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1 Introduction

Service choreographies are technical contracts which specify the message-
based interactions among collaborating parties, called participants. Figure 1
introduces the basic terminology related to service choreographies. The
ordering and timing of the message-based interactions that a participant is
tasked with performing in a choreography is called role. The participants
implement in participant implementations the messaging behaviors required
by the roles they are assigned. An enactment is the cumulative execution
of the participants implementations and the resulting message exchanges.
When their participant implementations collectively perform an enactment,
the participants are said to enact the choreography.

There are multiple paradigms for specifying service choreographies, the
most prominent of which are interconnection and interaction. In inter-
connection choreographies, each role is modeled explicitly as a participant
skeleton [DKLW07,DKB08,DKLW09], i.e. an orchestration – possibly non-
executable – that models the part of a possible internal behavior of the
participant limited to the generation and consumption of messages. The
participant skeletons are “wired” together by means of the message exchanges.
Since each role is specified separately, interconnection choreographies may
suffer from deadlocks that lead some of their enactments to get “stuck,” i.e.
the enactments reach states in which the participants cannot perform the
actions required for the enactments to progress [Loh08,DW11].

The interaction paradigm for modeling choreographies foresees the spec-
ification of the messaging occurring among the participants from a global
perspective, e.g. as a graph-based process in which the message exchanges
among the participants are modeled as activities. Languages that model

∗The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme under the Network of Excellence S-Cube - Grant
Agreement n◦ 215483.
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Figure 1: Terminology map of choreography-related terms.

choreographies using the interaction paradigm are, among others, the Busi-
ness Process Model and Notation (BPMN v2.0) [OMG11] (choreography
diagrams) and the Web Services Choreography Description Language (WS-
CDL) [W3C05]. Since the ordering and timing of the message exchanges are
specified from a global perspective, it is surprisingly simple to specify chore-
ographies that cannot be correctly enacted by their participants. Consider for
example a choreography that specifies that the participant p1 sends a message
of type m1 to p2, and immediately after p3 sends a message of type m2 to p4.
The opposite order, namely first the dispatching m2 and only then m1, is not
allowed by the choreography. Assume that the choreography is self-contained,
i.e. it does not allow other communication among its participants except
what is explicitly modeled as message exchanges, and that the message
exchanges are performed in secrecy, i.e. that only senders and recipients have
access to the content of the message and know that the message exchange
has occurred. Since p3 does not partake the message exchange that delivers
m1, then p3 has no means of knowing when it is expected of sending m2. A
choreography that is specified so that its participants cannot play their roles
due to similar issues is said to be unrealizable.

Realizability is a fundamental property of interaction choreographies
[MPR+09]. In a sense, an unrealizable interaction choreography fails its
purpose: it specifies a distributed messaging behavior that cannot be enacted
accurately by its participants. In this work we present a method for the
analysis of the realizability of interaction choreographies based on the concept
of participant awareness. In a nutshell, the participant awareness is a symbolic
representation of what a participant “knows” of the global state of the
enactments it partakes. The realizability analysis presented in this work is
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Figure 2: An outlook of the realizability analysis of ChorTex choreographies;
the chamfered rectangles represent artifacts, and the arrows connecting them
are steps of the realizability analysis.

specified on the basis of ChorTex, a choreography modeling language based on
process algebras. We adopt ChorTex instead of an already existing modeling
language to investigate the impact in terms of realizability of constructs that
interrupt the enactment of others. In particular, ChorTex has exception
throwing and handling constructs that are very similar to those available
in orchestration languages like the Business Process Execution Language
for Web Services (WS-BPEL), and that can be used to realize interrupting,
event-based constructs like termination end events in BPMN v2.0. Our
finding is that, due to the distributed nature of choreography enactments,
modelers must use such constructs with extreme care.

Figure 2 provides an overview of the realizability analysis presented
in this work. First, a Control Flow Graph (CFG) – a well-known data-
structure often used in compilers theory [Lou97] – is generated from the
choreography. Such CFG represents the events that occur in an enactment,
e.g. the beginning or completion of an activity, and their ordering. In
the second step, the nodes of the CFG are annotated with information
on the participant awareness, which is a symbolic representation of which
events can each participant observe, and that is calculated using techniques
borrowed from the field of control-flow analysis in programming languages.
A CFG whose nodes are annotated with the awareness of the participants is
called Awareness Model (AWM). Finally, the realizability of the choreography
is tested by verifying constraints on the awareness of the participants that,
if verified, guarantee that the participants are able to play by their roles as
specified.

This work is structured as follows. Section 2 presents ChorTex, the chore-
ography modeling language that we employ in this work. In Section 3 we
provide the necessary background on choreography realizability and state the
definition of choreography realizability that we verify on ChorTex choreogra-
phies. Section 4 shows how to construct CFGs of ChorTex choreographies.
Section 5 elaborates the concept of awareness and presents the algorithm
to annotate nodes of a CFGs with the participant awareness, thus creat-
ing AWMs. Section 6 presents how the realizability constraints are specified
and verified on AWMs. Finally, Section 7 concludes the work by discussing
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the proposed method in light of the related work and our findings on the
impact of interrupting constructs in terms of realizability.

2 ChorTex: A Choreography Modeling Language

ChorTex is based on Chor [YZCQ07], a choreography modeling language
providing mechanisms for exception handling inspired by WS-BPEL. The
syntax and operational semantic of ChorTex are presented in Section 2.1 and
Section 2.2, respectively. The details and rationale of the differences between
ChorTex over Chor are discussed in Section 2.3.

2.1 Syntax and Overview of ChorTex

The syntax of ChorTex is presented in Figure 3 by means of the Xtext Domain
Specific Language (DSL)1. The syntax of the Xtext DSL is similar to Backus-
Naur Form (BNF) grammars, with the addition of the possibility of naming
non-terminal symbols. For example, consider the following rule:

BlockActivity: ‘{’ ‘[’ name=ID ‘]’ activities += Activity (‘;’ activities
+= Activity)∗ ‘}’

The example above means that the non-terminal symbol Block has at its two
ends open and closed brackets, namely the ‘{’ and ‘}’ literals, which surround
one or more productions of the non-terminal symbol Activity, with every
two contiguous productions separated by the literal ‘;’. The productions of
the non-terminal symbol Activity are grouped under the name of “activities”
using the += operator, which concatenates a terminal to a list of terminals.
In Figure 3, the symbols +, ? and * represent cardinalities, meaning that
the groups preceding them (groups are delimited by parentheses) have to
appear at least one, zero or one times, or any number of times, respectively.

A choreography specifies a body which represents the “normal flow” of
activities, and exception handlers which specify the activities to be enacted
in reaction of exceptions propagating from the body. If the body successfully
completes, i.e. no exception is raised during the body’s enactment, the
enactment of the choreography successfully completes as well. On the
contrary, if the enactment of the body results in an exception of type e been
thrown, the exception handlers of the choreography are matched against
the type of the exception that is thrown. The body of an exception handler
consists of the activities to be enacted when that exception handler is
triggered. In ChorTex there are two types of exception handlers: named and
default.

1Xtext (www.eclipse.org/Xtext/) is an Model-Driven Architecture (MDA) framework
based on Eclipse for specifying textual DSLs. A guide to the syntax of Xtext’s grammar
can be found at: http://www.eclipse.org/Xtext/documentation/
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A named exception handler catches exceptions of one single type. Unlike
Java and similarly to WS-BPEL, exception types in ChorTex do not have type
hierarchy. Instead, the match between the type of the propagating exception
and the one declared by the named exception handler is literal, i.e. matching
string-wise the names of the two exception types. Default exception handlers
can handle any type of exception, and intercept any exception propagating
from the body that is not otherwise caught by named exception handlers. In
other words, named exception handlers have precedence on the default one
when determining which will catch an exception. If no exception handler
(neither named nor default) for an exception is found, the choreography
terminates and propagates the exception to its parent activity (if any is
specified). When a choreography is terminated, its body (or the currently
running exception handler) is terminated “on cascade.” When an exception
propagates outside the root choreography, the entire enactment is terminated.
If an exception handler matching the thrown exception is found, its body is
enacted. If the body of the exception handler completes, i.e. the exception
has been dealt with, the enactment of the choreography completes successfully.
However, a body that is terminated because of exceptions propagating from
it cannot be “resumed” after that the exception has been handled. Otherwise,
if the enactment of body of the exception handler results in another exception
been thrown, the choreography terminates propagating this last exception
to its parent activity (if the choreography was nested into another), or
terminating the enactment if the choreography is the root one.

The actual participants of a choreography, i.e. the entities such as
services or individuals, are specified at design time in the choreography. We
assume that each participant “knows” all the others, and that their identifiers
are sufficient information for dispatching messages to them. Moreover, we
assume that each participant is given “a copy” of the choreography, which is
used as an artifact in the software development process of the participant
implementation.

When the message exchange ps → m to pr1 , . . . , prn is enacted, the
participant ps sends a message of type m to the participants pr1 , . . . , prn .
The participant that dispatches the message is called sender, i.e. ps in the
previous example. The participants that receive the message are called
recipients. A participant cannot act as a sender and recipient in the same
message exchange.2 The type of the message that is exchanged over a
message exchange is uniquely identified using an identifier like m. We assume
that a participant can uniquely identify the type of a message by observing
the latter’s content. In the scope of Service Oriented Architecture (SOA)
technologies, this is a realistic assumption: messages can include meta-data

2This assumption simplifies the realizability analysis presented in Section 6 without
sacrificing the expressiveness of ChorTex. After all, a message sent by a participant to
itself is more an internal action than a proper message exchange.
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like information on their type, e.g. as SOAP headers. This assumption
allows the recipients of a message to “trace back” which message exchange
has been enacted solely on the basis of the message they have received.

In this work we do not consider synchronous message exchanging, as
it is not realistic in the scope of Service-Based Applications (SBAs), i.e.
distributed systems realized on the basis of SOA tenets. Instead, the mes-
sage exchanges among the participants are asynchronous. We assume the
asynchronous communications among the participants to have the following
capabilities:

In-order reception: A participant receives messages in the same order in
which they are sent;

Exactly-once reception: A message dispatched once by the sender is
received exactly once by each of its recipients;

Always successful: No messages are lost or recipients are unreachable;

No message corruption: The sender and recipients of a message see ex-
actly the same content;

These assumptions may sound strong; however, they are feasible in current
state of the art of SOA through the adoption of technologies like WS-
ReliableMessaging [FPD+09] (using “exactly-once” and “in-order” policies),
and high-availability features of modern messaging services. It is not relevant
in the scope of this work how asynchronous messaging is actually realized, e.g.
if recipients have queues and which is their size. Due to the asynchronous
nature of message exchanges in ChorTex, the recipient of a message exchange
will receive and consume the message at some point in the future after its
delivery. There is no guarantee about exactly when the message reception
and consumption by one recipient will occur. More specifically, there is no
guarantee that multiple recipients of a message will consume it at the same
time, nor in any particular order (e.g. the participant pi before or after pj).

The skip activity is the “empty” activity. The enactment of a skip activity
involves no actions performed by the participants and it always completes
successfully and instantaneously.

The activity opaque (p1, . . . , pn) represents an unspecified part of the
choreography that involves the participants p1, . . . , pn. That is, an opaque
activity is a “free form” activity that, when enacted, allows its participants
to engage in any amount and ordering of message exchanges. The partic-
ular message exchanges to be performed and their order can be specified
(1) later in the modeling of the choreography, or (2) at run-time by the
participants that partake that opaque activity in the fashion of ad-hoc mod-
eling [AtHEvdA06,WRRM08]. Irrespective of which of the two options is
adopted, the participants of the opaque activity agree on its completion.
In other words, all participants are assumed know when the enactment of

8



the opaque activity is completed. It is outside the scope of this work to
specify how the participants achieve this. This provision is necessary for the
soundness of the operational semantics of ChorTex. The actual mechanisms
that the participants employ to achieve this agreement on the completion
of the opaque activity is outside the scope of this work. For example, the
participants might have an agreed-upon protocol that is enacted in place of
the opaque activity.

The enactment of the activity throw e results in an exception of type e
being thrown. The exception handling mechanisms in ChorTex are control-
flow constructs for specifying the interruption of the enactment of concurrent
activities, and the triggering of others as a result. Unlike programming
languages like Java or orchestration languages like WS-BPEL, an exception
thrown while enacting a ChorTex choreography is not represented by a data-
structure. In a nutshell, the throwing of an exception represents a “jump” in
the enactment of the choreography and in possible interruption of some of
the activities that are currently been enacted.

The block activity { A1, . . . , A2 } denotes the sequential enactment of
the activities A1, . . . , A2. The completion of the first activity triggers the
enactment of the second, and so on until all activities have been completed.
If the enactment of one activity results in an exception being thrown, the
next activities (if any) are not enacted and the exception is propagated.

The construct parallel do A1 and . . . and An specifies the concurrent
enactment of the branches A1, . . . , An. For simplicity, we assume each
branch to be specified as a block; of course, however, a block representing
a branch may very well contain just a single activity. A parallel activity
completes successfully when all its branches have completed successfully. If
the enactment of one of the branches results in an exception been thrown,
the other branches that have not yet completed are immediately terminated,
the parallel activity is itself terminated, and the exception is propagated to
the parallel activity’s parent.

The construct choice p either A1 or . . . or An models the condi-
tional choice (i.e. “if then else”). The decision about which of the A1 . . . An

activities, called branches, is enacted is taken internally by the participant p,
which is said to be the decision maker. Since the decision is internal, the
choice construct does not specify the criteria used by the decision maker for
deciding which branch is executed. Is important to notice that there is no
“visible” proof of the outcome of the decision maker’s decision. The other
participants must understand which branch is enacted by observing what
happens after the decision maker has taken the decision, e.g. by observing
which message exchanges take place thereafter.

Finally, the iteration activity iteration p do A specifies the repeated
enactment (i.e. the “while-do”) of the activity A, which is said to be the
body of the iteration. Similarly to the choice construct, the decision whether
to iterate again the activity is taken internally by the decision maker p. If

9



an exception propagates from the body, the iteration activity is terminated
and the exception is propagated to its parent.

2.2 Operational Semantics of ChorTex

Before detailing the operational semantics of ChorTex (Section 2.2.2), we
need to lay some groundwork (Section 2.2.1).

2.2.1 Basic Definitions

During the enactment of a choreography, its participants perform actions
such as the dispatching of a message or deciding which branch of a choice
activity to enact.

Definition 1 (Actions and Acting Participants). The participants that
perform a certain action are its acting participants. Table 1 correlates the
various types of actions that are performed in ChorTex choreographies with
their acting participants.3

Action Acting Participants Description

[mex] ps
m−→ pr1 , . . . , prn ps

Dispatching of the message m by the sender ps to the
recipients pr1 , . . . , prn when enacting the message ex-
change activity mex

[o]�(p1, . . . , pn) p1, . . . , pn Enactment of the opaque activity o by p1, . . . , pn

[c] p
?7−→ x, x ∈ {A1, . . . , An} p

The decision maker p decides which of the branches
A1, . . . , An of the choice activity c must be enacted

[i] p
�7−→ x, x ∈ {>,⊥} p

The decision maker p decides whether to iterate the
body of the iteration activity i; > and ⊥ denote “true”
and “false,” respectively

Table 1: The types of actions and corresponding acting participants.

Definition 2 (Enactment Traces). An enactment trace L a1, . . . , an M is a
sequence of actions a1, . . . , an performed collectively by the participants
during an enactment of a choreography. The concatenation of enactment
traces is performed through the operator ◦, which is defined as follows:

L a1, . . . , am M ◦ L a′1, . . . , a′n M = L a1, . . . , am, a′1, . . . , a
′
n M

The concatenation implies a temporal order between two traces that are
united together. In particular, all the actions specified by the first trace have
been enacted before those of the second trace.

Not all possible enactment traces are valid for a certain choreography:

Definition 3 (Valid Enactment Traces). An enactment trace σ is valid
for a choreography if the participants do not violate that choreography by
performing in order the actions specified by σ.

3
� is a weather symbol representing fog; it seems fitting, since “what happens” during

the enactment of an opaque activity is not visible in the enactment trace.
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The validity of an enactment trace is verified by “simulating” on the
choreography the sequence of actions it specifies by applying the operational
semantics rules specified in Section 2.2.2. Notice that, is a choreography
specifies iteration activities, there may possibly be infinitely many valid
enactment traces.

The initiating actions of a choreography are those actions that, when
performed by their acting participants, can “kick-start” enactments of that
choreography. (It is important to differentiate between initiating and non-
initiating actions because the former are treated differently than the latter
in terms of the realizability analysis, see Section 6.1.)

Definition 4 (Initiating Actions). An action is initiating if its performing
by the acting participants may cause the initiation of an enactment.

Intuitively, the possible initiating actions of a choreography are all those
that can appear as first in a valid enactment trace. Notice that a choreography
may have more than one initiating action. Consider, for example, the simple
choreography shown in Figure 4. Since the activities that specify actions,
namely the message exchange activities mex1 and mex2, are located in
branches of the parallel activity, prl, both mex1 and mex2 can initiate an
enactment of the choreography.

1 chor [ chor1 ] (
2 [ b ] {
3 paral le l [ prl ] do [ b1 ] {
4 [mex1 ] p1 → m1 to p2

5 } and [ b2 ] {
6 [mex2 ] p2 → m2 to p1

7 }
8 })

Figure 4: An example of choreography with multiple initiating actions.

This choreography requires both the message exchange activities mex1

and mex2 to be performed in order for an enactment to complete. Assume
that at some point in time, first p1 dispatches m1 to p2, and then p2 dispatches
m2 to p1. But does the dispatching of m2 by p2 represent the initiation of a
new enactment, or just the completion of the one initiated by p1 with the
dispatching ofm1? To solve this dilemma, we assume that participants employ
a session mechanism that allows them correlate message exchanges (but, more
generally, action) to enactments. Fundamentally, each enactment is uniquely
identified by an identifier generated upon the performing of the initiating
action, and that is later included in the meta-data of each message exchanged
between the participants. Similar techniques are used for Hypertext Transfer
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Protocol (HTTP) session tracking and in distributed transaction management.
In the current SOA landscape, such session mechanism is easily realized by
means of, for example, WS-Addressing [BCC+06].

The enactment state is defined in terms of the enactment trace, i.e. the
“history” of the enactment up to that moment, the state of each activity
specified by the choreography (see the activity life-cycles in presented in
Section 2.2.2), and the enactment mode, i.e. whether if an exception is been
propagated or, on the contrary, the enactment is “proceeding normally.”

Definition 5 (Enactment States). The state χ the enactment of a choreog-
raphy is a tuple:

χ := Jδ, σ, µK

The symbol δ denotes the enactment environment, i.e. a key-value map
of the states of the activities specified by the choreography. The keys of
the enactment environment are the activities specified by the choreography,
and the respective values are the activities’ own states (specified later in
Section 2.2.2). The fact that the activity A is in the state s is denoted by:

δ[A] = s

The symbol σ represents the enactment trace. Finally, µ denotes the enact-
ment mode, i.e. if the enactment is being enacted “normally,” denoted by
D, or else an exception e is been propagated, denoted by  e.

2.2.2 Operational Semantics of ChorTex Activities

This section presents the operational semantics of ChorTex activities as
both State Diagrams (SDs) of ChorTex elements (Figure 5 through Figure 13),
as well as structured operational semantics (Figure 14 and Figure 15). While
semantically equivalent, these two different representations have different
readability and intended use. On one hand, structured operational semantics
has been widely adopted to describe the meaning of process algebras. SDs of
the life-cycle of ChorTex elements, on the other hand, are easier to read and
provide a perspective on the enactment of a ChorTex choreography focused
on the single choreography elements.

Often, approaches to structured operational semantics, the progress of the
enactment is tracked by “rewriting” the choreography specification removing
the activities that have already been completed. On the contrary, the
operational semantics of ChorTex presented in Figure 14 and Figure 15 adopts
a “state-based” style, representing the current progress of the enactment as a
combination of the states of the single activities. The reason for the adoption
of this style is that the resulting operational semantics mirrors closely the
life-cycles of the activities that, in our opinion, are far more intuitive to
the reader familiar with workflows and service composition languages than
“mainstream” structured operational semantics.
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Figure 5: The enactment life-cycle of a skip activity.
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+

Initiated

,

Completed

e is thrown

Figure 8: The enactment life-cycle of a throw activity.

7

Terminated

+

Initiated

,

Completed

. . .

Running A2 . . . An−1

yA1

Running A1

yAn

Running An

 e

Exception propagating

Activity A1

started

Next activity started Activity An started

Activity An

completed

If e propagates from A1 If e propagates from An

If e propagates from one of A2 . . .An−1

Activity terminated
by its parent

Activity terminated
by its parent

Activity terminated
by its parent
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Figure 10: The enactment life-cycle of a choice activity.
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In Figure 14 and Figure 15, the symbols p denote participant identifiers,
m message types and e exception types. The assignment of the state s to
the activity A is denoted by:

δ[A\s]

The symbols that represent the states of the activities are the same adopted
in the activities’ life-cycles depicted in Figure 5 through Figure 13.

A skip activity, the life-cycle of which is shown in Figure 5, is instantaneous
(see Section 2.1). This is represented in Rule Skip, which can be read in
natural language as follows: “as soon as the activity skip is initiated (i.e. its
state is +), it completes successfully (i.e. its state becomes ,).” Notice that
skip activities can be enacted only when the enactment mode is “normal”
(denoted by D). However, since skip activities are instantaneous, when they
are initiated can never be interrupted by exception propagation.

The life-cycle of message exchange activities is shown in Figure 6. When
its state is initiated and the enactment mode is “normal,” the message
exchange activity enters the state Pending, denoted by the hourglass-like
symbol ./ (Rule Message Exchange Initiation). In “normal” enact-
ment mode, the message exchange activity performs the transition from the
Running to the Completed state when the sender dispatches the message
to the recipients (Rule Message Exchange Completion). Notice that,
since the (Rule Message Exchange Completion) assumes the enact-
ment mode to be “normal,” participants that dispatch messages when the
enactment state in “exception propagation” mode ( e) are violating the
choreography. After a message exchange activity enters the state Pending,
its completion is not necessarily instantaneous. Instead, the message ex-
change becomes enactable, meaning that, if the sender dispatches the message
to the recipients, the choreography is not violated. In other words, the sender
of a message exchange can delay the dispatch of the message indefinitely,
thereby “stalling” the enactment of the message exchange activity. There
are no restrictions on how long can the sender delay the completion of the
message exchange. Since message exchange activities are not instantaneous,
they may be terminated while they are in the state Pending. Notice that
there is no rule that represents in the specific the termination of a message
exchange activity. Instead, the termination of a message exchange activity –
i.e. the changing of its state to Terminated, denoted by 7 – occurs while
executing a rule that processes the termination of the complex activity that is
parent to that message exchange activity. In particular, the rules that, when
executed, can result in the termination of a nested message exchange activ-
ity are those for the termination of choreographies (Rule Choreography
Termination 1, Rule Choreography Termination 2 and Rule Chore-
ography Termination 3), blocks (Rule Block Termination), choice
activities (Rule Choice Termination), iteration activities (Rule Iteration
Termination) and parallel activities (Rule Parallel Termination). The
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In the reminder, s denotes: skip

δ[s] = +

Jδ, σ,DK→ Jδ[s\,], σ,DK
(Skip)

In the reminder, mex denotes: ps → m to pr1 , . . . , prn

δ[mex] = +

Jδ, σ,DK→ Jδ[mex\ ./], σ,DK
(Message Exchange Initiation)

δ[mex] = ./ ∧ ps dispatches m to pr1 , . . . , prn

Jδ, σ,DK→ Jδ[mex\,], σ ◦ L [mex] ps
m−→ pr1 , . . . , prn M,DK

(Message Exchange Completion)

In the reminder, o denotes: opaque (p1, . . . , pn)

δ[o] = + ∧ p1, . . . , pn start enacting o

Jδ, σ,DK→ Jδ[o\y], σ,DK
(Opaque Initiation)

δ[o] =y ∧ p1, . . . , pn complete enacting o

Jδ, σ,DK→ Jδ[o\,], σ ◦ L [o]�(p1, . . . , pn) M,DK
(Opaque Completion)

In the reminder, t denotes: throw e

δ[t] = +

Jδ, σ,DK→ Jδ[t\,], σ, eK
(Throw)

In the reminder, b denotes: {A1;A2; . . . ;An }

δ[b] = +

Jδ, σ,DK→ Jδ[b\yA1][A1\+], σ,DK
(Block Initiation)

δ[b] =yAi ∧ δ[Ai] = , ∧ i < n

Jδ, σ,DK→ Jδ[b\yAi+1][Ai+1\+], σ,DK
(Block Next Activity Initiation)

δ[b] =yAn ∧ δ[An] = ,

Jδ, σ,DK→ Jδ[b\,], σ,DK
(Block Completion)

δ[b] =yAi ∧ δ[Ai] =  e
Jδ, σ, eK→ Jδ[b\ e], σ, eK

(Block Exception)

δ[b] = 7

Jδ, σ, eK→ Jδ[A1\7] . . . [An\7], σ, eK
(Block Termination)

In the reminder, c denotes: choice p either A1 or . . . or An

δ[c] = +

Jδ, σ,DK→ Jδ[c\ ./], σ,DK
(Choice Initiation)

δ[c] = ./ ∧ p picks Ai out of A1, . . . , An

Jδ, σ,DK→ Jδ[c\yAi][Ai\+], σ ◦ L [c] p
?7−→ Ai M,DK

(Choice Decision)

δ[c] =yAi ∧ δ[Ai∈ [1,n]] = ,

Jδ, σ,DK→ Jδ[c\,], σ,DK
(Choice Completion)

δ[c] =yAi ∧ δ[Ai∈ [1,n]] =  e
Jδ, σ, eK→ Jδ[c\ e], σ, eK

(Choice Exception)

δ[c] = 7 ∧ δ[Ai∈ [1,n]] 6= ,

Jδ, σ, eK→ Jδ[Ai\7], σ, eK
(Choice Termination)

Figure 14: The structured operational semantics of ChorTex (Part 1).
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In the reminder, i denotes: iteration p do A

δ[i] = +

Jδ, σ,DK→ Jδ[i\ ./], σ,DK
(Iteration Initiation)

δ[i] = ./ ∧ p internally decides to iterate A

Jδ, σ,DK→ Jδ[i\y][A\+], σ ◦ L [i] p
�7−→ > M,DK

(Iteration Decision True)

δ[i] = ./ ∧ p internally decides not to iterate A

Jδ, σ,DK→ Jδ[i\,], σ ◦ L [i] p
�7−→ ⊥ M,DK

(Iteration Decision False)

δ[i] =y ∧ δ[A] = ,

Jδ, σ,DK→ Jδ[i\ ./], σ,DK
(Iteration Body Completion)

δ[i] = 7 ∧ δ[A] 6= ,

Jδ, σ, eK→ Jδ[A\7], σ, eK
(Iteration Termination)

In the reminder, prl denotes: parallel do A1 and . . . and An

δ[prl] = +

Jδ, σ,DK→ Jδ[prl\y][A1\+] . . . [An\+], σ,DK
(Parallel Initiation)

δ[prl] =y ∧ ∀i ∈ [1, n] : δ[Ai] = ,

Jδ, σ,DK→ Jδ[prl\,], σ,DK
(Parallel Completion)

δ[prl] =y ∧ δ[Ai∈ [1,n]] =  e ∧ {Aj ∈ [1,n] | δ[Aj ] 6= ,} = {A′1, . . . , A′m}
Jδ, σ, eK→ Jδ[prl\ e][A′1\7] . . . [A′m\7], σ, eK

(Parallel Exception)

δ[prl] = 7 ∧ {Ai∈ [1,n] | δ[Ai] 6= ,} = {A′1, . . . , A′m}
Jδ, σ, eK→ Jδ[A′1\7] . . . δ[A′m\7], σ, eK

(Parallel Termination)

In the reminder, chor denotes: chor (A | e1 : A1 | . . . | en : An | ∗ : A∗)

δ[chor] = +

Jδ, σ,DK→ Jδ[chor\yA][A\+], σ,DK
(Choreography Initiation)

δ[chor] =yA ∧ δ[A] = ,

Jδ, σ,DK→ Jδ[chor\,], σ,DK
(Choreography Completion)

δ[chor] =yA ∧ δ[A] =  e
Jδ, σ, eK→ Jδ[chor\- e], σ,DK

(Choreography Exception 1)

δ[chor] = - e ∧ ∃ i ∈ [1, n] : ei = e ∧Ai is body of the named exception handler for ei

Jδ, σ, eK→ Jδ[chor\*Ai][Ai\+], σ,DK
(Choreography Exception 2)

δ[chor] = - e ∧ @ i ∈ [1, n] : ei = e ∧A∗ is body of the default exception handler

Jδ, σ, eK→ Jδ[chor\*A∗][A∗\+], σ,DK
(Choreography Exception 3)

δ[chor] = - e ∧ @ i ∈ [1, n] : ei = e ∧ no default exception handler specified

Jδ, σ, eK→ Jδ[chor\ e], σ, eK
(Choreography Exception 4)

δ[chor] = *Ah ∧ δ[Ah] = ,

Jδ, σ,DK→ Jδ[chor\,], σ,DK
(Choreography Exception Handling 1)

δ[chor] = *Ah ∧ δ[Ah] =  e
Jδ, σ, eK→ Jδ[chor\ e], σ, eK

(Choreography Exception Handling 2)

δ[chor] = 7 ∧ δ[A] =y

Jδ, σ, eK→ Jδ[A\7], σ, eK
(Choreography Termination 1)

δ[chor] = 7 ∧ δ[Ai∈ [1,n]] =y

Jδ, σ, eK→ Jδ[Ai\7], σ, eK
(Choreography Termination 2)

δ[chor] = 7 ∧ δ[A∗] =y

Jδ, σ, eK→ Jδ[A∗\7], σ, eK
(Choreography Termination 3)

Figure 15: The structured operational semantics of ChorTex (Part 2).
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enactment of a message exchange activity cannot cause the throwing of an
exception.

An initiated opaque activity changes its state to Running when its par-
ticipants start enacting it (Rule Opaque Initiation). The participants can
begin the enactment of an opaque activity only when the enactment mode is
“normal” (Rule Opaque Initiation). When the participants complete an
opaque activity, the latter changes its state to Completed (Rule Opaque
Completion). The participants can complete the enactment of an opaque
activity only when the enactment mode is “normal” (Rule Opaque Com-
pletion). No restrictions apply to the amount of time that its takes to
the participants to complete an opaque activity. Thus, opaque activities are
not instantaneous, and can be terminated. Similarly to the case of message
exchange activities, there is no rule specific to the termination of opaque
activities. Instead, the termination of an opaque activity – i.e. its state
been changed to Terminated, denoted by 7 – occurs while executing a rule
that processes the termination of the complex activity that is the parent of
that opaque activity. The enactment of an opaque activity cannot cause the
throwing of an exception.

Throw activities, like skip ones, are instantaneous: they complete as soon
as they are initiated (Rule Throw). The completion of a throw e activity

causes the enactment mode to change from “normal” (denoted by D) to
“exception e propagating” (denoted by  e).

When a block is initiated, it initiates “on cascade” its first nested activity
(Rule Block Initiation). A block can be initiated only when the enactment
mode is “normal” (Rule Block Initiation). In a “normal” enactment
mode, the completion of one nested activity that is not the last in the block
triggers the initiation of the following nested activity (Rule Block Next
Activity Initiation). In a “normal” enactment mode, the completion of
the last nested activity results in the completion of the block (Rule Block
Completion). If the enactment of one of the nested activities of a block
results in an exception e propagating, the block is terminated with the state
 e, i.e. the exception propagates to the block’s parent activity (Rule Block
Exception). Finally, when a block is terminated by its parent activity, i.e.
its state changes to 7, the nested activity currently running is also terminated
(Rule Block Termination). The states of the previously completed nested
activities are not affected by the termination (Rule Block Termination).
Notice that the termination of any activity, blocks included, is fundamentally
the result of an exception been thrown and not yet handled. Therefore, the
termination of a block can occur only when the enactment mode is  e.

Choice activities, once initiated, enter the state Pending (Rule Choice
Initiation), which represents the “waiting” for the internal decision per-
formed by the decision maker about which of the branches to enact. When
the decision maker selects the branch Ai to enact, the block that constitutes
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that branch is initiated (Rule Choice Decision) and the choice activity
enters the state Running Ai. When the branch selected by the decision
maker completes, so does the choice activity (Rule Choice Completion).
If the selected branch results in an exception propagating, the state of the
choice activity becomes Exception Propagation, and the exception is
propagated to its parent (Rule Choice Exception). A choice activity
can be terminated by its parent while the decision is pending, or when the
selected branch has not yet completed (Rule Choice Termination). The
evaluation of the decision by the decision maker cannot cause an exception
being thrown.

Similarly to the case of choice activities, the enactment of an iteration
activity begins with the transition of its state from Initiated to Pending
(Rule Iteration Initiation), which represents the fact that the decision
maker has not yet taken its decision on whether to execute once more
the iteration’s body. The iteration activity completes if, while it is in
the state Pending, the decision maker decides not to iterate the body
(Rule Iteration Decision False). Otherwise, the iteration activity enters
the state Running and the body is initiated (Rule Iteration Decision
True). When the body completes, the iteration activity returns to the
state Pending, so that its decision maker can evaluate once more whether
to iterate the body further (Rule Iteration Body Completion). If
the enactment of the body results in the propagation of an exception, the
iteration activity enters the state Exception Propagation and propagates
the exception to its parent. If the iteration is terminated by its parent and
its body is not yet completed, the body is also terminated “on cascade”
(Rule Iteration Termination). Similarly to the case of choice activities,
evaluation of the decision by the decision maker cannot cause an exception
being thrown.

When a parallel activity is started, its state changes from Initiated
to Running and all its branches are initiated (Rule Parallel Initia-
tion). A parallel activity completes when all its branches are completed
(Rule Parallel Completion). If the enactment of one the branches
results in an exception propagating, the parallel activity enters the state
Exception Propagation, the other branches that have not yet been com-
pleted are terminated, and the exception is propagated to the parent of the
parallel activity (Rule Parallel Exception). If the parallel is terminated
by its parent, all the branches that have not yet completed are terminated
as well (Rule Parallel Termination).

When the enactment of a choreography begins, its state transitions from
Initiated to Running, triggering the initiation of the choreography’s body
(Rule Choreography Initiation). If the body completes, the enactment
of the choreography completes (Rule Choreography Completion). On
the contrary, if the enactment of the body results in the propagation of an
exception of type e, the state of the choreography changes from Running
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to Exception Raised (Rule Choreography Exception 1). When the
choreography enters the state Exception Raised, the exception handlers
defined by the choreography are matched against the exception type e. If
a named exception handler matches the type of the propagating exception,
its body is initiated (Rule Choreography Exception 2) and the state of
the choreography changes to Exception Handling. If no matching named
exception handler is found, but the choreography defines a default exception
handler, the latter’s body is initiated (Rule Choreography Exception 3)
and the state of the choreography changes to Exception Handling. If no
matching named exception handler is found and the choreography defines
no default exception handler (denoted by A∗ = ε in Rule Choreography
Exception 4), the choreography is terminated and the exception is propa-
gated to its parent. If the choreography is the root choreography, and thus
has no parent, the enactment itself is terminated. If an exception handler
matching the type of the propagating exception was found, i.e. the choreog-
raphy is in the state Exception Handling, and the body of that exception
handler completes, then the choreography completes as well (Rule Chore-
ography Exception Handling 1). Otherwise, if the enactment of the
exception handler’s body results in the propagation of an exception of type
e′, the choreography’s state transitions to Exception Propagation (de-
noted by  e′), and the exception is propagated to the choreography’s parent
(Rule Choreography Exception Handling 2). Similarly to the case
when no matching handler for an exception can be found, if the choreography
is the root choreography, the enactment is terminated. The termination of a
choreography can occur when its body or that of one of the exception handlers
is been enacted (Rule Choreography Termination 1, Rule Choreogra-
phy Termination 2 and Rule Choreography Termination 3), which is
immediately terminated.

2.3 Differences between Chor and ChorTex

At first sight, ChorTex adopts a more natural language-like syntax than
its predecessor Chor [YZCQ07]. However, differences between Chor and
ChorTex go deeper than just the syntax, and are treated in the reminder.

2.3.1 Opaque versus Internal Activities

Chor provides a construct called basic activity which allows to specify internal
activities executed by single participants. (Chor’s basic activities are not to
be confused with ChorTex’s: in ChorTex, the term “basic activity” is used to
collectively denote activities that do not allow others to be nested in them,
i.e. skip, message exchange, opaque and throw activities, see Figure 3.) The
execution of Chor’s basic activities is instantaneous, infallible (i.e. it never
results in an exception being thrown), and, since it does not generate message
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exchanges, is not registered in the enactment trace. The rationale of Chor’s
basic activities in choreographies is not discussed in [YZCQ07]; presumably,
basic activities are included in Chor because of its “twin” orchestration
language Role. In fact, during the process of projection, a basic activity a
specified in the choreography is transformed into a Role activity in the role
of the participant that executes a.

In our opinion, allowing the specification of internal activities in a chore-
ography language focusing on interaction modeling is a questionable design
decision. Interaction modeling of choreographies focuses on the global be-
havior of the choreography, detailing the public actions of the participants.
Instead, Chor’s basic activities are internal – i.e. private – to the partici-
pants that execute them. Unlike the choice and iteration constructs, whose
internal activities (the decisions) affect the enactment, basic activities do not
influence the sequencing of activities in the choreography, and are therefore
semantically void. Therefore, in ChorTex we substitute Chor’s basic activities
with the opaque ones, which drop the assumption of instantaneous execution
and must be enacted by multiple participants.

2.3.2 Choreography Nesting vs. Choreography Referencing

In Chor, choreographies are uniquely identified by name and can be refer-
enced from inside other choreographies using the perf construct. When the
perf Cm activity is traversed, the choreography identified by Cm is enacted.
The completion of Cm leads to the completion of perf Cm. Similarly, the
termination of Cm because of the propagation of an uncaught exception
results in that exception propagating outside perf Cm. In ChorTex we
replace choreography referencing with choreography nesting. Choreography
referencing simplifies the modular definition of choreographies; however, it
also complicates considerably the exposition of the realizability analysis pre-
sented in Section 5 by requiring the adoption of inter-procedural flow analysis
techniques. Our design decision is taken for reasons of understandability of
the exposition. Nevertheless, it is straightforward to extend the realizability
analysis presented in Section 5 to support choreography referencing in Chor-
Tex by means of the inter-procedural flow analysis techniques available in
the state of the art, e.g. [Mye81,Cal88,RHS95,MO04].

2.3.3 Finalization Handlers

An extension to Chor presented in [YZCQ07] allows the specification of
finalization behaviors, i.e. activities that are executed irrespective of the
completion of the body of a choreography or its termination due to exception
propagation. Similarly to the case of choreography referencing, ChorTex
does not include such functionality for reasons of understandability of the
exposition. In fact, presenting the generation and analysis of CFGs that
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involve finalization handlers is much more convoluted than without it. Known
techniques of CFG analysis such as [SH00] can deal with finalization handling,
and can be adapted to deal with ChorTex choreographies with finalization
handlers.

3 Choreography Realizability

The present section provides the necessary background on choreography
realizability (Section 3.1) and specifies which type of realizability for Chor-
Tex choreographies we are going to analyze in the reminder of this work
(Section 3.2).

3.1 Aspects of Choreography Realizability

The state of the art is rich with heterogeneous definitions of choreography
realizability, see e.g. [AEY03,AEY05,FBS05,KP06,SBFZ07,MFEH07,BFS07,
BF08, BH10, HB10]. A very general – and intentionally under-specified –
definition of choreography realizability is the following.

Definition 6 (Generic Definition of Choreography Realizability). A chore-
ography is realizable if it is possible to devise participant implementations for
its roles that, when interacting with each other, are behaviorally equivalent
to the choreography.

Definition 6 is under-specified because it does not clarify which of the
many possible behavioral-equivalence relations is required between the com-
position of the participant implementations and the choreography. The
adopted notion of behavioral equivalence, in turn, depends to some extent on
design decisions and assumptions that underpin each choreography modeling
language. Naturally, this has lead to a variety of different definitions of
choreography realizability in the state of the art which can be classified
according to the following three dimensions proposed in [Dec09]:

Complete vs. subset of the behavior: How much of the behavior of the
choreography can be enacted by the composition of the participants
implementations. A definition of choreography realizability requires
complete behavior if all and only the behaviors (e.g. traces) that are
specified by the choreography can be enacted by the composition of
the participant implementations. Such definitions of realizability are
often called strong, see e.g. [MFEH07,BF07,RS11]. If not all the chore-
ography’s behaviors must necessarily be enactable by the composition
of the participant implementations, the definition of choreography real-
izability requires a subset of the behavior. Such definitions are usually
labeled as “weak,” see e.g. [AEY05,SBFZ07].
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Communication model: What are the assumptions on functional and non-
functional characteristics of the communication channels connecting the
participants, e.g. synchronous, asynchronous with queues of fixed size,
asynchronous of queues of infinite size, and whether the communication
channels preserve the ordering of the messages in the queues.

Equivalence notion: The “strength” of the required equivalence notion,
e.g. trace-equivalence, language-equivalence or bi-simulation [vG93,
BIM95].

Given the dimensions listed above, it is clear that there is no “one-size-
fits-all” definition of choreography realizability. Particularly interesting is
the relevance of the communication model. To be formally specified, a chore-
ography modeling language must necessarily make assumptions on how the
participants communicate with each other. In other words, the communica-
tion model is a design decision for choreography modeling languages. This
suggests that definitions of choreography realizability are necessarily “tailored”
to some extent to specific choreography modeling languages.4 The following
section presents the definition of realizability for ChorTex choreographies we
investigate in this work.

3.2 Strong Realizability of ChorTex Choreographies

The definition of realizability adopted in this work is based on the notion of
conversation.

Definition 7 (Conversations). The conversation cen performed during an
enactment is the enactment trace σ restricted to only the actions that describe
interactions among participants, i.e. message exchanges and opaque activities
(which may involve interactions among the participants).

conv(L a M ◦ σ) :=



L a M ◦ conv(σ) if a = p
m−→ p1, . . . , pn

L a M ◦ conv(σ) if a =�(p1, . . . , pn)

L M if σ = L M

conv(σ) otherwise

The function conv(σ) defined above specifies how to extract a conversation
from an enactment trace σ.

In this work we adapt to ChorTex choreographies the definition of strong
realizability proposed in [KP06]:

4Actually, this coupling between choreography modeling languages and definitions of
choreography realizability helps explaining the large variety of (and the limited comparison
among) of the latter in the state of the art.
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Definition 8 (Strong Realizability of ChorTex choreographies). A ChorTex
choreography is strongly realizable if exist participant implementations for its
roles the composition of which is language-equivalent in terms of conversations
to the original choreography.

In other words, the definition of strong realizability requires that it is
possible to create participant implementations that, during every possible
enactment, preserve the ordering of the interactions between the participants
as specified by the choreography.

In terms of the three dimensions of choreography realizability discussed
in Section 3.1, the notion of strong realizability we adopt in this work is
classified as follows:

Completeness of the behavior: Complete.

Communication model: Asynchronous, in-order delivery with queues of
infinite length (see Section 2);

Equivalence notion: Language-equivalence of conversations.

The rationale for choosing strong realizability as defined in Definition 8
over others is rooted in the fact that choreographies are often used as
technical contracts among the participants (see Section 1). Every conversation
intensionally defined by a strongly realizable choreography is enactable by
the participants, but no restrictions are put on their internal actions. Also
very important is what the strong realizability does not require, and in
particular: (1) preservation of the ordering of reception and consumption
of messages by the recipients and (2) preservation of the ordering of the
internal activities, namely the decisions by the decision makers of choice and
interaction activities. Recall that ChorTex assumes asynchronous messaging.
One of the implications of the asynchronous messaging model assumed is that
there are no guarantees about “when” a recipient will consume a message
it has received (see Section 2.1). Therefore, there is no way to enforce a
particular order between consumption of messages by recipients and the
actions in the conversation. (An exception is when a recipient is required to
take an action in response of a message it has consumed; in this case, the
ordering is “implicitly” enforced, because due to how the choreography is
specified, the recipient will not perform the action until it has consumed the
message.) The ordering of internal actions performed by the participants
cannot likewise be enforced. For example, nothing prohibits a participant to
decide in advance, possibly even before an enactment begins, which decisions
it will take. In a sense, this is equivalent to repeatedly throwing a dice before
the beginning of a game of “Sorry!”5 recording in order the outcomes, and

5Sorry! is a 1929 board game in which the players need to travel across the board with
all their pieces faster than their opponents. The distance covered by one piece over a move
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then using them one in the order they were thrown whenever required in the
game.

The trade-off of strong realizability between what is required and what
is not is clearly ideal for technical contracts such as a choreographies: the
participants can provide implementations that comply with all the obligations
(i.e. they are able to perform all the specified behaviors), and no other
limitations are posed on how each participant realizes its own role.

4 From Choreographies to Control Flow Graphs

The realizability analysis for ChorTex choreographies presented in this work
builds on top of the flow analysis framework (see e.g. [All70,Aho07]). The flow
analysis framework is used to study static properties of computer programs,
i.e. properties that can be inferred from the structure of the programs at
design/compilation-time such as dominator and post-dominator analysis,
reaching definitions and data dependencies [Aho07]. The flow analysis
framework is based on the concept of Control Flow Graph (CFG). The CFG
of a program (e.g. in Java) is a directed graph in which each represents one
of the program’s instructions, and an edge connecting two nodes represents a
control dependency between the respective instructions. Section 4.1 explains
how to construct CFGs from ChorTex choreographies, while Section 4.2
correlates the CFGs so constructed and the operational semantics of ChorTex
presented in Section 2.2.

4.1 Construct CFGs of ChorTex Choreographies

We adapt to ChorTex choreographies the approach proposed by [SH00] for
constructing CFGs of Java programs, thus exploiting the similarities between
the exception handling mechanisms of ChorTex and those of general-purpose
programming languages. Table 2 and Table 3 show how to construct CFGs of
ChorTex choreographies by mapping every choreography activity to a CFG
sub-graph. The CFG nodes with the gray background in Table 2 and Table 3
are “place-holders” for the sub-graphs of the respective activities. The
compositionality of the mapping rules requires a mechanism for dealing with
edges that connect nodes resulting from different activities. This is done
by labeling edges with conditions like “to first (A),” which means that the
target node of the edge is the one labeled as “first” in the sub-graph resulting
from the activity A. Similarly, the condition “from last (A)” means that

depends on the result of a dice throw. When a piece of a player reaches a location on the
board that is already occupied by someone else’s piece, the latter is moved back to its
owner’s starting zone; hence the title of the game. (However, in the authors’ experience,
such a proclamation of discontentment by a player that sent back someone’s piece is
virtually always a lie intended to further vex the opponent.) A scan of the rules of “Sorry!”
is available on http://www.hasbro.com/common/instruct/sorry.pdf
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the source of the labeled edge is the node labeled as “last” in the sub-graph
resulting from the activity A. It should be noted that, due to the definition of
“first” and “last” in Table 2 and Table 3, each CFG sub-graph has precisely
one “first” and one “last” node.

Each node of the CFG generated from a ChorTex choreography represents
the firing of exactly one event, e.g. the beginning or completion of an activity,
during an enactment of the choreography. Consequently, the CFG edges
represent the order in which the firing of events may occur while enacting
the choreography. Intuitively, a control-flow edge connecting the two nodes
n and n′, respectively representing the firing of the events e and e′, means
that e′ can be fired only after that e was fired. A more precise interpretation
of the ordering of events is presented later in Section 4.2, as it requires an
understanding of how enacting activities relates to the firing of events.

The CFG nodes block [b] start and block [b] end that are generated
from a block activity named b represent the beginning and completion of the
enactment of b, respectively. Similarly, choice [c] p split and choice

[c] join represent the beginning and completion of the choice activity c,
respectively.6

The node iteration [i] p represents at the same time (1) beginning,
(2) completion and (3) the taking of the decision by p of the iteration activity
i.7 The nodes parallel [p] split and parallel [p] join represent the
beginning and completion of the enactment of the parallel activity p.

The enactment states of a choreography ch are the beginning (represented
by the node chor [ch] start), completion (chor [ch] end), invocation of
the default exception handler (chor [ch] eh ∗) or named exception handler
for the exception type e (chor [ch] eh e), and the propagation outside the
choreography of an exception of type e (chor [ch] err e).

Dealing with exceptions requires special care. Nodes that represents the
throwing or propagation of an exception e to parent activities are labeled
“propagates e.” Consider for example the block {A1; A2}. If A1 is a throw

e activity, A2 will never be enacted; therefore the corresponding sub-graph
in the CFG must not have a control-flow edge connecting A1 with A2.8

For the sake of understandability, the exception control-flow edges, i.e. the
control-flow edges that represent the propagation of exceptions, are depicted
dashed in Table 2 and Table 3. It should be noted that only the rule for

6It would be possible to map choice activities without resorting to join nodes. For
example, we could connect the last nodes of the sub-graphs generated by the branches
with the first node of the activity after the choice. However, having join nodes greatly
simplifies the specification of the mapping rules.

7It would be possible to represent separately these events with distinct nodes, but it
would not provide any concrete advantage in terms of control-flow analysis.

8In ChorTex it is indeed possible to specify a block { throw e; skip }. The skip, in
this case, is “dead-code,” which is usually considered something to be avoided, but not a
defect in itself. However, such cases may be excluded by dedicated well-formedness rules,
e.g. that only the last activity in a block can be a throw activity.
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creating CFG sub-graphs of choreographies specify exception control-flow
edges. The reason is that the “wiring” of exception propagating and handling
is done only at the level of choreographies.

Figure 16 introduces the running example of this work, namely a chore-
ography that specifies sub-choreographies and has a non-trivial propagation
of exceptions. The exception of type e1 that can be thrown during the
enactment of chor3 is caught by the named exception handler for e1 specified
in chor1, which in turn throws an exception of type e2, which terminates the
choreography. The exception propagation is evident in Figure 17, which shows
the CFG resulting from the choreography in Figure 16. It is interesting to
notice that there are some nodes, namely chor [chor1] eh ∗, skip [skip2],
chor [chor2] eh ∗ and skip [skip1], that are not reachable by traversing
the control flow edges from the start node of the CFG, i.e. the “first” node of
the sub-graph generated from the root choreography. In Figure 17, the nodes
not reachable from the start node are painted with reduced opacity (i.e. they
look “more transparent” than others), as well as the control-flow edges that
originate from and/or target them. Specifically, block [choice1either] end

is not reachable because the last activity of its block is a propagate e1 node,
namely a throw node, and thus there is no edge connecting the throw and
block [choice1either] end nodes. The other unreachable nodes, instead,
represent exception handlers that are never triggered.

4.2 Reconciling Actions and Events in ChorTex Enactments

On the basis of method to construct CFGs of ChorTex choreographies
presented in Section 4.1, this section (1) provides a formal interpretation of
the ordering of events as specified by the edges in the CFGs and (2) relate
the events with the actions performed by participants that constitute an
enactment trace (see Section 2.2). The content of this section is instrumental
to the definition of the concept of awareness and the constraints for verifying
the strong realizability of ChorTex choreographies that is presented later
in Section 5 and Section 6. Figure 18 summarizes the terminology and
relationships between the terms that are introduced in this section.

Definition 9 (Preceding and Succeeding Events). An event e, represented
in the CFG by a node ne, precedes an event e′, represented in the CFG by
a node ne′ , if there is a control-flow edge with source ne and target ne′ in
the CFG. If e precedes e′, e is said to the a predecessor of e′. Conversely, if
e precedes e′, then e′ succeeds e or, equivalently, e′ is a successor of e.

The precedence of events expressed by the edges in CFGs is a temporal
correlation. If an event e precedes e′ in the CFG, then in an enactment
the firing of e might cause the firing of e′. Precedence, however, is not
causality: the firing on an event does not necessarily cause the firing of
its successors. For example, the event that represents the taking of the
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1 chor [ chor1 ] (
2 [ chor1body ] {
3 chor [ chor2 ] (
4 [ chor2body ] {
5 paral le l [ prl1 ] do
6 [ prl1branch1 ] {
7 [mex1 ] p2 → m1 to p1

8 }
9 and

10 [ prl1branch2 ] {
11 [mex2 ] p3 → m2 to p1 , p2

12 } ;
13 [mex3 ] p3 → m3 to p1 , p2

14 }
15 | ∗ :
16 skip [ skip1 ]
17 ) ;
18 chor [ chor3 ] (
19 [ chor3body ] {
20 choice [ choice1 ] p1

21 either
22 [ choice1either ] {
23 throw [ throw1 ] e1

24 }
25 or
26 [ choice1or ] {
27 [mex4 ] p1 → m4 to p2 , p3

28 }
29 }
30 )
31 }
32 | e1 :
33 throw [ throw2 ] e2

34 | ∗ :
35 skip [ skip2 ]
36 )

Figure 16: The running example.
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chor [chor1]
start

start
node

block [chor1body]
start

chor [chor2]
start

block [chor2body]
start

parallel [prl1]
split

block [prl1branch1]
start

[mex1]
p2 → m1 to p1

initiating
event

block [prl1branch1]
end

block [prl1branch2]
start

[mex2]
p3 → m2 to p1, p2

initiating
event

block [prl1branch2]
end

parallel [prl1]
join

[mex3]
p3 → m3 to p1, p2

block [chor2body]
end

chor [chor2]
end

chor [chor2]
eh ∗

unreachable
from the

start node

skip [skip1]
unreachable

from the
start node

chor [chor3]
start

block [chor3body]
start

choice [choice1]
p1 split

block [choice1or]
start

[mex4]
p1 → m4 to p2, p3

block [choice1or]
end

block [choice1either]
start

throw [throw1] e1
chor [chor3]

err e1

block [choice1either]
end

unreachable
from the

start node

choice [choice1]
join

block [chor3body]
end

chor [chor3]
end

block [chor1body]
end

chor [chor1]
end

end node
(completion)

chor [chor1]
eh e1

throw [throw2] e2

chor [chor1]
eh ∗

unreachable
from the

start node

chor [chor1]
err e2

end node
(termination)

skip [skip2]

unreachable
from the

start node

Figure 17: Control Flow Graph of the choreography shown in Figure 16.
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decision in a choice activity is predecessor to all the events that represent the
beginning of the enactment of one of the choice’s branches. However, every
time a decision is taken, only one of those start events of the branches may
occur. (Actually, it could even be the case that none will occur, if the choice
activity is terminated because of the propagation of an exception thrown by
a concurrently enacted activity.)

We distinguish between two types of events: participant-activated and
reactive.

Definition 10 (Participant-Activated Events and Participant-Activated
Nodes). The firing of a participant-activated event represents the performing
of an action by some of the participants. The types of participant-activated
events are the following:

• Dispatching of a message;

• Enactment of an opaque activity by the participants involved in it;

• Decision of which branch of a choice activity to enact;

• Decision of whether to iterate the body of an iteration activity.

A node representing the firing of a participant-activated event is said to be a
participant-activated node.

Straightforwardly, each type of participant-activated events corresponds
to one of the types of actions specified in Definition 1. Consistently with
the fact that the reception of a message by a recipient is not considered an
action (see Definition 1), it is not represented as an event either.

Definition 11 (Reactive Events and Reacting Nodes). Reactive events are
fired as a consequence of the firing of participant-activated events. The types
of reactive events are all those not explicitly denoted as participant-activated
in Definition 10. A node that represents the firing of a reactive event is said
to be a reactive node.

To exemplify reactive and participant activate events, consider the CFG
shown in Figure 19 obtained from a straightforward choreography.

chor
start

reactive

start
node

nc1

block [b1]
start

reactive

nb1

p →
m1 to p′

participant-
activated

nm1

block [b2]
start

reactive

nb2

p′ →
m2 to p

participant-
activated

nm2

block [b2]
end

reactive

nb3

block [b1]
end

reactive

nb4

chor
end

reactive

end
node

nc2

Figure 19: A CFG exemplifying reactive and participant-activated nodes.

The enactment of the choreography represented by the CFG in Figure 19
begins when the participant p dispatches the message m1 to the participant
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p′. The dispatching of the message m1, and therefore the firing of the
participant-activated event nm1 , triggers the firing of the reactive events nc1 ,
nb1 and nb2 (fired in this order). The events nc1 and nb1 are “retroactively”
fired because the dispatching of m1 is an initiating action (see Definition 4).
Since the enactment does not exist before m1 is dispatched, the firing of
nc1 and nb1 is implied to “fill the gap” in the traversal of the CFG from
the start node to nm1 . After the firing of nb2 , the enactment “waits” for
the dispatching of m2 by p′. The dispatching of the message m2 triggers
the reactive events nb3 , nb4 and nc2 , the latter representing the end of the
enactment.

Definition 12 (Choreography Violations). An action a performed by some
participants in the enactment state χ is said to violate the choreography if
there is no rule of the operational semantics of ChorTex that is applicable to
χ and that results in a been appended to the enactment trace.

For example, considering the CFG in Figure 19, if p′ were to send m2

to p before receiving m1, that would violate of the choreography. In other
words, a violation of a choreography consists in the performing an action
in an enactment state that, according to how the choreography is specified,
does not allow it. In order to avoid violations of the choreography, acting
participants have to abide restrictions in terms of which enactment states
allow their actions can be performed.

Definition 13 (Enactable Actions). An action a is enactable in the enact-
ment state χ if and only if a performed by its acting participants in χ does
not violate the choreography.

Building on the notion of enactable activity, it can be specified when a
participant-activated event is fireable.

Definition 14 (Fireable Events). The participant-activated event ea associ-
ated with the action a is fireable in the enactment state χ if a is enactable in
χ.

5 Awareness Models of ChorTex Choreographies

This section discusses how to create an AWM by annotating the CFG of a
ChorTex choreography (created as explained in Section 4.1) with information
on the participant awareness. The current section is structured as follows.
Section 5.1 discusses the concept of participant awareness, while Section 5.2
explains how the participant awareness is calculated.

5.1 Participant Awareness in Choreographies

As introduced in Section 2.2, a ChorTex choreography is fundamentally the
intensional specification of sequences of actions such as message exchanges
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and internal decisions, that the participants are tasked to perform during
enactments. The CFG of a ChorTex choreography represents the ordering
of the firing of events representing e.g. the beginning and completion of
an activity, and are fired during an enactment as a result of the actions
performed by the participants (see Section 4.2).

When enacting a choreography, the participants are subject to the phe-
nomenon called blindness [DS08,DDC09], i.e. they might be able to observe
only some of the actions that are performed. Because of the blindness, it
might be the case that some participants have not enough information on
how the enactment proceeds to perform their roles as mandated by the
choreography. For example, it may happen that during one enactment a
participant does not know that its performing of a certain action is neces-
sary for the progress of the enactment, or that performing a certain action
violates the choreography. Put it in terms of events, a participant might be
unable to observe sufficient events to play its role as specified, and this is
symptomatic of the unrealizability of the choreography that is being enacted
(see Section 3). The goal of this section is to provide symbolic means for
describing which events a participant can and cannot observe during the
enactments of a choreography, which is the basis for the verification of the
strong realizability of a choreography presented in Section 6.

Definition 15 (Observable Actions). The participant p can observe the
performing of an action a (equivalently, a is observable by p), if and only if:

• p is an acting participant of a (see Definition 1), or

• a is a message exchange, and p is one of its recipients.

In any other case, the participant p cannot observe the performing of the
action a.

In other words, a participant is able to observe only those actions it
performs as their acting participant, such as the dispatching of a message, or
that have observable consequences for the participant, i.e. the reception of a
message addressed to it. As a result, the participants have local perceptions
on the enactment traces.

Definition 16 (Local Perceptions). The local perception of the participant
p of an enactment trace σ is the trace obtained by purging σ of the actions
not observable by p (see Definition 15).

π (p, L a M ◦ σ) :=



L a M ◦ π (p, σ) if (a = [mex]ps
m−→ pr1 , . . . , prn) ∧

(
p = ps ∨ p ∈ {pr1 , . . . , prn}

)
L a M ◦ π (p, σ) if

(
a = [o]�(p1, . . . , pn)

)
∧ p ∈ {p1, . . . , pn}

L a M ◦ π (p, σ) if (a = [c]p
?7−→ x)

L a M ◦ π (p, σ) if (a = [i]p
�7−→ x)

π (p, σ) otherwise

π (p, L M) :=L M
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The above defined function π (p, σ) specifies how to project the local percep-
tion of the participant p from the enactment trace σ.

It should be noted that the local perception of a participant on an enact-
ment trace does not necessarily represent the order in which the participant
has observed the actions. For example, in the running example shown in
Figure 16, due to the delay between the dispatching of a message and its
processing by the receivers, it might be that the participant p1 processes
the message m2 before m3, even though they have been dispatched by the
respective senders in the opposite order.

Due to their local perception, participants have a different knowledge on
which actions have been performed up to that point in an enactment, and
therefore which events have been fired so far. The knowledge of a participant
with respect of the firing of an event is modeled by the concept of participant
awareness. We distinguish between the participant awareness of a participant
before and after the firing of an enacting event e:

Participant awareness of p before e represents the capability of p of
observing that e becomes fireable (see Definition 14).

Participant awareness of p after e represents the capability of p of ob-
serving that e has been fired.

The differentiation of the participant awareness between before and after the
firing of an event e allows to describe situations in which a participant p knows
that e may be fired in the current enactment state, causing the transition to
another enactment state, but the actual firing of e is not observable by p.
This is extremely important for enacting the choreography without violations.
For example, it may be the case that the action a is enactable in the current
enactment state χ, but not in the enactment state χ′ that results from the
firing of an event e which was fireable in χ. The participants rely solely
on their local perceptions to decide when to perform the actions that they
believe are enactable. Therefore p may unknowingly violate the choreography
by performing a in the enactment state χ′ because it did know that the
enactment state had transitioned from χ to χ′ due to the firing of e.

Table 4 presents the four possible participant awareness states, i.e. the
“extents” of participant awareness that a participant may have about the
becoming fireable and the firing of an event e.

Immediate awareness, denoted by “ia,” means that the participant knows
as soon as it happens that the event becomes fireable or is fired (awareness
before and after the event, respectively). For example, the sender of a
message exchange is immediately aware that the message has been dispatched.
Similarly, the decision maker of a certain decision is immediately aware when
that decision has been taken.

Eventual awareness, denoted by “ea,” is a “relaxed” form of awareness.
The participant does not necessarily know that the event has become fireable
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or has been fired the moment it happens, but will be able to observe it
“sooner or later,” i.e. eventually as understood in Linear Temporal Logics
(LTL), see e.g. [BK08]. For example, due to the asynchronous nature of
message exchanges in ChorTex, the recipient of a message will eventually
know (at the moment of the reception) that the message has been dispatched.
Straightforwardly, immediate awareness implies eventual awareness.

An unaware, denoted by “ua,” participant cannot observe at all an event
becoming fireable or being fired. For example, a participant p that is neither
sender nor recipient of a message m is unaware of participant-activated event
that represents the dispatching of that message. Of course, due to some later
interaction with the other participants, p might be able to “imply” that m
has been dispatched. This is the case, for example, when the dispatching
of m must have necessarily been occurred before another message m′ is
dispatched, and p can observe the dispatching of m′. However, this type of
implication is not of interest to the realizability analysis proposed in this
work, and has no effect on the definition of the participant awareness states.

Finally, a participant is not involved, denoted by “ni,” with respect an
event becoming fireable or been fired if, when that happens, the participant
has not yet taken part in the enactment. (Notice that the participant might
later become involved in the enactment, in which case the participant will
be immediately-, eventually- or unaware of some other events and might
imply that the events he is not-involved of have been fired; however, as
explained before, this type of implication is not relevant to the ends of
participant awareness, which is based on observation.) Non-involvement
implies unawareness. In fact, if a participant has not yet partaken an
enactment, it cannot be aware of any of the enactment events that have
taken place thus far.

5.2 Annotating Participant Awareness States

This section shows how to create AWMs by annotating CFGs generated
from ChorTex choreographies (see Section 4) with the participant awareness
states introduced in the previous section. Since the AWM is simply a CFG
with additional annotations, the nodes and control-flow edges of an AWM
are exactly the same of the original CFG.

The annotations on the participant awareness sates associated with the
nodes in the AWMs are called node awareness states.

Definition 17 (Node Awareness States). In the AWM of a choreography
specifying the participants p1, . . . , pm, the node awareness state of a node n
that represents the firing of the event e is defined as the following couple:(

AWfireable (n),AWfired (n)
)

AWfireable (n) and AWfired (n) are sets comprising m items, each of them repre-
senting the participant awareness state of one participant with respect to the
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event e becoming fireable and e being fired, respectively. The AWfireable (n)
and AWfired (n) of an arbitrary node n are both formally defined as follows:{pi

α
: ∀i ∈ [1,m] ∃!α ∈ {ia, ea,ua,ni}

}
That is, they contain exactly one participant awareness state associated to
each of the participants specified by the choreography.

AWfireable (n, p) and AWfired (n, p) denote the participant awareness state
of the participant p in AWfireable (n) and AWfired (n), respectively.

5.2.1 The Awareness Annotation Algorithm

Figure 20 presents the pseudo-code of the Awareness Annotation Algorithm
(AAA), which calculates the node awareness states associated with the
nodes of AWMs. The AAA has the classic structure of fixed-point algorithms
on CFGs, and it begins with an initialization phase that assigns for each node
and to all participants an initial “non-involved” AWfireable value. The function
P (chor), defined in Figure 21, returns the set of participant identifiers
appearing in the choreography chor by traversing its parsing tree. For each
participant p, the AWfired of a node n is calculated by the function f (n, p),
which is discussed in detail in Section 5.2.3. In a nutshell, the function
f (n, p) calculates how the firing of the event represented by the AWM node
n affects the participant awareness state of the participant p.

After the initialization phase, the algorithm iterates until a fixed point is
reached, i.e. until further iterations produce no modifications of the node
awareness states. At each iteration step, a node n is chosen at random to be
processed. (Although, implementations of the AAA may employ heuristics
e.g. based on the cycles in the CFGs; however, such heuristics fall outside
the scope of this work, as they add nothing to the concepts here presented.)
The processing of n consists of the following two steps, which are repeated
for each participant p specified in the choreography. First, the AWfireable

value of n is recalculated as the safe approximation of all the AWfired values
of n’s predecessors, which is calculated using the function

p
described in

Section 5.2.2. (For reasons of understandability, we discuss how the safe
approximation is calculated in Section 5.2.2.) Secondly, AWfired (n, p) is
updated with the outcome of f (n, p), which in some cases is calculated
on the basis of the updated value of AWfireable (n, p) that results from the
previous step.

Figure 22 presents the AWM resulting from the application of the AAA
to the CFG of the running example shown in Figure 16. The node awareness
states are represented as labels attached to the respective nodes. Notice that
there are no AWfireable and AWfired values annotated on the nodes that are
unreachable from the start node, which are drawn less markedly in Figure 16.
The nodes unreachable from the start one are ignored when calculating
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the node awareness states because they represent events that never become
fireable and are never fired in any enactment of the choreography. In the
pseudo-code of the AAA, this is realized by the “reachable from start” clauses
on Line 9 and Line 20.

Awareness Annotation Algorithm

1 function generateAwarenessModel (choreography chor )
2 returns awareness model {
3 /∗ generate chor’s CFG as described in Section 4.1 ∗/
4 awareness model awm := generateCFG (chor) ;
5 /∗ retrieve the start node of the AWM ∗/
6 node start := startNode (awm) ;
7

8 /∗ initialization ∗/
9 foreach node n in N (awm) reachable from start do

10 /∗ P (chor) returns the set of participants ∗/
11 /∗ specified by the choreography chor (see Figure 21) ∗/
12 foreach p in P (chor) do
13 AWfireable (n, p) = ni ;
14 AWfired (n, p) = f (n, p) ;
15 end foreach
16 end foreach
17

18 /∗ iteration until a fixed-point is reached ∗/
19 repeat
20 foreach node n in N (awm) reachable from start do
21 /∗ update AWfireable as safe-approximation of ∗/
22 /∗ the AWfired of the successors of n ∗/
23 foreach p in P (chor) do
24 /∗ of the predecessors of n (see Section 5.2.2) ∗/
25 AWfireable (n, p) =

p
n’∈ pred(n)

(
AWfired (n′, p)

)
;

26 /∗ update output (see Section 5.2.3) ∗/
27 AWfired (n, p) = f (n, p) ;
28 end foreach
29 end foreach
30 until no AWfired (n, p) changes
31

32 return awm ;
33 }

Figure 20: Pseudo-code of the Awareness Annotation Algorithm.
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P (A) :=



∅ if A = skip

{ps, pr1 , . . . , prn} if A = ps → m to ps, pr1 , . . . , prn

{p1, . . . , pn} if A = opaque (p1, . . . , pn)

∅ if A = throw e⋃
i∈ [1,n]P (Ai) if A = {A1, . . . ,An}

{p} ∪
(⋃

i∈ [1,n]P (Ai)
)

if A = choice p either A1 or . . . or An

{p} ∪ P (A) if A = iteration p do A′⋃
i∈ [1,n]P (Ai) if A = parallel A1 and . . . and An

P (A) ∪
(⋃

i∈ [1,n]P (Aei)
)
∪ P (A∗) if A = chor (A′ | e1 : Ae1 | . . . | en : Aen | ∗ : A∗)

Figure 21: Recursive definition of the function P (A) for extracting the
participants involved in an activity A.

5.2.2 Safe Approximation of AWfireable Values of Nodes

In the iteration phase of AAA, the AWfireable value of a node is recalculated
as the safe approximation of the AWfired values of its predecessors of n. The
safe-approximation of AWfired of a set of nodes is calculated by the functionp

(read “meet”) defined Figure 23.9 The safe approximation is calculated
on the basis of the following principles:

1. Immediate awareness implies eventual awareness (see Section 5.1);

2. Non involvement implies unawareness (see Section 5.1);

3. When a participant is marked as unaware in any of the input awareness
states, it is also marked as unaware in their safe approximation.

The last principle comes from the “nature” of the information aggregated byp
, i.e. participant awareness states. The goal is to safely approximate the

participant awareness state of one participant with respect to a certain event
becoming fireable. As discussed in Section 4.2, an event becomes fireable
when one or more of its predecessors have been fired (see Definition 14). If
the participant p is unaware of the firing any of the predecessors of the event
e, then there are some enactments of the choreography in which p is unaware
of e becoming fireable. Therefore, the safe approximation is marking p as
unaware in AWfireable (n).

9The meet function is traditionally denoted in flow-analysis algorithms by the symbol∧
. However, we need the

∧
symbol later in the work to represent the logic conjunction of

multiple predicates; hence our unconventional choice of symbol for the meet function.
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Figure 22: Awareness Model obtained by applying the Awareness Annotation
Algorithm to the Control Flow Graph shown in Figure 17.

42



5.2.3 Updating the AWfired Value of Nodes

The value of AWfired (n, p) of a node n for the participant p is calculated with
the function f (n, p). The function f (n, p) is defined in Table 5 case-based
on the different types of AWM nodes. In practice, the function f (n, p)
specifies how the firing of the event represented by the node n affects the
participant awareness state of the participant p, and it is applied in the AAA
on each node n once for each of the participants in the choreography. In some
cases, f (n, p) simply returns the value of AWfireable (n, p), meaning that the
traversal of nodes of those types does not modify the participant awareness
state of the participant p. Specifically, this is the case of nodes representing
the enactment of skip and throw activities, end of block activities, merge and
split nodes of parallel activities, merge nodes of choice activities, and the
start, end, exception handling and error propagation nodes of choreographies.

After the traversing of a node representing the dispatching of a message
exchanges, the sender is immediately aware. The recipients, instead, are
eventually aware because the messages are processed asynchronously. The
participants that were not involved before traversing the node remain not-
involved after it. Otherwise, the participants are unaware.

The traversing of nodes that represent opaque activities makes all the
participants that partake them eventually aware. This comes from the
assumption that the participants partaking an opaque activity reckon its
completion (see Section 2.1). Participants that were not involved before the
opaque activity stay not involved. Otherwise, the participants that were
involved before the opaque activity, but that do not take part in it, become
unaware.

The nodes representing local decisions for iteration and choice activities
modify the participant awareness in the same way. Namely, since the decision
is local, the decision maker is immediately aware of it. All participants that

α ∈ {ia, ea, ua, ni}

p
(α1, . . . , αm) :=



ia if ∀ j ∈ [1,m] : αj = ia

ea if
(
∃ j ∈ [1,m] : αj = ea

)
∧(

∀ i ∈ [1,m] : αj = ia ∨ αj = ea
)

ni if ∀ j ∈ [1,m] : αj = ni

ua otherwise

Figure 23: Definition of the
p

function that calculates for a participant p
the safe-approximation of the AWfired values of multiple nodes.
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do not take the local decision remain not involved, if they were so before the
local decision is taken; otherwise, they become unaware.

Finally, the start nodes of blocks that are branches of parallel activities
require special care. If the block is not a branch of a parallel activity, then no
participant awareness states are modified. Otherwise, the block is a branch of
a parallel activity, and we must take extra care with participants that are cur-
rently not involved. Branches of a parallel activity are enacted concurrently
and, due to the flow algorithm used to annotate the participant awareness,
the branches cannot “synchronize” on the participants becoming involved.
That is, if the participant p is not involved before a parallel activity, but it
becomes involved in one of its branches, the flow algorithm would “copy” the
information about p’s non involvement on all its branches. Therefore, if p is
an acting participant in some action of a branch, marking it as non involved
in another branch would violate the “safe approximation” principle of partici-
pant awareness. In the definition of f (n, p) shown in Table 5, this case is dealt
with by marking a participant p as unaware of the start node n of a block that
is a branch of a parallel activity if p is non involved in the AWfireable (n), and
p is an acting participant any other branch of the parallel activity. This is
the case, for example, of the AWM node block [prl1branch2] start in the
running example shown in Figure 22. In fact, the participants p1 and p2 are
unaware in AWfired (block [prl1branch1] start) – instead of non-involved
as reported in AWfireable (block [prl1branch2] start) – because p1 and p2

are acting participants in the other branch of the parallel activity prl1, i.e.
the block activity prl1branch1.

5.2.4 Computational Complexity of the AAA

The AAA is a “classic” iterative fixed-point algorithm. Similar fixed-point
flow algorithms, e.g. the ones for calculating dominance and post-dominance
on CFGs, perform a number of iterations to update the values associated to
the nodes proven to be between O(|E (awm)| × log |E (awm)|) (see [Tar74])
and O(|N (awm)|2) (see e.g. [CHK01]), where E (cfg) and N (awm) denote
the sets of control-flow edges and nodes of the CFG cfg, respectively. In
the reminder we assume the latter, higher complexity, as an approximation
of how many iterations are performed by the AAA to reach the fixed-point.
Additionally, the AAA requires the execution of a reachability analysis
between all the couples of nodes, which is known to have upper-bound
log2 |N (awm)|.

Each invocation of the merge function
p

has complexity linear to (1) the
number participants and (2) the number of successors of the node whose
input-value is being calculated. AWMs are generally structured so that
each nodes has few successors/predecessors (see Section 4.1), so we can
approximate the upper bound complexity of of

p
to O (|P (chor)|), where

|P (chor)| denotes the cardinality of the set of participants, i.e. how many
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participants are altogether declared in the choreography.
The definition of the update-function f (n, p) is case-based. The evalua-

tion of all its cases can be considered to be O (1), with the exception of when
n is a block start node generated from a branch of a parallel activity; in
this last case, the evaluation requires the traversal of the parse-tree of the
other branches, and it can be conservatively estimated to O (|A (chor)− 4|).
The reason is simple: the activities that can specified in the other branches
of the parallel can be at most |A (chor)− 4|, because for sure they do not
contain the current branch, the activity that it necessarily contains (see
ChorTex’s extended BNF in Section 2.1), the parallel activity in which the
current branch is nested, and the root choreography.

Putting all the pieces together, the AAA has an upper-bound complexity
of:

O(|N (awm)|2 × |P (chor)| × |A (chor)− 4|+ log2 |N (awm)|)

Since we are calculating the upper-bound complexity, we can simplify the
estimation above as follows:

O
(
|N (awm)|2 × |P (chor)| × |A (chor)|

)
An over-approximation of 4 on the count of activities and a complexity
of log2 |N (awm)| do not matter, given the fact that the dominant term is
|N (awm)|2; put formally:

|N (awm)|2 � log2 |N (awm)|

(The sign � reads “much bigger.”) Finally, we can observe that the number
of nodes in a CFG is roughly linear with the number of activities specified by
the choreography. (It is not possibly to quantify precisely the ratio between
activities and CFG nodes, as it depends on which type of activities are
specified by the choreography.) In fact, basic- and iteration activities are
mapped to sub-graphs with only one node. Choreographies, instead, are
mapped to sub-graphs with at least two nodes (start and end) plus one
node for each declared exception handler and propagating exception. The
other activities are mapped to two nodes. In other words, the amount of
nodes and activities are comparable, but there are strictly more nodes than
activities (this is guaranteed by the root choreography alone). Therefore,
the estimation of the upper-bound complexity of the AAA can be further
conservatively simplified to:

O
(
|N (cfg)|3 × |P (chor)|

)
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6 Verifying the Strong Realizability of ChorTex
Choreographies through Awareness Constraints

This section introduces the constraints on participant awareness states of
an AWM of a ChorTex choreography that, if verified, ensure the strong
realizability of the latter. We assume the goodwill of the participants, i.e.
they do not knowingly violate the choreography.10 In other words, if a
participant is aware that performing an action in the current enactment
state would violate the choreography, it will not perform that action. Under
the assumption of the participants’ goodwill, the strong realizability of a
ChorTex choreography is verified if the three following strong-realizability
requirements are met by its participants:

Know when to act: The acting participants of every action are immedi-
ately- or eventually aware of the latter becoming enactable;

Know when not to act: The acting participants of every action are im-
mediately aware of the latter becoming not enactable;

Know when the role is over: In any enactment, each participant even-
tually knows when its part in it is over, i.e. if no matter how the
enactment proceeds, no further actions are required by the participant
and no further messages will be received.11

The first two of the requirements above are of straightforward explanation.
Firstly, if a participant with goodwill knows when it can perform its actions
and when not, that participant will never violate the choreography. Secondly,
if the performing of an action is necessary for the progress of the enactment,
its acting participants know that the action can (and should) be performed,
and hence they will eventually perform it.

The third requirement, i.e. that the participants when their roles are
over, has a less immediate rationale and comes for the language-equivalence
in terms of conversations between the composition of the roles and the
choreography that is required by the definition of strong realizability. The
reason is the following. As shown for example in [KP06], a choreography can
be represented as a State-Transition System (STS). The roles specified by the
choreography can also be modeled as separate STSs. The composition of the
roles, therefore, is a composite STS the state space of which is the Cartesian
product of the state spaces of the various STSs of the roles, and removing
those that are not reachable to the transitions in the single STSs. The final
states of the composite STS are those in which all the separate roles are

10At the best of our knowledge, virtually every work in the state of the art on realizability,
with the exception of [BTZ12], builds on this same assumption.

11The authors have pondered at length whether to name this requirement “He’s dead,
Jim.” While not been a particularly academic name, it does sound eerily appropriate.
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themselves in a final state. Recall that the behavioral equivalence that is
adopted in Definition 8 is language-equivalence. Put it in terms of STSs,
language-equivalence requires (among other things) that all and only the
conversations that lead the STS of the choreography to a final state also lead
the composite STS of the roles to a final state. Naturally, a role that has
not begun is in a final state because the corresponding participant has not
yet been involved in the enactment. Therefore, in order for a choreography
to be strongly realizable, in every possible enactment the participants that
have been involved in it must know when their roles are completed.

In order to verify the strong realizability of a ChorTex choreography,
the three strong-realizability requirements are “translated” to awareness
constraints.

Definition 18 (Awareness Constraints). An awareness constraint is a first-
order logic predicate evaluated on the node awareness states of an AWM.
Besides the usual first-order logic operators, an awareness constraints admits
the following predicates which test the participant awareness state of a
participant p with respect to the becoming fireable and the firing of the event
represented by the node n of the AWM:

AWfireable (n, p) = α (Participant-awareness state in AWfireable)

AWfired (n, p) = α (Participant-awareness state in AWfired)

SCout (n, p) = can (p “spots” the end of its role from the node n)

(The latter predicate is reported here for completeness; the explanation
of its meaning requires a large amount of groundwork, and is postponed
to Section 6.3.) As in Section 5.2, the symbol α denotes one of the four
participant-awareness states described in Section 5.1, i.e.:

α ∈ {ia, ea, ua,ni}

Each awareness constraints is attached to one node of the AWM for allowing
“short-hand” notations. In particular, in an awareness constraint attached to
the AWM node n, the following couples of predicates are equivalent:

Long-hand Short-hand

AWfireable (n, p) = α AWfireable (p) = α

AWfired (n, p) = α AWfired (p) = α

SCout (n, p) = can SCout (p) = can

That is, the short-hand version of the predicates “implies” the node
whose node awareness state is tested to be the one to which the awareness
constraint is attached.

Figure 24 exemplifies on the running example the types of awareness
constraints that are presented in Section 6.1 through Section 6.3.
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chor [chor1]
start

start
node

AWfireable = (p1ni ,
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block [chor1body]
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start
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ni )
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p3
ni )

block [chor2body]
start

AWfireable = (p1ni ,
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ni )
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ni )

parallel [prl1]
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block [prl1branch1]
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ua)

[mex1]
p2 → m1 to p1

AWfireable = ( p1ua ,
p2
ua ,

p3
ua)

AWfired = (p1ea ,
p2
ia ,

p3
ua)

AWconstr c1: AWfired (p3) ∈ {ia, ea}

block [prl1branch1]
end

AWfireable = (p1ea ,
p2
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ua)

AWfired = (p1ea ,
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block [prl1branch2]
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[mex2]
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ni )

AWfired = (p1ea ,
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p3
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end
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[mex3]
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p3
ia )

AWconstr c3: AWfireable (p3) ∈ {ia, ea}

AWconstr c6: SCout (p2) = can

AWconstr c7: SCout (p3) = can

block [chor2body]
end
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AWfireable = (p1ia ,
p2
ua ,
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end
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join
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ea )
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block [chor3body]
end
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chor [chor3]
end
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p2
ea ,
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block [chor1body]
end
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ea ,

p3
ea )

chor [chor1]
end

end node
(completion)

AWfireable = (p1ia ,
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chor [chor1]
eh e1

AWfireable = (p1ia ,
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ua)

throw [throw2] e2
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p3
ua)

AWfired = (p1ia ,
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chor [chor1]
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from the
start node

chor [chor1]
err e2

end node
(termination)

AWfireable = (p1ia ,
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ua)
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skip [skip2]

unreachable
from the
start node

Figure 24: The Awareness Model presented in Figure 16, augmented with
the awareness constraints; the satisfied awareness constraints are framed in
green, the unsatisfied ones in red.
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6.1 Know When to Act

The “know when to act” principle is translated to awareness constraints
attached to nodes of the AWM that represent participant-activated events.
The are two types of such awareness constraints, depending on whether the
action associated with the participant-activated event is initiating or not.

6.1.1 Non-initiating actions

Let n be an AWM node representing the firing of a participant-activated
event ea associated with the non-initiating action a. To verify that the acting
participants of a “know when to act,” n has attached the following awareness
constraint requiring each acting participant of a to be either immediately or
eventually aware of a becoming enactable (see Definition 13):

∀ p ∈ actingParticipants (a) : AWfireable (p) ∈ {ia, ea}

The function actingParticipants (a) returns the acting participants of the
action a (see Definition 1). The rationale of this awareness constraint is
the following. The acting participants must be aware of when they can
perform the action, i.e. when it becomes enactable (hence the constraint on
AWfireable). If the acting participants are immediately aware of when the
action become enactable, they will be able to perform the action as soon as
it would not violate the choreography. If they are eventually aware, they will
be able to perform it at some point in the future. If the acting participants
are unaware or not-involved, they can never perform that action for the risk
of violating the choreography, and this constitutes a realizability defect.

An example of this type of awareness constraint is c3 in Figure 24. The
participant p3 is unaware of the fact that it can dispatch of m3, and therefore
it never will, thus deadlocking the enactment. On the contrary, the decision
maker p1 of the choice activity choice1 is eventually aware of the fact that
it is required of deciding which branch to enact, and assuming that it will
perform the decision in a finite amount of time, this guarantees the progress
of the enactments (see awareness constraint c4 in Figure 24) .

6.1.2 Initiating actions

ChorTex choreographies have either:

• A single initiating action;

• Multiple, non mutually-exclusive initiating actions.

Mutually-exclusive initiating actions, i.e. initiating actions exactly one
of which occurs in every possible enactment, are not possible due to the
constructs of ChorTex. In fact, the only way to specify in ChorTex mutually
exclusive actions is within branches of a choice activity. However, the decision
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action of the choice activity dominates (i.e. is always performed before) the
actions in all the choice’s branches. This implies that an action in a branch
of a choice activity can never be initiating. As a consequence, ChorTex
choreography can never have mutually-exclusive initiating actions.

In the case of a single initiating action, no awareness constraints are
required to verify that participants “know when to act.” The acting partici-
pants of the one initiating action perform create the enactment by performing
that action. In a sense, the initiating action is the first source of participant
awareness in an enactment, and to perform it is reasonable not to require
prior awareness, i.e. knowledge of what has happened before in an enactment
that did not yet exist. It should be noted that it is outside of the scope of
realizability analysis to determine how the acting participants of the initiating
action decide to perform it.

On the contrary, in the case of multiple, non-exclusive initiating actions,
awareness constraints are required to ensure that all the initiating actions can
be performed irrespective to which one is the first to occur in an enactment.
In the running example (see Figure 24) there are two initiating actions,
namely the dispatching of m1 by p2 to p1, and the dispatching of m2 by p3

to p1 and p2. Either of these two actions may initiate an enactment of the
choreography. Moreover, both actions must be performed in every enactment,
because the parallel activity prl1 does not complete until both messages have
been dispatched. In each enactment, either m1 is firstly dispatched, and
then m2, or vice-versa. For both the senders of the two message exchanges,
namely p2 and p3, to be able to dispatch their message with the certainty
of not violating the choreography, it must be the case that the dispatching
of one of the messages “provides enough awareness” to the sender of the
other to be able to dispatch the other message. Unfortunately, this is not
the case of the running example. The dispatching of m2 by p3 to p1 and
p2 makes the sender of m1, namely p2, eventually aware, and therefore able
to later dispatch m1. On the other hand, consider the case in which the
enactment is initiated by the dispatching of m1. The participant p1 and p2

are eventually- and immediately-aware of the dispatching of a message of
type m1, respectively. However, since p3 is not a recipient of m1, it does not
know that the enactment has been initiated, and therefore it will not know
that it must send m2. This causes a deadlock: since the message exchange
activity mex2 cannot be enacted (its acting participant is not aware that
it can – and should – dispatch the message), the parallel activity prl1 can
never be completed, and the enactment is stuck.

Generalizing from the example reported above, the participant awareness
resulting by the performing of each initiating action must enable the acting
participants of all the other initiating actions to perform them. Therefore,
enactments can be begun by any of the initiating actions without resulting
in deadlocks, exactly as required by the choreography. Put formally, given
the set of initiating actions A := a1, . . . , am of the choreography, each of the
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nodes na1 , . . . , nam representing the participant-activated events associated
with the initiating actions a1, . . . , am has associated the following awareness
constraint:

∀ p ∈
( ⋃
a′∈A\{a}

actingParticipants (a′)
)

: AWfired (p) ∈ {ia, ea}

The awareness constraint above can be paraphrased in natural language as
follows: the acting participants of every initiating action other than a must
be eventually- or immediately aware of the performing of a. Thus, no matter
which initiating action is the first to be performed in the enactment, all the
others can be performed as well by their respective acting participants.

6.2 Know When Not to Act

When required to perform an action, i.e. generating a message or taking
a decision, a participant is not required to take that action immediately.
In the life-cycles of ChorTex activities presented in Section 2.2.2, this is
represented by the Pending states of message-exchange (Figure 6), choice
(Figure 10) and iteration (Figure 11) activities. That is, some time may pass
between the moment an action becomes enactable (see Definition 13), and
when it is actually enacted. The awareness constraints that realize the “know
when to act”-requirement (presented in Section 6.1) ensure that the acting
participants know when their actions become enactable. However, those
awareness constraints do not account for the cases in which an action that is
enactable at one point in time becomes later non-enactable due to changes
to the enactment state. Specifically, actions change from enactable to non-
enactable due to the throwing and propagation of exceptions (see Section 2).
The operational semantics of exception throwing specifies that, as soon as an
exception is thrown, all the other activities that are being enacted as branches
of a parallel activity are terminated. In such situations, the unawareness
of acting participants with respect to the current non-enactability of their
actions may mislead them into violating the choreography.

Consider the choreography shown in Figure 25. After that the participant
p1 has dispatched a message of type m1 to p2, the parallel prl1 activity is
enacted, which in turn causes the enactment of the message exchange activity
mex2 and the choice activity c1. Currently, there are two enactable actions:
the dispatching of a message of type m2 by p2 to p1, and the decision by p1

on which branch of the choice activity c1 to enact. In an enactment in which
p1 decides “true” in the choice activity c1 before p2 dispatches the message
m2, the latter action becomes non-enactable. In this case, if the sender of
mex2, i.e. p2, dispatches m2 to p1 despite the fact that the exception e1 has
been thrown, the choreography is violated.

52



1 chor [ chor1 ] (
2 {
3 [mex1 ] p1 → m1 to p2 ;
4 paral le l [ prl1 ] do {
5 [mex2 ] p2 → m2 to p1

6 } and {
7 choice [ c1 ] p1

8 either {
9 throw [ t1 ] e1

10 } or {
11 skip [ s1 ]
12 }
13 } ;
14 [mex3 ] p2 → m3 to p1

15 }
16 )

Figure 25: A choreography in which actions can change from enactable to
non-enactable due to the throwing of exceptions.

6.2.1 Identifying Concurrently-Acting Participants

To verify that a choreography does not have realizability defects such as those
of the choreography in Figure 25, we need awareness constraints that verify
that the participants that may act in other concurrently-enacted branches are
immediately aware of the throwing of exceptions or their propagation from
nested choreographies. Figure 26 presents an algorithm that derives such
awareness constraints by exploiting the block-based structure of ChorTex to
identify which parallel activities are terminated when a certain propagates
exception event is fired in an enactment. The function parent (A) returns
the activity in which A is nested. If A is the root choreography (which, by
definition, has no parent activity), parent (A) returns null. The function
sourceActivity (n), instead, returns the activity from which the CFGs node
n was generated (see Section 4.1).

The algorithm in Figure 26 is divided in two phases. First, it identifies the
parallel activity that encompasses all those activities that may be terminated
when the propagates exception node n is traversed (i.e. when the event
represented by n in the AWM is fired). This parallel activity, called outer
parallel, is the last one encountered navigating upwards – i.e. from nested
activities to those encompassing them – the hierarchy of parents of n until the
first choreography is found. (If there are parallel activities nested into each
other without choreographies to “insulate” them, they are all terminated by
the throwing of an exception in any of their branches.) It could be the case
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1 /∗ n is a propagates exception node ∗/
2 /∗ the algorithm attaches the newly generated constraint to n ∗/
3 function deriveAwarenessConstraint (node n)
4 returns constraint {
5 /∗ A is the activity from which the propagates exception node ∗/
6 /∗ n has been generated (i.e. a throw activity or a choreography) ∗/
7 activity A := sourceActivity (n) ;
8

9 /∗ identification of the “outer” parallel activity ∗/
10 paral le l activity outerParallel := null ;
11 activity A′ := parent (A) ;
12 /∗ A′ is null if A is the root choreography ∗/
13 /∗ the iteration terminates when A′ is a choreography ∗/
14 /∗ (not necessarily the root one) ∗/
15 while (A′ not null && A′ i s not choreography ) do
16 i f (A′ i s parallel do A1 and . . . and An ) then
17 outerParallel := A′ ;
18 end i f
19 A′ := parent (A′) ;
20 end while
21

22 /∗ identification of the nodes that represent actions that ∗/
23 /∗ may be made non-enactable after the traversing of ∗/
24 /∗ the propagates exception node n ∗/
25 i f outerParallel not null then
26 /∗ the set P contains the acting participants of actions ∗/
27 /∗ that can be concurrently enacted ∗/
28 set P := ∅ ;
29 /∗ retrieve/generate chor’s CFG sub-graph ∗/
30 /∗ as described in Section 4.1 ∗/
31 foreach node n′ in generateCFG (outerParallel) do
32 i f (not n′ dominates n &&
33 not n dominates n′ ) then
34 P := P ∪ actingParticipants (n′) ;
35 end i f
36 end foreach
37 return new constraint c :=

∧
p∈P AWfired (p) = ia ;

38 end i f
39 }

Figure 26: Pseudo-code for deriving the awareness constraint attached to
the propagates exception node n.
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that no outer parallel is found, i.e. if:

• the propagates exception node n is not nested into any parallel activity
(in which case the traversing of n makes no action non-enactable, since
none may be enacted concurrently);

• the propagates exception node n is nested into a parallel activity, but n
is encapsulated into a choreography nested in the parallel activity and,
therefore, the exception is handled by that choreography’s exception
handlers. (However, that nested choreography might have its own
propagates exception nodes, which will be associated with awareness
constraints if necessary.)

In both the above cases, no awareness constraint is needed for n. The reason
is that, since no outer parallel activity is found, there are no concurrently-
enacted actions that might be rendered non-enactable by the propagation of
the exception.

In case an outer parallel is found, the second part of the algorithm
identifies which actions might be made non-enactable by the traversing of the
propagates exception node n. These actions are all those represented by some
node in the CFG sub-graph of the parallel activity identified before, with the
exception of the nodes dominated n (because they either have already been
enacted before n is traversed) or those that dominate n (because they can be
enacted only after n, and therefore they will never be enacted). Once all the
actions that might be made non-enactable are found, the awareness constraint
is composed by requiring that each acting participant of at least one of those
actions is immediately-aware of the firing of the event represented by n.

6.2.2 Computational Complexity

The algorithm in Figure 26 requires the traversing of the parsing tree of
the choreography, and it can be (very roughly) estimated as quadratic
with respect to the number of activities in the choreography, i.e. the max
depth of the parsing tree, times how many activities may be terminated
by the enactment of a throw activity which, once again, we conservatively
estimate it to be less or equal to the number of activities specified by the
choreography. We have already estimated the number of activities to be
linear to the number of nodes in the CFG, and therefore this upper-bound
can be over-approximated to:

O
(
|N (awm)2|

)
More precise approximations are possible but not worth the effort, because we
are considering the computational upper-bound, and this is not the highest
among the various algorithms that compose the realizability analysis (see
Section 7).
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6.3 Know When the Role is Over

A final state is an enactment state (see Definition 5) in which no further action
is required of the participants. Notice that a deadlock is not a final state; a
deadlock, in fact, is an enactment state in which further action is required of
the participants, but they cannot perform it. The reaching of a final state in
the enactment of a choreography is represented in the respective AWM by the
traversing of an end node. Choreographies may admit multiple final states,
each representing a different outcome. As a consequence, AWMs may have
multiple end nodes, each associated with a different final state. For example,
the AWM shown in Figure 24 has two end nodes. The node chor [chor1]

end represents the successful completion of the choreography. Instead, chor
[chor1] err e2 represents the termination of the choreography because of
an exception of type e2 that cannot be handled and that propagates outside
the root choreography.

If verified on a choreography, the awareness constraints presented in
Section 6.1 and Section 6.2 guarantee that exist participant implementations
the composition of which is trace-equivalent to the choreography, i.e. it
can enact exactly (i.e. all and only) the conversations specified by the
choreography. However, the definition of strong realizability for ChorTex
choreographies requires more than trace-equivalence: it requires language-e-
quivalence (see Definition 8). Language-equivalence is a stronger relation than
trace-equivalence because it additionally requires that every conversation
that leads the choreography to a final state also leads the composition of
participant implementations to a final state, and vice-versa [BIM95]. This
additional requirement is the reason for the the “know when the role is
over”-requirement, which is verified by the awareness constraints presented
in the reminder of this section.

Adopting the formalization proposed in [KP06] of choreographies, par-
ticipant implementations and their compositions as STSs, a composition of
participant implementations reaches a final state if and only if each of the
composed participant implementation reaches a final state. The final states
of a participant implementation are its internal states that represent the
completion of the role in some enactments. Naturally, participants that are
not yet involved in an enactment before the latter ends need not know that
their role in that enactment is over, since, in fact, it had not even yet begun.

Unlike the case of choreographies, the reaching of a final state by the
participants is not explicitly represented in the AWMs. This is further
complicated by the fact that, when the enactment is completed, all roles
are over, but not all the participants are necessarily aware of it. Consider
the choreography shown in Figure 27. An enactment is completed when p1

decides not to iterate the activity loop further. Since p1 takes the decision
that immediately results in the completion of the enactment, it knows when
the enactment is over, and thus that also its role is. On the other hand, p2
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1 chor [ chor1 ] ({
2 iteration [ loop ] p1 do {
3 [mex1 ] p1 → m1 to p2

4 }
5 })

Figure 27: A choreography in which p2 does not know when its role is over.

does not know when the enactment is over: its role is to receive an unspecified
number of messages of type m1, as long as they they keep being sent. When
p1 decides not to further iterate the activity loop, p2 will still wait indefinitely
for more messages that will never be dispatched. This “hanging” of p2 violates
the “know when the role is over”-requirement for strong realizability, and
thus constitutes a realizability defect: since p2’s participant implementation
cannot reach a final state by the time the enactment ends, the composition
of the participant implementations of p1 and p2 does neither, and therefore
the composition of the participant implementations and the choreography
are not language-equivalent.

To avoid realizability defects like the one shown in the previous example,
we need to verify that, by the time an enactment ends, all the participants
involved in it know that their roles are over. A participant knows that its role
in an enactment is over by implying that its role is over based on the events
it can observe (see Definition 15) and on how the choreography is specified.
The explanation of how participants do this requires some groundwork.

Definition 19 (Final Observable Actions and Final Observable Nodes). An
action a is final observable action for a participant p if there is at least
one valid enactment trace for the choreography in which a is the latest
observable action (see 15) by p. An AWM node n is a final observable node
for a participant p if it represents the firing of a participant-activated event
associated with the performing of a final observable action for p.

It is important to notice that in some enactment a participant might
observe multiple final observable actions being performed, as well as one
final observable action being performed multiple times. For instance, in the
running example (see e.g. Figure 24) the participants p2 and p3 have two
final actions, namely the dispatching performed when enactment the message
exchange activities mex3 and mex4. A choreography in which one final
action can be performed multiple times in an enactment is the one shown
in Figure 25. In that choreography, p2 has only one final action, namely
[mex1] p1

m1−−→ p2 which, depending on the decisions taken by p1, can be
performed any number of times.

The identification of the final observable nodes for a participant p is easily
achieved by adapting the classic flow-analysis method for calculating reaching
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definitions. In imperative programming languages, a reaching definition for
an instruction i is an assign instruction i′ affecting a certain variable x that
may reach i without an intervening assignment to x [Aho07]. For reasons of
brevity we omit the details of the reaching definitions algorithm, which can
be found for example in [MR90]. The intuition of the reaching definitions
algorithm is the following: each node n representing an instruction in the
program is annotated with pointers to those assignment instructions that are
reaching definitions to n for some variable in the program. These pointers to
reaching definitions are grouped by the variables they affect. Depending on
the CFG of the program, one node may be annotated with multiple reaching
definitions for one certain variable.

The problem of identifying the final action nodes of a participant p can
be mapped to the concept of reaching definitions as follows. If p is an
acting participant of n, it counts as an assignment of the value n to the
“variable” named p. All the reaching definitions n1, . . . , nm for p to an end
node ne are the final observable nodes of p in all the enactments ending
with ne. Naturally, it is possible that the various end nodes are associated
with different sets of reaching definitions. The overall set of final observable
nodes for p is the union of the reaching definitions for p on all the end nodes
of the AWM. In the reminder, the function that returns the set of final
observable nodes of the participant p in an AWM is denoted by:

finalObservableNodes (p)

As previously mentioned, a participant might observe multiple final
actions being performed in one enactment. One of those final actions will
actually be the last one that the participant observes in the enactment (and
therefore the one that signifies the end of that participant’s role), but how can
the participant know which one? Consider again the choreography shown in
Figure 27: the only final observable node of the participant p2 is [mex1] p1

→ m1 to p2, but the dispatching by p1 of a message of type m1 to p2 may
happen any number of times in an enactment, depending on the decisions of
p1. In such a case, in order for a participant to imply that its role is over, the
choreography must be specified so that the participant is aware of the firing
of canary events, i.e. events whose firing guarantees that no final actions for
the participant can be further performed.

Definition 20 (Canary Events and Canary Nodes). The event e, the firing
of which is represented in the AWM by the node n, is a canary event for the
participant p if no final observable node of p is reachable from n and p is
immediately- or eventually-aware of the firing of e. Put formally:

f (n, p) :=
(
@ n′ ∈ finalObservableNodes (p) : n′ is reachable from n

)
∧(

AWfired (n, p) ∈ {ia, ea}
)

An AWM node that represents a canary event is a canary node.
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In other words, the observation of the firing of a canary event by a
participant guarantees that no actions observable by that participant lie on
any of the paths connecting the respective canary node and any end nodes.12

Most canary events are reactive events (see Definition 11), i.e. those events
that are triggered “on-cascade” by the performing of some action.

As discussed in Section 6.2, because of parallel activities, an enactment
may concurrently traverse multiple paths on the AWM. This means that
a participant might need to observe multiple canary events before it can
deduce its role is over.

Definition 21 (Sufficient Canary Events and Nodes). A set of canary events
e1, . . . , em of the participant p is sufficient for the event e if, in any possible
enactment, after the firing of e the participant p can observe at least one of
e1, . . . , em. Similarly, the set of canary nodes n1, . . . , nm of the participant p
is sufficient for the node n if every path connecting n with any of the end
nodes of the AWM contains at least one of n1, . . . , nm.

That is, a set of canary events of a participant is sufficient for a certain
event e if, no matter how the enactment evolves after the firing of e, at
least one of those canary events will be observed by that participant. This
provides a way of verifying the “know when the role is over”-requirement for
strong realizability: a participant knows when its role is over if, for each of
its final observable actions, there is a sufficient set of canary events.

6.3.1 The Bird-Watching Algorithm

The Bird-Watching Algorithm (BWA) presented in Figure 28 checks if a
participant p has sufficient canary events for each of its final observable
actions.13 Similarly to the AAA presented in Section 5.2, the BWA presented
in Figure 28 is a flow-analysis algorithm. The idea is to use a fixed-point
algorithm instead of an enumeration of the paths, possibly infinitely many
due to loops in the AWMs, that connect final observable- and end nodes.

The BWA is run once for each of the choreography’s participants. As
opposed to the forward direction of the AAA (see Section 5), in the BWA the
paths in the AWM are traversed by following the control-flow edges backwards.

12The term “canary event” is clearly a reference to the distasteful mining practices
(hopefully) of yore. In stark disregard of animal life, miners brought along caged canaries
down the shafts. The canaries were (ab)used as low-tech gas detectors, as they would die
sooner than the miners in the presence of toxic gases such as carbon monoxide, methane
or carbon dioxide. Thus, the death of a canary meant that the shaft had to be fled really,
really quickly. In our realizability analysis, the firing of canary events signals the end of a
participant’s role. We like to think that our canaries deliver their signal by singing, instead
of by perishing. No innocent birds need ever shed their lives on the altar of choreography
realizability.

13The name “Bird-Watching Algorithm” is an admittedly bad pun on the fact that the
participants need to be able to “spot” canaries.
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Bird-Watching Algorithm

1 /∗ awm is the AWM of the choreography ∗/
2 /∗ p is the participant being checked ∗/
3 /∗ when the BWA terminates, each node of awm reachable from ∗/
4 /∗ the start node is annotated with input- and output values ∗/
5 function birdingWatchingAlgorithm (awareness model awm ,
6 participant p) returns void {
7 /∗ retrieve the start node of the AWM ∗/
8 node start := startNode (awm) ;
9

10 /∗ initialization; N (awm) is the set of nodes in the AWM awm ∗/
11 foreach node n in N (awm) reachable from start do
12 /∗ “conservative” initialization ∗/
13 SCin (n) := cannot ;
14 SCout (n) := fE

(
p, n,SCin (n)

)
;

15 end foreach
16

17 /∗ iteration until a fixed-point is reached ∗/
18 repeat
19 foreach node n in N (awm) do
20 /∗ safe-approximation of the outputs of n’s successors ∗/
21 /∗ see Section 6.3.2 ∗/
22 SCin (n) :=

c
E

n′ ∈ succ(n)

(
SCout (n′)

)
;

23 /∗ update the output-value of n, see Section 6.3.3 ∗/
24 /∗ the identification of canary events performed ∗/
25 /∗ during fE can be cached for reuse ∗/
26 SCout (n) := fE

(
p, n,SCin (n)

)
;

27 end foreach
28 until no SCout (n) changes
29 }

Figure 28: Pseudo-code of the Bird-Watching Algorithm.
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In the run of the BWA for a participant p, each node n is associated in
the BWA with input and output values, denoted by in this case by SCin (n)
and SCout (n), respectively. (SC stands for “Spots Canaries.”) SCin (n)
represents the safe-approximation of the output-values of the successors of
the node n, and SCout (n) symbolically represents the capability of p to spot
the end of its role after the traversal of n. The possible values of SCin (n)
and SCout (n) are the following:

• can: n is a canary node of p, or there are sufficient canary events of p
for the node n (see Definition 21);

• cannot: p does not have sufficient canary events for the node n.

Ideally, when the BWA reaches a fixed-point, all the final observable nodes
of p have can as output-value. In fact, if a final observable node n has an
output-value different than can, it means that there is some path connecting
n and some end node ne in which p cannot spot canary events that let
it imply the end of its role. Therefore, a final observable node of p not
annotated with can as output-value in the fixed-point reached by the BWA
is a symptom of a realizability defect. In the AWMs, this is represented by
means of the following awareness constraints attached to each of the final
observable nodes nf1 , . . . , nfm of p:

SCout (nfi∈[1,m]
) = can

Figure 29 shows the input- and output-values associated with the nodes
in the fixed-point obtained by applying the BWA on the AWM of the running
example, as well as the awareness constraints that verify for p3 the “know
when the role is over”-requirement. (For completeness, the same awareness
constraints are also reported in the AWM of the running example shown in
Figure 24.) The participant p3 has two final observable nodes, namely:

• [mex3] p3 → m3 to p1, p2

• [mex4] p1 → m4 to p2, p3

Each of them is associated with an awareness constraint that verifies if,
when the BWA reaches the fixed-point, the output value associated to the
node is can. This is the case of the [mex4] p1 → m4 to p2, p3 node.
There is only one path connecting it to the only reachable end node, namely
chor [chor1] end, and along that path each node is a canary node. (This
is a special case, due to the fact that no further actions are performed by
any participant along that path.) The awareness constraint associated to
the node [mex3] p3 → m3 to p1, p2 is instead unsatisfied. The reason
is that the node [mex3] p3 → m3 to p1, p2 is a final observable node,
and if p1 decides to execute the choice1either branch, there are no canary
nodes for p3 on the path leading to chor [chor1] err e2. Therefore, in
enactments in which p1 decides to enact the choice1either branch, p3 cannot
“know when the role is over.”
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chor [chor1]
start

SCout (p3): cannot
SCin (p3): cannot

block [chor1body]
start

SCout (p3): cannot
SCin (p3): cannot

chor [chor2]
start

SCout (p3): cannot
SCin (p3): cannot

block [chor2body]
start

SCout (p3): cannot
SCin (p3): cannot

parallel [prl1]
split

SCout (p3): cannot
SCin (p3): cannot

block [prl1branch1]
start

SCout (p3): cannot
SCin (p3): cannot

[mex1]
p2 → m1 to p1

SCout (p3): cannot
SCin (p3): cannot

block [prl1branch1]
end

SCout (p3): cannot
SCin (p3): cannot

block [prl1branch2]
start

SCout (p3): cannot
SCin (p3): cannot

[mex2]
p3 → m2 to p1, p2

SCout (p3): cannot
SCin (p3): cannot

block [prl1branch2]
end

SCout (p3): cannot
SCin (p3): cannot

parallel [prl1]
join

SCout (p3): cannot
SCin (p3): cannot

[mex3]
p3 → m3 to p1, p2

final
observable
node of p3 SCout (p3): cannot

SCin (p3): cannot

AWconstr c7: SCout (p3) = can
block [chor2body]

end
SCout (p3): cannot
SCin (p3): cannot

chor [chor2]
end

SCout (p3): cannot
SCin (p3): cannot

chor [chor2]
eh ∗

skip [skip1]

chor [chor3]
start

SCout (p3): cannot
SCin (p3): cannot

block [chor3body]
start

SCout (p3): cannot
SCin (p3): cannot

choice [choice1]
p1 split

SCout (p3): cannot
SCin (p3): cannot

block [choice1or]
start

SCout (p3): can
SCin (p3): can

[mex4]
p1 → m4 to p2, p3

final
observable
node of p3

SCout (p3): can
SCin (p3): can

AWconstr c11: SCout (p3) = can

block [choice1or]
end

f (p3)

SCout (p3): can
SCin (p3): can

block [choice1either]
start

SCout (p3): cannot
SCin (p3): cannot

throw [throw1] e1

SCout (p3): cannot
SCin (p3): cannot

chor [chor3]
err e1

SCout (p3): cannot
SCin (p3): cannot

block [choice1either]
end

choice [choice1]
join

f (p3) SCout (p3): can
SCin (p3): can

block [chor3body]
end

f (p3)

SCout (p3): can
SCin (p3): can

chor [chor3]
endf (p3)

SCout (p3): can
SCin (p3): can

block [chor1body]
end

f (p3)

SCout (p3): can
SCin (p3): can

chor [chor1]
endf (p3)

end node

SCout (p3): can
SCin (p3): cannot

chor [chor1]
eh e1

SCout (p3): cannot
SCin (p3): cannot

throw [throw2] e2

SCout (p3): cannot
SCin (p3): cannot

chor [chor1]
eh ∗

chor [chor1]
err e2

end node

SCout (p3): cannot
SCin (p3): cannot

skip [skip2]

Figure 29: The fixed-point reached by the BWA on the AWM shown in
Figure 22 for the participant p3, with additionally the “know when the role
is over” awareness constraints for p3 (boxed in green when satisfied, red
otherwise) and the highlighting of canary- and final observable nodes.

62



6.3.2 Merge of Input Values

The merge of output values of multiple successors is handled by the functionc
E defined in Figure 30.14 The function

c
E takes as arguments one or

more output-values of nodes, and returns can if all the values are can, and
cannot otherwise.

v1,...,m ∈ {can,cannot}

k
E (v1, . . . , vm) :=

{
can if ∀ i ∈ [1,m] : vi = can

cannot otherwise

Figure 30: Recursive definition of the function
c
E which merges output

values of the predecessors of a node in the BWA.

6.3.3 Update of Output Values

The output-value of nodes is calculated using the function fE defined in
Figure 31. The predicate “n is canary node of p” is defined in Definition 20.
The set Nend (chor) is the set of end nodes of the choreography chor. The
function first (A) returns the AWM node generated from the activity A and
labeled as “first.” Finally, and the function sourceActivity (n) returns the
activity from which the AWM node n has been generated (see Section 4.1).

The outcome of fE (p, n, v) is can in the following three cases:

• n is a canary node for p;

• v is can (due to the “otherwise” case);

• n is a parallel split node, and every end node reachable from n
is also reachable from the first node of one or more branches of the
parallel activity that have can as output value.

The rationale of the last case is the following. Recall that, since there are
possible multiple end nodes for the choreography, it can be the case that
more than one end node is reachable from the parallel split node, i.e. in
the case that one or more exceptions can propagate from the branches of the
parallel activity. Since all the branches of a parallel activity are concurrently
enacted, it is not necessary for the participant p to observe along each branch

14Apologies are extended to those readers who, like the authors, find theE symbol
somewhat creepy. But an eye symbol is just too appropriate in the context of the Bird-
Watching Algorithm.
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v ∈ {can,cannot}

fE (p, n, v) :=



can iff (n, p)

can if ¬f (n, p) ∧ n = parallel split ∧

sourceActivity (n) = parallel do A1 and ... and Am ∧

∀ ne ∈ Nend (chor) ∃ i ∈ [1, n] : ne reachable from first (Ai) ∧

SCout (first (Ai)) = can

v otherwise

Figure 31: Definition of the function fE which updates output values in
the BWA.

canary events for each end node that can be reached from the parallel

split. Instead, given one end node, it is sufficient that for p to observe
a canary event – and therefore deduce the end of its role – along any of
them. In the definition of the function fE, this is specified by checking that
for each end node reachable from the parallel split node, the parallel
activity has at least one branch whose “first node” is annotated with can as
output-value (i.e. canary events will be spotted along that branch), and that
the end node is reachable from it.

6.3.4 Computational Complexity of the BWA

The BWA is a fixed-point flow algorithm that is performed once per partici-
pant in the choreography. Each invocation of the merge function

c
E has

complexity linear to the number of successors of the node whose input-value
is being calculated. AWMs are generally structured so that each nodes has
few successors/predecessors, so we can approximate the evaluation of

c
E to

O (1).
The definition of the update-function fE is case-based. The upper-bound

complexity of evaluation of its first case, i.e. if the node n is a canary node,
is linear with with the amount of final observable nodes (see Definition 20).
The same argument we have made for

c
E can be applied here, and the

evaluation of this case is approximated to O (1). The second case depends on
the amount of end nodes of the choreography and the number of branches of
a parallel activity. The amount of end nodes of a choreography and branches
of parallel activities is usually negligible with respect to the overall amount
of activities specified, therefore we also approximate the evaluation of this
case to O (1).
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Notice that a reachability analysis has already performed when performing
the AAA algorithm (see Section 5.2.4), and since the AWM nodes and edges
have not since changed, its outcome can be reused.

The identification of the final observable nodes is performed by “re-
purposing” the classic flow-analysis algorithm to calculate reaching definitions,
and its upper-bound complexity is thus

(
|N (awm)|2

)
. The final observable

nodes can be calculated only once per participant, and the outcome of this
analysis can be used in both the BWA and the identification of canary nodes
performed in fE.

Since we have estimated the upper-bound complexity of the function fE

to O (1), the upper-bound complexity of the BWA of the initialization phase
is:

O (N (awm))

To reach the fixed-point, the BWA performes O
(
|N (awm)|2

)
iterations, each

one with complexity of O (1). Recall that both
c
E and fE have upper-

bound complexity estimated to O (1). Therefore, the overall upper-bound
complexity of a run of the BWA for a given participant is:

O
(
|N (awm)|+ |N (awm)|2

)
≈ O

(
|N (awm)|2

)
Since the BWA is performed once per participant, the overall upper-bound
complexity of all its runs in the scope of one realizability analysis is the
following:

O
(
|N (awm)|2 × |P (chor)|

)
7 Discussion

To the best of our knowledge, the concept of awareness has been previously
adopted to investigate the realizability of interaction choreographies only in
our previous work [MCvdHP08] and by Desai and Singh in [DS08]. Both
previous approaches assume synchronous communication between the par-
ticipants and, as a consequence, the notion of awareness therein explored is
on a “yes/no” basis, i.e. a participant is either (immediately) aware of an
event, or unaware of it. In this work have reworked the notion of awareness
to accommodate asynchronous messaging. Since participants involved in an
action may become aware of its completion at different points in time (e.g.
the sender and the recipients of one message exchange), we have introduced
the novel concept of “eventual awareness,” i.e. that a participant will become
aware at some later time that an event has been or could be fired.

7.1 Overall Upper-Bound Computational Complexity of the
Awareness-Based Realizability Analysis

The diagram in Figure 32 combines information on the upper-bound complex-
ity of the Awareness Annotation Algorithm (Section 5.2.4), the Bird-Watching
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Algorithm (see Section 6.3.4), and the unnamed algorithm presented in Sec-
tion 6.2.1 with information on the complexity of generating the CFG and
generating and verifying the awareness constraints that is discussed in the
reminder of the present section.

The complexity of generating a CFG from a choreography is linear with
respect to the number of activities therein defined (see Section 4.1). As
discussed in Section 5.2.4, the amount of nodes in the CFG is comparable (but
strictly bigger) than the amount of activities specified in the choreography.

The upper-bound complexity of the AAA was estimated in Section 5.2.4
to the following:

O
(
|N (awm)|3 × |P (chor)|

)
The notation |N (awm)| denotes the amount of nodes in the AWM awm.
Since the upper-bound complexity above is higher than those of all the other
algorithms employed in the realizability analysis, it can be assumed to be
the overall upper-bound complexity.

Once generated, the evaluation of awareness constraints is mostly a matter
of looking up a pre-calculated value annotated on the AWM nodes, and it
is therefore negligible. The generation of the awareness constraints, on the
other hand, is significant in terms of computational complexity, and depends
on the type of awareness constraints taken into account. In the case of the
awareness constraints that realize the “know when to act”-requirement, it is
a matter of scanning all the nodes of the AWM and looking up their acting
participants; therefore, it has an upper-bound computational complexity of
O
(
|N (awm)|

)
. The upper-bound complexity of the algorithm to generate

the “know when to act” has been estimated in Section 6.2.2 to:

O
(
|N (awm)2|

)
Finally, the generation of the awareness constraints for verifying the “know
when the role is over”-requirement consists in performing the BWA once
for every participant in the choreography. Its upper-bound complexity has
already been estimated in Section 6.3.4 to:

O
(
|N (awm)|2 × |P (chor)|

)
Combining the upper-bound computational complexity of all its parts,

the overall upper-bound computational complexity of the awareness-based
realizability analysis presented in this work is shown in Figure 33. The final
outcome is approximated keeping into account that (1) we are looking for the
upper-bound complexity (hence only the “biggest” term in the sum really
counts), and that the number of activities in the choreography is always
smaller than the nodes in the respective AWM (as discussed earlier in this
section).
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Given the variability of realizability definitions in the state of the art (see
Section 3), and their dependency on particular choreography modeling lan-
guages (see Section 3.1), it makes little sense to compare realizability analysis
methods devised for different languages. Nevertheless, the computational
complexity of our method compares very favorably with the methods based on
automata [FBS05,KP06,MFEH07,HB10] or Petri-Nets [DW07,LW09], which
resort to PSPACE-complete language-equivalence checks (see also [LW11]).
The computational complexity of our realizability analysis method comes
mostly from the adoption of eventual awareness. Intuitively, eventual aware-
ness is an “expedient” to reduce the size of the state-space of the realizability
problem by hiding the actions of receiving messages performed by the recipi-
ents.

7.2 A Case Against Exception Handling in Choreographies

The awareness constraints realizing the “know when not to act”-requirement
make a compelling case against the adoption in choreography modeling
languages that allow asynchronous communication of exception handling
constructs that are closely inspired from Object-Oriented (OO) programming
languages. The prevention of violations caused by the throwing of exceptions
imposes strong limitations on the design of ChorTex choreographies. In fact,
exception throwing is “safe” only if, whenever it may occur, the actions that
may be concurrently performed have the same, unique acting participant.
An intuitive proof is based on the observation that at most one acting
participant is immediately aware after the performing of any one action (see
Table 5). Since all participants that may act concurrently to the throwing of
an exception must be immediately aware of the latter (“know when not to
act”-requirement, see Section 6.2), and that only one can be so at any time,
it follows that there can be only one unique acting participant in parts of
strongly-realizable choreographies that can be terminated by the throwing
or propagation of exceptions.

Interestingly, a similar observation is found in the BPMN v2.0 Chore-
ography specification [OMG11, p. 344] with respect to termination end
events:

“[Terminate end events can be used in a Choreography, however]
there would be no specific ability to terminate the Choreography,
since there is no controlling system. In this case, all Participants
in the Choreography would understand that when the Terminate
End Event is reached (actually when the Message that precedes
it occurs), then no further messages will be expected in the
Choreography, even if there were parallel paths. The use of the
Terminate End Event really only works when there are only two
Participants. If there are more than two Participants, then any
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Participant that was not involved in the last Choreography Task
would not necessarily know that the Terminate End Event had
been reached.”

This is not surprising, given the fact that a BPMN v2.0 termination end
event has the same effect of the throwing of an exception that terminates an
entire ChorTex choreography. Exception handling and termination events are
constructs that work well in service orchestrations, where all the activities
are executed by the same actor (e.g. the orchestration engine).

Given the tight relationship between service orchestrations and chore-
ographies, we understand how tempting it is to “port” service orchestration
constructs to service choreographies. After all, similar constructs in service
orchestrations and choreographies intuitively simplifies the projection of the
roles [YZCQ07] and softens the learning curve for the modelers. However,
the distributed nature of service choreographies most likely requires a radical
re-thinking of how error handling is performed, see e.g. [KWL09].
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