgenau den Zusammenhang zwischen Hypothese, Bereich der
Merkmale und Objekt an. Typischerweise wird die hier gezeigte Konstellation
Objektfenster C Merkmalsfenster C Normfenster gewéhlt. (b) Eine Hypothese
ergibt sich, indem das Normfenster skaliert und an eine Position innerhalb
des Suchtunnels (siehe Abschnitt 3.5) verschoben wird. Merkmals- und Ob-
jektfenster werden dabei im gleichen Mafie skaliert und entsprechend ihrer
Position innerhalb des Normfensters in der Hypothese positioniert.

Typischerweise wird die Konstellation Objektfenster C Merkmalsfenster C Normfenster
gewihlt!. Durch die Wahl des Merkmalsfensters als Obermenge des Objektfensters ist es
moglich, die ,Umgebung” (charakteristische Kanten von Fahrzeugen etc.) der Objekte bei
der Merkmalsextraktion mit einzubeziehen [Kal05, S. 29]. Abb. 3.5(a) zeigt diese Konstellation
beispielhaft an einem quadratischen Normfenster.

Die Beziehung zwischen den Fenstern bleibt auch bei der Hypothesengenerierung (siehe
Abschnitt 3.5) erhalten. Eine Hypothese ergibt sich, indem das Normfenster skaliert und an eine
Position innerhalb des Suchtunnels verschoben wird. Die fiir das skalierte Normfenster definier-
ten Merkmals- und Objektfenster werden dabei im gleichen Mafie skaliert und entsprechend
ihrer Position innerhalb des Normfensters im Bild positioniert. Die im Merkmalsfenster definier-
ten Merkmale werden gemeinsam mit dem Merkmalsfenster skaliert. Das ist ein Unterschied
zum ,klassischen” Vorgehen, bei dem das Bild mit Hilfe einer Bildpyramide in verschiedenen
Skalierungen untersucht wird: Statt das Bild zu skalieren werden die Hypothesen und damit
die Merkmale in ihrer Grof3e angepasst, um Objekte auf verschiedenen Skalierungsstufen zu
detektieren.

1Die Mengensymbole sind in diesem Fall als , Ist-In“-Beziehung zu verstehen.
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Abbildung 3.6.: Anpassung der Label auf das Objektfenster. (a) Soll das Label (Mitte) an das
Format des Objektfensters (in diesem Beispiel: quadratisch) angepasst werden,
ergeben sich sechs Moglichkeiten (dufiere Rechtecke). Die roten Kanten werden
jeweils so gewdhlt, dass das geforderte Seitenverhiltnis hergestellt ist. (b) Bei
Wahl eines ungtinstigen Objektfensters oder einer ungiinstigen Anpassungs-
methode kann das Objektfenster nicht das gesamte Label enthalten.

Quelle: (a): Eigene Darstellung basierend auf [Kal05, S. 27]

Um die Daten fiir das Training aufzubereiten und die vorhandenen Label (siehe Abschnitt
1.5) auf das durch das Objektfenster vorgegebene Format zu bringen, wird in einem Vorver-
arbeitungsschritt eine Anpassung der Label vorgenommen. Diese Anpassung kann auf sechs
verschiedene Arten erfolgen. Abb. 3.6(a) zeigt die Moglichkeiten graphisch. Dabei ist nicht
gewdhrleistet, dass das gesamte Label im Objektfenster enthalten ist (Abb. 3.6(b)). Dies muss
durch Wahl eines geeigneten Objektfensters und einer geeigneten Anpassung sichergestellt
werden.

3.4. Die Viola-Jones-Kaskade

Viola und Jones stellten mit dem Kaskadenklassifikator [V]J01] erstmals ein echtzeitfdhiges Sys-
tem zur Gesichtserkennung vor, das als Durchbruch auf dem Gebiet der Gesichtserkennung an-
gesehen ist [ZZ10]. Auch im automobilen Umfeld hat die Viola-Jones-Kaskade zu neuen Impul-
sen und Verbesserungen, z. B. fiir automobile Assistenzsysteme [WL04],[MOL*05],[KSPLO06],
gefiihrt. Diese Arbeit orientiert sich ebenfalls zu grofien Teilen an der von Viola und Jones
vorgeschlagenen Struktur.

Der Ansatz von Viola und Jones basiert auf der Erkenntnis, dass nur ein kleiner Teil aller
moglichen Hypothesen eines Eingabebildes tatsdchlich das gesuchte Objekt zeigen; die grofse
Mehrheit zeigt Hintergrund. Folglich ist es ausreichend, sehr schnell entscheiden zu kénnen,
welche Hypothese kein Objekt zeigt, damit ein Klassifikator — im Mittel tiber alle Hypothesen
gesehen — sehr schnell arbeitet.

Von dieser Idee ausgehend, strukturieren Viola und Jones ihren Klassifikator in kaskadierten
Stufen, die hintereinander abgearbeitet werden; d. h. Hypothesen werden von Stufe zu Stufe
weitergegeben. In jeder Stufe wird durch einen mittels AdaBoost (siehe Abschnitt 3.1.1) konstru-
ierten Klassifikators entschieden, ob eine Hypothese in die néchste Stufe weitergereicht wird:
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wird sie als Hintergrund klassifiziert, wird ihre Bearbeitung abgebrochen. Dadurch nimmt
die Zahl der Hypothesen mit jeder Stufe kontinuierlich ab. Passiert eine Hypothese die letzte
Stufe, wird ihr die Klasse , Objekt” zugeordnet. Abb. 3.7 veranschaulicht den Aufbau der
Viola-Jones-Kaskade.

Hypothesen Hypothesen Hypothesen Detektionen

L EIPE

& & -

verworfene verworfene verworfene Hintergrund
Hypothesen Hypothesen Hypothesen

ik

Abbildung 3.7.: Struktur der Viola-Jones-Kaskade und Ablauf der Hypothesenverarbei-
tung. Hypothesen werden von Stufe zu Stufe weitergereicht. Weist eine Stufe
eine Hypothese zurtick, so wird sie nicht an die nédchste Stufe weitergegeben.
Dadurch nimmt die Zahl der Hypothesen in den spéteren Stufen immer weiter
ab. Hypothesen, die die letzte Stufe passieren, werden als Objekt klassifiziert.
Quelle: [Kal05]

Durch den kaskadierten Aufbau des Klassifikators wird die Entscheidung ,Hintergrund”
schnellstmoglich, d. h. mit wenigen Weaklearnern, getroffen. In den spéteren Stufen kann sich
der Klassifikator auf die ,schweren” Hintergrund-Hypothesen, also solche, die Objekten dhneln,
konzentrieren.

Um die komplexeren Entscheidungen in den spéaten Stufen treffen zu konnen, wird die
Anzahl der Weaklearner je Stufe zunehmend grofier gewdhlt. Viola und Jones bspw. verwenden
Klassifikatoren mit 2, 10 und 25 Weaklearnern fiir die Stufen 1, 2 und 3. Insgesamt erstellen sie
eine Kaskade mit 38 Stufen fiir ihre Experimente [V]O1].

Als Weaklearner fiir AdaBoost verwenden Viola und Jones die in Abschnitt 3.2.1 vorgestellten
Haarwavelets zusammen mit einem einzelnen Schwellwert, der positive von negativen Bei-
spielen trennt. Das entspricht einem Entscheidungsbaum der Tiefe 1, dem sog. Decision-stump.
Durch diese Kombination fungiert AdaBoost als Algorithmus zur Auswahl von Merkmalen: In
jeder Runde wird aus der Liste aller moglichen Merkmale dasjenige, das am besten zwischen
Hintergrund und Objekt trennen kann, ausgewéhlt und mit einem Schwellwert versehen. Im
Fall von Haarwavelets heifdt das, dass alle verfiigbaren Typen (siehe Abb. 3.2) in allen Skalie-
rungen an allen moglichen Positionen innerhalb des Merkmalsfensters (siehe Abschnitt 3.3)
aufgezdhlt und bzgl. ihrer Diskriminanz beurteilt werden miissen.
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3.4.1. Training einer Kaskade

Eine Kaskade wird iterativ von der ersten Stufe an trainiert. Fiir jede Stufe wird mittels AdaBoost
ein Klassifikator erstellt. Die Trainingsbeispiele fiir die neue Stufe werden gesammelt, indem
Hypothesen durch die bereits erstellten Stufen klassifiziert werden. Wird eine Hypothese
durch eine der fritheren Stufen abgewiesen, so ist sie nicht Teil der Beispiele fiir die neue
Stufe. Auf diese Weise wird jede Stufe nur fiir Hypothesen trainiert, die sie auch wéahrend der
Anwendung als Eingabe bekommen kann. Dieser Ablauf wird entweder so lange wiederholt,
bis keine Negativbeispiele mehr gefunden werden (sog. erschipfendes Training), oder bis eine
zuvor festgelegte Stufenanzahl erreicht ist.

Fiir das Training der einzelnen Stufen konnen ebenfalls verschiedene Vorgaben gemacht
werden. Neben einer festen Anzahl Weaklearner kann eine minimale Detektionsrate zusammen
mit einer maximalen Falschalarmrate fiir die Trainingsbeispiele vorgeben werden. In diesem
Fall fiigt AdaBoost so lange weitere Weaklearner hinzu, bis die geforderten Werte erreicht sind.
Zudem ist eine Kombination, also Performance-Vorgaben gepaart mit einer maximalen Anzahl
Weaklearner, moglich. Mit dieser Strategie haben Viola und Jones den Grofdteil der von ihnen
verwendeten 38 Stufen trainiert [V]J01].

Kommt solch eine kombinierte Trainings-Vorgabe zum Einsatz, wird das von AdaBoost
erstellte Modell Ht derart erweitert, dass

T
Hr(x) = sign (; ath(x) — 95> ,

mit einer Schwelle 6; fiir die Stufe s. 6; wird nach jeder Boosting-Runde so gewihlt, dass die
geforderte Detektionsrate erreicht ist. Ist fiir das so gewdhlte 65 die Falschalarmrate kleiner als
die Vorgabe, so kann das Training der Stufe beendet werden.

Die finale Detektionsrate D des Kaskadenklassifikators ist durch

D =1]]di

die Falschalarmrate F durch

F=T1

bestimmt [V]J01],[Kal05, S. 15]. 4; und f; sind hierbei die Detektions- bzw. Falschalarmraten der
einzelnen Stufen. Eine hohe Detektionsrate D ist folglich nur bei nahezu perfekten Detektionsra-
ten in den einzelnen Stufen erreichbar. So werden bspw. bei einer Kaskade mit zehn Stufen fiir
D > 90 % bereits d; > 99 % benétigt (0.99'° ~ 0.9). Dieser ungiinstige Umstand wird allerdings
durch die Tatsache entkriftet, dass auch sehr hohe Falschalarmraten in den einzelnen Stufen
zu einer niedrigen Falschalarmrate des kompletten Kaskadenklassifikators fiihren. Bereits bei
einer Falschalarmrate von 50 % je Stufe ergibt sich fiir zehn Stufen F = 0.001 ~ 0.5'°. Daher ist
durch Wahl eines geeigneten 65 eine hohe Detektionsrate sehr gut erzielbar.

3.4.2. Verbesserung der Weaklearner durch mehrere Schwellwerte

Obwohl Viola und Jones den originalen AdaBoost (sieche Abschnitt 3.1.1) zur Auswahl der
Merkmale verwenden, ist der von ihnen vorgeschlagene Trainingsaufbau besser fiir den spéter
entwickelten Real AdaBoost geeignet [ZZ10]. Dieser macht Aussagen tiber die optimale Wahl
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3.4. Die Viola-Jones-Kaskade

der Weaklearner-Ausgaben, falls diese Eingaberaum-zerlegend (siehe Abschnitt 3.1.3) arbeiten.
Die von Viola und Jones verwendeten Decision-stumps sind von dieser Art.

Offen bleibt allerdings die Wahl der Zerlegung, d.h. im Fall von Decision-stumps die
Wahl des Schwellwerts. Ublicherweise wird ein Schwellwert gewdhlt, der die Wahrschein-
lichkeit eines Klassifikationsfehlers minimiert (Maximum-A-Posteriori-Regel, kurz: MAP-Regel)
[RPP06],[DHS00, S. 871.].

Oftmals ist die Beschrankung auf lediglich einen Schwellwert, d. h. eine Zerlegung in zwei
Teilmengen, nicht optimal. Durch eine feinere Zerlegung werden die Wahrscheinlichkeiten
fiir Objekt bzw. Hintergrund genauer erfasst [HALL(07]. Damit konnen auch Mengen getrennt
werden, die sich mit einem einzelnen Schwellwert nur mit grolem Fehler trennen lassen. Abb.
3.8 zeigt ein Beispiel fiir eine solche Konstellation und die Problematik, die bei Wahl eines
einzelnen Schwellwerts besteht.

Wahrscheinlichkeit
Wahrscheinlichkeit
Wahrscheinlichkeit

;7 -

Merkmalswert Merkmalswert Merkmalswert

(@) (b) (©

Abbildung 3.8.: Beispiel fiir eine Wahrscheinlichkeitsverteilung, die sich nicht durch einen
Schwellwert trennen lasst. Die roten und blauen Kurven sind die Wahrschein-
lichkeitsdichten der Klassen , Objekt” bzw. , Hintergrund”, abgetragen tiber
dem Wert des gewidhlten Merkmals. Die grau hinterlegten Bereiche werden
dem Hintergrund zugeordnet. (a) Deutlich zu sehen ist, dass in diesem Fall
eine einzelne Schwelle nicht optimal zwischen den Klassen trennen kann. (b)
Optimale Wahl gemafs der Maximum-A-Posteriori-Regel. (c) Schwellen bei
den in der Praxis hdufig verwendeten dquidistanten Bins.

Neben der Moglichkeit, beliebig viele Schwellwerte gemafs der MAP-Regel zu wéhlen
[RPPO6], d. h. fiir jeden Merkmalswert eine optimale Wahl der Klassenzugehorigkeit zu treffen,
wird in der Praxis (bspw. von [HALLO05],[WNO07],[YHNO09]) hdufig aus Geschwindigkeits- und
Einfachheitsgriinden ein dquidistantes Histogramm, die sog. Bins (sieche Abb. 3.8(c)) verwendet.
Die Anzahl der Schwellwerte ist dann um eins kleiner als die Anzahl der Bins. Fiir jeden Bin
wird mittels Gleichung (3.4) der Ausgabewert des Weaklearners bestimmt.

In dieser Arbeit wird allerdings ein alternatives, an [RPP06] angelehntes Verfahren ange-
wandt. Es versucht, bei Vorgabe einer festen Anzahl Bins, die in Abb. 3.8(b) gezeigten, optimalen
Schwellwerte zu finden. D. h. die Bins werden nicht notwendigerweise dquidistant gewahlt.
Da die konkrete Vorgehensweise des Verfahrens fiir die weitere Arbeit unerheblich ist, wird im
Weiteren nicht darauf eingegangen. Fiir weitere Informationen sei auf [RPP06] verwiesen.
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3.5. Hypothesengenerierung

Um Objekte in Eingabebildern erkennen zu kénnen, ist es notig, dass mindestens eine Hy-
pothese das zu erkennende Objekt tatsdchlich zeigt. Daher ist die Vorgehensweise, mit der
Hypothesen fiir die Eingabebilder generiert werden, mitentscheidend fiir die Erkennungsleis-
tung des Gesamtsystems. In diesem Abschnitt wird das verwendete Verfahren zur Generierung
von Hypothesen skizziert. Auf eine weitergehende Einfiihrung, speziell der mathematischen
Aspekte, wird verzichtet. Hierfiir sei bspw. auf [BKO0S, S. 370 ff.], [Kal05, S. 17 f.] sowie [EG09]
verwiesen.

Wird bei der Generierung der Hypothesen naiv vorgegangen (d. h. indem Hypothesen in
allen Skalierungen iiber das gesamte Eingabebild verteilt werden), {ibersteigt die Zahl der
Hypothesen schnell mehrere Millionen. Damit wire keine Erkennung in Echtzeit mehr méglich
[Kal05, S. 18]. Die Zahl der Hypothesen lasst sich allerdings drastisch reduzieren, wenn der
Bildbereich, in dem Objekte erwartet werden, eingeschrankt wird. Da sich die gesuchten
Fahrzeuge alle auf der Strafie befinden, ldsst sich der Bildbereich, fiir den Hypothesen generiert
werden miissen, auf einen Suchtunnel einschréanken (siehe Abb. 3.9). Dabei wird angenommen,
das der Erdboden eine ungekriimmte Ebene ist (Ground-Plane-Annahme). Im verwendeten
Weltkoordinatensystem (siehe Abschnitt 2.2) entspricht diese der XY-Ebene.

(b)

Abbildung 3.9.: Suchtunnel, in dem Hypothesen generiert werden. Dieser wird abhidngig
von den Kameraparametern und der Objekthohe (z. B. bei PKW ca. 2 Meter)
aufgebaut. (a) Suchtunnel bei normaler Ground-Plane-Annahme. (b) Suchtun-
nel bei relaxierter Ground-Plane-Annahme. Es ist deutlich zu sehen, wie der
Suchtunnel einen breiteren Bildbereich umschliefst und somit Nickbewegun-
gen ausgeglichen werden.

Aufgrund der in der Realitdt durch Nickbewegungen des aufnehmenden Fahrzeugs sowie
durch Hiigel etc. verletzen Ground-Plane-Annahme befinden sich speziell weit entfernte Fahr-
zeuge schnell aufierhalb des Suchtunnels und wiirden damit nicht mehr detektiert werden.
Um diesen Effekt zu vermeiden, wird der Suchtunnel erweitert, indem ein Abweichwinkel e
vorgegeben wird, um den die xy-Ebene nach oben und unten geneigt wird (Relaxed Ground-Plane-
Annahme, siehe Abb. 3.9) [Kal05, S. 18 ff.]. Das ist insbesondere im in dieser Arbeit verwendeten
Versuchsaufbau (siehe Abschnitt 1.2) notig, da LKW im Vergleich zu PKW zu verstiarkten
Nickbewegungen neigen.
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Damit der (relaxierte) Suchtunnel aufgebaut werden kann, sind die Parameter (Einbaupo-
sition und -winkel, Brennweite usw.) der bildgebenden Kamera nétig [BKOS, S. 370 ff.]. Fiir
alle in dieser Arbeit verwendeten Sequenzen lagen diese vor. Zusétzlich wird die erwartete
Objekthohe benotigt [Kal05, S. 19 ff.], damit die ,Ausmafle” des Suchtunnels berechnet werden
konnen.

Die Dichte, mit der Hypothesen innerhalb des Suchtunnels generiert werden (die sog. Quan-
tisierung), wird relativ zur Grofie der Hypothesen angegeben. Bspw. wird bei einer Hypothe-
sengrofie von 100 Pixeln mit einer Quantisierung von 0.5 die nidchste Hypothese in dieser
Grofie um 50 = 0.5 x 100 Pixel verschoben erzeugt. Sind mit dieser Quantisierung innerhalb
des Suchtunnels alle Hypothesen dieser Grofe erzeugt worden, wird sie skaliert und das gleiche
Verfahren in der ndchsten Skalierungsstufe wiederholt. Die Grofse der Hypothesen der nidchsten
Skalierungsstufe wird, analog zur Quantisierung in x- und y-Richtung, ebenfalls relativ zur
aktuellen Hypothesengrofie angegeben (sog. z-Quantisierung) [Kal05, S. 21£.].
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KAPITEL 4

Hierarchische Klassifikation

In diesem Kapitel werden Klassifikationsbaume eingefiihrt (Abschnitt 4.1) sowie diskutiert,
wie sich die Viola-Jones-Kaskade auf einen hierarchischen Klassifikator erweitern lasst (Ab-
schnitt 4.2). Hierfiir werden mogliche Ansitze kategorisiert (Abschnitt 4.2.1) und untersucht,
welche Strategien des Baumdurchlaufs moglich sind (Abschnitt 4.2.2). Im Anschluss daran wird
das Training und die Anwendung hierarchischer Erweiterungen des Kaskadenklassifikators
erlautert (Abschnitt 4.3).

4.1. Einleitung

Im Folgenden wird ein kurzer Uberblick iiber Klassifikationsbaume gegeben. Fiir eine weiterge-
hende Einfiihrung sei auf [DHS00, S. 394 f£.], [Bis06, S. 663 ff.] sowie [BKO0S, S. 486 ff.] verwiesen.
Unter einem hierarchischen Klassifikator oder Klassifikationsbaum wird ein Klassifikator
verstanden, der durch eine Serie von hintereinander ausgefiihrten Entscheidungen zu einer
Klasse fiir eine Hypothese findet. Die Antwort jeder einzelnen Entscheidung bestimmt die
nichste Entscheidung. Somit ergibt sich eine Baumstruktur mit einem Knoten fiir jede Ent-
scheidung. Die Wurzel des Baums entspricht der ersten Entscheidung. Diese muss fiir jede
Hypothese getroffen werden. Den Blittern des Baums werden Klassen zugeordnet. Erreicht
eine Hypothese ein Blatt, d. h. es gibt keine weiteren Entscheidungen fiir sie zu treffen, wird ihr
die Klasse des Blattes zugewiesen. Die Zuordnung von Klassen zu Blittern ist nicht exklusiv
oder eineindeutig, d. h. verschiedenen Blidttern konnen die gleiche Klasse zugeordnet sein;
auflerdem ist eine Zuordnung von mehreren Klassen zu einem einzigen Blatt moglich.

In dieser Arbeit sind die zu treffenden Entscheidungen ausschliefllich binar. Somit ist die
entstehende Struktur ein Bindrbaum. Da sich jede n-dre Entscheidung als Serie von bindren
Entscheidungen darstellen lasst [ASS01], ist durch diese Einschrankung kein Verlust der Allge-
meinheit gegeben.

In jedem Knoten wird der Eingaberaum in zwei Teile geteilt. Eine Abfolge von Entscheidun-
gen entspricht somit einer sich verfeinernden, hierarchischen Zerlegung des Eingaberaums. Das
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Paradigma hinter dieser Herangehensweise ist Divide-and-Conquer, also die Annahme, dass die
Klassifikationsaufgabe durch sukzessive Teilung vereinfacht wird [Wu08, S. 16]. Abb. 4.1 zeigt
ein Beispiel fiir einen Klassifikationsbaum sowie die zugehorige Zerlegung des Eingaberaums.

T2,
E
0.}
3 B
0, C D
A

(a) (b)

Abbildung 4.1.: Beispiel eines Klassifikationsbaums fiir zweidimensionale Eingaben. (a) Ei-
ne Eingabe x = (x1, x2)” wird durch eine Abfolge von binidren Entscheidungen
klassifiziert. Den Blattern sind Klassen (in diesem Beispiel A—E) zugeordnet.
(b) Ein Klassifikationsbaum entspricht einer Zerlegung des Eingaberaums. In
diesem Beispiel erfolgt diese durch die Schwellwerte ;_4.

Quelle: [Bis06, S. 663 f.]

Die Struktur eines Klassifikationsbaums, d. h. die Reihenfolge der Entscheidungen, wird
gewohnlich aus den vorhandenen Trainingsbeispielen ermittelt. Hierfiir gibt es verschiedene
Verfahren. Beispiele sind der von Breiman et al. entwickelte CART-Algorithmus [BFSO84]
sowie die von Quinlan entwickelten Verfahren ID3 [Qui86] und C4.5 [Qui93]. Alle Verfahren
haben gemein, dass sie durch eine geschickte Wahl der Entscheidungen (z. B. durch Auswahl
einer oder mehrerer der Eingabevariablen, anhand derer der Eingaberaum geteilt wird) die
Unreinheit (engl. impurity) der entstehenden Teilmengen minimieren und auf diese Weise die
Anzahl der Entscheidungen kleinstmoglich zu halten versuchen (sog. Regel von Occam’s razor
[DHS00, S. 398]).

Ein mogliches und weitverbreitetes Ma8 fiir die Unreinheit einer Menge ist die Shannon’sche!
Entropie. Sie ist definiert als

i(N)=— ZP(C]') log P(cj) ,
]
wobei P(cj) der Anteil an Trainingsbeispielen der Klasse c; ist. Mogliche Alternativen sind u. a.
der Gini-Index oder das Risiko einer Fehlklassifikation [DHS00, S. 398].

Wird die Zerlegung des Eingaberaums so lange fortgesetzt, bis die Unreinheit in allen Knoten
so klein wie moglich ist, ist der resultierende Klassifikationsbaum typischerweise iiberadaptiert
[DHS00, S. 402]. Als Extremfall kann in jedem Blatt lediglich eines der Trainingsbeispiele liegen.

1C. Shannon (* 12. April 1916; 1 24. Februar 2001) gilt als der Begriinder der Informationstheorie. Auerdem ist er
durch zahlreiche Erfindungen wie z. B. eine Jongliermaschine bekannt.
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4.2. Erweiterung der Kaskade auf einen hierarchischen Klassifikator

Zahlreiche Strategien existieren, um dieses Problem zu umgehen. Sie lassen sich einteilen in
Strategien, die weitere Teilungen des Eingaberaums verhindern (Pre-Pruning) und Strategien,
die komplett gewachsene (d. h. mit hoher Wahrscheinlichkeit tiberadaptierte) Biume wieder
komprimieren, indem sie Knoten zur Wurzel hin verschmelzen (Post-Pruning).

Im Folgenden wird die Viola-Jones-Kaskade im Kontext von hierarchischen Klassifikatoren
betrachtet. Es wird diskutiert, welche Moglichkeiten einer Erweiterung auf einen Klassifika-
tionsbaum sich prinzipiell ergeben. Weiter wird ein Uberblick iiber bereits vorgeschlagene
hierarchische Erweiterungen der Kaskade gegeben.

4.2. Erweiterung der Kaskade auf einen hierarchischen Klassifikator

Die Viola-Jones-Kaskade kann als Spezialfall eines Klassifikationsbaums gesehen werden [V]01].
In jeder Stufe wird hierbei entschieden, ob eine Hypothese Hintergrund zeigt. Ist das der Fall,
wird sie einem impliziten Blatt an dieser Stufe zugeordnet und verworfen. Zeigt die Hypothese
allerdings ein Objekt, so wird ihre Bearbeitung mit der ndchsten Entscheidung, d.h. in der
nichsten Stufe, fortgesetzt. Die Kaskadenstruktur entspricht somit einem linearisierten, bindren
Klassifikationsbaum.

Dieser Aufbau hat allerdings Nachteile, sobald die Positivbeispiele sich nicht effizient vom
Hintergrund trennen lassen [2Z10],[PSR10]. Durch die Konvergenz von AdaBoost (siehe Ab-
schnitt 3.1.2) ist ein Erreichen der Trainingsvorgaben zwar immer moglich, allerdings werden
dafiir u. U. sehr viele Merkmale benétigt. Dieser Fall tritt z. B. dann ein, wenn die Positivbei-
spiele multimodal verteilt sind [Wen03, S. 56 ff.]. Um solche Probleme zu vermeiden, bietet sich
eine weitergehende Teilung des Eingaberaums, also die Erweiterung der Kaskadenstruktur auf
einen hierarchischen Klassifikator, an.

Diese Erweiterung darf allerdings nicht die Vorteile der Kaskadenstruktur aufier Kraft setzen.
Sie muss die Reject-Fast-Eigenschaft (das schnellstmogliche Zuriickweisen von Hintergrund)
beibehalten, um die fiir automobile Assistenzsysteme benotigte Geschwindigkeit zu erreichen.
Folglich sind die , klassischen” Ansédtze zur hierarchischen Klassifikation (CART, ID3, C4.5
etc.) nicht geeignet, da bei diesen die Klasse einer Hypothese erst nach dem Durchlaufen
des gesamten Baums feststeht. Sie ignorieren die asymmetrische Fragestellung des Problems
Objekte in Bildern zu detektieren.

Die Kaskade teilt den Eingaberaum lediglich, um positive von negativen Beispielen zu tren-
nen. Durch eine zusétzliche Unterteilung der in einer Stufe akzeptierten Hypothesen (Divide)
kann eine schnellere Konvergenz von AdaBoost in den folgenden Stufen erreicht werden
(Conguer) [WL04]. Somit werden weniger Boosting-Runden bis zum Erreichen der Trainings-
vorgaben benétigt, was in hoherer Geschwindigkeit des erstellten Klassifikators resultiert?.
Zusétzlich zur potentiell hdheren Geschwindigkeit ist eine hohere Detektionsrate erreichbar
[WNO7]. Dies erklart sich dadurch, dass die Detektionsraten entlang des Pfades einer Hypothese
multipliziert werden (siehe auch Abschnitt 3.4.1). Durch die schnellere Konvergenz von Ada-
Boost konnen in den einzelnen Stufen bei gleicher Anzahl Merkmale schwieriger zu erfiillende
Vorgaben gemacht werden. D. h. bei gleicher Detektionsrate ist eine geringere Falschalarmrate

2Die Anzahl benotigter Boosting-Runden entspricht der Anzahl zum Einsatz kommender Merkmale. Bei weni-
ger Boosting-Runden benoétigt der finale Klassifikator folglich weniger Merkmale fiir die Klassifikation einer
Hypothese.
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4. Hierarchische Klassifikation

erzielbar. Folglich werden weniger Stufen benétigt, bis keine Negativbeispiele mehr zu finden
sind.

4.2.1. Kategorisierung moglicher Erweiterungen

Hierarchische Erweiterungen der Kaskade lassen sich durch zwei Kriterien kategorisieren:

Baumaufbaukriterium: Die Struktur des Baums kann fest vorgegeben sein oder sich automa-
tisch durch das Training entwickeln, dann erfolgt die Einflussnahme auf den Baumaufbau
lediglich indirekt tiber die Wahl der Trainingsparameter.

Teilungskriterium: In den Knoten eines Klassifikationsbaums erfolgt eine Teilung des Eingabe-
raums. Diese Teilung kann anhand der moglichen Ansichten eines Objektes (bspw. ein
Kindknoten fiir Frontansichten von PKW, ein Kindknoten fiir Seitansichten usw.) oder
anhand der Merkmale erfolgen.

Es ergeben sich dadurch vier prinzipielle Moglichkeiten einer hierarchischen Erweiterung der
Kaskade (in Abb. 4.2 graphisch veranschaulicht). Im Folgenden werden diese erldutert.

N

Teilung anhand

/ N\

1 der Ansichten
Vorgegebener <
Baumaufbau

N Teilung anhand

Hierarchische der Merkmale

Erweiterung der
Kaskade

Teilung anhand
der Ansichten

Automatischer <
Baumaufbau ( )
\ Teilung anhand

der Merkmale

\ Baumaufbaukriterium / \_ Teilungskriterium /

N\
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Abbildung 4.2.: Taxonomie moglicher hierarchischer Erweiterungen der Kaskade. Erweite-
rungen lassen sich anhand zweier Kriterien einordnen: 1. Baumaufbaukriteri-
um und 2. Teilungskriterium. Somit ergeben sich vier prinzipielle Moglichkei-
ten.

Vorgegebener Baumaufbau mit einer Teilung anhand der Ansichten

Ansitze dieser Art gehoren zu den ersten Versuchen (u. a. [JV03]), die Nachteile der Kaskaden-
strukur durch eine hierarchische Erweiterung auszugleichen. Sie verbinden eine Schiatzung der
vorliegenden Ansicht (engl. pose-estimation) mit ansichtsspezifischen Kaskaden oder Teilbdumen.
Die Struktur des Baums ist hierbei fest vorgegeben. Beispiele sind die von Jones und Viola in
[JV03] vorgeschlagene Struktur, die eine vorgelagerte Schatzung der Ansicht mit nachgelagerten
Kaskaden fiir die Detektion von Gesichtern nutzt, sowie der von Huang et al. entwickelte WFS-
Baum [HALLOS],[HALLO7], bei dem durch die vektorwertige AdaBoost-Variante VectorBoosting
Ansichtsschiatzung und Trennung der Objekte von Hintergrund in einem Schritt erfolgen.
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4.2. Erweiterung der Kaskade auf einen hierarchischen Klassifikator

Auch die fiir diese Arbeit in vielen Punkten grundlegende Arbeit von Kallenbach [Kal05]
kann dieser Kategorie zugeordnet werden. Im Gegensatz zu den oben genannten Ansitzen
wird in [Kal05] allerdings auf die Schatzung der Ansicht verzichtet. Hypothesen werden somit
automatisch in alle nachfolgenden Teilbdume weitergereicht (siehe auch Abschnitt 4.2.2).

Vorgegebener Baumaufbau mit einer Teilung anhand der Merkmale

Als Alternative zur Teilung anhand der Ansichten kann der Eingaberaum (bei vorgegebenem
Baumaufbau) auch anhand der Merkmale geteilt werden. Damit erfolgt die Spezialisierung
der nachfolgenden Knoten nicht durch die Ansichten. Die nachfolgenden Knoten kénnen sich
stattdessen auf einen Teilbereich des Merkmalsraums spezialisieren.

In der Arbeit von Wender [Wen03] werden Erweiterungen dieser Art untersucht. Von einer
Kaskade ausgehend, wird an bestimmten vorgegebenen Stellen wiahrend des Trainings eine
Teilung des Merkmalsraums vorgenommen. Diese wird so gewéhlt, dass die Entropie in den
entstehenden Teilmengen minimal ist.

Automatischer Baumaufbau mit einer Teilung anhand der Ansichten

Bei Ansidtzen dieser Kategorie ist der Baumaufbau nicht vorgegeben, d.h. in welchen der
Knoten eine Auftrennung erfolgt ist nicht von vornherein klar. Wird in einem Knoten eine
Teilung vorgenommen, so wird diese anhand der Ansichten der Objekte durchgefiihrt. Beispiele
sind die von Fleuret und Geman vorgeschlagene Struktur [FGO1] der hierarchischen Zerlegung
von Profilen fiir die Gesichtserkennung (Coarse-to-Fine Face Detection) sowie der von Kuo
und Nevatia vorgeschlagene Ansatz [KN09], der hierarchisches Clustering in Verbindung mit
nichtlinearer Dimensionsreduktion nutzt, um PKW-Ansichten zu kategorisieren.

Leider lieflen sich die Ergebnisse von Kuo und Nevatia auf dem verwendeten Datensatz
(siehe Abschnitt 1.5) nicht nachvollziehen. Das von ihnen vorgestellte Verfahren zeigte zwar
eine Struktur in den Daten (siehe Abb. 4.3), diese war jedoch (anders als von den Autoren in
[KNO09] beschrieben) stark von den Parametern der Dimensionsreduktion abhingig.

Automatischer Baumaufbau mit einer Teilung anhand der Merkmale

Bei Erweiterungen dieser Kategorie ist die Struktur des Baums ebenfalls nicht vorgegeben, ergibt
sich allerdings im Gegensatz zu den ansichtsbasierten Ansitzen indem der Merkmalsraum
geteilt wird. Somit ist es moglich, dass der Baumaufbau vorhandene Ansichten komplett
ignoriert. Daher ldsst sich keine klare Zuordnung von Bléttern zu Ansichten mehr vornehmen.

Der CART-Algorithmus [BFSO84] ist ein Beispiel fiir einen Ansatz dieser Kategorie. In
jedem Knoten wird, unabhédngig von moglichen Ansichten, eines der Merkmale ausgewdhlt,
anhand dem der Merkmalsraum geteilt wird. Andere Beispiele sind der von Wu und Nevatia
entwickelte Cluster Boosted Tree (CBT) [WNO7] und die von Yang et al. weiterentwickelte Variante
Voting Cluster Boosted Tree (VCBT) [YHNO9].

4.2.2. Traversierungsstrategien moéglicher Erweiterungen

In der Phase der Anwendung durchlduft eine Hypothese den Baum top-down, d.h. von
der Wurzel an. Hat ein Knoten (neben der immer vorhandenen Moglichkeit, die Hypothese
zurilickzuweisen) nur einen Nachfolger ist keine Entscheidung notig, an welche Knoten die

55



4. Hierarchische Klassifikation

008 L L " L L L | 01 L L L L L L L L |
-0.03 -0.02 -0.01 1} o001 0.0z 003 004 -0.03 -002 -0 1} o0t 002 003 004 003 0.08

_0.08 L L L L
-0.1 -00& -006 -004 -002

(©

Abbildung 4.3.: Ansatz von Kuo und Nevatia [KN09] zur Kategorisierung von Fahrzeugan-
sichten. Der Ansatz zeigt eine den Fahrzeugansichten inhédrente Struktur, ist
jedoch nicht sehr robust gegeniiber Parameterdnderungen. (a) Struktur bei
Anwendung auf den Datensatz aus [KN09]. (b), (c) Anwendung des Verfah-
rens auf den Datensatz dieser Arbeit. Der Unterschied in den Bildern kommt
durch eine leichte Variation eines der Eingabeparameter (Dimension der HOG-
Merkmale) zustande.

Hypothese weitergereicht wird. Existieren dagegen mehrere Nachfolger, so ergeben sich drei
mogliche Strategien, die Hypothese weiterzuverarbeiten.

Die erste mogliche Strategie ist der Verzicht auf eine Entscheidung. Eine in einem Knoten
akzeptierte Hypothese wird folglich immer an beide Nachfolger weitergereicht. Die Trainings-
beispiele der einzelnen Knoten werden je nach Aufgabenstellung des Klassifikationsproblems
gewdhlt. Ist eine Unterscheidung zwischen den einzelnen Objektkategorien —d. h. zwischen den
einzelnen Zweigen — wichtig, werden Positivbeispiele des einen Zweiges als Negativbeispiele
tiir den anderen Zweig verwendet. Somit wird — zusdtzlich zur Trennung zwischen Hintergrund
und Objekt — eine Trennung zwischen den einzelnen Objektkategorien vorgenommen. In der
Arbeit von Kallenbach [Kal05] wurde auf diese Weise ein multiklassenfahiger Kaskadenklassifi-
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kator konstruiert. Ist eine Unterscheidung zwischen den einzelnen Zweigen nicht notig, kann
allerdings auf diese zuséatzlichen Negativbeispiele verzichtet werden [WNO7].

Der Verzicht auf eine Entscheidung hat allerdings wesentliche Nachteile. Zum einen ist die
Geschwindigkeit eines so konstruierten Klassifikators wegen der hoheren Anzahl Knoten, die
eine Hypothese durchlaufen muss, tendenziell geringer als bei den anderen Strategien. Im
schlimmsten Fall erreicht die Hypothese jedes vorhandene Blatt. Bei einem vollstandigen Binar-
baum der Tiefe t entspricht dies 2/ — 1 besuchten Knoten. Zum anderen gehen die Falschalarme
der einzelnen Zweige bei einem Weiterreichen der Hypothese in beide Nachfolger additiv in
die Falschalarme des gesamten Baums ein (siehe auch Abschnitt 4.3). Der Klassifikationsbaum
benotigt damit eine im Vergleich zu den anderen Strategien geringere Falschalarmrate in den
moglichen Pfaden von der Wurzel zu den Blattern, um insgesamt die gleiche Falschalarmrate
zu erreichen.

Keine
Entscheidung
Exklusive
Entscheidung
Kombinierte
Strategie
Zuriickweisung v.
Hypothesen

§ oo ]

A B C A B C

() (b)

Abbildung 4.4.: Mogliche Entscheidungsstrategien in den Knoten. Es existieren verschiede-
ne Strategien, wie Hypothesen an Kindknoten weitergereicht werden kénnen.
Dies wird hier anhand von drei Positivbeispielen A, B und C verdeutlicht.
Die immer vorhandene Moglichkeit des Zuriickweisens einer Hypothese ist
rot dargestellt. (a) Weiterreichen an alle Nachfolger. (b) Treffen einer exklu-
siven Entscheidung. Eine Hypothese wird an genau einen der Nachfolger
weitergereicht. (c) Kombinierte Strategie. Lasst sich eine Hypothese klar ei-
nem der Nachfolger zuordnen, so wird eine exklusive Entscheidung getroffen,
andernfalls wird sie an beide Nachfolger weitergereicht.

Diese Nachteile werden durch das Treffen einer exklusiven Entscheidung, an welchen Kno-
ten eine Hypothese weitergereicht werden soll, vermieden. Eine Hypothese wird somit nur
an maximal einen der Nachfolger weitergereicht. Daher entspricht die maximale Anzahl zu
besuchender Knoten dem lidngsten vorkommenden Pfad von der Wurzel zu einem Blatt. Die
Falschalarme der einzelnen Pfade gehen nicht additiv in die gesamten Falschalarme ein.

Bei dieser Strategie ergeben sich allerdings Probleme, sobald in einem Knoten eine falsche
Entscheidung getroffen wird [ZZ09],[PSR10]. Diese kann nicht mehr korrigiert werden. Ist
eine Unterscheidung zwischen den einzelnen Objektkategorien bedeutsam, kann dieser Effekt
sehr unerwiinscht sein [Kal05, S. 54 f.] und sich zudem negativ auf die Performance des Klas-
sifikators auswirken [HALLO7]. Zusatzlich kann bei ungiinstiger Wahl der Entscheidung die
Klassifikationsaufgabe (Trennung von Hintergrund und Objekt) in den beiden entstehenden
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Teilmengen schwieriger sein als ohne eine Entscheidung [Chr07, S. 30f.]. Somit werden in den
einzelnen Teilbdaumen mehr Merkmale notig, was den potentiellen Geschwindigkeitsvorteil
gegeniiber einer gemeinsamen Verarbeitung wieder egalisiert.

Die dritte mogliche Strategie ist eine Kombination aus den beiden oben genannten Strategien.
Es wird versucht, eine exklusive Entscheidung zu treffen. Ist eine Zuordnung der Hypothese
zu den Nachfolgern nicht eindeutig moglich, wird die Hypothese an beide Nachfolger wei-
tergereicht. Auf diese Weise kommen die Vorteile beider Strategien zum tragen. Nachteilig
wirkt sich allerdings auch bei dieser Strategie die potentiell grofsere Anzahl Knoten, die besucht
werden miissen, aus [HALLO7].

Abb. 4.4 zeigt die drei moglichen Entscheidungsstrategien anhand von drei Positivbeispielen
A, Bund C.

4.3. Training und Anwendung hierarchischer Erweiterungen

In diesem Abschnitt wird der generelle Trainingsablauf beim Training hierarchischer Erwei-
terungen erldutert. Diese Grundstruktur ist fiir alle vorgestellten Erweiterungen gleich. Im
Anschluss wird die Anwendung hierarchischer Erweiterungen diskutiert. Hierbei ist v. a. von
Bedeutung, wann eine Hypothese als Objekt und wann als Hintergrund gewertet wird. Ab-
hédngig von der Entscheidungsstrategie ergeben sich Unterschiede, die in diesem Abschnitt
aufgezeigt werden.

Analog zum Training der Kaskade, bei der die einzelnen Stufen nur mit Beispielen trainiert
werden, die von allen vorherigen Stufen akzeptiert wurden (vgl. Abschnitt 3.4.1), diirfen die
Knoten eines Klassifikationsbaums nur mit solchen Beispielen trainiert werden, die sie auch
erreichen. D. h. es diirfen nur solche Beispiele verwendet werden, die von allen Knoten des
Pfades von der Wurzel bis zum zu trainierenden Knoten akzeptiert werden. Hierbei spielt die
Entscheidungsstrategie des Klassifikationsbaums (siehe Abschnitt 4.2.2) eine entscheidende
Rolle.

Ist die Struktur des Baums nicht vorgegeben, wird diese wahrend des Trainings ermittelt.
Damit erfiillt das Training eine Doppelfunktion. Zum einen wird in den Knoten des Baums
die Unterscheidung zwischen Hintergrund und Objekten trainiert, zum anderen wird durch
das Training die Struktur des Baums festgelegt. Dies erfolgt von der Wurzel an. In jedem
Knoten wird ermittelt, ob weitere Nachfolger benotigt werden. Ist das der Fall (etwa weil noch
Negativbeispiele gefunden wurden), so werden neue Knoten als Kinder des aktuellen Knotens
zum finalen Klassifikationsbaum hinzugefiigt. Die Anzahl der Nachfolger wird durch den
Algorithmus selbst bestimmt. Wird nur ein Nachfolger hinzugefiigt, so wird keine Teilung
des Eingaberaums vorgenommen. Das Training einer Kaskade kann also als Spezialfall eines
Baumtrainings mit der Beschrankung auf maximal einen Nachfolger je Knoten gesehen werden.
Abb. 4.5 zeigt den Ablauf des Baumaufbaus graphisch.

Wie auch das Training einer Kaskade, kann das Training eines Klassifikationsbaums so
lange fortgesetzt werden, bis keine Negativbeispiele mehr zu finden sind. Alternativ kann eine
maximale Tiefe des Baums vorgegeben werden. Zusitzlich ist eine Begrenzung der Anzahl
Blitter moglich, z. B. um eine Uberadaption zu vermeiden [WNO7].

In der Phase der Anwendung werden Hypothesen geméfs seiner Entscheidungsstrategie
durch den Baum geleitet. Sobald ein Knoten eine Hypothese zuriickweist, wird ihre Bearbei-
tung in diesem Knoten abgebrochen. Sind die Entscheidungen in den Knoten nicht-exklusiv,
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Trennung des Eingaberaums

Abbildung 4.5.: Trainingsablauf eines automatisch aufgebauten Klassifikationsbaums. Der
Klassifikationsbaum wird von der Wurzel an trainiert. In jedem Knoten wird
ein Boosting durchgefiihrt, mit dem die Trennung zwischen Hintergrund und
Objekt gelernt wird. Zusatzlich wird {iber die Auftrennung des Eingaberaums,
also die Anzahl der Nachfolger, entschieden.

bedeutet dies allerdings nicht die Zuriickweisung der Hypothese. Eine Hypothese ist erst dann
zuriickgewiesen, wenn sie in allen Knoten, an die sie weitergereicht wurde, zuriickgewiesen
wird. Dementsprechend wird eine Hypothese als Objekt klassifiziert, sobald sie von mindestens
einem Blatt akzeptiert wird.

59






KAPITEL D

Decision-Boosted Cluster Boosted Tree zur Klassifikation

In diesem Kapitel wird der entwickelte Baumklassifikator (Decision-Boosted Cluster Boosted Tree)
vorgestellt. Zuerst wird ein Uberblick gegeben (Abschnitt 5.1). In Anschluss daran wird das zum
Einsatz kommende Kriterium fiir die Auftrennung des Eingaberaums eingefiihrt (Abschnitt
5.2), das entwickelte Verfahren zum Finden von vorteilhaften Auftrennungen beschrieben
(Abschnitt 5.3) sowie das Lernen der gefundenen Auftrennung erldutert (Abschnitt 5.4). Den
Abschluss bildet eine Beschreibung von Training und Anwendung des Klassifikators (Abschnitt
5.5).

5.1. Uberblick

Der in dieser Arbeit entwickelte Decision-Boosted Cluster Boosted Tree (DB-CBT) basiert auf An-
sdatzen [WNO7],[YHNO9] der vierten Kategorie (automatischer Baumaufbau mit einer Teilung
anhand der Merkmale) der eingefiihrten Kategorisierung moglicher Erweiterungen (vgl. Ab-
schnitt 4.2). Ansdtze dieser Kategorie weisen eine hohere Performance auf als die Vorschldage
anderer Kategorien [WNO7],[YHNO09],[PSR10]. Dies lasst sich damit erkldren, dass Ansatze
dieser Kategorie die mafigebenden Faktoren (Merkmale und zu 16sende Teilprobleme) sehr viel
starker berticksichtigt als andere Ansétze dies tun [YHNO9].

Der Aufbau des DB-CBT erfolgt top-down, d. h. das Wachstum des Baums erfolgt von der
Wurzel aus (siehe auch Abschnitt 4.3). Wahrend des Trainings der Knoten des Baums wird
entschieden, ob eine Auftrennung des Eingaberaums erfolgen soll, oder ob eine gemeinsame
Weiterverarbeitung des gesamten Eingaberaums sinnvoller ist. In den ersteren Fillen hat der
neu zum finalen Klassifikator hinzugefiigte Knoten zwei Nachfolger, andernfalls bleibt die
Kaskadenstruktur erhalten. Dadurch ist sichergestellt, dass eine Teilung des Eingaberaums nur
dann erfolgt, wenn sie notig ist. Die Entscheidung, wann eine Auftrennung erfolgt, wird mit
einem in Abschnitt 5.2 vorgestellten Kriterium getroffen.

Die Auftrennung des Eingaberaums hat das Ziel, die Klassifikationsaufgabe in den da-
durch entstehenden Teilbereichen des Eingaberaums zu erleichtern. Diese Vorgabe ist nicht
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bei jeder der moglichen Auftrennungen erfiillt. Ist die Zerlegung ungiinstig gewihlt, so kann
das Klassifikationsproblem durch die Auftrennung schwieriger zu 16sen sein als ohne sie
[Chr07, S. 30£.]. Die Zerlegung ist also von entscheidender Bedeutung fiir die Performance des
resultierenden Klassifikationsbaums. Wu und Nevatia schlagen vor, die Zerlegung durch den
k-Means-Algorithmus auf den Merkmalsvektoren zu finden [WNO07]. Die Einteilung in die
Teilmengen erfolgt somit durch die Ahnlichkeit der Merkmalsvektoren untereinander. Yang
et al. dagegen wihlen die Auftrennung so, dass sie die Klassifikationsaufgabe vereinfacht
[YHNO9].

In dieser Arbeit wird die Zerlegung, analog zu [YHNO09], ebenfalls so gewdihlt, dass die
Klassifikationsaufgabe durch sie vereinfacht wird. Im Unterschied zu [YHNO09] wird diese
allerdings nicht durch Wiirfeln und anschlieflendes Testen gefunden. Stattdessen wird die
Zerlegung durch Losung eines Optimierungsproblems ermittelt. Hierfiir wird in Abschnitt 5.3.1
ein Giitemaf definiert, das (orientiert an Annahmen von Yang et al. [YHNO09]) die Eignung von
Zerlegungen angibt. Dieses GiitemafS wird genutzt, um eine vorteilhafte Zerlegung zu finden
(Abschnitt 5.3.2).

In den einzelnen Knoten muss eine Entscheidung tiber das weitere Vorgehen getroffen
werden, um eine hohe Geschwindigkeit in der Phase der Anwendung zu gewihrleisten (vgl.
Abschnitt 4.2.2). Die Entscheidung muss die im Training gewonnene Zerlegung widerspiegeln,
d. h. die — bisher unbekannte — Hypothese muss an denjenigen Teilbaum weitergereicht werden,
der fiir sie trainiert wurde. Daher wird nach dem eigentlichen Training zur Losung der Klassifi-
kationsaufgabe, d. h. der Trennung von Objekt und Hintergrund, ein weiteres Boosting, das
sog. Decision-Boosting (DB, siehe Abschnitt 5.4), durchgefiihrt. Mit diesem wird die Aufteilung
der Positivbeispiele gelernt. Die Merkmale sind hierbei die gleichen wie beim Lernen der Un-
terscheidung zwischen Objekt und Hintergrund. D. h. durch das DB werden abermals aus der
Menge aller Merkmale die aussagekréftigsten fiir die Trennung des Eingaberaums ausgewéhlt.
Mit diesen ist in der Phase der Anwendung das Treffen einer Entscheidung iiber den weiteren
Weg einer Hypothese moglich.

5.2. Kriterium fir die Durchfiihrung einer Trennung

Der Aufbau des DB-CBT erfolgt automatisch, daher muss automatisch bestimmbar sein, wann
eine Auftrennung des Eingaberaums erfolgen muss. Dies sollte nur geschehen, wenn eine
Auftrennung die Losung der Klassifikationsaufgabe vereinfacht. Ist dies nicht der Fall, so kann
die Kaskadenstruktur beibehalten werden (Occam’s razor, vgl. Abschnitt 4.1). Daher wird ein
Kriterium benétigt, das zeigt, wie schwierig die Losung des Klassifikationsproblems in einem
Knoten ist. Anhand diesem Kriterium kann iiber die Auftrennung des Eingaberaums entschie-
den werden: Ist das Klassifikationsproblem schwierig, so werden sehr viele Merkmale fiir die
Losung bendtigt (vgl. Abschnitt 4.2). Es ist in diesen Fallen also sinnvoll, eine Auftrennung
vorzunehmen [PSR10].

Wie bereits in Abschnitt 3.1.3 diskutiert, wird bei RealAdaBoost in jeder Runde der Weaklear-

ner mit dem kleinsten Z-Wert
Z=2) \JW'W7,Ze0,1] (5.1)
i

ausgewdhlt. Der Z-Wert kann interpretiert werden als die Fahigkeit des Merkmals, zwischen
Hintergrund und Objekt zu trennen [WNO7] und ist verbunden mit der Wahrscheinlichkeit
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einer Fehlklassifikation (vgl. Abschnitt 5.2.1). Im Verlauf des Boostings nimmt der Z-Wert der
gewdhlten Merkmale immer weiter zu (siehe Abb. 5.1). Der Beitrag, den neue Merkmale zum
Stronglearner leisten, wird also immer geringer. Dies ldsst sich damit erkldren, dass das Gewicht
der schwierigen Beispiele im Verlauf der Runden immer weiter steigt. Folglich ist nach einigen
Runden der Z-Wert ein Maf3 fiir die Schwierigkeit der Klassifikationsaufgabe. Diese bemisst
sich primédr an den schwierigen Teilen der zu trennenden Mengen.

1, 1,
. 08 . 08
g 3
= z
N 06 N 06
0.4 - : . 0.4 . . .
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Boosting-Runden Boosting-Runden

(@) (b)

Abbildung 5.1.: Verlauf der Z-Werte iiber die Boosting-Runden. (a) Verlauf der Z-Werte beim
Training einer Stufe. (b) Verlauf tiber mehrere Kaskadenstufen hinweg. Die
Einbriiche des Z-Werts sind auf den Beginn einer neuen Stufe zuriickzufiihren
(hier: nach jeweils 50 Runden).

Aus diesem Grund kann der Z-Wert eingesetzt werden, um zu erkennen, wann eine Trennung
des Eingaberaums sinnvoll ist [WNO07]. Es werden n Schwellwerte 7, ..., T, fiir den Z-Wert
vorgegeben. Aus Griinden der Einfachheit werden diese gleich gewéhlt, d.h. 7; = 7; fiir i, j =
1,...,n.Ist der Z-Wert der n letzten Merkmale grofSer als 7;, wird kein weiterer Weaklearner
zum finalen Stronglearner hinzugefiigt. Das Boosting wird in diesem Fall abgebrochen. Im
Anschluss wird eine Teilung des Eingaberaums vorgenommen (siehe Abschnitt 5.3).

Im Folgenden werden weitere Eigenschaften des Z-Werts diskutiert, um die Wahl als Indika-
tor fiir die Schwierigkeit des Klassifikationsproblems weiter zu begriinden (Abschnitt 5.2.1). Im
Anschluss daran wird die Strategie zur Vermeidung einer Uberadaption vorgestellt (Abschnitt
5.2.2).

5.2.1. Eigenschaften des Z-Werts

Der Z-Wert eines Merkmals ist eng verbunden mit dem Bhattacharyya!-Koeffizient (BK)
[Bha43], einem Ahnlichkeitsmag fiir Wahrscheinlichkeitsdichten [HAWL04].

Seien p,(x), pp(x) Wahrscheinlichkeitsdichten einer kontinuierlichen Zufallsvariablen x.
Dann ist der BK bhat(p,, py) definiert als

bhat(pa, pp) :/\/pu(x)pb(x)dx.

1A. Bhattacharyya war indischer Mathematiker und Statistiker.
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Fiir diskrete Variablen ist er durch
bhat(pa, py) = }_\/ Pir (5.2)

berechenbar [Bha43]. Sowohl im kontinuierlichen als auch im diskreten Fall gilt bhat(.,.) € [0, 1]
[Kai67].

Der Zusammenhang zwischen dem Z-Wert (Gleichung (5.1)) und dem BK (Gleichung (5.2))
ist ersichtlich. Damit ldsst sich der Auswahlschritt von Real AdaBoost folgendermafien formu-
lieren: Wiahle in jeder Runde den Weaklearner mit dem kleinsten BK (durch die Multiplikation
mit einem konstanten Faktor — in diesem Fall: 2 — wird die ,Position” des Minimums nicht ge-
andert) [HAWLO04]. Die fiir die Berechnung von bhat(., .) nétigen Dichtefunktionen sind hierbei
die bereits in Abschnitt 3.4.2 vorgestellten gewichteten a-posteriori Wahrscheinlichkeiten fiir
Hintergrund bzw. Objekt {iber den Merkmalswerten.

Der BK ist eng verbunden mit dem Risiko eines Klassifikationsfehlers. Ein ein hoher (=schlech-
ter) BK ist gleichbedeutend mit einem hohen Risiko einer Falschklassifikation [Kai67],[DSG90].
Abb. 5.2 zeigt den Zusammenhang an Beispielen von Wahrscheinlichkeitsdichten mit dem
zugehorigen BK.

BK =0.457873 BK = 0.044210 BK =0.992218
< = =
g g g
= I I
[} ) [}
< < <
o o} o
G C S
= = =
Merkmalswert Merkmalswert Merkmalswert

(a) (b) (©

Abbildung 5.2.: Beispiele fiir Bhattacharyya-Koeffizienten. Der Bhattacharyya-Koeffizient
(BK) ist ein MaS8 fiir die Ahnlichkeit zweier Wahrscheinlichkeitsdichten [Bha43].
Je grofser der BK, desto dhnlicher sind sich beide Dichten. (a)-(c) Beispiele fiir
Wahrscheinlichkeitsdichten und zugehorige BK. Klar zu sehen ist der Zu-
sammenhang zwischen BK, Ahnlichkeit der Dichte und dem Risiko einer
Falschklassifikation [Kai67],[DSG90].

Damit ist der Zusammenhang zwischen dem Z-Wert der gewidhlten Weaklearner und der
Schwierigkeit des Klassifikationsproblems klar: Je hther der Z-Wert, desto hoher ist das Risiko
einer Falschklassifikation auf den gewichteten Beispielen des zugehorigen Weaklearners. In den
ersten Boosting-Runden ist der Z-Wert noch klein, da sowohl die leicht als auch die schwierig
zu trennenden Beispiele gleich gewichtet sind. Die Gewichte verschieben sich aber im Verlauf
des Boostings immer weiter zu den schwierigen Teilen (vgl. Abschnitt 3.1). Daher ist der Z-Wert
ein Maf3 fiir das Risiko einer Falschklassifikation auf den schwierigen Teilen. Folglich ist es
sinnvoll, die Schwierigkeit des Klassifikationsproblems an den Z-Werten zu bemessen. Die
Schwierigkeit eines Klassifikationsproblems bemisst sich nicht an den leichten sondern an den
schwierigen Teilen der zu trennenden Mengen.
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5.2.2. Verhinderung der Uberadaption

Bdaume zeigen eine Tendenz zur Uberadaption (vgl. Abschnitt 4.1). Um dieses Problem zu
vermeiden, sind Trennungen nur bei einer ausreichend grofien Menge an Positivbeispielen
in einem Knoten moglich. D. h. fiir das Training wird eine Schwelle # vorgegeben, anhand
derer entschieden wird, ob ein Abbruch des Boosting mit anschliefendem Auftrennen des
Eingaberaums erlaubt ist. Ist die Anzahl der Positivbeispiele kleiner als 77, wird das Boosting bis
zum Erreichen der Trainingsvorgaben fortgesetzt. Es findet kein vorzeitiger Abbruch statt. Der
resultierende Knoten hat nur einen Nachfolger. Folglich entsteht ab diesem Zeitpunkt durch
das weitere Training eine Kaskade unterhalb des Knotens. Die Anzahl der Positivbeispiele kann
im weiteren Verlauf nur abnehmen.

Dieses Vorgehen hat mehrere Vorteile: Durch die Vorgabe von 7 ist garantiert, dass ein gewis-
ser reprasentativer Anteil der insgesamt vorhandenen Positivbeispiele als atomar betrachtet
wird. Die Gefahr des Auswendiglernens der Trainingsbeispiele ist folglich gemindert; das
Problem der Uberadaption wird vermieden. Hinsichtlich der Strategien zur Uberadaptionsver-
meidung ist dieses Vorgehen dem Pre-Pruning zuzuordnen (vgl. 4.1).

Aufierdem wird ein wiederholtes Abbrechen des Boosting durch sehr schwierig zu erken-
nende Objekte ab einer gewissen Stufe verhindert. Fiir schwierige Probleme wird das Boosting
stets nach wenigen Runden abgebrochen, weshalb in den einzelnen Knoten nur ein geringer
Teil des Hintergrunds zuriickgewiesen wird. Effektiv wird in diesen Fallen die Losung des
Klassifikationsproblems immer weiter auf die nachfolgenden Knoten verlagert. Durch die
Vorgabe von 1 wird verhindert, dass dies zu oft geschieht. Stattdessen wird in diesen Fillen das
Problem zuerst zerlegt und anschlieffend — nach dem Unterschreiten von 77 — gelost.

5.3. Zerlegung des Eingaberaums durch Optimierung bzgl. der
Klassifikationsaufgabe

Die Zerlegungen des Eingaberaums werden so gewéhlt, dass sie die Klassifikationsaufgabe
vereinfachen. Auf diese Weise wird die Anzahl der nétigen Merkmale bis zur endgiiltigen
Klassifikation einer Hypothese moglichst gering gehalten. Ist die Trennung von Hintergrund
und Objekt in den entstehenden Teilmengen einfach, so ist durch die schnellere Konvergenz
des Boostings die Anzahl der Weaklearner geringer (vgl. Abschnitt 4.2).

Fiir diesen Zweck wird ein Giitekriterium definiert (Abschnitt 5.3.1), das die Eignung einer
Zerlegung angibt. Anhand diesem wird mittels Simulated Annealing [DHS00, S. 354 ff.] eine
Zerlegung gesucht, die die Klassifikationsaufgabe in den nachfolgenden Knoten vereinfacht
(Abschnitt 5.3.2).

5.3.1. Gitekriterium fir eine Zerlegung

Um die Zerlegung so zu wihlen, dass die Klassifikationsaufgabe in den beiden entstehenden
Teilmengen moglichst einfach wird, ist ein Giitekriterium fiir Zerlegungen nétig. Anhand
diesem kann eine Optimierung der Zerlegung durchgefiihrt werden.

Fiir potentielle Giitekriterien miissen folgende Anforderungen erfiillt sein:
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1. Sie miissen moglichst aussagekraftig sein, d. h. bei einer hohen Zerlegungsgiite muss
die Trennung von Objekt und Hintergrund in den entstehenden Teilmengen tatsachlich
einfacher sein als bei einer Zerlegung mit geringerer Giite.

2. Sie miissen sich effizient berechnen lassen, um eine Optimierung (siehe Abschnitt 5.3.2)
zu ermoglichen.

Sei z eine beliebige Zerlegung. Sie zerlegt die Menge der Positivbeispiele P in zwei Teile P}
und Pj, wobei P = P7 U P; und Pj N P = @. Sei weiter N die Menge der Negativbeispiele
und sep(A, B) € [0, 1] eine (beliebige) Separierbarkeitsfunktion. Diese gibt an, wie gut sich die
Mengen A und B trennen lassen. Per definitionem sei die Trennbarkeit zweier Mengen umso
besser, je grofer sep(.,.) ist. Dann ist bei geeigneter Wahl von sep(.,.) eine Giitefunktion e(.),
die die obigen Bedingungen erfiillt, gegeben durch

e(z) = —sep(P3,N) —sep(Pg, N) + A(z), e(z) € [—2, 1]

4
o o - <o)

A(z) ist hierbei ein Regularisierungsterm, der unbalancierte Zerlegungen bestraft. Ohne
Beschrankung der Allgemeinheit ist also die Giite einer Zerlegung z umso grofler, je kleiner
e(z) ist.

e(.) bezieht durch sep(.,.) die potentielle Vereinfachung der Klassifikationsaufgabe bei ge-
trennter Weiterverarbeitung in die Giite einer Zerlegung mit ein. Daher werden die beiden
Teilmengen P} und Pj getrennt betrachtet. Fiir beide Teilmengen wird bewertet, wie gut sie
sich von den Negativbeispielen trennen lassen. Da die Negativbeispiele der beiden entstehen-
den Knoten nicht bekannt sind, wird hierbei auf die Negativbeispiele des aktuellen Knotens
zurtickgegriffen. Diese Vereinfachung geht zuriick auf [YHNO09].

Durch Hinzunahme des Regularisierungsterms A(z) werden Zerlegungen in gleich groe
Teilmengen favorisiert. Dadurch wird zum Einen die Gefahr der Uberadaption vermindert, da
bei unbalancierten Zerlegungen starker die Tendenz besteht, die kleinere der beiden Teilmengen
auswendig zu lernen [Tu05]. Zum Anderen wirken sich unbalancierte Zerlegungen negativ
auf die Performance des Gesamtklassifikators aus [Wu08, S. 39 {f.]. Es ist daher sinnvoll, die
Balance einer Zerlegung in die Bewertung ihrer Giite miteinzubeziehen.

Die Wahl der Separierbarkeitsfunktion ist der entscheidende Faktor fiir die Giitefunktion. Sie
muss die Trennbarkeit durch das Boosting widerspiegeln. Die Trennfdhigkeit von AdaBoost
héngt von der Trennfidhigkeit der zur Verfligung stehenden Weaklearner ab (vgl. Abschnitt
3.1.2). Folglich muss sep(A, B) genau dann grof sein, wenn die verfiigbaren Weaklearner gut
zwischen A und B trennen kénnen.

Wie in Abschnitt 5.2.1 dargelegt, ist der eng mit AdaBoost zusammenhédngende Bhatta-
charyya-Koeffizient (BK) ein Mafs fiir die Trennfahigkeit eines Weaklearners. Daher ldsst er sich
nutzen, um eine Separierbarkeitsfunktion zu definieren: Je geringer der BK der Weaklearner
bei der Trennung der Mengen A und B, desto leichter sind diese durch AdaBoost insgesamt zu
trennen. Da nicht bekannt ist, welche der verfiigbaren Weaklearner beim Training der neuen
Knoten ausgewdhlt werden (das Boosting geschieht erst nach der Wahl der Zerlegung), wird
die Menge der moglichen Weaklearner hierbei auf die bereits ausgewéahlten eingeschrankt. D. h.
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die Zerlegung wird so gewihlt, dass die im vorherigen Boosting gewidhlten Weaklearner eine
hohe Trennfihigkeit besitzen.

Seien fi, ..., fy die bereits gewidhlten Weaklearner. Die Separierbarkeitsfunktion sep(_, .) ist
dann?

sep(A,B) = 1—bhat(A,B)
N
) _ bhat(A, B)
k=1 fr

1 s k k
= 1-5 1 [ @,
N ] A B

1
1— —
N

also der durchschnittliche BK der Weaklearner fi, ..., fy bei der Trennung der beiden Mengen
A und B.

Um sep(.,.) moglichst effizient zu berechnen, werden dquidistante Histogramme zur Appro-
ximation der Integrale eingesetzt. Damit ldsst sich bhat(., .) schreiben als

bhat(A, B) ~ Z v AiBi,
i

wobei A; bzw. B; der Anteil von A bzw. B ist, deren Merkmalswert des Merkmals f in den i-ten
Bin des Histogramms fallt [CRMO00].

Das auf diese Weise konstruierte e(.) erfiillt somit die oben genannten Anforderungen an
eine Giitefunktion. Durch die Verwendung des BK der bereits gewidhlten Weaklearner wird
die Zerlegung dahingehend optimiert, dass beide Teilmengen gut von den Negativbeispielen
trennbar sind. Die Verwendung von bhat(.,.) hat zudem den Vorteil, dass damit sep(., .) bei
gleicher Aussagekraft effizienter berechenbar ist als bei Verwendung anderer moglicher Mafle
(bspw. der Kullback-Leibler-Divergenz) [Kai67].

5.3.2. Optimierung mittels Simulated Annealing

Die im vorherigen Abschnitt definierte Giitefunktion e(.) ermoglicht es, eine Zerlegung so zu
wdhlen, dass sie die Klassifikationsaufgabe in den entstehenden Teilmengen moglichst einfach
macht. Da die Wahl einer Zerlegung fiir ein beliebiges Giitemafs NP-schwer ist [YHNO9], fallt
auch die Minimierung von e(.) in die Kategorie der NP-schweren Probleme. Es ist folglich nur
mit heuristischen Verfahren moglich, in akzeptabler Zeit eine Zerlegung zu finden die bzgl. e(.)
optimal ist.

Als heuristisches Optimierungsverfahren kommt in dieser Arbeit Simulated Annealing (SA)
zum Einsatz. Fiir eine Einfithrung in SA sei auf [DHS00, S. 354 ff.] verwiesen.

Fiir SA ist neben der Zielfunktion die Definition des Vorgehens bei der Durchfiihrung des
zufdlligen Schrittes von einem Zustand in den anderen nétig. In dieser Arbeit wird hierfiir wie
folgt vorgegangen. Es seien P4 und Pg die beiden Teilmengen der Positivbeispiele P in einem
beliebigen Zustand wéhrend des Verfahrens:

1. Generiere einen zufélligen boolschen Wert r € {—1,1}.

2 Aus Griinden der Lesbarkeit wird hier bhat(A, B) von zwei Mengen A, B angegeben. Diese verkiirzte Schreibweise
meint den BK zwischen den zu A bzw. B gehodrenden a-posteriori Dichten {iber dem Merkmalswert.
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2. Istr =1, dann vertausche zwei zuféllig gewéahlte Beispiele der Mengen P4 und Pg.

3. Ist dagegen r = —1, dann verschiebe ein zufélliges Beispiel von einer Menge in die
andere. Generiere hierfiir einen zufélligen rellen Wert v € [0, 1], um die Richtung des
|Pal

Verschiebens — von P4 nach Pg oder umgekehrt — festzulegen. Ist v < T dann verschiebe
von P4 nach Py, andernfalls von Pg nach Pj4.

Dieses Vorgehen hat den Vorteil, dass zuféllige Schritte immer zu einer Zerlegung mit
gleich grofien Teilmengen tendieren. Die Wahrscheinlichkeit eines Verschiebens von einer
grofien Menge in die kleinere ist grofier als die Wahrscheinlichkeit fiir das Verschieben in die
umgekehrte Richtung. Da die Zielfunktion e(.) balancierte Zerlegungen besser bewertet, wird
der zufillige Schritt also tendenziell in Richtung eines kleineren Werts von e(.) ausgefiihrt.

Die weiteren Parameter von SA (Minimal- und Maximaltemperatur, Kiihlfaktor usw.) werden
experimentell oder durch Erfahrung bestimmt. Der Startzustand des Verfahrens ist eine zuféllige
Zerlegung in zwei gleich grofie Halften.

5.4. Lernen der Zerlegung mittels Decision-Boosting

Aus Geschwindigkeits- und Performance-Griinden ist das Treffen einer Entscheidung iiber den
weiteren Weg einer Hypothese sinnvoll (vgl. Abschnitt 4.2.2). Daher wird nach dem Finden
einer Zerlegung ein erneutes Boosting (Decision-Boosting, kurz: DB) durchgefiihrt. Es hat das
Ziel, die gefundene Zerlegung zu lernen. In einem Knoten mit zwei Nachfolgern befinden sich
folglich zwei Klassifikatoren. Der durch das erste Boosting konstruierte Klassifikator dient dazu,
Hintergrund zuritickzuweisen. Der zweite trifft die Entscheidung, an welchen der Nachfolger
eine Hypothese weitergereicht wird, sofern der erste Klassifikator sie nicht zuriickweist. Die
Entscheidungen, die getroffen werden, sind hierbei exklusiv (vgl. Abschnitt 4.2.2), um eine
moglichst hohe Geschwindigkeit zu gewdhrleisten. Die potentiell mogliche Erweiterung des
DB-CBT auf eine kombinierte Entscheidungsstrategie ist nicht Teil dieser Arbeit und kann in
weiterfithrenden Arbeiten untersucht werden.

Seien P4 und P die Teilmengen der Positivbeispiele P unter der gefundenen Zerlegung.
Ohne Beschrankung der Allgemeinheit ist P4 die Menge der Positivbeispiele, Pp die Menge der
Negativbeispiele fiir das DB. Die Begriffe Detektions- und Falschalarmrate sind dementspre-
chend zu verstehen.

Es stehen alle Merkmale als Weaklearner fiir das DB zur Verfiigung. Somit wird durch das
DB (in der Phase der Anwendung) die Entscheidung iiber den weiteren Weg einer Hypothese
nur aufgrund von Merkmalswerten getroffen. Daher sind fiir den DB-CBT keine anderen
atomaren Operationen als fiir die klassische Viola-Jones-Kaskade notig. Diese Tatsache ist
v.a. im Hinblick auf eine mogliche Implementierung in Hardware von Vorteil: Die ohnehin
vorhandenen Bausteine fiir die hocheffiziente Auswertung von Merkmalen kénnen auch fiir
das Treffen von Entscheidungen herangezogen werden.

Die Vorgaben, die fiir das DB gemacht werden, weichen von den Vorgaben des normalen
Boostings ab. Statt zu erreichende Detektions- und Falschalarmraten vorzugeben, wird fiir das
DB die benotigte Korrektheit der Entscheidung festgelegt. Die Korrektheit ist der Anteil der
Positivbeispiele, die gemafs der ermittelten Zerlegung an die korrekten Teilbdume weitergereicht
werden. Bei reprasentativer Auswahl der Positivbeispiele entspricht die erreichte Korrektheit
der Wahrscheinlichkeit einer korrekten Entscheidung in der Phase der Anwendung,.
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Seien ¢ € [0, 1] die geforderte Korrektheit, D die Detektionsrate sowie F die Falschalarmrate
des mittels DB konstruierten Klassifikators. Dann ist die Korrektheit ¢ erreicht, wenn (evtl.
durch Wahl eines geeigneten Schwellwerts 8, siehe Abschnitt 3.4.1)

D>c

und
F<1-c¢

erfiillt sind.

Analog zum normalen Boosting werden auch beim DB so lange Merkmale zum Stronglearner
hinzugefiigt, bis diese Gleichungen erfiillt sind. Es werden allerdings keine Schwellwerte fiir
den Z-Wert vorgegeben, d. h. das DB wird nicht vorzeitig abgebrochen. Um die Anzahl der
Merkmale zu begrenzen, wird eine maximale Anzahl von Runden vorgegeben.

5.5. Training und Anwendung des Decision-Boosted Cluster Boosted
Tree

Das Training des DB-CBT folgt dem in Abschnitt 4.3 vorgestellten Schema, d. h. das Training
erfolgt ab der Wurzel. Fiir jeden neu hinzugefiigten Knoten werden sowohl Positiv- als auch
Negativbeispiele gesammelt. Mit diesen wird im Anschluss ein Boosting durchgefiihrt.

Im Unterschied zum Training einer Kaskade (vgl. 3.4.1) wird das Boosting nicht in jedem Fall
bis zum Erreichen der Vorgaben bzw. der maximalen Anzahl Weaklearner fortgesetzt: Es wird
vorzeitig angebrochen, sobald das Klassifikationsproblem als zu schwierig erkannt wird und
eine Uberadaption unwahrscheinlich ist, d. h. sobald die vorgegebenen Schwellwerte 7, ..., T,
fiir den Z-Wert verletzt und noch ausreichend (> #) Positivbeispiele vorhanden sind. Wird das
Boosting vorzeitig abgebrochen, hat der trainierte Knoten zwei Nachfolger. Andernfalls wird
die Kaskadenstruktur beibehalten.

Wird das Boosting vorzeitig abgebrochen, erfolgt eine Trennung des Eingaberaums, um das
Klassifikationsproblem zu vereinfachen. Zu diesem Zweck wird die Menge der Positivbeispiele
in zwei Teile zerlegt (Abschnitt 5.3). Die gefundene Zerlegung wird mittels DB (Abschnitt 5.4)
gelernt.

Algorithmus 5.1 stellt das Training des DB-CBT in Pseudocode dar.

Durch diesen Trainingsaufbau und die Wahl der Parameter lassen sich drei Phasen wihrend
des Trainings unterscheiden:

1. Zu Beginn ist das Klassifikationsproblem in den Knoten leicht zu 16sen; die Negativbei-
spiele sind durch wenige Weaklearner von den Positivbeispielen trennbar. Daher wird
die Kaskadenstruktur beibehalten.

2. Je mehr Stufen im Stile der Kaskade trainiert wurden, desto schwieriger wird das Klas-
sifikationsproblem (vgl. Abschnitt 3.4.1). Daher wird ab einer bestimmten Stufe eine
Trennung des Eingaberaums vorgenommen. Diese vereinfacht das Klassifikationspro-
blem. Der Eingaberaum wird so lange geteilt, bis das Klassifikationsproblem sehr einfach
ist oder bis nicht mehr gentigend Positivbeispiele vorhanden sind.
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5. Decision-Boosted Cluster Boosted Tree zur Klassifikation

Algorithmus 5.1 Training des DB-CBT

Initialisiere: Menge der zu trainierenden Knoten Q < {go} (90 = Wurzel des Baums)

while Q # @ do
e Wihle den zu trainierenden Knoten g € Q.
e Sammle P U N = Positiv- und Negativbeispiele fiir den Knoten g.

if N # @ und P # @ then

// Deaktiviere Trennung wenn zu wenige Positivbeispiele vorhanden.
if |P| < 7 then

e Fithre normalen RealAdaBoost auf den Beispielen aus, bis die Vorgaben

erfiillt sind.

e Fiige einen neuen Knoten g,,, als Nachfolger von g hinzu.
e Q<+ QU Ineu

else

e Fithre normalen RealAdaBoost auf den Beispielen aus, bis die Vorgaben
erfiillt sind. Brich vorzeitig ab, wenn die Schwellwerte 7, . . ., T, tiberschritten
werden.

if Boosting wurde vorzeitig abgebrochen then

e Finde mittels Simulated Annealing eine Zerlegung z von P, fiir die e(z)
minimal ist.
e Lerne die Zerlegung z mittels Decision-Boosting.

// Fiige zwei neue Knoten qﬁe’g als Nachfolger von g hinzu.
A B

.Q%Qanquqneu

else

// Fiige einen neuen Knoten gy, als Nachfolger von 4 hinzu.
e Q<+ QU Aneu
end

end
end

// Entferne Knoten g aus Q

e Q< Q\gq

end
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5.5. Training und Anwendung des Decision-Boosted Cluster Boosted Tree

3. Sobald weniger als 77 Positivbeispiele vorhanden sind, entstehen wieder Kaskaden. Da der
Eingaberaum in Phase 2 getrennt wurde, sind diese fiir Teilbereiche des Eingaberaums
zustandig.

Es werden nicht zwangsldufig alle Phasen durchlaufen. Ist das Klassifikationsproblem sehr
schwierig zu losen, entfdllt Phase 1. In diesem Fall wird bereits nach dem ersten Knoten
eine Teilung des Eingaberaums vorgenommen. Ist das Klassifikationsproblem dagegen sehr
einfach zu 1osen, so werden die Phasen 2 und 3 nicht durchlaufen — der finale Baum hat eine
Kaskadenstruktur. Abb. 5.3 zeigt einen Beispielbaum. Es ist zu sehen, wie die drei Phasen des
Trainings die Baumstruktur widerspiegeln.

« [ Klassifikation ]

[ Entscheidung ]

2 <Y

<:| Akzeptierte Hypothesen

Phase 2

Phase 3

« Verworfene Hypothesen

Abbildung 5.3.: Struktur eines DB-CBT. Das Training lduft in drei Phasen ab. Diese spiegeln
sich in der Struktur des entstehenden Baums wider. In Phase 1 ist das Klassi-
fikationsproblem einfach 16sbar: Die Kaskadenstruktur wird beibehalten. In
Phase 2 wird das Klassifikationsproblem durch Teilen vereinfacht. Phase 3
beginnt, sobald die Anzahl Positivbeispiele kleiner als 7 ist.

In der Phase der Anwendung wird der Baum durchlaufen. In jedem Knoten wird zuerst
entschieden, ob eine Hypothese Hintergrund zeigt. Ist das der Fall, wird sie verworfen. An-
dernfalls wird sie gemifs der Entscheidung, der durch DB gefundenen Klassifikatoren, an einen
Nachfolger weitergereicht (siehe Abb. 5.3, vergrofierter Knoten). Da Entscheidungen exklusiv
sind, wird die Bearbeitung einer Hypothese abgebrochen, sobald sie in einem Knoten zurtickge-
wiesen wird. Eine Hypothese ist akzeptiert, sobald sie in einem Blatt akzeptiert wurde. Durch
Exklusivitat der Entscheidungen wird jede Hypothese nur von genau einem Blatt akzeptiert
(vgl. Abschnitt 4.2.2).

Die Anwendung des DB-CBT wird in Algorithmus 5.2 verdeutlicht.
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5. Decision-Boosted Cluster Boosted Tree zur Klassifikation

Algorithmus 5.2 Anwendung des DB-CBT

Eingabe :Hypotheseh € X

Ausgabe :Klasse c € C der Hypothese h

Initialisiere: g <— Wurzel des DB-CBT

while g # @ do

if Klassifikator in q weist h zuriick then

// Hypothese wird als Hintergrund klassifiziert
return —1

end

f q hat nur einen Nachfolger then

g < Nachfolger von g

o

(¢

Ise if g hat zwei Nachfolger then
x < Ausgabe des zweiten Klassifikators in g

if x = 1 then
‘ g < erster Nachfolger von g
else
‘ g < zweiter Nachfolger von g
end
else
// Kein Nachfolger mehr vorhanden. Beende Baumdurchlauf
g+
end
end
// Hypothese wird als Objekt klassifiziert
return 1
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KAPITEL ©

Experimentelle Ergebnisse

To measure is to know.

(Sir William Thompson)

Dieses Kapitel beschreibt die durchgefiihrten Experimente sowie ihre Ergebnisse. Zuerst wird
der Aufbau der Experimente erldutert (Abschnitt 6.1). Im Anschluss werden die eingesetzten
Metriken und Kenngrofsen fiir die Evaluierung von Klassifikatoren beschrieben (Abschnitt 6.2)
sowie die eigentlichen Ergebnisse vorgestellt (Abschnitt 6.3). Das Kapitel endet mit Eindriicken
des realisierten Systems in der Phase der Anwendung (Abschnitt 6.4).

6.1. Experimentaufbau

6.1.1. Trainingsparameter und Datensétze

Um die trainierten Klassifikatoren zu evaluieren, wurde ein Teil der verfiigbaren Sequenzen
nicht fiir das Training verwendet. Die ausgelassenen Sequenzen bilden einen unabhédngigen
Testdatensatz. Alle Auswertungen werden auf diesem durchgefiihrt.

Bei der Auswahl der Testsequenzen wurde darauf geachtet, dass sie einen reprédsentativen
Ausschnitt der gesamten Daten darstellen. D. h. der Testdatensatz umfasst Sequenzen aller
Tageszeiten und Situationen (Stadt, Landstrafse, Autobahn usw.). Insgesamt enthélt der Test-
datensatz 9 der 246 Sequenzen. Die restlichen 237 Sequenzen bilden den Trainingsdatensatz.
Tabelle 6.1 zeigt eine Ubersicht iiber den Trainings- und den Testdatensatz.

Das Training wird mit den Parametern von Tabelle 6.2 durchgefiihrt. Die Wahl von 7; (4 x 0.97)
orientiert sich an Angaben von [YHNO09]. Die minimale Anzahl an Positivbeispielen 77 wird vari-
iert, um den Einfluss auf die Performance des resultierenden Klassifikationsbaums festzustellen
(siehe Abschnitt 6.1.4). Experimente zeigen, dass eine Variation von 7; keinen grofien Einfluss
auf die Struktur des Baums hat. Daher wird der Einfluss auf die Performance der resultierenden
Klassifikatoren nicht weiter untersucht. Die beobachtete Robustheit der Struktur des DB-CBT
gegeniiber Anderungen von 7; deckt sich mit den Untersuchungen von [WNO07].
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6. Experimentelle Ergebnisse

’ ‘ Trainingsdatensatz | Testdatensatz

Sequenzen 237 9
Bilder 32875 1525
PKW (ohne Riickfronten) 33394 1606
PKW-Riickfronten 36077 1968
LKW (ohne Riickfronten) 2346 25
LKW-Riickfronten 3884 410

Tabelle 6.1.: Trainings- und Testdatensatz. Bei der Auswahl der Testsequenzen wurde darauf
geachtet, dass sie einen reprasentativen Ausschnitt der Daten darstellen.

Aus Zeitgriinden wird die Anzahl an Positiv- und Negativbeispielen fiir das Training der
einzelnen Knoten auf jeweils maximal 30 000 beschrankt. Das Training eines Teilbaums wird
abgebrochen, sobald weniger als 15 Negativbeispiele fiir einen neuen Knoten gefunden wurden;
es war insgesamt beendet, sobald keine zu trainierenden Knoten mehr vorhanden sind (vgl.
Algorithmus 5.1).

Parameter Wert ‘

Maximale Baumtiefe bzw. Anzahl Stufen | 40

Vorgaben fiir das Boosting

Weaklearner je Tiefe/Stufe 3,5,12,14,20,24,32,42,55,5 x 64, 84,92, 3 x
128, 3 x 156, 3 x 182, 256, ...

Detektionsrate 0.98, 0.99, 3 x 0.995,0.999, ...

Falschalarmrate 5x0.1,2x05,2x04,0.1,...

Schwellen fiir den Z-Wert T; 4 x 097

(Maximale) Anzahl Positivbeispiele 30000
(Maximale) Anzahl Negativbeispiele | 30000

Hypothesen je Bild 131117

Merkmale 40292
davon Haarwavelets 29042
davon EOHs 11250

Tabelle 6.2.: Die wichtigsten Trainingsparameter. Bei Angaben mit ,,..." wird der vorher an-
gegebene Wert wiederholt; Die Schreibweise k X 1 meint die k-fache Wiederholung
des Werts u. Die Parameter zur Generierung der Hypothesen finden sich in Tabelle
6.3.

6.1.2. Grundstruktur der Klassifikatoren

Fiir das Gesamtsystem sind insgesamt vier parallel arbeitende Klassifikatoren notig: jeweils
einer fiir PKW (gesamt), PKW-Riickfront, LKW (gesamt) und LKW-Riickfront (vgl. Abschnitt
1.4). Aquivalent zur parallelen Verarbeitung in Einzelklassifikatoren kann ein (einzelner) nicht-
exklusiver Multiklassenklassifikator verwendet werden [HALLOQ7]. Nicht-exklusiv bedeutet,
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6.1. Experimentautbau

dass eine Hypothese mehreren Klassen zugeordnet werden kann. Eine Hypothese wird als
Hintergrund klassifiziert, sobald sie keiner der anderen Klassen zufallt.

Diese Aquivalenz wird genutzt, um die Geschwindigkeit des Gesamtsystems zu erhhen.
Die ersten Knoten, also diejenigen, die einen Grofiteil der Hypothesen verarbeiten, werden
fir alle benotigten Klassifikatoren gemeinsam durchlaufen. Die Merkmale in diesen Knoten
miissen somit nur einmal ausgewertet werden und werden fiir alle Klassen geteilt [TMF07].
Mit dieser Strategie konnte in [Kal05] ein Geschwindigkeitsgewinn von bis zu 23.5 % erzielt
werden [Kal05, S. 56].

Um diesen Vorteil zu nutzen, haben alle in dieser Arbeit evaluierten Klassifikatoren die
gleiche Grundstruktur: Die ersten vier Knoten werden fiir alle Einzelklassifikatoren gemeinsam
durchlaufen. Nach dem vierten Knoten werden Hypothesen in zwei Schritten auf die vier
Einzelklassifikatoren verteilt (Abb. 6.1). Hierbei wird auf eine Entscheidung verzichtet, d. h.
Hypothesen werden an beide Nachfolger weitergereicht (vgl. Abschnitt 4.2.2).

Durch diesen Aufbau wird ein Grofsteil der Hypothesen (ca. 87 %, siehe Abschnitt 6.3.2) mit
gemeinsamen Merkmalen in den ersten vier Knoten zuriickgewiesen. Die Knoten der Tiefe 6
(schwarz in Abb. 6.1) bilden die Wurzel der untersuchten Klassifikatoren (sieche Abschnitt 6.1.4).

—

Gemeinsame
Merkmale

| LKW-R{iickfronten |

| PKW-Ruickfronten |

[PKwW
[Lkw

Abbildung 6.1.: Grundstruktur der evaluierten Klassifikatoren. In den ersten Knoten werden
alle Hypothesen aller nétigen Einzelklassifikatoren gemeinsam verarbeitet
(weifle Knoten). Die Merkmale dieser Knoten werden geteilt. In zwei Schritten
(graue Knoten) werden die Hypothesen auf die vier Einzelklassifikatoren
verteilt. Hierbei werden Hypothesen an beide Nachfolger weitergereicht. In
den schwarzen Knoten beginnen die Einzelklassifikatoren.

Die Positivbeispiele fiir das Boosting der Knoten, die fiir mehrere Klassen zustdandig sind
(d.h. die Knoten der Tiefen 1-5) wurden gleichmafSig aus den Daten der verschiedenen Klassen
gewdhlt. Bspw. kamen fiir das Training der Wurzel (Tiefe 1) jeweils maximal 7 500 Positivbei-
spiele fiir die Klassen ,PKW”, ,PKW-Riickfront”, ,LKW* und , LKW-Riickfront” zum Einsatz
(4 x 7500 = 30000).
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6. Experimentelle Ergebnisse

Die in den ersten Stufen gewidhlten Merkmale spiegeln ,gemeinsame” Eigenschaften aller
Klassen wider. Abb. 6.2 zeigt die drei Merkmale des ersten Knotens.

Abbildung 6.2.: Merkmale des ersten Knotens. Im ersten Knoten werden Hypothesen ge-
meinsam fiir PKW und LKW verarbeitet. Daher sind die gewdhlten Merkmale
charakteristisch fiir beide Fahrzeugtypen. (a) Untere Kante (Haarwavelet). (b)
Vorwiegend vertikale Kanten (EOH). (c) Markante Ecke (Haarwavelet).

6.1.3. Gewihlte Fenster

Um im gemeinsamen Bereich der Klassifikatoren (d.h. in den ersten vier Knoten) sowohl
PKW als auch LKW zu detektieren, miissen die Norm- und Objektfenster so gewahlt werden,
dass gemeinsame Merkmale moglich sind. Problematisch ist, dass LKW hoher als breit sind,
wohingegen PKW eine tendenziell quadratische Grundform (von hinten gesehen) besitzen.
Diese beiden Seitenverhiltnisse miissen kombiniert werden.

Dabher ist das Normfenster fiir alle untersuchten Klassifikatoren auf 13 mal 22 Pixel festgelegt.
Die Objektfenster von PKW und LKW unterscheiden sich. Um der Héhe von LKW Rechnung zu
tragen, wird ihr Objektfenster im Verhiltnis 2 : 1 zentral im Normfenster platziert (Abb. 6.3(b)).
Das Objektfenster fiir PKW ist quadratisch gewéahlt (Abb. 6.3(a)). Die Position der Objektfenster
wird so festgelegt, dass moglichst viele gemeinsame Kanten vorhanden sind. Abb. 6.3 zeigt
das verwendete Normfenster und die Objektfenster fiir PKW bzw. LKW. Die Objektfenster der
Riickfronten wurden entsprechend den Objektfenstern des zugehorigen Fahrzeugtyps gewahlt.

Die gesuchten Objekte haben Einfluss auf die Hypothesengenerierung. Insbesondere die ma-
ximale und minimale Objekthohe sind relevant (vgl. Abschnitt 3.5). Die Angabe der Objekthche
muss sich am hoheren der beiden Objektfenster bemessen, da das kleinere dann notwendiger-
weise innerhalb des Suchtunnels liegt. Daher ist die Vorgabe der Hohe von LKW notig. Diese
wurde auf minimal 2.5, maximal 5 Meter festgelegt. Damit ist die Hohe von PKW minimal
1.25, maximal 2.5 Meter (das Objektfenster von PKW ist halb so hoch wie das Objektfenster
von LKW). Tabelle 6.3 gibt eine Ubersicht iiber die Parameter der Hypothesengenerierung. Die
gewdhlte minimale Hypothesengrofie ergibt eine maximale Detektionsreichweite von ca. 100
Metern, berechnet bei einer erwarteten Fahrzeugbreite von 1.8 Metern.

Das Merkmalsfenster ist gleich dem Normfenster gewihlt. D. h. an jeder Position innerhalb
des Normfensters konnen Merkmale existieren.
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13 px 13 px
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o 9 px o~ —
x (211)

(@) (b)

Abbildung 6.3.: Gewidhlte Norm- und Objektfenster. Um eine gemeinsame Detektion von
PKW und LKW zu erméglichen, wird das Normfenster auf 13 mal 22 Pixel
festgelegt. Die Objektfenster sind fiir PKW und LKW unterschiedlich gewihlt.
Der ,Rand” um die Objekte ist auf 2 Pixel im Normfenster festgelegt. Die
Position der Objektfenster ist so gewdhlt, dass moglichst viele gemeinsame
Kanten vorhanden sind. (a) Das Objektfenster fiir PKW ist quadratisch gewahlt.
(b) LKW besitzen ein Objektfenster mit dem Seitenverhiltnis 2 : 1 um ihrer
Hohe Rechnung zu tragen.

’ Parameter ‘ Wert ‘
Hypothesenhthe 44 — 480 Pixel
Objekthohe 2.5 -5 Meter (LKW, = 1.25 - 2.5 fiir PKW)

Quantisierungen (in x-, y- und z-Richtung) | 0.05, 0.05, 0.09

Relaxierungswinkel 2°

Tabelle 6.3.: Parameter der Hypothesengenerierung. Die Objekthohe bemisst sich an LKW, da
diese das hohere Objektfenster besitzen. Die Wahl von 2.5 — 5 Meter fiir LKW
entspricht einer Objekthohe von 1.25 — 2.5 Meter fiir PKW.

6.1.4. Untersuchte Klassifikatoren

Ausgehend von der gemeinsamen Grundstruktur (siehe Abschnitt 6.1.2) werden folgende
Klassifikatoren sowohl fiir PKW als auch fiir PKW-Riickfronten untersucht:

e Eine Viola-Jones-Kaskade.

e Ein DB-CBT mit 7 = 4000 und ein DB-CBT mit 7 = 8000. Die Wahl von 5 entspricht
ungefdhr 10 bzw. 20 % der Trainingsbeispiele fiir PKW /PKW-Riickfronten.

e Ein Klassifikationsbaum, dessen Teilung des Eingaberaums mit dem k-Means-
Algorithmus auf den Merkmalsvektoren statt mit dem Verfahren des DB-CBT
vorgenommen wird. Als Kriterium fiir die Initiilerung einer Trennung kommt der
gleiche Schwellwert auf den Z-Wert zum Einsatz. In der Phase der Anwendung werden
Hypothesen demjenigen Nachfolger zugeordnet, dem sie auch in der Phase des Trainings
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6. Experimentelle Ergebnisse

zugeteilt worden wéren. D.h. die Entscheidung wird anhand der L,-Distanz der
Hypothese zu den Clusterzentren getroffen. Wie auch beim DB-CBT wird eine weitere
Teilung unterbunden, wenn die Anzahl Positivbeispiele unter 4000 bzw. 8000 fallt.

Im weiteren Verlauf werden die trainierten Baumklassifikatoren mit 4000-er bzw. 8000-er
Baum bezeichnet. Die Bezeichnung spiegelt das jeweilige # des Trainings wider. 4000-er Biume
meint also sowohl den DB-CBT als auch den k-Means-Baum, trainiert mit # = 4000.

Fiir LKW und LKW-Riickfronten sind bei den gewahlten Trainingsparametern nicht ausrei-
chend Beispiele fiir das Training eines DB-CBT oder eines k-Means-Baums vorhanden. Daher
wird fiir LKW und LKW-Riickfronten lediglich eine Kaskade untersucht.

Das Training der Klassifikatoren nahm {tiber sieben Wochen auf 16 Computern in Anspruch.
Sowohl das Boosting als auch das Sammeln der Beispiele wurde im Zuge dieser Arbeit paral-
lelisiert, um der enormen Datenmassen und dem Bedarf an Rechenleistung Herr zu werden.
Dennoch tiiberstieg das Training der 8000-er Biume und der Kaskade zeitlich den Rahmen
dieser Arbeit. Die 4000-er Biume wurden vollstandig und erschopfend trainiert.

Das Training der Kaskade wurde nach 30 Stufen fiir PKW und nach 29 Stufen fiir PKW-
Riickfronten abgebrochen. Die 8000-er Biume werden bei einer Tiefe von 23 evaluiert. Der 4000-
er DB-CBT hat Tiefe 22 (PKW) bzw. Tiefe 21 (PKW-Riickfronten); der 4000-er k-Means-Baum
hat Tiefe 23 sowohl fiir PKW als auch fiir PKW-Riickfronten. Die Struktur der untersuchten
Klassifikatoren wird in Anhang A visualisiert.

6.2. Metriken und KenngroBen fir die Performance-Messung

6.2.1. Bewertung von Detektionen

Bei der Evaluierung von Klassifikatoren ist zundchst festzulegen, was eine korrekte Detektion
ist. Hierfiir ist ein Abstandsmaf fiir Hypothesen notig. Mit diesem kann der Abstand zwischen
einer Hypothese, welche das Objekt ,perfekt” zeigt (sog. Grundwahrheit, engl. ground truth, im
Folgenden auch oft Label genannt), und einer Detektion berechnet werden. Ist der Abstand
kleiner als eine vorgegebene Schwelle, so ist die Detektion korrekt (True Positive, TP), andernfalls
ist sie es nicht (False Positive, FP).

In der Literatur wird hiufig (u. a. von [Kal05],[SHL07],[KN09],[EG09]) die Uberdeckung (engl.
coverage) als Abstandsmaf; verwendet. Sie ist fiir zwei Hypothesen By, definiert als

A(Bl N Bz)

B ) = R B UB)

€0, 1].

A ist hierbei der Flacheninhalt eines Rechtecks. cov (B, By) ist also der gemeinsame Anteil am
(gesamten) Flacheninhalt von B; und Bs.

Nachteilig an der Verwendung von cov(.,.) ist allerdings, dass die Uberdeckung unabhingig
von der Position des gemeinsamen Bereichs zweier Hypothesen ist, d.h. zentral gelegene
Ubereinstimmungen werden nicht favorisiert (siehe auch Abb. 6.4). Um diesen Nachteil zu
vermeiden, schldgt Lohlein in [L609] die Ahnlichkeit (engl. affinity) als alternatives Abstandsmaf3
vor. Diese bemisst die Distanz zweier Hypothesen an der Distanz zwischen ihren Randern.
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Sie sind umso dhnlicher, je ndher sich ihre Rander sind. Fiir zwei Hypothesen A und B ist die
Ahnlichkeit aff (A, B) zwischen ihnen definiert als

2 2
aff (4, B) = max | 0,1 - +((wfjizighfji;(wz”‘) ep1. (6D
Panax Pnax

Die Bedeutung der einzelnen Variablen a — d ist in Abb. 6.4(a) dargestellt. h4 p ist die Hohe
der Hypothese A bzw. B. Dementsprechend ist w4 g deren Breite. Damit ist /1,4 durch hyy =
max (ha, hg), Wyax durch W,y = max (wa, wp) bestimmt.

d 0.74 (0.6) 0.74 (0.6) 0.59 (0.39) 0.38 (0.23) 0.17 (0.10) 0(0)
I i [ [ Il [ [
a{ ——
B
0.42 (0.25) 0.51 (0.25) 0.47 (0.25) 0.34 (0.19) 0.15 (0.08) 0(0)
0.36 (0.25) 0.44 (0.25) 0.42 (0.25) 0.29 (0.19) 0.11 (0.08) 0(0)
{ ] ] ] [ [ [

() (b)

Abbildung 6.4.: Berechnung und Beispiele der Ahnlichkeit zweier Hypothesen. Die Ahn-
lichkeit aff(., .) ist eine Metrik auf Hypothesen. Der Abstand zweier Hypothe-
sen ist umso geringer, je dhnlicher sich diese sind. (a) Bedeutung der Variablen
von Gleichung (6.1). (b) Beispiele fiir die Ahnlichkeit zweier Hypothesen. In
Klammern ist die Uberdeckung der Hypothesen angegeben. Es ist deutlich zu
sehen, dass die Ahnlichkeit ein geeigneteres Maf3 darstellt, da sie ,zentrale”
Ubereinstimmungen favorisiert.

Quelle: [L609]

Mit dem so definierten Abstandsmag aff(.,.) konnen Detektionen bewertet werden. Hierbei
werden drei mogliche Félle unterschieden:

1. Detektionen, deren Ahnlichkeit mit allen Labels unter einem Schwellwert o, liegt, be-
kommen die Klasse Negative. Bei Detektionen dieser Art handelt es sich um Falschalarme.

2. Hat eine Detektion eine Ahnlichkeit > 0,¢ mit einem Label und entspricht das Label
der Klasse der Detektion — bspw. eine PKW-Detektion und ein PKW-Label — so wird der
Detektion die Klasse Positive zugewiesen. Detektionen dieser Art sind korrekt.

3. Ist die Ahnlichkeit zwischen Detektion und Label grofler als o,¢, passen die Klassen
jedoch nicht zueinander — etwa die Detektion einer PKW-Riickfront mit einem Label fiir
PKW - so wird die Detektion ignoriert (Ignore), d. h. diese Detektionen werden weder als
Falschalarm noch als korrekte Detektion gewertet.
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In dieser Arbeit wird die Performance der Klassifikatoren mit o,¢ = 0.2 ausgewertet. Die
Einordnung der Detektionen unterscheidet sich je nach Evaluierung und wird bei der jeweiligen
Auswertung direkt erldutert.

6.2.2. KenngroéBen der Performance

In diesem Abschnitt werden die relevanten Kenngrofien zur Bewertung der Performance
erldutert. Die hier vorgestellten Mafle sind nur ein kleiner Ausschnitt aus den moglichen
Kenngrofen fiir die Evaluierung von Klassifikatoren. Fiir eine Ubersicht iiber weitere sei auf
[Wal08, S. 121 ff.] und [Kal05, S. 44 ff.] verwiesen.

TP-Rate: Die TP-Rate ist der Anteil der detektierten Objekte an der Menge der Hypothesen,
die ein Objekt zeigen (TP).

Falschalarmrate: Die Falschalarmrate ist der Anteil der Detektionen an der Menge der Hypo-
thesen, die kein Objekt zeigen (FP).

Detektionsrate: Die Detektionsrate ist der Anteil an detektierten Objekten an insgesamt im
Datensatz vorhandenen Objekten. Bei einer Detektionsrate von 100 % werden somit alle
im Datensatz vorhandenen Objekte detektiert.

Prézision: Die Prazision ist die Wahrscheinlichkeit, dass eine Detektion einem Objekt ent-
spricht. Bei einer Prazision von 1 zeigt jede Detektion auch tatsédchlich ein Objekt.

6.2.3. Visualisierung der Performance

Zur Visualisierung der Performance kommen ROC!- und PR?-Diagramme zum Ein-
satz. ROC-Diagramme visualisieren den Trade-off zwischen Detektions- und Falschalarm-
rate [Wal08, S. 184 ff.], PR-Diagramme stellen die Prazision der Detektionsrate gegeniiber
[WEO5, S. 171£.]. Fur eine weitergehende Einfiithrung in ROC-Analyse sei auf [Faw(06] ver-
wiesen. Eine ausfiihrlichere Diskussion von PR-Diagrammen bietet [WFO05, S. 1711.].

Die Generierung von ROC- und PR-Diagrammen ist sehr aufwendig, da fiir jeden Punkt
im ROC- bzw. PR-Raum ein neuer Klassifikator trainiert werden muss [Wal08, S. 186 {.]. Eine
Vereinfachung bietet die im Folgenden beschriebene Vorgehensweise, bei der die Tatsache
genutzt wird, dass eine ,, Akzeptanzschwelle” p existiert, ab der eine Hypothese als Objekt
klassifiziert wird. Wird p verringert, werden alle Hypothesen, die fiir das friihere p als Objekt
klassifiziert wurden, weiter als Objekt eingestuft®. Zusitzlich werden nun allerdings diejenigen
Hypothesen, die iiber dem neuen, nicht jedoch iiber dem alten p liegen, akzeptiert. Folglich
steigt der Anteil der akzeptierten Hypothesen. D. h. durch Absenken von p wird ein neuer Punkt
im ROC- und PR-Raum gefunden. Dieser Prozess ldsst sich wiederholen, bis jede Hypothese
akzeptiert wird, die TP-Rate also 100 % ist. Fiir eine weitergehende Analyse des skizzierten
Verfahrens sei auf [Faw(06] verwiesen.

IReceiver Operating Characteristic

2Precision over Recall

30hne Einschrankung der Allgemeinheit wird hierbei davon ausgegangen, dass Hypothesen als Objekt gewertet
werden, sobald sie iiber der Akzeptanzschwelle liegen.
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6.2. Metriken und Kenngréfen fiir die Performance-Messung

Fiir eine Kaskade ldsst sich das schrittweise Absenken der Akzeptanzschwelle durch sukzes-
sives Loschen von Stufen (von der letzten Stufe an) realisieren. Fiir Basume wird das Verfahren
analog angewandyt, indem schrittweise alle Knoten einer Tiefe (von der maximalen Tiefe an)
geloscht werden.

Um die Interpretierbarkeit zu erhohen, werden die erstellten ROC-Diagramme leicht ver-
andert dargestellt. Statt der Falschalarmrate werden Falschalarme je Bild auf der x-Achse
aufgetragen. Damit wird ein besserer Eindruck von der Systemleistung vermittelt, da die An-
zahl Falschalarme je Bild (im Gegensatz zur Anzahl Hypothesen) besser interpretierbar und
damit aussagekréftiger ist. Zudem kann von Falschalarmen je Bild leichter auf die im auto-
mobilen Bereich verbreitete [Wal08, S. 121 £.],[SZ06, S. 94 ff.] Kennzahl , Fehler je Zeiteinheit”
umgerechnet werden (je Bild vergehen 40 Millisekunden, vgl. Abschnitt 1.3). Auf der y-Achse
der ROC-Diagramme wird die Detektionsrate aufgetragen. Dies weicht von der ,traditionellen”
Darstellung ab, da die Detektionsrate nicht der normalerweise verwendeten TP-Rate entspricht.
Die TP-Rate erfasst nicht diejenigen Objekte, fiir die keine Hypothese existiert, sie ist also
tendenziell hoher als die Detektionsrate. Da die TP-Rate allerdings nicht dem menschlichen
Verstandnis von Korrektheit entspricht (nicht erkannte Objekte konnen bei einer TP-Rate von
100 %, nicht jedoch bei einer Detektionsrate von 100 % auftreten), wird fiir die hier verwendeten
ROC-Diagramme die Detektionsrate als Kennzahl gewéhlt.

6.2.4. Ein AbstandsmaB fiir Winkelkategorien

Fiir die Untersuchung der Genauigkeit der Winkelschdtzung ist ein Abstandsmafs notig, das
die Distanz zwischen Winkelkategorien (siehe Abschnitt 2.8) angibt. Anhand diesem kann der
Anteil korrekt kategorisierter Detektionen ausgewertet werden.

Daher sei folgendes MafB m(c) fiir eine Kategorie ¢ = (c1, cp) mit ¢; € {right, left, straight}
und ¢ € IN definiert:

—1, fallsc; = left
1, sonst )

m(c) = (10 — ¢) X {

Damit l4sst sich die Distanz d(a, b) zwischen zwei Kategorien a und b wie folgt berechnen:
d(a,b) = [m(a) = m(b).

Tabelle 6.4 gibt einige Beispiele fiir Abstdnde zwischen Kategorien.

K b |
left, 12)

left, 11)
straight, 10)
right, 12)

(a,b) |

=N RO X

(
(
(
(

Tabelle 6.4.: Beispiele fiir Abstinde mit dem definierten Abstandsmag d(.,.).
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6. Experimentelle Ergebnisse

6.3. Ergebnisse

In diesem Abschnitt werden die Ergebnisse der experimentellen Untersuchung der trainierten
Klassifikatoren angegeben. Neben der Performance (Abschnitt 6.3.1) wird die Geschwindigkeit
der Klassifikatoren (Abschnitt 6.3.2) untersucht. Zuséitzlich wird die Qualitét, d. h. Genauig-
keit und Verlasslichkeit, der Kategorisierung in Winkelkategorien (Abschnitt 6.3.3) und die
Verwechslungsgefahr zwischen den Fahrzeugtypen (Abschnitt 6.3.4) evaluiert.

6.3.1. Performance der Klassifikatoren

Die Performance der Klassifikatoren wird fiir PKW, PKW-Riickfronten, LKW und LKW-
Riickfronten einzeln untersucht. Ignoriert werden hierbei alle Detektionen, die nicht vom
jeweils korrekten Klassifikator stammen oder die sich mit einem Label iiberschneiden, wel-
ches nicht zum untersuchten Klassifikator passt. Bspw. werden bei der Untersuchung der
PKW-Klassifikatoren alle Detektionen der Klassifikatoren fiir PKW-Riickfront, LKW und LKW-
Riickfront ignoriert. Ferner werden alle Detektionen des PKW-Klassifikators ignoriert, die sich
mit einem Label einer PKW-Riickfront, eines LKW oder einer LKW-Riickfront iiberschneiden,
nicht jedoch mit einem PKW-Label.

Die Abb. 6.5 und 6.6 zeigen die Performance der PKW-Klassifikatoren. Alle Klassifikatoren
zeigen in etwa die gleiche Performance. Im ROC-Diagramm (Abb. 6.5) ist erkennbar, dass das
Training der PKW-Kaskade nicht beendet wurde — es existieren keine Arbeitspunkte mit weniger
als zwei Falschalarmen je Bild. Es ist allerdings anzunehmen, dass die Kurve der Kaskade bei
weiterem Training einen dhnlichen Verlauf nimmt wie die Kurven der anderen Klassifikatoren.
Alle Klassifikatoren garantieren Detektionsraten > 80 %, im Fall der 4000-er Biume bei weniger
als 0.3 Falschalarmen je Bild. Die erreichte Prézision liegt fiir diesen Arbeitspunkt bei ca. 80 %
(siehe Abb. 6.6).

Auch bei der Untersuchung bei der Detektion von PKW-Riickfronten unterscheiden sich die
Klassifikatoren nicht stark voneinander. Allerdings sind hier die Unterschiede zwischen den
einzelnen Klassifikatoren dennoch etwas grofer als bei den PKW-Klassifikatoren (Abb. 6.7 und
6.8). Hervorzuheben ist der 8000-er k-Means-Baum, der eine Detektionsrate von ca. 90 % bei
0.3 Falschalarmen je Bild aufweist. Die {ibrigen Klassifikatoren garantieren eine Detektionsrate
von ca. 85 % bei dieser Falschalarmrate. Fiir die Kaskade existiert kein Arbeitspunkt in diesem
Bereich, weswegen kein quantitativer Vergleich moglich ist. Anhand des Kurvenverlaufs l4sst
sich aber eine Detektionsrate von ca. 90 % extrapolieren.

Die Performance bei der Detektion von PKW-Riickfronten liegt generell iiber der Performance
bei der Detektion von PKW. Dies ladsst sich damit erkldren, dass die Variabilitdt der Objekt-
Ansichten bei Detektion kompletter PKW sehr viel hoher ist (siehe auch Abb. 1.1, Seite 14) als
bei Einschrankung auf PKW-Riickfronten. Folglich ist die Detektion von PKW ein schwierigeres
Problem als die Detektion von PKW-Riickfronten.

Die Abb. 6.9 und 6.10 zeigen die Performance bei der Detektion von LKW bzw. LKW-
Riickfronten. Beide Experimente sind aufgrund der geringen Anzahl Test- und Trainingsdaten
(vgl. Tabelle 6.1) nur eingeschrinkt aussagekriftig?. Die Ergebnisse werden dennoch, aus
Griinden der Vollstandigkeit, angegeben. Die Detektion von LKW funktioniert sehr gut —

4Fir Untersuchungen tiber den Zusammenhang zwischen Trainingsdatengrofie und Performance sei auf [EGO08]
verwiesen.
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6.3. Ergebnisse
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Abbildung 6.5.: ROC-Diagramm der PKW-Klassifikatoren. Die PKW-Klassifikatoren unter-
scheiden sich nur geringfiigig voneinander. Die Kaskade ist den anderen
Klassifikatoren leicht tiberlegen, allerdings ist sichtbar, dass ihr Training nicht
beendet werden konnte. Es ist anzunehmen, dass die Kurve der Kaskade bei
weiterem Training einen dhnlichen Verlauf nimmt wie die Kurven der anderen
Klassifikatoren.

die Kaskade zeigt Detektionsraten von 92 % bei weniger als einem Falschalarm auf hundert
Bildern (Abb. 6.9). Demgegentiber steht eine geringe Performance bei der Detektion von LKW-
Riickfronten. Hier werden lediglich 65 % der Objekte detektiert (Abb. 6.10).

Neben der Untersuchung der einzelnen Klassifikatoren wird im Folgenden zusétzlich unter-
sucht, welche Performance erreicht wird, wenn die Unterscheidung zwischen Riickfront und
Gesamtfahrzeug aufgehoben wird. D. h. Detektionen werden als Positiv gewertet, sobald der
Fahrzeugtyp der Detektion mit dem Fahrzeugtyp des Labels iibereinstimmt. Somit werden De-
tektionen des Klassifikators fiir PKW-Riickfronten auch bei PKW-Labeln als korrekte Detektion
gezdhlt. Stimmt der Fahrzeugtyp nicht tiberein, werden Detektionen weiterhin ignoriert.

Die Abb. 6.11 und 6.12 zeigen die Performance bei der Detektion von PKW. Erwartungs-
gemdf’ ist die Detektionsrate bei diesem Experimentaufbau grofier als bei einer getrennten
Detektion: Alle Klassifikatoren erreichen Detektionsraten von tiber 89 %. Mithin ist allerdings
die Falschalarmrate schlechter. Maximal werden 0.5 Falschalarme je Bild erreicht, was einer
Préazision von ca. 75 % entspricht (Abb. 6.12). Wie auch bei den anderen Experimenten zu
beobachten, sind die Unterschiede der Performance zwischen den Klassifikatoren sehr gering.

Abb. 6.13 zeigt die Ergebnisse bei der Durchfiithrung des Experiments mit LKW. Wie bei
den anderen Ergebnissen fiir LKW, gilt auch fiir dieses Ergebnis die Einschrankung bzgl.
der Aussagekraft aufgrund des geringen Datenumfangs. Die Performance bei der Detektion
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Abbildung 6.6.: PR-Diagramm der PKW-Klassifikatoren. Auch im PR-Raum betrachtet unter-
scheiden sich die untersuchten Klassifikatoren nur wenig.

entspricht in etwa der Performance bei der Detektion von LKW-Riickfronten. Das sich keine
deutlichere Verbesserung gegeniiber der getrennten Detektion zeigt, ldsst sich damit erkléren,
dass die Anzahl LKW im Vergleich zur Anzahl LKW-Riickfronten vergleichsweise gering ist
(25 gegentiber 410, vgl. Tabelle 6.1).

Zusammenfassend ldsst sich sagen, dass die Detektionsleistung fiir PKW und PKW-
Riickfronten fiir alle untersuchten Klassifikatoren anndhernd gleich ist. Fiir PKW-Riickfronten
sind die Unterschiede etwas grofier als fiir PKW, die Performance der Kaskade und des 8000-er
k-Means-Baums ist etwas grofSer als die der restlichen Klassifikatoren. Die Detektionsleis-
tung lasst sich noch weiter erh6hen, wenn auf die Unterscheidung zwischen PKW und PKW-
Riickfront verzichtet wird. In diesem Fall ist eine Detektionsrate von mindestens 89 % bei 0.5
Falschalarmen je Bild mit allen Klassifikatoren moglich.

6.3.2. Geschwindigkeit der Klassifikatoren

Neben der Performance ist die Geschwindigkeit eines Klassifikators von entscheidender Bedeu-
tung. Diese wird in benotigten Weaklearnern je Hypothese angegeben. Da jeder Weaklearner
genau einem Merkmal entspricht, ist die Laufzeit einer Hypothese genau die Anzahl benétigter
Merkmale bis zu ihrer Klassifikation. Diese ist proportional zur Zeit je Hypothese, d. h. durch
Auswertung der benotigten Weaklearner je Hypothese werden Riickschliisse auf die benétigte
Zeit je Hypothese ermoglicht.

Folgende Fragestellungen sind bei der Geschwindigkeitsuntersuchung von Interesse:
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Abbildung 6.7.: ROC-Diagramm der Klassifikatoren fiir PKW-Riickfronten. Bei der Detek-
tion von PKW-Riickfronten zeigt der 8000-er k-Means-Baum leicht bessere
Ergebnisse im Vergleich zu den anderen Baumen. Fiir die Kaskade liegen im
interessanten Arbeitsbereich (weniger als ein Falschalarm je Bild) keine Daten
vor, es ist jedoch aus dem Kurvenverlauf sichtbar, dass die Detektionsrate
dhnliche Bereiche wie die des 8000-er k-Means-Baums erreichen kann. Die
tibrigen Klassifikatoren garantieren eine Detektionsrate von ca. 85 % bei 0.3
Falschalarmen je Bild.

1. Wie grofs ist der durch Feature-Sharing (siehe Abschnitt 6.1.2) erreichte Geschwindigkeits-
vorteil, d. h. wie grofs ist der Anteil gemeinsamer Merkmale, gemessen an den benétigten
Merkmalen?

2. Was sind erwartete und maximale Laufzeit einer Hypothese? Wahrend die erwartete Lauf-
zeit einem Durchschnittswert entspricht und einen Eindruck tiber die Geschwindigkeit
des Klassifikators vermittelt, ist die — potentiell selten eintreffende — maximale Laufzeit
v.a. fiir Aussagen tiber garantierte Antwortzeiten von Interesse — eine Fragestellung, die
fiir automobile Assistenzsysteme zentral ist [SZ06, S. 62 {f.].

Die ersten vier Knoten der Klassifikatorgrundstruktur werden fiir alle Hypothesen gemein-
sam durchlaufen (vgl. Abschnitt 6.1.2). In diesen Knoten werden 36, 24, 19 bzw. 8 % aller
Hypothesen zurtickgewiesen; Lediglich 13 % der Hypothesen erreichen die Tiefe 5. Folglich
werden ca. 87 % der Merkmale gemeinsam von allen Klassifikatoren verwendet. Das Feature-
Sharing spart also einen Grofiteil der Merkmale ein.

Da fiir die beiden LKW-Klassifikatoren lediglich Kaskaden trainiert wurden, beziehen sich
die nachfolgenden Geschwindigkeitsuntersuchungen auf die PKW-Klassifikatoren. Fiir LKW
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Abbildung 6.8.: PR-Diagramm der Klassifikatoren fiir PKW-Riickfronten.

ergab sich eine erwartete und maximale Laufzeit von 17.03 bzw. 506 Weaklearnern fiir den LKW-
Klassifikator sowie eine erwartete und maximale Laufzeit von 16.74 bzw. 387 Weaklearnern fiir
den LKW-Riickfronten-Klassifikator.

Kennwert ‘ Kaskade | DB-CBT, 4000 | k-Means, 4000
Erwartete Laufzeit (inkl. Feature-Sharing) 29.93 22.36 21.37
Vergleich zu Kaskade 100 % 75 % 71%
Erwartete Laufzeit (exkl. Feature-Sharing) 170.55 106.71 98.33
Vergleich zu Kaskade 100 % 62 % 58 %
Maximale Laufzeit 3637 1321 1524
Vergleich zu Kaskade 100 % 36 % 42 %

Tabelle 6.5.: Geschwindigkeitsvergleich zwischen Kaskade und den 4000-er Biumen
(PKW).

Die Tabellen 6.5 und 6.6 fassen die Laufzeitdaten fiir PKW zusammen. Bei Verwendung des
4000-er DB-CBT ergibt sich ein erwarteter Laufzeitvorteil von 25 % gegentiber der Kaskade,
bei Einsatz des 8000-er DB-CBT ist die erwartete Laufzeit um 23 % geringer. Rechnet man den
gemeinsamen und fiir alle Klassifikatoren gleichen Bereich heraus, ergibt sich ein erwarteter
Laufzeitvorteile von 38 bzw. 34 % des 4000-er bzw. 8000-er DB-CBT.

Bei der maximalen Hypothesenlaufzeit zeigen sich die Geschwindigkeitsvorteile des DB-CBT
nocht deutlicher. Fiir Hypothesen, die den lingsten Weg durch den Baum nehmen (worst-
case-Laufzeit) spart man mit dem DB-CBT 64 bzw. 53 % (4000-er bzw. 8000-er DB-CBT) der
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Abbildung 6.9.: ROC- und PR-Diagramm des LKW-Klassifikators. Die Performance bei der
Detektion von LKW ist sehr hoch, die Ergebnisse sind jedoch aufgrund der
geringen Anzahl Test- und Trainingsdaten (vgl. Tabelle 6.1) nur eingeschrankt
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Abbildung 6.10.: ROC- und PR-Diagramm des Klassifikators fiir LKW-Riickfronten. Die
Performance bei der Detektion von LKW-Riickfronten ist nicht so hoch wie bei
der Detektion von PKW-Riickfronten, was sich allerdings mit der geringeren
Anzahl Trainingsbeispiele erklaren ldasst [EGO8].

Weaklearner ein. Zu beachten ist hierbei, dass bei einer Kaskade dieser Fall fiir jede akzep-
tierte Hypothese auftritt, beim DB-CBT hingegen auch Hypothesen mit kiirzeren Laufzeiten
akzeptiert werden.

Die erwarteten Laufzeiten der k-Means-Baume sind leicht unter den erwarteten Laufzeiten
der beiden DB-CBT. Zu beachten ist hierbei allerdings, dass die maximale Laufzeit des 4000-er
DB-CBT 15 % geringer als die des 4000-er k-Means-Baums und 32 % geringer als die des 8000-
er k-Means Baums ist, wihrend der Vorteil der k-Means-Baume bei der erwarteten Laufzeit
lediglich 5% bzw. 8 % betrdgt. D.h. die Laufzeit des DB-CBT weist eine im Vergleich zum
k-Means-Baum geringere Variabilitdt auf.
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Abbildung 6.11.: ROC-Diagramm der Detektion von PKW ohne Unterscheidung zwischen
Riickfront und Gesamtfahrzeug. Erwartungsgemafs ergibt sich eine hohere
Detektionsrate, gepaart mit einer schlechteren Falschalarmrate, wenn die
Unterscheidung zwischen Fahrzeug und Riickfront aufgehoben wird.

Kennwert ‘ Kaskade | DB-CBT, 8000 | k-Means, 8000
Erwartete Laufzeit (inkl. Feature-Sharing) 29.93 23.15 21.61
Vergleich zu Kaskade 100 % 77 Y% 72 %
Erwartete Laufzeit (exkl. Feature-Sharing) 170.55 113.33 100.36
Vergleich zu Kaskade 100 % 66 % 59 %
Maximale Laufzeit 3637 1724 1600
Vergleich zu Kaskade 100 % 47 % 44 %

Tabelle 6.6.: Geschwindigkeitsvergleich zwischen Kaskade und den 8000-er Baumen
(PKW).

Fiir PKW-Riickfronten bestatigt sich die bereits bei der Untersuchung der Performance
beobachtbare Tatsache, dass die Klassifikation von PKW ein komplexeres Problem ist als
die Klassifikation von PKW-Riickfronten. Folglich werden fiir die Klassifikation von PKW-
Riickfronten weniger Weaklearner benotigt — im Schnitt 21.67 gegeniiber 22.36 bei Verwendung
eines 4000-er DB-CBT.

Bei Verwendung eines DB-CBT ergibt sich ein erwarteter Laufzeitvorteil von 21 bzw. 19 %
(4000-er bzw. 8000-er DB-CBT) gegeniiber der Kaskade. Die erwartet Laufzeit bei Verwendung
eines k-Means-Baums ist etwas geringer als die erwartete Laufzeit der DB-CBT. Auch hier
ist jedoch festzuhalten, dass die maximale Laufzeit des 4000-er DB-CBT um 25 % bzw. 27 %
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Abbildung 6.12.: PR-Diagramm der Detektion von PKW ohne Unterscheidung zwischen
Riickfront und Gesamtfahrzeug. Die Prézision ist durch die hohere Falscha-
larmrate (vgl. Abb. 6.11) geringer als bei einer getrennten Detektion von PKW
und PKW-Riickfront.

Kennwert | Kaskade | DB-CBT, 4000 | k-Means, 4000
Erwartete Laufzeit (inkl. Feature-Sharing) 27.47 21.67 20.75
Vergleich zu Kaskade 100 % 79 % 76 %
Erwartete Laufzeit (exkl. Feature-Sharing) 149.74 100.88 93.11
Vergleich zu Kaskade 100 % 67 % 62 %
Maximale Laufzeit 3381 1204 1514
Vergleich zu Kaskade 100 % 36 % 45 %

Tabelle 6.7.: Geschwindigkeitsvergleich zwischen Kaskade und den 4000-er Biumen (PKW-
Riickfront).

geringer ist als die maximale Laufzeit der k-Means-Baume. Der Vorteil des DB-CBT gegeniiber
der Kaskade betragt 64 bzw. 50 %.

Insgesamt ergibt sich in jedem Fall ein Geschwindigkeitsvorteil bei Einsatz des DB-CBT.
Dieser betrédgt (je nach Parametern) bis zu 25 % gegeniiber der Kaskade. Neben den Vorteilen
bei der erwarteten Laufzeit der Hypothesen ergibt sich ein Vorteil bei der maximalen Laufzeit:
die maximale Laufzeit — und damit auch die bestmoglich zu garantierende Antwortzeit — ist
beim DB-CBT um bis zu 64 % geringer.
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Abbildung 6.13.: Ergebnisse der Detektion von LKW ohne Unterscheidung zwischen Riick-
front und Gesamtfahrzeug. (a) ROC-Diagramm. (b) PR-Diagramm.

Kennwert ‘ Kaskade ‘ DB-CBT, 8000 ‘ k-Means, 8000
Erwartete Laufzeit (inkl. Feature-Sharing) 27.47 22.30 21.25
Vergleich zu Kaskade 100 % 81 % 77 Y%
Erwartete Laufzeit (exkl. Feature-Sharing) 149.74 106.20 97.30
Vergleich zu Kaskade 100 % 71% 65 %
Maximale Laufzeit 3381 1698 1532
Vergleich zu Kaskade 100 % 50 % 45%

Tabelle 6.8.: Geschwindigkeitsvergleich zwischen Kaskade und den 8000-er Biumen (PKW-
Riickfront).

6.3.3. Genauigkeit der Winkelschatzung

Neben der Performance und Geschwindigkeit der Klassifikatoren ist auch die Qualitdt der
Kategorisierung in Winkelkategorien von Bedeutung. Um diese zu untersuchen, wurden alle
assoziierten und korrekten Detektionen, also solche, die auch tatsdachlich ein Objekt zeigen,
dahingehend untersucht, wie stark die ihnen zugewiesene Winkelkategorie von der tatséchli-
chen abweicht. Zum Einsatz kam dabei das in Abschnitt 6.2.4 eingefiihrte Abstandsmafs. Unter
Vorgabe einer maximalen Abweichung d,,,x kann damit der Anteil korrekt kategorisierter
Detektionen an den kategorisierten Detektionen insgesamt betrachtet werden. Als korrekt
kategorisiert gelten dabei alle Detektionen, deren Winkelkategorie hochstens um d,;,,; von der
tatsdchlichen abweicht.

Tabelle 6.9 zeigt die Qualitat der Winkelschiatzung fiir PKW. Diese ist sehr hoch, alle Klassifi-
katoren kategorisieren schon bei d,,5, = 0 rund 28 % korrekt. Bei Einrdumung einer Toleranz
lasst sich der Korrektheitsgrad weiter steigern. Alle untersuchten Klassifikatoren zeigen in etwa
die gleiche Leistung bei der Kategorisierung, keiner der Klassifikatoren kann hervorgehoben
werden.

Tabelle 6.9 zeigt die Qualitat der Winkelschiatzung fiir LKW. Sie ist sehr viel hoher als die der
Winkelkategorisierung von PKW. Aufgrund der geringen Zahl an auswertbaren Detektionen
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KlaSSiﬁkatOI‘ dmax - O dmax = 1 dmax == 2 dmax - 3

DB-CBT, 4000 28 % 50 % 68 % 85 %
DB-CBT, 8000 28 % 48 % 68 % 86 %
k-Means, 4000 27 % 45 % 66 % 85 %
k-Means, 8000 28 % 47 % 69 % 89 %
Kaskade 28 % 49 % 69 % 85 %

Tabelle 6.9.: Qualitit der Winkelkategorisierung (PKW). Angegeben ist jeweils der Anteil
korrekt kategorisierter Detektionen an den kategorisierten Detektionen insgesamt.

’ Klassifikator ‘ Apax = 0 ‘ Apax = 1 ‘ Ayppay = 2 ‘ Apax = 3 ‘
| Kaskade [ 89% 94 % 98 % 99 %

Tabelle 6.10.: Qualitit der Winkelkategorisierung (LKW). Angegeben ist jeweils der Anteil
korrekt kategorisierter Detektionen an den kategorisierten Detektionen insgesamt.
Die Qualitiat der Winkelkategorisierung ist sehr viel hoher als die der Winkelkate-
gorisierung von PKW (Tabelle 6.9). Aufgrund der geringen Zahl an auswertbaren
Detektionen — lediglich 265 Detektionen konnten Daten der Grundwahrheit zuge-
ordnet werden - sind diese Zahlen allerdings nur eingeschrankt aussagekraftig.

— lediglich 265 Detektionen konnten Daten der Grundwahrheit zugeordnet werden — sind
diese Zahlen allerdings nur eingeschrankt aussagekraftig und lediglich aus Griinden der
Vollstandigkeit angegeben.

6.3.4. Verwechslungsgefahr zwischen den Fahrzeugtypen

Tabelle 6.11 zeigt die Verwechslungsmatrix (engl. confusion matrix) der Klassifikatoren. Der
Anteil an Verwechslungen zwischen den Fahrzeugtypen ist hervorgehoben. Fiir die Auswertung
wird der Arbeitspunkt mit der geringsten Falschalarmrate jedes Klassifikators zugrunde gelegt.

Klassifikator Anteil PKW ‘ Anteil LKW ‘ Falschalarme ‘ Hypothesen

DB-CBT, 4000 94.3 % 3.2% 2.5% 48981
DB-CBT, 8000 91.2% 5.6 % 3.2% 91902
k-Means, 4000 92.4 % 5.4 % 22% 45454
k-Means, 8000 93.0 % 5.2 % 1.8% 67163
Kaskade (PKW) 90.3 % 5.3 % 4.4 % 183 045
Kaskade (LKW) 20.6 % 77.9 % 1.5% 1296

Tabelle 6.11.: Verwechslungsmatrix der Klassifikatoren. Der Anteil an Verwechslungen zwi-
schen den Fahrzeugtypen ist hervorgehoben. Fiir die Auswertung wird der Ar-
beitspunkt mit der geringsten Falschalarmrate jedes Klassifikators zugrunde
gelegt.

Es ist zu sehen, dass die Klassifikatoren fiir PKW keine Probleme mit Verwechslungen zeigen.
Nur ein geringer Anteil der akzeptierten Hypothesen zeigt LKW statt PKW. Hervorzuheben
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ist an dieser Stelle der 4000-er DB-CBT, der eine leicht hohere Zuverlassigkeit aufweist als die
anderen Klassifikatoren. Insgesamt sind die Unterschiede zwischen den Klassifikatoren jedoch
vernachléssigbar klein.

Der LKW-Klassifikator hingegen zeigt Probleme mit Verwechslungen zwischen der Fahr-
zeugtypen. Uber 20 % der Detektionen zeigen PKW statt LKW.

6.4. Exemplarische Systemleistung

Die Abb. 6.14 und 6.15 zeigen Beispiele des kompletten Systems in der Phase der Anwendung.
Als Klassifikator kam der 4000-er DB-CBT zum Einsatz. In Abb. 6.14(a) ist zu erkennen, dass
sich die Objektfenster von PKW und LKW in der Hohe unterscheiden. Abb. 6.14(b) zeigt zwei
korrekt detektierte PKW zusammen mit einem Falschalarm (,,Gullideckel”). Abb. 6.15 zeigt die
im System vorgenommene Winkelschdtzung durch Kategorisierung assoziierter Detektionen.
Im Beispiel wurde dem PKW die Kategorie right 13 zugewiesen.

(b)

Abbildung 6.14.: Typische Szenen beim Einsatz des Gesamtsystems. Zum Einsatz kam der
4000-er DB-CBT. (a) Unterschiedliche Objektfenster fiir LKW und PKW. (b)
Korrekt detektierte PKW zusammen mit einem Falschalarm.
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Abbildung 6.15.: Kategorisierung von Fahrzeugen. Zum Einsatz kam der 4000-er DB-CBT. Zu
sehen ist eine vollstindig assoziierte und kategorisierte Detektion eines PKW.
Im Beispiel wurde der Detektion die Kategorie right 13 zugewiesen.
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KAPITEL /

Zusammenfassung und Ausblick

Das Wissen um andere Verkehrsteilnehmer ist eine zentrale Komponente moderner Fahrerassis-
tenzsysteme. Die Detektion von Fahrzeugen in Mono-Bildern ist hierbei ein wichtiger Baustein,
der zur Weiterentwicklung von automobilen Assistenzsystemen beitragt.

In dieser Arbeit wurde ein echtzeitfdhiges System vorgestellt, das PKW und LKW in Mono-
Grauwertbildern unter allen Orientierungen bzgl. der Kamera detektiert (Multi-View Vehicle
Detection). Es arbeitet hierbei einzelbildbasiert, d. h. ohne Tracking {iber mehrere Bilder hinweg.
Um sowohl PKW als auch LKW effizient zu klassifizieren, wird die Anzahl benotigter Merkmale
durch Feature-Sharing stark reduziert sowie eine neuartige, hierarchische Klassifikatorstruktur
eingesetzt.

Neben der reinen Detektion der Fahrzeuge wird zusitzlich ihre Orientierung eingeschétzt.
Hierfiir wurde der Zusammenhang zwischen Fahrzeugriickfront und Gesamtfahrzeug ge-
nutzt, welcher Riickschliisse iiber die Orientierung des Fahrzeugs erlaubt. Daher werden
Fahrzeugriickfront und Gesamtfahrzeug getrennt detektiert. Im Anschluss daran werden De-
tektionen einander zugeordnet und aus ihrer relativen Lage auf die Orientierung des Fahrzeugs
geschlossen. Die so gewonnene Information ldsst sich fiir zukiinftige Verbesserungen von
Tracking und Sensordatenfusion in Mono-Systemen nutzen und ermoglicht somit in Zukunft
eine genauere und zuverldssigere Gefahrdungseinschatzung im StrafSenverkehr.

Um Fahrzeuge unter allen Orientierungen effizient detektieren zu konnen, wurde die Kaskade
auf einen hierarchischen Klassifikator erweitert. Der entwickelte Klassifikator (Decision-Boosted
Cluster Boosted Tree, DB-CBT) nimmt zusétzliche Auftrennungen des Eingaberaums vor, um eine
effizientere Klassifikation zu ermoglichen. Hierfiir wurde ein neues Giitemafs entwickelt, das
die Eignung einer Auftrennung misst. Anhand diesem wird die Trennung mittels dem heuristi-
schen Optimierungsverfahren Simulated Annealing so gewéhlt, dass das Klassifikationsproblem
moglichst einfach wird.

Fiir die Entscheidung, wann eine Auftrennung des Eingaberaums erfolgen soll, wurde der
Bhattacharyya-Koeffizient, ein eng mit dem Boosting zusammenhéangendes Mafs, verwendet.
Dieser wird genutzt, um die Schwere des Klassifikationsproblems zu bewerten. Durch Schwell-
wertbildung ist es moglich, die Auftrennung des Eingaberaums nur dann durchzufiihren,
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wenn das Klassifikationsproblem schwierig zu 16sen ist und eine Auftrennung mit hoher
Wahrscheinlichkeit eine Vereinfachung verspricht.

Um die Anzahl zu traversierender Knoten zuséatzlich zu reduzieren, wurde ein zweistufiges
Verfahren vorgestellt, bei dem nach dem eigentlichen Boosting zur Trennung von Objekt und
Hintergrund ein zweites Boosting durchgefiihrt wird. Dieses hat das Ziel, die gewonnene
Auftrennung des Eingaberaums zu erlernen.

Die Leistungsfdhigkeit des vorgestellten Konzepts konnte durch experimentelle Untersu-
chungen nachgewiesen werden. Die Detektionsleistung eines DB-CBT ist vergleichbar mit
der Detektionsleistung einer Kaskade. Bis zu einer Entfernung von 100 Metern ist es mit dem
DB-CBT moglich, mit einer Detektionsrate von 85 % bei weniger als 0.3 Falschalarmen je Bild
die Riickfronten von PKW zu detektieren. Komplette PKW konnen mit einer Detektionsrate von
tiber 80 % bei weniger als 0.3 Falschalarmen je Bild detektiert werden. Bei Einsatz des DB-CBT
ergibt sich allerdings — bei vergleichbarer Detektionsleistung — ein Laufzeitvorteil gegeniiber
des Kaskade: im Schnitt miissen 25 % weniger Weaklearner je Hypothese ausgewertet werden;
die worst-case-Laufzeit des DB-CBT ist sogar um 64 % geringer als die der Kaskade.

Die Schitzung der Orientierung durch das realisierte System ist sehr zuverldssig. Abhédngig
von der maximalen Toleranz werden zwischen 28 % (keine Toleranz) und 86 % (Toleranz von 3)
der detektierten Fahrzeug korrekt kategorisiert.

Insgesamt gesehen konnte duch den entwickelten DB-CBT eine Verbesserung der Kaskade
erreicht werden. Bei vergleichbarer Detektionsleistung ist die Geschwindigkeit deutlich hoher.
Durch das vorgestellte Konzept ist es zudem moglich, die Orientierung von Fahrzeugen mit
hoher Qualitidt zu schitzen.

7.1. Ausblick

Aus dieser Arbeit lassen sich eine Reihe neuer Fragestellungen ableiten. Diese bieten sich als
Ausgangspunkt fiir mogliche Folgearbeiten an. Sie lassen sich unterscheiden bzgl. dem DB-CBT
als entwickelter Methode der Klassifikation und dem Gesamtsystem, welches eine Funktion — die
Schitzung der Orientierung detektierter Fahrzeuge — erfiillt. Fiir beide gibt es verschiedene
offene Fragen, die durch weitere Untersuchungen geklart werden kénnten. Ferner traten im
Zuge der Evaluierung der Klassifikationsbaume Moglichkeiten zur Weiterentwicklung auf.

Weiterfithrende Untersuchungen des DB-CBT

Ein Problem bei Klassifikationsbaumen ist die erhthte Gefahr der Uberadaption. In dieser
Arbeit wird dieser Gefahr durch Vorgabe einer Mindestanzahl an Positivbeispielen begegnet
(siehe Abschnitt 5.2.2, Seite 65). In der Literatur sind mehrere alternative Ansatze beschrieben,
z.B. der x*-Test. Diese konnten auf ihre Eignung fiir den DB-CBT untersucht werden. Als
Ausgangspunkt fiir eine solche Untersuchung sei auf [DHS00, S. 402 ff.] verwiesen.

Die Entscheidungsstrategie des DB-CBT ist exklusiv, d. h. Hypothesen werden an maximal
einen Nachfolger weitergereicht (siehe Abschnitte 4.2.2 und 5.4, Seiten 55 und 68). Da fiir die
Entscheidung ein RealAdaBoost-Stronglearner zum Einsatz kommt, enthélt die Aussage des
,Entscheiders” bereits die Sicherheit der Entscheidung. Damit ist eine Erweiterung auf eine
kombinierte Entscheidungsstrategie leicht moglich. Hierfiir muss lediglich ein Schwellwert e
definiert werden, welcher die notwendige Sicherheit fiir das Treffen einer exklusiven Entschei-
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dung ausdriickt. Eine Hypothese wird nur dann an lediglich einen Nachfolger weitergereicht,
wenn die Aktivierung um mindestens € von der Entscheidungsschwelle abweicht — der trai-
nierte Klassifikator also sicher bei seiner Entscheidung ist. Dieses Vorgehen wurde bereits in
[Tu05] erfolgreich eingesetzt, es bietet sich folglich auch fiir den DB-CBT an, diese Strategie zu
evaluieren.

Auflerdem kann untersucht werden, ob und wie sich alternative Verfahren fiir die Optimie-
rung der Zerlegung einsetzen lassen. Neben anderen heuristischen Optimierungsverfahren
(genetische Algorithmen etc.) konnten hierbei auch Verfahren der diskreten Optimierung un-
tersucht werden. Bei Nachweis der Konvexitit von e(.) geldnge es in diesem Fall, effizient die
optimale Losung, d. h. die bzgl. e(.) beste Zerlegung in zwei Teilmengen zu erhalten.

Weiterfiihrende Untersuchungen des Gesamtsystems

Auf Seiten des Gesamtsystems bietet sich zur Verbesserung der Performance und Winkelkate-
gorisierung ein Tracking der Detektionen an. Hierbei muss untersucht werden, wie grof3 die
notige Vorlaufzeit bei Einsatz eines Trackers ist und welche Verbesserung der Performance und
Winkelkategorisierung sich dadurch erreichen lassen.

Zudem kann der ortliche Zusammenhang zwischen Riickfront und Gesamtfahrzeug bes-
ser genutzt werden. In dieser Arbeit wurden Riickfront und Gesamtfahrzeug vollkommen
unabhingig voneinander detektiert. Als potentielle Weiterentwicklung bietet sich an, den De-
tektionsschritt des Systems (siehe Abb. 1.4, Seite 18) in zwei Stufen durchzufiihren. Zuerst wird
das Gesamtfahrzeug detektiert, im Anschluss daran wird innerhalb der ersten Detektion die
zugehorige Riickfront gesucht. Da bei einem solchen Aufbau der Riickfronten-Klassifikator
sehr viel genauer trainiert werden konnte — als Negativbeispiel kommt alles in Frage, was nicht
exakt die Riickfront, aber immer noch ein Fahrzeug zeigt — konnte eine hohere Genauigkeit der
Winkelkategorisierung mdoglich sein.

Effiziente Evaluierung hierarchischer Klassifikatoren

In dieser Arbeit wurden ROC- und PR-Diagramme fiir Klassifikationsbdume erzeugt, indem
schrittweise Stufen deaktiviert wurden (siehe Abschnitt 6.2.3, Seite 80). Dieses Vorgehen ist
nicht optimal, da hierbei mehrere Knoten des Baums auf einmal deaktiviert werden. Durch
bestmogliche Wahl der Reihenfolge, in der die Knoten einer Stufe deaktiviert werden, liefse
sich die Performance eines hierarchischen Klassifikators genauer erfassen. Hierbei konnte
untersucht werden, ob und wie es effizient moglich ist, die optimale Reihenfolge zu bestimmen.

Eine Alternative konnte an dieser Stelle der Einsatz von Riickschlusswahrscheinlichkeiten
sein. Durch diesen Ansatz konnen ROC- und PR-Diagramme effizient generiert werden, indem
die Wahrscheinlichkeitsschwelle einer Detektion sukzessive abgesenkt wird. Ausgangsbasis fiir
weitere Untersuchungen sind [Tu05] und [SHLO07].
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ANHANG A

Struktur der erstellten Klassifikatoren

In diesem Anhang wird die Struktur der untersuchten Klassifikatoren visualisiert. Abb. A.1 zeigt
den 4000-er DB-CBT, Abb. A.2 den 4000-er k-Means-Baum. Die 8000-er Baume sind in Abb. A.3
(DB-CBT) bzw. Abb. A.4 (k-Means-Baum) dargestellt. Abb. A.5 zeigt die untersuchte Kaskade.
Jeder Klassifikator ist inklusive der gemeinsamen Grundstruktur (vgl. 6.1.2) dargestellt.

Abbildung A.1.: 4000-er DB-CBT.
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Abbildung A.2.: 4000-er k-Means-Baum.
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er k-Means-Baum.

Abbildung A.4.: 8000
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Abbildung A.5.: Kaskade.
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