

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

CR: D.2.6, H.4.1

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

An Event Model for WS-BPEL 2.0

Oliver Kopp, Sebastian Henke,
Dimka Karastoyanova, Rania Khalaf,

Frank Leymann, Mirko Sonntag,
Thomas Steinmetz, Tobias Unger,

Branimir Wetzstein

Report 2011/07

Contents

1 Introduction 5
1.1 Changes from the BPEL4WS 1.1 Event Model 6
1.2 Overview . 7

2 Syntactical Notes 9

3 Process State Model 11
3.1 States . 11
3.2 Outgoing Events . 11
3.3 Incoming Events . 12
3.4 Changes from the Previous Version . 12
3.5 Missing Features . 12

4 Process Instance State Model 13
4.1 States . 14
4.2 Outgoing Events . 14
4.3 Incoming Events . 15
4.4 Changes from the Previous Version . 15
4.5 Missing Features . 16

5 Activity State Model 17
5.1 States . 18
5.2 Outgoing Events . 18
5.3 Incoming Events . 19
5.4 Changes from the Previous Version . 20
5.5 Missing Features . 20

6 Scope State Model 23
6.1 States . 25
6.2 Outgoing Events . 25
6.3 Incoming Events . 26
6.4 Changes from the Previous Version . 26
6.5 Missing Features . 27

7 The Invoke Activity 29
7.1 States . 31
7.2 Outgoing Events . 31

3

Contents

7.3 Incoming Events . 31
7.4 Changes from the Previous Version . 32
7.5 Missing Features . 32

8 Loop State Model 33
8.1 States . 34
8.2 Outgoing Events . 34
8.3 Incoming Events . 34
8.4 Note on Parallel forEach Activities . 35
8.5 Changes from the Previous Version . 35
8.6 Missing Features . 36

9 Link State Model 37
9.1 States . 37
9.2 Outgoing Events . 38
9.3 Incoming Events . 38
9.4 Changes from the Previous Version . 39
9.5 Missing Features . 39

10 Variable State Model 41
10.1 States . 41
10.2 Outgoing Events . 43
10.3 Incoming Events . 43
10.4 Changes from the Previous Version . 44
10.5 Missing Features . 44

11 Information Contained in the Events 45

12 Implementation and Application 47

13 Monitoring-only Event Model 49

14 Conclusion 51

4

1 Introduction

The Web Service Business Process Execution Language 2.0 (WS-BPEL 2.0 [20], BPEL
for short) is one option for workflow execution in the Web service platform, which realizes
a SOA [25]. A BPEL process model defines a process by orchestrating Web services
and is exposed as a Web service itself. The process model contains different types of
entities for defining the process logic such as partner links for linking the Web services
involved in the service orchestration, variables holding process data, basic activities
for interacting with Web services and data handling, structured activities for defining
the control-flow of the process and enabling compensation-based recovery. The process
model is deployed on a BPEL engine which executes process instances based on the
process model.

Process execution results in state changes of the BPEL entities involved in the execution.
For example, a process instance is first instantiated, is then running for a while, and
at some point will either be completed successfully, faulted, or exited purposely using
a BPEL exit activity. The transitions between the states are signaled using events.
The states and the state transitions are part of the state model (or alternatively event
model) of each BPEL entity. To some extent, state models for the different BPEL
entities can be derived from the operational semantics of BPEL. State models, however,
are not explicitly defined in the BPEL specification and in particular the specification
does not prescribe, which events the BPEL engine has to expose to the outside for
monitoring purposes. Thus, BPEL engine implementations differ in the event models
they support.

Events are typically saved in the audit trail or are published on a messaging infrastructure
used for passive monitoring of process execution. In addition to passive monitoring,
it is often desirable to enable external applications to actively influence the process
execution. That includes, for example, suspending and resuming the execution of a
process instance or adapting the process logic of a process instance by skipping some of
the process activities. In both cases, an external application (rather than the process
engine) triggers state transitions of BPEL entities.

Khalaf et al. [11] present an architecture for an event-based modification of the runtime
of a BPEL process. Outgoing messages are sent from the BPEL engine to a generic
controller signalling state changes in the process. Custom controllers can register at
the generic controller to receive outgoing events. To be able to react on events and
influence the process execution the state model defines incoming events, which control
the execution: The execution of the process instance is blocked until explicitly being
unblocked by a message (incoming event) sent by a custom controller. Such an incoming

5

1 Introduction

event unblocks the process instance and triggers a state transition from the outside. For
instance, a custom controller receiving the event that an activity is Ready for execution
can send an appropriate incoming event back to the generic controller instructing it to
skip that activity. This “adaption action” results in a state transition from Ready to
Completing and a corresponding outgoing event Activity_Executed. To avoid contradicting
incoming events, for each incoming event at each activity instance, only one custom
controller is allowed to send incoming events. We call this controller blocking custom
controller.

This report presents an engine-independent WS-BPEL 2.0 event model. It supports
both passive monitoring and active control of process execution by external applications.
Some of the assumptions in the presented event model are inspired by a particular
implementation, e. g. fault handling and compensation; however they are kept as general
as possible, so that they can be mapped on other engine-specific approaches to tackle
faults and support compensation. In addition, the report draws on the experience of
some of the authors in business process management and software development. The
overall BPEL event model consists of a set of event models for the different types of
BPEL entities that change their states: processes, process instances, general activities,
scope activities, invoke activities, loops, links, variables, partner links, and correlation
sets. The event model is used by the authors of the report in several projects, all utilizing
process life cycle events in different scenarios.

1.1 Changes from the BPEL4WS 1.1 Event Model

An event-model for BPEL4WS 1.1 has been presented by Karastoyanova et al. [8]. WS-
BPEL 2.0 is the successor of BPEL4WS 1.1 and introduced new activities. We adapted
the event-model by Karastoyanova et al. to reflect these changes and also honored the
experiences we made by applying the BPEL4WS 1.1 event-model in cross-partner
transaction transactions [18] and cross-process monitoring [27].

The former event model introduced blocking events: A state transition was not allowed
to be done unless another event produced by an application external to the BPEL
processor arrived. In case there were two options (such as skipping an activity or letting
the activity execute), an additional state has been introduced. In the current version of
the event model, additional states have been introduced, even if the subscriber only has
one choice.

The state charts were modified such that a subscriber to the events does not need to
know whether there is a blocking subscriber. For instance, the state Executed (formerly
called Waiting) is always passed after the activity has finished execution. A detailed list
of changes is provided at the description of each state chart.

6

1.2 Overview

1.2 Overview

In the following sections, we present the state models. We begin with a short note on the
UML syntax used in Section 2. Process states are presented in Section 3. Activity states
are presented in Section 5. Scope states are presented in Section 6. Invoke states are
presented in Section 7. Loop states are presented in Section 8. Link states are presented
in Section 9. Variable states are presented in Section 10. Minimum information to be
contained in the events is presented in Section 11. A reference to an implementation
and references to projects building on the presented eventing framework is provided
in Section 12. The presented event model is geared towards adaptation. We discuss
in Section 13 the modifications necessary for a monitoring-only event model. Finally,
Section 14 concludes the report.

7

2 Syntactical Notes

Each event model is presented in an UML state diagram [19] describing the possible
states and state transitions. For each state transition we define (i) the activating trigger,
which may be an engine-internal behavior or an external incoming event, and (ii) the
outgoing event fired as a result of a state transition. An incoming event written in bold
denotes the default transition. That means, if no custom controller is subscribed as
sender of this event, this condition of the transition is immediately treated as true.

The presentation of each state model follows following pattern: First, the UML state
diagram is given. It is followed by a short description of the contained states, the
outgoing events, and the incoming events. Subsequently, the changes from the previous
BPEL 1.1 event model are described. Each presented state model is concluded by a
discussion on missing features.

9

3 Process State Model

A process model has to be deployed on a process engine to enable execution of it. After
a BPEL process model is deployed, the process model may be instantiated after the
receipt of a message. Usually, there are multiple instances for a process model.

Figure 3.1 presents the event model for the life cycle of a process model.

Figure 3.1: Process Model State Chart

3.1 States

Undeployed The process model is not deployed on the engine any more.

Deployed The process model is deployed on the engine.

Initial This is the initial state of the process model. It is not deployed on an engine.

3.2 Outgoing Events

Process_Deployed This event is fired whenever a new BPEL-process is deployed into a
BPEL engine. This event is fired once for each process model. The other process
events are fired for each process instance.

Process_Undeployed This event is fired when a process model is undeployed.

11

3 Process State Model

3.3 Incoming Events

There are no incoming events defined.

3.4 Changes from the Previous Version

• The former event model did not distinguish between process model and process
instance.

• The event Process_Undeployed has been introduced.

• The state Undeployed has been introduced.

3.5 Missing Features

It is not possible to suspend a whole process model using one message. That means, it
is impossible to suspend all instances of the process model with one message.

Re-deployment of a process model is not possible. This is a discussion of handling
different versions of a process model: Are two process models with the same URI the
same process model? We decided to treat them differently. Furthermore, re-deployment
of the same process model also leads to proceed from state Initial.

12

4 Process Instance State Model

Figure 4.1 presents the event model for the life cycle of an instance of a process model.

The implicit scope generated by the process activity is treated as scope activity and
not by the process instance model. The scope activity is described in Section 6.

The event model allows for rerunning the process itself. Before triggering a rerun, the
states of the activities have to be changed as desired.

instantiating message
successfully received

/ fire event Process_Instantiated

instance execution started
/ fire event Instance_Running

instance suspended or incoming
event Suspend_Instance received
/ fire event Instance_Suspended

instance resumed or incoming
event Resume_Instance received

/ fire event Instance_Running

incoming event
Continue received

/ fire event
Instance_Exited

unhandled fault during
execution of process instance
/ fire event Instance_Faulting

instance completed
successfully

/ fire event
Instance_Completing

Instantiated

Suspended

Initial

FaultingCompletingExiting

Exited Completed Faulted

instance exited
/ fire event

Instance_Exiting

incoming event
Continue received

/ fire event
Instance_Completed

incoming event
Continue received

/ fire event
Instance_Faulted

incoming event
Rerun received

/ fire event
Rerunning

Running

Figure 4.1: Process Instance State Chart

13

4 Process Instance State Model

4.1 States

Completed The process instance completed successfully.

Completing The process instance completed. An external subscriber may trigger a
rerun of the instance.

Exited The process instance exited successfully.

Exiting The process instance exited. An external subscriber may trigger a rerun of the
instance.

Faulted The process instance is faulted: A fault reached the boundary of a process
activity.

Faulting A fault reached the boundary of a process activity. An external subscriber
may trigger a rerun of the instance.

Initial The process model is deployed and ready for instantiation.

Instantiated The process model is instantiated.

Running The process instance is running.

Suspended The process instance is suspended. Note that the BPEL specification itself
does not make any statements about suspending and resuming a process instance.

4.2 Outgoing Events

Instance_Completing This event is fired, when a process may finish successfully. That
means, the process is not terminated by a fault or by an exit activity.

Instance_Completed This event is fired, when the process instance is in the state Complet-
ing and the event Continue is received. In case the state Completing is non-blocking,
the event is fired automatically.

Instance_Exiting This event is fired, when a process instance is terminated through
execution of an exit activity.

Instance_Exited This event is fired, when the process instance is in the state Exiting and
the event Continue is received. In case the state Exiting is non-blocking, the event
is fired automatically.

Instance_Faulting This event is fired, when a process should be terminated by a fault
that was not handled and propagated to the implicit fault-handler of the root-scope
of the process.

14

4.3 Incoming Events

Instance_Faulted This event is fired, when the process instance is in the state Faulting
and the event Continue is received. In case the state Faulting is non-blocking, the
event is fired automatically.

Instance_Running This event is fired, when a process instance starts running after being
instantiated or resumed.

Instance_Suspended This event is fired when a process instance is suspended, e. g. a
breakpoint is reached or an external request for suspension is received by the
engine.

Process_Instantiated The event is fired, when a process is instantiated. This hap-
pens if an instance-creating extension activity instantiates a process or if a mes-
sage is a message is received by a pick or receive activity with the attribute
createInstance=yes.

4.3 Incoming Events

Continue This events lets the process instance reach a final state.

Rerun This event triggers a (potentially partial) rerun of the process instance. The
concrete rerun effects are dependent on the states of the activities. The states of
the activities may be changed during the states Completing, Exiting, Faulting, and
Suspended.

Resume_Instance This events leads the process instance to resume.

Suspend_Instance This event triggers a suspension of the process instance.

4.4 Changes from the Previous Version

• The event Instance_Terminated has been renamed to Instance_Exited. Accordingly, the
state Terminated has been renamed to Exited. WS-BPEL 2.0 introduced the new
concept of termination handling, with a different meaning than Instance_Terminated
implied.

• New states Completing, Exiting, and Faulting added. The corresponding events
Instance_Completing, Instance_Exiting, Instance_Faulting, Continue, and Rerun. This
allows the process modeler to append process logic even if the last activity of the
process was executed or to take other corrective actions.

15

4 Process Instance State Model

4.5 Missing Features

It is not possible to suspend a whole process model using a single message. That means,
it is impossible to suspend all instances of the process model with one message.

The event model does not allow for compensating a complete process instance as required
by the BPEL sub-process extension [4], but disallowed in the current WS-BPEL 2.0
specification.

There is no possibility to reach a final state from the Suspended state. If the process
instance should be killed during suspension, it has to be resumed and then killed (via
the Exiting state).

An explicit triggering of a process exit is not possible.

16

5 Activity State Model

The state chart presented in Figure 5.1 presents the general state chart for all BPEL
activities. The state charts of invokes, scopes, and loops contain additional states and
are presented in Section 7, Section 6, and Section 8.

Initial

Terminated

Completed

Dead

Dead Path Elimination
/ fire event

Activity_Dead_Path

activity becomes ready
/ fire event Activity_Ready

incoming event
Start_Activity received

/ fire event
Activity_Executing

execution finished
/ fire event

Activity_Executed

incoming event
Complete_Activity received

/ fire event
Activity_Complete

activity faulted
/ fire event

Activity_Faulted

process exited or
parent activity faults or

incoming event Terminate_Activity
received

/ fire event Activity_Terminated

process exited or
parent activity faults

/ fire event Activity_Terminated
incoming event
Skip_Activity

received
/ fire event

Activity_Executed

joinCondition = false and
suppressJoinFailure = no

/ fire event Activity_Faulted
Inactive

Ready

Executing

Completing

Waiting for
Propagation

Request

incoming event
Continue received

Faulted,
Fault Propagated

Faulted,
Fault Not Propagated

incoming event
Suppress_Fault

received

Figure 5.1: Activity State Chart

17

5 Activity State Model

5.1 States

Completing The activity completed execution, but waits for an external event to fully
complete.

Completed The activity completed execution and does not need to wait for an external
event. In this state, the engine starts to handle the outgoing links of the activity.

Dead The activity was marked dead by the engine’s dead-path-elimination (DPE)
mechanism.

Executing The activity executes.

Faulted, Fault Propagated The activity faulted and the fault was propagated to the
enclosing scope.

Faulted, Fault Not Propagated The activity faulted and the fault was not propagated
to the enclosing scope due to an external event.

Inactive The activity is not executing, but waiting for becoming ready for execution.

Initial The activity’s initial state. The transition from Initial to Inactive is dependent
on the concrete engine implementation. For instance, the children of a sequence
activity may be inactive as soon as the sequence activity is inactive or the preceding
activity in the sequence activity has completed.

Ready The activity is ready for execution.

Terminated The activity is terminated.

Waiting for Propagation Request The activity waits for an external event, which
decides whether the fault should be propagated to the enclosing scope or suppressed.
The propagation is BPEL’s default behavior.

5.2 Outgoing Events

Activity_Completed This event is fired when an activity is in the state Completing and
the event Complete_Activity is received. In case the state Completing is non-blocking,
the event is fired automatically.

Activity_Dead_Path This event is fired, when an activity was marked dead by the
engine’s dead-path-elimination (DPE) mechanism implementation. This is the
case if the joinCondition evaluates to false and suppressJoinFailure is set to
yes.

18

5.3 Incoming Events

Activity_Executing This event is fired, when an activity starts its execution (for activities
like pick, receive and onMessage this event is fired, when starting to wait for
incoming messages, not when the actual message is received). For instance, in the
case of a receive activity, this event is fired as soon as the receive activity waits
for an incoming message. In other words, this event is triggered before the actual
message is received.

Activity_Executed This event is fired, when the execution of an activity is finished. The
engine changes to the state Completing.

Activity_Faulted This event is fired when an activity is skipped or aborted because of a
fault that occurred within the activity. It can also be fired if a fault of its child
scopes was not handled.

Activity_Ready This event is fired, when an activity becomes ready to execute. This is
the case as soon as the activity is inactive, all incoming links are evaluated, and
the join-condition is true. In case of a sequence activity, the activity before the
current activity has to be completed additionally.

Activity_Terminated This event is fired, when an activity is terminated. It can also be
fired if a fault in a preceding activity of the same scope is not handled.

5.3 Incoming Events

Complete_Activity This event unblocks the state Completing and leads to a completion
of the activity.

Continue This event tells the engine to propagate the fault to the enclosing scope.

Skip_Activity This event may be sent when the activity is in the state Ready. The exe-
cution of the activity is skipped and the state immediately changes to Completing.

Start_Activity This event may be sent when the activity is in the state Ready and leads
to a normal activity execution.

Suppress_Fault The fault is discarded and not propagated to the enclosing scope.

Terminate_Activity The execution of an activity may be terminated by this event.

In case an activity is not executed, because its joinCondition evaluated to false, there
are two possibilities: (i) suppressJoinFailure=yes. Then, the event Activity_Dead_Path
is emitted. (ii) suppressJoinFailure=no. Then, the event Activity_Faulted is emitted.
Besides that, Activity_Faulted is only raised, if a fault occurred at the execution of the
activity.

19

5 Activity State Model

There is no separate state chart for the exit activity. As soon as the exit activity has
finished execution, the whole process is terminated and the exit activity does not reach
the state Completing.

5.4 Changes from the Previous Version

• State Waiting is now called Executed.

• State Dead Path is now called Dead.

• “Parent activity faults or incoming event Terminate_Activity” leads to the state
change to Terminated. Before, “Process terminated” lead to that state change.

• Renamed “process terminated” to “process exited” in the transitions.

• Renamed event Activity_Complete to Activity_Completed to be consistent with the
naming of the final state Completed.

• A fault in the process is handled by the transition to Terminated. The former
model handled that with a transition to Faulted.

• In case the join condition of an activity is evaluated to false and suppressJoinFailure
is set to no, the activity throws a fault. This is reflected in the transition from
Inactive to Faulted.

• Activity_Terminated (instead of Activity_Faulted is sent if a fault of a preceding
activity has occurred and was not handled by that activity.

• New incoming events Skip_Activity, Suppress_Fault and Terminate_Activity.

• New state Waiting for Propagation. The activity waits for the custom controller
to decide whether the activity should propagate or suppress the fault.

• New transition from Ready to Completing. This transition has been introduced by
Schroth [21] to allow skipping activities.

5.5 Missing Features

The event model neither allows for suspending a single activity nor signals such a
suspension. Such a partial suspension is motivated by processes offering parts of
themselves as subprocesses [16]. When adding such a feature, the state chart has to
distinguish between long-running and short-running activities: long-running activities

20

5.5 Missing Features

may be suspended at the states Ready, Executing, and Completing, whereas short-
running activities may suspended during the states Ready and Completing. This is
similar to the requirements by the BPEL specification, where short-running activities
are not terminated if a fault occurs.

A distinction between long-running and short-running activities also refines the transition
to Terminated. In the case of short-running activities, the condition on the transition
from Executing to Terminated changes: only “process exited” would be the condition.

The join condition itself and the evaluation result cannot be modified. Skipping an
activity is only possible by using the incoming event Skip_Activity. The states of links
can be modified by as described in Section 9.

21

6 Scope State Model

Figure 6.1 presents the state chart for a scope activity. It is a supergraph of the state
model of activities. In the following, we describe the additional transitions and states.

23

6
Scope

State
M

odel

compensation handler
invoked or incoming event

Compensate_Scope received
/ fire event Scope_Compensating

Initial

activity becomes runnable
/ fire event Activity_Ready

incoming event Start_Activity received
/ fire event Activity_Executing

Finished

execution finished
/ fire event Activity_Executed

incoming event
Complete_Activity received
/ fire event Activity_Complete

no compensation of scope invoked and
process instance in a final state

Compensated

compensation completed
/ fire event Scope_Compensated

Terminated

termination handling
finished

/ fire event
Activity_Terminated

parent activity faults
or incoming event

Terminate_Activity received
/ fire event

Scope_Handling_Termination

fault during execution of nested activity
or incoming event Fault_To_Scope
/ fire event Scope_Handling_Fault

incoming event Fault_To_Scope received
/ fire event Scope_Handling_Fault

parent activity
faults

or incoming
event

Terminate_Activity
received

/ fire event
Scope_Handling_

Termination

Inactive

Ready

Completed with Fault

fault handled and not rethrown
/ fire event

Scope_Complete_With_Fault

fault not handled
or fault rethrown
/ fire event
Activity_Faulted

Completing

Completed

Fault Handling

Compensation
Executing

Termination
Handling

Dead

Dead Path Elimination
/ fire event

Activity_Dead_Path

parent activity faults
/ fire event Activity_Terminated

incoming event Skip_Activity received
/ fire event Activity_Executed

Waiting for
Propagation

Request

Executing
without Running
Event Handler(s)

Executing
with Running

Event Handler(s)

event handler invoked
/ fire event

Scope_Handling_Event

last event handler completed
/ fire event

Scope_Event_Handling_Ended

Executing

event handler
completed and

other event
handlers still

running
/ fire event

Scope_Event_
Handling_

Ended

process exited

incoming event
Continue received

Faulted,
Fault Propagated

Faulted,
Fault
Not

Propagated

incoming event
Suppress_Fault

received

Figure 6.1: Scope State Chart

24

6.1 States

6.1 States

In the following, the states additional to activity’s states are described:

Compensated The scope has been successfully compensated.

Compensation Executing The scope compensates.

Completed with Fault A fault has been handled in a fault handler of scope and has
not been rethrown.

Executing with Running Event Handler(s) As soon as an event handler is triggered,
the scope executes this event handler in parallel to its child activity.

Executing without Running Event Handler(s) The scope executes and has no event
handlers running.

Fault Handling The scope handles an encountered fault.

Finished The scope may not be compensated any more. This state is reached if the
scope activity has completed and the process instance reached a final state.

Termination Handling The scope handles its termination.

6.2 Outgoing Events

In the following, the outgoing events additional to activity’s outgoing events are de-
scribed:

Scope_Compensating This event is fired, when a completed scope’s compensation handler
is invoked by the engine or if the incoming event Compensate_Scope is notified.

Scope_Compensated This event is fired as soon as the compensation handler of a scope
is finished.

Scope_Complete_With_Fault This event is fired, when a scope completes (see Activity_-
Complete) after handling a fault that was not rethrown in the scope’s fault handler.
In case the fault is rethrown, the event Activity_Faulted is fired.

Scope_Event_Handling_Ended This event is fired, when a scope’s event handler finished
executing.

Scope_Handling_Event This event is fired, when a scope’s event handler (onAlarm or
onMessage) starts executing (incoming message received or alarm occurred/fired).

Scope_Handling_Fault This event is fired, when a scope’s fault handler is invoked. The
fault handler may be an implicit or explicit fault handler.

25

6 Scope State Model

Scope_Handling_Termination This event is fired upon activation of the scope’s termina-
tion handler.

Upon a process exit, the state Terminated is reached without invoking a termination
handler and firing an event from the activity. The subscribers are notified by the event
Instance_Terminated fired for the process instance.

There is no event Scope_Termination_Handling_Ended as the Activity_Terminated denotes
the same.

Event handling is modeled in the nested states Executing without Running Event Han-
dler(s) and Executing with Running Event Handler(s). A scope executes its child activity
and processes incoming events in parallel.

6.3 Incoming Events

In the following, the incoming events additional to activity’s incoming events are
described:

Compensate_Scope This event leads to a compensation of a completed scope.

Fault_To_Scope This event triggers fault handling of the scope. The fault handling is
started as if the fault was raised by an activity nested in the scope.

6.4 Changes from the Previous Version

• WS-BPEL 2.0’s termination handlers are supported by state Termination Handling.
The additional event Scope_Handling_Termination signals that the scope started
with termination handling.

• Event Compensated renamed to Scope_Compensated.

• EventHandling is not a separate any more. A scope activity continues executing
its child while handling events. This is now reflected in the nested state Executing
with Running Event Handlers.

• For symmetry reasons to the states of activities, Complete has been renamed to
Completed.

• The state FaultHandling_NoHandler has been removed. This state has been
introduced to support fragmented scopes [10]. A semantic equivalent behavior can
be achieved when skipping the activity nested in a fault handler by the subscriber.

26

6.5 Missing Features

• Removed the incoming event Compensated. The same behavior can be achieved when
sending Compensate_Scope and skipping the activity nested in the compensation
handler.

• Renamed CompletedWithFault to Completed with Fault.

6.5 Missing Features

The event model does not allow to do a more generic state change of a scope. For
instance, going from termination back to running is impossible. The same applies for
compensation.

There is no possibility to block the execution of the termination handler directly. As
the concrete implementation of a termination handler is done via an activity, a skipping
or blocking of the termination handler has to be done by skipping or blocking that
activity.

Similar to the case of the termination handler, the execution of a compensation handler
has to be blocked by handling the nested activity in the compensation handler.

Faults being thrown out of a compensation handler are not treated.

27

7 The Invoke Activity

An invoke activity may have explicit fault handlers and an explicit compensation handler
assigned. Such an invoke activity is semantically equivalent to a scope activity, where
the invoke activity is nested. The invoke activity has no handlers assigned. The handlers
are assigned to the scope activity. There are two approaches to deal with invokes having
handlers attached: (i) Following the “unfolding” and producing events for the scope
(with handlers) and the nested invoke activity. (ii) Treating the invoke activity as scope
and not producing additional events for the nested invoke activity. (iii) Add a separate
state chart for an invoke activity supporting fault and compensation handling.

We follow the second approach to keep the intention that the invoke activity is still a
single activity. The state chart is presented in Figure 7.1.

29

7
T

he
Invoke

A
ctivity

compensation handler
invoked or incoming event

Compensate_Scope received
/ fire event Scope_Compensating

Initial

activity becomes runnable
/ fire event Activity_Ready

incoming event Start_Activity received
/ fire event Activity_Executing

Finished

execution finished / fire event Activity_Executed

incoming event
Complete_Activity received
/ fire event Activity_Complete

no compensation of
invoke invoked

Compensated

compensation completed
/ fire event Scope_Compensated

Terminated

fault occurred or
incoming event

Fault_To_Scope
/ fire event

Scope_Handling_Fault

incoming event Fault_To_Scope received
/ fire event Scope_Handling_Fault

Inactive

Ready

Completed with Fault

fault handled and not rethrown
/ fire event

Scope_Complete_With_Fault

Completing

Completed

Fault Handling

Compensation
Executing

Reached when
process instance

successfully
completes

Dead

Dead Path Elimination /
Fire event

Activity_Dead_Path

parent activity faults
/ fire event Activity_Terminated

incoming event Skip_Activity received
/ fire event Activity_Executed

process exited

process exited or
parent activity faults or

incoming event
Terminate_Activity received

/ fire event
Activity_Terminated Message

Prepared

Invoking

incoming event Continue received
/ fire event Invoking

Preparing
Message

process exited

incoming event
Fault_To_Scope

/ fire event
Scope_Handling_Fault

fault not handled
or fault rethrown
/ fire event
Activity_Faulted

Waiting for
Propagation

Request

incoming event
Continue received

Faulted,
Fault Propagated

Faulted,
Fault
Not

Propagated

incoming event
Suppress_Fault

received

Executing

message prepared
/ fire event Message_Prepared

Figure 7.1: Invoke State Chart

30

7.1 States

As invoke activities may not have termination handlers and event handlers assigned,
the corresponding transitions and events have been removed. The state Executing has
been replaced by the states Preparing Message, Message Prepared, and Invoking. The
state Message Prepared is important to enable modification of message headers before
the actual invocation.

7.1 States

In the following, the states additional to scope’s states are described:

Invoking The external service is invoked. In case of a synchronous invoke, the activity
remains in this state until the reply message is received.

Message Prepared The message is prepared. Now, it can be inspected and modified
externally.

Preparing Message The invoke activity prepares the message to be sent.

7.2 Outgoing Events

In the following, the outgoing events additional to scope’s outgoing events are de-
scribed:

Invoking The activity begins with invoking the external service.

Message_Prepared The outgoing message is prepared.

7.3 Incoming Events

In the following, the incoming events additional to scope’s incoming events are de-
scribed:

Continue This event is used to unblock the state Message Prepared after required message
modifications have been done.

31

7 The Invoke Activity

7.4 Changes from the Previous Version

The explicit state model for an invoke activity did not exist in the previous event
model.

7.5 Missing Features

The invoke activity state model inherits the missing features of the scope activity (cf.
Section 6.5).

32

8 Loop State Model

The state chart provided in Figure 8.1 presents the general state chart for loops in BPEL
processes. Loops are the sequential forEach activity, the repeatUntil activity, and the
while activity.

Initial

Terminated

Completed

Dead

Dead Path Elimination
/ fire event

Activity_Dead_Path

activity becomes ready
/ fire event Activity_Ready

incoming event Start_Activity received
/ fire event Activity_Executing

incoming event
Finish_Loop_Execution received

/ fire event Activity_Executed

incoming event
Complete_Activity received

/ fire event
Activity_Complete

condition evaluation faulted
/ fire event Activity_Faulted

process exited or
parent activity faults or

incoming event
Terminate_Activity received

/ fire event Activity_Terminated

process exited or
parent activity faults

/ fire event Activity_Terminated incoming event Skip_Activity received
/ fire event Activity_Executed

joinCondition = false and
suppressJoinFailure = no

/ fire event Activity_Faulted
Inactive

Ready

Completing

Waiting for
Decision

evaluate loop condition
/ fire event

Loop_Condition_True
or

Loop_Condition_False

incoming
event
Continue_
Loop_
Execution
received

Iteration
Complete

incoming
event
Continue_
Loop_
Execution
received

one iteration
of loop

performed
/ fire event

Loop_Iteration_
Complete

Waiting for
Propagation

Request

incoming event
Continue received

Faulted,
Fault Propagated

Faulted,
Fault

Not Propagated

incoming event
Suppress_Fault

received

Executing

Execute Child
Activity and

Evaluate Loop
Condition

Figure 8.1: Loop State Chart

33

8 Loop State Model

8.1 States

In the following, the states additional to activity’s states are described:

Execute Child Activity and Evaluate Loop Condition The child activity is executed.

Iteration Complete The loop iteration is complete. A blocking custom controller
signals the start of the next loop iteration. This state has been introduced to
support fragmented loops [10].

Waiting for Decision The activity waits for the custom controller to decide whether
the loop should do another run or the loop iteration should finished. In case there
is no blocking custom controller subscribed, the result of the evaluation is used
directly.

8.2 Outgoing Events

In the following, the outgoing events additional to activity’s outgoing events are de-
scribed:

Loop_Condition_False This event is fired when the loop condition has been evaluated
to false. We need this event for fragmented loops to tell other fragments the loop
condition, because only one fragment is able to evaluate the loop condition for all.

Loop_Condition_True This event is fired when the loop condition has been evaluated to
true. This event is needed for the fragmented loops scenario to tell other fragments
the loop condition, because only one fragment is able to evaluate the loop condition
for the loop.

Loop_Iteration_Complete This event is fired when an iteration of a loop is complete and
(in the case of a while activity) before the loop-condition is re-evaluated. This
event is especially important for fragmented loops [10], where it is necessary to
synchronize the individual fragments.

8.3 Incoming Events

In the following, the incoming events additional to activity’s incoming events are
described:

34

8.4 Note on Parallel forEach Activities

Continue_Loop_Execution This event lets the loop continue its execution. For instance,
in the case of the repeatUntil loop in the transition from Waiting for Decision,
this leads to an execution of the activity nested in the loop.

Finish_Loop_Execution This event forbids an additional loop run. The loop has finished
looping and now is in the state Completing.

Similar to repeatUntil and while activities, the sequential forEach activities signal by
the events Loop_Condition_False and Loop_Condition_True whether the forEach loop is
complete. This can be overridden by the events Continue_Loop_Execution and Finish_-
Loop_Execution.

8.4 Note on Parallel forEach Activities

The parallel forEach activity is not treated as loop. The parallel forEach activity
determines the number of children before the child activity starts. Therefore, the events
Loop_Condition_True and Loop_Condition_False are unnecessary. The parallel forEach
activity does not (sequentially) iterate over the children. Therefore, the event Loop_-
Iteration_Complete is misleading and is dropped. A completion of one iteration can
be observed by the Activity_Complete of a child activity. A The looping condition is
evaluated once at the start of the loop. A fault in that case is propagated using the
event Activity_Faulted. These facts lead to the state model presented for plain activities
in Section 5.

8.5 Changes from the Previous Version

• The transitions from Executing to Waiting and Complete have been removed: A
loop may only be left through the state Waiting for Decision.

• The external event Continue_Loop has been used in the condition from Iteration
Complete to Executing. This event has been renamed to Continue_Loop_Execution,
which in turn is used from Check Condition to Execution.

• State Waiting for Decision has been renamed to Waiting for Decision to reflect that
the condition has already been evaluated by the engine, but the custom controller
has the decision to override the evaluation.

35

8 Loop State Model

8.6 Missing Features

Currently, there is no way to modify the startCounterValue, finalCounterValue, and
completionCondition. Their values are determined at the beginning of Executing. Using
the current event model, a forEach loop may be set as completed or may be continued
using the external events Finish_Loop_Execution or Continue_Loop_Execution. A setting of
specific start values and final values is not possible. A future version of the event model
should introduce an additional state to separate the determination of their values and
beginning of execution of the child activity.

Similar to the case of startcounterValue etc., it is not possible to change the looping
condition itself.

As the repeat until loop and the while loop are represented in one diagram, the
state transitions between Execute Child Activity and Evaluate Loop Condition, Iteration
Complete, and Waiting for Decision are not exact. In case different state charts for the
different loop types were introduced, the transitions would be more precise.

36

9 Link State Model

The state chart provided in Figure 9.1 presents the general state chart for links in BPEL
processes.

9.1 States

Evaluated The value of the link has been determined. This value can be overridden by
the external event Set_Link_State. In case there is no blocking custom controller,
the outgoing transitions depend on the evaluation result. In case the link evaluated
to true, the transition to state True is taken, otherwise the transition to state
False is taken.

False The link status is false.

Initial

True False

link evaluation triggered
/ fire event Link_Ready

link evaluated
/ fire event

Link_False or Link_True

Undetermined

Ready

Evaluated

link evaluation faulted
/ fire event

Evaluation_Faulted

incoming event
Set_Link_State
with value false
/ fire event Link_Set_False

incoming event
Set_Link_State
with value true

/ fire event Link_Set_True

Waiting for
Propagation

Request

incoming event
Continue received

Faulted,
Fault Propagated

Faulted,
Fault Not
Propagated

incoming event
Suppress_Fault
received

Figure 9.1: Link State Chart

37

9 Link State Model

Faulted, Fault Not Propagated Link evaluation faulted and the fault has not been
propagated to the enclosing scope.

Faulted, Fault Propagated Link evaluation faulted and the fault has been propagated
to the enclosing scope.

Initial The link is not instantiated.

Ready The link is ready for evaluation.

True The link status is true.

Undetermined The status of the link is not determined.

Waiting for Propagation Request In case a fault occurred during evaluation, a custom
controller may suppress this fault. The link has to wait for this decision, modeled
by this state.

9.2 Outgoing Events

Evaluation_Faulted This event is fired if the evaluation of the link lead to a fault.

Link_False The event is fired when the transition condition on a link has been evaluated
to false.

Link_Ready This event is fired when a Link is ready for evaluation, i. e. immediately
after its source activity has been completed.

Link_Set_False This event is fired if the link status is set to false.

Link_Set_True This event is fired if the link status is set to true.

Link_True The event is fired when the transition condition on a link has been evaluated
to true.

In the case of dead-path-elimination, the sequence Link_Ready, Link_False, Link_Set_False
is emitted.

9.3 Incoming Events

Set_Link_State This events indicates that the result of the evaluation should be ignored
and the link status should be set to a value contained in this event.

38

9.4 Changes from the Previous Version

9.4 Changes from the Previous Version

• Events Link_Set_True and Link_Set_False introduced to signal the concrete status
of the links.

• The event Link_Evaluated has been split to the events Link_False and Link_True to
be consistent to the loop events Loop_Condition_False and Loop_Condition_True.

• New event Evaluation_Faulted with the succeeding states.

9.5 Missing Features

The transition condition of a link cannot be modified externally.

39

10 Variable State Model

This section describes the states of variables (Figure 10.1), variables holding a message
(Figure 10.2), partner links (Figure 10.3), and correlation sets (Figure 10.4). The BPEL
specification does not treat message headers. In practice, message headers contain
information needed for a proper workflow execution. Therefore, events are added to
handle message headers.

10.1 States

Active The variable is available.

Deleted The variable is not available any more.

Initial The variable is not available.

Active

scope of variable entered

variable modified
/ fire event

Variable_Modification

event Read_Variable received
/ reply with Variable_Read

containing the current value
event Write_Variable

received
/ update variable with

received content
Deleted

Initial

scope of variable left

Figure 10.1: Variable State Chart

41

10 Variable State Model

Active

scope of variable entered
message body

modified
/ fire event

Variable_Modification

event Read_Variable received
/ reply with Variable_Read
containing the current value of
the message body

event Write_Variable
received

/ update message body
with received content

Deleted

Initial

scope of variable left

event
Write_Message_Header

received
/ update message header

with received content

message header
modified

/ fire event
Message_Header_

Modification

event Read_Message_Header received
/ reply with Mesage_Header_Read
containing the current value of the
message header

event Write_Message_Header_Field received /
modify or add header field with received content

Figure 10.2: Message Variable State Chart

Active

scope of partner link entered

partner link modified
/ fire event

PartnerLink_Modification

event Read_PartnerLink received
/ reply with PartnerLink_Read
containing the current value

event Write_PartnerLink
received

/ update partner link with
received content

Deleted

Initial

scope of partner link left

Figure 10.3: Partner Link State Chart

Active

Deleted

Initial

Figure 10.4: Correlation Set State Chart

42

10.2 Outgoing Events

10.2 Outgoing Events

In the following, the outgoing events additional to activity’s outgoing events are de-
scribed:

CorrelationSet_Modification In case a property of a correlation set changes, this event is
fired.

PartnerLink_Modification This event is fired in case a partner link changes.

Variable_Modification This event is fired in case a variable is modified.

10.3 Incoming Events

Read_PartnerLink Using this event, the concrete value of a partner link can be read. As
reply to this event, the event PartnerLink_Read is sent. This event is not distributed
to all subscribers, but directly sent to the requester.

Read_Variable Using this event, the concrete value of a variable can be read. As reply
to this event, the event Variable_Read containing the content of the variable is sent.
In case the variable is a message variable, the content of the message body is sent.
This event is not distributed to all subscribers, but directly sent to the requester.

Write_PartnerLink Using this event, a subscriber may modify the value of a partner link.
Upon completion of the write, the event PartnerLink_Modification is generated.

Write_Message_Header Using this event, a subscriber may modify the value of the
complete header of a message variable. Upon completion of the write, the event
Message_Header_Modification is generated.

Write_Message_Header_Field Using this event, a subscriber may modify the value of an
existing header field. In case the addressed header field does not exist, a new header
field is added. Upon completion of the write, the event Message_Header_Modification
is generated.

Write_Variable Using this event, a subscriber may modify the value of a variable. In case
the variable is a message variable, the message body is updated. Upon completion
of the write, the event Variable_Modification is generated.

In case a correlation set has to be modified, the respective variables have to be modified
using Write_Variable.

An alternative solution to update message variables is to introduce separate events for
the message body and let the variable events tackle the whole variable including header

43

10 Variable State Model

and body. We do not follow this approach as the BPEL specification treats the message
body as variable and lets the engines internally handle the message header.

10.4 Changes from the Previous Version

Events for variables did not exist in the previous event model.

10.5 Missing Features

If the scope of the variable is left, it is possible that the variable is still available for
reading operations. This is not reflected in the model.

44

11 Information Contained in the
Events

An event has to contain information to enable assignment to the corresponding process
instance, activity instance, link instance, or variable instance.

In the following, we discuss the minimal set of IDs in case the events arrive in order as
created by the engine (event stream semantics) and the whole event stream is available.
For instance, this is the case if the BPEL engine directly stores the events in an audit
trail DB. If, however, events are sent to a pub/sub infrastructure, in general it is not
guaranteed that they will arrive in order to a subscriber (e. g., an event correlation
engine). In that case, either an event reordering has to take place first or the event
correlation statements cannot assume event stream semantics (but event cloud semantics
instead) and can get more complicated. For the latter case, we discuss which additional
information has to be added to the events by the engine to simplify event correlation.

To uniquely identify a process model, following information is required:

• QName of the process model.

• version number of the process model.

The version number is optional: Certain engines allow for handling different versions of
a process model with the same QName. Apache ODE is one example.

To uniquely identify a process instance, following information is required:

• globally unique instance ID of the process instance.

Usually, the unique instance ID is generated by the BPEL engine. This instance ID
should be unique across BPEL engine installations to enable custom controllers to be
subscribed to different BPEL engines. The instance ID has to be sent at least once
together with the unique ID of the corresponding process model. Typically, this happens
as part of the event Process_Instantiated, which is the first event triggered for a new
process instance. In practice, both IDs can be sent at each event.

To uniquely identify an activity instance, following information is required:

• an XPath expression, which uniquely identifies the construct in the process model.

• globally unique instance ID of the process instance.

• unique instance ID of the innermost scope instance, where the activity is nested in

45

11 Information Contained in the Events

• unique instance ID of the activity instance

An activity can be uniquely identified in the process model by using an XPath expression.
In case the activity is nested in loops or event handlers, several instances my exist in a
single process instance.

In case the activity is nested in a repeatUntil loop, a while loop, or in a sequential
forEach activity, activity instances (of the same activity in the model) are executed
once per iteration in a sequential manner. As a consequence, they can be distinguished
and ordered based on the event creation timestamps. Alternatively, a loop iteration
number can be added to the events. Consequently, the event Activity_Executed for loop
activities should contain the overall number of iterations performed.

In case an activity is nested in a parallel forEach construct or an event handler, it is also
always nested in a scope as this is required by the BPEL specification. To distinguish
parallel instances of such a scope, each scope instance has to be assigned an instance
ID. Events for activities nested in such a scope have to include the instance ID of the
(innermost) scope. This enables assignment of an activity instance to the corresponding
scope instance. In case such a nested activity is again a scope (from which several scope
instances can run in parallel), in addition its own activity instance ID has to be included
into the event.

As we do not want to distinguish between different types of activities and scenarios
(e. g., whether the model contains parallel for each statements or not), we simply assign
all of the above four identifiers to each activity instance.

To uniquely identify links, variables, partner links, correlation sets, following information
is required:

• unique instance ID of the process instance.

• unique instance ID of the scope where the element is declared.

• an XPath expression uniquely identifying the construct in the process model.

Each outgoing event has to contain a unique event ID to be able to correlate incoming
events driving the element state.

Incoming events not related to a preceding outgoing event have to contain information
to enable identification of elements (activities, variables, partner links) where the
corresponding action should be taken. This information is the same as stated above for
the case of outgoing events.

46

12 Implementation and Application

The pluggable framework for extended BPEL behavior [11] shows an architecture
where the presented event model can be used. This concept has been implemented in
the Apache ODE engine v1.3.4 and is available at http://www.iaas.uni-stuttgart.
de/forschung/projects/ODE-PGF/. A detailed description of the implementation is
provided by Steinmetz [24].

In the following, we present a short overview on projects using the eventing framework.
Details can be found in the provided references.

Karastoyanova et al. use the eventing framework to add flexibility to workflows. Concrete
service implementations can be bound during the runtime of the workflow within the
workflow enginge [6, 7].

Karastoyanova and Leymann [5] use the framework to enable aspect-oriented program-
ming with BPEL. Sonntag and Karastoyanova [23] extended this approach to support
compensation of aspects.

Sonntag and Karastoyanova [22] use the framework for enabling the explorative develop-
ment of scientific workflows, an approach called “Model-As-You-Go”. A process instance
is kept alive if it runs out of work. Further process logic can be appended and the
instance resumed. Completion of process instances is done explicitly by the scientists
themselves.

Khalaf [13] uses the framework to coordinate split loops and scopes. Parts of the split
loops and scopes are called fragments. The idea is presented by Khalaf and Leymann [9].
Concrete coordination protocols are presented by Khalaf and Leymann [10]. Khalaf
et al. [12] show how data dependencies across fragments can be kept.

Kopp et al. [14] discuss the interplay of an external transaction and the transaction of a
BPEL scope. Henke [3] uses the eventing framework to coordinate such an interplay.

Kopp and Leymann present the idea of a choreography sphere [15]. This sphere spans
multiple BPEL processes and introduces a fault and compensation dependency. Kopp
et al. [18] extend the concept to support scientific simulations. An implementation of
the concept based on the eventing framework is presented by Bors [2] and Steinmetz [24].
Bischof [1] extended the concept of a choreography sphere to interaction choreographies
and presents an implementation using the eventing framework.

Kopp et al. [17] present an approach to monitor and prevent violations of choreography
models on the enterprise service bus. The implementation is based on Apache Service
Mix, Apache ODE, and the presented eventing framework.

47

http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/
http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/

12 Implementation and Application

Wetzstein et al. [26] use the eventing framework to measure performance of a BPEL
process. Wetzstein et al. [27] extend this approach to monitor the execution and
performance of choreographies.

Zaid et al. [28] use the eventing framework to monitor the QoS of the process and to
skip or replace activities upon a QoS violation.

48

13 Monitoring-only Event Model

There are scenarios requiring passive monitoring only. In this case, an engine may offer
a simplified event model by removing states and state transitions, which have been
introduced into the model for supporting active control. This simplified event model can
be created as follows: (i) all incoming events are removed from state transition triggers;
(ii) if the removed incoming event was the only trigger of the state transition, then that
state transition is removed and the target state also can be removed if it now has no
incoming transitions any more; (iii) if the removed incoming event denoted a default
transition (see Section 2) then effectively this transition does not have a trigger anymore
and the two states A → B with such a default transition can be merged as follows: A is
removed together with its outgoing transitions (they are in our case either a subset of
outgoing transitions of B or B is an end state and thus they are not needed any more);
incoming transitions of A become incoming transitions of B whereby the fired events on
those incoming transitions are adapted to reflect that now B is reached.

Consider as an example the activity state model presented in Section 5. The transition
from Ready to Executed can be removed as it is only triggered via an incoming event.
The transition from Ready to Executing is a default transition. Thus, Ready can be
removed and a transition is added from Inactive to Executing whereby the event Activity_-
Executing is fired. In the same manner the states Completing and Waiting for Propagation
Request can be removed. An engine implementing the overall event model can expose
the simplified event model to subscribers by implementing a corresponding event filter.
Figure 13.1 presents the result.

Initial

Terminated

Completed

Dead

Dead Path Elimination
/ fire event

Activity_Dead_Path

activity becomes ready
/ fire event Activity_Executing

execution finished
/ fire event

Activity_Completed

activity faulted
/ fire event

Activity_Faulted

process exited or
parent activity faults or

incoming event Terminate_Activity
received

/ fire event Activity_Terminated

process exited or
parent activity faults

/ fire event Activity_Terminated

joinCondition = false and
suppressJoinFailure = no

/ fire event Activity_Faulted
Inactive

Executing
Faulted,

Fault Propagated

Figure 13.1: Activity Monitoring-Only State Chart

49

13 Monitoring-only Event Model

Both event models cannot be used at the same time for a process instance (by different
clients), because a blocking subscriber may force state transitions, which are not valid in
the simplified event model (e. g., skipping an activity results in Activity_Executed without
prior Activity_Executing).

50

14 Conclusion

This report has presented a generic event model for WS-BPEL 2.0. The event model
can be used to monitor running processes. Additionally, the event model offers clients
to change the behavior of the process according to their needs. The event model has
been implemented using the open source Apache ODE engine.

The presented event model supports both passive monitoring and active control of process
execution by external applications via incoming events. We discussed in Section 13 a
way to derive a monitoring-only event model out of the presented event model. The
drawback of such a monitoring-only event model is that it cannot be used together with
the presented event model as the presented event model allows for skipping events being
mandatory in the monitoring-only event model.

Acknowledgments

This report is based on the results of the diploma thesis no. 2729 by Thomas Stein-
metz [24], which in turn extended the work by Karastoyanova et al. [8]. The authors
thank Tobias Anstett and Daniel Schleicher for their valuable feedback on an earlier
version of this report.

The research leading to these results has received funding from the European Com-
munity’s 7th Framework Programme under the Network of Excellence S-Cube1 (Grant
Agreement no. 215483) and the ALLOW project2 (contract no. FP7-213339).

The authors M. S. and D.K. would like to thank the German Research Foundation
(DFG) for financial support of the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

1http://www.s-cube-network.eu/
2http://www.allow-project.eu/

51

http://www.s-cube-network.eu/
http://www.allow-project.eu/

Bibliography

[1] Marc Bischof. Modeling and Runtime Support of Faults in Interaction Choreography
Models. Diploma thesis 2885, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, July 2009.

[2] Sergej Bors. A Runtime for BPEL4Chor Cross-Partner-Scopes. Diploma thesis
2290, University of Stuttgart, Faculty of Computer Science, Electrical Engineering,
and Information Technology, Germany, 2010.

[3] Sebastian Henke. Unterstützung für externe Transaktionen in Apache ODE.
Diploma thesis 3006, University of Stuttgart, Faculty of Computer Science, Electri-
cal Engineering, and Information Technology, Germany, July 2010.

[4] WS-BPEL Extension for Sub-processes – BPEL-SPE. IBM, SAP, 2005.

[5] Dimka Karastoyanova and Frank Leymann. BPEL’n’Aspects: Adapting Service
Orchestration Logic. In Web Services, IEEE International Conference on, Los
Alamitos, CA, USA, 2009. IEEE Computer Society. doi: 10.1109/ICWS.2009.75.

[6] Dimka Karastoyanova, Alejandro Houspanossian, Mariano Cilia, Frank Leymann,
and Alejandro P. Buchmann. Extending BPEL for Run Time Adaptability. In
Proceedings of the 9th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2005). IEEE Computer Society, September 2005.

[7] Dimka Karastoyanova, Frank Leymann, and Alejandro P. Buchmann. An Approach
to Parameterizing Web Service Flows. In Proceedings of the 3rd International
Conference on Service Oriented Computing (ICSOC 2005). Springer, November
2005.

[8] Dimka Karastoyanova, Rania Khalaf, Ralf Schroth, Michael Paluszek, and Frank
Leymann. BPEL Event Model. Technical Report 2006/10, Institute of Architecture
of Application Systems, University of Stuttgart, 2006.

[9] Rania Khalaf and Frank Leymann. Role-based Decomposition of Business Processes
using BPEL. In International Conference on Web Services (ICWS 2006), pages
770–780. IEEE Computer Society, September 2006. ISBN 0-7695-2669-1. doi:
10.1109/ICWS.2006.56.

[10] Rania Khalaf and Frank Leymann. Coordination for Fragmented Loops and Scopes
in a Distributed Business Process. In 8th International Conference on Business
Process Management (BPM 2010). Springer, September 2010.

53

Bibliography

[11] Rania Khalaf, Dimka Karastoyanova, and Frank Leymann. Pluggable Framework
for Enabling the Execution of Extended BPEL Behavior. In Proceedings of the
3rd International Workshop on Engineering Service-Oriented Application (WESOA
2007). Springer, September 2007.

[12] Rania Khalaf, Oliver Kopp, and Frank Leymann. Maintaining Data Dependencies
Across BPEL Process Fragments. International Journal of Cooperative Information
Systems (IJCIS), 17(3):259–282, September 2008. doi: 10.1142/S0218843008001828.

[13] Rania Y. Khalaf. Supporting Business Process Fragmentation While Maintaining
Operational Semantics: A BPEL Perspective. Dissertation, Institute of Architecture
of Application Systems, University of Stuttgart, Juni 2008.

[14] Oliver Kopp, Ralph Mietzner, and Frank Leymann. The Influence of an External
Transaction on a BPEL Scope. In CoopIS 2009 (OTM 2009). Springer, November
2009. doi: 10.1007/978-3-642-05148-7_27.

[15] Oliver Kopp, Matthias Wieland, and Frank Leymann. Towards Choreography
Transactions. In Proceedings of the 1st Central-European Workshop on Services
and their Composition, ZEUS 2009, Stuttgart, Germany, March 2–3, 2009, volume
438 of CEUR Workshop Proceedings, pages 49–54, Stuttgart, March 2009. CEUR-
WS.org.

[16] Oliver Kopp, Hanna Eberle, Frank Leymann, and Tobias Unger. The Subprocess
Spectrum. In Proceedings of the Business Process and Services Computing Confer-
ence: BPSC 2010, volume P-177 of Lecture Notes in Informatics, pages 267–279.
Gesellschaft für Informatik e.V. (GI), 2010.

[17] Oliver Kopp, Lasse Engler, Tammo van Lessen, Frank Leymann, and Jörg Nitzsche.
Interaction Choreography Models in BPEL: Choreographies on the Enterprise
Service Bus. In Subject-Orientation as Enabler for the Next Generation of BPM
Tools and Methods – Second International Conference S-BPM ONE 2010, volume
138 of Communications in Computer and Information Science. Springer, 2010.

[18] Oliver Kopp, Katharina Görlach, and Frank Leymann. Extending Choreography
Spheres to Improve Simulations. In International Organization for Information
Integration and Web-based Application and Services 2010 (iiWAS 2010). ACM,
2010.

[19] OMG Unified Modeling Language (OMG UML), Superstructure, V2.3. Object
Management Group, May 2010.

[20] Web Services Business Process Execution Language Version 2.0. Organization for
the Advancement of Structured Information Standards (OASIS), April 2007.

54

Bibliography

[21] Ralf Schroth. Konzeption und Entwicklung einer AOP-fähigen BPEL Engine und
eines Aspect-Weavers für BPEL Prozesse. Master’s thesis, Institute of Architecture
of Application Systems, University of Stuttgart, November 2006.

[22] Mirko Sonntag and Dimka Karastoyanova. Next Generation Interactive Scientific
Experimenting Based On The Workflow Technology. In Proceedings of the 21st
IASTED International Conference on Modelling and Simulation (MS 2010), 2010.
ACTA Press, 2010.

[23] Mirko Sonntag and Dimka Karastoyanova. Compensation of Adapted Service
Orchestration Logic in BPEL’n’Aspects. In International Conference on Business
Process Management. Springer, 2011.

[24] Thomas Steinmetz. Ein Event-Modell für WS-BPEL 2.0 und dessen Realisierung in
Apache ODE. Diploma thesis 2729, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany, August
2008.

[25] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald
F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR,
2005.

[26] Branimir Wetzstein, Steve Strauch, and Frank Leymann. Measuring Performance
Metrics of WS-BPEL Service Compositions. In Fifth International Conference on
Networking and Services, 2009. ICNS ’09, 2009. doi: 10.1109/ICNS.2009.80.

[27] Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, and
Daniel Zwink. Cross-Organizational Process Monitoring based on Service Choreogra-
phies. In Proceedings of the 25th Annual ACM Symposium on Applied Computing
(SAC 2010), pages 2485–2490. ACM, March 2010. doi: 10.1145/1774088.1774601.

[28] Farid Zaid, Rainer Berbner, and Ralf Steinmetz. Leveraging the BPEL Event
Model to Support QoS-aware Process Execution. In Kommunikation in Verteilten
Systemen (KiVS), Informatik aktuell. Springer Berlin Heidelberg, 2009. doi: 10.
1007/978-3-540-92666-5_8.

55

	Introduction
	Changes from the BPEL4WS 1.1 Event Model
	Overview

	Syntactical Notes
	Process State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Process Instance State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Activity State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Scope State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	The Invoke Activity
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Loop State Model
	States
	Outgoing Events
	Incoming Events
	Note on Parallel forEach Activities
	Changes from the Previous Version
	Missing Features

	Link State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Variable State Model
	States
	Outgoing Events
	Incoming Events
	Changes from the Previous Version
	Missing Features

	Information Contained in the Events
	Implementation and Application
	Monitoring-only Event Model
	Conclusion

