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Zusammenfassung

Automobile Assistenzsysteme bergen großes Potential bei der Vermeidung von Unfällen. Um
effektiv und effizient arbeiten zu können, benötigen sie Informationen über ihre Umgebung.
Von zentraler Bedeutung ist hierbei das Wissen um die Existenz, Lage und Bewegung anderer
Verkehrsteilnehmer.

In dieser Arbeit wird ein echtzeitfähiges System vorgestellt, welches in monokularen Ein-
zelbildern einer hinter der Windschutzscheibe angebrachten Kamera andere Fahrzeuge aller
Orientierungen detektiert (Multi-View Vehicle Detection). Neben der Existenz der Fahrzeuge
wird zusätzlich ihre Orientierung mit hoher Genauigkeit eingeschätzt. Ausgangspunkt hierfür
bildet die von Viola und Jones vorgeschlagene Kaskadenstruktur, welche auf einen allgemeinen
Klassifikationsbaum erweitert wird.

Der entwickelte Decision-Boosted Cluster Boosted Tree (DB-CBT) nimmt im Gegensatz zur
Kaskadenstruktur eine weitergehende Trennung des Eingaberaums vor. Auf diese Weise wird
die Geschwindigkeit des Klassifikators erhöht, ohne Einbußen bei der Detektionsleistung hin-
nehmen zu müssen. Der Baumaufbau erfolgt während des Trainings direkt auf das Klassifikati-
onsproblem ausgerichtet, d. h. der gesamte Baum wird so aufgebaut, dass die Klassifikations-
aufgabe mit möglichst hoher Geschwindigkeit gelöst werden kann. Hierfür wird ein Gütemaß
definiert, welches die Eignung einer Trennung des Eingaberaums misst. Anhand diesem wird
die Trennung gewählt, so dass eine schnellere Konvergenz von AdaBoost möglich ist. Um
die Geschwindigkeit zusätzlich zu erhöhen, wird durch einen zweistufigen Boosting-Prozess
(Decision-Boosting) die Anzahl zu traversierender Knoten des DB-CBT minimiert.

Die Vorteile des Ansatzes werden experimentell bestätigt. Bei vergleichbarer Detektionsleis-
tung ist die erwartete Laufzeit je Hypothese um 25 %, die maximale Laufzeit um 64 % geringer
als bei Einsatz eines Kaskadenklassifikators.
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Symbolverzeichnis

Allgemein

C = {−1, 1} Menge der Klassen. „−1“ ist Hintergrund, „1“ ist Objekt.
M Merkmalsraum.
X Eingaberaum.
X, Y, Z Weltkoordinaten in Metern.
x, y Spalte bzw. Zeile im Eingabebild, beginnend in der linken, oberen Ecke.

Aspektwinkelschätzung

‖.‖ L2-Norm (Euklidischer Abstand).
Γ Schwellwert der Detektionsassoziation.
Φ, Θ, Ψ Roll-, Nick- und Gierwinkel.
α, β Gesuchter Gierwinkel bzw. Gegenwinkel des gesuchten Gierwinkels.
γ1, γ2 Winkel, unter denen das Fahrzeug gesehen wird.
A, B, C, D Maßgebende Fahrzeugkanten bzw. Eckpunkte des Fahrzeugs.
A’, C’ Bildpunkte der Fahrzeugeckpunkte A bzw. C.
a, b, c Ortsvektoren der Punkte A’, B, C’.
yi i-te Komponente des Vektors y.
d Distanz des Fahrzeugs zur Kamera (in Metern).
w, l Breite bzw. Länge des Fahrzeugs (in Metern).
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AdaBoost und Kaskadenklassifikator

αt Gewicht des in Runde t gewählten Weaklearners.
θ Akzeptanzschwelle des Stronglearners.
D Detektionsrate.
F Falschalarmrate.
HT(.) Stronglearner.
W±j Gewichteter Anteil an positiven/negativen Beispielen in der j-ten Teilmen-

ge des Eingaberaums.
Z( f ) Z-Wert des Weaklearners f .
ht(.) In Runde t gewählter Weaklearner.
wt(j) Gewicht des i-ten Beispiels in Runde t.

Decision-Boosted Cluster Boosted Tree

η Mindestanzahl Positivbeispiele für eine Trennung des Eingaberaums.
λ(.) Regularisierung der Gütefunktion e(.).
τi Schwellwerte des Z-Werts.
bhat(pa, pb) Bhattacharyya-Koeffizient der Wahrscheinlichkeitsdichten pa und pb.
e(.) Gütefunktion zur Bewertung einer Zerlegung.
sep(A, B) Separierbarkeit zweier Mengen A und B.

Experimentelle Ergebnisse

σaff Ähnlichkeitsschwellwert.
d(., .) Distanzmaß für Winkelkategorien.
dmax Maximal zulässige Abweichung der Winkelkategorie (Toleranz).
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KAPITEL 1

Einleitung

The hardest single part of building a
software system is deciding
precisely what to build.

(Fred Brooks, No Silver Bullet)

Dieses Kapitel dient als Einleitung und gibt einen Überblick über diese Arbeit. Zunächst wird
die Problemstellung motiviert (Abschnitt 1.1) und die Ziele dieser Arbeit zusammengefasst
(Abschnitt 1.2). Im Anschluss daran werden grundlegende Begriffe definiert (Abschnitt 1.3),
ein Überblick über das entwickelte System gegeben (Abschnitt 1.4) und die Ausgangsbasis
sowie die vorhandenen Hilfsmittel bei der Anfertigung dieser Arbeit erläutert (Abschnitt 1.5).
Abschließend wird ein Überblick über die folgenden Kapitel gegeben (Abschnitt 1.6).

1.1. Motivation

Im Jahr 2008 wurden in Deutschland über 409 000 Personen bei Verkehrsunfällen verletzt, 4 477
verletzten sich dabei tödlich [Sta09, S. 440 ff.]. Weltweit sterben jährlich über 1 Mio. Menschen
an den Folgen von Verkehrsunfällen. Ein Großteil der Unfälle hätte verhindert oder in den
Folgen abgemildert werden können, wenn geeignete Notmanöver wenige Augenblicke früher
eingeleitet worden wären [Sti07].

Assistenzsysteme, die den Fahrer eines Fahrzeugs bei seiner Aufgabe unterstützen und ihm
so helfen, in allen Situationen adäquat und schnell zu reagieren, bergen großes Potential bei der
Vermeidung von Unfällen. Um effektiv und effizient arbeiten zu können, benötigen sie eine
Vielzahl von Informationen von verschiedenen Sensoren, mit deren Hilfe sie ein umfassendes
Umgebungsmodell erstellen können [Wen08],[Wal08].

Da Fahrer einen Großteil der Informationen visuell, d. h. mit den Augen, aufnehmen, ist
es naheliegend, diesen Informationskanal automobilen Assistenzsystemen zur Verfügung zu
stellen. Die Erkennung anderer Fahrzeuge in Videoströmen ist hierbei eine der Kernaufgaben
der Systeme. Neben der Erkennung der reinen Existenz anderer Fahrzeuge ist auch die korrekte
Einschätzung ihrer Lage und Bewegung wichtig. Durch Kenntnis von Lage und Bewegung sind
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1. Einleitung

Rückschlüsse über den möglichen Weg des erkannten Fahrzeugs und eventuelle Konsequenzen
daraus (bspw. einen bevorstehenden Zusammenstoß) möglich, was bessere Reaktionen des
Systems erlaubt. Damit diese Reaktionen rechtzeitig erfolgen können, wird im automobilen
Umfeld die Echtzeitfähigkeit der Systeme gefordert [SZ06]. Da Fehler während der Fahrt fatale
Folgen haben können, sind zudem die Anforderungen an die Robustheit und Zuverlässigkeit
von Assistenzsystemen sehr viel höher als in anderen Bereichen wie bspw. der Consumer-
Elektronik [Gre08, S. 1 f.].

(a) (b) (c)

(d) (e) (f)

Abbildung 1.1.: Beispiele für Ansichten verschiedener PKW, die ein Assistenzsystem erken-
nen muss. Die Variabilität zwischen den einzelnen Ansichten ist klar sichtbar.
Quelle: Bilddatenbank von Kuo und Nevatia [KN09].

Um die Lage erkannter Fahrzeuge korrekt zu beurteilen, müssen sie unter allen Aspekt-
winkeln (siehe Abb. 1.1 für einige Beispiele) durch das Assistenzsystem erkannt werden. Für
die Erkennung von Objekten in Videoströmen ist im automobilen Umfeld die Klassifikati-
on mit dem von Viola und Jones vorgeschlagenen Kaskadenklassifikator [VJ01] – obwohl
ursprünglich für die Gesichtserkennung konzipiert – weit verbreitet, da er hohe Geschwin-
digkeit mit hoher Detektionsleistung verbindet. Beispiele für einen erfolgreichen Einsatz
sind die Erkennung von Insassen in einem Auto mit Hilfe einer omnidirektionalen Kame-
ra [Wen03],[WL04] sowie die Detektion von Fußgängern in Infrarotbildern [MOL+05]. Ist die
Variabilität in den zu detektierenden Objekten allerdings groß, reicht die Kaskadenstruktur
nicht mehr aus [ZZ10],[HALL07]. Hier erweisen sich Baumstrukturen als flexibler und leis-
tungsfähiger [Wen03, S. 79 ff.],[Chr07, S. 7],[Wu08, S. 25 f.],[PSR10]. Bspw. mussten Viola und
Jones ihren ursprünglichen Ansatz auf eine Baumstruktur erweitern, um unterschiedliche
Profile erkennen zu können (sog. Multi-view Face Detection) [JV03].

Um eine ausreichende Detektionsleistung sicherzustellen, bietet es sich also an, auch bei der
optischen Lageschätzung von Fahrzeugen einen baumbasierten Ansatz zu wählen. Gleichzeitig
muss die hohe Geschwindigkeit der Kaskadenstruktur erhalten bleiben, um die Echtzeitan-
forderungen an automobile Assistenzsysteme zu erfüllen. In dieser Arbeit wird ein solcher
baumbasierter Ansatz entwickelt und vorgestellt sowie seine Detektionsleistung und Geschwin-
digkeit untersucht.
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1.2. Zielsetzung der Arbeit

Im Gegensatz zu bisherigen Ansätzen [Tu05],[BFSO84] bleiben die Stärken des Kaskaden-
klassifikators erhalten. Durch einen automatischen Baumaufbau, basierend auf den Merkmals-
vektoren der Hypothesen, wird eine hohe Detektionsleistung sichergestellt. Außerdem wird
der Baumaufbau – im Gegensatz zu [Wen03],[Chr07],[WN07] – direkt bzgl. der Klassifikations-
aufgabe optimiert und somit eine effizientere Klassifikation mit weniger Merkmalen ermöglicht.
Um die Geschwindigkeit zu erhöhen, wird zudem sichergestellt, dass die Anzahl der Knoten,
die eine Hypothese „besuchen“ muss, so gering wie möglich ist. Dies wird durch ein Boosting
in zwei Phasen (Decision-Boosting, siehe Abschnitt 5.4) erreicht.

1.2. Zielsetzung der Arbeit

Ziel dieser Arbeit ist die Entwicklung eines Ansatzes zur Erweiterung der von Viola und Jones
in [VJ01] vorgeschlagenen Kaskadenstruktur auf einen allgemeinen hierarchischen Klassifikator
(siehe Kapitel 4). Dieser soll in der Lage sein, Fahrzeuge, d. h. sowohl PKW als auch LKW, unter
beliebigen Aspektwinkeln zu erkennen. Dabei sollen die Vorteile der Kaskadenstruktur (siehe
Abschnitt 3.4) – insbesondere die hohe Geschwindigkeit – erhalten bleiben.

Mit dem entwickelten Gesamtsystem soll es am Ende möglich sein, nicht nur Fahrzeuge in
den Eingabebildern zu detektieren, sondern auch ihre Orientierung bzgl. der Kamera – d. h.
den Gierwinkel (siehe Abschnitt 2.2) – mit hoher Genauigkeit und Geschwindigkeit zu schätzen.
Die Gesamtzeit, die für die komplette Bearbeitung eines Einzelbildes zur Verfügung steht, ist
hierbei auf 100 Millisekunden beschränkt.

(a) (b) (c)

Abbildung 1.2.: Eingabebild, Einbauposition und Kamera des Systems. (a) Beispiel für ein
752 mal 480 Pixel großes Eingabebild. (b) Versuchsaufbau zum Aufnehmen der
Sequenzen. Die Kamera wird zentral hinter der Frontscheibe angebracht. Der
gelbe Pfeil zeigt die Einbauposition. (c) Kamera des Herstellers Continental.
Quelle: (c): www.conti-online.com

Das Training der einzelnen Knoten des Baums soll analog zum Training der Stufen einer Kas-
kade mit AdaBoost (siehe 3.1) erfolgen. Als Merkmale kommen neben den von Viola und Jones
eingesetzten Haarwavelets (siehe Abschnitt 3.2.1) auch die von Levi und Weiss vorgeschlagenen
[LW04] Edge Orientation Histograms (siehe Abschnitt 3.2.2) zum Einsatz.

Als Eingabedaten für das realisierte System werden Mono-Bildsequenzen mit 8 Bit Grauwert-
bildern der Größe 752 mal 480 Pixel (siehe Abb. 1.2(a) für ein Beispiel) verwendet. Die Bilder
stammen alle von einer Kamera des Herstellers Continental mit der Modellbezeichnung „MFC“
(Multi-Function Camera). Aufgenommen wird aus einem LKW heraus, die Einbauposition der
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1. Einleitung

Kamera ist hierbei zentral hinter der Frontscheibe. Abb. 1.2(b) zeigt die Einbauposition und
den aufnehmenden LKW, Abb. 1.2(c) zeigt die Kamera.

Die Implementierung des Ansatzes soll objektorientiert in C++ [Str00] erfolgen und sich in
die bestehende Software-Landschaft integrieren sowie diese ggf. erweitern. Für das Training ist
der Einsatz der Skriptsprache Python [Lut01] vorgesehen.

1.3. Grundbegriffe

Um Missverständnisse zu vermeiden, werden in diesem Abschnitt einige Grundbegriffe dieser
Arbeit definiert. Soweit nicht anders angegeben, gelten diese Definitionen für die gesamte
Arbeit.

Mit Fahrzeug sind sowohl PKW als auch LKW gemeint. Falls eine Unterscheidung zwischen
PKW und LKW bedeutsam ist, so wird explizit auf den korrekten Typ des Fahrzeugs einge-
gangen. Die Rückfront eines Fahrzeugs meint sowohl die Hinter- als auch die Vorderseite.
D. h. in dieser Arbeit wird keine Unterscheidung zwischen „Vorne“ und „Hinten“ detektierter
Fahrzeuge vorgenommen.

Eine Hypothese ist ein rechteckiger Teilbereich des Eingabebildes. Der Raum aller möglichen
Hypothesen wird X oder Eingaberaum genannt. Hypothesen werden durch die Merkmalsextrak-
tion (engl. feature extraction) in den MerkmalsraumM abgebildet.

Ein Merkmal ist die Reduktion einer Hypothese auf einen skalaren Wert. Wie die Hypothe-
se auf einen skalaren Wert reduziert wird (die „Berechnungsvorschrift“), ist abhängig vom
konkreten Merkmal (siehe auch Abschnitt 3.2). Der Vektor, der sich aus Kombinationen aller
Merkmalswerte ergibt, heißt Merkmalsvektor der Hypothese.

Als Klassifikation wird eine Abbildung

K :M→ C, K(x) = y

von M1 auf ein Menge von Klassen C bezeichnet. Die Abbildung K wird Klassifikator oder
Modell2 genannt. y ∈ C ist die Klasse, die durch den Klassifikator für den Merkmalsvektor
x ∈ M vorgeschlagen wird.

Soweit nicht anders angegeben, wird in dieser Arbeit immer von binärer Klassifikation
ausgegangen. In diesem Fall ist C = {−1, 1}. Die Klassen „−1“ und „1“ heißen Hintergrund
bzw. Vordergrund oder Objekt. Die Aussage K(x) = 1 wird als Detektion bezeichnet, die Aussage
K(x) = −1 heißt Zurückweisung der zu x gehörenden Hypothese.

Als Training wird das Bilden eines Modells anhand von Beispielen bezeichnet. Beispiele
(synonym: Samples) sind Hypothesen, für die die korrekte Klasse bekannt ist. Beispiele der
Klasse „1“ heißen Positivbeispiele, alle anderen Negativbeispiele. Die Unterscheidung zwischen
den Positiv- und den Negativbeispielen wird Klassifikationsaufgabe oder Klassifikationsproblem
genannt. Die Klassifikationsaufgabe ist also eine Trennung zweier Mengen (Positiv- gegen
Negativbeispiele). Durch das Training soll also ein Modell konstruiert werden, welches die
gegebene Klassifikationsaufgabe löst.

1Für manche Klassifikatoren giltM = X , d. h. sie kombinieren Merkmalsextraktion und Klassifikation in einem
Schritt und arbeiten direkt auf den Hypothesen.

2Die Literatur unterscheidet zwischen diskrimininativen und generativen Modellen (vgl. z. B. [Bis06, S. 43],
[BK08, S. 461 f.] und [EG09]). In dieser Arbeit sind alle Modelle ausschließlich diskriminativer Art.
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1.4. Aufbau des Systems

In der Phase der Anwendung werden die Hypothesen gemäß des im Training gewonnenen
Modells klassifiziert. Die tatsächlichen Klassen sind in dieser Phase nicht bekannt.

Eine Sequenz ist eine Abfolge von hintereinander aufgenommenen Bildern, wobei zwischen
den einzelnen Bildern 40 Millisekunden liegen. Das entspricht 25 Bildern in der Sekunde. Eine
Sequenz ist bei den in dieser Arbeit verwendeten Daten immer genau 5 Sekunden – d. h. 125
Bilder – lang.

Die Performance eines Klassifikators ist seine Leistung (siehe auch Abschnitt 6.2) bzgl. der Klas-
sifikationsaufgabe (Falschalarmrate etc.). Sie ist nicht zu verwechseln mit der Geschwindigkeit,
die angibt wie schnell Eingaben verarbeitet werden können.

x und y (kleingeschrieben) sind Bildkoordinaten (in Pixeln). Hierbei ist x die Spalte, y die
Zeile im Bild. Der Ursprung ist die linke, obere Ecke. X, Y und Z (großgeschrieben) sind
Weltkoordinaten (in Metern) im Weltkoordinatensystem (siehe Abschnitt 2.2).

1.4. Aufbau des Systems

Ziel dieser Arbeit ist die Entwicklung eines Systems, welches, basierend auf einer hierarchischen
Erweiterung der Viola-Jones-Kaskade, die Orientierung von Fahrzeugen bzgl. der Kamera
schätzt (vgl. Abschnitt 1.2).

Zu diesem Zweck werden sowohl das Gesamtfahrzeug als auch die Fahrzeugrückfront mit
dem entwickelten hierarchischen Klassifikator getrennt in den Eingabebildern detektiert. Im
Anschluss daran werden die gefundenen Fahrzeuge mit den gefundenen Rückfronten assoziiert,
d. h. jedem Fahrzeug wird die zugehörige Rückfront zugewiesen. Aus der so gewonnenen
Information (Position der Rückfront zur Position des zugehörigen Fahrzeugs) lässt sich die
gesuchte Orientierung bestimmen (siehe Abb. 1.3). Abb. 1.4 zeigt das entwickelte System im
Überblick.

Abbildung 1.3.: Aus getrennter Detektion von Rückfront und Fahrzeug lässt sich der
Aspektwinkel schätzen. Sind Rückfront (gelb) und Gesamtfahrzeug (rot) de-
tektiert, so lässt sich aus der Beziehung zwischen den Detektionen der Aspekt-
winkel schätzen.

1.5. Ausgangsbasis und Hilfsmittel

Ausgangspunkt dieser Arbeit ist der von Viola und Jones vorgestellte Kaskadenklassifikator
[VJ01]. In der Arbeit von Kallenbach [Kal05] (eine Kurzfassung findet sich in [KSPL06]) werden
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1. Einleitung

Rückfront

Gesamt-
fahrzeugEingabebilder

Assoziation Winkel-
schätzung

Detektion Assoziation
Winkel-

schätzung

1 2 3

Abbildung 1.4.: Überblick über das entwickelte Gesamtsystem. (1) Fahrzeuge und Fahr-
zeugrückfronten werden getrennt in den Eingabebildern detektiert. (2) Im
Anschluss daran werden den Fahrzeugen die zugehörigen Rückfronten zuge-
ordnet. (3) Die gewonnene Beziehung von Fahrzeug und zugehöriger Rück-
front lässt sich nutzen, um eine Schätzung des Aspektwinkels vorzunehmen.

Ansätze, die Viola-Jones-Kaskade um Multiklassenfähigkeit zu erweitern, untersucht. Die
hierbei entwickelten Konzepte bilden die Grundlage dieser Arbeit. Wender [Wen03] (eine
Kurzfassung findet sich in [WL04]) liefert die Motivation für die Erweiterung der Kaskade auf
einen hierarchischen Klassifikator. Wender untersucht theoretisch und experimentell wie sich
eine Teilung der Trainingsbeispiele auf die Konvergenz von AdaBoost auswirkt. Die hierbei
gewonnenen Erkenntnisse sind die Motivation für das vorgestellte Konzept.

Das weiterentwickelte Konzept basiert in Teilen auf dem von Wu und Nevatia entwickelten
Cluster Boosted Tree [WN07] (ausführlicher beschrieben in [Wu08]) sowie dessen Weiterentwick-
lung von Yang et al. (Voting Cluster Boosted Tree) [YHN09].

Für die Umsetzung des Klassifikators stand eine Implementierung des RealAdaBoost-
Algorithmus [SS99] mit verbesserten Weaklearnern (siehe Abschnitt 3.4.2) in C++ zur Ver-
fügung. Ferner waren Implementierungen der verwendeten Merkmale (siehe Abschnitt 3.2)
sowie der Hypothesengenerierung (siehe Abschnitt 3.5) bereits vorhanden. Zudem war ein
Beispiel für das Training einer Kaskade auf Basis der vorhandenen Einzelteile verfügbar. Dieses
bildete den Ausgangspunkt für die entwickelte Software.

Um den entwickelten Klassifikator zu trainieren stehen 246 Sequenzen mit insgesamt ca.
35 000 Bildern (ca. 58 Gigabyte komprimiert im TIFF-Format) zur Verfügung. Die Bilder zeigen
typische Straßenszenen bei Tag und bei Dämmerung. In jedem Bild sind die sichtbaren Fahrzeu-
ge und (soweit zu sehen) die zugehörige Rückfront bzw. Front durch umschließende Rechtecke
gelabelt. Die Label unterscheiden zwischen LKW und PKW. Zusätzliche Daten (Radar für
Distanzinformationen etc.) sind nicht verfügbar.

1.6. Gliederung der Arbeit

Die restliche Arbeit ist wie folgt aufgebaut.
In Kapitel 2 werden die Schritte 2 und 3 des Gesamtsystems (siehe Abb. 1.4) beschrieben.

Hierfür wird zunächst anhand eines Fahrzeugmodells untersucht, wie genau eine Aspektwin-
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1.6. Gliederung der Arbeit

kelberechnung maximal sein kann, d. h. wie groß der inhärente und damit unvermeidbare
Fehler bei einer Berechnung des Aspektwinkels ist. Darauf aufbauend wird die vereinfachte
Winkelschätzung mittels Kategorisierung in Winkelkategorien beschrieben. Ferner wird auf
das Verfahren zur Assoziation von Gesamtfahrzeug und Rückfront eingegangen.

In Kapitel 3 werden die Grundlagen, welche als Ausgangspunkt für den entwickelten Klassi-
fikator dienen, erläutert. Vertiefend wird hierbei auf den Lernalgorithmus AdaBoost sowie die
Viola-Jones-Kaskade eingegangen, da diese von zentraler Bedeutung für diese Arbeit sind.

Kapitel 4 gibt eine Einleitung in Klassifikationsbäume und stellt generelle Konzepte für die
Erweiterung der Viola-Jones-Kaskade auf einen Klassifikationsbaum vor. Die unterschiedlichen
Möglichkeiten werden diskutiert und ihre Vor- und Nachteile erläutert. Abschließend werden
Training und Anwendung hierarchischer Klassifikatoren erläutert.

Kapitel 5 beschreibt den entwickelten Klassifikationsbaum. Es wird auf die unterschiedlichen
Teilaspekte im Detail eingegangen sowie das Training und die Anwendung erläutert. Die
Leistungsfähigkeit des entwickelten Konzeptes wird in Kapitel 6 experimentell bestätigt.

Kapitel 7 gibt eine abschließende Zusammenfassung und dient als Ausblick für weitere
Entwicklungen.
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KAPITEL 2

Aspektwinkelschätzung

In diesem Kapitel wird untersucht, wie die Aspektwinkelschätzung im realisierten Gesamtsys-
tem (vgl. Abschnitt 1.4) durchgeführt werden kann und was hierbei theoretische Untergrenzen
für die Genauigkeit der Winkelschätzung sind.

Hierfür wird das Koordinatensystem für die Winkelberechnung eingeführt (Abschnitt 2.2),
die Assoziation von zusammengehörigen Detektionen beschrieben (Abschnitt 2.3) sowie ein
vereinfachendes Fahrzeugmodell aufgestellt (Abschnitt 2.4). Dieses erlaubt die Berechnung des
Aspektwinkels auf verschiedene Arten (Abschnitte 2.5 und 2.6). Abschließend wird der Fehler
bei der (modellbasierten) Berechnung untersucht (Abschnitt 2.7) sowie das Vorgehen bei der
Einordnung von Detektionen beschrieben (Abschnitt 2.8).

2.1. Einleitung

Ziel dieser Arbeit ist u. a. die Schätzung des Aspektwinkels detektierter Fahrzeuge. Zu diesem
Zweck werden Fahrzeugrückfront und Gesamtfahrzeug getrennt detektiert und anschließend
assoziiert. Die Position der Rückfront innerhalb der Detektion des Gesamtfahrzeugs lässt
Rückschlüsse auf den Aspektwinkel des Fahrzeugs zu (vgl. Abschnitt 1.4).

In diesem Kapitel wird untersucht, wie genau eine modellbasierte Berechnung des Aspekt-
winkels auf dieser Basis sein kann. Hierfür wird ein vereinfachtes Fahrzeugmodell aufgestellt,
mit dem der Aspektwinkel berechnet werden kann. Hierbei können zwei Ansätze unterschieden
werden:

• Der gesuchte Winkel kann aus Fahrzeuglänge oder -breite berechnet werden (Abschnitt
2.5).

• Das Verhältnis von Fahrzeuglänge zu -breite kann als Ausgangspunkt für die Berechnung
des Winkels dienen. In diesem Fall ist die Kenntnis von Fahrzeuglänge bzw. -breite nicht
nötig (Abschnitt 2.6).
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2. Aspektwinkelschätzung

X Y

Z

Ψ

Φ

Θ

Abbildung 2.1.: Koordinatensystem nach DIN 70 000. Der Ursprung des Koordinatensystems
befindet sich mittig auf der Vorderachse. Die X, Y und Z-Achsen sind in
Fahrtrichtung, nach links bzw. nach oben ausgerichtet. Zusätzlich sind die
Winkel für die rotatorischen Bewegungen „Rollen“ (Φ), „Nicken“ (Θ) und
„Gieren“ (Ψ) definiert. Für diese Arbeit ist der Gierwinkel Ψ detektierter Fahr-
zeuge maßgeblich.
Quelle: [Nem07, S. 6]

Die modellbasierten Berechnung des Aspektwinkels unterliegt einem unvermeidbaren Mo-
dellfehler. Dieser stellt die Untergrenze des Fehlers bei der Berechnung des Aspektwinkels dar.
Der Modellfehler wird anhand dreier Modellprobleme untersucht (Abschnitt 2.7).

2.2. Koordinatensystem

Um den Aspektwinkel detektierter Fahrzeuge schätzen zu können, ist das Weltkoordinaten-
system, in dem sie sich aus Sicht des detektierenden Fahrzeugs befinden, festzulegen. Die
geschätzte Lage detektierter Fahrzeuge bezieht sich auf dieses Weltkoordinatensystem.

In dieser Arbeit wird das im automobilen Umfeld übliche aufbaufeste Koordinatensystem
nach DIN 70 000 verwendet. Der Ursprung des Koordinatensystems ist mittig zwischen den
vorderen Rädern, auf Höhe der Radachse. Von diesem Ursprung ausgehend ist die X-Achse
in Fahrtrichtung, die Y-Achse nach links und die Z-Achse nach oben ausgerichtet (rechts-
händisches Koordinatensystem). Die Winkel zwischen den Koordinatenachsen sind jeweils
90◦.

Zusätzlich zum Koordinatensystem legt DIN 70 000 noch drei rotatorische Bewegungen
„Rollen“, „Nicken“ und „Gieren“ fest. Rollen ist als Drehung um die X-Achse, Nicken als
Drehung um die Y-Achse, Gieren als Drehung um die Z-Achse definiert. Die zugehörigen
Winkel heißen Φ (Rollwinkel), Θ (Nickwinkel) und Ψ (Gierwinkel). Die Drehrichtung ist der
mathematisch positive Sinn (gegen den Uhrzeigersinn). Abb. 2.1 zeigt das Koordinatensystem
sowie die definierten Drehbewegungen und -richtungen.
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2.3. Assoziation von Fahrzeug und Fahrzeugrückfront

(a)

B

A

C

D A,B C D

(b)

Abbildung 2.2.: Assoziation von Rückfronten und Gesamtfahrzeugen. (a) Perfekte Detektio-
nen. (b) Für das Gesamtsystem müssen Rückfronten (weiß) zu Gesamtfahrzeu-
gen (grau) assoziiert werden. Hierbei sind die unteren Ecken der Detektionen
(A, B, C und D) maßgeblich. Entsprechen die Detektionen exakt den realen
Ausmaßen von Gesamtfahrzeug bzw. Rückfront, sind entweder die Ecken A
und B oder die Ecken C und D deckungsgleich (rechte Seite).

Durch Angabe der Koordinaten (X, Y, Z)T und der Drehwinkel (Φ, Θ, Ψ)T ist ein Objekt
eindeutig im dreidimensionalen Raum lokalisier- und ausrichtbar (6 Degrees of Freedom, 6DoF)
[Nem07, S. 3 ff.].

In diesem Kontext lässt sich die gesuchte Größe „Aspektwinkel“ detektierter Fahrzeuge wie
folgt fassen: Der Aspektwinkel ist der Gierwinkel Ψ detektierter Fahrzeuge, bezogen auf das
am detektierenden Fahrzeug angebrachte Koordinatensystem.

2.3. Assoziation von Fahrzeug und Fahrzeugrückfront

Detektionen von Gesamtfahrzeugen und Fahrzeugrückfronten müssen einander zugeordnet
werden, nachdem diese getrennt voneinander gefunden wurden (vgl. Abschnitt 2.1). PKW
werden PKW-Rückfronten zugeordnet, LKW werden mit LKW-Rückfronten assoziiert, d. h. die
Assoziation findet nicht zwischen verschiedenen Fahrzeugtypen statt.

Für die Zuordnung sind die unteren Ecken der Detektionen maßgeblich (vgl. Abschnitt 2.4).
Abb. 2.2(b) stellt diese Ecken A, B, C und D dar. Die Detektion von Rückfront und Gesamtfahr-
zeug sind weiß bzw. grau dargestellt. Entsprechen die Detektionen exakt den realen Ausmaßen
von Gesamtfahrzeug bzw. Rückfront, sind entweder die Ecken A und B oder die Ecken C und
D deckungsgleich (Abb. 2.2(b), rechte Seite).

Um auch nicht perfekt zueinander passende Detektionen zu assoziieren, wird die L1-Distanz
(Manhattan Distance) zwischen den Punkten A und B bzw. C und D berechnet. Der kleinere
der berechneten Abstände wird im Anschluss durch die Breite der Gesamtfahrzeugdetektion
dividiert, um den Abstand in Bezug zur absoluten Größe der Detektionen zu setzen (Ska-
lierungsinvarianz). Ist die so berechnete Größe kleiner als eine Schwelle Γ, so werden die
Detektionen einander zugeordnet. Bei mehreren möglichen Paaren wird ein best-fit-Ansatz
gewählt, d. h. die am besten zueinander passenden Paare werden assoziiert.
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2. Aspektwinkelschätzung
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Abbildung 2.3.: Geometrische Ausgangssituation bei der Schätzung des Aspektwinkels. Bei
der Schätzung des Aspektwinkels sind drei Kanten (gelb) maßgeblich. Diese
entsprechen aus der Vogelperspektive betrachtet drei Punkten A, B und C.

2.4. Geometrische Ausgangssituation und Fahrzeugmodell

Da lediglich der Gierwinkel detektierter Fahrzeuge berechnet werden soll, werden der Roll-
und Nickwinkel nicht weiter untersucht. Unter Annahme eines ungekrümmten Erdbodens
(engl. Ground Plane, siehe 3.5) lässt sich die Situation aus der Vogelperspektive betrachten.
Hierfür ist Voraussetzung, dass waagrechte Linien im Bild auch tatsächlich waagrechten Linien
in der Realität entsprechen, d. h. die Kamera annähernd waagrecht verbaut ist. Das war beim
Versuchsaufbau dieser Arbeit der Fall (vgl. 1.2).

Für die Schätzung des Gierwinkels sind drei Fahrzeugkanten von Bedeutung. Diese sind
in Abb. 2.3 gelb hervorgehoben. Wird die Situation aus der Vogelperspektive betrachtet, so
entsprechen diese drei Punkten A, B und C. Ohne Einschränkung der Allgemeinheit ist hierbei
der Punkt A immer links, der Punkt B mittig und der Punkt C rechts. Abb. 2.3 rechts zeigt die
Situation im Weltkoordinatensystem aus der Vogelperspektive. Die Z-Achse kann in diesem
Fall vernachlässigt werden. Die Kamera ist im Ursprung angebracht und filmt in Fahrtrichtung,
d. h. entlang der X-Achse. Die Verbindungslinien zwischen den Punkten A, B und C und dem
Ursprung in Abb. 2.3 rechts sind die Sichtlinien der Kamera.

Es sind nicht immer drei Punkte sichtbar. Steht das Fahrzeug in einem bestimmten Winkel
zur Kamera, sind lediglich zwei Punkte zu sehen. Abb. 2.4 zeigt diesen Fall. Analog zum ersten
Fall seien dies die Punkte A und B. Ohne Einschränkung der Allgemeinheit ist A der linke und
B der rechte der Punkte.

Durch die perspektivische Projektion der Kamera gehen Tiefeninformationen verloren, d. h.
die X- und Y-Koordinaten der Punkte sind nicht genau bestimmbar. Alle Punkte werden auf
eine Bildebene in gleicher Tiefe abgebildet. Im hier verwendeten Modell sei diese durch den
Punkt B gehend, d. h. das Fahrzeug hat im Bild die in Abb. 2.5 rot eingezeichneten horizontalen
Ausmaße. Die Punkte A und C werden auf die Bildpunkte A’ bzw. C’ abgebildet. Die Ortsvek-
toren von A’, B und C’ seien a, b und c. Die Distanz der Bildebene (= X-Koordinate des Punkts
B) sei mit d bezeichnet. Der gesuchte Winkel ist α. β ergibt sich als β = 90◦ − α.
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2.4. Geometrische Ausgangssituation und Fahrzeugmodell
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Abbildung 2.4.: Geometrische Ausgangssituation bei der Schätzung des Aspektwinkels.
Steht das Fahrzeug in einem bestimmten Winkel, sind nur zwei der drei maß-
gebenden Kanten sichtbar.
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Abbildung 2.5.: Maßgebende Variablen bei der Berechnung des Aspektwinkels. Durch die
perspektivische Projektion auf eine Bildebene gehen Tiefeninformationen verlo-
ren. Die Bildebene sei durch den Punkt B gehend. Die Punkte A und C werden
auf die Bildpunkte A’ bzw. C’ abgebildet. Die rote Linie zeigt die sichtbaren
Ausmaße des Fahrzeugs. Der gesuchte Winkel ist dann durch α gegeben.
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2. Aspektwinkelschätzung

Die Breite w und die Länge l des Fahrzeugs können nur geschätzt werden. In der Realität
weichen die angenommenen w und l von den tatsächlichen Werten ab. D. h. bei der Berechnung
des Winkels ergibt sich ein inhärenter Modellfehler, da keine Unterscheidung von Fahrzeugmo-
dellen (Smart versus S-Klasse etc.) vorgenommen wird. Die Auswirkungen des Modellfehlers
werden anhand dreier Modellprobleme untersucht (siehe Abschnitt 2.7).

2.5. Berechnung des Aspektwinkels aus Fahrzeuglänge und -breite

Wird die Breite w oder die Länge l eines Fahrzeugs als bekannt angenommen, lässt sich der
gesuchte Winkel α (siehe Abschnitt 2.4) berechnen, wenn b und a bekannt sind. Ist c statt
a bekannt, ist β berechenbar, womit α bestimmt werden kann. Im Folgenden wird auf die
Berechnung von α eingegangen. Das Bestimmen von β verläuft analog.

Sei A der Ortsvektor des Punkts A, ‖.‖ sei die L2-Norm (Euklidischer Abstand), xi sei die i-te
Komponente eines Vektors x.

Da bekannt ist, dass ‖A− b‖ = l und es einen Faktor k gibt, für den A = ka gilt, lässt sich
die quadratische Gleichung

‖ka− b‖ =
√
(ka1 − b1)2 + (ka2 − b2)2 = l (2.1)

aufstellen. Von den Lösungen

k1,2 =
(a1b1 + a2b2)±

√
2a1a2b1b2 − a2

1b2
2 + a2

1l2 − a2
2b2

1 + a2
2l2

a2
1 + a2

2

ist k1 das gesuchte k. k2 ≤ k1 ist eine Lösung der Gleichung, bei der der Vektor a verkürzt statt
verlängert wird (siehe Abb. 2.6(a)). Diese Lösung kann ignoriert werden. Hat Gleichung (2.1)
keine Lösung, weicht das angenommene l so stark von der tatsächlichen Länge des Fahrzeugs
ab, dass sich die Annahme nicht mehr in Einklang mit dem Bild bringen lässt (siehe Abb. 2.6(b))

Mit dem Faktor k1 lässt sich α als Winkel zwischen den Vektoren (k1a − b) und (a − b)
berechnen. D. h.

α = arccos
(k1a− b)(a− b)
‖k1a− b‖ ‖a− b‖ .

2.6. Berechnung des Aspektwinkels aus dem Verhältnis von
Fahrzeuglänge und -breite

Statt w oder l direkt als bekannt anzunehmen, lässt sich der Aspektwinkel auch aus dem
Verhältnis von Fahrzeuglänge zu Fahrzeugbreite berechnen. D. h. indem q mit

q =
l
w

festgelegt wird, ist α berechenbar, ohne l und w zu kennen.
Hierfür müssen – im Gegensatz zum ersten Ansatz (Abschnitt 2.5) – alle drei maßgebenden

Punkte A, B und C sichtbar sein. Sind lediglich zwei Punkte zu sehen, kann α nur in einem
Intervall angegeben werden (siehe Abschnitt 2.6.2).
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2.6. Berechnung des Aspektwinkels aus dem Verhältnis von Fahrzeuglänge und -breite
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Abbildung 2.6.: Probleme bei der Berechnung des Aspektwinkels aus der Fahrzeuglänge.
(a) Bei der Berechnung des Aspektwinkels ergeben sich zwei mögliche Lösun-
gen, von denen eine zu verwerfen ist. Sie ergibt den Faktor k2, welcher zum
Punkt Z führt, der „vor“ B liegt. Der gesuchte Faktor k1 ergibt den korrek-
ten Punkt A. (b) Geometrisch entspricht die Lösung von Gleichung (2.1) den
Schnittpunkten eines Kreises mit dem Radius w um den Punkt B mit der Sicht-
geraden durch den Punkt A’. Hat der (gedachte) Kreis keinen Schnittpunkt,
gibt es keine Lösung. Dies kann geschehen, wenn das angenommene w zu
stark vom tatsächlichen wreal abweicht.

2.6.1. Berechnung des Aspektwinkels bei drei sichtbaren Punkten

Ähnlich zum ersten Ansatz müssen für die Berechnung von α zuerst die Faktoren k1,2 gefunden
werden, womit die Koordinaten der Punkte A = k1a und C = k2c berechnet werden können.

Die Dreiecke OBA und OBC bilden jeweils einen geschlossenen Vektorzug (siehe Abb. 2.7).
Damit lässt sich das System

b + l

(
sin α

cos α

)
− k1a = 0

b + w

(
sin β

− cos β

)
− k2c = b + w

(
sin(90◦ − α)

− cos(90◦ − α)

)
− k2c = 0

aufstellen. 0 ist hierbei der zweidimensionale Nullvektor (0, 0)T. Durch Einsetzen der Gleichun-
gen

l = qw

sin(90◦ − α) = cos α

− cos(90◦ − α) = − sin α
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2. Aspektwinkelschätzung

(a) (b)

Abbildung 2.7.: Die Dreiecke OBA und OBC bilden geschlossene Vektorzüge. (a) Vektorzug
des Dreiecks OBA. (b) Vektorzug des Dreiecks OBC.

lässt sich das System auf die Form

k1a1 = b1 + qw sin α (2.2)

k1a2 = b2 + qw cos α (2.3)

k2c1 = b1 + w cos α (2.4)

k2c2 = b2 − w sin α (2.5)

bringen. Elimination mittels (2.2) + q(2.5) und (2.3)− q(2.4) ergibt das lineare System

k1a2 − k2qc1 = −qb1 + b2

k1a1 + k2qc2 = b1 + qb2

mit der Lösung

k1 = −qc2b1 − c2b2 − b1c1 − qb2c1

a2c2 + a1c1

k2 =
a2b1 + qa2b2 + qa1b1 − a1b2

q(a2c2 + a1c1)
.

Mit den so berechneten Faktoren k1,2 können, analog zum ersten Ansatz, die gesuchten Winkel
α und β berechnet werden.

Diese Berechnung von α setzt keine Kenntnis der Entfernung der Fahrzeugdistanz d voraus.
D. h. für die Berechnung kann ‖b‖ = 1 angenommen werden1. Dies lässt sich damit erklären,
dass das im Bild sichtbare Seitenverhältnis als Folge des Strahlensatzes invariant gegenüber
Streckungen und Stauchungen ist. Aus der sichtbaren Länge nur einer Seite lässt sich nicht auf
den Winkel α schließen, ohne Distanzinformationen zu Hilfe zu nehmen. Daher wird für die
Berechnung mittels Ansatz 1 die Fahrzeugdistanz d benötigt.

1Die Vektoren a und c sind in diesem Fall entsprechend zu skalieren.
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2.7. Vergleich der Ansätze der modellbasierten Aspektwinkelschätzung
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Abbildung 2.8.: Abschätzung des Aspektwinkels α bei nur zwei sichtbaren Punkten. Sind
nur zwei Punkte sichtbar, lässt sich der Winkel α nur in einem Intervall angeben.
Dieses ergibt sich geometrisch aus dem Spielraum, den ein Fahrzeug haben
kann, ohne dass drei Punkte sichtbar werden. (a) Untere Schranke γ1. (b) Obere
Schranke γ2.

2.6.2. Schätzung das Aspektwinkels bei zwei sichtbaren Punkten

Sind lediglich zwei der drei maßgebenden Punkte sichtbar, lässt sich α ohne Kenntnis von w
und l nicht berechnen. Ist nur q = l

w bekannt, kann lediglich ein Intervall für den Wert von α

angegeben werden.
Bei zwei sichtbaren Punkten ist α durch die beiden Sichtwinkel γ1 und γ2 eingeschränkt, d. h.

γ1 ≤ α ≤ γ2. (2.6)

Die Grenzen der Abschätzung (2.6) ergeben sich dabei geometrisch aus dem Spielraum, den
ein Fahrzeug haben kann, ohne dass einer der Punkte A oder C sichtbar wird. Abb. 2.8 zeigt
die Grenzfälle α = γ1 und α = γ2, zwischen denen sich α bewegen kann.

2.7. Vergleich der Ansätze der modellbasierten
Aspektwinkelschätzung

Die beiden vorgestellten Ansätze werden anhand dreier Modellprobleme verglichen, um
einen Eindruck über die Genauigkeit und Stabilität der Winkelschätzung unter abweichenden
Fahrzeuglängen/-breiten in der Realität zu vermitteln.

Die Modellprobleme sind

1. Ein Fahrzeug mit einem Aspektwinkel von 45◦ (siehe Abb. 2.9(a)),

2. ein Fahrzeug mit einem Aspektwinkel von 90◦ (siehe Abb. 2.9(b)) und

3. ein Fahrzeug mit einem Aspektwinkel von 10◦ (siehe Abb. 2.9(c)).
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2. Aspektwinkelschätzung

Die reale Fahrzeugbreite ist 3 Meter, die reale Länge 5 Meter; Die erwartete Fahrzeugbreite w
ist 3.1 Meter, die erwartete Länge l 5.1 Meter. Das entspricht einer Modellabweichung von ca.
3 % in der Breite und 2 % in der Länge. Abb. 2.9 zeigt die drei Modellprobleme.

3 m

5 m

45°

(a)

3 m

5 m

(b)

3 m

5 m

10°

(c)

Abbildung 2.9.: Modellprobleme. Um einen Eindruck von der Genauigkeit einer modellbasier-
ten Aspektwinkelschätzung zu vermitteln, werden die vorgestellten Ansätze
anhand dreier Modellprobleme untersucht. Diese sind (a) ein Fahrzeug mit
Aspektwinkel 45◦, (b) ein Fahrzeug mit Aspektwinkel 90◦ und (c) ein Fahrzeug
mit Aspektwinkel 10◦.

Für die Untersuchung werden die in Abb. 2.9 dargestellten Fahrzeuge an alle Positionen
innerhalb des Sichtbereichs der Kamera verschoben. Der Kamera-Öffnungswinkel ist hierbei
auf 90◦ festgelegt, die maximale Distanz beträgt 100 Meter. An jeder Position wird mit beiden
Ansätzen der Winkel berechnet und anschließend die Abweichung vom tatsächlichen Winkel
ausgewertet. Bei beiden Ansätzen wird der Winkel α berechnet. Mit dem ersten Ansatz wäre
es prinzipiell möglich, den Gegenwinkel β (mit Hilfe der Punkte B und C) zu berechnen.
Diese Option wird allerdings nicht weiter untersucht, um die Vergleichbarkeit der Ergebnisse
sicherzustellen.

Abb. 2.10 zeigt den Fehler beim ersten Modellproblem. Die rechte Graphik zeigt den Fehler
bei der Berechnung mit dem ersten Ansatz. Die Abweichung beträgt, je nach Position des
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2.7. Vergleich der Ansätze der modellbasierten Aspektwinkelschätzung
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Abbildung 2.10.: Fehler (in Grad) der Aspektwinkel von Modellproblem 1. Bei der Berech-
nung durch die Fahrzeuglängen (linke Graphik) zeigt sich ein größerer Fehler
als bei der Berechnung durch das Längenverhältnis (rechte Graphik). Der
Fehler ist abhängig von der Position des Fahrzeugs. Je „spitzer“ auf die maß-
gebende Seite des Fahrzeugs geblickt wird, desto größer ist der Fehler. Wird
statt des Winkels α der Gegenwinkel β berechnet, sind die großen Fehler
am entgegengesetzten Ende des Sichtbereichs, da in diesem Fall rechts der
spitzere Winkel ist.

Fahrzeugs, bis zu 12◦. Je spitzer die Seite des Fahrzeugs zu sehen ist, desto größer ist der Fehler.
Bei der Berechnung mit dem zweiten Ansatz (rechte Graphik) ist der Fehler geringer als 2◦. Für
das erste Modellproblem ist also der zweite Ansatz besser für die Berechnung geeignet.

Der Fehler beim zweiten Modellproblem (Abb. 2.11) ist bei beiden Ansätzen gering. Bei
Berechnung aus den Fahrzeuglängen ist der maximale Fehler kleiner als 2◦, wobei dieser Fall
nur am Rand des Sichtbereichs auftritt. Die Berechnung aus den Längenverhältnissen weicht
nur marginal vom Sollergebnis ab. Somit ist auch für das zweite Modellproblem der zweite
Berechnungsansatz besser geeignet, wobei die Unterschiede weniger stark ausfallen.

Das dritte Modellproblem zeigt die größten Unterschiede zwischen den beiden Möglichkeiten
der Aspektwinkelberechnung. Wird α alleine aus der Fahrzeugbreite berechnet, so beträgt die
Abweichung über 60◦. Auch hier zeigt sich wieder der schon bei der Untersuchung von Modell-
problem 1 sichtbare Effekt, dass der Fehler umso größer wird, je „spitzer“ auf die maßgebende
Seite geblickt wird. Beim dritten Modellproblem ist der korrekte Winkel mit 10◦ allerdings
deutlich spitzer als bei Modellproblem 1 (45◦). Folgerichtig zeigt sich im dritten Modellproblem
dieses Problem sehr viel deutlicher. Wird der Aspektwinkel aus den Längenverhältnissen be-
rechnet, liegt der Fehler, wie schon bei den beiden ersten Modellproblemen, deutlich unter dem
Fehler vom ersten Ansatz.

Insgesamt gesehen ist der zweite vorgestellte Ansatz deutlich robuster gegenüber Modellfeh-
lern. In allen untersuchten Modellproblemen ist der Fehler kleiner als bei der Alternative, der
Berechnung unter Annahme der Fahrzeuglänge/-breite. Zusätzlich müssen für den zweiten
Ansatz keine Entfernungsinformationen vorliegen, was im ersten Ansatz der Fall sein muss.
Nachteilig ist allerdings, dass für eine Berechnung immer alle drei maßgebenden Punkte sicht-
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2. Aspektwinkelschätzung
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Abbildung 2.11.: Fehler (in Grad) der Aspektwinkel von Modellproblem 2. Der Modellfehler
wirkt sich beim zweiten Modellproblem nicht sehr stark aus. Bei beiden
Ansätzen der Aspektwinkelberechnung ist er geringer als 2◦, wobei der zweite
Ansatz (rechte Graphik) leicht besser abschneidet.
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Abbildung 2.12.: Fehler (in Grad) der Aspektwinkel von Modellproblem 3. Auch hier zeigt
sich der bereits beim ersten Modellproblem (Abb. 2.12) zu beobachtende
Effekt, dass sich der Modellfehler stark auswirkt, sobald die maßgebende Seite
unter einem spitzen Winkel zu sehen ist. Wird der Askpektwinkel mit dem
ersten Ansatz berechnet (linke Graphik) führt das zu einer Abweichung von
über 60◦. Die Berechnung mit dem zweiten Ansatz (rechte Graphik) zeigt, wie
bei den anderen Modellproblemen ebenfalls, keine starken Abweichungen.
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2.8. Kategorisierung assoziierter Detektionen

left 16 left 14 left 12 right 12 right 14 right 16straight

Abbildung 2.13.: Beispiele für kategorisierte PKW. Wie zu sehen ist, spiegelt die vorgenom-
mene Kategorisierung den Aspektwinkel wider. Je größer die Zahl, desto
„schräger“ steht das Fahrzeug zur Kamera. Die Kategorien left bzw. right
geben die sichtbare Seite des Fahrzeugs an.

bar sein müssen. Sind nur zwei Punkte sichtbar, kann der Aspektwinkel lediglich nach oben
und unten abgeschätzt, jedoch nicht exakt berechnet werden (vgl. Abschnitt 2.6.2).

Die in diesem Abschnitt vorgenommene Untersuchung betrachtet lediglich den inhärenten
Modellfehler, d. h. es wird angenommen, dass sich die Bildpunkte A’, B und C’ exakt bestim-
men lassen. Dies ist in der Realität nicht der Fall. Da Detektionen von Fahrzeugen, die die
maßgebenden Kanten vorgeben (vgl. Abschnitt 2.4), nicht immer die exakten Ausmaße der
Fahrzeuge wiedergeben, weichen schon die Koordinaten von A’, B und C’ von den tatsächlichen
Fahrzeugkanten ab. Der Modellfehler ist lediglich eine theoretische Untergrenze des Fehlers. In
der Praxis ist zu erwarten, dass der berechnete Winkel noch sehr viel stärker vom tatsächlichen
Winkel abweicht.

Da die Winkelberechnung nur mit sehr großen Ungenauigkeiten verbunden ist, wird im rea-
lisierten System keine exakte Winkelberechnung vorgenommen. Stattdessen werden Fahrzeuge
lediglich in grobe Kategorien eingeteilt (siehe Abschnitt 2.8), welche den Aspektwinkel detek-
tierter Fahrzeuge widerspiegeln, ohne die fehleranfällige und ungenaue Winkelberechnung
durchführen zu müssen.

2.8. Kategorisierung assoziierter Detektionen

Statt den Winkel direkt auszurechnen, werden im realisierten System den erkannten Fahr-
zeugen Kategorien zugewiesen. Diese spiegeln den gesuchten Aspektwinkel wider. Nach der
Assoziation (siehe Abschnitt 2.3) sind die Höhe und Breite von zusammengehörigen Detektio-
nen bekannt. Damit kann eine Kategorisierung wie folgt formuliert werden. Die Bezeichnungen
der Punkte beziehen sich auf Abb. 2.2.

• Sind die Punkte A und B deckungsgleich, bekommt das Fahrzeug die Kategorie right, sind
die Punkte C und D deckungsgleich, wird die Kategorie left vergeben. Gilt sowohl A = B
als auch C = D, wird die Kategorie straight vergeben. In diesem Fall fährt das Fahrzeug in
gerader Linie von der Kamera weg bzw. auf sie zu2.

2Vorder- und Rückfront werden nicht unterschieden, vgl. Abschnitt 1.3.
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2. Aspektwinkelschätzung

• Wird in Schritt 1 die Kategorie left oder right vergeben, lässt sich der Aspektwinkel genauer
fassen. Daher wird eine weitere Unterkategorie gewonnen, indem

k =

⌈
10

Breite der Fahrzeugdetektion (in Pixeln)
Breite der Rückfrontdetektion (in Pixeln)

⌉
berechnet wird. Das so bestimmte k gibt die Abweichung von einer Ausrichtung in gerader
Linie zur Kamera an. Je größer k, desto „schräger“ steht das Fahrzeug zur Kamera.

Formal betrachtet ist eine Winkelkategorie c ein Tupel

c = (c1, c2) ∈ {right, left, straight} ×N.

Für Kategorien mit c1 = straight wird c2 = 10 gesetzt. Diese formale Definition ist bei der
Evaluation des Gesamtsystems von Bedeutung (siehe Abschnitt 6.2.4).

Abb. 2.13 zeigt Beispiele für PKW zusammen mit den ihnen zugewiesenen Kategorien. Es ist
zu sehen, wie die Kategorisierung den Aspektwinkel widerspiegelt.
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KAPITEL 3

Detektion von Fahrzeugen mit Kaskadenklassifikatoren

In diesem Kapitel werden die Grundlagen der Detektion von Fahrzeugen mit der Viola-Jones-
Kaskade beschrieben. Es wird auf den Algorithmus AdaBoost (Abschnitt 3.1), die verwende-
ten Merkmale (Abschnitt 3.2), das in dieser Arbeit zum Einsatz kommende Fensterkonzept
(Abschnitt 3.3), die Viola-Jones-Kaskade (Abschnitt 3.4) und das verwendete Verfahren zur
Generierung von Hypothesen (Abschnitt 3.5) eingegangen. Die vorgestellten Konzepte und
Verfahren bilden die Grundlage für die in dieser Arbeit entwickelte hierarchische Erweiterung
der Viola-Jones-Kaskade.

3.1. AdaBoost-basiertes Lernen

Boosting ist eine Methode, mehrere schwache Klassifikatoren (sog. Weaklearner) zu einem
starken Klassifikator, dem sog. Stronglearner zu kombinieren. Dabei ist es ausreichend, wenn
die Performance der Weaklearner wenig besser als zufällig ist [MR03],[Web02, S. 294 f.]. Basie-
rend auf der Idee des Boosting, stellen Freund und Schapire in [FS95] mit AdaBoost (Adaptive
Boosting) den ersten praktisch einsetzbaren Algorithmus für die Konstruktion des Stronglear-
ners vor.

Im Folgenden wird zunächst der ursprüngliche Algorithmus aus [FS95] beschrieben (Ab-
schnitt 3.1.1) und einige grundlegende Aussagen über den Trainingsfehler sowie die statistische
Interpretierbarkeit (Abschnitt 3.1.2) erläutert. Abschließend wird der auf [FS95] basierende und
in dieser Arbeit eingesetzte Boosting-Algorithmus RealAdaBoost vorgestellt (Abschnitt 3.1.3).

Für eine ausführlichere Einleitung in Boosting sei auf die Arbeit von Meir und Rätsch
[MR03] sowie die Einführung von Schapire [Sch02] verwiesen. Eine mathematische Analyse
von AdaBoost bieten die Arbeiten von Friedman et al. [FHT00] und Schapire und Singer [SS99].
Ein Überblick über weitere Boosting-Algorithmen und aktuelle Entwicklungen findet sich in
der Arbeit von Zhang und Zhang [ZZ10].
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

3.1.1. Original AdaBoost von Freund und Schapire

Aus einer Menge von Beispielen

{(x1, y1), . . . , (xN , yN)} , xi ∈ M, yi ∈ C

mit einem Gewicht w1(i) = 1
N , i = 1, . . . , N für jedes der Beispiele wird durch AdaBoost ein

additives Modell
T

∑
t=1

αtht(x)

konstruiert. Dieses kombiniert T Weaklearner ht :M→ C linear zu einem Stronglearner. Bei
der Konstruktion des Modells geht AdaBoost iterativ vor. In jeder Iteration wird derjenige
Weaklearner mit dem kleinsten gewichteten Fehler bei der Klassifikation der Beispiele zum
finalen Stronglearner hinzugefügt. AdaBoost gehört somit zur Klasse der Greedy-Algorithmen
[Sch01, S. 185 ff.],[MR03]. Die Gewichtung αt, mit der ht in das Modell eingeht, wird hierbei
umso größer gewählt, je geringer der gewichtete Trainingsfehler des Weaklearners ist.

Im Anschluss an die Auswahl des neuen Weaklearners ht werden die Gewichte der Beispiele
angepasst. Das Gewicht derjenigen Beispiele, die durch den neuen Weaklearner falsch klassifi-
ziert wurden, wird erhöht; die korrekt klassifizierten Beispiele werden geringer gewichtet. So
wird der Fokus für die nächste Iteration auf die bisher falsch klassifizierten Beispiele gelegt.

Der finale Stronglearner HT ergibt sich nach T Runden zu

HT :M→ C, HT(x) = sign
T

∑
t=1

αtht(x).

Abb. 3.1 zeigt den Ablauf von AdaBoost graphisch, Algorithmus 3.1 beschreibt AdaBoost in
Pseudocode. Die Begründung der Berechnungsvorschriften von αt und wt+1(i) befindet sich in
Abschnitt 3.1.2.

3.1.2. AdaBoost als Minimierung des exponentiellen Fehlers

Friedman et al. liefern eine Erklärung für die Wahl von αt und wt+1(i) [FHT00]. Demnach lässt
sich AdaBoost interpretieren als schrittweise Minimierung der exponentiellen Fehlerfunktion

E(k) =
N

∑
i=1

exp(−yi Hk
T(xi)). (3.1)

Hk
T ist hierbei das nach k von T Schritten (teilweise) konstruierte Modell

Hk
T(x) =

k

∑
q=1

αqhq(x).

Die Berechnungsvorschriften für αt und wt+1(i) ergeben sich von Gleichung (3.1) ausgehend,
wenn man die bisherigen αj und wj(i) (j = 1, . . . , k − 1) als konstant ansieht und E(k) bzgl.
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3.1. AdaBoost-basiertes Lernen

w1(i) w2(i) wT(i)

h1(x) h2(x) hT(x)

. . . . . .

. . . . . .

∑
=

=
T

t
ttT xh )x(H

1
)(sign α

Abbildung 3.1.: Ablauf von AdaBoost. In jeder Runde wird ein Weaklearner ht basierend
auf den Beispielgewichten wt(i) ausgewählt (blaue Pfeile). Der Fehler von ht

beeinflusst die Gewichte der Beispiele für die nächste Runde (grüne Pfeile). Am
Ende werden alle ausgewählten Weaklearner linear zu einem Stronglearner
kombiniert (rote Pfeile).
Quelle: Darstellung basierend auf [Bis06, S. 658]

αk bzw. wk(i) minimiert [Bis06, S. 659 ff.]. Der Trainingsfehler ∆k
train von Hk

T ist in diesem Fall
durch

∆k
train =

1
N

∣∣∣{yi 6= sign Hk
T(xi)

}∣∣∣ ≤ ∆k
max (3.2)

=
k

∏
q=1

N

∑
i=1

wq(i) exp(−αqyihq(xi))

=
k

∏
q=1

Zq

beschränkt [SS99],[HALL07]. Der Normalisierungsfaktor der Beispielgewichte Zk ist also eine
obere Schranke für den Trainingsfehler in Runde k. Es gilt zudem

Zk+1∆k
max = ∆k+1

max ≤ ∆k
max

sowie
0 ≤ ∆k

max < 1

und damit
lim
k→∞

∆k
max = 0.

Folglich verschwindet bei Wahl eines ausreichend großen T der Trainingsfehler [Sch02]. Für
einen ausführlichen und kommentierten Beweis dieser Aussage sei auf [Wen03, S. 31 ff.] ver-
wiesen.

In der Praxis ist der tatsächliche Fehler oftmals kleiner als die durch Gleichung (3.2) vorgege-
bene Schranke [Wen03, S. 62 f.]. Dadurch kann es allerdings sein, dass ein neu hinzugefügter
Weaklearner hk+1 den Trainingsfehler ∆k+1

train vergrößert, ohne Gleichung (3.2) zu verletzen. Um
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

Algorithmus 3.1 Original AdaBoost von Freund und Schapire

Eingabe :Beispiele: {(x1, y1), . . . , (xN , yN)} , xi ∈ M, yi ∈ C
Anzahl der Lernschritte: T

Ausgabe : Stronglearner HT

Initialisiere: w1(i)← 1
N , i = 1, . . . , N

for t = 1 to T do

// Wähle Weaklearner ht mit dem kleinsten gewichteten Fehler ε

ht ← argmin
hj

εj, mit εj = ∑N
i=1 wt(i)

[
hj(xi) 6= yi

]
// Bestimme Gewichtung des neuen Weaklearners

αt ← 1
2 ln

(
1−εt

εt

)
// Adaptiere und normalisiere die Gewichte für die nächste Runde

Zt ← ∑N
i=1 wt(i) exp(−αtyiht(xi))

wt+1(i)← 1
Zt

wt(i) exp(−αtyiht(xi))

end

// Stronglearner HT ergibt sich zu:

HT(x) = sign (∑T
t=1 αtht(x))

dieses Phänomen zu begrenzen und Weaklearner mit negativem Einfluss zu entfernen, schlagen
Li et al. einen Backtracking-Mechanismus vor [LZSZ02],[LZZ+02]. Eine ausführliche Erklärung
des resultierenden FloatBoost-Algorithmus findet sich bspw. in [Ape05, S. 24 ff.]. Außerdem
setzt der Konvergenzbeweis die Existenz beliebig vieler Weaklearner, deren Performance besser
als zufällig sein muss, voraus. Diese Voraussetzung ist in der praktischen Anwendung nicht
gegeben; Praktisch existieren nur begrenzt viele Weaklearner. D. h. ab einer gewissen Runde
wird der Trainingsfehler nicht mehr kleiner werden.

3.1.3. RealAdaBoost von Schapire und Singer

Ausgehend vom ursprünglichen AdaBoost [FS95], entwickeln Schapire und Singer mit
RealAdaBoost [SS99] eine generalisierte Version des Verfahrens, das eine höhere Performance
als der Originalalgorithmus aufweist [LZZ+02],[WAHL04],[MKH05]. Im Gegensatz zu diesem
geht RealAdaBoost von reellen Weaklearnern ft :M→ R aus. Hierbei ist sign ft(x) die Klasse,
die ft für x vorschlägt; | ft(x)| ist interpretierbar als die Sicherheit (engl. confidence), die ft bei
dieser Aussage hat [FHT00].

Statt der exponentiellen Fehlerfunktion E(k) (Gleichung (3.1)) minimiert RealAdaBoost direkt
die durch Zt gegebene obere Schranke für den Trainingsfehler in Runde t. Da ft(x) reell ist,
lässt sich ohne Verlust der Allgemeinheit die Berechnung von αt in den Weaklearner verlagern.
Somit lässt sich der vom gewählten Weaklearner ft abhängige Fehler Zt schreiben als [SS99]

Zt( ft) =
N

∑
i=1

wt(i) exp(−yi ft(xi)) . (3.3)
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3.2. Verwendete Merkmale

Mit diesem Maß lässt sich ein iterativer Algorithmus formulieren: In jeder Runde wird derje-
nige Weaklearner ausgewählt und zum finalen Stronglearner hinzugefügt, für den Gleichung
(3.3) minimal wird.

Beschränkt man sich auf eine bestimmte Klasse von Weaklearnern, die sog. Eingaberaum-
zerlegenden (engl. domain-partitioning) Weaklearner, lässt sich diese recht allgemeine Aussage
noch konkretisieren und RealAdaBoost dazu nutzen, effiziente Weaklearner dieser Art zu
konstruieren.

Eingaberaum-zerlegende Weaklearner

Stützen die Weaklearner ihre Aussage allein auf eine Zerlegung des Eingaberaums, so lässt sich
Gleichung (3.3) minimieren, indem für jeden Teilbereich ein spezieller Wert cj ∈ R gewählt wird.
Beispiele für Weaklearner dieser Art sind Klassifikationsbäume (siehe Abschnitt 4.1) sowie die
von Viola und Jones [VJ01] verwendeten Decision-stumps (siehe Abschnitt 3.4).

Sei ein auf einer Zerlegung des Eingaberaums basierender Weaklearner f gegeben durch

f (x) =

{
cj, falls x in einer bestimmten Teilmenge des Eingaberaums
0, sonst

wobei die Werte cj nicht näher bestimmt sind und durch die Minimierung von Zt gefunden
werden. Sei weiter W±j der (gewichtete) Anteil an positiven/negativen Beispielen in der be-
trachteten Teilmenge des Eingaberaums. Dann ist Zt( f ) minimal, wenn

cj =
1
2

ln

(
W+

j

W−j

)
. (3.4)

In diesem Fall lässt sich Zt( f ) durch

Zt( f ) = 2 ∑
j

√
W+

j W−j (3.5)

berechnen [SS99]. Zu beachten ist, dass hierbei keine Aussage über die Zerlegung selbst gemacht
wird. Die Wahl der cj gemäß Gleichung (3.4) minimiert Zt für eine beliebige Zerlegung; es bleibt
weiterhin Aufgabe des Weaklearners, diese zu finden.

Die mittels Gleichung (3.5) berechnete Größe wird Z-Wert des Weaklearners f genannt und
kann als die „Stärke“ oder „Mächtigkeit“, mit der f zwischen den Positiv- und Negativbeispie-
len unterscheiden kann, interpretiert werden [WN07].

3.2. Verwendete Merkmale

In diesem Abschnitt werden die in dieser Arbeit zum Einsatz kommenden Merkmale vorgestellt.
Neben den von Viola und Jones verwendeten [VJ01] Haarwavelets (Abschnitt 3.2.1) werden die
von Levi und Weiss eingeführten EOH-Merkmale (Abschnitt 3.2.2) [LW04] eingesetzt.

Eng mit den verwendeten Merkmalen verknüpft ist das dieser Arbeit zu Grunde liegende
Konzept der Merkmalsfenster. Auf dieses wird in Abschnitt 3.3 eingegangen.
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

3.2.1. Haarwavelets

Die von Oren et al. als Merkmal vorgeschlagenen [OPS+97] und von Papageorgiou et al.
weiterentwickelten [POP98] Haarwavelets bestehen aus gewichteten Rechtecken, die Hellig-
keitsbeziehungen zwischen Bildregionen erfassen. Sie sind somit eine Verallgemeinerung des
klassischen Prewitt-Filters [Jä05, S. 365 ff.]. Analog zum Prewitt-Filter ergibt sich der Merk-
malswert, indem die Pixel unter den Rechtecken aufsummiert und durch die Rechteckgröße
geteilt werden. Anschließend werden die so normalisierten Summen voneinander abgezogen
[Kal05, S. 6 ff.].

(1) (2) (3) (4)

(8)(7)

(6)(5)

(9) (10) (11) (12)

Abbildung 3.2.: Typen von Haarwavelets. Haarwavelets erfassen Helligkeitsunterschiede
in Bildern, indem sie die Pixel unter den weißen bzw. schwarzen Rechte-
cken aufsummieren, die entstehenden Werte durch die jeweilige Rechteck-
größe teilen und anschließend voneinander abziehen [VJ01],[Kal05, S. 6 ff.].
Die Abbildung zeigt mögliche Basistypen, die in verschiedenen Beiträgen
[VJ01],[Ape05],[LKP03] vorgeschlagen wurden.
Quellen: (1) – (4): [VJ01], (5) – (7): [Ape05], (8) – (12): [LKP03]

Einen Überblick über die Basistypen an Haarwavelets, von denen ausgehend die verschie-
denen Merkmale definiert werden können, gibt Abb. 3.2. Zusätzlich zum Basistyp wird die
Position innerhalb des Merkmalsfensters (siehe Abschnitt 3.3) sowie die Skalierung in x- und
y-Richtung benötigt, um ein Merkmal eindeutig zu identifizieren. Abb. 3.3 zeigt beispielhaft
vier der möglichen Merkmale innerhalb eines quadratischen Merkmalsfensters.

Die Menge der möglichen Merkmale, die auf diese Weise definiert werden können, ist sehr
groß. Allein für die von Viola und Jones verwendeten Typen (1) – (4) können innerhalb eines 24
mal 24 Pixel großen Merkmalsfensters über 160 000 verschiedene Kombinationen unterschieden
werden [VJ01].

Der Hauptvorteil der Verwendung von Haarwavelets als Merkmale ist die hohe Geschwin-
digkeit, mit der diese ausgewertet werden können. Mit dem von Viola und Jones verwendeten
Integralbild lässt sich ein normales, d. h. nicht-diagonales Haarwavelet mit nur vier atomaren
Rechenoperationen berechnen [VJ01]. Um zusätzlich die diagonalen Typen (9) – (12) effizi-
ent zu ermöglichen, erweitern Lienhart et al. die originale Datenstruktur auf ein diagonales
Integralbild [LKP03].
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3.2. Verwendete Merkmale

(a) Typ (8) (b) Typ (4) (c) Typ (7) (d) Typ (9)

Abbildung 3.3.: Beispiele für mögliche Haarwavelets in einem quadratischen Merkmals-
fenster. Ein Merkmal ist definiert duch seinen Typ (siehe Abb. 3.2), der Skalie-
rung in x- und y-Richtung sowie der Position innerhalb des Merkmalsfensters.

Von den in Abb. 3.2 gezeigten Basistypen kommen in dieser Arbeit nur die Typen (1) – (8)
zum Einsatz. Auf die diagonalen Haarwavelets wurde verzichtet um die Gesamtanzahl der
Merkmale in einem beherrschbaren Bereich zu halten.

3.2.2. Edge Orientation Histograms

Merkmale, die auf orientierten Gradientenhistogrammen (Histogram of Oriented Gradients, HOG)
basieren, werden schon an verschiedenen Stellen, z. B. der Fußgängererkennung [DT05] oder
um Objekte anhand lokaler Merkmale (sog. Keypoints) zu finden [Low04], erfolgreich einge-
setzt. Sie werden gebildet, indem in einer Bildumgebung Histogramme der Gradientenrichtung
aufgestellt werden (Abb. 3.4). Diese Histogramme erfassen die vorherrschenden Richtungen
und spiegeln somit die „Form“ der Kanten in der betrachteten Umgebung wider [ZZ10]. Für
eine umfassende Einführung in Gradientenhistogramme sei auf [Wal08, S. 66 ff.] verwiesen.

Gradientenbild Gradientenhistogramm

Abbildung 3.4.: Merkmalsextraktion von Gradientenhistogrammen. Gradientenhistogram-
me werden gebildet, indem in einer Bildumgebung (rot) das Gradientenbild
berechnet wird. Damit kann das Histogramm der Gradientenrichtungen auf-
gestellt werden.

Um Gradientenhistogramme für das Training mit AdaBoost einsetzen zu können, müssen
die eigentlich vektorwertigen Histogramme auf einen skalaren Wert reduziert werden. Diesen
Schritt vollziehen Levi und Weiss in [LW04]. Die von ihnen vorgeschlagenen Edge Orientation
Histograms (EOH) gehen von Gradientenhistogrammen aus und setzen die einzelnen Kompo-
nenten – sprich: die einzelnen Gradientenrichtungen – in Beziehung zueinander. Bspw. kann der
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3. Detektion von Fahrzeugen mit Kaskadenklassifikatoren

Anteil einer einzelnen Gradientenrichtung k an der gesamten Gradientenstärke aller Richtungen
ausgedrückt werden, indem

Ak(R) =
Ek(R)

∑
i

Ei(R)
(3.6)

berechnet wird [LW04]. Hierbei ist Ei(R) der i-te Eintrag des Gradientenhistogramms der
Region R. Eine weitere Möglichkeiten ist die Beziehung zwischen zwei einzelnen Gradienten-
richtungen k und l, ausdrückbar als

Bk,l(R) =
Ek(R)
El(R)

.

Durch diesen Ansatz können sehr viele verschiedene Merkmale innerhalb eines Merkmals-
fensters (siehe Abschnitt 3.3) definiert werden. Selbst bei Beschränkung auf die Beziehung von
Gleichung (3.6) sind für jede mögliche Umgebung innerhalb des Merkmalsfensters so viele
Merkmale, wie das zugrunde liegende Histogramm Einträge hat, möglich. Die Zahl der mögli-
chen EOH-Merkmale ist somit ähnlich groß wie die Zahl der möglichen Haarwavelets. Aus
diesem Grund wird in dieser Arbeit lediglich die durch Gleichung (3.6) definierte Beziehung
verwendet.

Auch EOH-Merkmale lassen sich sehr effizient berechnen. Ähnlich zur Struktur des Integral-
bildes für Haarwavelets kommt hierbei für EOH-Merkmale das von Porikli [Por05] entwickelte
Integralhistogramm zum Einsatz.

Analog zur Definition der Haarwavelets ist ein EOH-Merkmal eindeutig durch die Position
und Skalierung in x- und y-Richtung sowie zusätzlich durch eine Gradientenrichtung, die in
Beziehung zu den anderen gesetzt wird, definiert. Als Umgebung wird hierbei immer von einer
quadratischen Grundform ausgegangen, die in x- und y-Richtung skaliert wird. Die Skalierung
erfolgt unabhängig voneinander, d. h. es sind auch nicht-quadratische Formen möglich.

Die zum Einsatz kommenden EOH-Merkmale unterscheiden Gradientenrichtungen, jedoch
nicht Gradientenorientierungen (die Vorzeichen der Gradienten) [Wal08, S. 67 f.] bei der Extrakti-
on der Gradientenhistogramme. Die Anzahl Richtungen, die unterschieden werden, ist auf 5
festgelegt; Die Histogramme haben folglich 5 Einträge.

3.3. Norm-, Merkmals- und Objektfenster

Um Merkmale eindeutig und skalierungsinvariant angeben zu können, muss die Beziehung
zwischen einem Merkmal, den Hypothesen und der Position des gesuchten Objektes innerhalb
einer Hypothese festgehalten werden. Hierfür bedarf es eines Ansatzes, der Größen- und
Positionsangaben für Merkmale innerhalb einer Hypothese skalierungsinvariant erlaubt. In
diesem Abschnitt wird das Konzept der Norm-, Merkmals- und Objektfenster erläutert. Es geht
zurück auf [Kal05, S. 25 ff.].

Das Normfenster gibt das Seitenverhältnis der Hypothesen vor. Es kann als normierte Hypo-
these angesehen werden. Innerhalb des Normfensters werden sowohl das Merkmalsfenster als
auch das Objektfenster pixelgenau definiert. Das Merkmalsfenster ist der Bereich innerhalb des
Normfensters, in dem sich die Merkmale (siehe Abschnitt 3.2) befinden. Das Objektfenster gibt
die Position des zu detektierenden Objektes, bezogen auf das Normfenster, an. Die Anzahl der
Merkmals- bzw. Objektfenster je Normfenster ist nicht begrenzt. Es ist daher möglich, mehrere
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3.3. Norm-, Merkmals- und Objektfenster

Merkmals- und Objektfenster für ein Normfenster zu definieren. Das ist bspw. dann sinnvoll,
wenn mehrere Objekt-Typen mit stark unterschiedlichem Seitenverhältnis mit dem gleichen
Klassifikator erkannt werden sollen. Gemeinsame Merkmale müssen dann nur einmal ausge-
wertet werden (Feature Sharing [TMF07]). In [Kal05] werden auf diese Weise PKW gemeinsam
mit Fußgängern detektiert. In dieser Arbeit wird diese Technik genutzt, um LKW gemeinsam
mit PKW zu verarbeiten (siehe Abschnitt 6.1.2).

(a) (b)

Abbildung 3.5.: Norm-, Merkmals- und Objektfenster. (a) Norm- (blau, äußeres Fenster),
Merkmals- (rot, mittleres Fenster) und Objektfenster (schwarz, grau hinter-
legt) geben pixelgenau den Zusammenhang zwischen Hypothese, Bereich der
Merkmale und Objekt an. Typischerweise wird die hier gezeigte Konstellation
Objektfenster ⊂Merkmalsfenster ⊆ Normfenster gewählt. (b) Eine Hypothese
ergibt sich, indem das Normfenster skaliert und an eine Position innerhalb
des Suchtunnels (siehe Abschnitt 3.5) verschoben wird. Merkmals- und Ob-
jektfenster werden dabei im gleichen Maße skaliert und entsprechend ihrer
Position innerhalb des Normfensters in der Hypothese positioniert.

Typischerweise wird die Konstellation Objektfenster ⊂ Merkmalsfenster ⊆ Normfenster
gewählt1. Durch die Wahl des Merkmalsfensters als Obermenge des Objektfensters ist es
möglich, die „Umgebung“ (charakteristische Kanten von Fahrzeugen etc.) der Objekte bei
der Merkmalsextraktion mit einzubeziehen [Kal05, S. 29]. Abb. 3.5(a) zeigt diese Konstellation
beispielhaft an einem quadratischen Normfenster.

Die Beziehung zwischen den Fenstern bleibt auch bei der Hypothesengenerierung (siehe
Abschnitt 3.5) erhalten. Eine Hypothese ergibt sich, indem das Normfenster skaliert und an eine
Position innerhalb des Suchtunnels verschoben wird. Die für das skalierte Normfenster definier-
ten Merkmals- und Objektfenster werden dabei im gleichen Maße skaliert und entsprechend
ihrer Position innerhalb des Normfensters im Bild positioniert. Die im Merkmalsfenster definier-
ten Merkmale werden gemeinsam mit dem Merkmalsfenster skaliert. Das ist ein Unterschied
zum „klassischen“ Vorgehen, bei dem das Bild mit Hilfe einer Bildpyramide in verschiedenen
Skalierungen untersucht wird: Statt das Bild zu skalieren werden die Hypothesen und damit
die Merkmale in ihrer Größe angepasst, um Objekte auf verschiedenen Skalierungsstufen zu
detektieren.

1Die Mengensymbole sind in diesem Fall als „Ist-In“-Beziehung zu verstehen.
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(a) (b)

Abbildung 3.6.: Anpassung der Label auf das Objektfenster. (a) Soll das Label (Mitte) an das
Format des Objektfensters (in diesem Beispiel: quadratisch) angepasst werden,
ergeben sich sechs Möglichkeiten (äußere Rechtecke). Die roten Kanten werden
jeweils so gewählt, dass das geforderte Seitenverhältnis hergestellt ist. (b) Bei
Wahl eines ungünstigen Objektfensters oder einer ungünstigen Anpassungs-
methode kann das Objektfenster nicht das gesamte Label enthalten.
Quelle: (a): Eigene Darstellung basierend auf [Kal05, S. 27]

Um die Daten für das Training aufzubereiten und die vorhandenen Label (siehe Abschnitt
1.5) auf das durch das Objektfenster vorgegebene Format zu bringen, wird in einem Vorver-
arbeitungsschritt eine Anpassung der Label vorgenommen. Diese Anpassung kann auf sechs
verschiedene Arten erfolgen. Abb. 3.6(a) zeigt die Möglichkeiten graphisch. Dabei ist nicht
gewährleistet, dass das gesamte Label im Objektfenster enthalten ist (Abb. 3.6(b)). Dies muss
durch Wahl eines geeigneten Objektfensters und einer geeigneten Anpassung sichergestellt
werden.

3.4. Die Viola-Jones-Kaskade

Viola und Jones stellten mit dem Kaskadenklassifikator [VJ01] erstmals ein echtzeitfähiges Sys-
tem zur Gesichtserkennung vor, das als Durchbruch auf dem Gebiet der Gesichtserkennung an-
gesehen ist [ZZ10]. Auch im automobilen Umfeld hat die Viola-Jones-Kaskade zu neuen Impul-
sen und Verbesserungen, z. B. für automobile Assistenzsysteme [WL04],[MOL+05],[KSPL06],
geführt. Diese Arbeit orientiert sich ebenfalls zu großen Teilen an der von Viola und Jones
vorgeschlagenen Struktur.

Der Ansatz von Viola und Jones basiert auf der Erkenntnis, dass nur ein kleiner Teil aller
möglichen Hypothesen eines Eingabebildes tatsächlich das gesuchte Objekt zeigen; die große
Mehrheit zeigt Hintergrund. Folglich ist es ausreichend, sehr schnell entscheiden zu können,
welche Hypothese kein Objekt zeigt, damit ein Klassifikator – im Mittel über alle Hypothesen
gesehen – sehr schnell arbeitet.

Von dieser Idee ausgehend, strukturieren Viola und Jones ihren Klassifikator in kaskadierten
Stufen, die hintereinander abgearbeitet werden; d. h. Hypothesen werden von Stufe zu Stufe
weitergegeben. In jeder Stufe wird durch einen mittels AdaBoost (siehe Abschnitt 3.1.1) konstru-
ierten Klassifikators entschieden, ob eine Hypothese in die nächste Stufe weitergereicht wird:
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3.4. Die Viola-Jones-Kaskade

wird sie als Hintergrund klassifiziert, wird ihre Bearbeitung abgebrochen. Dadurch nimmt
die Zahl der Hypothesen mit jeder Stufe kontinuierlich ab. Passiert eine Hypothese die letzte
Stufe, wird ihr die Klasse „Objekt“ zugeordnet. Abb. 3.7 veranschaulicht den Aufbau der
Viola-Jones-Kaskade.
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Abbildung 3.7.: Struktur der Viola-Jones-Kaskade und Ablauf der Hypothesenverarbei-
tung. Hypothesen werden von Stufe zu Stufe weitergereicht. Weist eine Stufe
eine Hypothese zurück, so wird sie nicht an die nächste Stufe weitergegeben.
Dadurch nimmt die Zahl der Hypothesen in den späteren Stufen immer weiter
ab. Hypothesen, die die letzte Stufe passieren, werden als Objekt klassifiziert.
Quelle: [Kal05]

Durch den kaskadierten Aufbau des Klassifikators wird die Entscheidung „Hintergrund“
schnellstmöglich, d. h. mit wenigen Weaklearnern, getroffen. In den späteren Stufen kann sich
der Klassifikator auf die „schweren“ Hintergrund-Hypothesen, also solche, die Objekten ähneln,
konzentrieren.

Um die komplexeren Entscheidungen in den späten Stufen treffen zu können, wird die
Anzahl der Weaklearner je Stufe zunehmend größer gewählt. Viola und Jones bspw. verwenden
Klassifikatoren mit 2, 10 und 25 Weaklearnern für die Stufen 1, 2 und 3. Insgesamt erstellen sie
eine Kaskade mit 38 Stufen für ihre Experimente [VJ01].

Als Weaklearner für AdaBoost verwenden Viola und Jones die in Abschnitt 3.2.1 vorgestellten
Haarwavelets zusammen mit einem einzelnen Schwellwert, der positive von negativen Bei-
spielen trennt. Das entspricht einem Entscheidungsbaum der Tiefe 1, dem sog. Decision-stump.
Durch diese Kombination fungiert AdaBoost als Algorithmus zur Auswahl von Merkmalen: In
jeder Runde wird aus der Liste aller möglichen Merkmale dasjenige, das am besten zwischen
Hintergrund und Objekt trennen kann, ausgewählt und mit einem Schwellwert versehen. Im
Fall von Haarwavelets heißt das, dass alle verfügbaren Typen (siehe Abb. 3.2) in allen Skalie-
rungen an allen möglichen Positionen innerhalb des Merkmalsfensters (siehe Abschnitt 3.3)
aufgezählt und bzgl. ihrer Diskriminanz beurteilt werden müssen.
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3.4.1. Training einer Kaskade

Eine Kaskade wird iterativ von der ersten Stufe an trainiert. Für jede Stufe wird mittels AdaBoost
ein Klassifikator erstellt. Die Trainingsbeispiele für die neue Stufe werden gesammelt, indem
Hypothesen durch die bereits erstellten Stufen klassifiziert werden. Wird eine Hypothese
durch eine der früheren Stufen abgewiesen, so ist sie nicht Teil der Beispiele für die neue
Stufe. Auf diese Weise wird jede Stufe nur für Hypothesen trainiert, die sie auch während der
Anwendung als Eingabe bekommen kann. Dieser Ablauf wird entweder so lange wiederholt,
bis keine Negativbeispiele mehr gefunden werden (sog. erschöpfendes Training), oder bis eine
zuvor festgelegte Stufenanzahl erreicht ist.

Für das Training der einzelnen Stufen können ebenfalls verschiedene Vorgaben gemacht
werden. Neben einer festen Anzahl Weaklearner kann eine minimale Detektionsrate zusammen
mit einer maximalen Falschalarmrate für die Trainingsbeispiele vorgeben werden. In diesem
Fall fügt AdaBoost so lange weitere Weaklearner hinzu, bis die geforderten Werte erreicht sind.
Zudem ist eine Kombination, also Performance-Vorgaben gepaart mit einer maximalen Anzahl
Weaklearner, möglich. Mit dieser Strategie haben Viola und Jones den Großteil der von ihnen
verwendeten 38 Stufen trainiert [VJ01].

Kommt solch eine kombinierte Trainings-Vorgabe zum Einsatz, wird das von AdaBoost
erstellte Modell HT derart erweitert, dass

HT(x) = sign

(
T

∑
t=1

αtht(x)− θs

)
,

mit einer Schwelle θs für die Stufe s. θs wird nach jeder Boosting-Runde so gewählt, dass die
geforderte Detektionsrate erreicht ist. Ist für das so gewählte θs die Falschalarmrate kleiner als
die Vorgabe, so kann das Training der Stufe beendet werden.

Die finale Detektionsrate D des Kaskadenklassifikators ist durch

D = ∏
i

di,

die Falschalarmrate F durch
F = ∏

i
fi

bestimmt [VJ01],[Kal05, S. 15]. di und fi sind hierbei die Detektions- bzw. Falschalarmraten der
einzelnen Stufen. Eine hohe Detektionsrate D ist folglich nur bei nahezu perfekten Detektionsra-
ten in den einzelnen Stufen erreichbar. So werden bspw. bei einer Kaskade mit zehn Stufen für
D ≥ 90 % bereits di ≥ 99 % benötigt (0.9910 ≈ 0.9). Dieser ungünstige Umstand wird allerdings
durch die Tatsache entkräftet, dass auch sehr hohe Falschalarmraten in den einzelnen Stufen
zu einer niedrigen Falschalarmrate des kompletten Kaskadenklassifikators führen. Bereits bei
einer Falschalarmrate von 50 % je Stufe ergibt sich für zehn Stufen F = 0.001 ≈ 0.510. Daher ist
durch Wahl eines geeigneten θs eine hohe Detektionsrate sehr gut erzielbar.

3.4.2. Verbesserung der Weaklearner durch mehrere Schwellwerte

Obwohl Viola und Jones den originalen AdaBoost (siehe Abschnitt 3.1.1) zur Auswahl der
Merkmale verwenden, ist der von ihnen vorgeschlagene Trainingsaufbau besser für den später
entwickelten RealAdaBoost geeignet [ZZ10]. Dieser macht Aussagen über die optimale Wahl
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3.4. Die Viola-Jones-Kaskade

der Weaklearner-Ausgaben, falls diese Eingaberaum-zerlegend (siehe Abschnitt 3.1.3) arbeiten.
Die von Viola und Jones verwendeten Decision-stumps sind von dieser Art.

Offen bleibt allerdings die Wahl der Zerlegung, d. h. im Fall von Decision-stumps die
Wahl des Schwellwerts. Üblicherweise wird ein Schwellwert gewählt, der die Wahrschein-
lichkeit eines Klassifikationsfehlers minimiert (Maximum-A-Posteriori-Regel, kurz: MAP-Regel)
[RPP06],[DHS00, S. 87 f.].

Oftmals ist die Beschränkung auf lediglich einen Schwellwert, d. h. eine Zerlegung in zwei
Teilmengen, nicht optimal. Durch eine feinere Zerlegung werden die Wahrscheinlichkeiten
für Objekt bzw. Hintergrund genauer erfasst [HALL07]. Damit können auch Mengen getrennt
werden, die sich mit einem einzelnen Schwellwert nur mit großem Fehler trennen lassen. Abb.
3.8 zeigt ein Beispiel für eine solche Konstellation und die Problematik, die bei Wahl eines
einzelnen Schwellwerts besteht.
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Abbildung 3.8.: Beispiel für eine Wahrscheinlichkeitsverteilung, die sich nicht durch einen
Schwellwert trennen lässt. Die roten und blauen Kurven sind die Wahrschein-
lichkeitsdichten der Klassen „Objekt“ bzw. „Hintergrund“, abgetragen über
dem Wert des gewählten Merkmals. Die grau hinterlegten Bereiche werden
dem Hintergrund zugeordnet. (a) Deutlich zu sehen ist, dass in diesem Fall
eine einzelne Schwelle nicht optimal zwischen den Klassen trennen kann. (b)
Optimale Wahl gemäß der Maximum-A-Posteriori-Regel. (c) Schwellen bei
den in der Praxis häufig verwendeten äquidistanten Bins.

Neben der Möglichkeit, beliebig viele Schwellwerte gemäß der MAP-Regel zu wählen
[RPP06], d. h. für jeden Merkmalswert eine optimale Wahl der Klassenzugehörigkeit zu treffen,
wird in der Praxis (bspw. von [HALL05],[WN07],[YHN09]) häufig aus Geschwindigkeits- und
Einfachheitsgründen ein äquidistantes Histogramm, die sog. Bins (siehe Abb. 3.8(c)) verwendet.
Die Anzahl der Schwellwerte ist dann um eins kleiner als die Anzahl der Bins. Für jeden Bin
wird mittels Gleichung (3.4) der Ausgabewert des Weaklearners bestimmt.

In dieser Arbeit wird allerdings ein alternatives, an [RPP06] angelehntes Verfahren ange-
wandt. Es versucht, bei Vorgabe einer festen Anzahl Bins, die in Abb. 3.8(b) gezeigten, optimalen
Schwellwerte zu finden. D. h. die Bins werden nicht notwendigerweise äquidistant gewählt.
Da die konkrete Vorgehensweise des Verfahrens für die weitere Arbeit unerheblich ist, wird im
Weiteren nicht darauf eingegangen. Für weitere Informationen sei auf [RPP06] verwiesen.
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3.5. Hypothesengenerierung

Um Objekte in Eingabebildern erkennen zu können, ist es nötig, dass mindestens eine Hy-
pothese das zu erkennende Objekt tatsächlich zeigt. Daher ist die Vorgehensweise, mit der
Hypothesen für die Eingabebilder generiert werden, mitentscheidend für die Erkennungsleis-
tung des Gesamtsystems. In diesem Abschnitt wird das verwendete Verfahren zur Generierung
von Hypothesen skizziert. Auf eine weitergehende Einführung, speziell der mathematischen
Aspekte, wird verzichtet. Hierfür sei bspw. auf [BK08, S. 370 ff.], [Kal05, S. 17 ff.] sowie [EG09]
verwiesen.

Wird bei der Generierung der Hypothesen naiv vorgegangen (d. h. indem Hypothesen in
allen Skalierungen über das gesamte Eingabebild verteilt werden), übersteigt die Zahl der
Hypothesen schnell mehrere Millionen. Damit wäre keine Erkennung in Echtzeit mehr möglich
[Kal05, S. 18]. Die Zahl der Hypothesen lässt sich allerdings drastisch reduzieren, wenn der
Bildbereich, in dem Objekte erwartet werden, eingeschränkt wird. Da sich die gesuchten
Fahrzeuge alle auf der Straße befinden, lässt sich der Bildbereich, für den Hypothesen generiert
werden müssen, auf einen Suchtunnel einschränken (siehe Abb. 3.9). Dabei wird angenommen,
das der Erdboden eine ungekrümmte Ebene ist (Ground-Plane-Annahme). Im verwendeten
Weltkoordinatensystem (siehe Abschnitt 2.2) entspricht diese der XY-Ebene.

(a) (b)

Abbildung 3.9.: Suchtunnel, in dem Hypothesen generiert werden. Dieser wird abhängig
von den Kameraparametern und der Objekthöhe (z. B. bei PKW ca. 2 Meter)
aufgebaut. (a) Suchtunnel bei normaler Ground-Plane-Annahme. (b) Suchtun-
nel bei relaxierter Ground-Plane-Annahme. Es ist deutlich zu sehen, wie der
Suchtunnel einen breiteren Bildbereich umschließt und somit Nickbewegun-
gen ausgeglichen werden.

Aufgrund der in der Realität durch Nickbewegungen des aufnehmenden Fahrzeugs sowie
durch Hügel etc. verletzen Ground-Plane-Annahme befinden sich speziell weit entfernte Fahr-
zeuge schnell außerhalb des Suchtunnels und würden damit nicht mehr detektiert werden.
Um diesen Effekt zu vermeiden, wird der Suchtunnel erweitert, indem ein Abweichwinkel ε

vorgegeben wird, um den die xy-Ebene nach oben und unten geneigt wird (Relaxed Ground-Plane-
Annahme, siehe Abb. 3.9) [Kal05, S. 18 ff.]. Das ist insbesondere im in dieser Arbeit verwendeten
Versuchsaufbau (siehe Abschnitt 1.2) nötig, da LKW im Vergleich zu PKW zu verstärkten
Nickbewegungen neigen.
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Damit der (relaxierte) Suchtunnel aufgebaut werden kann, sind die Parameter (Einbaupo-
sition und -winkel, Brennweite usw.) der bildgebenden Kamera nötig [BK08, S. 370 ff.]. Für
alle in dieser Arbeit verwendeten Sequenzen lagen diese vor. Zusätzlich wird die erwartete
Objekthöhe benötigt [Kal05, S. 19 ff.], damit die „Ausmaße“ des Suchtunnels berechnet werden
können.

Die Dichte, mit der Hypothesen innerhalb des Suchtunnels generiert werden (die sog. Quan-
tisierung), wird relativ zur Größe der Hypothesen angegeben. Bspw. wird bei einer Hypothe-
sengröße von 100 Pixeln mit einer Quantisierung von 0.5 die nächste Hypothese in dieser
Größe um 50 = 0.5× 100 Pixel verschoben erzeugt. Sind mit dieser Quantisierung innerhalb
des Suchtunnels alle Hypothesen dieser Größe erzeugt worden, wird sie skaliert und das gleiche
Verfahren in der nächsten Skalierungsstufe wiederholt. Die Größe der Hypothesen der nächsten
Skalierungsstufe wird, analog zur Quantisierung in x- und y-Richtung, ebenfalls relativ zur
aktuellen Hypothesengröße angegeben (sog. z-Quantisierung) [Kal05, S. 21 f.].
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KAPITEL 4

Hierarchische Klassifikation

In diesem Kapitel werden Klassifikationsbäume eingeführt (Abschnitt 4.1) sowie diskutiert,
wie sich die Viola-Jones-Kaskade auf einen hierarchischen Klassifikator erweitern lässt (Ab-
schnitt 4.2). Hierfür werden mögliche Ansätze kategorisiert (Abschnitt 4.2.1) und untersucht,
welche Strategien des Baumdurchlaufs möglich sind (Abschnitt 4.2.2). Im Anschluss daran wird
das Training und die Anwendung hierarchischer Erweiterungen des Kaskadenklassifikators
erläutert (Abschnitt 4.3).

4.1. Einleitung

Im Folgenden wird ein kurzer Überblick über Klassifikationsbäume gegeben. Für eine weiterge-
hende Einführung sei auf [DHS00, S. 394 ff.], [Bis06, S. 663 ff.] sowie [BK08, S. 486 ff.] verwiesen.

Unter einem hierarchischen Klassifikator oder Klassifikationsbaum wird ein Klassifikator
verstanden, der durch eine Serie von hintereinander ausgeführten Entscheidungen zu einer
Klasse für eine Hypothese findet. Die Antwort jeder einzelnen Entscheidung bestimmt die
nächste Entscheidung. Somit ergibt sich eine Baumstruktur mit einem Knoten für jede Ent-
scheidung. Die Wurzel des Baums entspricht der ersten Entscheidung. Diese muss für jede
Hypothese getroffen werden. Den Blättern des Baums werden Klassen zugeordnet. Erreicht
eine Hypothese ein Blatt, d. h. es gibt keine weiteren Entscheidungen für sie zu treffen, wird ihr
die Klasse des Blattes zugewiesen. Die Zuordnung von Klassen zu Blättern ist nicht exklusiv
oder eineindeutig, d. h. verschiedenen Blättern können die gleiche Klasse zugeordnet sein;
außerdem ist eine Zuordnung von mehreren Klassen zu einem einzigen Blatt möglich.

In dieser Arbeit sind die zu treffenden Entscheidungen ausschließlich binär. Somit ist die
entstehende Struktur ein Binärbaum. Da sich jede n-äre Entscheidung als Serie von binären
Entscheidungen darstellen lässt [ASS01], ist durch diese Einschränkung kein Verlust der Allge-
meinheit gegeben.

In jedem Knoten wird der Eingaberaum in zwei Teile geteilt. Eine Abfolge von Entscheidun-
gen entspricht somit einer sich verfeinernden, hierarchischen Zerlegung des Eingaberaums. Das
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4. Hierarchische Klassifikation

Paradigma hinter dieser Herangehensweise ist Divide-and-Conquer, also die Annahme, dass die
Klassifikationsaufgabe durch sukzessive Teilung vereinfacht wird [Wu08, S. 16]. Abb. 4.1 zeigt
ein Beispiel für einen Klassifikationsbaum sowie die zugehörige Zerlegung des Eingaberaums.

(a) (b)

Abbildung 4.1.: Beispiel eines Klassifikationsbaums für zweidimensionale Eingaben. (a) Ei-
ne Eingabe x = (x1, x2)T wird durch eine Abfolge von binären Entscheidungen
klassifiziert. Den Blättern sind Klassen (in diesem Beispiel A–E) zugeordnet.
(b) Ein Klassifikationsbaum entspricht einer Zerlegung des Eingaberaums. In
diesem Beispiel erfolgt diese durch die Schwellwerte θ1−4.
Quelle: [Bis06, S. 663 f.]

Die Struktur eines Klassifikationsbaums, d. h. die Reihenfolge der Entscheidungen, wird
gewöhnlich aus den vorhandenen Trainingsbeispielen ermittelt. Hierfür gibt es verschiedene
Verfahren. Beispiele sind der von Breiman et al. entwickelte CART-Algorithmus [BFSO84]
sowie die von Quinlan entwickelten Verfahren ID3 [Qui86] und C4.5 [Qui93]. Alle Verfahren
haben gemein, dass sie durch eine geschickte Wahl der Entscheidungen (z. B. durch Auswahl
einer oder mehrerer der Eingabevariablen, anhand derer der Eingaberaum geteilt wird) die
Unreinheit (engl. impurity) der entstehenden Teilmengen minimieren und auf diese Weise die
Anzahl der Entscheidungen kleinstmöglich zu halten versuchen (sog. Regel von Occam’s razor
[DHS00, S. 398]).

Ein mögliches und weitverbreitetes Maß für die Unreinheit einer Menge ist die Shannon’sche1

Entropie. Sie ist definiert als
i(N) = −∑

j
P(cj) log P(cj) ,

wobei P(cj) der Anteil an Trainingsbeispielen der Klasse cj ist. Mögliche Alternativen sind u. a.
der Gini-Index oder das Risiko einer Fehlklassifikation [DHS00, S. 398].

Wird die Zerlegung des Eingaberaums so lange fortgesetzt, bis die Unreinheit in allen Knoten
so klein wie möglich ist, ist der resultierende Klassifikationsbaum typischerweise überadaptiert
[DHS00, S. 402]. Als Extremfall kann in jedem Blatt lediglich eines der Trainingsbeispiele liegen.

1C. Shannon (* 12. April 1916; † 24. Februar 2001) gilt als der Begründer der Informationstheorie. Außerdem ist er
durch zahlreiche Erfindungen wie z. B. eine Jongliermaschine bekannt.
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Zahlreiche Strategien existieren, um dieses Problem zu umgehen. Sie lassen sich einteilen in
Strategien, die weitere Teilungen des Eingaberaums verhindern (Pre-Pruning) und Strategien,
die komplett gewachsene (d. h. mit hoher Wahrscheinlichkeit überadaptierte) Bäume wieder
komprimieren, indem sie Knoten zur Wurzel hin verschmelzen (Post-Pruning).

Im Folgenden wird die Viola-Jones-Kaskade im Kontext von hierarchischen Klassifikatoren
betrachtet. Es wird diskutiert, welche Möglichkeiten einer Erweiterung auf einen Klassifika-
tionsbaum sich prinzipiell ergeben. Weiter wird ein Überblick über bereits vorgeschlagene
hierarchische Erweiterungen der Kaskade gegeben.

4.2. Erweiterung der Kaskade auf einen hierarchischen Klassifikator

Die Viola-Jones-Kaskade kann als Spezialfall eines Klassifikationsbaums gesehen werden [VJ01].
In jeder Stufe wird hierbei entschieden, ob eine Hypothese Hintergrund zeigt. Ist das der Fall,
wird sie einem impliziten Blatt an dieser Stufe zugeordnet und verworfen. Zeigt die Hypothese
allerdings ein Objekt, so wird ihre Bearbeitung mit der nächsten Entscheidung, d. h. in der
nächsten Stufe, fortgesetzt. Die Kaskadenstruktur entspricht somit einem linearisierten, binären
Klassifikationsbaum.

Dieser Aufbau hat allerdings Nachteile, sobald die Positivbeispiele sich nicht effizient vom
Hintergrund trennen lassen [ZZ10],[PSR10]. Durch die Konvergenz von AdaBoost (siehe Ab-
schnitt 3.1.2) ist ein Erreichen der Trainingsvorgaben zwar immer möglich, allerdings werden
dafür u. U. sehr viele Merkmale benötigt. Dieser Fall tritt z. B. dann ein, wenn die Positivbei-
spiele multimodal verteilt sind [Wen03, S. 56 ff.]. Um solche Probleme zu vermeiden, bietet sich
eine weitergehende Teilung des Eingaberaums, also die Erweiterung der Kaskadenstruktur auf
einen hierarchischen Klassifikator, an.

Diese Erweiterung darf allerdings nicht die Vorteile der Kaskadenstruktur außer Kraft setzen.
Sie muss die Reject-Fast-Eigenschaft (das schnellstmögliche Zurückweisen von Hintergrund)
beibehalten, um die für automobile Assistenzsysteme benötigte Geschwindigkeit zu erreichen.
Folglich sind die „klassischen“ Ansätze zur hierarchischen Klassifikation (CART, ID3, C4.5
etc.) nicht geeignet, da bei diesen die Klasse einer Hypothese erst nach dem Durchlaufen
des gesamten Baums feststeht. Sie ignorieren die asymmetrische Fragestellung des Problems
Objekte in Bildern zu detektieren.

Die Kaskade teilt den Eingaberaum lediglich, um positive von negativen Beispielen zu tren-
nen. Durch eine zusätzliche Unterteilung der in einer Stufe akzeptierten Hypothesen (Divide)
kann eine schnellere Konvergenz von AdaBoost in den folgenden Stufen erreicht werden
(Conquer) [WL04]. Somit werden weniger Boosting-Runden bis zum Erreichen der Trainings-
vorgaben benötigt, was in höherer Geschwindigkeit des erstellten Klassifikators resultiert2.
Zusätzlich zur potentiell höheren Geschwindigkeit ist eine höhere Detektionsrate erreichbar
[WN07]. Dies erklärt sich dadurch, dass die Detektionsraten entlang des Pfades einer Hypothese
multipliziert werden (siehe auch Abschnitt 3.4.1). Durch die schnellere Konvergenz von Ada-
Boost können in den einzelnen Stufen bei gleicher Anzahl Merkmale schwieriger zu erfüllende
Vorgaben gemacht werden. D. h. bei gleicher Detektionsrate ist eine geringere Falschalarmrate

2Die Anzahl benötigter Boosting-Runden entspricht der Anzahl zum Einsatz kommender Merkmale. Bei weni-
ger Boosting-Runden benötigt der finale Klassifikator folglich weniger Merkmale für die Klassifikation einer
Hypothese.
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4. Hierarchische Klassifikation

erzielbar. Folglich werden weniger Stufen benötigt, bis keine Negativbeispiele mehr zu finden
sind.

4.2.1. Kategorisierung möglicher Erweiterungen

Hierarchische Erweiterungen der Kaskade lassen sich durch zwei Kriterien kategorisieren:

Baumaufbaukriterium: Die Struktur des Baums kann fest vorgegeben sein oder sich automa-
tisch durch das Training entwickeln, dann erfolgt die Einflussnahme auf den Baumaufbau
lediglich indirekt über die Wahl der Trainingsparameter.

Teilungskriterium: In den Knoten eines Klassifikationsbaums erfolgt eine Teilung des Eingabe-
raums. Diese Teilung kann anhand der möglichen Ansichten eines Objektes (bspw. ein
Kindknoten für Frontansichten von PKW, ein Kindknoten für Seitansichten usw.) oder
anhand der Merkmale erfolgen.

Es ergeben sich dadurch vier prinzipielle Möglichkeiten einer hierarchischen Erweiterung der
Kaskade (in Abb. 4.2 graphisch veranschaulicht). Im Folgenden werden diese erläutert.

Hierarchische 
Erweiterung der 

Kaskade

Vorgegebener 
Baumaufbau

Teilung anhand 
der Ansichten

Teilung anhand 
der Merkmale

Automatischer 
Baumaufbau

Teilung anhand 
der Ansichten

Teilung anhand 
der Merkmale

Baumaufbaukriterium Teilungskriterium

1

2

3

4

Abbildung 4.2.: Taxonomie möglicher hierarchischer Erweiterungen der Kaskade. Erweite-
rungen lassen sich anhand zweier Kriterien einordnen: 1. Baumaufbaukriteri-
um und 2. Teilungskriterium. Somit ergeben sich vier prinzipielle Möglichkei-
ten.

Vorgegebener Baumaufbau mit einer Teilung anhand der Ansichten

Ansätze dieser Art gehören zu den ersten Versuchen (u. a. [JV03]), die Nachteile der Kaskaden-
strukur durch eine hierarchische Erweiterung auszugleichen. Sie verbinden eine Schätzung der
vorliegenden Ansicht (engl. pose-estimation) mit ansichtsspezifischen Kaskaden oder Teilbäumen.
Die Struktur des Baums ist hierbei fest vorgegeben. Beispiele sind die von Jones und Viola in
[JV03] vorgeschlagene Struktur, die eine vorgelagerte Schätzung der Ansicht mit nachgelagerten
Kaskaden für die Detektion von Gesichtern nutzt, sowie der von Huang et al. entwickelte WFS-
Baum [HALL05],[HALL07], bei dem durch die vektorwertige AdaBoost-Variante VectorBoosting
Ansichtsschätzung und Trennung der Objekte von Hintergrund in einem Schritt erfolgen.
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4.2. Erweiterung der Kaskade auf einen hierarchischen Klassifikator

Auch die für diese Arbeit in vielen Punkten grundlegende Arbeit von Kallenbach [Kal05]
kann dieser Kategorie zugeordnet werden. Im Gegensatz zu den oben genannten Ansätzen
wird in [Kal05] allerdings auf die Schätzung der Ansicht verzichtet. Hypothesen werden somit
automatisch in alle nachfolgenden Teilbäume weitergereicht (siehe auch Abschnitt 4.2.2).

Vorgegebener Baumaufbau mit einer Teilung anhand der Merkmale

Als Alternative zur Teilung anhand der Ansichten kann der Eingaberaum (bei vorgegebenem
Baumaufbau) auch anhand der Merkmale geteilt werden. Damit erfolgt die Spezialisierung
der nachfolgenden Knoten nicht durch die Ansichten. Die nachfolgenden Knoten können sich
stattdessen auf einen Teilbereich des Merkmalsraums spezialisieren.

In der Arbeit von Wender [Wen03] werden Erweiterungen dieser Art untersucht. Von einer
Kaskade ausgehend, wird an bestimmten vorgegebenen Stellen während des Trainings eine
Teilung des Merkmalsraums vorgenommen. Diese wird so gewählt, dass die Entropie in den
entstehenden Teilmengen minimal ist.

Automatischer Baumaufbau mit einer Teilung anhand der Ansichten

Bei Ansätzen dieser Kategorie ist der Baumaufbau nicht vorgegeben, d. h. in welchen der
Knoten eine Auftrennung erfolgt ist nicht von vornherein klar. Wird in einem Knoten eine
Teilung vorgenommen, so wird diese anhand der Ansichten der Objekte durchgeführt. Beispiele
sind die von Fleuret und Geman vorgeschlagene Struktur [FG01] der hierarchischen Zerlegung
von Profilen für die Gesichtserkennung (Coarse-to-Fine Face Detection) sowie der von Kuo
und Nevatia vorgeschlagene Ansatz [KN09], der hierarchisches Clustering in Verbindung mit
nichtlinearer Dimensionsreduktion nutzt, um PKW-Ansichten zu kategorisieren.

Leider ließen sich die Ergebnisse von Kuo und Nevatia auf dem verwendeten Datensatz
(siehe Abschnitt 1.5) nicht nachvollziehen. Das von ihnen vorgestellte Verfahren zeigte zwar
eine Struktur in den Daten (siehe Abb. 4.3), diese war jedoch (anders als von den Autoren in
[KN09] beschrieben) stark von den Parametern der Dimensionsreduktion abhängig.

Automatischer Baumaufbau mit einer Teilung anhand der Merkmale

Bei Erweiterungen dieser Kategorie ist die Struktur des Baums ebenfalls nicht vorgegeben, ergibt
sich allerdings im Gegensatz zu den ansichtsbasierten Ansätzen indem der Merkmalsraum
geteilt wird. Somit ist es möglich, dass der Baumaufbau vorhandene Ansichten komplett
ignoriert. Daher lässt sich keine klare Zuordnung von Blättern zu Ansichten mehr vornehmen.

Der CART-Algorithmus [BFSO84] ist ein Beispiel für einen Ansatz dieser Kategorie. In
jedem Knoten wird, unabhängig von möglichen Ansichten, eines der Merkmale ausgewählt,
anhand dem der Merkmalsraum geteilt wird. Andere Beispiele sind der von Wu und Nevatia
entwickelte Cluster Boosted Tree (CBT) [WN07] und die von Yang et al. weiterentwickelte Variante
Voting Cluster Boosted Tree (VCBT) [YHN09].

4.2.2. Traversierungsstrategien möglicher Erweiterungen

In der Phase der Anwendung durchläuft eine Hypothese den Baum top-down, d. h. von
der Wurzel an. Hat ein Knoten (neben der immer vorhandenen Möglichkeit, die Hypothese
zurückzuweisen) nur einen Nachfolger ist keine Entscheidung nötig, an welche Knoten die
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(a) (b)

(c)

Abbildung 4.3.: Ansatz von Kuo und Nevatia [KN09] zur Kategorisierung von Fahrzeugan-
sichten. Der Ansatz zeigt eine den Fahrzeugansichten inhärente Struktur, ist
jedoch nicht sehr robust gegenüber Parameteränderungen. (a) Struktur bei
Anwendung auf den Datensatz aus [KN09]. (b), (c) Anwendung des Verfah-
rens auf den Datensatz dieser Arbeit. Der Unterschied in den Bildern kommt
durch eine leichte Variation eines der Eingabeparameter (Dimension der HOG-
Merkmale) zustande.

Hypothese weitergereicht wird. Existieren dagegen mehrere Nachfolger, so ergeben sich drei
mögliche Strategien, die Hypothese weiterzuverarbeiten.

Die erste mögliche Strategie ist der Verzicht auf eine Entscheidung. Eine in einem Knoten
akzeptierte Hypothese wird folglich immer an beide Nachfolger weitergereicht. Die Trainings-
beispiele der einzelnen Knoten werden je nach Aufgabenstellung des Klassifikationsproblems
gewählt. Ist eine Unterscheidung zwischen den einzelnen Objektkategorien – d. h. zwischen den
einzelnen Zweigen – wichtig, werden Positivbeispiele des einen Zweiges als Negativbeispiele
für den anderen Zweig verwendet. Somit wird – zusätzlich zur Trennung zwischen Hintergrund
und Objekt – eine Trennung zwischen den einzelnen Objektkategorien vorgenommen. In der
Arbeit von Kallenbach [Kal05] wurde auf diese Weise ein multiklassenfähiger Kaskadenklassifi-
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kator konstruiert. Ist eine Unterscheidung zwischen den einzelnen Zweigen nicht nötig, kann
allerdings auf diese zusätzlichen Negativbeispiele verzichtet werden [WN07].

Der Verzicht auf eine Entscheidung hat allerdings wesentliche Nachteile. Zum einen ist die
Geschwindigkeit eines so konstruierten Klassifikators wegen der höheren Anzahl Knoten, die
eine Hypothese durchlaufen muss, tendenziell geringer als bei den anderen Strategien. Im
schlimmsten Fall erreicht die Hypothese jedes vorhandene Blatt. Bei einem vollständigen Binär-
baum der Tiefe t entspricht dies 2t − 1 besuchten Knoten. Zum anderen gehen die Falschalarme
der einzelnen Zweige bei einem Weiterreichen der Hypothese in beide Nachfolger additiv in
die Falschalarme des gesamten Baums ein (siehe auch Abschnitt 4.3). Der Klassifikationsbaum
benötigt damit eine im Vergleich zu den anderen Strategien geringere Falschalarmrate in den
möglichen Pfaden von der Wurzel zu den Blättern, um insgesamt die gleiche Falschalarmrate
zu erreichen.

Keine 
Entscheidung

Exklusive 
Entscheidung

Kombinierte 
Strategie

Detektionen

Zurückweisung v. 
Hypothesen

Eingang

A, B, C

A, B, C

A, B, C
A, B, C A, B, C

A, B, C

A, B, CA, B, C

(a)

A, B, C

C

C
A B

A, B

BA

(b)

A, B, C

B, C

B, C
A B

A, B

BA

(c)

Abbildung 4.4.: Mögliche Entscheidungsstrategien in den Knoten. Es existieren verschiede-
ne Strategien, wie Hypothesen an Kindknoten weitergereicht werden können.
Dies wird hier anhand von drei Positivbeispielen A, B und C verdeutlicht.
Die immer vorhandene Möglichkeit des Zurückweisens einer Hypothese ist
rot dargestellt. (a) Weiterreichen an alle Nachfolger. (b) Treffen einer exklu-
siven Entscheidung. Eine Hypothese wird an genau einen der Nachfolger
weitergereicht. (c) Kombinierte Strategie. Lässt sich eine Hypothese klar ei-
nem der Nachfolger zuordnen, so wird eine exklusive Entscheidung getroffen,
andernfalls wird sie an beide Nachfolger weitergereicht.

Diese Nachteile werden durch das Treffen einer exklusiven Entscheidung, an welchen Kno-
ten eine Hypothese weitergereicht werden soll, vermieden. Eine Hypothese wird somit nur
an maximal einen der Nachfolger weitergereicht. Daher entspricht die maximale Anzahl zu
besuchender Knoten dem längsten vorkommenden Pfad von der Wurzel zu einem Blatt. Die
Falschalarme der einzelnen Pfade gehen nicht additiv in die gesamten Falschalarme ein.

Bei dieser Strategie ergeben sich allerdings Probleme, sobald in einem Knoten eine falsche
Entscheidung getroffen wird [ZZ09],[PSR10]. Diese kann nicht mehr korrigiert werden. Ist
eine Unterscheidung zwischen den einzelnen Objektkategorien bedeutsam, kann dieser Effekt
sehr unerwünscht sein [Kal05, S. 54 f.] und sich zudem negativ auf die Performance des Klas-
sifikators auswirken [HALL07]. Zusätzlich kann bei ungünstiger Wahl der Entscheidung die
Klassifikationsaufgabe (Trennung von Hintergrund und Objekt) in den beiden entstehenden
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Teilmengen schwieriger sein als ohne eine Entscheidung [Chr07, S. 30 f.]. Somit werden in den
einzelnen Teilbäumen mehr Merkmale nötig, was den potentiellen Geschwindigkeitsvorteil
gegenüber einer gemeinsamen Verarbeitung wieder egalisiert.

Die dritte mögliche Strategie ist eine Kombination aus den beiden oben genannten Strategien.
Es wird versucht, eine exklusive Entscheidung zu treffen. Ist eine Zuordnung der Hypothese
zu den Nachfolgern nicht eindeutig möglich, wird die Hypothese an beide Nachfolger wei-
tergereicht. Auf diese Weise kommen die Vorteile beider Strategien zum tragen. Nachteilig
wirkt sich allerdings auch bei dieser Strategie die potentiell größere Anzahl Knoten, die besucht
werden müssen, aus [HALL07].

Abb. 4.4 zeigt die drei möglichen Entscheidungsstrategien anhand von drei Positivbeispielen
A, B und C.

4.3. Training und Anwendung hierarchischer Erweiterungen

In diesem Abschnitt wird der generelle Trainingsablauf beim Training hierarchischer Erwei-
terungen erläutert. Diese Grundstruktur ist für alle vorgestellten Erweiterungen gleich. Im
Anschluss wird die Anwendung hierarchischer Erweiterungen diskutiert. Hierbei ist v. a. von
Bedeutung, wann eine Hypothese als Objekt und wann als Hintergrund gewertet wird. Ab-
hängig von der Entscheidungsstrategie ergeben sich Unterschiede, die in diesem Abschnitt
aufgezeigt werden.

Analog zum Training der Kaskade, bei der die einzelnen Stufen nur mit Beispielen trainiert
werden, die von allen vorherigen Stufen akzeptiert wurden (vgl. Abschnitt 3.4.1), dürfen die
Knoten eines Klassifikationsbaums nur mit solchen Beispielen trainiert werden, die sie auch
erreichen. D. h. es dürfen nur solche Beispiele verwendet werden, die von allen Knoten des
Pfades von der Wurzel bis zum zu trainierenden Knoten akzeptiert werden. Hierbei spielt die
Entscheidungsstrategie des Klassifikationsbaums (siehe Abschnitt 4.2.2) eine entscheidende
Rolle.

Ist die Struktur des Baums nicht vorgegeben, wird diese während des Trainings ermittelt.
Damit erfüllt das Training eine Doppelfunktion. Zum einen wird in den Knoten des Baums
die Unterscheidung zwischen Hintergrund und Objekten trainiert, zum anderen wird durch
das Training die Struktur des Baums festgelegt. Dies erfolgt von der Wurzel an. In jedem
Knoten wird ermittelt, ob weitere Nachfolger benötigt werden. Ist das der Fall (etwa weil noch
Negativbeispiele gefunden wurden), so werden neue Knoten als Kinder des aktuellen Knotens
zum finalen Klassifikationsbaum hinzugefügt. Die Anzahl der Nachfolger wird durch den
Algorithmus selbst bestimmt. Wird nur ein Nachfolger hinzugefügt, so wird keine Teilung
des Eingaberaums vorgenommen. Das Training einer Kaskade kann also als Spezialfall eines
Baumtrainings mit der Beschränkung auf maximal einen Nachfolger je Knoten gesehen werden.
Abb. 4.5 zeigt den Ablauf des Baumaufbaus graphisch.

Wie auch das Training einer Kaskade, kann das Training eines Klassifikationsbaums so
lange fortgesetzt werden, bis keine Negativbeispiele mehr zu finden sind. Alternativ kann eine
maximale Tiefe des Baums vorgegeben werden. Zusätzlich ist eine Begrenzung der Anzahl
Blätter möglich, z. B. um eine Überadaption zu vermeiden [WN07].

In der Phase der Anwendung werden Hypothesen gemäß seiner Entscheidungsstrategie
durch den Baum geleitet. Sobald ein Knoten eine Hypothese zurückweist, wird ihre Bearbei-
tung in diesem Knoten abgebrochen. Sind die Entscheidungen in den Knoten nicht-exklusiv,
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Boosting und Entscheidung über 
Trennung des Eingaberaums

Abbildung 4.5.: Trainingsablauf eines automatisch aufgebauten Klassifikationsbaums. Der
Klassifikationsbaum wird von der Wurzel an trainiert. In jedem Knoten wird
ein Boosting durchgeführt, mit dem die Trennung zwischen Hintergrund und
Objekt gelernt wird. Zusätzlich wird über die Auftrennung des Eingaberaums,
also die Anzahl der Nachfolger, entschieden.

bedeutet dies allerdings nicht die Zurückweisung der Hypothese. Eine Hypothese ist erst dann
zurückgewiesen, wenn sie in allen Knoten, an die sie weitergereicht wurde, zurückgewiesen
wird. Dementsprechend wird eine Hypothese als Objekt klassifiziert, sobald sie von mindestens
einem Blatt akzeptiert wird.
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KAPITEL 5

Decision-Boosted Cluster Boosted Tree zur Klassifikation

In diesem Kapitel wird der entwickelte Baumklassifikator (Decision-Boosted Cluster Boosted Tree)
vorgestellt. Zuerst wird ein Überblick gegeben (Abschnitt 5.1). In Anschluss daran wird das zum
Einsatz kommende Kriterium für die Auftrennung des Eingaberaums eingeführt (Abschnitt
5.2), das entwickelte Verfahren zum Finden von vorteilhaften Auftrennungen beschrieben
(Abschnitt 5.3) sowie das Lernen der gefundenen Auftrennung erläutert (Abschnitt 5.4). Den
Abschluss bildet eine Beschreibung von Training und Anwendung des Klassifikators (Abschnitt
5.5).

5.1. Überblick

Der in dieser Arbeit entwickelte Decision-Boosted Cluster Boosted Tree (DB-CBT) basiert auf An-
sätzen [WN07],[YHN09] der vierten Kategorie (automatischer Baumaufbau mit einer Teilung
anhand der Merkmale) der eingeführten Kategorisierung möglicher Erweiterungen (vgl. Ab-
schnitt 4.2). Ansätze dieser Kategorie weisen eine höhere Performance auf als die Vorschläge
anderer Kategorien [WN07],[YHN09],[PSR10]. Dies lässt sich damit erklären, dass Ansätze
dieser Kategorie die maßgebenden Faktoren (Merkmale und zu lösende Teilprobleme) sehr viel
stärker berücksichtigt als andere Ansätze dies tun [YHN09].

Der Aufbau des DB-CBT erfolgt top-down, d. h. das Wachstum des Baums erfolgt von der
Wurzel aus (siehe auch Abschnitt 4.3). Während des Trainings der Knoten des Baums wird
entschieden, ob eine Auftrennung des Eingaberaums erfolgen soll, oder ob eine gemeinsame
Weiterverarbeitung des gesamten Eingaberaums sinnvoller ist. In den ersteren Fällen hat der
neu zum finalen Klassifikator hinzugefügte Knoten zwei Nachfolger, andernfalls bleibt die
Kaskadenstruktur erhalten. Dadurch ist sichergestellt, dass eine Teilung des Eingaberaums nur
dann erfolgt, wenn sie nötig ist. Die Entscheidung, wann eine Auftrennung erfolgt, wird mit
einem in Abschnitt 5.2 vorgestellten Kriterium getroffen.

Die Auftrennung des Eingaberaums hat das Ziel, die Klassifikationsaufgabe in den da-
durch entstehenden Teilbereichen des Eingaberaums zu erleichtern. Diese Vorgabe ist nicht
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bei jeder der möglichen Auftrennungen erfüllt. Ist die Zerlegung ungünstig gewählt, so kann
das Klassifikationsproblem durch die Auftrennung schwieriger zu lösen sein als ohne sie
[Chr07, S. 30 f.]. Die Zerlegung ist also von entscheidender Bedeutung für die Performance des
resultierenden Klassifikationsbaums. Wu und Nevatia schlagen vor, die Zerlegung durch den
k-Means-Algorithmus auf den Merkmalsvektoren zu finden [WN07]. Die Einteilung in die
Teilmengen erfolgt somit durch die Ähnlichkeit der Merkmalsvektoren untereinander. Yang
et al. dagegen wählen die Auftrennung so, dass sie die Klassifikationsaufgabe vereinfacht
[YHN09].

In dieser Arbeit wird die Zerlegung, analog zu [YHN09], ebenfalls so gewählt, dass die
Klassifikationsaufgabe durch sie vereinfacht wird. Im Unterschied zu [YHN09] wird diese
allerdings nicht durch Würfeln und anschließendes Testen gefunden. Stattdessen wird die
Zerlegung durch Lösung eines Optimierungsproblems ermittelt. Hierfür wird in Abschnitt 5.3.1
ein Gütemaß definiert, das (orientiert an Annahmen von Yang et al. [YHN09]) die Eignung von
Zerlegungen angibt. Dieses Gütemaß wird genutzt, um eine vorteilhafte Zerlegung zu finden
(Abschnitt 5.3.2).

In den einzelnen Knoten muss eine Entscheidung über das weitere Vorgehen getroffen
werden, um eine hohe Geschwindigkeit in der Phase der Anwendung zu gewährleisten (vgl.
Abschnitt 4.2.2). Die Entscheidung muss die im Training gewonnene Zerlegung widerspiegeln,
d. h. die – bisher unbekannte – Hypothese muss an denjenigen Teilbaum weitergereicht werden,
der für sie trainiert wurde. Daher wird nach dem eigentlichen Training zur Lösung der Klassifi-
kationsaufgabe, d. h. der Trennung von Objekt und Hintergrund, ein weiteres Boosting, das
sog. Decision-Boosting (DB, siehe Abschnitt 5.4), durchgeführt. Mit diesem wird die Aufteilung
der Positivbeispiele gelernt. Die Merkmale sind hierbei die gleichen wie beim Lernen der Un-
terscheidung zwischen Objekt und Hintergrund. D. h. durch das DB werden abermals aus der
Menge aller Merkmale die aussagekräftigsten für die Trennung des Eingaberaums ausgewählt.
Mit diesen ist in der Phase der Anwendung das Treffen einer Entscheidung über den weiteren
Weg einer Hypothese möglich.

5.2. Kriterium für die Durchführung einer Trennung

Der Aufbau des DB-CBT erfolgt automatisch, daher muss automatisch bestimmbar sein, wann
eine Auftrennung des Eingaberaums erfolgen muss. Dies sollte nur geschehen, wenn eine
Auftrennung die Lösung der Klassifikationsaufgabe vereinfacht. Ist dies nicht der Fall, so kann
die Kaskadenstruktur beibehalten werden (Occam’s razor, vgl. Abschnitt 4.1). Daher wird ein
Kriterium benötigt, das zeigt, wie schwierig die Lösung des Klassifikationsproblems in einem
Knoten ist. Anhand diesem Kriterium kann über die Auftrennung des Eingaberaums entschie-
den werden: Ist das Klassifikationsproblem schwierig, so werden sehr viele Merkmale für die
Lösung benötigt (vgl. Abschnitt 4.2). Es ist in diesen Fällen also sinnvoll, eine Auftrennung
vorzunehmen [PSR10].

Wie bereits in Abschnitt 3.1.3 diskutiert, wird bei RealAdaBoost in jeder Runde der Weaklear-
ner mit dem kleinsten Z-Wert

Z = 2 ∑
i

√
W+

i W−i , Z ∈ [0, 1] (5.1)

ausgewählt. Der Z-Wert kann interpretiert werden als die Fähigkeit des Merkmals, zwischen
Hintergrund und Objekt zu trennen [WN07] und ist verbunden mit der Wahrscheinlichkeit
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einer Fehlklassifikation (vgl. Abschnitt 5.2.1). Im Verlauf des Boostings nimmt der Z-Wert der
gewählten Merkmale immer weiter zu (siehe Abb. 5.1). Der Beitrag, den neue Merkmale zum
Stronglearner leisten, wird also immer geringer. Dies lässt sich damit erklären, dass das Gewicht
der schwierigen Beispiele im Verlauf der Runden immer weiter steigt. Folglich ist nach einigen
Runden der Z-Wert ein Maß für die Schwierigkeit der Klassifikationsaufgabe. Diese bemisst
sich primär an den schwierigen Teilen der zu trennenden Mengen.
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Abbildung 5.1.: Verlauf der Z-Werte über die Boosting-Runden. (a) Verlauf der Z-Werte beim
Training einer Stufe. (b) Verlauf über mehrere Kaskadenstufen hinweg. Die
Einbrüche des Z-Werts sind auf den Beginn einer neuen Stufe zurückzuführen
(hier: nach jeweils 50 Runden).

Aus diesem Grund kann der Z-Wert eingesetzt werden, um zu erkennen, wann eine Trennung
des Eingaberaums sinnvoll ist [WN07]. Es werden n Schwellwerte τ1, . . . , τn für den Z-Wert
vorgegeben. Aus Gründen der Einfachheit werden diese gleich gewählt, d. h. τi = τj für i, j =
1, . . . , n. Ist der Z-Wert der n letzten Merkmale größer als τi, wird kein weiterer Weaklearner
zum finalen Stronglearner hinzugefügt. Das Boosting wird in diesem Fall abgebrochen. Im
Anschluss wird eine Teilung des Eingaberaums vorgenommen (siehe Abschnitt 5.3).

Im Folgenden werden weitere Eigenschaften des Z-Werts diskutiert, um die Wahl als Indika-
tor für die Schwierigkeit des Klassifikationsproblems weiter zu begründen (Abschnitt 5.2.1). Im
Anschluss daran wird die Strategie zur Vermeidung einer Überadaption vorgestellt (Abschnitt
5.2.2).

5.2.1. Eigenschaften des Z-Werts

Der Z-Wert eines Merkmals ist eng verbunden mit dem Bhattacharyya1-Koeffizient (BK)
[Bha43], einem Ähnlichkeitsmaß für Wahrscheinlichkeitsdichten [HAWL04].

Seien pa(x), pb(x) Wahrscheinlichkeitsdichten einer kontinuierlichen Zufallsvariablen x.
Dann ist der BK bhat(pa, pb) definiert als

bhat(pa, pb) =
∫ √

pa(x)pb(x)dx.

1A. Bhattacharyya war indischer Mathematiker und Statistiker.
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Für diskrete Variablen ist er durch

bhat(pa, pb) = ∑
i

√
pi

a pi
b (5.2)

berechenbar [Bha43]. Sowohl im kontinuierlichen als auch im diskreten Fall gilt bhat(., .) ∈ [0, 1]
[Kai67].

Der Zusammenhang zwischen dem Z-Wert (Gleichung (5.1)) und dem BK (Gleichung (5.2))
ist ersichtlich. Damit lässt sich der Auswahlschritt von RealAdaBoost folgendermaßen formu-
lieren: Wähle in jeder Runde den Weaklearner mit dem kleinsten BK (durch die Multiplikation
mit einem konstanten Faktor – in diesem Fall: 2 – wird die „Position“ des Minimums nicht ge-
ändert) [HAWL04]. Die für die Berechnung von bhat(., .) nötigen Dichtefunktionen sind hierbei
die bereits in Abschnitt 3.4.2 vorgestellten gewichteten a-posteriori Wahrscheinlichkeiten für
Hintergrund bzw. Objekt über den Merkmalswerten.

Der BK ist eng verbunden mit dem Risiko eines Klassifikationsfehlers. Ein ein hoher (=schlech-
ter) BK ist gleichbedeutend mit einem hohen Risiko einer Falschklassifikation [Kai67],[DSG90].
Abb. 5.2 zeigt den Zusammenhang an Beispielen von Wahrscheinlichkeitsdichten mit dem
zugehörigen BK.
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Abbildung 5.2.: Beispiele für Bhattacharyya-Koeffizienten. Der Bhattacharyya-Koeffizient
(BK) ist ein Maß für die Ähnlichkeit zweier Wahrscheinlichkeitsdichten [Bha43].
Je größer der BK, desto ähnlicher sind sich beide Dichten. (a)-(c) Beispiele für
Wahrscheinlichkeitsdichten und zugehörige BK. Klar zu sehen ist der Zu-
sammenhang zwischen BK, Ähnlichkeit der Dichte und dem Risiko einer
Falschklassifikation [Kai67],[DSG90].

Damit ist der Zusammenhang zwischen dem Z-Wert der gewählten Weaklearner und der
Schwierigkeit des Klassifikationsproblems klar: Je höher der Z-Wert, desto höher ist das Risiko
einer Falschklassifikation auf den gewichteten Beispielen des zugehörigen Weaklearners. In den
ersten Boosting-Runden ist der Z-Wert noch klein, da sowohl die leicht als auch die schwierig
zu trennenden Beispiele gleich gewichtet sind. Die Gewichte verschieben sich aber im Verlauf
des Boostings immer weiter zu den schwierigen Teilen (vgl. Abschnitt 3.1). Daher ist der Z-Wert
ein Maß für das Risiko einer Falschklassifikation auf den schwierigen Teilen. Folglich ist es
sinnvoll, die Schwierigkeit des Klassifikationsproblems an den Z-Werten zu bemessen. Die
Schwierigkeit eines Klassifikationsproblems bemisst sich nicht an den leichten sondern an den
schwierigen Teilen der zu trennenden Mengen.
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5.2.2. Verhinderung der Überadaption

Bäume zeigen eine Tendenz zur Überadaption (vgl. Abschnitt 4.1). Um dieses Problem zu
vermeiden, sind Trennungen nur bei einer ausreichend großen Menge an Positivbeispielen
in einem Knoten möglich. D. h. für das Training wird eine Schwelle η vorgegeben, anhand
derer entschieden wird, ob ein Abbruch des Boosting mit anschließendem Auftrennen des
Eingaberaums erlaubt ist. Ist die Anzahl der Positivbeispiele kleiner als η, wird das Boosting bis
zum Erreichen der Trainingsvorgaben fortgesetzt. Es findet kein vorzeitiger Abbruch statt. Der
resultierende Knoten hat nur einen Nachfolger. Folglich entsteht ab diesem Zeitpunkt durch
das weitere Training eine Kaskade unterhalb des Knotens. Die Anzahl der Positivbeispiele kann
im weiteren Verlauf nur abnehmen.

Dieses Vorgehen hat mehrere Vorteile: Durch die Vorgabe von η ist garantiert, dass ein gewis-
ser repräsentativer Anteil der insgesamt vorhandenen Positivbeispiele als atomar betrachtet
wird. Die Gefahr des Auswendiglernens der Trainingsbeispiele ist folglich gemindert; das
Problem der Überadaption wird vermieden. Hinsichtlich der Strategien zur Überadaptionsver-
meidung ist dieses Vorgehen dem Pre-Pruning zuzuordnen (vgl. 4.1).

Außerdem wird ein wiederholtes Abbrechen des Boosting durch sehr schwierig zu erken-
nende Objekte ab einer gewissen Stufe verhindert. Für schwierige Probleme wird das Boosting
stets nach wenigen Runden abgebrochen, weshalb in den einzelnen Knoten nur ein geringer
Teil des Hintergrunds zurückgewiesen wird. Effektiv wird in diesen Fällen die Lösung des
Klassifikationsproblems immer weiter auf die nachfolgenden Knoten verlagert. Durch die
Vorgabe von η wird verhindert, dass dies zu oft geschieht. Stattdessen wird in diesen Fällen das
Problem zuerst zerlegt und anschließend – nach dem Unterschreiten von η – gelöst.

5.3. Zerlegung des Eingaberaums durch Optimierung bzgl. der
Klassifikationsaufgabe

Die Zerlegungen des Eingaberaums werden so gewählt, dass sie die Klassifikationsaufgabe
vereinfachen. Auf diese Weise wird die Anzahl der nötigen Merkmale bis zur endgültigen
Klassifikation einer Hypothese möglichst gering gehalten. Ist die Trennung von Hintergrund
und Objekt in den entstehenden Teilmengen einfach, so ist durch die schnellere Konvergenz
des Boostings die Anzahl der Weaklearner geringer (vgl. Abschnitt 4.2).

Für diesen Zweck wird ein Gütekriterium definiert (Abschnitt 5.3.1), das die Eignung einer
Zerlegung angibt. Anhand diesem wird mittels Simulated Annealing [DHS00, S. 354 ff.] eine
Zerlegung gesucht, die die Klassifikationsaufgabe in den nachfolgenden Knoten vereinfacht
(Abschnitt 5.3.2).

5.3.1. Gütekriterium für eine Zerlegung

Um die Zerlegung so zu wählen, dass die Klassifikationsaufgabe in den beiden entstehenden
Teilmengen möglichst einfach wird, ist ein Gütekriterium für Zerlegungen nötig. Anhand
diesem kann eine Optimierung der Zerlegung durchgeführt werden.

Für potentielle Gütekriterien müssen folgende Anforderungen erfüllt sein:
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1. Sie müssen möglichst aussagekräftig sein, d. h. bei einer hohen Zerlegungsgüte muss
die Trennung von Objekt und Hintergrund in den entstehenden Teilmengen tatsächlich
einfacher sein als bei einer Zerlegung mit geringerer Güte.

2. Sie müssen sich effizient berechnen lassen, um eine Optimierung (siehe Abschnitt 5.3.2)
zu ermöglichen.

Sei z eine beliebige Zerlegung. Sie zerlegt die Menge der Positivbeispiele P in zwei Teile Pz
A

und Pz
B, wobei P = Pz

A ∪ Pz
B und Pz

A ∩ Pz
B = ∅. Sei weiter N die Menge der Negativbeispiele

und sep(A, B) ∈ [0, 1] eine (beliebige) Separierbarkeitsfunktion. Diese gibt an, wie gut sich die
Mengen A und B trennen lassen. Per definitionem sei die Trennbarkeit zweier Mengen umso
besser, je größer sep(., .) ist. Dann ist bei geeigneter Wahl von sep(., .) eine Gütefunktion e(.),
die die obigen Bedingungen erfüllt, gegeben durch

e(z) = − sep(Pz
A, N)− sep(Pz

B, N) + λ(z), e(z) ∈
[
−2,

1
4

]
mit

λ(z) =
(

max
{ |Pz

A|
|P| ,

|Pz
B|
|P|

}
− 1

2

)2

, λ(z) ∈
[

0,
1
4

]
.

λ(z) ist hierbei ein Regularisierungsterm, der unbalancierte Zerlegungen bestraft. Ohne
Beschränkung der Allgemeinheit ist also die Güte einer Zerlegung z umso größer, je kleiner
e(z) ist.

e(.) bezieht durch sep(., .) die potentielle Vereinfachung der Klassifikationsaufgabe bei ge-
trennter Weiterverarbeitung in die Güte einer Zerlegung mit ein. Daher werden die beiden
Teilmengen Pz

A und Pz
B getrennt betrachtet. Für beide Teilmengen wird bewertet, wie gut sie

sich von den Negativbeispielen trennen lassen. Da die Negativbeispiele der beiden entstehen-
den Knoten nicht bekannt sind, wird hierbei auf die Negativbeispiele des aktuellen Knotens
zurückgegriffen. Diese Vereinfachung geht zurück auf [YHN09].

Durch Hinzunahme des Regularisierungsterms λ(z) werden Zerlegungen in gleich große
Teilmengen favorisiert. Dadurch wird zum Einen die Gefahr der Überadaption vermindert, da
bei unbalancierten Zerlegungen stärker die Tendenz besteht, die kleinere der beiden Teilmengen
auswendig zu lernen [Tu05]. Zum Anderen wirken sich unbalancierte Zerlegungen negativ
auf die Performance des Gesamtklassifikators aus [Wu08, S. 39 ff.]. Es ist daher sinnvoll, die
Balance einer Zerlegung in die Bewertung ihrer Güte miteinzubeziehen.

Die Wahl der Separierbarkeitsfunktion ist der entscheidende Faktor für die Gütefunktion. Sie
muss die Trennbarkeit durch das Boosting widerspiegeln. Die Trennfähigkeit von AdaBoost
hängt von der Trennfähigkeit der zur Verfügung stehenden Weaklearner ab (vgl. Abschnitt
3.1.2). Folglich muss sep(A, B) genau dann groß sein, wenn die verfügbaren Weaklearner gut
zwischen A und B trennen können.

Wie in Abschnitt 5.2.1 dargelegt, ist der eng mit AdaBoost zusammenhängende Bhatta-
charyya-Koeffizient (BK) ein Maß für die Trennfähigkeit eines Weaklearners. Daher lässt er sich
nutzen, um eine Separierbarkeitsfunktion zu definieren: Je geringer der BK der Weaklearner
bei der Trennung der Mengen A und B, desto leichter sind diese durch AdaBoost insgesamt zu
trennen. Da nicht bekannt ist, welche der verfügbaren Weaklearner beim Training der neuen
Knoten ausgewählt werden (das Boosting geschieht erst nach der Wahl der Zerlegung), wird
die Menge der möglichen Weaklearner hierbei auf die bereits ausgewählten eingeschränkt. D. h.
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die Zerlegung wird so gewählt, dass die im vorherigen Boosting gewählten Weaklearner eine
hohe Trennfähigkeit besitzen.

Seien f1, . . . , fN die bereits gewählten Weaklearner. Die Separierbarkeitsfunktion sep(., .) ist
dann2

sep(A, B) = 1− bhat(A, B)

= 1− 1
N

N

∑
k=1

bhat
fk

(A, B)

= 1− 1
N

N

∑
k=1

∫ √
pk

A(x)pk
B(x)dx,

also der durchschnittliche BK der Weaklearner f1, . . . , fN bei der Trennung der beiden Mengen
A und B.

Um sep(., .) möglichst effizient zu berechnen, werden äquidistante Histogramme zur Appro-
ximation der Integrale eingesetzt. Damit lässt sich bhat(., .) schreiben als

bhat(A, B) ≈∑
i

√
AiBi,

wobei Ai bzw. Bi der Anteil von A bzw. B ist, deren Merkmalswert des Merkmals f in den i-ten
Bin des Histogramms fällt [CRM00].

Das auf diese Weise konstruierte e(.) erfüllt somit die oben genannten Anforderungen an
eine Gütefunktion. Durch die Verwendung des BK der bereits gewählten Weaklearner wird
die Zerlegung dahingehend optimiert, dass beide Teilmengen gut von den Negativbeispielen
trennbar sind. Die Verwendung von bhat(., .) hat zudem den Vorteil, dass damit sep(., .) bei
gleicher Aussagekraft effizienter berechenbar ist als bei Verwendung anderer möglicher Maße
(bspw. der Kullback-Leibler-Divergenz) [Kai67].

5.3.2. Optimierung mittels Simulated Annealing

Die im vorherigen Abschnitt definierte Gütefunktion e(.) ermöglicht es, eine Zerlegung so zu
wählen, dass sie die Klassifikationsaufgabe in den entstehenden Teilmengen möglichst einfach
macht. Da die Wahl einer Zerlegung für ein beliebiges Gütemaß NP-schwer ist [YHN09], fällt
auch die Minimierung von e(.) in die Kategorie der NP-schweren Probleme. Es ist folglich nur
mit heuristischen Verfahren möglich, in akzeptabler Zeit eine Zerlegung zu finden die bzgl. e(.)
optimal ist.

Als heuristisches Optimierungsverfahren kommt in dieser Arbeit Simulated Annealing (SA)
zum Einsatz. Für eine Einführung in SA sei auf [DHS00, S. 354 ff.] verwiesen.

Für SA ist neben der Zielfunktion die Definition des Vorgehens bei der Durchführung des
zufälligen Schrittes von einem Zustand in den anderen nötig. In dieser Arbeit wird hierfür wie
folgt vorgegangen. Es seien PA und PB die beiden Teilmengen der Positivbeispiele P in einem
beliebigen Zustand während des Verfahrens:

1. Generiere einen zufälligen boolschen Wert r ∈ {−1, 1}.

2Aus Gründen der Lesbarkeit wird hier bhat(A, B) von zwei Mengen A, B angegeben. Diese verkürzte Schreibweise
meint den BK zwischen den zu A bzw. B gehörenden a-posteriori Dichten über dem Merkmalswert.

67



5. Decision-Boosted Cluster Boosted Tree zur Klassifikation

2. Ist r = 1, dann vertausche zwei zufällig gewählte Beispiele der Mengen PA und PB.

3. Ist dagegen r = −1, dann verschiebe ein zufälliges Beispiel von einer Menge in die
andere. Generiere hierfür einen zufälligen rellen Wert v ∈ [0, 1], um die Richtung des
Verschiebens – von PA nach PB oder umgekehrt – festzulegen. Ist v ≤ |PA|

|P| , dann verschiebe
von PA nach PB, andernfalls von PB nach PA.

Dieses Vorgehen hat den Vorteil, dass zufällige Schritte immer zu einer Zerlegung mit
gleich großen Teilmengen tendieren. Die Wahrscheinlichkeit eines Verschiebens von einer
großen Menge in die kleinere ist größer als die Wahrscheinlichkeit für das Verschieben in die
umgekehrte Richtung. Da die Zielfunktion e(.) balancierte Zerlegungen besser bewertet, wird
der zufällige Schritt also tendenziell in Richtung eines kleineren Werts von e(.) ausgeführt.

Die weiteren Parameter von SA (Minimal- und Maximaltemperatur, Kühlfaktor usw.) werden
experimentell oder durch Erfahrung bestimmt. Der Startzustand des Verfahrens ist eine zufällige
Zerlegung in zwei gleich große Hälften.

5.4. Lernen der Zerlegung mittels Decision-Boosting

Aus Geschwindigkeits- und Performance-Gründen ist das Treffen einer Entscheidung über den
weiteren Weg einer Hypothese sinnvoll (vgl. Abschnitt 4.2.2). Daher wird nach dem Finden
einer Zerlegung ein erneutes Boosting (Decision-Boosting, kurz: DB) durchgeführt. Es hat das
Ziel, die gefundene Zerlegung zu lernen. In einem Knoten mit zwei Nachfolgern befinden sich
folglich zwei Klassifikatoren. Der durch das erste Boosting konstruierte Klassifikator dient dazu,
Hintergrund zurückzuweisen. Der zweite trifft die Entscheidung, an welchen der Nachfolger
eine Hypothese weitergereicht wird, sofern der erste Klassifikator sie nicht zurückweist. Die
Entscheidungen, die getroffen werden, sind hierbei exklusiv (vgl. Abschnitt 4.2.2), um eine
möglichst hohe Geschwindigkeit zu gewährleisten. Die potentiell mögliche Erweiterung des
DB-CBT auf eine kombinierte Entscheidungsstrategie ist nicht Teil dieser Arbeit und kann in
weiterführenden Arbeiten untersucht werden.

Seien PA und PB die Teilmengen der Positivbeispiele P unter der gefundenen Zerlegung.
Ohne Beschränkung der Allgemeinheit ist PA die Menge der Positivbeispiele, PB die Menge der
Negativbeispiele für das DB. Die Begriffe Detektions- und Falschalarmrate sind dementspre-
chend zu verstehen.

Es stehen alle Merkmale als Weaklearner für das DB zur Verfügung. Somit wird durch das
DB (in der Phase der Anwendung) die Entscheidung über den weiteren Weg einer Hypothese
nur aufgrund von Merkmalswerten getroffen. Daher sind für den DB-CBT keine anderen
atomaren Operationen als für die klassische Viola-Jones-Kaskade nötig. Diese Tatsache ist
v. a. im Hinblick auf eine mögliche Implementierung in Hardware von Vorteil: Die ohnehin
vorhandenen Bausteine für die hocheffiziente Auswertung von Merkmalen können auch für
das Treffen von Entscheidungen herangezogen werden.

Die Vorgaben, die für das DB gemacht werden, weichen von den Vorgaben des normalen
Boostings ab. Statt zu erreichende Detektions- und Falschalarmraten vorzugeben, wird für das
DB die benötigte Korrektheit der Entscheidung festgelegt. Die Korrektheit ist der Anteil der
Positivbeispiele, die gemäß der ermittelten Zerlegung an die korrekten Teilbäume weitergereicht
werden. Bei repräsentativer Auswahl der Positivbeispiele entspricht die erreichte Korrektheit
der Wahrscheinlichkeit einer korrekten Entscheidung in der Phase der Anwendung.
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5.5. Training und Anwendung des Decision-Boosted Cluster Boosted Tree

Seien c ∈ [0, 1] die geforderte Korrektheit, D die Detektionsrate sowie F die Falschalarmrate
des mittels DB konstruierten Klassifikators. Dann ist die Korrektheit c erreicht, wenn (evtl.
durch Wahl eines geeigneten Schwellwerts θ, siehe Abschnitt 3.4.1)

D ≥ c

und
F ≤ 1− c

erfüllt sind.
Analog zum normalen Boosting werden auch beim DB so lange Merkmale zum Stronglearner

hinzugefügt, bis diese Gleichungen erfüllt sind. Es werden allerdings keine Schwellwerte für
den Z-Wert vorgegeben, d. h. das DB wird nicht vorzeitig abgebrochen. Um die Anzahl der
Merkmale zu begrenzen, wird eine maximale Anzahl von Runden vorgegeben.

5.5. Training und Anwendung des Decision-Boosted Cluster Boosted
Tree

Das Training des DB-CBT folgt dem in Abschnitt 4.3 vorgestellten Schema, d. h. das Training
erfolgt ab der Wurzel. Für jeden neu hinzugefügten Knoten werden sowohl Positiv- als auch
Negativbeispiele gesammelt. Mit diesen wird im Anschluss ein Boosting durchgeführt.

Im Unterschied zum Training einer Kaskade (vgl. 3.4.1) wird das Boosting nicht in jedem Fall
bis zum Erreichen der Vorgaben bzw. der maximalen Anzahl Weaklearner fortgesetzt: Es wird
vorzeitig angebrochen, sobald das Klassifikationsproblem als zu schwierig erkannt wird und
eine Überadaption unwahrscheinlich ist, d. h. sobald die vorgegebenen Schwellwerte τi, . . . , τn

für den Z-Wert verletzt und noch ausreichend (≥ η) Positivbeispiele vorhanden sind. Wird das
Boosting vorzeitig abgebrochen, hat der trainierte Knoten zwei Nachfolger. Andernfalls wird
die Kaskadenstruktur beibehalten.

Wird das Boosting vorzeitig abgebrochen, erfolgt eine Trennung des Eingaberaums, um das
Klassifikationsproblem zu vereinfachen. Zu diesem Zweck wird die Menge der Positivbeispiele
in zwei Teile zerlegt (Abschnitt 5.3). Die gefundene Zerlegung wird mittels DB (Abschnitt 5.4)
gelernt.

Algorithmus 5.1 stellt das Training des DB-CBT in Pseudocode dar.
Durch diesen Trainingsaufbau und die Wahl der Parameter lassen sich drei Phasen während

des Trainings unterscheiden:

1. Zu Beginn ist das Klassifikationsproblem in den Knoten leicht zu lösen; die Negativbei-
spiele sind durch wenige Weaklearner von den Positivbeispielen trennbar. Daher wird
die Kaskadenstruktur beibehalten.

2. Je mehr Stufen im Stile der Kaskade trainiert wurden, desto schwieriger wird das Klas-
sifikationsproblem (vgl. Abschnitt 3.4.1). Daher wird ab einer bestimmten Stufe eine
Trennung des Eingaberaums vorgenommen. Diese vereinfacht das Klassifikationspro-
blem. Der Eingaberaum wird so lange geteilt, bis das Klassifikationsproblem sehr einfach
ist oder bis nicht mehr genügend Positivbeispiele vorhanden sind.
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5. Decision-Boosted Cluster Boosted Tree zur Klassifikation

Algorithmus 5.1 Training des DB-CBT

Initialisiere: Menge der zu trainierenden Knoten Q ← {q0} (q0 = Wurzel des Baums)

while Q 6= ∅ do
•Wähle den zu trainierenden Knoten q ∈ Q.
• Sammle P ∪ N = Positiv- und Negativbeispiele für den Knoten q.

if N 6= ∅ und P 6= ∅ then

// Deaktiviere Trennung wenn zu wenige Positivbeispiele vorhanden.

if |P| < η then

• Führe normalen RealAdaBoost auf den Beispielen aus, bis die Vorgaben
erfüllt sind.
• Füge einen neuen Knoten qneu als Nachfolger von q hinzu.
• Q ← Q∪ qneu

else

• Führe normalen RealAdaBoost auf den Beispielen aus, bis die Vorgaben
erfüllt sind. Brich vorzeitig ab, wenn die Schwellwerte τ1, . . . , τn überschritten
werden.

if Boosting wurde vorzeitig abgebrochen then

• Finde mittels Simulated Annealing eine Zerlegung z von P, für die e(z)
minimal ist.
• Lerne die Zerlegung z mittels Decision-Boosting.

// Füge zwei neue Knoten qA,B
neu als Nachfolger von q hinzu.

• Q ← Q∪ qA
neu ∪ qB

neu

else

// Füge einen neuen Knoten qneu als Nachfolger von q hinzu.

• Q ← Q∪ qneu

end
end

end

// Entferne Knoten q aus Q
• Q ← Q \ q

end
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5.5. Training und Anwendung des Decision-Boosted Cluster Boosted Tree

3. Sobald weniger als η Positivbeispiele vorhanden sind, entstehen wieder Kaskaden. Da der
Eingaberaum in Phase 2 getrennt wurde, sind diese für Teilbereiche des Eingaberaums
zuständig.

Es werden nicht zwangsläufig alle Phasen durchlaufen. Ist das Klassifikationsproblem sehr
schwierig zu lösen, entfällt Phase 1. In diesem Fall wird bereits nach dem ersten Knoten
eine Teilung des Eingaberaums vorgenommen. Ist das Klassifikationsproblem dagegen sehr
einfach zu lösen, so werden die Phasen 2 und 3 nicht durchlaufen – der finale Baum hat eine
Kaskadenstruktur. Abb. 5.3 zeigt einen Beispielbaum. Es ist zu sehen, wie die drei Phasen des
Trainings die Baumstruktur widerspiegeln.

Phase 1

Phase 3

Phase 2

Entscheidung 

Klassifikation 

Akzeptierte Hypothesen 

Verworfene Hypothesen

Abbildung 5.3.: Struktur eines DB-CBT. Das Training läuft in drei Phasen ab. Diese spiegeln
sich in der Struktur des entstehenden Baums wider. In Phase 1 ist das Klassi-
fikationsproblem einfach lösbar: Die Kaskadenstruktur wird beibehalten. In
Phase 2 wird das Klassifikationsproblem durch Teilen vereinfacht. Phase 3
beginnt, sobald die Anzahl Positivbeispiele kleiner als η ist.

In der Phase der Anwendung wird der Baum durchlaufen. In jedem Knoten wird zuerst
entschieden, ob eine Hypothese Hintergrund zeigt. Ist das der Fall, wird sie verworfen. An-
dernfalls wird sie gemäß der Entscheidung, der durch DB gefundenen Klassifikatoren, an einen
Nachfolger weitergereicht (siehe Abb. 5.3, vergrößerter Knoten). Da Entscheidungen exklusiv
sind, wird die Bearbeitung einer Hypothese abgebrochen, sobald sie in einem Knoten zurückge-
wiesen wird. Eine Hypothese ist akzeptiert, sobald sie in einem Blatt akzeptiert wurde. Durch
Exklusivität der Entscheidungen wird jede Hypothese nur von genau einem Blatt akzeptiert
(vgl. Abschnitt 4.2.2).

Die Anwendung des DB-CBT wird in Algorithmus 5.2 verdeutlicht.
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5. Decision-Boosted Cluster Boosted Tree zur Klassifikation

Algorithmus 5.2 Anwendung des DB-CBT

Eingabe :Hypothese h ∈ X
Ausgabe :Klasse c ∈ C der Hypothese h
Initialisiere: q←Wurzel des DB-CBT
while q 6= ∅ do

if Klassifikator in q weist h zurück then
// Hypothese wird als Hintergrund klassifiziert

return −1
end
if q hat nur einen Nachfolger then

q← Nachfolger von q

else if q hat zwei Nachfolger then
x← Ausgabe des zweiten Klassifikators in q
if x = 1 then

q← erster Nachfolger von q
else

q← zweiter Nachfolger von q
end

else
// Kein Nachfolger mehr vorhanden. Beende Baumdurchlauf

q← ∅
end

end
// Hypothese wird als Objekt klassifiziert

return 1
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KAPITEL 6

Experimentelle Ergebnisse

To measure is to know.

(Sir William Thompson)

Dieses Kapitel beschreibt die durchgeführten Experimente sowie ihre Ergebnisse. Zuerst wird
der Aufbau der Experimente erläutert (Abschnitt 6.1). Im Anschluss werden die eingesetzten
Metriken und Kenngrößen für die Evaluierung von Klassifikatoren beschrieben (Abschnitt 6.2)
sowie die eigentlichen Ergebnisse vorgestellt (Abschnitt 6.3). Das Kapitel endet mit Eindrücken
des realisierten Systems in der Phase der Anwendung (Abschnitt 6.4).

6.1. Experimentaufbau

6.1.1. Trainingsparameter und Datensätze

Um die trainierten Klassifikatoren zu evaluieren, wurde ein Teil der verfügbaren Sequenzen
nicht für das Training verwendet. Die ausgelassenen Sequenzen bilden einen unabhängigen
Testdatensatz. Alle Auswertungen werden auf diesem durchgeführt.

Bei der Auswahl der Testsequenzen wurde darauf geachtet, dass sie einen repräsentativen
Ausschnitt der gesamten Daten darstellen. D. h. der Testdatensatz umfasst Sequenzen aller
Tageszeiten und Situationen (Stadt, Landstraße, Autobahn usw.). Insgesamt enthält der Test-
datensatz 9 der 246 Sequenzen. Die restlichen 237 Sequenzen bilden den Trainingsdatensatz.
Tabelle 6.1 zeigt eine Übersicht über den Trainings- und den Testdatensatz.

Das Training wird mit den Parametern von Tabelle 6.2 durchgeführt. Die Wahl von τi (4× 0.97)
orientiert sich an Angaben von [YHN09]. Die minimale Anzahl an Positivbeispielen η wird vari-
iert, um den Einfluss auf die Performance des resultierenden Klassifikationsbaums festzustellen
(siehe Abschnitt 6.1.4). Experimente zeigen, dass eine Variation von τi keinen großen Einfluss
auf die Struktur des Baums hat. Daher wird der Einfluss auf die Performance der resultierenden
Klassifikatoren nicht weiter untersucht. Die beobachtete Robustheit der Struktur des DB-CBT
gegenüber Änderungen von τi deckt sich mit den Untersuchungen von [WN07].
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6. Experimentelle Ergebnisse

Trainingsdatensatz Testdatensatz

Sequenzen 237 9
Bilder 32 875 1 525
PKW (ohne Rückfronten) 33 394 1 606
PKW-Rückfronten 36 077 1 968
LKW (ohne Rückfronten) 2 346 25
LKW-Rückfronten 3 884 410

Tabelle 6.1.: Trainings- und Testdatensatz. Bei der Auswahl der Testsequenzen wurde darauf
geachtet, dass sie einen repräsentativen Ausschnitt der Daten darstellen.

Aus Zeitgründen wird die Anzahl an Positiv- und Negativbeispielen für das Training der
einzelnen Knoten auf jeweils maximal 30 000 beschränkt. Das Training eines Teilbaums wird
abgebrochen, sobald weniger als 15 Negativbeispiele für einen neuen Knoten gefunden wurden;
es war insgesamt beendet, sobald keine zu trainierenden Knoten mehr vorhanden sind (vgl.
Algorithmus 5.1).

Parameter Wert

Maximale Baumtiefe bzw. Anzahl Stufen 40
Vorgaben für das Boosting

Weaklearner je Tiefe/Stufe 3, 5, 12, 14, 20, 24, 32, 42, 55, 5× 64, 84, 92, 3×
128, 3× 156, 3× 182, 256, . . .

Detektionsrate 0.98, 0.99, 3× 0.995, 0.999, . . .
Falschalarmrate 5× 0.1, 2× 0.5, 2× 0.4, 0.1, . . .
Schwellen für den Z-Wert τi 4× 0.97
(Maximale) Anzahl Positivbeispiele 30 000
(Maximale) Anzahl Negativbeispiele 30 000

Hypothesen je Bild 131 117
Merkmale 40 292

davon Haarwavelets 29 042
davon EOHs 11 250

Tabelle 6.2.: Die wichtigsten Trainingsparameter. Bei Angaben mit „. . . “ wird der vorher an-
gegebene Wert wiederholt; Die Schreibweise k× u meint die k-fache Wiederholung
des Werts u. Die Parameter zur Generierung der Hypothesen finden sich in Tabelle
6.3.

6.1.2. Grundstruktur der Klassifikatoren

Für das Gesamtsystem sind insgesamt vier parallel arbeitende Klassifikatoren nötig: jeweils
einer für PKW (gesamt), PKW-Rückfront, LKW (gesamt) und LKW-Rückfront (vgl. Abschnitt
1.4). Äquivalent zur parallelen Verarbeitung in Einzelklassifikatoren kann ein (einzelner) nicht-
exklusiver Multiklassenklassifikator verwendet werden [HALL07]. Nicht-exklusiv bedeutet,
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6.1. Experimentaufbau

dass eine Hypothese mehreren Klassen zugeordnet werden kann. Eine Hypothese wird als
Hintergrund klassifiziert, sobald sie keiner der anderen Klassen zufällt.

Diese Äquivalenz wird genutzt, um die Geschwindigkeit des Gesamtsystems zu erhöhen.
Die ersten Knoten, also diejenigen, die einen Großteil der Hypothesen verarbeiten, werden
für alle benötigten Klassifikatoren gemeinsam durchlaufen. Die Merkmale in diesen Knoten
müssen somit nur einmal ausgewertet werden und werden für alle Klassen geteilt [TMF07].
Mit dieser Strategie konnte in [Kal05] ein Geschwindigkeitsgewinn von bis zu 23.5 % erzielt
werden [Kal05, S. 56].

Um diesen Vorteil zu nutzen, haben alle in dieser Arbeit evaluierten Klassifikatoren die
gleiche Grundstruktur: Die ersten vier Knoten werden für alle Einzelklassifikatoren gemeinsam
durchlaufen. Nach dem vierten Knoten werden Hypothesen in zwei Schritten auf die vier
Einzelklassifikatoren verteilt (Abb. 6.1). Hierbei wird auf eine Entscheidung verzichtet, d. h.
Hypothesen werden an beide Nachfolger weitergereicht (vgl. Abschnitt 4.2.2).

Durch diesen Aufbau wird ein Großteil der Hypothesen (ca. 87 %, siehe Abschnitt 6.3.2) mit
gemeinsamen Merkmalen in den ersten vier Knoten zurückgewiesen. Die Knoten der Tiefe 6
(schwarz in Abb. 6.1) bilden die Wurzel der untersuchten Klassifikatoren (siehe Abschnitt 6.1.4).
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Abbildung 6.1.: Grundstruktur der evaluierten Klassifikatoren. In den ersten Knoten werden
alle Hypothesen aller nötigen Einzelklassifikatoren gemeinsam verarbeitet
(weiße Knoten). Die Merkmale dieser Knoten werden geteilt. In zwei Schritten
(graue Knoten) werden die Hypothesen auf die vier Einzelklassifikatoren
verteilt. Hierbei werden Hypothesen an beide Nachfolger weitergereicht. In
den schwarzen Knoten beginnen die Einzelklassifikatoren.

Die Positivbeispiele für das Boosting der Knoten, die für mehrere Klassen zuständig sind
(d. h. die Knoten der Tiefen 1–5) wurden gleichmäßig aus den Daten der verschiedenen Klassen
gewählt. Bspw. kamen für das Training der Wurzel (Tiefe 1) jeweils maximal 7 500 Positivbei-
spiele für die Klassen „PKW“, „PKW-Rückfront“, „LKW“ und „LKW-Rückfront“ zum Einsatz
(4× 7 500 = 30 000).
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6. Experimentelle Ergebnisse

Die in den ersten Stufen gewählten Merkmale spiegeln „gemeinsame“ Eigenschaften aller
Klassen wider. Abb. 6.2 zeigt die drei Merkmale des ersten Knotens.

(a) (b) (c)

Abbildung 6.2.: Merkmale des ersten Knotens. Im ersten Knoten werden Hypothesen ge-
meinsam für PKW und LKW verarbeitet. Daher sind die gewählten Merkmale
charakteristisch für beide Fahrzeugtypen. (a) Untere Kante (Haarwavelet). (b)
Vorwiegend vertikale Kanten (EOH). (c) Markante Ecke (Haarwavelet).

6.1.3. Gewählte Fenster

Um im gemeinsamen Bereich der Klassifikatoren (d. h. in den ersten vier Knoten) sowohl
PKW als auch LKW zu detektieren, müssen die Norm- und Objektfenster so gewählt werden,
dass gemeinsame Merkmale möglich sind. Problematisch ist, dass LKW höher als breit sind,
wohingegen PKW eine tendenziell quadratische Grundform (von hinten gesehen) besitzen.
Diese beiden Seitenverhältnisse müssen kombiniert werden.

Daher ist das Normfenster für alle untersuchten Klassifikatoren auf 13 mal 22 Pixel festgelegt.
Die Objektfenster von PKW und LKW unterscheiden sich. Um der Höhe von LKW Rechnung zu
tragen, wird ihr Objektfenster im Verhältnis 2 : 1 zentral im Normfenster platziert (Abb. 6.3(b)).
Das Objektfenster für PKW ist quadratisch gewählt (Abb. 6.3(a)). Die Position der Objektfenster
wird so festgelegt, dass möglichst viele gemeinsame Kanten vorhanden sind. Abb. 6.3 zeigt
das verwendete Normfenster und die Objektfenster für PKW bzw. LKW. Die Objektfenster der
Rückfronten wurden entsprechend den Objektfenstern des zugehörigen Fahrzeugtyps gewählt.

Die gesuchten Objekte haben Einfluss auf die Hypothesengenerierung. Insbesondere die ma-
ximale und minimale Objekthöhe sind relevant (vgl. Abschnitt 3.5). Die Angabe der Objekthöhe
muss sich am höheren der beiden Objektfenster bemessen, da das kleinere dann notwendiger-
weise innerhalb des Suchtunnels liegt. Daher ist die Vorgabe der Höhe von LKW nötig. Diese
wurde auf minimal 2.5, maximal 5 Meter festgelegt. Damit ist die Höhe von PKW minimal
1.25, maximal 2.5 Meter (das Objektfenster von PKW ist halb so hoch wie das Objektfenster
von LKW). Tabelle 6.3 gibt eine Übersicht über die Parameter der Hypothesengenerierung. Die
gewählte minimale Hypothesengröße ergibt eine maximale Detektionsreichweite von ca. 100
Metern, berechnet bei einer erwarteten Fahrzeugbreite von 1.8 Metern.

Das Merkmalsfenster ist gleich dem Normfenster gewählt. D. h. an jeder Position innerhalb
des Normfensters können Merkmale existieren.
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Abbildung 6.3.: Gewählte Norm- und Objektfenster. Um eine gemeinsame Detektion von
PKW und LKW zu ermöglichen, wird das Normfenster auf 13 mal 22 Pixel
festgelegt. Die Objektfenster sind für PKW und LKW unterschiedlich gewählt.
Der „Rand“ um die Objekte ist auf 2 Pixel im Normfenster festgelegt. Die
Position der Objektfenster ist so gewählt, dass möglichst viele gemeinsame
Kanten vorhanden sind. (a) Das Objektfenster für PKW ist quadratisch gewählt.
(b) LKW besitzen ein Objektfenster mit dem Seitenverhältnis 2 : 1 um ihrer
Höhe Rechnung zu tragen.

Parameter Wert

Hypothesenhöhe 44 – 480 Pixel
Objekthöhe 2.5 – 5 Meter (LKW, =̂ 1.25 – 2.5 für PKW)
Quantisierungen (in x-, y- und z-Richtung) 0.05, 0.05, 0.09
Relaxierungswinkel 2◦

Tabelle 6.3.: Parameter der Hypothesengenerierung. Die Objekthöhe bemisst sich an LKW, da
diese das höhere Objektfenster besitzen. Die Wahl von 2.5 – 5 Meter für LKW
entspricht einer Objekthöhe von 1.25 – 2.5 Meter für PKW.

6.1.4. Untersuchte Klassifikatoren

Ausgehend von der gemeinsamen Grundstruktur (siehe Abschnitt 6.1.2) werden folgende
Klassifikatoren sowohl für PKW als auch für PKW-Rückfronten untersucht:

• Eine Viola-Jones-Kaskade.

• Ein DB-CBT mit η = 4000 und ein DB-CBT mit η = 8000. Die Wahl von η entspricht
ungefähr 10 bzw. 20 % der Trainingsbeispiele für PKW/PKW-Rückfronten.

• Ein Klassifikationsbaum, dessen Teilung des Eingaberaums mit dem k-Means-
Algorithmus auf den Merkmalsvektoren statt mit dem Verfahren des DB-CBT
vorgenommen wird. Als Kriterium für die Initiierung einer Trennung kommt der
gleiche Schwellwert auf den Z-Wert zum Einsatz. In der Phase der Anwendung werden
Hypothesen demjenigen Nachfolger zugeordnet, dem sie auch in der Phase des Trainings
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6. Experimentelle Ergebnisse

zugeteilt worden wären. D. h. die Entscheidung wird anhand der L2-Distanz der
Hypothese zu den Clusterzentren getroffen. Wie auch beim DB-CBT wird eine weitere
Teilung unterbunden, wenn die Anzahl Positivbeispiele unter 4000 bzw. 8000 fällt.

Im weiteren Verlauf werden die trainierten Baumklassifikatoren mit 4000-er bzw. 8000-er
Baum bezeichnet. Die Bezeichnung spiegelt das jeweilige η des Trainings wider. 4000-er Bäume
meint also sowohl den DB-CBT als auch den k-Means-Baum, trainiert mit η = 4000.

Für LKW und LKW-Rückfronten sind bei den gewählten Trainingsparametern nicht ausrei-
chend Beispiele für das Training eines DB-CBT oder eines k-Means-Baums vorhanden. Daher
wird für LKW und LKW-Rückfronten lediglich eine Kaskade untersucht.

Das Training der Klassifikatoren nahm über sieben Wochen auf 16 Computern in Anspruch.
Sowohl das Boosting als auch das Sammeln der Beispiele wurde im Zuge dieser Arbeit paral-
lelisiert, um der enormen Datenmassen und dem Bedarf an Rechenleistung Herr zu werden.
Dennoch überstieg das Training der 8000-er Bäume und der Kaskade zeitlich den Rahmen
dieser Arbeit. Die 4000-er Bäume wurden vollständig und erschöpfend trainiert.

Das Training der Kaskade wurde nach 30 Stufen für PKW und nach 29 Stufen für PKW-
Rückfronten abgebrochen. Die 8000-er Bäume werden bei einer Tiefe von 23 evaluiert. Der 4000-
er DB-CBT hat Tiefe 22 (PKW) bzw. Tiefe 21 (PKW-Rückfronten); der 4000-er k-Means-Baum
hat Tiefe 23 sowohl für PKW als auch für PKW-Rückfronten. Die Struktur der untersuchten
Klassifikatoren wird in Anhang A visualisiert.

6.2. Metriken und Kenngrößen für die Performance-Messung

6.2.1. Bewertung von Detektionen

Bei der Evaluierung von Klassifikatoren ist zunächst festzulegen, was eine korrekte Detektion
ist. Hierfür ist ein Abstandsmaß für Hypothesen nötig. Mit diesem kann der Abstand zwischen
einer Hypothese, welche das Objekt „perfekt“ zeigt (sog. Grundwahrheit, engl. ground truth, im
Folgenden auch oft Label genannt), und einer Detektion berechnet werden. Ist der Abstand
kleiner als eine vorgegebene Schwelle, so ist die Detektion korrekt (True Positive, TP), andernfalls
ist sie es nicht (False Positive, FP).

In der Literatur wird häufig (u. a. von [Kal05],[SHL07],[KN09],[EG09]) die Überdeckung (engl.
coverage) als Abstandsmaß verwendet. Sie ist für zwei Hypothesen B1,2 definiert als

cov(B1, B2) =
A(B1 ∩ B2)

A(B1 ∪ B2)
∈ [0, 1] .

A ist hierbei der Flächeninhalt eines Rechtecks. cov(B1, B2) ist also der gemeinsame Anteil am
(gesamten) Flächeninhalt von B1 und B2.

Nachteilig an der Verwendung von cov(., .) ist allerdings, dass die Überdeckung unabhängig
von der Position des gemeinsamen Bereichs zweier Hypothesen ist, d. h. zentral gelegene
Übereinstimmungen werden nicht favorisiert (siehe auch Abb. 6.4). Um diesen Nachteil zu
vermeiden, schlägt Löhlein in [Lö09] die Ähnlichkeit (engl. affinity) als alternatives Abstandsmaß
vor. Diese bemisst die Distanz zweier Hypothesen an der Distanz zwischen ihren Rändern.
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Sie sind umso ähnlicher, je näher sich ihre Ränder sind. Für zwei Hypothesen A und B ist die
Ähnlichkeit aff (A, B) zwischen ihnen definiert als

aff (A, B) = max

0, 1−

√√√√√√
(

a
hmax

)2
+
(

b
wmax

)2
+
(

c
hmax

)2
+
(

d
wmax

)2

(
hA

hmax

)2
+
(

hB
hmax

)2

 ∈ [0, 1] . (6.1)

Die Bedeutung der einzelnen Variablen a – d ist in Abb. 6.4(a) dargestellt. hA,B ist die Höhe
der Hypothese A bzw. B. Dementsprechend ist wA,B deren Breite. Damit ist hmax durch hmax =

max (hA, hB), wmax durch wmax = max (wA, wB) bestimmt.

A

B

d
ba

c

(a)

0.74 (0.6) 0.74 (0.6) 0.59 (0.39) 0.38 (0.23) 0.17 (0.10) 0 (0)

0.34 (0.19) 0.15 (0.08)0.42 (0.25) 0.51 (0.25) 0.47 (0.25)

0.36 (0.25) 0.44 (0.25) 0.42 (0.25) 0.29 (0.19) 0.11 (0.08)

0 (0)

0 (0)

(b)

Abbildung 6.4.: Berechnung und Beispiele der Ähnlichkeit zweier Hypothesen. Die Ähn-
lichkeit aff(., .) ist eine Metrik auf Hypothesen. Der Abstand zweier Hypothe-
sen ist umso geringer, je ähnlicher sich diese sind. (a) Bedeutung der Variablen
von Gleichung (6.1). (b) Beispiele für die Ähnlichkeit zweier Hypothesen. In
Klammern ist die Überdeckung der Hypothesen angegeben. Es ist deutlich zu
sehen, dass die Ähnlichkeit ein geeigneteres Maß darstellt, da sie „zentrale“
Übereinstimmungen favorisiert.
Quelle: [Lö09]

Mit dem so definierten Abstandsmaß aff(., .) können Detektionen bewertet werden. Hierbei
werden drei mögliche Fälle unterschieden:

1. Detektionen, deren Ähnlichkeit mit allen Labels unter einem Schwellwert σaff liegt, be-
kommen die Klasse Negative. Bei Detektionen dieser Art handelt es sich um Falschalarme.

2. Hat eine Detektion eine Ähnlichkeit ≥ σaff mit einem Label und entspricht das Label
der Klasse der Detektion – bspw. eine PKW-Detektion und ein PKW-Label – so wird der
Detektion die Klasse Positive zugewiesen. Detektionen dieser Art sind korrekt.

3. Ist die Ähnlichkeit zwischen Detektion und Label größer als σaff, passen die Klassen
jedoch nicht zueinander – etwa die Detektion einer PKW-Rückfront mit einem Label für
PKW – so wird die Detektion ignoriert (Ignore), d. h. diese Detektionen werden weder als
Falschalarm noch als korrekte Detektion gewertet.
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In dieser Arbeit wird die Performance der Klassifikatoren mit σaff = 0.2 ausgewertet. Die
Einordnung der Detektionen unterscheidet sich je nach Evaluierung und wird bei der jeweiligen
Auswertung direkt erläutert.

6.2.2. Kenngrößen der Performance

In diesem Abschnitt werden die relevanten Kenngrößen zur Bewertung der Performance
erläutert. Die hier vorgestellten Maße sind nur ein kleiner Ausschnitt aus den möglichen
Kenngrößen für die Evaluierung von Klassifikatoren. Für eine Übersicht über weitere sei auf
[Wal08, S. 121 ff.] und [Kal05, S. 44 ff.] verwiesen.

TP-Rate: Die TP-Rate ist der Anteil der detektierten Objekte an der Menge der Hypothesen,
die ein Objekt zeigen (TP).

Falschalarmrate: Die Falschalarmrate ist der Anteil der Detektionen an der Menge der Hypo-
thesen, die kein Objekt zeigen (FP).

Detektionsrate: Die Detektionsrate ist der Anteil an detektierten Objekten an insgesamt im
Datensatz vorhandenen Objekten. Bei einer Detektionsrate von 100 % werden somit alle
im Datensatz vorhandenen Objekte detektiert.

Präzision: Die Präzision ist die Wahrscheinlichkeit, dass eine Detektion einem Objekt ent-
spricht. Bei einer Präzision von 1 zeigt jede Detektion auch tatsächlich ein Objekt.

6.2.3. Visualisierung der Performance

Zur Visualisierung der Performance kommen ROC1- und PR2-Diagramme zum Ein-
satz. ROC-Diagramme visualisieren den Trade-off zwischen Detektions- und Falschalarm-
rate [Wal08, S. 184 ff.], PR-Diagramme stellen die Präzision der Detektionsrate gegenüber
[WF05, S. 171 f.]. Für eine weitergehende Einführung in ROC-Analyse sei auf [Faw06] ver-
wiesen. Eine ausführlichere Diskussion von PR-Diagrammen bietet [WF05, S. 171 f.].

Die Generierung von ROC- und PR-Diagrammen ist sehr aufwendig, da für jeden Punkt
im ROC- bzw. PR-Raum ein neuer Klassifikator trainiert werden muss [Wal08, S. 186 f.]. Eine
Vereinfachung bietet die im Folgenden beschriebene Vorgehensweise, bei der die Tatsache
genutzt wird, dass eine „Akzeptanzschwelle“ ρ existiert, ab der eine Hypothese als Objekt
klassifiziert wird. Wird ρ verringert, werden alle Hypothesen, die für das frühere ρ als Objekt
klassifiziert wurden, weiter als Objekt eingestuft3. Zusätzlich werden nun allerdings diejenigen
Hypothesen, die über dem neuen, nicht jedoch über dem alten ρ liegen, akzeptiert. Folglich
steigt der Anteil der akzeptierten Hypothesen. D. h. durch Absenken von ρ wird ein neuer Punkt
im ROC- und PR-Raum gefunden. Dieser Prozess lässt sich wiederholen, bis jede Hypothese
akzeptiert wird, die TP-Rate also 100 % ist. Für eine weitergehende Analyse des skizzierten
Verfahrens sei auf [Faw06] verwiesen.

1Receiver Operating Characteristic
2Precision over Recall
3Ohne Einschränkung der Allgemeinheit wird hierbei davon ausgegangen, dass Hypothesen als Objekt gewertet

werden, sobald sie über der Akzeptanzschwelle liegen.
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Für eine Kaskade lässt sich das schrittweise Absenken der Akzeptanzschwelle durch sukzes-
sives Löschen von Stufen (von der letzten Stufe an) realisieren. Für Bäume wird das Verfahren
analog angewandt, indem schrittweise alle Knoten einer Tiefe (von der maximalen Tiefe an)
gelöscht werden.

Um die Interpretierbarkeit zu erhöhen, werden die erstellten ROC-Diagramme leicht ver-
ändert dargestellt. Statt der Falschalarmrate werden Falschalarme je Bild auf der x-Achse
aufgetragen. Damit wird ein besserer Eindruck von der Systemleistung vermittelt, da die An-
zahl Falschalarme je Bild (im Gegensatz zur Anzahl Hypothesen) besser interpretierbar und
damit aussagekräftiger ist. Zudem kann von Falschalarmen je Bild leichter auf die im auto-
mobilen Bereich verbreitete [Wal08, S. 121 f.],[SZ06, S. 94 ff.] Kennzahl „Fehler je Zeiteinheit“
umgerechnet werden (je Bild vergehen 40 Millisekunden, vgl. Abschnitt 1.3). Auf der y-Achse
der ROC-Diagramme wird die Detektionsrate aufgetragen. Dies weicht von der „traditionellen“
Darstellung ab, da die Detektionsrate nicht der normalerweise verwendeten TP-Rate entspricht.
Die TP-Rate erfasst nicht diejenigen Objekte, für die keine Hypothese existiert, sie ist also
tendenziell höher als die Detektionsrate. Da die TP-Rate allerdings nicht dem menschlichen
Verständnis von Korrektheit entspricht (nicht erkannte Objekte können bei einer TP-Rate von
100 %, nicht jedoch bei einer Detektionsrate von 100 % auftreten), wird für die hier verwendeten
ROC-Diagramme die Detektionsrate als Kennzahl gewählt.

6.2.4. Ein Abstandsmaß für Winkelkategorien

Für die Untersuchung der Genauigkeit der Winkelschätzung ist ein Abstandsmaß nötig, das
die Distanz zwischen Winkelkategorien (siehe Abschnitt 2.8) angibt. Anhand diesem kann der
Anteil korrekt kategorisierter Detektionen ausgewertet werden.

Daher sei folgendes Maß m(c) für eine Kategorie c = (c1, c2) mit c1 ∈ {right, left, straight}
und c2 ∈N definiert:

m(c) = (10− c2)×
{
−1, falls c1 = left
1, sonst

.

Damit lässt sich die Distanz d(a, b) zwischen zwei Kategorien a und b wie folgt berechnen:

d(a, b) = |m(a)−m(b)| .

Tabelle 6.4 gibt einige Beispiele für Abstände zwischen Kategorien.

a b d(a, b)

(left, 12) (left, 12) 0
(left, 11) (left, 12) 1
(straight, 10) (left, 12) 2
(right, 12) (left, 12) 4

Tabelle 6.4.: Beispiele für Abstände mit dem definierten Abstandsmaß d(., .).
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6.3. Ergebnisse

In diesem Abschnitt werden die Ergebnisse der experimentellen Untersuchung der trainierten
Klassifikatoren angegeben. Neben der Performance (Abschnitt 6.3.1) wird die Geschwindigkeit
der Klassifikatoren (Abschnitt 6.3.2) untersucht. Zusätzlich wird die Qualität, d. h. Genauig-
keit und Verlässlichkeit, der Kategorisierung in Winkelkategorien (Abschnitt 6.3.3) und die
Verwechslungsgefahr zwischen den Fahrzeugtypen (Abschnitt 6.3.4) evaluiert.

6.3.1. Performance der Klassifikatoren

Die Performance der Klassifikatoren wird für PKW, PKW-Rückfronten, LKW und LKW-
Rückfronten einzeln untersucht. Ignoriert werden hierbei alle Detektionen, die nicht vom
jeweils korrekten Klassifikator stammen oder die sich mit einem Label überschneiden, wel-
ches nicht zum untersuchten Klassifikator passt. Bspw. werden bei der Untersuchung der
PKW-Klassifikatoren alle Detektionen der Klassifikatoren für PKW-Rückfront, LKW und LKW-
Rückfront ignoriert. Ferner werden alle Detektionen des PKW-Klassifikators ignoriert, die sich
mit einem Label einer PKW-Rückfront, eines LKW oder einer LKW-Rückfront überschneiden,
nicht jedoch mit einem PKW-Label.

Die Abb. 6.5 und 6.6 zeigen die Performance der PKW-Klassifikatoren. Alle Klassifikatoren
zeigen in etwa die gleiche Performance. Im ROC-Diagramm (Abb. 6.5) ist erkennbar, dass das
Training der PKW-Kaskade nicht beendet wurde – es existieren keine Arbeitspunkte mit weniger
als zwei Falschalarmen je Bild. Es ist allerdings anzunehmen, dass die Kurve der Kaskade bei
weiterem Training einen ähnlichen Verlauf nimmt wie die Kurven der anderen Klassifikatoren.
Alle Klassifikatoren garantieren Detektionsraten > 80 %, im Fall der 4000-er Bäume bei weniger
als 0.3 Falschalarmen je Bild. Die erreichte Präzision liegt für diesen Arbeitspunkt bei ca. 80 %
(siehe Abb. 6.6).

Auch bei der Untersuchung bei der Detektion von PKW-Rückfronten unterscheiden sich die
Klassifikatoren nicht stark voneinander. Allerdings sind hier die Unterschiede zwischen den
einzelnen Klassifikatoren dennoch etwas größer als bei den PKW-Klassifikatoren (Abb. 6.7 und
6.8). Hervorzuheben ist der 8000-er k-Means-Baum, der eine Detektionsrate von ca. 90 % bei
0.3 Falschalarmen je Bild aufweist. Die übrigen Klassifikatoren garantieren eine Detektionsrate
von ca. 85 % bei dieser Falschalarmrate. Für die Kaskade existiert kein Arbeitspunkt in diesem
Bereich, weswegen kein quantitativer Vergleich möglich ist. Anhand des Kurvenverlaufs lässt
sich aber eine Detektionsrate von ca. 90 % extrapolieren.

Die Performance bei der Detektion von PKW-Rückfronten liegt generell über der Performance
bei der Detektion von PKW. Dies lässt sich damit erklären, dass die Variabilität der Objekt-
Ansichten bei Detektion kompletter PKW sehr viel höher ist (siehe auch Abb. 1.1, Seite 14) als
bei Einschränkung auf PKW-Rückfronten. Folglich ist die Detektion von PKW ein schwierigeres
Problem als die Detektion von PKW-Rückfronten.

Die Abb. 6.9 und 6.10 zeigen die Performance bei der Detektion von LKW bzw. LKW-
Rückfronten. Beide Experimente sind aufgrund der geringen Anzahl Test- und Trainingsdaten
(vgl. Tabelle 6.1) nur eingeschränkt aussagekräftig4. Die Ergebnisse werden dennoch, aus
Gründen der Vollständigkeit, angegeben. Die Detektion von LKW funktioniert sehr gut –

4Für Untersuchungen über den Zusammenhang zwischen Trainingsdatengröße und Performance sei auf [EG08]
verwiesen.
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Abbildung 6.5.: ROC-Diagramm der PKW-Klassifikatoren. Die PKW-Klassifikatoren unter-
scheiden sich nur geringfügig voneinander. Die Kaskade ist den anderen
Klassifikatoren leicht überlegen, allerdings ist sichtbar, dass ihr Training nicht
beendet werden konnte. Es ist anzunehmen, dass die Kurve der Kaskade bei
weiterem Training einen ähnlichen Verlauf nimmt wie die Kurven der anderen
Klassifikatoren.

die Kaskade zeigt Detektionsraten von 92 % bei weniger als einem Falschalarm auf hundert
Bildern (Abb. 6.9). Demgegenüber steht eine geringe Performance bei der Detektion von LKW-
Rückfronten. Hier werden lediglich 65 % der Objekte detektiert (Abb. 6.10).

Neben der Untersuchung der einzelnen Klassifikatoren wird im Folgenden zusätzlich unter-
sucht, welche Performance erreicht wird, wenn die Unterscheidung zwischen Rückfront und
Gesamtfahrzeug aufgehoben wird. D. h. Detektionen werden als Positiv gewertet, sobald der
Fahrzeugtyp der Detektion mit dem Fahrzeugtyp des Labels übereinstimmt. Somit werden De-
tektionen des Klassifikators für PKW-Rückfronten auch bei PKW-Labeln als korrekte Detektion
gezählt. Stimmt der Fahrzeugtyp nicht überein, werden Detektionen weiterhin ignoriert.

Die Abb. 6.11 und 6.12 zeigen die Performance bei der Detektion von PKW. Erwartungs-
gemäß ist die Detektionsrate bei diesem Experimentaufbau größer als bei einer getrennten
Detektion: Alle Klassifikatoren erreichen Detektionsraten von über 89 %. Mithin ist allerdings
die Falschalarmrate schlechter. Maximal werden 0.5 Falschalarme je Bild erreicht, was einer
Präzision von ca. 75 % entspricht (Abb. 6.12). Wie auch bei den anderen Experimenten zu
beobachten, sind die Unterschiede der Performance zwischen den Klassifikatoren sehr gering.

Abb. 6.13 zeigt die Ergebnisse bei der Durchführung des Experiments mit LKW. Wie bei
den anderen Ergebnissen für LKW, gilt auch für dieses Ergebnis die Einschränkung bzgl.
der Aussagekraft aufgrund des geringen Datenumfangs. Die Performance bei der Detektion
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Abbildung 6.6.: PR-Diagramm der PKW-Klassifikatoren. Auch im PR-Raum betrachtet unter-
scheiden sich die untersuchten Klassifikatoren nur wenig.

entspricht in etwa der Performance bei der Detektion von LKW-Rückfronten. Das sich keine
deutlichere Verbesserung gegenüber der getrennten Detektion zeigt, lässt sich damit erklären,
dass die Anzahl LKW im Vergleich zur Anzahl LKW-Rückfronten vergleichsweise gering ist
(25 gegenüber 410, vgl. Tabelle 6.1).

Zusammenfassend lässt sich sagen, dass die Detektionsleistung für PKW und PKW-
Rückfronten für alle untersuchten Klassifikatoren annähernd gleich ist. Für PKW-Rückfronten
sind die Unterschiede etwas größer als für PKW, die Performance der Kaskade und des 8000-er
k-Means-Baums ist etwas größer als die der restlichen Klassifikatoren. Die Detektionsleis-
tung lässt sich noch weiter erhöhen, wenn auf die Unterscheidung zwischen PKW und PKW-
Rückfront verzichtet wird. In diesem Fall ist eine Detektionsrate von mindestens 89 % bei 0.5
Falschalarmen je Bild mit allen Klassifikatoren möglich.

6.3.2. Geschwindigkeit der Klassifikatoren

Neben der Performance ist die Geschwindigkeit eines Klassifikators von entscheidender Bedeu-
tung. Diese wird in benötigten Weaklearnern je Hypothese angegeben. Da jeder Weaklearner
genau einem Merkmal entspricht, ist die Laufzeit einer Hypothese genau die Anzahl benötigter
Merkmale bis zu ihrer Klassifikation. Diese ist proportional zur Zeit je Hypothese, d. h. durch
Auswertung der benötigten Weaklearner je Hypothese werden Rückschlüsse auf die benötigte
Zeit je Hypothese ermöglicht.

Folgende Fragestellungen sind bei der Geschwindigkeitsuntersuchung von Interesse:
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Abbildung 6.7.: ROC-Diagramm der Klassifikatoren für PKW-Rückfronten. Bei der Detek-
tion von PKW-Rückfronten zeigt der 8000-er k-Means-Baum leicht bessere
Ergebnisse im Vergleich zu den anderen Bäumen. Für die Kaskade liegen im
interessanten Arbeitsbereich (weniger als ein Falschalarm je Bild) keine Daten
vor, es ist jedoch aus dem Kurvenverlauf sichtbar, dass die Detektionsrate
ähnliche Bereiche wie die des 8000-er k-Means-Baums erreichen kann. Die
übrigen Klassifikatoren garantieren eine Detektionsrate von ca. 85 % bei 0.3
Falschalarmen je Bild.

1. Wie groß ist der durch Feature-Sharing (siehe Abschnitt 6.1.2) erreichte Geschwindigkeits-
vorteil, d. h. wie groß ist der Anteil gemeinsamer Merkmale, gemessen an den benötigten
Merkmalen?

2. Was sind erwartete und maximale Laufzeit einer Hypothese? Während die erwartete Lauf-
zeit einem Durchschnittswert entspricht und einen Eindruck über die Geschwindigkeit
des Klassifikators vermittelt, ist die – potentiell selten eintreffende – maximale Laufzeit
v. a. für Aussagen über garantierte Antwortzeiten von Interesse – eine Fragestellung, die
für automobile Assistenzsysteme zentral ist [SZ06, S. 62 ff.].

Die ersten vier Knoten der Klassifikatorgrundstruktur werden für alle Hypothesen gemein-
sam durchlaufen (vgl. Abschnitt 6.1.2). In diesen Knoten werden 36, 24, 19 bzw. 8 % aller
Hypothesen zurückgewiesen; Lediglich 13 % der Hypothesen erreichen die Tiefe 5. Folglich
werden ca. 87 % der Merkmale gemeinsam von allen Klassifikatoren verwendet. Das Feature-
Sharing spart also einen Großteil der Merkmale ein.

Da für die beiden LKW-Klassifikatoren lediglich Kaskaden trainiert wurden, beziehen sich
die nachfolgenden Geschwindigkeitsuntersuchungen auf die PKW-Klassifikatoren. Für LKW
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Abbildung 6.8.: PR-Diagramm der Klassifikatoren für PKW-Rückfronten.

ergab sich eine erwartete und maximale Laufzeit von 17.03 bzw. 506 Weaklearnern für den LKW-
Klassifikator sowie eine erwartete und maximale Laufzeit von 16.74 bzw. 387 Weaklearnern für
den LKW-Rückfronten-Klassifikator.

Kennwert Kaskade DB-CBT, 4000 k-Means, 4000

Erwartete Laufzeit (inkl. Feature-Sharing) 29.93 22.36 21.37
Vergleich zu Kaskade 100 % 75 % 71 %

Erwartete Laufzeit (exkl. Feature-Sharing) 170.55 106.71 98.33
Vergleich zu Kaskade 100 % 62 % 58 %

Maximale Laufzeit 3 637 1 321 1 524
Vergleich zu Kaskade 100 % 36 % 42 %

Tabelle 6.5.: Geschwindigkeitsvergleich zwischen Kaskade und den 4000-er Bäumen
(PKW).

Die Tabellen 6.5 und 6.6 fassen die Laufzeitdaten für PKW zusammen. Bei Verwendung des
4000-er DB-CBT ergibt sich ein erwarteter Laufzeitvorteil von 25 % gegenüber der Kaskade,
bei Einsatz des 8000-er DB-CBT ist die erwartete Laufzeit um 23 % geringer. Rechnet man den
gemeinsamen und für alle Klassifikatoren gleichen Bereich heraus, ergibt sich ein erwarteter
Laufzeitvorteile von 38 bzw. 34 % des 4000-er bzw. 8000-er DB-CBT.

Bei der maximalen Hypothesenlaufzeit zeigen sich die Geschwindigkeitsvorteile des DB-CBT
nocht deutlicher. Für Hypothesen, die den längsten Weg durch den Baum nehmen (worst-
case-Laufzeit) spart man mit dem DB-CBT 64 bzw. 53 % (4000-er bzw. 8000-er DB-CBT) der
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Abbildung 6.9.: ROC- und PR-Diagramm des LKW-Klassifikators. Die Performance bei der
Detektion von LKW ist sehr hoch, die Ergebnisse sind jedoch aufgrund der
geringen Anzahl Test- und Trainingsdaten (vgl. Tabelle 6.1) nur eingeschränkt
aussagekräftig.
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Abbildung 6.10.: ROC- und PR-Diagramm des Klassifikators für LKW-Rückfronten. Die
Performance bei der Detektion von LKW-Rückfronten ist nicht so hoch wie bei
der Detektion von PKW-Rückfronten, was sich allerdings mit der geringeren
Anzahl Trainingsbeispiele erklären lässt [EG08].

Weaklearner ein. Zu beachten ist hierbei, dass bei einer Kaskade dieser Fall für jede akzep-
tierte Hypothese auftritt, beim DB-CBT hingegen auch Hypothesen mit kürzeren Laufzeiten
akzeptiert werden.

Die erwarteten Laufzeiten der k-Means-Bäume sind leicht unter den erwarteten Laufzeiten
der beiden DB-CBT. Zu beachten ist hierbei allerdings, dass die maximale Laufzeit des 4000-er
DB-CBT 15 % geringer als die des 4000-er k-Means-Baums und 32 % geringer als die des 8000-
er k-Means Baums ist, während der Vorteil der k-Means-Bäume bei der erwarteten Laufzeit
lediglich 5 % bzw. 8 % beträgt. D. h. die Laufzeit des DB-CBT weist eine im Vergleich zum
k-Means-Baum geringere Variabilität auf.
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Abbildung 6.11.: ROC-Diagramm der Detektion von PKW ohne Unterscheidung zwischen
Rückfront und Gesamtfahrzeug. Erwartungsgemäß ergibt sich eine höhere
Detektionsrate, gepaart mit einer schlechteren Falschalarmrate, wenn die
Unterscheidung zwischen Fahrzeug und Rückfront aufgehoben wird.

Kennwert Kaskade DB-CBT, 8000 k-Means, 8000

Erwartete Laufzeit (inkl. Feature-Sharing) 29.93 23.15 21.61
Vergleich zu Kaskade 100 % 77 % 72 %

Erwartete Laufzeit (exkl. Feature-Sharing) 170.55 113.33 100.36
Vergleich zu Kaskade 100 % 66 % 59 %

Maximale Laufzeit 3 637 1 724 1 600
Vergleich zu Kaskade 100 % 47 % 44 %

Tabelle 6.6.: Geschwindigkeitsvergleich zwischen Kaskade und den 8000-er Bäumen
(PKW).

Für PKW-Rückfronten bestätigt sich die bereits bei der Untersuchung der Performance
beobachtbare Tatsache, dass die Klassifikation von PKW ein komplexeres Problem ist als
die Klassifikation von PKW-Rückfronten. Folglich werden für die Klassifikation von PKW-
Rückfronten weniger Weaklearner benötigt – im Schnitt 21.67 gegenüber 22.36 bei Verwendung
eines 4000-er DB-CBT.

Bei Verwendung eines DB-CBT ergibt sich ein erwarteter Laufzeitvorteil von 21 bzw. 19 %
(4000-er bzw. 8000-er DB-CBT) gegenüber der Kaskade. Die erwartet Laufzeit bei Verwendung
eines k-Means-Baums ist etwas geringer als die erwartete Laufzeit der DB-CBT. Auch hier
ist jedoch festzuhalten, dass die maximale Laufzeit des 4000-er DB-CBT um 25 % bzw. 27 %
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Abbildung 6.12.: PR-Diagramm der Detektion von PKW ohne Unterscheidung zwischen
Rückfront und Gesamtfahrzeug. Die Präzision ist durch die höhere Falscha-
larmrate (vgl. Abb. 6.11) geringer als bei einer getrennten Detektion von PKW
und PKW-Rückfront.

Kennwert Kaskade DB-CBT, 4000 k-Means, 4000

Erwartete Laufzeit (inkl. Feature-Sharing) 27.47 21.67 20.75
Vergleich zu Kaskade 100 % 79 % 76 %

Erwartete Laufzeit (exkl. Feature-Sharing) 149.74 100.88 93.11
Vergleich zu Kaskade 100 % 67 % 62 %

Maximale Laufzeit 3 381 1 204 1 514
Vergleich zu Kaskade 100 % 36 % 45 %

Tabelle 6.7.: Geschwindigkeitsvergleich zwischen Kaskade und den 4000-er Bäumen (PKW-
Rückfront).

geringer ist als die maximale Laufzeit der k-Means-Bäume. Der Vorteil des DB-CBT gegenüber
der Kaskade beträgt 64 bzw. 50 %.

Insgesamt ergibt sich in jedem Fall ein Geschwindigkeitsvorteil bei Einsatz des DB-CBT.
Dieser beträgt (je nach Parametern) bis zu 25 % gegenüber der Kaskade. Neben den Vorteilen
bei der erwarteten Laufzeit der Hypothesen ergibt sich ein Vorteil bei der maximalen Laufzeit:
die maximale Laufzeit – und damit auch die bestmöglich zu garantierende Antwortzeit – ist
beim DB-CBT um bis zu 64 % geringer.
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Abbildung 6.13.: Ergebnisse der Detektion von LKW ohne Unterscheidung zwischen Rück-
front und Gesamtfahrzeug. (a) ROC-Diagramm. (b) PR-Diagramm.

Kennwert Kaskade DB-CBT, 8000 k-Means, 8000

Erwartete Laufzeit (inkl. Feature-Sharing) 27.47 22.30 21.25
Vergleich zu Kaskade 100 % 81 % 77 %

Erwartete Laufzeit (exkl. Feature-Sharing) 149.74 106.20 97.30
Vergleich zu Kaskade 100 % 71 % 65 %

Maximale Laufzeit 3 381 1 698 1 532
Vergleich zu Kaskade 100 % 50 % 45 %

Tabelle 6.8.: Geschwindigkeitsvergleich zwischen Kaskade und den 8000-er Bäumen (PKW-
Rückfront).

6.3.3. Genauigkeit der Winkelschätzung

Neben der Performance und Geschwindigkeit der Klassifikatoren ist auch die Qualität der
Kategorisierung in Winkelkategorien von Bedeutung. Um diese zu untersuchen, wurden alle
assoziierten und korrekten Detektionen, also solche, die auch tatsächlich ein Objekt zeigen,
dahingehend untersucht, wie stark die ihnen zugewiesene Winkelkategorie von der tatsächli-
chen abweicht. Zum Einsatz kam dabei das in Abschnitt 6.2.4 eingeführte Abstandsmaß. Unter
Vorgabe einer maximalen Abweichung dmax kann damit der Anteil korrekt kategorisierter
Detektionen an den kategorisierten Detektionen insgesamt betrachtet werden. Als korrekt
kategorisiert gelten dabei alle Detektionen, deren Winkelkategorie höchstens um dmax von der
tatsächlichen abweicht.

Tabelle 6.9 zeigt die Qualität der Winkelschätzung für PKW. Diese ist sehr hoch, alle Klassifi-
katoren kategorisieren schon bei dmax = 0 rund 28 % korrekt. Bei Einräumung einer Toleranz
lässt sich der Korrektheitsgrad weiter steigern. Alle untersuchten Klassifikatoren zeigen in etwa
die gleiche Leistung bei der Kategorisierung, keiner der Klassifikatoren kann hervorgehoben
werden.

Tabelle 6.9 zeigt die Qualität der Winkelschätzung für LKW. Sie ist sehr viel höher als die der
Winkelkategorisierung von PKW. Aufgrund der geringen Zahl an auswertbaren Detektionen
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Klassifikator dmax = 0 dmax = 1 dmax = 2 dmax = 3

DB-CBT, 4000 28 % 50 % 68 % 85 %
DB-CBT, 8000 28 % 48 % 68 % 86 %
k-Means, 4000 27 % 45 % 66 % 85 %
k-Means, 8000 28 % 47 % 69 % 89 %
Kaskade 28 % 49 % 69 % 85 %

Tabelle 6.9.: Qualität der Winkelkategorisierung (PKW). Angegeben ist jeweils der Anteil
korrekt kategorisierter Detektionen an den kategorisierten Detektionen insgesamt.

Klassifikator dmax = 0 dmax = 1 dmax = 2 dmax = 3

Kaskade 89 % 94 % 98 % 99 %

Tabelle 6.10.: Qualität der Winkelkategorisierung (LKW). Angegeben ist jeweils der Anteil
korrekt kategorisierter Detektionen an den kategorisierten Detektionen insgesamt.
Die Qualität der Winkelkategorisierung ist sehr viel höher als die der Winkelkate-
gorisierung von PKW (Tabelle 6.9). Aufgrund der geringen Zahl an auswertbaren
Detektionen – lediglich 265 Detektionen konnten Daten der Grundwahrheit zuge-
ordnet werden – sind diese Zahlen allerdings nur eingeschränkt aussagekräftig.

– lediglich 265 Detektionen konnten Daten der Grundwahrheit zugeordnet werden – sind
diese Zahlen allerdings nur eingeschränkt aussagekräftig und lediglich aus Gründen der
Vollständigkeit angegeben.

6.3.4. Verwechslungsgefahr zwischen den Fahrzeugtypen

Tabelle 6.11 zeigt die Verwechslungsmatrix (engl. confusion matrix) der Klassifikatoren. Der
Anteil an Verwechslungen zwischen den Fahrzeugtypen ist hervorgehoben. Für die Auswertung
wird der Arbeitspunkt mit der geringsten Falschalarmrate jedes Klassifikators zugrunde gelegt.

Klassifikator Anteil PKW Anteil LKW Falschalarme Hypothesen

DB-CBT, 4000 94.3 % 3.2 % 2.5 % 48 981
DB-CBT, 8000 91.2 % 5.6 % 3.2 % 91 902
k-Means, 4000 92.4 % 5.4 % 2.2 % 45 454
k-Means, 8000 93.0 % 5.2 % 1.8 % 67 163
Kaskade (PKW) 90.3 % 5.3 % 4.4 % 183 045
Kaskade (LKW) 20.6 % 77.9 % 1.5 % 1 296

Tabelle 6.11.: Verwechslungsmatrix der Klassifikatoren. Der Anteil an Verwechslungen zwi-
schen den Fahrzeugtypen ist hervorgehoben. Für die Auswertung wird der Ar-
beitspunkt mit der geringsten Falschalarmrate jedes Klassifikators zugrunde
gelegt.

Es ist zu sehen, dass die Klassifikatoren für PKW keine Probleme mit Verwechslungen zeigen.
Nur ein geringer Anteil der akzeptierten Hypothesen zeigt LKW statt PKW. Hervorzuheben
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ist an dieser Stelle der 4000-er DB-CBT, der eine leicht höhere Zuverlässigkeit aufweist als die
anderen Klassifikatoren. Insgesamt sind die Unterschiede zwischen den Klassifikatoren jedoch
vernachlässigbar klein.

Der LKW-Klassifikator hingegen zeigt Probleme mit Verwechslungen zwischen der Fahr-
zeugtypen. Über 20 % der Detektionen zeigen PKW statt LKW.

6.4. Exemplarische Systemleistung

Die Abb. 6.14 und 6.15 zeigen Beispiele des kompletten Systems in der Phase der Anwendung.
Als Klassifikator kam der 4000-er DB-CBT zum Einsatz. In Abb. 6.14(a) ist zu erkennen, dass
sich die Objektfenster von PKW und LKW in der Höhe unterscheiden. Abb. 6.14(b) zeigt zwei
korrekt detektierte PKW zusammen mit einem Falschalarm („Gullideckel“). Abb. 6.15 zeigt die
im System vorgenommene Winkelschätzung durch Kategorisierung assoziierter Detektionen.
Im Beispiel wurde dem PKW die Kategorie right 13 zugewiesen.

(a) (b)

Abbildung 6.14.: Typische Szenen beim Einsatz des Gesamtsystems. Zum Einsatz kam der
4000-er DB-CBT. (a) Unterschiedliche Objektfenster für LKW und PKW. (b)
Korrekt detektierte PKW zusammen mit einem Falschalarm.
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Abbildung 6.15.: Kategorisierung von Fahrzeugen. Zum Einsatz kam der 4000-er DB-CBT. Zu
sehen ist eine vollständig assoziierte und kategorisierte Detektion eines PKW.
Im Beispiel wurde der Detektion die Kategorie right 13 zugewiesen.
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KAPITEL 7

Zusammenfassung und Ausblick

Das Wissen um andere Verkehrsteilnehmer ist eine zentrale Komponente moderner Fahrerassis-
tenzsysteme. Die Detektion von Fahrzeugen in Mono-Bildern ist hierbei ein wichtiger Baustein,
der zur Weiterentwicklung von automobilen Assistenzsystemen beiträgt.

In dieser Arbeit wurde ein echtzeitfähiges System vorgestellt, das PKW und LKW in Mono-
Grauwertbildern unter allen Orientierungen bzgl. der Kamera detektiert (Multi-View Vehicle
Detection). Es arbeitet hierbei einzelbildbasiert, d. h. ohne Tracking über mehrere Bilder hinweg.
Um sowohl PKW als auch LKW effizient zu klassifizieren, wird die Anzahl benötigter Merkmale
durch Feature-Sharing stark reduziert sowie eine neuartige, hierarchische Klassifikatorstruktur
eingesetzt.

Neben der reinen Detektion der Fahrzeuge wird zusätzlich ihre Orientierung eingeschätzt.
Hierfür wurde der Zusammenhang zwischen Fahrzeugrückfront und Gesamtfahrzeug ge-
nutzt, welcher Rückschlüsse über die Orientierung des Fahrzeugs erlaubt. Daher werden
Fahrzeugrückfront und Gesamtfahrzeug getrennt detektiert. Im Anschluss daran werden De-
tektionen einander zugeordnet und aus ihrer relativen Lage auf die Orientierung des Fahrzeugs
geschlossen. Die so gewonnene Information lässt sich für zukünftige Verbesserungen von
Tracking und Sensordatenfusion in Mono-Systemen nutzen und ermöglicht somit in Zukunft
eine genauere und zuverlässigere Gefährdungseinschätzung im Straßenverkehr.

Um Fahrzeuge unter allen Orientierungen effizient detektieren zu können, wurde die Kaskade
auf einen hierarchischen Klassifikator erweitert. Der entwickelte Klassifikator (Decision-Boosted
Cluster Boosted Tree, DB-CBT) nimmt zusätzliche Auftrennungen des Eingaberaums vor, um eine
effizientere Klassifikation zu ermöglichen. Hierfür wurde ein neues Gütemaß entwickelt, das
die Eignung einer Auftrennung misst. Anhand diesem wird die Trennung mittels dem heuristi-
schen Optimierungsverfahren Simulated Annealing so gewählt, dass das Klassifikationsproblem
möglichst einfach wird.

Für die Entscheidung, wann eine Auftrennung des Eingaberaums erfolgen soll, wurde der
Bhattacharyya-Koeffizient, ein eng mit dem Boosting zusammenhängendes Maß, verwendet.
Dieser wird genutzt, um die Schwere des Klassifikationsproblems zu bewerten. Durch Schwell-
wertbildung ist es möglich, die Auftrennung des Eingaberaums nur dann durchzuführen,
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wenn das Klassifikationsproblem schwierig zu lösen ist und eine Auftrennung mit hoher
Wahrscheinlichkeit eine Vereinfachung verspricht.

Um die Anzahl zu traversierender Knoten zusätzlich zu reduzieren, wurde ein zweistufiges
Verfahren vorgestellt, bei dem nach dem eigentlichen Boosting zur Trennung von Objekt und
Hintergrund ein zweites Boosting durchgeführt wird. Dieses hat das Ziel, die gewonnene
Auftrennung des Eingaberaums zu erlernen.

Die Leistungsfähigkeit des vorgestellten Konzepts konnte durch experimentelle Untersu-
chungen nachgewiesen werden. Die Detektionsleistung eines DB-CBT ist vergleichbar mit
der Detektionsleistung einer Kaskade. Bis zu einer Entfernung von 100 Metern ist es mit dem
DB-CBT möglich, mit einer Detektionsrate von 85 % bei weniger als 0.3 Falschalarmen je Bild
die Rückfronten von PKW zu detektieren. Komplette PKW können mit einer Detektionsrate von
über 80 % bei weniger als 0.3 Falschalarmen je Bild detektiert werden. Bei Einsatz des DB-CBT
ergibt sich allerdings – bei vergleichbarer Detektionsleistung – ein Laufzeitvorteil gegenüber
des Kaskade: im Schnitt müssen 25 % weniger Weaklearner je Hypothese ausgewertet werden;
die worst-case-Laufzeit des DB-CBT ist sogar um 64 % geringer als die der Kaskade.

Die Schätzung der Orientierung durch das realisierte System ist sehr zuverlässig. Abhängig
von der maximalen Toleranz werden zwischen 28 % (keine Toleranz) und 86 % (Toleranz von 3)
der detektierten Fahrzeug korrekt kategorisiert.

Insgesamt gesehen konnte duch den entwickelten DB-CBT eine Verbesserung der Kaskade
erreicht werden. Bei vergleichbarer Detektionsleistung ist die Geschwindigkeit deutlich höher.
Durch das vorgestellte Konzept ist es zudem möglich, die Orientierung von Fahrzeugen mit
hoher Qualität zu schätzen.

7.1. Ausblick

Aus dieser Arbeit lassen sich eine Reihe neuer Fragestellungen ableiten. Diese bieten sich als
Ausgangspunkt für mögliche Folgearbeiten an. Sie lassen sich unterscheiden bzgl. dem DB-CBT
als entwickelter Methode der Klassifikation und dem Gesamtsystem, welches eine Funktion – die
Schätzung der Orientierung detektierter Fahrzeuge – erfüllt. Für beide gibt es verschiedene
offene Fragen, die durch weitere Untersuchungen geklärt werden könnten. Ferner traten im
Zuge der Evaluierung der Klassifikationsbäume Möglichkeiten zur Weiterentwicklung auf.

Weiterführende Untersuchungen des DB-CBT

Ein Problem bei Klassifikationsbäumen ist die erhöhte Gefahr der Überadaption. In dieser
Arbeit wird dieser Gefahr durch Vorgabe einer Mindestanzahl an Positivbeispielen begegnet
(siehe Abschnitt 5.2.2, Seite 65). In der Literatur sind mehrere alternative Ansätze beschrieben,
z. B. der χ2-Test. Diese könnten auf ihre Eignung für den DB-CBT untersucht werden. Als
Ausgangspunkt für eine solche Untersuchung sei auf [DHS00, S. 402 ff.] verwiesen.

Die Entscheidungsstrategie des DB-CBT ist exklusiv, d. h. Hypothesen werden an maximal
einen Nachfolger weitergereicht (siehe Abschnitte 4.2.2 und 5.4, Seiten 55 und 68). Da für die
Entscheidung ein RealAdaBoost-Stronglearner zum Einsatz kommt, enthält die Aussage des
„Entscheiders“ bereits die Sicherheit der Entscheidung. Damit ist eine Erweiterung auf eine
kombinierte Entscheidungsstrategie leicht möglich. Hierfür muss lediglich ein Schwellwert ε

definiert werden, welcher die notwendige Sicherheit für das Treffen einer exklusiven Entschei-
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dung ausdrückt. Eine Hypothese wird nur dann an lediglich einen Nachfolger weitergereicht,
wenn die Aktivierung um mindestens ε von der Entscheidungsschwelle abweicht – der trai-
nierte Klassifikator also sicher bei seiner Entscheidung ist. Dieses Vorgehen wurde bereits in
[Tu05] erfolgreich eingesetzt, es bietet sich folglich auch für den DB-CBT an, diese Strategie zu
evaluieren.

Außerdem kann untersucht werden, ob und wie sich alternative Verfahren für die Optimie-
rung der Zerlegung einsetzen lassen. Neben anderen heuristischen Optimierungsverfahren
(genetische Algorithmen etc.) könnten hierbei auch Verfahren der diskreten Optimierung un-
tersucht werden. Bei Nachweis der Konvexität von e(.) gelänge es in diesem Fall, effizient die
optimale Lösung, d. h. die bzgl. e(.) beste Zerlegung in zwei Teilmengen zu erhalten.

Weiterführende Untersuchungen des Gesamtsystems

Auf Seiten des Gesamtsystems bietet sich zur Verbesserung der Performance und Winkelkate-
gorisierung ein Tracking der Detektionen an. Hierbei muss untersucht werden, wie groß die
nötige Vorlaufzeit bei Einsatz eines Trackers ist und welche Verbesserung der Performance und
Winkelkategorisierung sich dadurch erreichen lassen.

Zudem kann der örtliche Zusammenhang zwischen Rückfront und Gesamtfahrzeug bes-
ser genutzt werden. In dieser Arbeit wurden Rückfront und Gesamtfahrzeug vollkommen
unabhängig voneinander detektiert. Als potentielle Weiterentwicklung bietet sich an, den De-
tektionsschritt des Systems (siehe Abb. 1.4, Seite 18) in zwei Stufen durchzuführen. Zuerst wird
das Gesamtfahrzeug detektiert, im Anschluss daran wird innerhalb der ersten Detektion die
zugehörige Rückfront gesucht. Da bei einem solchen Aufbau der Rückfronten-Klassifikator
sehr viel genauer trainiert werden könnte – als Negativbeispiel kommt alles in Frage, was nicht
exakt die Rückfront, aber immer noch ein Fahrzeug zeigt – könnte eine höhere Genauigkeit der
Winkelkategorisierung möglich sein.

Effiziente Evaluierung hierarchischer Klassifikatoren

In dieser Arbeit wurden ROC- und PR-Diagramme für Klassifikationsbäume erzeugt, indem
schrittweise Stufen deaktiviert wurden (siehe Abschnitt 6.2.3, Seite 80). Dieses Vorgehen ist
nicht optimal, da hierbei mehrere Knoten des Baums auf einmal deaktiviert werden. Durch
bestmögliche Wahl der Reihenfolge, in der die Knoten einer Stufe deaktiviert werden, ließe
sich die Performance eines hierarchischen Klassifikators genauer erfassen. Hierbei könnte
untersucht werden, ob und wie es effizient möglich ist, die optimale Reihenfolge zu bestimmen.

Eine Alternative könnte an dieser Stelle der Einsatz von Rückschlusswahrscheinlichkeiten
sein. Durch diesen Ansatz können ROC- und PR-Diagramme effizient generiert werden, indem
die Wahrscheinlichkeitsschwelle einer Detektion sukzessive abgesenkt wird. Ausgangsbasis für
weitere Untersuchungen sind [Tu05] und [SHL07].
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ANHANG A

Struktur der erstellten Klassifikatoren

In diesem Anhang wird die Struktur der untersuchten Klassifikatoren visualisiert. Abb. A.1 zeigt
den 4000-er DB-CBT, Abb. A.2 den 4000-er k-Means-Baum. Die 8000-er Bäume sind in Abb. A.3
(DB-CBT) bzw. Abb. A.4 (k-Means-Baum) dargestellt. Abb. A.5 zeigt die untersuchte Kaskade.
Jeder Klassifikator ist inklusive der gemeinsamen Grundstruktur (vgl. 6.1.2) dargestellt.
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Features: 64
Classes: car

0.12.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 16
Classes: car

0.15.0.0.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.1
Decider: UnaryThreshold

Features: 57
Classes: car

0.14.0.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.0.1.0
Decider: UnaryThreshold

Features: 22
Classes: car

0.8.0.0.0.1.1
Decider: ReBoostedDecider

Features: 18
Classes: car

0.9.0.0.0.1.0
Decider: ReBoostedDecider

Features: 30
Classes: car

0.10.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 31
Classes: car

0.10.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 53
Classes: car

0.11.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 47
Classes: car

0.12.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 62
Classes: car

0.13.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 43
Classes: car

0.14.0.0.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.11.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 57
Classes: car

0.15.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 19
Classes: car

0.16.0.0.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.9.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 48
Classes: car

0.10.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 113
Classes: car

0.19.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 24
Classes: car

0.20.0.0.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 70
Classes: car

0.15.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 42
Classes: car

0.16.0.0.0.1.1.1
Decider: UnaryThreshold

Features: 7
Classes: car

0.17.0.0.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.7.0.0.1.0
Decider: ReBoostedDecider

Features: 30
Classes: car

0.7.0.0.1.1
Decider: ReBoostedDecider

Features: 19
Classes: car

0.8.0.0.1.0.0
Decider: UnaryThreshold

Features: 22
Classes: car

0.8.0.0.1.0.1
Decider: UnaryThreshold

Features: 30
Classes: car

0.9.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.0.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.0.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.0.0
Decider: UnaryThreshold

Features: 96
Classes: car

0.17.0.0.1.0.0
Decider: UnaryThreshold

Features: 28
Classes: car

0.18.0.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.0.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.0.1
Decider: UnaryThreshold

Features: 120
Classes: car

0.20.0.0.1.0.1
Decider: UnaryThreshold

Features: 19
Classes: car

0.21.0.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.1.1.0
Decider: UnaryThreshold

Features: 21
Classes: car

0.8.0.0.1.1.1
Decider: ReBoostedDecider

Features: 18
Classes: car

0.9.0.0.1.1.0
Decider: UnaryThreshold

Features: 59
Classes: car

0.10.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.0
Decider: UnaryThreshold

Features: 97
Classes: car

0.17.0.0.1.1.0
Decider: UnaryThreshold

Features: 28
Classes: car

0.18.0.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 52
Classes: car

0.9.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 76
Classes: car

0.18.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 10
Classes: car

0.19.0.0.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 121
Classes: car

0.21.0.0.1.1.1.1
Decider: UnaryThreshold

Features: 20
Classes: car

0.22.0.0.1.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.6.0.1.0
Decider: ReBoostedDecider

Features: 27
Classes: car,back

0.6.0.1.1
Decider: UnaryThreshold

Features: 18
Classes: car,back

0.7.0.1.0.0
Decider: ReBoostedDecider

Features: 21
Classes: car,back

0.7.0.1.0.1
Decider: ReBoostedDecider

Features: 27
Classes: car,back

0.8.0.1.0.0.0
Decider: ReBoostedDecider

Features: 27
Classes: car,back

0.8.0.1.0.0.1
Decider: ReBoostedDecider

Features: 30
Classes: car,back

0.9.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 38
Classes: car,back

0.9.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 53
Classes: car,back

0.11.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 52
Classes: car,back

0.15.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 12
Classes: car,back

0.16.0.1.0.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 117
Classes: car,back

0.20.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 21
Classes: car,back

0.21.0.1.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 27
Classes: car,back

0.9.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 46
Classes: car,back

0.11.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 35
Classes: car,back

0.14.0.1.0.0.1.0
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.15.0.1.0.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 137
Classes: car,back

0.20.0.1.0.0.1.1
Decider: UnaryThreshold

Features: 29
Classes: car,back

0.21.0.1.0.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.0.1.0
Decider: ReBoostedDecider

Features: 24
Classes: car,back

0.8.0.1.0.1.1
Decider: UnaryThreshold

Features: 26
Classes: car,back

0.9.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 43
Classes: car,back

0.9.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 80
Classes: car,back

0.15.0.1.0.1.0.0
Decider: UnaryThreshold

Features: 23
Classes: car,back

0.16.0.1.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 120
Classes: car,back

0.17.0.1.0.1.0.1
Decider: UnaryThreshold

Features: 26
Classes: car,back

0.18.0.1.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.0.1.1
Decider: ReBoostedDecider

Features: 28
Classes: car,back

0.10.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1.1.1
Decider: UnaryThreshold

Features: 42
Classes: car,back

0.11.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 119
Classes: car,back

0.17.0.1.0.1.1.0
Decider: UnaryThreshold

Features: 43
Classes: car,back

0.18.0.1.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.1.1
Decider: UnaryThreshold

Features: 54
Classes: car,back

0.14.0.1.0.1.1.1
Decider: UnaryThreshold

Features: 16
Classes: car,back

0.15.0.1.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.7.0.1.1
Decider: ReBoostedDecider

Features: 30
Classes: car,back

0.8.0.1.1.0
Decider: UnaryThreshold

Features: 19
Classes: car,back

0.8.0.1.1.1
Decider: ReBoostedDecider

Features: 35
Classes: car,back

0.9.0.1.1.0
Decider: ReBoostedDecider

Features: 31
Classes: car,back

0.10.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.1.0.1
Decider: UnaryThreshold

Features: 45
Classes: car,back

0.11.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0.0
Decider: UnaryThreshold

Features: 61
Classes: car,back

0.14.0.1.1.0.0
Decider: UnaryThreshold

Features: 25
Classes: car,back

0.15.0.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.1
Decider: UnaryThreshold

Features: 63
Classes: car,back

0.13.0.1.1.0.1
Decider: UnaryThreshold

Features: 11
Classes: car,back

0.14.0.1.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.1.1.0
Decider: UnaryThreshold

Features: 32
Classes: car,back

0.9.0.1.1.1.1
Decider: ReBoostedDecider

Features: 30
Classes: car,back

0.10.0.1.1.1.0
Decider: UnaryThreshold

Features: 51
Classes: car,back

0.11.0.1.1.1.0
Decider: UnaryThreshold

Features: 61
Classes: car,back

0.12.0.1.1.1.0
Decider: UnaryThreshold

Features: 29
Classes: car,back

0.13.0.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 52
Classes: car,back

0.10.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 46
Classes: car,back

0.14.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 10
Classes: car,back

0.15.0.1.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 81
Classes: car,back

0.15.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 21
Classes: car,back

0.16.0.1.1.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.5.1.0
Decider: UnaryThreshold

Features: 17
Classes: truck

0.5.1.1
Decider: UnaryThreshold

Features: 11
Classes: truck,back

0.6.1.0
Decider: UnaryThreshold

Features: 18
Classes: truck

0.7.1.0
Decider: UnaryThreshold

Features: 25
Classes: truck

0.8.1.0
Decider: UnaryThreshold

Features: 31
Classes: truck

0.9.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.10.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.11.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.12.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.13.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.14.1.0
Decider: UnaryThreshold

Features: 73
Classes: truck

0.15.1.0
Decider: UnaryThreshold

Features: 22
Classes: truck

0.16.1.0
Decider: EmptyClassifier

Features: 0
Classes: truck

0.6.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.7.1.1
Decider: UnaryThreshold

Features: 18
Classes: truck,back

0.8.1.1
Decider: UnaryThreshold

Features: 19
Classes: truck,back

0.9.1.1
Decider: UnaryThreshold

Features: 41
Classes: truck,back

0.10.1.1
Decider: UnaryThreshold

Features: 53
Classes: truck,back

0.11.1.1
Decider: UnaryThreshold

Features: 60
Classes: truck,back

0.12.1.1
Decider: UnaryThreshold

Features: 64
Classes: truck,back

0.13.1.1
Decider: UnaryThreshold

Features: 47
Classes: truck,back

0.14.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.15.1.1
Decider: EmptyClassifier

Features: 0
Classes: truck,back

Abbildung A.1.: 4000-er DB-CBT.
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A. Struktur der erstellten Klassifikatoren

0.0
Decider: UnaryThreshold

Features: 3
Classes: car,truck,back

0.1
Decider: UnaryThreshold

Features: 5
Classes: car,truck,back

0.2
Decider: UnaryThreshold

Features: 12
Classes: car,truck,back

0.3
Decider: NAryDecider

Features: 14
Classes: car,truck,back

0.4.0
Decider: NAryDecider

Features: 20
Classes: car,back

0.4.1
Decider: NAryDecider

Features: 20
Classes: truck,back

0.5.0.0
Decider: KMeansDecider

Features: 20
Classes: car

0.5.0.1
Decider: KMeansDecider

Features: 21
Classes: car,back

0.6.0.0.0
Decider: KMeansDecider

Features: 23
Classes: car

0.6.0.0.1
Decider: KMeansDecider

Features: 12
Classes: car

0.7.0.0.0.0
Decider: UnaryThreshold

Features: 28
Classes: car

0.7.0.0.0.1
Decider: KMeansDecider

Features: 21
Classes: car

0.8.0.0.0.0
Decider: UnaryThreshold

Features: 43
Classes: car

0.9.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.0
Decider: UnaryThreshold

Features: 121
Classes: car

0.19.0.0.0.0
Decider: UnaryThreshold

Features: 31
Classes: car

0.20.0.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.0.1.0
Decider: KMeansDecider

Features: 16
Classes: car

0.8.0.0.0.1.1
Decider: KMeansDecider

Features: 21
Classes: car

0.9.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 50
Classes: car

0.9.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.0.0
Decider: UnaryThreshold

Features: 40
Classes: car

0.15.0.0.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.1.0.1
Decider: UnaryThreshold

Features: 45
Classes: car

0.17.0.0.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.9.0.0.0.1.1.1
Decider: KMeansDecider

Features: 25
Classes: car

0.10.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.1.1.0
Decider: UnaryThreshold

Features: 47
Classes: car

0.16.0.0.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 58
Classes: car

0.10.0.0.0.1.1.1.1
Decider: KMeansDecider

Features: 25
Classes: car

0.11.0.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 47
Classes: car

0.14.0.0.0.1.1.1.0
Decider: UnaryThreshold

Features: 11
Classes: car

0.15.0.0.0.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.11.0.0.0.1.1.1.1.0
Decider: KMeansDecider

Features: 24
Classes: car

0.11.0.0.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 62
Classes: car

0.12.0.0.0.1.1.1.1.0.0
Decider: UnaryThreshold

Features: 43
Classes: car

0.12.0.0.0.1.1.1.1.0.1
Decider: UnaryThreshold

Features: 55
Classes: car

0.13.0.0.0.1.1.1.1.0.0
Decider: UnaryThreshold

Features: 18
Classes: car

0.14.0.0.0.1.1.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.13.0.0.0.1.1.1.1.0.1
Decider: UnaryThreshold

Features: 18
Classes: car

0.14.0.0.0.1.1.1.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.12.0.0.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 24
Classes: car

0.14.0.0.0.1.1.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.7.0.0.1.0
Decider: UnaryThreshold

Features: 33
Classes: car

0.7.0.0.1.1
Decider: KMeansDecider

Features: 20
Classes: car

0.8.0.0.1.0
Decider: UnaryThreshold

Features: 48
Classes: car

0.9.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0.1.0
Decider: UnaryThreshold

Features: 136
Classes: car

0.22.0.0.1.0
Decider: UnaryThreshold

Features: 29
Classes: car

0.23.0.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.1.1.0
Decider: KMeansDecider

Features: 23
Classes: car

0.8.0.0.1.1.1
Decider: UnaryThreshold

Features: 28
Classes: car

0.9.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.9.0.0.1.1.0.1
Decider: KMeansDecider

Features: 43
Classes: car

0.10.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 109
Classes: car

0.18.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 23
Classes: car

0.19.0.0.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.1.1.0.1.0
Decider: KMeansDecider

Features: 31
Classes: car

0.10.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 25
Classes: car

0.11.0.0.1.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.0.1.0.1
Decider: UnaryThreshold

Features: 34
Classes: car

0.12.0.0.1.1.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.0.1.0.0
Decider: UnaryThreshold

Features: 55
Classes: car

0.14.0.0.1.1.0.1.0.0
Decider: UnaryThreshold

Features: 23
Classes: car

0.15.0.0.1.1.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.12.0.0.1.1.0.1.0.1
Decider: UnaryThreshold

Features: 51
Classes: car

0.13.0.0.1.1.0.1.0.1
Decider: UnaryThreshold

Features: 12
Classes: car

0.14.0.0.1.1.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.11.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 33
Classes: car

0.12.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 30
Classes: car

0.13.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 12
Classes: car

0.14.0.0.1.1.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.1
Decider: UnaryThreshold

Features: 65
Classes: car

0.19.0.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.6.0.1.0
Decider: KMeansDecider

Features: 28
Classes: car,back

0.6.0.1.1
Decider: KMeansDecider

Features: 21
Classes: car,back

0.7.0.1.0.0
Decider: KMeansDecider

Features: 27
Classes: car,back

0.7.0.1.0.1
Decider: KMeansDecider

Features: 28
Classes: car,back

0.8.0.1.0.0.0
Decider: KMeansDecider

Features: 23
Classes: car,back

0.8.0.1.0.0.1
Decider: KMeansDecider

Features: 24
Classes: car,back

0.9.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 40
Classes: car,back

0.9.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 45
Classes: car,back

0.14.0.1.0.0.0.0
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.15.0.1.0.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.0.0.1
Decider: UnaryThreshold

Features: 41
Classes: car,back

0.17.0.1.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.0.0.1.0
Decider: KMeansDecider

Features: 33
Classes: car,back

0.9.0.1.0.0.1.1
Decider: KMeansDecider

Features: 23
Classes: car,back

0.10.0.1.0.0.1.0.0
Decider: UnaryThreshold

Features: 45
Classes: car,back

0.10.0.1.0.0.1.0.1
Decider: KMeansDecider

Features: 24
Classes: car,back

0.11.0.1.0.0.1.0.0
Decider: UnaryThreshold

Features: 59
Classes: car,back

0.12.0.1.0.0.1.0.0
Decider: UnaryThreshold

Features: 43
Classes: car,back

0.13.0.1.0.0.1.0.0
Decider: UnaryThreshold

Features: 8
Classes: car,back

0.14.0.1.0.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.0.0.1.0.1.0
Decider: UnaryThreshold

Features: 41
Classes: car,back

0.11.0.1.0.0.1.0.1.1
Decider: UnaryThreshold

Features: 56
Classes: car,back

0.12.0.1.0.0.1.0.1.0
Decider: UnaryThreshold

Features: 47
Classes: car,back

0.13.0.1.0.0.1.0.1.0
Decider: UnaryThreshold

Features: 12
Classes: car,back

0.14.0.1.0.0.1.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.12.0.1.0.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.1.0.1.1
Decider: UnaryThreshold

Features: 31
Classes: car,back

0.14.0.1.0.0.1.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.0.1.1.0
Decider: KMeansDecider

Features: 45
Classes: car,back

0.10.0.1.0.0.1.1.1
Decider: UnaryThreshold

Features: 62
Classes: car,back

0.11.0.1.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 46
Classes: car,back

0.11.0.1.0.0.1.1.0.1
Decider: KMeansDecider

Features: 47
Classes: car,back

0.12.0.1.0.0.1.1.0.0
Decider: UnaryThreshold

Features: 37
Classes: car,back

0.13.0.1.0.0.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.12.0.1.0.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 23
Classes: car,back

0.12.0.1.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 37
Classes: car,back

0.13.0.1.0.0.1.1.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.13.0.1.0.0.1.1.0.1.1
Decider: UnaryThreshold

Features: 7
Classes: car,back

0.14.0.1.0.0.1.1.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.1.1.1
Decider: UnaryThreshold

Features: 46
Classes: car,back

0.13.0.1.0.0.1.1.1
Decider: UnaryThreshold

Features: 11
Classes: car,back

0.14.0.1.0.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.0.1.0
Decider: UnaryThreshold

Features: 28
Classes: car,back

0.8.0.1.0.1.1
Decider: UnaryThreshold

Features: 29
Classes: car,back

0.9.0.1.0.1.0
Decider: UnaryThreshold

Features: 54
Classes: car,back

0.10.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.0
Decider: UnaryThreshold

Features: 58
Classes: car,back

0.16.0.1.0.1.0
Decider: UnaryThreshold

Features: 7
Classes: car,back

0.17.0.1.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.1.1
Decider: UnaryThreshold

Features: 68
Classes: car,back

0.18.0.1.0.1.1
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.19.0.1.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.7.0.1.1.0
Decider: UnaryThreshold

Features: 39
Classes: car,back

0.7.0.1.1.1
Decider: KMeansDecider

Features: 20
Classes: car,back

0.8.0.1.1.0
Decider: UnaryThreshold

Features: 53
Classes: car,back

0.9.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.1.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.1.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.1.0
Decider: UnaryThreshold

Features: 114
Classes: car,back

0.22.0.1.1.0
Decider: UnaryThreshold

Features: 20
Classes: car,back

0.23.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.1.1.0
Decider: UnaryThreshold

Features: 19
Classes: car,back

0.8.0.1.1.1.1
Decider: KMeansDecider

Features: 25
Classes: car,back

0.9.0.1.1.1.0
Decider: UnaryThreshold

Features: 52
Classes: car,back

0.10.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.1.0
Decider: UnaryThreshold

Features: 52
Classes: car,back

0.15.0.1.1.1.0
Decider: UnaryThreshold

Features: 10
Classes: car,back

0.16.0.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 29
Classes: car,back

0.9.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 48
Classes: car,back

0.11.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 47
Classes: car,back

0.13.0.1.1.1.1.0
Decider: UnaryThreshold

Features: 15
Classes: car,back

0.14.0.1.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 127
Classes: car,back

0.17.0.1.1.1.1.1
Decider: UnaryThreshold

Features: 43
Classes: car,back

0.18.0.1.1.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.5.1.0
Decider: UnaryThreshold

Features: 17
Classes: truck

0.5.1.1
Decider: UnaryThreshold

Features: 11
Classes: truck,back

0.6.1.0
Decider: UnaryThreshold

Features: 18
Classes: truck

0.7.1.0
Decider: UnaryThreshold

Features: 25
Classes: truck

0.8.1.0
Decider: UnaryThreshold

Features: 31
Classes: truck

0.9.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.10.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.11.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.12.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.13.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.14.1.0
Decider: UnaryThreshold

Features: 73
Classes: truck

0.15.1.0
Decider: UnaryThreshold

Features: 22
Classes: truck

0.16.1.0
Decider: EmptyClassifier

Features: 0
Classes: truck

0.6.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.7.1.1
Decider: UnaryThreshold

Features: 18
Classes: truck,back

0.8.1.1
Decider: UnaryThreshold

Features: 19
Classes: truck,back

0.9.1.1
Decider: UnaryThreshold

Features: 41
Classes: truck,back

0.10.1.1
Decider: UnaryThreshold

Features: 53
Classes: truck,back

0.11.1.1
Decider: UnaryThreshold

Features: 60
Classes: truck,back

0.12.1.1
Decider: UnaryThreshold

Features: 64
Classes: truck,back

0.13.1.1
Decider: UnaryThreshold

Features: 47
Classes: truck,back

0.14.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.15.1.1
Decider: EmptyClassifier

Features: 0
Classes: truck,back

Abbildung A.2.: 4000-er k-Means-Baum.
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0.0
Decider: UnaryThreshold

Features: 3
Classes: car,truck,back

0.1
Decider: UnaryThreshold

Features: 5
Classes: car,truck,back

0.2
Decider: UnaryThreshold

Features: 12
Classes: car,truck,back

0.3
Decider: NAryDecider

Features: 14
Classes: car,truck,back

0.4.0
Decider: NAryDecider

Features: 20
Classes: car,back

0.4.1
Decider: NAryDecider

Features: 20
Classes: truck,back

0.5.0.0
Decider: ReBoostedDecider

Features: 25
Classes: car

0.5.0.1
Decider: ReBoostedDecider

Features: 26
Classes: car,back

0.6.0.0.0
Decider: ReBoostedDecider

Features: 23
Classes: car

0.6.0.0.1
Decider: ReBoostedDecider

Features: 26
Classes: car

0.7.0.0.0.0
Decider: UnaryThreshold

Features: 37
Classes: car

0.7.0.0.0.1
Decider: UnaryThreshold

Features: 37
Classes: car

0.8.0.0.0.0
Decider: UnaryThreshold

Features: 55
Classes: car

0.9.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.22.0.0.0.0
Decider: UnaryThreshold

Features: 182
Classes: car

0.23.0.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.0.1
Decider: UnaryThreshold

Features: 55
Classes: car

0.9.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.0.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.0.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0.0.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.22.0.0.0.1
Decider: UnaryThreshold

Features: 182
Classes: car

0.23.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.7.0.0.1.0
Decider: UnaryThreshold

Features: 19
Classes: car

0.7.0.0.1.1
Decider: ReBoostedDecider

Features: 23
Classes: car

0.8.0.0.1.0
Decider: ReBoostedDecider

Features: 31
Classes: car

0.9.0.0.1.0.0
Decider: UnaryThreshold

Features: 54
Classes: car

0.9.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.0.0
Decider: UnaryThreshold

Features: 58
Classes: car

0.11.0.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0.0
Decider: UnaryThreshold

Features: 56
Classes: car

0.13.0.0.1.0.0
Decider: UnaryThreshold

Features: 10
Classes: car

0.14.0.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.0.1
Decider: UnaryThreshold

Features: 91
Classes: car

0.16.0.0.1.0.1
Decider: UnaryThreshold

Features: 19
Classes: car

0.17.0.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.1.1.0
Decider: UnaryThreshold

Features: 32
Classes: car

0.8.0.0.1.1.1
Decider: UnaryThreshold

Features: 29
Classes: car

0.9.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.1.0
Decider: UnaryThreshold

Features: 134
Classes: car

0.20.0.0.1.1.0
Decider: UnaryThreshold

Features: 30
Classes: car

0.21.0.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.1.1.1
Decider: UnaryThreshold

Features: 121
Classes: car

0.21.0.0.1.1.1
Decider: UnaryThreshold

Features: 19
Classes: car

0.22.0.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.6.0.1.0
Decider: ReBoostedDecider

Features: 30
Classes: car,back

0.6.0.1.1
Decider: UnaryThreshold

Features: 25
Classes: car,back

0.7.0.1.0.0
Decider: UnaryThreshold

Features: 24
Classes: car,back

0.7.0.1.0.1
Decider: ReBoostedDecider

Features: 18
Classes: car,back

0.8.0.1.0.0
Decider: ReBoostedDecider

Features: 34
Classes: car,back

0.9.0.1.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.9.0.1.0.0.1
Decider: UnaryThreshold

Features: 47
Classes: car,back

0.10.0.1.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.0.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.0.0
Decider: UnaryThreshold

Features: 119
Classes: car,back

0.17.0.1.0.0.0
Decider: UnaryThreshold

Features: 51
Classes: car,back

0.18.0.1.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0.1
Decider: UnaryThreshold

Features: 79
Classes: car,back

0.15.0.1.0.0.1
Decider: UnaryThreshold

Features: 25
Classes: car,back

0.16.0.1.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.0.1.0
Decider: UnaryThreshold

Features: 40
Classes: car,back

0.8.0.1.0.1.1
Decider: UnaryThreshold

Features: 22
Classes: car,back

0.9.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.22.0.1.0.1.0
Decider: UnaryThreshold

Features: 182
Classes: car,back

0.23.0.1.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1.1
Decider: UnaryThreshold

Features: 121
Classes: car,back

0.17.0.1.0.1.1
Decider: UnaryThreshold

Features: 34
Classes: car,back

0.18.0.1.0.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.7.0.1.1
Decider: ReBoostedDecider

Features: 25
Classes: car,back

0.8.0.1.1.0
Decider: ReBoostedDecider

Features: 26
Classes: car,back

0.8.0.1.1.1
Decider: UnaryThreshold

Features: 20
Classes: car,back

0.9.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.9.0.1.1.0.1
Decider: UnaryThreshold

Features: 28
Classes: car,back

0.10.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.0.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.1.0.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.1.0.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.1.0.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.1.0.0
Decider: UnaryThreshold

Features: 129
Classes: car,back

0.22.0.1.1.0.0
Decider: UnaryThreshold

Features: 22
Classes: car,back

0.23.0.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.1.0.1
Decider: UnaryThreshold

Features: 56
Classes: car,back

0.11.0.1.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.0.1
Decider: UnaryThreshold

Features: 20
Classes: car,back

0.15.0.1.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.1.1
Decider: ReBoostedDecider

Features: 33
Classes: car,back

0.10.0.1.1.1.0
Decider: UnaryThreshold

Features: 57
Classes: car,back

0.10.0.1.1.1.1
Decider: UnaryThreshold

Features: 29
Classes: car,back

0.11.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.1.0
Decider: UnaryThreshold

Features: 53
Classes: car,back

0.15.0.1.1.1.0
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.16.0.1.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.1.1.1
Decider: UnaryThreshold

Features: 45
Classes: car,back

0.12.0.1.1.1.1
Decider: UnaryThreshold

Features: 44
Classes: car,back

0.13.0.1.1.1.1
Decider: UnaryThreshold

Features: 14
Classes: car,back

0.14.0.1.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.5.1.0
Decider: UnaryThreshold

Features: 17
Classes: truck

0.5.1.1
Decider: UnaryThreshold

Features: 11
Classes: truck,back

0.6.1.0
Decider: UnaryThreshold

Features: 18
Classes: truck

0.7.1.0
Decider: UnaryThreshold

Features: 25
Classes: truck

0.8.1.0
Decider: UnaryThreshold

Features: 31
Classes: truck

0.9.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.10.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.11.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.12.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.13.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.14.1.0
Decider: UnaryThreshold

Features: 73
Classes: truck

0.15.1.0
Decider: UnaryThreshold

Features: 22
Classes: truck

0.16.1.0
Decider: EmptyClassifier

Features: 0
Classes: truck

0.6.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.7.1.1
Decider: UnaryThreshold

Features: 18
Classes: truck,back

0.8.1.1
Decider: UnaryThreshold

Features: 19
Classes: truck,back

0.9.1.1
Decider: UnaryThreshold

Features: 41
Classes: truck,back

0.10.1.1
Decider: UnaryThreshold

Features: 53
Classes: truck,back

0.11.1.1
Decider: UnaryThreshold

Features: 60
Classes: truck,back

0.12.1.1
Decider: UnaryThreshold

Features: 64
Classes: truck,back

0.13.1.1
Decider: UnaryThreshold

Features: 47
Classes: truck,back

0.14.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.15.1.1
Decider: EmptyClassifier

Features: 0
Classes: truck,back

Abbildung A.3.: 8000-er DB-CBT.
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A. Struktur der erstellten Klassifikatoren

0.0
Decider: UnaryThreshold

Features: 3
Classes: car,truck,back

0.1
Decider: UnaryThreshold

Features: 5
Classes: car,truck,back

0.2
Decider: UnaryThreshold

Features: 12
Classes: car,truck,back

0.3
Decider: NAryDecider

Features: 14
Classes: car,truck,back

0.4.0
Decider: NAryDecider

Features: 20
Classes: car,back

0.4.1
Decider: NAryDecider

Features: 20
Classes: truck,back

0.5.0.0
Decider: KMeansDecider

Features: 20
Classes: car

0.5.0.1
Decider: KMeansDecider

Features: 21
Classes: car,back

0.6.0.0.0
Decider: KMeansDecider

Features: 23
Classes: car

0.6.0.0.1
Decider: KMeansDecider

Features: 12
Classes: car

0.7.0.0.0.0
Decider: KMeansDecider

Features: 21
Classes: car

0.7.0.0.0.1
Decider: UnaryThreshold

Features: 28
Classes: car

0.8.0.0.0.0.0
Decider: KMeansDecider

Features: 21
Classes: car

0.8.0.0.0.0.1
Decider: UnaryThreshold

Features: 36
Classes: car

0.9.0.0.0.0.0.0
Decider: KMeansDecider

Features: 25
Classes: car

0.9.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.0.0.0.0
Decider: UnaryThreshold

Features: 47
Classes: car

0.10.0.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 48
Classes: car

0.11.0.0.0.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0.0.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.0.0.0
Decider: UnaryThreshold

Features: 36
Classes: car

0.14.0.0.0.0.0.0.0
Decider: UnaryThreshold

Features: 5
Classes: car

0.15.0.0.0.0.0.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.11.0.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 34
Classes: car

0.14.0.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 6
Classes: car

0.15.0.0.0.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.10.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.0.0.1
Decider: UnaryThreshold

Features: 42
Classes: car

0.16.0.0.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.0.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.0.1
Decider: UnaryThreshold

Features: 51
Classes: car

0.19.0.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.0.1
Decider: UnaryThreshold

Features: 43
Classes: car

0.9.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.0.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.0.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.0.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.0.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.0.1
Decider: UnaryThreshold

Features: 66
Classes: car

0.20.0.0.0.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.7.0.0.1.0
Decider: UnaryThreshold

Features: 33
Classes: car

0.7.0.0.1.1
Decider: KMeansDecider

Features: 20
Classes: car

0.8.0.0.1.0
Decider: UnaryThreshold

Features: 48
Classes: car

0.9.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0.1.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.22.0.0.1.0
Decider: UnaryThreshold

Features: 75
Classes: car

0.23.0.0.1.0
Decider: UnaryThreshold

Features: 10
Classes: car

0.24.0.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.8.0.0.1.1.0
Decider: UnaryThreshold

Features: 28
Classes: car

0.8.0.0.1.1.1
Decider: UnaryThreshold

Features: 35
Classes: car

0.9.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.0
Decider: UnaryThreshold

Features: 59
Classes: car

0.19.0.0.1.1.0
Decider: UnaryThreshold

Features: 10
Classes: car

0.20.0.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.9.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car

0.22.0.0.1.1.1
Decider: UnaryThreshold

Features: 91
Classes: car

0.23.0.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car

0.6.0.1.0
Decider: KMeansDecider

Features: 21
Classes: car,back

0.6.0.1.1
Decider: KMeansDecider

Features: 28
Classes: car,back

0.7.0.1.0.0
Decider: UnaryThreshold

Features: 39
Classes: car,back

0.7.0.1.0.1
Decider: UnaryThreshold

Features: 35
Classes: car,back

0.8.0.1.0.0
Decider: UnaryThreshold

Features: 53
Classes: car,back

0.9.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.0.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.0.0
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.22.0.1.0.0
Decider: UnaryThreshold

Features: 24
Classes: car,back

0.23.0.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.0.1
Decider: UnaryThreshold

Features: 45
Classes: car,back

0.9.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.0.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.0.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.0.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.0.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.0.1
Decider: UnaryThreshold

Features: 91
Classes: car,back

0.22.0.1.0.1
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.23.0.1.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.7.0.1.1.0
Decider: KMeansDecider

Features: 27
Classes: car,back

0.7.0.1.1.1
Decider: UnaryThreshold

Features: 31
Classes: car,back

0.8.0.1.1.0.0
Decider: UnaryThreshold

Features: 30
Classes: car,back

0.8.0.1.1.0.1
Decider: KMeansDecider

Features: 24
Classes: car,back

0.9.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.0.0
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.1.0.0
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.1.0.0
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.1.0.0
Decider: UnaryThreshold

Features: 114
Classes: car,back

0.18.0.1.1.0.0
Decider: UnaryThreshold

Features: 30
Classes: car,back

0.19.0.1.1.0.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.9.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 51
Classes: car,back

0.9.0.1.1.0.1.1
Decider: KMeansDecider

Features: 35
Classes: car,back

0.10.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 71
Classes: car,back

0.15.0.1.1.0.1.0
Decider: UnaryThreshold

Features: 16
Classes: car,back

0.16.0.1.1.0.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.10.0.1.1.0.1.1.0
Decider: UnaryThreshold

Features: 50
Classes: car,back

0.10.0.1.1.0.1.1.1
Decider: UnaryThreshold

Features: 56
Classes: car,back

0.11.0.1.1.0.1.1.0
Decider: UnaryThreshold

Features: 63
Classes: car,back

0.12.0.1.1.0.1.1.0
Decider: UnaryThreshold

Features: 40
Classes: car,back

0.13.0.1.1.0.1.1.0
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.11.0.1.1.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.0.1.1.1
Decider: UnaryThreshold

Features: 50
Classes: car,back

0.13.0.1.1.0.1.1.1
Decider: UnaryThreshold

Features: 9
Classes: car,back

0.14.0.1.1.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.8.0.1.1.1
Decider: UnaryThreshold

Features: 42
Classes: car,back

0.9.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1.1.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1.1.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1.1.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1.1.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1.1.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1.1.1
Decider: UnaryThreshold

Features: 79
Classes: car,back

0.22.0.1.1.1
Decider: UnaryThreshold

Features: 12
Classes: car,back

0.23.0.1.1.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.5.1.0
Decider: UnaryThreshold

Features: 17
Classes: truck

0.5.1.1
Decider: UnaryThreshold

Features: 11
Classes: truck,back

0.6.1.0
Decider: UnaryThreshold

Features: 18
Classes: truck

0.7.1.0
Decider: UnaryThreshold

Features: 25
Classes: truck

0.8.1.0
Decider: UnaryThreshold

Features: 31
Classes: truck

0.9.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.10.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.11.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.12.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.13.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.14.1.0
Decider: UnaryThreshold

Features: 73
Classes: truck

0.15.1.0
Decider: UnaryThreshold

Features: 22
Classes: truck

0.16.1.0
Decider: EmptyClassifier

Features: 0
Classes: truck

0.6.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.7.1.1
Decider: UnaryThreshold

Features: 18
Classes: truck,back

0.8.1.1
Decider: UnaryThreshold

Features: 19
Classes: truck,back

0.9.1.1
Decider: UnaryThreshold

Features: 41
Classes: truck,back

0.10.1.1
Decider: UnaryThreshold

Features: 53
Classes: truck,back

0.11.1.1
Decider: UnaryThreshold

Features: 60
Classes: truck,back

0.12.1.1
Decider: UnaryThreshold

Features: 64
Classes: truck,back

0.13.1.1
Decider: UnaryThreshold

Features: 47
Classes: truck,back

0.14.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.15.1.1
Decider: EmptyClassifier

Features: 0
Classes: truck,back

Abbildung A.4.: 8000-er k-Means-Baum.
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0.0
Decider: UnaryThreshold

Features: 3
Classes: car,truck,back

0.1
Decider: UnaryThreshold

Features: 5
Classes: car,truck,back

0.2
Decider: UnaryThreshold

Features: 12
Classes: car,truck,back

0.3
Decider: NAryDecider

Features: 14
Classes: car,truck,back

0.4.0
Decider: NAryDecider

Features: 20
Classes: car,back

0.4.1
Decider: NAryDecider

Features: 20
Classes: truck,back

0.5.0.0
Decider: UnaryThreshold

Features: 24
Classes: car

0.5.0.1
Decider: UnaryThreshold

Features: 24
Classes: car,back

0.6.0.0
Decider: UnaryThreshold

Features: 32
Classes: car

0.7.0.0
Decider: UnaryThreshold

Features: 42
Classes: car

0.8.0.0
Decider: UnaryThreshold

Features: 55
Classes: car

0.9.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.10.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.11.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.12.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.13.0.0
Decider: UnaryThreshold

Features: 64
Classes: car

0.14.0.0
Decider: UnaryThreshold

Features: 84
Classes: car

0.15.0.0
Decider: UnaryThreshold

Features: 92
Classes: car

0.16.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.17.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.18.0.0
Decider: UnaryThreshold

Features: 128
Classes: car

0.19.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.20.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.21.0.0
Decider: UnaryThreshold

Features: 156
Classes: car

0.22.0.0
Decider: UnaryThreshold

Features: 182
Classes: car

0.23.0.0
Decider: UnaryThreshold

Features: 182
Classes: car

0.24.0.0
Decider: UnaryThreshold

Features: 182
Classes: car

0.25.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.26.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.27.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.28.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.29.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.30.0.0
Decider: UnaryThreshold

Features: 256
Classes: car

0.31.0.0
Decider: EmptyClassifier

Features: 0
Classes: car

0.6.0.1
Decider: UnaryThreshold

Features: 32
Classes: car,back

0.7.0.1
Decider: UnaryThreshold

Features: 42
Classes: car,back

0.8.0.1
Decider: UnaryThreshold

Features: 55
Classes: car,back

0.9.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.10.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.11.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.12.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.13.0.1
Decider: UnaryThreshold

Features: 64
Classes: car,back

0.14.0.1
Decider: UnaryThreshold

Features: 84
Classes: car,back

0.15.0.1
Decider: UnaryThreshold

Features: 92
Classes: car,back

0.16.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.17.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.18.0.1
Decider: UnaryThreshold

Features: 128
Classes: car,back

0.19.0.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.20.0.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.21.0.1
Decider: UnaryThreshold

Features: 156
Classes: car,back

0.22.0.1
Decider: UnaryThreshold

Features: 182
Classes: car,back

0.23.0.1
Decider: UnaryThreshold

Features: 182
Classes: car,back

0.24.0.1
Decider: UnaryThreshold

Features: 182
Classes: car,back

0.25.0.1
Decider: UnaryThreshold

Features: 256
Classes: car,back

0.26.0.1
Decider: UnaryThreshold

Features: 256
Classes: car,back

0.27.0.1
Decider: UnaryThreshold

Features: 256
Classes: car,back

0.28.0.1
Decider: UnaryThreshold

Features: 256
Classes: car,back

0.29.0.1
Decider: UnaryThreshold

Features: 256
Classes: car,back

0.30.0.1
Decider: EmptyClassifier

Features: 0
Classes: car,back

0.5.1.0
Decider: UnaryThreshold

Features: 17
Classes: truck

0.5.1.1
Decider: UnaryThreshold

Features: 11
Classes: truck,back

0.6.1.0
Decider: UnaryThreshold

Features: 18
Classes: truck

0.7.1.0
Decider: UnaryThreshold

Features: 25
Classes: truck

0.8.1.0
Decider: UnaryThreshold

Features: 31
Classes: truck

0.9.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.10.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.11.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.12.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.13.1.0
Decider: UnaryThreshold

Features: 64
Classes: truck

0.14.1.0
Decider: UnaryThreshold

Features: 73
Classes: truck

0.15.1.0
Decider: UnaryThreshold

Features: 22
Classes: truck

0.16.1.0
Decider: EmptyClassifier

Features: 0
Classes: truck

0.6.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.7.1.1
Decider: UnaryThreshold

Features: 18
Classes: truck,back

0.8.1.1
Decider: UnaryThreshold

Features: 19
Classes: truck,back

0.9.1.1
Decider: UnaryThreshold

Features: 41
Classes: truck,back

0.10.1.1
Decider: UnaryThreshold

Features: 53
Classes: truck,back

0.11.1.1
Decider: UnaryThreshold

Features: 60
Classes: truck,back

0.12.1.1
Decider: UnaryThreshold

Features: 64
Classes: truck,back

0.13.1.1
Decider: UnaryThreshold

Features: 47
Classes: truck,back

0.14.1.1
Decider: UnaryThreshold

Features: 10
Classes: truck,back

0.15.1.1
Decider: EmptyClassifier

Features: 0
Classes: truck,back

Abbildung A.5.: Kaskade.
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