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Abstract. We consider the Cantor topology over finite words, which is obtained
by resembling the well-known Cantor topology over infinite words. We consider two
automata models: Complete flip automata recognize exactly the class of regular open
sets, and deterministic weak automata are expressively complete for the class of
regular Boolean combinations of open sets. These automata models yield decidability
of the membership problem. In addition, we obtain simple and effective algebraic
characterizations for regular open languages and for regular Boolean combinations of
open sets. The algebraic characterizations admit counterparts for the left-right dual
and the two-sided version of the Cantor topology over finite words.

As an application, we consider Boolean combinations of open sets which are recog-
nizable by monoids in the variety DA. As it turns out, several characterizations of
DA-languages admit natural restrictions for this subclass.

1 Introduction

The Cantor topology over infinite words is an important concept for classifying w-languages. For
example, every w-regular language can be decomposed into a safety and a liveness property [I],
that is, into a closed and a dense set. An w-regular language is deterministic if and only if it is
a countable intersection of open sets, cf. [19, Remark 5.1]. There are many other properties of
w-languages which can be described using the Cantor topology, see e.g. [13], [17].

For a given topology, let G be the open sets, and let I’ be the closed sets. Let H, consist of
all countable unions of sets in H, and let Hy consist of all countable intersections of sets in H.
Starting with open and closed sets, alternating the operations o and § leads to the Borel hierarchy.
From a topological point of view, an interesting property of the Cantor topology over infinite
words is that it is metrizable, see [13, Proposition II1.3.2]. This implies that the Boolean closure
BG of G (or equivalently of F') in the Cantor topology over infinite words is contained in F, N Gs.
Moreover, when restricted to w-regular languages w-REG, then

BG Nw-REG = F,NGsNw-REG, (1)

see [13, Theorem VI.3.7]. Another well-known fact is the following classification of w-regular
languages within the Borel hierarchy [19, Theorem 5.2]:

w-REG C B(Fa) = E(G(S) C FosNGsg. (2)
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Over finite words, resembling the definition of the Cantor topology does not yield a metrizable
topology. And even worse, the Borel hierarchy of the Cantor topology over finite words collapses
at the very first level, i.e., F' = F, and G = G, see [17, Section 2.4]. Therefore, in view of we
consider the Boolean closure of Cantor sets over finite words instead of the Borel hierarchy. Our
main results can be summarized as follows. For regular Cantor sets as well as for regular Boolean
combinations of Cantor sets we give

e an effective and expressively complete automaton model,

e an effective algebraic characterization in terms of Green’s relations,
e a single lattice equation [7], and

e closure properties.

A flip automaton is an automaton with no transitions from final states to non-final states.
Therefore, at each final state, all minimal complete flip automata have a self-loop for every letter
of the alphabet. Complete flip automata recognize exactly the class of regular Cantor sets. Weak
automata have been introduced by Muller, Saoudi, and Schupp [11]. An automaton is weak if the
states in each strongly connected component are either all final or all non-final. We show that
deterministic weak automata are expressively complete for regular BG-sets.

Another property of the Boolean closure is that for any variety of regular languages V we have
YV NBG = B(VNG). Except for the automaton model, the corresponding properties for the
left-right dual and the two-sided version of the Cantor topology hold as well. As for infinite words,
we show that every regular language over finite words is the intersection of a closed and a dense
set with respect to the Cantor topology. When building the Borel hierarchy starting with BG,
then we obtain the following counterpart of for finite words: Any language is contained in
(BG)U N (BG)(s.

In Section [5, we consider Boolean combinations of Cantor sets within the variety of regular
languages DA. We show that several of the combinatorial characterizations of DA admit nat-
ural restrictions for DA N BG. These characterizations include unambiguous polynomials [15],
rankers [20], and partially ordered two-way automata [16]. Partially ordered automata are also
known as very weak, 1-weak, or linear automata.

2 Preliminaries

The set of finite words over the alphabet I' is denoted by I'*, and the set of finite non-empty
words is I'". The empty word is e. Let L C I'*.

o If LI C L, then L is a Cantor set in I'*.

o If I'*L C L, then L is a left Cantor set in I,

o If I'*LI™™ C L, then L is a two-sided Cantor set in I'*.

The Cantor sets (resp. left Cantor sets, resp. two-sided Cantor sets) are the open sets of the Cantor
topology (resp. the left Cantor topology, resp. the two-sided Cantor topology). A language is closed
if its complement is open. A language L C I'* is dense if I'* is the only closed set containing L.

As usual, an automaton A = (Q,I,6,Qo, F') is given by a finite set of states @), an input
alphabet I', a transition relation § C Q x I" X @), a set of initial states Qg C @, and a set of final
states F' C Q. We inductively extend the transition relation to words: (g,¢,q) € 6 for all ¢ € Q;
and (p,au,q) € 0 if there exists some r € @ such that (p,a,r) € 0 and (r,u,q) € §. We always
assume that all states are reachable, i.e., for every ¢ € @) there exist go € Qo and v € I'* such
that (qo,u,q) € . A word u € I'* is accepted by A if (Qo x {u} x F)N 4§ # 0. The language
recognized by A is L(A) = {u € I'* | u is accepted by A}. The automaton A is complete if for



every p €  and for every a € I" there exists at least one state ¢ € @ such that (p,a,q) € 6. And
the automaton A is deterministic if |Qp| = 1 and for all p € @ and all a € I there is at most one
state ¢ € @ with (p,a,q) € 6. For a deterministic automaton .4 we frequently write d(p,u) = g
instead of (p,u,q) € 4.

We view an automaton also as an edge-labeled graph with vertices ) and edges p -% ¢q for a € I’
given by transitions (p,a,q) € 0. A flip automaton is an automaton such that the intersection of
Fx I x(Q\F)and ¢ is empty, i.e., there are no transitions from final to non-final states. The
idea is that in every run, flip automata can “flip” at most once from non-accepting to accepting.
Note that for complete flip automata we may always assume that there is a self-loop ¢ -% ¢ for
every final state ¢ € F' and for every a € I'. An automaton is weak if for every strongly connected
component C' C @, we either have C C F or C N F = (. The concept of weak automata has been
introduced by Muller, Saoudi, and Schupp [11] for alternating tree automata. Since then, weak
automata have been used frequently; see e.g. [2], 4, [0l 10 [12].

For a language L C I'* and a word w € I'*, the left quotient of L by w is w™'L =
{u € I'* | wu € L}, and symmetrically, the right quotient of L by w is Lw™! = {u € I'* | uw € L}.
A class of regular languages V associates with every finite alphabet I" a set V(I'™*) of regular lan-
guages over I'. It is closed under inverse homomorphisms if for every homomorphism h : L* — I'*,
L € V(I'*) implies h=1(L) € V(X*). A wvariety of languages is a class of languages closed under
Boolean combinations, under inverse homomorphisms, left quotients, and right quotients. In this
setting, Boolean combinations consist of complementation, finite unions, and finite intersections.
The closure of V under Boolean combinations is BY. Lattice equations can be defined in the
general setting of free profinite monoids [7]. In this paper, we only introduce the w-notation. We
inductively define w-terms over a set of variables X: Every x € X is an w-term; and if z and y
are w-terms, then so are zy and (z)“. For a number n € N and an w-term z let z(n) € X* be
the word obtained by replacing (x)“ by the power 2™, A regular language L satisfies the lattice
equation x — y for w-terms x and y if there exists ng € N such that for all n > ng and for all
homomorphisms h : £* — I'* the implication h(z(n)) € L = h(y(n)) € L holds. It satisfies
x « y if it satisfies both £ — y and y — =x.

Let M be a monoid. We introduce Green'’s relations over M. For z,y € M let x <g y (resp.
x <ry, resp. x <7 y) if there exist s,t € M such that = = ys (resp. x = ty, resp. x = tys). Let <
be a preorder on M. A subset I C M is a <-order ideal of M if x <y € I implies x € I. An
element x € M is idempotent if x = 2. In every finite monoid there exists a number w > 1 such
that % is idempotent for all € M. Let L C I'* be a language. A homomorphism h : I'™* — M
recognizes L if L = h~1(P) for some P C M, i.e., u € L is equivalent to h(u) € P. A monoid M
recognizes L if there exists a homomorphism A : I'™* — M recognizing L. We define u =, v if for all
s,t € I'* the equivalence sut € L < svt € L holds. The relation =y, is the syntactic congruence of
L and the equivalence classes of the syntactic congruence constitute the syntactic monoid Synt(L).
The syntactic homomorphism hy, : I'* — Synt(L) is the canonical homomorphism mapping a word
to its equivalence class. The syntactic monoid of a language is finite if and only if the language is
regular. Moreover, every language is recognized by its syntactic homomorphism.

A wvariety of monoids V is a class of monoids which is closed under taking submonoids, quotients,
and finitary direct products. There is a one-to-one correspondence V < ) between varieties of
finite monoids V and varieties of regular languages V such that V contains exactly those languages
which are recognized by monoids in V, see [13, Section B.2].



3 Cantor Sets

The Cantor topology over infinite words is an important concept for classifying w-languages. One
of its main properties is that the Cantor topology over infinite words is metrizable. This is not
true for the Cantor topology over finite words, see e.g. [I7, Section 2.4]. On the other hand, many
interesting properties over finite words can be stated as follows: There exists a prefix which has
some desirable property L and we do not care about subsequent actions. This immediately leads
to the Cantor set LI™*. Below, we give simple characterizations of regular Cantor sets in terms of
automata and homomorphisms onto finite monoids.

Theorem 1. Let L C I'* be a regular language. The following are equivalent:

1. L is a Cantor set.

2. L satisfies the lattice equation y — yz.

8. Every complete deterministic automaton recognizing L is a flip automaton.

4. There ezists a complete (nondeterministic) flip automaton recognizing L.

5. h(L) is a <g-order ideal for every surjective homomorphism h : I'* — M recognizing L.

6. hi(L) is a <g-order ideal for the syntactic homomorphism hy, : I'* — Synt(L).

7. There erists a homomorphism h : I'* — M recognizing L such that L = h='(P) for some
<p-order ideal P.

Proof. ‘1]=[]: Let x € L and y € I'*. We have zy € LI C L and therefore, L satisfies the
lattice equation y — yz.

‘=>’: Let A = (Q,I,0,q0,F) be a complete deterministic automaton recognizing L and
suppose (g, u) = q € F. Since A is complete, for every v € I'* there exists p € @ such that
d(gq,v) = p. Moreover p € F, because uv € L. Therefore, A is a flip automaton. The implication
‘Bl= M is trivial.

‘U= p]: Let A= (Q,I9,Qo, F) be a complete flip automaton recognizing L and let i : I™* — M
be a surjective homomorphism recognizing L. Suppose h(w) <g h(u) and h(u) € h(L). Then
there exists v € I'™* such that h(w) = h(uv). We have (qo,u,q) € 0 for some initial state gy and
some final state ¢. Since A is complete, there exists a state p with (¢,v,p) € 6. And since A is a
flip automaton, the state p is a final state. Therefore uv € L(A) = L and h(w) = h(uv) € h(L).
The implications ‘B = [0 and ‘{6]=[7]" are trivial.

“M=[]: We have h(uv) <g h(u) for all u,v € I'*. Therefore, if u € L, then uv € L, i.e.,
L™ C L. [l

Example 1. Not every complete nondeterministic automaton, which recognizes a Cantor set
has to be a flip automaton. The complete automaton below recognizes I'™*, but it is not a flip
automaton.

}
reO—-Oor

In particular, condition ‘@3]’ in Theorem [I] does not hold for complete nondeterministic automata.
O

The next theorem is the left-right dual of Theorem [} For the automaton characterization we
would have to consider automata which read the input from right to left. We therefore omit this
characterization.



Theorem 2. Let L C I'* be a regular language. The following are equivalent:

1. L is a left Cantor set.

2. L satisfies the lattice equation y — xy.

3. h(L) is a <g-order ideal for every surjective homomorphism h : I'* — M recognizing L.

4. hr(L) is a <g-order ideal for the syntactic homomorphism hyp, : I'* — Synt(L).

5. There exists a homomorphism h : I'* — M recognizing L such that L = h='(P) for some
<,-order ideal P. O

For the two-sided version of the Cantor topology over finite words, we have the following
characterizations.

Theorem 3. Let L C I'* be a regular language. The following are equivalent:

1. L is a two-sided Cantor set.

2. L satisfies the lattice equation y — ryz.

3. h(L) is a <g-order ideal for every surjective homomorphism h : I'* — M recognizing L.

4. hp(L) is a <g-order ideal for the syntactic homomorphism hyr : I — Synt(L).

5. There exists a homomorphism h : I'* — M recognizing L such that L = h='(P) for some
< g-order ideal P.

Proof. The proof is similar to the proof of Theorem [I] ‘{I]=-[2]: If y € L, then zyz € I'"LI™* C L.
Therefore, L satisfies the lattice equation y — xyz.

‘Rl=PBJ: Let h: I'" — M be a surjective homomorphism recognizing L and let h(v) € h(L).
For w,w € I'*, the lattice equation yields wvw € L. Therefore h(uvw) € h(L), showing that h(L)
is a < g-order ideal.

The implications ‘B3] = [’ and ‘{4 =[]’ are trivial.

“:>’: For all u,v,w € I'* we have h(uvw) <7 h(v). Therefore, v € L implies uwow in L, i.e.,
I'*LI™* C L. [l

These characterizations of regular open sets immediately give the following decidability result.

Corollary 1. It is decidable whether a regular language L C I'* is a Cantor set (resp. a left
Cantor set, resp. a two-sided Cantor set).

Proof. Let L be given by a complete deterministic automaton 4. For deciding whether L is a
Cantor set, it suffices to check if A is a flip automaton by conditions ‘@]’ and ‘{4’ of Theorem
In order to decide whether L is a left Cantor set, we first compute a complete deterministic
automaton B for the reversal of L, and then check whether B is a flip automaton. A language
is a two-sided Cantor set if and only if it is both a Cantor set and a left Cantor set. Therefore,
decidability for two-sided Cantor sets follows by corresponding results for Cantor sets and left
Cantor sets.

Another approach is to compute the syntactic homomorphism of L and then verify whether
condition “@’ in Theorem || (resp. condition " in Theorem [2| resp. condition “’ in Theorem
holds. (]

Corollary 2. The class of reqular Cantor sets (resp. reqular left Cantor sets, resp. reqular two-sided
Cantor sets) is closed under finite unions, finite intersections, inverse homomorphisms, and left
quotients (resp. right quotients for left Cantor sets, resp. no quotients for two-sided Cantor sets).



Proof. Let W be the class of all regular Cantor sets (resp. left Cantor sets, resp. two-sided Cantor
sets). Closure under finite union, finite intersection and inverse homomorphisms is an immediate
consequence of the fact that we have a description of W in terms of lattice equations [7]. Let
now L € W(I'*). By Theorem [l L satisfies the lattice equation x — zy. Suppose u € a~ 'L, i.e.,
au € L. The lattice equation yields auv € L, and hence, uv € a~'L. Therefore, a~!L satisfies the
lattice equation z — xy. Hence, a='L € W(I'*) by Theorem . Closure under right quotients for
left Cantor sets is symmetric. O

Example 2. The class of Cantor sets is not closed under right quotients. For example, L =
ab{a,b}" is a Cantor set in {a,b}”, whereas Lb~! = {a} U L is not a Cantor set. O

Over infinite words every w-regular language is the intersection of a safety and a liveness
property [1]. Safety properties are the closed sets, and liveness properties are dense sets. In the
following theorem, we give the analogous result for finite words.

Theorem 4. FEvery regular language L C I'* is an intersection of regqular sets C, D C I'* such
that C' is closed and D is dense in the Cantor topology (resp. left Cantor topology, resp. two-sided
Cantor topology).

Proof. We first consider the Cantor topology. Let h : I'™" — M be a surjective homomorphism
recognizing L, and let P = h(L). We define

Q={reM|y<gx for somey e P}

and R = PUR/, with R’ containing exactly one element from each <g-minimal R-class such that
ifr Rye Pandz e R, then x € P, ie., if P contains elements from some minimal R-class, then
we choose one of those as representatives in R'. Now, P = Q N R.

The set M \ Q is a <g-order ideal. By Theorem |1} C = h=1(Q) is closed in the Cantor topology.
We claim that D' = h=1(R') is dense. Then D = h~!(R) is dense, too. To prove the claim,
consider some closed set T C I'* with D’ C T'. Assume that u € S = I'* \ T. Choose = € R’ such
that x <g h(u). Then there exists v € I'* such that = h(uv). Now uwv € SN T, since S is open
and h~!(x) C D’ C T. This is a contradiction. Hence, S = () and 7' = I'*. Therefore, D’ and D
are dense. By construction, we have L = C' N D.

The proof for the left Cantor topology is left-right dual. For the two-sided Cantor topology
we choose Q = {r € M | y <7 x for some y € P} and R = PU R/, with R’ containing exactly
one element from each <7-minimal J-class such that if P contains elements from some minimal
J-class, then we choose one of those as representatives in R’. As before, we have P = Q N R.
Showing that h~1(Q) is closed in the two-sided Cantor topology and showing that h~1(R) is dense
in the two-sided Cantor topology follows the lines as for the Cantor topology. O

The following proposition shows that the Borel hierarchy over Boolean combinations of open
sets in I'™* collapses at the second level, i.e., every language is contained in (BG), N (BG)s.

Proposition 1. FEvery language is both a countable union and a countable intersection of Boolean
combinations of Cantor sets (resp. left Cantor sets, resp. two-sided Cantor sets).

Proof. 1t suffices to prove the claim for two-sided Cantor sets. Let L C I'*. We have
{u} = Mul*\ (ol U I'Tul™),

and L = ¢ {u} as well as L = (1,5 I\ {u}. Therefore, L € (BG),N(BG)s over the two-sided
Cantor topology G. U



4 The Boolean Closure of Cantor Topologies

The Borel hierarchy over the Cantor topology for infinite words leads to a well-known classification
of w-languages. When restricted to w-regular languages, the Boolean closure of the Cantor topology
coincides with the level F,, N G5 (also called Ag) of the Borel hierarchy, see [13, Theorem VI.3.7]|.
For finite words, the Borel hierarchy over the Cantor topology collapses at the very first level, and
the Boolean closure of the Cantor topology contains strictly more languages. In this section, we
show that regular languages in the Boolean closure BG of the Cantor topology G admit simple
and effective automata-theoretic and algebraic characterizations. Moreover, for any variety of
regular languages V the language classes V N BG and B(V N G) coincide.

Theorem 5. Let L C I'™* be a reqular language. The following are equivalent:

L is a Boolean combination of Cantor sets in I'*.

L satisfies the lattice equation z(xy)¥ < z(zy)“z.

L satisfies the lattice equation z(xy)¥ — z(xy)“x.

Every deterministic automaton recognizing L is weak.

L is recognized by some deterministic weak automaton.

h(L) is a union of R-classes for every surjective homomorphism h : I'* — M recognizing L.
hr(L) is a union of R-classes for the syntactic homomorphism hy, : I'* — Synt(L).

There exists a homomorphism h : I'* — M recognizing L such that L = h=(P) for some
union of R-classes P.

Proof. We show ‘[I]=[0] = [1=B|=[I and M= [2|=B=H@=[F=[0"

‘:>|§[’: Let L = U, P\ Q; with I C P; and Q; I C Q;. Consider u,v such that
h(u) R h(v), i.e., there exist s,t € I'* with h(v) = h(us) and h(u) = h(vt). Suppose u € L. Let
u; = u(st)) and v; = ujs. Now, h(u;) = h(u), h(v;) = h(v), and u; is a prefix of v; which in
turn is a prefix of uj;1. For every u; there exists ¢ € {1,...,n} such that u; € P; \ ;. Hence
by the pigeonhole principle, there exist j < k with u;,u, € P\ Q; for some ¢ € {1,...,n}. Then
vj € BT C P If vj € @, then uy, € Q™ C @Q; and uy, € P\ Q;. We conclude vj ¢ @Q; and
vj € P;\ Qi C L. Hence, h(v) = h(vj) € h(L). This shows that h(L) is a union of R-classes. The
implications ‘{f]=[7]" and ‘{7]=[§]" are trivial.

“ = ’: By Theorem |1} the inverse image h~1(Q) of every <g-order ideal @ is a Cantor open
set. Moreover, the inverse image of every R-class is a Boolean combination of such languages
Q).

‘:>’: Let h : I'" — M be a surjective homomorphism recognizing L such that h(L) is
a union of R-classes. Choose ng > 1 such that s™ is idempotent for every s € M. Since
h(z(xy)”!) R h(z(my)”!x) for every x,y, 2 € I'* and for every n > ng, we have z(xy)™ € L if and
only if z(xy)™x € L. Therefore, L satisfies the lattice equation z(2y)“ < z(2y)“z. The implication
‘P =B is trivial.

‘Bl=M" Let A= (Q, I, 9, qo, F) be a deterministic automaton recognizing L. Assume (g, z) = p
and 0(p,y) = q for ¢ € F and p ¢ F. Choose z € I'* such that 0(go, 2) = ¢. Then for all n € N we
have z(xy)™ € L and z(zy)"x ¢ L. This contradicts the lattice equation. Hence, A is weak. The
implication ‘@ =[]’ is trivial.

‘ = @’: Let L be recognized by some deterministic weak automaton A = (Q, I, 6, qo, F') and let
h: I'* — M be a surjective homomorphism recognizing L. Choose n € N such that, for all u € I'*
and for all ¢ € @, the states §(q,u") and §(q,u"+!) are always in the same strongly connected
component of A. Suppose h(u) R h(v), i.e., h(ux) = h(v) and h(vy) = h(u) for some z,y € I'*.
By construction, 5(q0, u(xy)”) and 5(q0, u(xy)”“) are in the same connected component of A.

o R G oo~



Hence, 5(q0, u(a:y)”) and 5(qo, u(xy)":c) are also in the same connected component. Therefore,
we have
we L iff u(zy)" €L iff u(zy)"ze L iff ve L.

Here, the first and the third equivalence hold, since h recognizes L, and the second equivalence
holds because A is weak. This shows that h(L) is a union of R-classes. ]

Example 3. A monoid is R-trivial if R is the identity relation. A language recognized by a finite
R-trivial monoid is a Boolean combination of Cantor sets. The converse is not true. For example,
L = {a,b}" b(aa)*b{a,b}" is a Cantor set in {a,b}" (and a Boolean combination of Cantor sets
over any alphabet I" with a,b € I'), but L cannot be recognized by any finite aperiodic monoid.
Remember that a finite monoid is aperiodic if R N £ is the identity relation. In particular, all
finite R-trivial monoids are aperiodic. O

Example 4. The language L = (ab)*a cannot be written as a Boolean combination of Cantor
sets BG. We have (ab)“a R (ab)¥ for every finite monoid M and for all a,b € M. On the other
hand, for every n € N we have (ab)"a € L and (ab)™ ¢ L. Therefore, if h : I — M recognizes L,
then A(L) is not a union of R-classes. By Theorem 5} it follows that L is not in BG. %

Remark 1. We cannot use nondeterministic weak automata in condition ‘B’ of Theorem Bl The
automaton below is weak but it recognizes the language (ab)*a from Example 4| which is not a
Boolean combination of Cantor sets.

a |
VN a
OO0 .
In the following theorem, we give the left-right dual of Theorem [5| The automata-theoretic
characterizations are omitted, since they would result in deterministic weak right-to-left automata.

Theorem 6. Let L C I'* be a regular language. The following are equivalent:

1. L is a Boolean combination of left Cantor sets in ™.

2. L satisfies the lattice equation (ts)¥z < s(ts)“z.

3. L satisfies the lattice equation (ts)¥“z — s(ts)“z.

4. h(L) is a union of L-classes for every surjective homomorphism h : I'* — M recognizing L.

5. hp(L) is a union of L-classes for the syntactic homomorphism hy, : I'* — Synt(L).

6. There exists a homomorphism h : I'* — M recognizing L such that L = h=*(P) for some
union of L-classes P. O

A similar proof as for Theorem [5] leads to the following characterization of regular Boolean
combinations of two-sided Cantor sets.

Theorem 7. Let L C I'™* be a reqular language. The following are equivalent:

1. L is a Boolean combination of two-sided Cantor sets in I'*.

2. L satisfies the lattice equation (ts)¥z(xy)* < s(ts)¥z(xy)“z.

3. L satisfies the lattice equation (ts)¥z(xy)* — s(ts)?z(zy)“z.

4. h(L) is a union of J-classes for every surjective homomorphism h : I'* — M recognizing L.

5. hp(L) is a union of J-classes for the syntactic homomorphism hy, : I'* — Synt(L).

6. There exists a homomorphism h : I'* — M recognizing L such that L = h=*(P) for some
union of J-classes P.



Proof. We show ‘[I]= [ = [ =[0=[I and ‘6= [2=B=H"

‘:>’: Let L =, P\ Qi with I'™*P,I"™* C P; and I'*Q;I"™* C Q;. Consider u,v such that
h(u) J h(v), i.e., there exist s,t,r,w € I'* with h(v) = h(sut) and h(u) = h(rvw). Assume u € L.
Let uj = (rs)u(tw)? and v; = sujt. Now, h(u;) = h(u), h(v;) = h(v), and u; is a factor of v;
which in turn is a factor of uj;1. For every u; there exists ¢ € {1,...,n} such that u; € P;\ Q;.
Hence by the pigeonhole principle, there exist j < k with uj, uy € P; \ Q; for some i € {1,...,n}.
Then v; € I*P,I™ C P If v; € Qy, then w, € I™Q;I™ C Q; and uy, & P; \ Q;. We conclude
vj € Q; and v; € P;\ Q; C L. Hence, h(v) = h(v;) € h(L). This shows that k(L) is a union of
J-classes.

The implications ‘@ =[]’ and ‘G| = [6]" are trivial.

‘@ = ’: By Theorem [3] the inverse image h™(Q) of every < -order ideal @ is a two-sided
Cantor set. Moreover, the inverse image of every [J-class is a Boolean combination of such
languages.

‘@:’: Let h : I — M be surjective recognizing L such that h(L) is a union of J-classes.
Choose ng > 1 such that s is idempotent for all s € M and let n > ng. We have h((ts)"z(zy)") J
h(s(ts)"z(zy)"x) for all s,t,2,y,z € I'*. Thus (ts)"z(xy)" € L if and only if s(ts)"z(zy)"x € L,
showing the lattice equation. The implication ‘@2=-[3]" is trivial.

‘:>’: Let h : I'* — M be a surjective homomorphism recognizing L. Suppose h(w) J
h(z) € h(L). Then there exist s,t,z,y € I'* such that h(z) = h(twy) and h(w) = h(szz). We
have h(z) = h((ts)"z(zy)") for all n € N. Hence (ts)"z(zy)™ € L, because h recognizes L.
Choosing n sufficiently large, the lattice equation yields s(ts)"z(xy)"z € L. Moreover, h(w) =
h(s(ts)"z(zy)"z) and thus, h(w) € h(L). This shows that h(L) is a union of J-classes. O

Remark 2. For finite monoids, J is the smallest equivalence relation such that R C J and
L C J, see e.g. |13, Proposition A.2.5(2)]. Therefore, we conclude from Theorems [f] [6] and
that a regular language is a Boolean combination of two-sided Cantor sets in I'* if and only if it is
both a Boolean combination of Cantor sets in I™ and a Boolean combination of left Cantor sets
in I, O

Corollary 3. It is decidable whether a regular language L C I'* is a Boolean combination of
Cantor sets (resp. left Cantor sets, resp. two-sided Cantor sets).

Proof. Let L be given by a deterministic automaton .A. We can effectively verify whether A is
weak. By conditions ‘@’ and ‘f]’ in Theorem [f] this is equivalent to L being a Boolean combination
of Cantor sets. In order to decide whether L is a left Cantor set, we first compute a deterministic
automaton B for the reversal of L and then check whether B is weak. For deciding whether L is a
Boolean combination of two-sided Cantor sets, we verify that both conditions hold by Remark 2]

Alternatively, we can compute the syntactic homomorphism of L and then verify whether
condition “’ in Theorem [5| (resp. condition " in Theorem @, resp. condition “’ in Theorem E[)
holds. O

Corollary 4. The class of regular Boolean combinations of Cantor sets (resp. left Cantor sets,
resp. two-sided Cantor sets) is closed under Boolean operations, inverse homomorphisms, and left
quotients (resp. right quotients for left Cantor sets, resp. no quotients for two-sided Cantor sets).

Proof. The closure properties follow from Corollary [2] since inverse homomorphisms and quotients
commute with Boolean operations. (Il



Example 5. Let I' = {a,b}. The language L = (ab)*aa is a Boolean combination of Cantor sets,
because L = LI\ LI'". The quotient La~! = (ab)*a is the language from Example 4| which
cannot be written as a Boolean combination of Cantor sets. Therefore, in general, the class of
Boolean combinations of Cantor sets is not closed under right quotients. ¢

In any regular Boolean combination of Cantor sets, we can assume that the Cantor sets
themselves are regular. The following theorem shows that this holds relative to any variety of
regular languages.

Theorem 8. Let V be a variety of reqular languages and let L C I'*. The following assertions are
equivalent:

1. L is a Boolean combination of Cantor sets (resp. left Cantor sets, resp. two-sided Cantor
sets) in V(I'™).

2. L € V(I'*) and L is a Boolean combination of Cantor sets (resp. left Cantor sets, resp.
two-sided Cantor sets) in I'*.

Proof. The implication ‘{I]=[2] is trivial since V is closed under Boolean operations. For ‘@ =-[I
let L be a Boolean combination of Cantor sets. By Theorem [5| there is a surjective homomorphism
h:I'* — M € V recognizing L such that k(L) is a union of R-classes. Theorem 1| shows that the
inverse image h~!(Q) of every <g-order ideal @ is a Cantor set in V(I"*). Since the inverse image
of every R-class is a Boolean combination of such languages h=1(Q), we see that L is a Boolean
combination of Cantor sets in V(I™*). The case of being a Boolean combination of left Cantor sets
follows by left-right symmetry and the proof for two-sided Cantor sets is similar. O

As we will see in Section [b| what essentially happens in Boolean combinations of Cantor sets
is that the end of words is “concealed.” Therefore as shown in the following proposition, one
way of obtaining Boolean combinations of Cantor sets is to append a new unique last symbol c.
This way, the end of words is not “concealed” anymore. In particular, if V is a variety of regular
languages and if Lec € V(I'™*) for L C (I' \ {c})*, then by Theorem |8 the language Lc is a Boolean
combination of Cantor sets in V(I™).

Proposition 2. Let L C (I'\ {c})* and ¢ € I". Then Lc is a Boolean combination of Cantor sets
n I'*.

Proof. Then Lec = Lel™ \ Lel'™ . Hence, Le is a Boolean combination of Cantor sets in I'*. [

5 Boolean Combinations of Cantor Sets in DA

A finite monoid M belongs to the variety DA if (zy)“z(zy)* = (xy)* for all x,y € M. The
corresponding variety of regular languages is denoted by DA. It has a huge number of equivalent
characterizations, see e.g. [I8, 5]. In this section, we consider Boolean combinations of Cantor
sets in DA. As it turns out, several descriptions of languages in DA admit natural restrictions
characterizing Boolean combinations of Cantor sets in D.A. Among these characterizations are
unambiguous polynomials [I5], partially ordered two-way automata [16], and rankers [20].

A one-pass two-way automaton A = (Q, I8, Xg, F') is given by a finite set of states @ = X UY,
an input alphabet I', a transition relation 6 C (Q x I' x Q) U (Y x {>} x X), a set of initial states
Xo C X, and a set of final states F' C Q).

The states in X (for neXt) are right-moving and the states in Y (for Yesterday) are left-moving.
The tape alphabet is I' U {>,<}. The symbol > is the left-end marker and < is the right-end
marker. We write z -% 2’ instead of (z,a,z’) € 0.
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On input w = a1 - --a, € I'*, the tape content is >wu <. Position 0 is labeled by > and position
n + 1 has label <. A transition (z,7) I (2/,j) between configurations in @ x N exists if z % 2/
and if 2/ € X, then j = ¢ + 1; otherwise j =i — 1. A computation is a sequence of transitions
(z0,10) F =+ F (2¢,4¢) with z9 € Xo, 7o = 1 and 4y = n + 1. It is accepting if z; is a final state.
Note that the left-end marker > cannot be overrun by A. A word w € I'* is accepted by A
if there exists an accepting computation of A on input w. The language recognized by A is
L(A) ={u e I'*| A accepts u}.

As usual, the automaton A is deterministic if | Xo| =1 and for all z € Q and all a € I U {>}
there is at most one 2/ € Q with z % 2. It is complete if for all z € Q and all a € I' there is
at least one 2/ € Q with z -% 2’ and, in addition, for all z € Y there is at least one 2z’ € X with
z 2, 2/, Every automaton can be made complete by adding a new sink state to X. The automaton
is partially ordered (or very weak, or a one-pass po2-automaton) if there exists a partial ordering
C of the states such that transitions are non-descending, i.e., if z -% 2/, then z C 2’. In a partially
ordered automaton, once a state is left, it is never re-entered.

Usually the disjunction of two-way automata A and B is done by simulating A and if this
automaton rejects, then the computation restarts with a simulation of B. This is not possible for
one-pass automata since the computation stops as soon as the right-end marker is encountered.
By a product automaton construction for one-pass po2-automata this problem can be solved
leading to the following proposition. Similar techniques were used for deterministic po2-Biichi
automata [§].

Proposition 3. Deterministic one-pass po2-automata are closed under Boolean operations.

Proof. Let L C I'* be recognized by the complete deterministic one-pass po2-automaton
A= (Q,T,d,z0, F). The complement I'*\ L is recognized by the automaton A = (Q, I, §, z¢, Q\ F)
obtained from 4 by complementing the set of final states.

For closure under union and intersection we give a product automaton construction. The main
problem in this construction comes from the case when the automata do not agree on the direction
in which the input is processed. To overcome this, we have to do some additional book-keeping.
We only give a high-level description of the construction; the details are similar to the situation
for deterministic po2-Biichi automata [§].

We simulate the two automata in parallel in what we call the synchronous mode as long as both
automata are moving to the right. If at least one of the automata is moving to the left, then we
start a simulation of one left-moving automaton in asynchronous mode while suspending the other
automaton. We refer to the position of the input, where this disagreement on moving to the right
happens, as the synchronization point. In asynchronous mode, the active automaton can move
in either direction. As soon as the synchronization point is reached again and both automata
agree on moving to the right, we switch back to the synchronous mode and we continue simulating
both automata in parallel; otherwise we stay in asynchronous mode while simulating one of the
automata. However, in order to apply this idea we must be able to recognize the synchronization
point while computing in the asynchronous mode.

For re-synchronization we exploit the following combinatorial property of the computation of
deterministic po2-automata. Assume that we are in the asynchronous mode and let uqaq - - - Uy amt
be such that the a;’s correspond to the positions where in the synchronous mode at least one of the
automata changed its state. By determinism we have a; ¢ alph(u;), and since both automata are
partially ordered, m is bounded by the total number of states in both automata. In asynchronous
mode, recognizing the synchronization point (the position of a,, in the above factorization) relies
on keeping the following information up to date: the word a; - - - a,, and an index k € {1,...,m}
such that
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e the current position does not lie within the prefix uia - - - ugp_1ax_1, and
e there is a scattered subword ay - - - a,, between the current position and the synchronization
point.

Here, ag - --ay, is a scattered subword of w if w € I™apl™ - a,,,I™*. One can verify that we
indeed can maintain this invariant for k, cf. [8, Proposition 1|. Moreover, after at most m — 1
updates of this information there is a state change in the simulated automaton. Therefore, the
simulation of the active automaton together with the above book-keeping is partially ordered.
Since a,, € alph(u,,), we know that, when reading a,, in an X-state while k& = m, we have reached
the synchronization point. The exact details are slightly more technical, because we have to
distinguish between X- and Y -states. (I

Next, we introduce rankers. Informally a ranker is a sequence of instructions of the form
“go to the next a-position” and “go to the previous a-position”. More formally, a ranker is
a word over the alphabet {X,,Y, | a € I'}. For a word u € I'* and a position i we define
Xo(u,i) = min{j > i | u; = a} and X,(u,i) = max{j <i| u; =a}. The minimum and the
maximum of the empty set are undefined. Therefore, X,(u, i) is the next a-position of u after
position i and Y, (u, ) is the previous a-position of u before i. We extend this to rankers by setting
Zyr(u,i) = r(u,Zy(u,i)) for Z € {X,Y} and for a ranker r. In particular, rankers are processed
from left to right. Rankers of the form X,r are X-rankers. We set Xqr(u) = r(u, Xq(u,0)), i.e.,
X-rankers start at the left. For example, X,Yj(bab) = 1 whereas X;Y,(bab) is undefined. The
language L(r) generated by an X-ranker r is the set of all words u € I'* such that r is defined
on u, c.f. [3]. A language is an X-ranker language if it is a Boolean combination of languages
generated by X-rankers.

A monomial is a language of the form P = Ajay --- Ajar Ay for A; C I'. It is unambiguous if
for all u € P there exists a unique factorization v = uja; - - - upagug+1 with u; € A7,

We are now ready to characterize the expressive power of deterministic one-pass po2-automata.
Frequently, the proof of the following theorem relies on results over infinite words. This is not
surprising: In some sense, Boolean combinations of Cantor sets are “concealing” the end of finite
words, and infinite words do not even end at all. An essential step in the proof of the following
theorem is Proposition [3] which cannot be easily deduced from the respective result over infinite
words.

Theorem 9. Let L C I'*. The following are equivalent:

1. L € DA(I'*) and L is a Boolean combination of Cantor sets in I'*.

2. L is a Boolean combination of Cantor sets in DA(I™).

3. The syntactic homomorphism hy, : I'* — Synt(L) satisfies Synt(L) € DA and hr(L) is a
union of R-classes.

4. L is a finite union of unambiguous monomials Ajay - -- AjapA* such that there exists no
ie{l,...,k} with {a;,...,ar} C A;.

5. L 1s an X-ranker language.

6. L is recognized by some deterministic one-pass po2-automaton.

Proof. The equivalences ‘[I]< 2] < B] follow from Theorem [f] and Theorem [§] We say that a
monomial Ajay --- AjapA* is restricted if there is no i € {1,...,k} with {a;,...,ax} C A;.

“ = ’: By Theorem |5, L is recognized by some h : I'* — M € DA such that hA(L) is a union
of R-classes. For & € M we set [x] = h~!(z). Let

K:U{[s][e]“" [s] C L and s = se, 62:e}§F°°.
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Here, '™ is the set of all finite and infinite words over the alphabet I', and [e]“ is the set of
all words ujug--- with u; € [e]. Since €¥ = ¢ for the empty word ¢, the set [1]* contains also
finite words. Then K NI = L and K is recognized by h. Moreover, if s = se and t = tf for
e? = e and f? = f with s R t, then [s][e] C K if and only if [t][f]* € K. This is because h(L)
is a union of R-classes. The language K is a finite union of restricted unambiguous monomials
Ajay -+ - AfapA> over I'™°, see [6, Theorem 6.6]. Here, A is the set of all finite and infinite
words over the alphabet A. Therefore, L = K N I is a finite union of restricted unambiguous
monomials Ajay - -- AjapA* over I'*.

‘“=P]: Let L be a finite union of restricted unambiguous monomials Aja; - -- AfapA* and
let K C I'*™® be obtained by replacing these monomials by Aja;--- AjapA®. Then KNI™ =L
and K is a union of restricted unambiguous monomials over I'*°. Now, K is definable in the
first-order fragment As[<] over I'*°, see [6, Theorem 6.6]. Thus, K is an X-ranker language
over I'™®, see |3, Theorem 3|. It follows that L = K N I is an X-ranker language over I'*.

‘=>|§[’: It is easy to see that every language L(r) for an X-ranker r is recognizable by a
deterministic one-pass po2-automaton. By Proposition [3| we get a deterministic one-pass po2-
automaton for any Boolean combination of such languages.

‘6l=[I" Let L be recognized by a complete deterministic one-pass po2-automaton A. In
particular, A is a deterministic po2-automaton. Therefore, Synt(L) € DA by [16, Theorem 3.1].
Let n be any number greater than the number of states of A, and let z,y,z € I'*. We claim that
z(xy)™ € L if and only if z(xy)"x € L: Consider the run of A on either word. Let ¢ be the state in
which A leaves the prefix z(zy)™ for the first time. Note that this must happen eventually since .4
is complete and cannot overrun the left-end marker >. Then ¢ is right-moving and moreover, g has
a self-loop for all letters in alph(zy) by choice of n. Hence, A encounters the right-end marker <
in the state ¢ on both inputs z(zy)™ and z(xy)"z. Therefore, z(xy)™ is accepted if and only if
z(xy)"x is accepted. By Theorem |5, the language L is a Boolean combination of Cantor sets. O

Membership in the variety of finite monoids DA is decidable. Therefore, all of the above
properties are decidable by Corollary

Remark 3. We use the shortcuts “dfa” and “nfa” for deterministic finite automata and nonde-
terministic finite automata, respectively. We write pol for partially ordered one-way and po2 for
partially ordered two-way. Using this notation, we have the following inclusions between language
classes recognizable by partially ordered automata:

pol-dfa C one-pass po2-dfa C po2-dfa C po2-nfa = pol-nfa.

The following (very similar) languages show that the inclusions are strict. The unambiguous
monomial {a,c}" ab{a,b,c}” is recognizable by some one-pass po2-dfa, but it is not recognizable
by any pol-dfa. The language {a,b,c}" ab{b,c}" is recognizable by some po2-dfa, but it is not
recognizable by any one-pass po2-dfa. Finally, the language {a,b,c}" ab{a,b,c}”* is recognizable
by some pol-nfa, but it is not recognizable by any po2-dfa. The equivalence of po2-nfa and
pol-nfa is due to Schwentick, Thérien, and Vollmer [16]. For each of the above language classes
the membership problem is decidable: The class pol-dfa corresponds to R-trivial monoids [16],
one-pass po2-dfa correspond to R-classes of monoids in DA (Theorem [5| and Theorem E[), the
algebraic equivalent of po2-dfa is the variety of finite monoids DA [I6], and po2-nfa are expressively
complete for the level 3/2 of the Straubing-Thérien hierarchy [I6] which is decidable [14]. O
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6 Summary

A language L C I'™* is a Cantor set if LI'™™ C L, it is a left Cantor set if I'*L C L, and it is a
two-sided Cantor set if I'™*LI™ C L. All Cantor sets (resp. all left Cantor sets, resp. all two-sided
Cantor sets) form a topology on I'*. Our characterizations of regular open sets and of regular
Boolean combinations of open sets are summarized in Table [II Both the automata-theoretic
characterizations and the algebraic characterizations can be used for deciding the membership
problem in each of the six classes of regular languages (Corollaries [1| and .

A flip automaton is an automaton with no transitions from final to non-final states. Complete
flip automata recognize exactly the class of regular Cantor sets. Moreover, every complete
deterministic automaton recognizing a Cantor set is a flip automaton (Theorem . An automaton
is weak if every strongly connected component is either final or non-final. Deterministic weak
automata recognize Boolean combinations of Cantor sets. Again, we have a strong version of the
converse: Fvery deterministic automaton recognizing a Boolean combination of Cantor sets is
weak (Theorem [5)).

In addition, every regular language can be written as an intersection of a closed set and of a
dense set (Theorem . This holds for any of the three Cantor topologies. For any variety of
regular languages V and for any language L € V(™) it is equivalent whether L is a Boolean
combination of arbitrary open sets or whether L is a Boolean combination of open sets in V(I™).
Again, this holds for all three Cantor topologies (Theorem .

As a case study, we consider the variety DA and we show that the Boolean combinations of
Cantor sets in DA admit natural characterizations in terms of restricted unambiguous polynomials,
X-ranker languages, and one-pass partially ordered two-way automata (Theorem @

Regular languages Algebra Lattice equation Automata

. complete
Cantor sets <gr-order ideals Y —yz flip automata Thm.
left Cantor sets <-order ideals y— Yy Thm.
two-sided Cantor sets < g-order ideals Y — Y2 Thm.

Boolean combinations

deterministic
of Cantor sets R-classes 2(zy)” — 2(wy)¥z Thm.

weak automata

o oft G O Loclasses (15)5 — s(ts)°2 Thn.j
Boolean combinations (ts)*z(zy)” —
of two-sided Cantor sets J-classes s(ts)?z(zy)x Thm.

Table 1: Characterizations of regular languages with respect to Cantor topologies.
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