
Lattices of Logical Fragments over Words

Manfred Kufleitner∗ Alexander Lauser∗

University of Stuttgart, FMI

Abstract. This paper introduces an abstract notion of fragments of monadic
second-order logic. This concept is based on purely syntactic closure properties.
We show that over finite words, every logical fragment defines a lattice of languages
with certain closure properties. Among these closure properties are residuals
and inverse C-morphisms. Here, depending on certain closure properties of the
fragment, C is the family of arbitrary, non-erasing, length-preserving, length-
multiplying, or length-reducing morphisms. In particular, definability in a certain
fragment can often be characterized in terms of the syntactic morphism. This
work extends a result of Straubing in which he investigated certain restrictions of
first-order logic formulae. In contrast to Straubing’s model-theoretic approach,
our notion of a logical fragment is purely syntactic and it does not rely on
Ehrenfeucht-Fräıssé games.

As motivating examples, we present (1) a fragment which captures the stutter-
invariant part of piecewise-testable languages and (2) an acyclic fragment of
Σ2. As it turns out, the latter has the same expressive power as two-variable
first-order logic FO2.

1. Introduction

A famous result of Büchi, Elgot, and Trakhtenbrot states that a language of finite words is
regular if and only if it is definable in monadic second-order logic [1, 7, 24]. Later McNaughton
and Papert considered first-order logic. They showed that a language is definable in first-order
logic if and only if it is star-free [11]. It turned out that the class of first-order definable
languages has a huge number of other characterizations; cf. [4]. Intuitively, a first-order
definable language is easier to describe than a language which is not first-order definable.
This leads to a natural notion of descriptive complexity inside the class of regular languages:
The simpler the formula to describe a language, the simpler the language. Pursuing this
approach, there are several possible restrictions for formulae which come to mind. For
example, one can restrict the quantifier depth, the alternation depth, the number of variables,
the set of atomic predicates, or the set of quantifiers, just to name a few. There are several
problems connected with this approach towards descriptive complexity inside the class of
regular languages. Firstly, simplicity of logical formulae is of course not a linear measure.
And secondly, how do we test whether some language is definable in a given (infinite) class
of formulae.

There is no general solution to the first problem. Nevertheless, in some cases one can
compare the expressive power of classes of formulae. Trivially, if a class of formulae is

∗Supported by the German Research Foundation (DFG) under grant DI 435/5-1.

1

contained in another class of formulae, then we also have containment for the respective
classes of languages. In some cases however, surprising inclusions and equivalences between
syntactically incomparable fragments are known. For example, Thérien and Wilke have
shown that a language is definable in first-order logic FO2 with only two different names
for the variables if and only if it is definable with one quantifier alternation [22]. Note that
this is a natural restriction since first-order logic with three variables already has the full
expressive power of first-order logic [9].

The solution to the second problem is usually obtained by an effective algebraic character-
ization. Schützenberger has shown that a language is star-free if and only if its syntactic
monoid is aperiodic [15]. Together with the result of McNaughton and Papert, this yields
an effective characterization of definability in first-order logic, i.e., for a given regular lan-
guage one can check whether this language is definable in first-order logic. This kind of
correspondence between languages and finite monoids is formalized in Eilenberg’s Variety
Theorem [6], e.g., star-free languages correspond to finite aperiodic monoids. The main idea
is the following. If a class of languages V has certain closure properties, then there exists
a class of finite monoids V such that a language is in V if and only if its syntactic monoid
is in V. Now, if membership in V is decidable, then membership in V becomes decidable
because the syntactic monoid can be computed effectively. The closure properties required
by Eilenberg’s Variety Theorem are Boolean operations, residuals, and inverse morphisms. A
class of languages with these closure properties is called a variety. There are several variants
and extensions of this approach. Pin has shown that there is an Eilenberg correspondence
between positive varieties and ordered monoids [12]. A positive variety is a class of languages
closed under positive Boolean operations, residuals, and inverse morphisms. A C-variety
(for some class of morphisms C) is a class of languages closed under Boolean operations,
residuals, and inverse C-morphisms. Straubing has given an Eilenberg correspondence be-
tween C-varieties and so-called stamps [18]. Here, decidability results usually rely on the
syntactic morphism and not solely on the syntactic monoid. The work of Straubing was
later amended by other results such as equational theories, positive C-varieties and a wreath
product for C-varieties [2, 10, 14]. The most extensive generalization of Eilenberg’s Variety
Theorem is due to Gehrke, Grigorieff, and Pin [8]. They have shown that so-called lattices
of languages admit an equational description. A lattice is a class of languages closed under
positive Boolean operations. Depending on other closure properties such as residuals, the
equational description of a lattice can be tightened.

So, in order to apply the existing algebraic framework to a class of languages defined
by some class of formulae, it is important that the resulting class of languages has closure
properties like (positive) Boolean operations, residuals, and inverse (C-)morphisms. In this
paper, we introduce a formal notion of logical fragment such that language classes defined
by fragments admit such closure properties. In addition, almost all logical fragments in
the literature also form fragments in the sense of this paper. We have chosen monadic
second-order logic over words on a broad base of atoms as framework of formal logic because
this setting exhausts most variants of first-order logic and monadic second-order logic found
in the literature, cf. [3, 5, 13, 17, 18, 19, 20, 21, 23]. It includes atomic predicates for order,
successor, and modular predicates as well as quantifiers for first-order, second-order and
modular counting quantification.

The usual approach to closure properties of logical fragments is either indirect (i.e., by
showing equivalence with some class of languages for which the closure properties are already
known) or it relies on methods such as Ehrenfeucht-Fräıssé games; see e.g. [17]. The most
general result along this model-theoretic line of work is due to Straubing [18, Theorem 3].

2

For several combinations of restrictions within first-order logic (quantifier depth, number of
variables, numerical predicates, and set of quantifiers), he showed closure under residuals
and inverse C-morphisms. One can obtain Straubing’s result from our main Theorem 1.
Sometimes, model-theoretic methods are difficult to apply to modalities such as modular
quantifiers. Our syntactic transformation in contrast, allows to treat modular quantifiers
uniformly as one of many cases of how to compose formulae. Moreover, it is conceptually
easy to extend fragments by modalities which we did not consider in this paper.

Finally, we consider two examples which illustrate the formal notion of fragments introduced
in this paper. Both examples cannot be easily described using Ehrenfeucht-Fräıssé games.
The first example is BΣ1[≤], i.e., Boolean combinations of positive existential first-order
formulae using only ≤. This leads to stutter-invariant piecewise testable languages. The
second example is a “syntactic” fragment of Σ2 which is expressively complete for two-variable
first-order logic FO2. This restriction of Σ2 requires that the comparison graph be acyclic.
The vertices of the comparison graph are the variables and the edges reflect the comparisons.
The resulting characterization of FO2 is complementary to the result of Thérien and Wilke
who showed that FO2 and the “semantic” fragment ∆2 of Σ2 have the same expressive
power [22].

For a concise presentation of the main results, most proofs were moved to the appendix.

2. Preliminaries

A language over an alphabet A is a subset of finite words in A∗. The empty word is 1 and
A+ = A∗ \ {1} is the set of finite nonempty words over A. The set A∗ of finite words over A
is the free monoid generated by A. It is finitely generated if A is a finite set. A residual of a
language L ⊆ A∗ is a language of the form u−1Lv−1 = {w ∈ A∗ | uwv ∈ L} where u, v ∈ A∗.
It is a left residual if v = 1 and it is a right residual if u = 1. Let h : B∗ → A∗ be a
morphism between free monoids. The inverse image h−1(L) of L under h is the language
h−1(L) = {w ∈ B∗ | h(w) ∈ L} over B. The morphism h is non-erasing (respectively, length-
reducing, length-preserving) if for all b ∈ B we have h(b) ∈ A+ (respectively, h(b) ∈ A ∪ {1},
h(b) ∈ A). The morphism h is length-multiplying if there exists m ∈ N such that h(b) ∈ Am
for all b ∈ B. Note that by the universal property of free monoids, a morphism between free
monoids is completely determined by its images of the letters. If C is a family of morphisms,
then h is a C-morphism if h ∈ C. We introduce the following families of morphisms: all
morphisms Call between finitely generated free monoids, non-erasing morphisms Cne, length-
multiplying morphisms Clm, length-reducing morphisms Clr, length-preserving morphisms Clp.

Logic over Words. We consider monadic second-order logic interpreted over finite words.
In the context of logic, words are viewed as labeled linear orders. Positions are positive
integers with 1 being the first position. Labels come from a fixed countable universe of letters
Λ. The set of variables is V1 ∪̇ V2 where V1 is an infinite set of first-order variables and V2

is an infinite set of second-order variables. First-order variables range over positions of the
word and are denoted by lowercase letters (e.g., x, y, xi ∈ V1) whereas second-order variables
range over subsets of positions and are denoted by uppercase letters (e.g., X,Y,Xi ∈ V2).
Atomic formulae include

• the constants > (for true) and ⊥ (for false),

• the 0-ary predicate “empty” which is only true for the empty model,

• the label predicate λ(x) = a holds if the position of x is labeled with a ∈ Λ,

• the second-order predicate x ∈ X which is true if x is contained in X

3

and the following numerical predicates:

• the first-order equality predicate x = y,

• the (strict and non-strict) order predicates x < y and x ≤ y,

• the successor predicate suc(x, y) with the interpretation x+ 1 = y,

• the minimum and maximum predicate min(x) and max(x) which identify the first and
the last position, respectively,

• the modular predicate x ≡ r (mod q) which is true if the position of x is congruent to
r modulo q.

Formulae ϕ and ψ can be composed by the Boolean connectives (i.e., by negation ¬ϕ, dis-
junction ϕ ∨ ψ, and conjunction ϕ ∧ ψ), by existential and universal first-order quantification
∃x ϕ and ∀x ϕ, by existential and universal second-order quantification ∃X ϕ and ∀X ϕ, and
by modular counting quantification ∃r mod qx ϕ. The latter is true if, modulo q, there are
r positions for x which make ϕ true. Parentheses may be used for disambiguation and to
increase readability. The set FV(ϕ) ⊆ V1 ∪ V2 of free variables of ϕ is defined as usual. A
sentence is a formula without free variables.

We only give a sketch of the formal semantics of formulae. A precise definition can be
found in Appendix A. In the course of the evaluation of a formula, it is necessary to handle
formulae with free variables. The idea is to encode their interpretation by enlarging the
alphabet to include sets of variables. A first-order variable evaluates to a position i if the
label of i contains the name of this variable. Similarly, a position i is contained in the
evaluation of a second-order variable if the variable name is contained in the label of i.
Specifically, if ϕ is a formula and V is a set of variables such that FV(ϕ) ⊆ V , then the
semantics JϕKV is a set of words w = (a1, J1) · · · (an, Jn) with ai ∈ Λ and Ji ⊆ V such that
for every first-order variable x there exists exactly one position i such that x ∈ Ji. The
interpretation of a free first-order variable x is then given by x(w) = i for this unique index.
For a second-order variable X the interpretation X(w) = {i ∈ {1, . . . , n} | X ∈ Ji} is the set
of positions containing X. With this, it is straightforward to define the semantics so as to
coincide with the intuition given above.

We define the following particular classes of formulae:

• MSOmod is the class of all formulae.

• MSO is the class of all formulae without the quantifier ∃r mod q.

• FOmod is the class of all first-order formulae including modular quantifiers (i.e.,
without second-order variables).

• FO is the class of all formulae in FOmod without the quantifier ∃r mod q.

Let F be a class of formulae. For a set P ⊆ {empty, <,≤,=, suc,min,max,≡} of predicates
denote by F [P] the class of formulae in F which (apart from >, ⊥, labels, and atomic
formulae of the form x ∈ X) only use predicates in P. This notation is refined by the
following. For a class of P of atomic formulae let F [P] be the class of formulae in F which
(apart from >, ⊥, labels, and atomic formulae of the form x ∈ X) only uses atomic formulae
in P . For example, FO[<] consists of all first-order formulae which only use atomic formulae
of the form >, ⊥, λ(x) = a and x < y for arbitrary x, y ∈ V1, whereas FO[x1 < x2] only
allows atomic formulae >, ⊥, λ(x) = a and x1 < x2, but no order comparison of any other
first-order variables. We also say that F contains some specific predicate (like the successor
predicate) if there is a formula in F which uses this predicate.

4

Logic and Languages. For a sentence ϕ and an alphabet A ⊆ Λ the language (over A)
defined by ϕ is the set LA(ϕ) = {a1 · · · an | (a1, ∅) · · · (an, ∅) ∈ JϕKA,∅}. It is the projection
onto the letter-component of JϕKA,∅. If the alphabet is clear from the context, then we drop
it from the subscript and write L(ϕ). For a class of formulae F the class of languages L(F)
defined by F maps every finite alphabet A ⊆ Λ to the set

LA(F) = {LA(ϕ) | ϕ ∈ F is a sentence}

of languages over A. For a class of languages G the class of languages defined by F over G is
the class of languages mapping A to LA(F) ∩ GA. Specifically, the class of languages defined
by F over nonempty words maps A to LA(F)∩A+. Note that in LA(ϕ), the alphabet A and
the set of labels used in a formula ϕ may well be incomparable; a label predicate λ(x) = a
with a 6∈ A will always be false when considering the semantics over A. On the other hand, a
formula need of course not use all labels of the alphabet over which structures are built. For
example, consider the formula ∃x : λ(x) = a requiring that there be an a-position. If a 6∈ A,
then LA(ϕ) = ∅ because all positions of a word w over A are non-a-positions; interpreted
over the alphabet A = {a, b} this formula defines the language A∗aA∗. This might seem
unintuitive at first glance but allows a more uniform handling of languages over different
alphabets and avoids tedious notation and many case-distinctions.

Fragments. In this section fragments are introduced as classes of formulae with natural
closure properties on the syntactic level. As we shall see in Section 3, these syntactic
properties transfer to closure under natural semantic operations.

A context is a formula with a unique occurrence of an additional constant predicate ◦ (to
be read as “hole”). It is primitive if it does not use any label predicate. We shall denote
primitive contexts by µ and contexts that a priori need not be primitive by ν. The intuition
is that ◦ is a place-holder where a formula can be plugged in. Let ν(ϕ) be the result of
substituting ϕ for the unique occurrence of ◦ in ν. Contexts allow to elegantly describe
subformulae as ϕ is a subformula of ψ if and only if there exists a context ν such that
ψ = ν(ϕ).

Definition 1 A fragment F is a nonempty class of formulae such that for all primitive
contexts µ, all formulae ϕ,ψ, all a ∈ Λ and all x, y ∈ V1:

1. If µ(ϕ) ∈ F , then µ(>) ∈ F and µ(⊥) ∈ F and µ
(
λ(x) = a

)
∈ F ,

2. µ(ϕ ∨ ψ) ∈ F if and only if µ(ϕ) ∈ F and µ(ψ) ∈ F ,

3. µ(ϕ ∧ ψ) ∈ F if and only if µ(ϕ) ∈ F and µ(ψ) ∈ F ,

4. if µ(∃x ϕ) ∈ F and x 6∈ FV(ϕ), then µ(ϕ) ∈ F .

It is closed under negation if ϕ ∈ F implies ¬ϕ ∈ F . �

Next, we give an intuition for fragments in terms of local substitution operations. Let F
be a class of formulae and let ϕ and ψ be formulae. The syntactic preorder of F is defined
by ϕ ≤F ψ if µ(ψ) ∈ F implies µ(ϕ) ∈ F for every primitive context µ. Intuitively ϕ ≤F ψ
means that, with respect to F , the formula ϕ is syntactically not more “complicated” than ψ.
Similarly, we let ϕ �F ψ if ν(ψ) ∈ F implies ν(ϕ) ∈ F for all contexts ν. The syntactic
preorder allows to reformulate some of the axioms of a fragment. For example, property (1)
in Definition 1 is equivalent to > ≤F ϕ and ⊥ ≤F ϕ and (λ(x) = a) ≤F ϕ for all formulae ϕ.
Note that ϕ �F ψ implies ϕ ≤F ψ. The reverse is however not true for arbitrary classes of
formulae. Let for example F consist of all formulae containing at most one label predicate.

5

In this case, we have
(
λ(x) = a

)
≤F >. If ν is the context ◦ ∧ λ(x) = a, then ν(>) ∈ F and

ν
(
λ(x) = a

)
6∈ F . Hence

(
λ(x) = a

)
�F >. For fragments on the other hand, this cannot

happen because here, ≤F and �F are equivalent by the following lemma.

Lemma 1 If F is a fragment, then ϕ ≤F ψ if and only if ϕ �F ψ. �

This provides an intuition for fragments: In a formula from a fragment F , one may replace
arbitrary subformulae by ≤F -smaller formulae without leaving F . Note that this is not
immediate from the definition of a fragment because in general, primitive contexts are not
sufficient to formalize subformulae (as the “rest” of the formula may contain label predicates).
On the other hand it is also natural to attach an alphabet to a formula (which it is interpreted
over) and in this case, primitive contexts do not interfere with the alphabet of the formula.

3. Fragments and C-varieties

This section summarizes semantic closure properties of fragments. In Proposition 1 and
Proposition 2 we give conditions for a fragment to be closed under residuals and inverse
morphisms, respectively. The combination of these two propositions gives our main result
Theorem 1 which formulates closure properties of languages defined by fragments in terms of
C-varieties. For closure under residuals we need some more assumptions.

Definition 2 A fragment F is suc-stable if for all primitive contexts µ and all x, y ∈ V1:

1. If µ(suc(x, y)) ∈ F , then µ(x = y) ∈ F .

2. If µ(suc(x, y)) ∈ F , then µ(max(x)) ∈ F and µ(min(y)) ∈ F .

3. If µ(min(x)) ∈ F or if µ(max(x)) ∈ F , then µ(empty) ∈ F .

It is mod-stable if for all primitive contexts µ, all formulae ϕ, all x ∈ V1 and all q, r ∈ Z:

1. µ(x ≡ r (mod q)) ∈ F if and only if µ(x ≡ s (mod q)) ∈ F for all s ∈ Z.

2. µ(∃r mod qx ϕ) ∈ F if and only if µ(∃s mod qx ϕ) ∈ F for all s ∈ Z.

3. If µ(∃r mod qx ϕ) ∈ F and x 6∈ FV(ϕ), then µ(ϕ) ∈ F and µ(¬ϕ) ∈ F . �

Consider the left residual, i.e., given a formula ϕ and a word w, we want to determine
the truth value of ϕ on aw. Conceptually, setting a variable to the “phantom” a-position in
front of the word is handled syntactically resulting in a formula a−1ϕ defining the residual.
To do this consistently, we keep track of these variables using the extended alphabet from
the formal semantics of formulae. The above stability properties thereby allow to sustain
a−1ϕ ≤F ϕ as an invariant. The actual construction is rather lengthy and can be found in
Appendix C.

Proposition 1 Let F be a fragment and suppose that F is suc-stable and mod-stable. Then
the class of languages defined by F is closed under residuals. �

Note that if F does not contain suc, max or min, then F trivially is suc-stable. Similarly, F
is mod-stable if it does not contain a modular predicate.

We now turn to closure under inverse morphisms. Here, we need the following additional
properties of fragments.

Definition 3 A fragment F is order-stable if µ(x < y) ∈ F if and only if µ(x ≤ y) ∈ F for
all primitive contexts µ and all x, y ∈ V1.

6

It is MSO-stable if for all primitive contexts µ, all formulae ϕ, all x ∈ V1 and all X,Y ∈ V2:

1. If µ(x ∈ X) ∈ F , then µ(x ∈ Y) ∈ F .

2. If µ(∃X ϕ) ∈ F , then µ(∃Y ∃X ϕ) ∈ F .

3. If µ(∀X ϕ) ∈ F , then µ(∀Y ∀X ϕ) ∈ F . �

We obtain the result as follows. For every morphism h : B∗ → A∗ and every formula ϕ we
construct a formula h−1(ϕ) defining the inverse morphic image of LA(ϕ) with h−1(ϕ) ≤F ϕ.
Basically, a position i on h(w) can be represented by its corresponding position on w (called
the origin of i) combined with some offset (bounded by the maximal length |h(b)| for letters
b ∈ B). For first-order variables the offset is stored syntactically and second-order variables
are distributed over several variables, depending on the offset. As for residuals, the actual
construction is technically involved and can be found in Appendix D.

Typically, if a fragment F contains more modalities, then either F has to satisfy more
closure properties or it is closed under fewer inverse morphisms. This trade-off between
closure properties and inverse morphisms is given by the implications in Proposition 2, each
implication covering certain modalities in F .

Proposition 2 Let F be a fragment and let C be a family of morphisms between finitely
generated free monoids. Suppose the following:

1. If F contains a second-order quantifier, then F is MSO-stable or all C-morphisms are
length-reducing.

2. If F contains the predicate ≤ or <, then F is order-stable or all C-morphisms are
length-reducing.

3. If F contains the predicate suc, min, max or empty, then all C-morphisms are non-
erasing.

4. If F contains a modular predicate, then all C-morphisms are length-multiplying and
either F is mod-stable or all C-morphisms are length-preserving.

5. If F contains a modular quantifier, then F is mod-stable or all C-morphisms are
length-reducing.

Then the class of languages defined by F is closed under inverse C-morphisms. �

In particular every fragment is closed under length-preserving morphisms.
We now turn to C-varieties of which we only give the definition; for details see [14, 18]. A

category C of morphisms between finitely generated free monoids is a family of morphisms
between finitely generated free monoids which contains the identity morphisms and which is
closed under composition. A positive C-variety is a class of languages which is closed under
positive Boolean combination, residuals and inverse C-morphisms. It is a C-variety if it is
closed under complement. Examples for categories of morphisms include Call, Cne, Clm, Clr,
and Clp.

Our main result is the next theorem from which in particular the main results of a paper
by Straubing can be obtained [18, Theorem 3]. Intuitively, the more closure properties some
fragment F has, the larger is the class of inverse morphisms under which L(F) is closed. In
Theorem 1 below this is formalized by a sequence of implications.

7

Theorem 1 Let F be a mod-stable and suc-stable fragment. Let C be a category of morphisms
between finitely generated free monoids. Suppose the following:

1. If F contains a second-order quantifier, then F is MSO-stable or all C-morphisms are
length-reducing.

2. If F contains the predicate ≤ or <, then F is order-stable or all C-morphisms are
length-reducing.

3. If F contains the predicate suc, min, max or empty, then all C-morphisms are non-
erasing.

4. If F contains a modular predicate, then all C-morphisms are length-multiplying.

Then the class of languages defined by F is a positive C-variety.

Proof: We have to show that L(F) is closed under union, intersection, residuals and inverse
C-morphisms. Using the primitive context ◦ it is easy to see that F is closed under disjunction
and conjunction and, consequently, L(F) is closed under union and intersection. It remains
to show that L(F) is closed under residuals and inverse C-morphisms. Closure under residuals
is Proposition 1 and closure under inverse C-morphisms is Proposition 2. �

A (positive) ∗-variety is a (positive) Call-variety and a (positive) +-variety is a (positive)
Cne-variety of languages of nonempty words. We get the following corollaries for fragments
using equality, order and successor. Note in particular that the predicate “empty” is void
over nonempty words and that every first-order fragment trivially is MSO-stable.

Corollary 1 Let F ⊆MSO[<,≤,=] be a fragment which is MSO-stable and order-stable.
Then F defines a positive ∗-variety. �

Corollary 2 Let F ⊆MSO[<,≤,=, suc,min,max] be an MSO-stable and order-stable frag-
ment. Suppose min(y) ≤F suc(x, y) and max(x) ≤F suc(x, y) for all first-order variables
x and y. Then the class of languages defined by F over nonempty words forms a positive
+-variety. �

4. Stutter-Invariant Piecewise Testable Languages

A language is a simple monomial if it is of the form A∗a1 · · ·A∗anA∗. A language L ⊆ A∗
is piecewise testable if it is a finite Boolean combination of simple monomials. It is stutter-
invariant if paq ∈ L if and only if paaq ∈ L for all a ∈ A.

Let Σ1 consist of all FO-formulae without negation and without any universal quantifier.
Let BΣ1 be the fragment which consists of all Boolean combinations of formulae in Σ1. By
Theorem 1, the class of languages definable in BΣ1[≤] forms a Clr-variety. The following
proposition describes the class of languages definable in BΣ1[≤] in terms of stutter-invariant
piecewise testable languages.

Proposition 3 Let L ⊆ A∗ be a language. The following are equivalent:

1. L is definable in BΣ1[≤].

2. L is piecewise testable and stutter-invariant.

3. L is a Boolean combination of simple monomials of the form A∗a1 · · ·A∗anA∗ with
ai 6= ai+1 for all i.

8

Proof: We first show “(1)⇒ (2)”. If L is BΣ1[≤]-definable, then of course L is BΣ1[<,=]-
definable. The latter is equivalent to L being piecewise testable, see e.g. [5]. It is easy to
see that the class of languages defined by Σ1[≤] is stutter-invariant. The claim follows since
stutter-invariant languages are closed under Boolean operations.

“(2)⇒ (3)”: Let L ⊆ A∗ be piecewise testable and stutter-invariant. Since L is piecewise
testable, we can write L =

⋃s
i=1 Pi \

⋃t
j=1Qj where Pi and Qj are simple monomials.

Suppose P = (A∗a1)e1 · · · (A∗an)enA∗ for positive integers ei, ai ∈ A and ai 6= ai+1. Then
red(P) = A∗a1 · · ·A∗anA∗ is the monomial obtained by discarding successive ai’s with the
same label. Note that red(P) is stutter-invariant and P ⊆ red(P). It suffices to show L =⋃
i red(Pi)\

⋃
j red(Qj). For the containment from left to right assume u ∈ L and u ∈ red(Qj)

for some j. Let red(Qj) = A∗a1 · · ·A∗anA∗ with ai 6= ai+1 and let u = u1a1 · · ·unanun+1.
Then there exist positive integers ei such that u′ = u1a

e1
1 · · ·unaenn un+1 ∈ Qj . Therefore,

u′ 6∈ L and, by stutter-invariance of L, we conclude u 6∈ L, a contradiction. For the converse
let u ∈ red(Pi) for some i such that u 6∈

⋃
j red(Qj). Let red(Pi) = A∗a1 · · ·A∗anA∗

with aj 6= aj+1 and u = u1a1 · · ·unanun+1. There exist positive integers ei such that
u′ = u1a

e1
1 · · ·unaann un+1 ∈ Pi and stutter-invariance of the red(Qj) yields u′ 6∈

⋃
j red(Qj).

In particular u′ 6∈
⋃
j Qj and thus u′ ∈ L. By stutter-invariance of L we get u ∈ L.

“(3)⇒ (1)”: Let P = A∗a1 · · ·A∗anA∗ with ai 6= ai+1 for all i. Then P is defined by the

formula ∃x1 · · · ∃xn :
∧n
i=1 λ(xi) = ai ∧

∧n−1
i=1 xi ≤ xi+1. Note that in this formula, xi ≤ xi+1

implies xi < xi+1 since ai 6= ai+1. �

A famous result of Simon says that a language L is piecewise testable if and only if the
syntactic monoid of L is finite and J -trivial [16]. The latter property is decidable for finite
monoids. Moreover, L is stutter-invariant if and only if the image of every letter under the
syntactic morphisms of L is idempotent. Combining these observations, (2) shows that it is
decidable whether a given regular language is definable in BΣ1[≤].

5. The Acyclic Fragment of Σ2

Let Σ2 consist of all FO-formulae without negations such that there is no path in the
parse-tree with an existential quantifier after a universal quantifier, i.e., on every path in the
parse-tree all existential quantifiers occur before all universal quantifiers. The comparison
graph of a formula ϕ is the directed graph G(ϕ) = (V,E) with V being the set of variables
occurring in ϕ and (x, y) ∈ E if and only if one of the atomic formulae x < y, x ≤ y, x = y or
y = x occurs in ϕ. It is acyclic if there exist no x1, . . . , xn ∈ V such that (xi, xi+1) ∈ E and
xn = x1. Note that the class of formulae in Σ2[<,≤] with an acyclic comparison graph forms
an order-stable fragment thus defining a positive ∗-variety. In fact, the following proposition
implies that it defines a ∗-variety even though, syntactically, it is not closed under negation.

Theorem 2 A language is definable in FO2[<] if and only if it is definable by a formula in
Σ2[<,≤] with an acyclic comparison graph.

Proof: We only give an outline. The full proof can be found in Appendix F. The proof relies
on two famous characterizations of the class of languages definable in FO2[<]. The first
characterization is in terms of unions of unambiguous monomials and the second one is the
variety DA of finite monoids; see [20, 5].

A language of the form P = A∗1a1 · · ·A∗nanA∗n+1 with ai ∈ A and Ai ⊆ A is called
a monomial. It is unambiguous if every word u ∈ P has a unique factorization u =

9

u1a1 · · ·unanun+1 with ui ∈ A∗i . For the direction from left to right, it suffices to show
that every unambiguous monomial P = A∗1a1 · · ·A∗nanA∗n+1 is definable by a formula in
Σ2[<,≤] with an acyclic comparison graph. There exists some ai 6∈ A1∩An+1 since otherwise
(a1 · · · an)2 would admit two different factorizations. By symmetry, we can assume ai 6∈ A1.
For every word u ∈ P we consider the factorization u = qair such that ai does not occur in
the prefix q. Then q and r are contained in smaller unambiguous monomials Q ⊆ (A \ {ai})∗
and R ⊆ A∗, respectively, such that QaiR ⊆ P . By induction, there exist formulae for Q
and R. These formulae can be combined into a formula for P using so-called relativizations.
The main idea here is that the position of the first ai is unique and that several variables
can be used to identify this position. This allows to maintain an acyclic comparison graph.

For the converse, we show that the syntactic monoid of L(ϕ) is in DA if ϕ is in Σ2[<,≤]
with an acyclic comparison graph. For this, it suffices to show that for some sufficiently
large integer n ≥ 1, we have p(uv)nu(uv)nq ∈ L(ϕ) if and only if p(uv)3nq ∈ L(ϕ) for all
p, q, u, v ∈ A∗. It is easier to describe the outline of the proof using the terminology of
Ehrenfeucht-Fräıssé games. We note that in this game, the winning condition is not defined
in terms of isomorphisms of game situations and thus, it is not an Ehrenfeucht-Fräıssé game
in the usual sense. Since every language definable in FO2[<] is also definable in Σ2[<,≤],
it follows that if Spoiler starts on the word p(uv)3nq, then Duplicator wins for arbitrary
comparison graphs [22]. Hence, Spoiler starts on p(uv)nu(uv)nq. Choosing n large enough,
we know that after Spoiler placed his pebbles on p(uv)nu(uv)nq, there are large gaps to the
left and to the right of the central factor u. Duplicator plays as follows: Pebbles outside
the center are placed on the respective position on p(uv)3nq. For the pebbles in the central
part, Duplicators strategy basically is to make as many atomic formulae true on p(uv)3nq
as possible. He can do this because the comparison graph is acyclic. In the second round
Spoiler places his pebbles on p(uv)3nq. Exploiting acyclicity again, Duplicator can use the
gaps on p(uv)nu(uv)nq to obtain a situation where as many atomic formulae as possible
are false on p(uv)nu(uv)nq. The result is a situation such that if xi < xj (respectively,
xi ≤ xj) on p(uv)nu(uv)nq implies xi < xj (respectively, xi ≤ xj) on p(uv)3nq. Hence,
p(uv)nu(uv)nq ∈ L implies p(uv)3nq ∈ L. �

6. Conclusion

We introduced fragments as classes of formulae with natural syntactic closure properties.
Among others, these syntactic closure properties yield semantic closure under positive Boolean
operations for the corresponding classes of languages, i.e., every fragment defines a lattice of
languages. Our main result is that fragments often yield closure under residuals and inverse
morphisms. These properties lead to C-varieties, thus allowing algebraic descriptions in terms
of the syntactic morphism. At the end of the paper, we considered two fragments which are
not easily captured by traditional techniques such as Ehrenfeucht-Fräıssé games. The first
example is the Boolean closure of Σ1[≤]. This fragment corresponds to the stutter-invariant
subclass of piecewise testable languages. The second example is a novel characterization of
the FO2[<]-definable languages in terms of an acyclic fragment of Σ2[<,≤].

We expect our constructions to be extensible to other structures such as infinite words.
Another line of work would be to assign a reasonable syntactic object to a given fragment.
The hope is that this object could be used for a general framework to solve questions like “is
the class of languages defined by the fragment F closed under complement?” or “is the class
of languages defined by the fragment F closed under shuffle?” In classical Ehrenfeucht-Fräıssé

10

games, a winning condition for Duplicator relies on isomorphisms between game situations.
We conjecture that asymmetric winning conditions as in the proof of Theorem 2 can be used
to give combinatorial counterparts for arbitrary fragments.

References

[1] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[2] L. Chaubard, J.-É. Pin, and H. Straubing. Actions, wreath products of C-varieties and
concatenation product. Theor. Comput. Sci., 356:73–89, 2006.

[3] L. Chaubard, J.-É. Pin, and H. Straubing. First order formulas with modular predicates.
In LICS’06, Proc., pp. 211–220. IEEE Computer Society, 2006.

[4] V. Diekert and P. Gastin. First-order definable languages. In Logic and Automata:
History and Perspectives, Texts in Logic and Games, pp. 261–306. Amsterdam University
Press, 2008.

[5] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.

[6] S. Eilenberg. Automata, Languages, and Machines, vol. B. Academic Press, 1976.

[7] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–51, 1961.

[8] M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular
languages. In ICALP’08, Proc., vol. 5126 of LNCS, pp. 246–257. Springer, 2008.

[9] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, 1968.

[10] M. Kunc. Equational description of pseudovarieties of homomorphisms. Theor. Inform.
Appl., 37:243–254, 2003.

[11] R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.

[12] J.-É. Pin. A variety theorem without complementation. In Russian Mathematics (Iz.
VUZ), vol. 39, pp. 80–90, 1995.

[13] J.-É. Pin. Expressive power of existential first-order sentences of Büchi’s sequential
calculus. Discrete Math., 291(1-3):155–174, 2005.

[14] J.-É. Pin and H. Straubing. Some results on C-varieties. Theor. Inform. Appl., 39:239–262,
2005.

[15] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control,
8:190–194, 1965.

[16] I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf.,
vol. 33 of LNCS, pp. 214–222. Springer, 1975.

[17] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
1994.

[18] H. Straubing. On the logical descriptions of regular languages. In LATIN’02, Proc.,
vol. 2286 of LNCS, pp. 528–538. Springer, 2002.

11

[19] H. Straubing, D. Thérien, and W. Thomas. Regular languages defined with generalized
quantifiers. Inf. Comput., 118(2):289–301, 1995.

[20] P. Tesson and D. Thérien. Diamonds are forever: The variety DA. In Semigroups,
Algorithms, Automata and Languages’01, Proc., pp. 475–500. World Scientific, 2002.

[21] P. Tesson and D. Thérien. Logic meets algebra: The case of regular languages. Log.
Methods Comput. Sci., 3(1):1–37, 2007.

[22] D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier
alternation. In STOC’98, Proc., pp. 234–240. ACM Press, 1998.

[23] W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25:360–
376, 1982.

[24] B. A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Dokl.
Akad. Nauk SSSR, 140:326–329, 1961.

12

Appendix

A. Formal Syntax and Semantics of Monadic-Second Order
Logic with Modular Quantifiers

Let Λ be a countable universe of labels. The syntax of a formula ϕ is given by

> | ⊥ | empty | λ(x) = a | x ∈ X |
x = y | x < y | x ≤ y | suc(x, y) | min(x) | max(x) | x ≡ r (mod q) |
¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃x ϕ | ∀x ϕ | ∃X ϕ | ∀X ϕ | ∃r mod qx ϕ

for x, y ∈ V1, X ∈ V2, a ∈ Λ, r, q ∈ Z and formulae ϕ,ψ. Note that we do not impose a
finiteness condition on Λ but of course for every formula only a finite subset of Λ occurs.
We stipulate the usual shortcuts

∨n
i=1 ϕi and

∧n
i=1 ϕi for formulae ϕi, i ∈ {1, . . . , n}, with

the convention that for n = 0 the disjunction is ⊥ and the conjunction is >. Moreover, if
A is a finite subset of Λ, then λ(x) ∈ A is an abbreviation for the formula

∨
a∈A λ(x) = a.

Parentheses may be used for disambiguation and to increase readability.
Next, we give the formal semantics of formulae. Even though we are mainly interested in

sentences, we need to handle formulae with free variables in the definition of the semantics.
This is done by extending the alphabet in such a way that the interpretation of free the
variables can be encoded. For a formula ϕ and a set of variables V containing the free
variables of ϕ, the semantics is a subset of words over Λ × 2V and denoted by JϕKV . For
an alphabet A ⊆ Λ we let JϕKA,V = JϕKV ∩ (A× 2V)∗ be the semantics over A. The idea is
that the second component allows to read of the interpretation of the free variables. Suppose
a position is labeled with (a, J). Then a first-order variable x is at this position if and only
if x ∈ J and the second-order variable X contains this position if and only if X ∈ J . Let
w = (a1, J1) · · · (an, Jn) where n ≥ 0, ai ∈ Λ and Ji ⊆ V . Then w ∈ J>KV if and only if for all
x ∈ V ∩ V1 there is exactly one index i ∈ {1, . . . , n} with x ∈ Ji. Notice that 1 6∈ J>KV if V
contains a first-order variable but 1 ∈ J>K∅. We are going to define the formal semantics such
that JϕKV ⊆ J>KV . If w ∈ J>KV , then the interpretation of X ∈ V on w is the set of positions
X(w) = {i ∈ {1, . . . , n} | X ∈ Ji}. Notice that x(w) is a singleton set for every first-order
variable x and by abuse of notation we also write x(w) for the position contained in this
singleton. We extend the label function to first-order variables by setting λw(x) = λw(x(w)).
Suppose w ∈ J>KV . Let J⊥KV = ∅. For “empty” let w ∈ JemptyKV if and only if |w| = 0. For
the label predicate let w ∈ Jλ(x) = aKV if and only if λw(x) ∈ {a}× 2V . For the containment
predicate let w ∈ Jx ∈ XKV if and only if x(w) ∈ X(w). For the predicate ∼ ∈ {=, <,≤} let
w ∈ Jx ∼ yKV if and only if x(w) ∼ y(w). For the successor let w ∈ Jsuc(x, y)KV if and only
if x(w) + 1 = y(w). Let w ∈ Jmin(x)KV if and only of x(w) = 1 and let w ∈ Jmax(x)KV if
and only if x(w) = |w|. For the modular predicate let w ∈ Jx ≡ r (mod q)KV if and only if
x(w) ≡ r (mod q). Boolean combinations are given inductively by J¬ϕKV = J>KV \ JϕKV and
Jϕ1 ∨ ϕ2KV = Jϕ1KV ∪Jϕ2KV and Jϕ1 ∧ ϕ2KV = Jϕ1KV ∩Jϕ2KV . For the semantics of the first-
order quantifiers we need to introduce some more notation. Let w[x/i] = (a1, J

′
1) · · · (an, J ′n)

with J ′i = Ji ∪ {x} and J ′j = Jj \ {x} for all j 6= i. Let

J∃x ϕKV =
{
w ∈ J>KV | w[x/i] ∈ JϕKV ∪{x} for some i ∈ {1, . . . , |w|}

}
.

J∃X ϕKV =
{

(a1, J1) · · · (an, Jn) ∈ J>KV | (a1, J ′1) · · · (an, J ′n) ∈ JϕKV ∪{X}
for some J ′1, . . . , J

′
n with Ji ∆ J ′i ⊆ {X}

}
.

13

Here J ∆ J ′ = (J \ J ′) ∪ (J ′ \ J) is the symmetric difference.
For a formula ϕ and a first-order variable x let Iw(x, ϕ) = {i ∈ {1, . . . , |w|} | w[x/i] ∈ JϕKV ∪{x}}

be the set of positions i of w such that ϕ holds if x is on position i. For the modular quantifier
let

J∃r mod qx ϕKV =
{
w ∈ J>KV | |Iw(x, ϕ)| ≡ r (mod q)

}
For the universal quantifiers let J∀x ϕKV = J¬∃x ¬ϕKV and J∀X ϕKV = J¬∃X ¬ϕKV . Note

that if FV(ϕ) * V , then the semantics JϕKV is undefined. Also take notice that in case q = 0
the modular predicate degenerates to equality and the modular counting quantifier counts
the exact number of positions, i.e., for w ∈ J>KV we have w ∈ Jx ≡ r (mod 0)KV if and only
if x(w) = r and w ∈ J∃r mod 0x ϕKV if and only if |Iw(x, ϕ)| = r.

B. Proof of Lemma 1

In order to prove Lemma 1, we need the following lemma which a substitution principle for
fragments. It states that if some subformula is replaced by a ≤F -smaller formula, then the
result is again ≤F -smaller.

Lemma 2 Let F be a fragment. If ϕ ≤F ψ, then ν(ϕ) ≤F ν(ψ) for every context ν.

Proof: The proof is by induction on the structure of ν. Let ϕ ≤F ψ and suppose
µ(ν(ψ)) ∈ F . We want to show µ(ν(ϕ)) ∈ F . If ν = ◦, then µ(ν(ψ)) = µ(ψ). Hence,
by definition, µ(ν(ϕ)) = µ(ϕ) ∈ F . If ν is another atomic formula, then ν(ϕ) = ν(ψ)
and the claim becomes trivial. Suppose that ν = ¬ν′ or ν = Q ν′ for some quantifier
Q ∈

{
∃x, ∀x,∃r mod qx, ∃X,∀X

∣∣ x ∈ V1, X ∈ V2, r, q ∈ Z
}

and some context ν′ and consider
the primitive context µ′ = µ(¬◦) (respectively, µ′ = µ(Q ◦)). Inductively, ν′(ϕ) ≤F ν′(ψ).
We have ν(ψ) = µ′(ν′(ψ)) ∈ F and thus ν(ϕ) = µ′(ν′(ϕ)) ∈ F . Finally suppose ν = ν′1 ∨ ν′2
for some contexts ν′i. Axiom (2) yields µ(ν′i(ψ)) ∈ F . By induction ν′i(ϕ) ≤F ν′i(ψ) and
therefore, µ(ν′i(ϕ)) ∈ F . By the same axiom µ(ν(ϕ)) = µ(ν′1(ϕ) ∨ ν′2(ϕ)) ∈ F . In case
ν = ν′1 ∧ ν′2 the claim follows analogously. �

Lemma 1. If F is a fragment, then ϕ ≤F ψ if and only if ϕ �F ψ.

Proof: The implication ϕ �F ψ ⇒ ϕ ≤F ψ being trivial, it suffices to show the reverse
implication. Suppose ν(ψ) ∈ F for a context ν. Let µ be the primitive context obtained
from ν by replacing all label predicates by >. Repeated application of Lemma 2 shows
µ(ψ) ≤F ν(ψ) and hence µ(ψ) ∈ F . With ϕ ≤F ψ we see µ(ϕ) ∈ F . Again with Lemma 2,
we see ν(ϕ) ≤F µ(ϕ) and hence ν(ϕ) ∈ F . �

C. Proof of Proposition 1.

In order to proof Proposition 1, we give a construction for the formula defining the residual.
We concentrate here on left residuals by letters; there are dual statements for right residuals.
At the end of this section we make those statements for right residuals explicit that are not
straightforward symmetric versions of the statements for left residuals. Residuals by words
are obtained by repeated residuals by letters.

Intermediately we need to handle formulae with free variables, even though the latter
application will be to sentences. We therefore give a more general construction for the

14

residuals over the extended alphabet Λ× 2V used to encode the value of the free variables.
The intuition of the construction is as follows: Given a model w, we want to evaluate ϕ
on the word (a, J)w. The idea is to handle the “phantom” (a, J)-position in front of w
syntactically using the set J for bookkeeping purposes.

We tried to keep the construction flexible. Due to different premises, this leads to a relatively
high number of lemmas (four for the atomic formulae, one for Boolean connectives, one for
first-order and second-order quantification, respectively, and one for modular quantification).
However, they are all of a very similar structure. Plugging the lemmas of this section into an
easy induction yields for every formula ϕ another formula (a, J)−1ϕ such that

1. (a, J)−1ϕ ≤F ϕ for all “appropriate” fragments F , and

2. J(a, J)−1ϕKV ′ = (a, J)−1 JϕKV
for all sets of variables V with J ∪ FV(ϕ) ⊆ V and V ′ = V \ (J ∩ V1).

The first property is of syntactic nature; it notably yields that (a, J)−1ϕ is in F whenever ϕ
is. Here, an “appropriate” fragment is a fragment which, depending on the predicates
occurring in ϕ, potentially has some additional closure properties. In the lemmas below, F
will denote a family of appropriate fragments. Note that we have one formula for all such
fragments (and not for every fragment a different formula), which is a stronger result than
actually needed for the closure under left residuals of a fixed fragment.

The second property gives semantic correctness, i.e., (a, J)−1ϕ actually defines the left
residual of ϕ. Note that for (a, J)−1 JϕKV to makes sense, V has to contain all free variables
of ϕ and all variables of J . Also note that since J(a, J)−1ϕKV ′ is defined, in particular no
first-order variable in J can appear freely in (a, J)−1ϕ.

The following lemmas give formulae for the left residual of languages defined by one of the
atomic formulae. Lemma 3 deals with the formulae >, ⊥, empty, min(x), λ(x) = b, x = y,
x < y, x ≤ y and x ∈ X for which the closure properties of a fragment suffice. Lemma 4
and Lemma 5 are for the successor predicate suc(x, y) and for max(x), respectively. Our
construction for suc(x, y) relies on being able to replace suc(x, y) by min(y) thus restricting
the class of appropriate fragments. For max(x) the fragment must allow to replace max(x)
by empty. Lemma 6 finally gives the construction for the modular predicate x ≡ r (mod q)
where we have to be able to change the remainder parameter r.

Lemma 3 Let ϕ be one of the atomic formulae >, ⊥, λ(x) = b, x = y, x < y, x ≤ y, empty,
min(x) or x ∈ X. Then for all a ∈ A and all sets of variables J there exists a formula
(a, J)−1ϕ which satisfies

(a, J)−1ϕ ≤F ϕ for all fragments F and

J(a, J)−1ϕKV ′ = (a, J)−1 JϕKV
where V is a set of variables with J ∪ FV(ϕ) ⊆ V and V ′ = V \ (J ∩ V1).

Proof: In the following w denotes some word over Λ× 2V
′
. For the formulae >, ⊥ and empty

we let (a, J)−1> = > and (a, J)−1⊥ = ⊥ and (a, J)−1empty = ⊥. Note that there exists no
w such that (a, J)w is empty which establishes the correctness of (a, J)−1empty.

Suppose x ∈ J . Then x((a, J)w) = 1 and λ(a,J)w(x) = b if and only if a = b; for x 6∈ J we
have λ(a,J)w(x) = λw(x). Hence the label predicate is given by

(a, J)−1
(
λ(x) = b

)
=


λ(x) = b if x 6∈ J ,

> if x ∈ J and a = b,

⊥ else.

15

We next consider the equality predicated and the two order predicates. We have
x((a, J)w) = y((a, J)w) if and only if either x, y ∈ J or x, y 6∈ J and x(w) = y(w). We have
x((a, J)w) < y((a, J)w) if and only if either x ∈ J and y 6∈ J or x, y 6∈ J and x(w) < y(w).
For the non-strict order we have x((a, J)w) ≤ y((a, J)w) if and only if either x ∈ J or
x, y 6∈ J and x(w) ≤ y(w). We therefore let

(a, J)−1(x = y) =


x = y if x 6∈ J and y 6∈ J ,

> if x ∈ J and y ∈ J ,

⊥ else,

(a, J)−1(x < y) =


x < y if x 6∈ J and y 6∈ J ,

> if x ∈ J and y 6∈ J ,

⊥ else,

(a, J)−1(x ≤ y) =


x ≤ y if x 6∈ J and y 6∈ J ,

> if x ∈ J ,

⊥ else,

The formula min(x) is true over (a, J)w, i.e., x((a, J)w) = 1, if and only if x ∈ J . Thus

(a, J)−1
(
min(x)

)
=

{
> if x ∈ J ,

⊥ else.

Finally consider the second-order predicate x ∈ X. Suppose x ∈ X. Then x ∈ X((a, J)w)
if and only if X ∈ J . For x 6∈ J we have x ∈ X((a, J)w) if and only if x ∈ X(w). Therefore
let

(a, J)−1
(
x ∈ X

)
=


x ∈ X if x 6∈ J ,

> if x ∈ J and X ∈ J ,

⊥ else.

It is easy to see, that all these formulae satisfy the syntactic property (a, J)−1ϕ ≤F ϕ for all
fragments F . �

Lemma 4 Consider the atomic formula suc(x, y) for some x, y ∈ V1. Let F be a family of
fragments F such that min(y) ≤F suc(x, y). Then for all a ∈ A and all sets of variables J
there exists a formula (a, J)−1suc(x, y) which satisfies

(a, J)−1suc(x, y) ≤F suc(x, y) for all F ∈ F and

J(a, J)−1suc(x, y)KV ′ = (a, J)−1Jsuc(x, y)KV

where V is a set of variables with J ∪ {x, y} ⊆ V and V ′ = V \ (J ∩ V1).

16

Proof: Let w be a word over Λ× 2V
′

and suppose x ∈ J . Then x((a, J)w) + 1 = y((a, J)w)
if and only if y((a, J)w) = 2 if and only if y 6∈ J and y(w) = 1. Suppose x 6∈ J . Then
x((a, J)w) + 1 = y((a, J)w) if and only if y 6∈ J and x(w) + 1 = y(w). Thus

(a, J)−1suc(x, y) =


suc(x, y) if x 6∈ J and y 6∈ J ,

min(y) if x ∈ J and y 6∈ J ,

⊥ else.

This formula satisfies the syntactic property (a, J)−1suc(x, y) ≤F suc(x, y) for all F ∈ F. �

Lemma 5 Consider the atomic formula max(x) for some x ∈ V1. Let F be a family of
fragments F such that empty ≤F max(x). Then for all a ∈ A and all sets of variables J
there exists a formula (a, J)−1max(x) which satisfies

(a, J)−1max(x) ≤F max(x) for all F ∈ F and

J(a, J)−1max(x)KV ′ = (a, J)−1Jmax(x)KV

where V is a set of variables with J ∪ {x} ⊆ V and V ′ = V \ (J ∩ V1).

Proof: Let w be a word over Λ× 2V
′

and suppose x ∈ J . Then we have x((a, J)w) = 1 =
|(a, J)w| if and only if |w| = 0. For x 6∈ J we have x((a, J)w) = x(w) + 1. Thus

(a, J)−1max(x) =

{
max(x) if x 6∈ J ,

empty else.

This formula satisfies the syntactic property (a, J)−1max(x) ≤F max(x) for all F ∈ F. �

Lemma 6 Consider the atomic formula x ≡ r (mod q) for some x ∈ V1 and some q, r ∈ Z.
Let F be a family of fragments F such that x ≡ r (mod q) and x ≡ s (mod q) are F-
equivalent for all s ∈ Z. Then for all a ∈ A and all sets of variables J there exists a formula
(a, J)−1

(
x ≡ r (mod q)

)
satisfying

(a, J)−1
(
x ≡ r (mod q)

)
≤F

(
x ≡ r (mod q)

)
for all F ∈ F and

J(a, J)−1
(
x ≡ r (mod q)

)
KV ′ = (a, J)−1 J

(
x ≡ r (mod q)

)
KV

where V is a set of variables with J ∪ {x} ⊆ V and V ′ = V \ (J ∩ V1).

Proof: Let w be a word over Λ×2V
′

and suppose x ∈ J . Then x((a, J)w) = 1. Suppose x 6∈ J .
Then x((a, J)w) = 1 + x(w) and hence x((a, J)w) ≡ r (mod q) if and only if x(w) ≡ r − 1
(mod q). Thus

(a, J)−1(x ≡ r (mod q)) =


x ≡ r − 1 (mod q) if x 6∈ J ,

> if x ∈ J and r ≡ 1 (mod q),

⊥ else.

This formulae satisfies the syntactic property. �

17

The next lemmas “lift” the construction to formulae composed by Boolean combinations
and quantifiers. These lemmas state that if there are formulae defining the left residual
which work for all fragments in F, then there exist formulae defining the left residual of the
Boolean combinations (Lemma 7), the first- and the second-order quantification (Lemma 8
and Lemma 9, respectively) which also work for all fragments in F. Moreover, there also exists
a formula defining the left residual for a formula involving the modular counting quantifier
which works for all fragments in F with some additional closure property (Lemma 10).

Lemma 7 Let ψ be one of the formulae ¬ϕ1 or ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2. Let F be a family of
fragments. Suppose for all a ∈ A and all sets of variables J there exists a formula (a, J)−1ϕi,
i ∈ {1, 2}, which satisfy

(a, J)−1ϕi ≤F ϕi for all F ∈ F and

J(a, J)−1ϕiKV ′ = (a, J)−1 JϕiKV
where V is a set of variables J ∪ FV(ϕi) ⊆ V and V ′ = V \ (J ∩ V1). Then for all a ∈ A
and all sets of variables J there exists a formula (a, J)−1ψ which satisfies

(a, J)−1ψ ≤F ψ for all F ∈ F and

J(a, J)−1ψKV ′ = (a, J)−1 JψKV
where V is a set of variables with J ∪ FV(ψ) ⊆ V and V ′ = V \ (J ∩ V1).

Proof: The constructions for positive Boolean connectives are:

(a, J)−1(ϕ1 ∨ ϕ2) =
(
(a, J)−1ϕ1

)
∨
(
(a, J)−1ϕ2

)
,

(a, J)−1(ϕ1 ∧ ϕ2) =
(
(a, J)−1ϕ1

)
∧
(
(a, J)−1ϕ2

)
.

Let µ be a primitive context, let F ∈ F and suppose µ(ϕ1 ∨ ϕ2) ∈ F . Since F is a
fragment we see µ(ϕi) ∈ F (for i ∈ {1, 2}). By assumption µ((a, J)−1ϕi) ∈ F and finally
µ
(
(a, J)−1ϕi ∨ (a, J)−1ϕi

)
∈ F . This shows (a, J)−1(ϕ1 ∨ ϕ2) ≤F (ϕ1 ∨ ϕ2). Analogously

(a, J)−1(ϕ1 ∧ ϕ2) ≤F (ϕ1 ∧ ϕ2). For the negation let

(a, J)−1(¬ϕ1) = ¬
(
(a, J)−1ϕ1

)
,

Suppose µ(¬ϕ1) ∈ F for some primitive context µ. Thus µ′(ϕ1) ∈ F for the primitive
context µ′ = µ(¬◦). Now, by assumption µ′

(
(a, J)−1ϕ1

)
= µ

(
¬(a, J)−1ϕ1

)
∈ F . This shows

(a, J)−1(¬ϕ1) ≤F ¬ϕ1. The semantic correctness is easily verified for all Boolean connectives.
�

Lemma 8 Consider the formulae ∃x ϕ and ∀x ϕ for some x ∈ V1. Let F be a family of
fragments. Suppose for all a ∈ A and all sets of variables J there exists a formula (a, J)−1ϕ
which satisfies

(a, J)−1ϕ ≤F ϕ for all F ∈ F and

J(a, J)−1ϕKV ′ = (a, J)−1 JϕKV
where V is a set of variables with J ∪FV(ϕ) ⊆ V and V ′ = V \ (J ∩V1). Then for all a ∈ A
and all sets of variables J there exist formulae (a, J)−1 ∃x ϕ and (a, J)−1 ∀x ϕ which satisfy

(a, J)−1 ∃x ϕ ≤F ∃x ϕ for all F ∈ F, J(a, J)−1 ∃x ϕKV ′ = (a, J)−1 J∃x ϕKV ,

(a, J)−1 ∀x ϕ ≤F ∀x ϕ for all F ∈ F, J(a, J)−1 ∀x ϕKV ′ = (a, J)−1 J∀x ϕKV
where V is a set of variables with J ∪FV(∃xϕ) = J ∪FV(∀x ϕ) ⊆ V and V ′ = V \ (J ∩V1).

18

Proof: Let w be a word over Λ × 2V
′

and let w′ = (a, J)w. We only argue for the
existential quantifier; the universal quantifier is analogue. Suppose w′[x/i] ∈ JϕKV ∪{x}
for some i. Suppose i = 1 and w′[x/i] = (a, J ∪ {x})w′′. Note that w′′ is essentially w
but x is removed from all second components. Then w′ ∈ JϕKV ∪{x} is equivalent to w′′ ∈
J(a, J ∪ {x})−1ϕKV ′\{x} by assumption. This in turn is equivalent to w ∈ J(a, J ∪ {x})−1ϕKV ′

since, in particular, x 6∈ FV((a, J ∪ {x})−1ϕ) is not a free variable of (a, J ∪ {x})−1ϕ and
consequently its truth value does not depend on the value of x.

Let i ≥ 2 and let w′[x/i] = (a, J \ {x})w′′. Notice w′′ = w[x/i − 1]. By assumption
w′[x/i] ∈ JϕKV ∪{x} is equivalent to w′′ ∈ J(a, J \ {x})−1ϕKV ′\{x}. These considerations allow
to set (with ϕ1 = (a, J ∪ {x})−1ϕ and ϕ2 = (a, J \ {x})−1ϕ)

(a, J)−1∃x ϕ = ϕ1 ∨ ∃x ϕ2,

(a, J)−1∀x ϕ = ϕ1 ∧ ∀x ϕ2.

We now show the syntactic property. Let F ∈ F. We have ϕ1 ≤F ∃x ϕ1 ≤F ∃x ϕ
by assumption on ϕ; note that x 6∈ FV(ϕ1). Together with ∃x ϕ2 ≤F ∃x ϕ this yields
(a, J)−1∃x ϕ ≤F ∃x ϕ. The argument for the universal quantifier is analogue. �

Lemma 9 Consider the formulae ∃X ϕ and ∀X ϕ for some X ∈ V2. Let F be a family of
fragments. Suppose for all a ∈ A and all sets of variables X there exists a formula (a, J)−1ϕ
which satisfies

(a, J)−1ϕ ≤F ϕ for all F ∈ F and

J(a, J)−1ϕKV ′ = (a, J)−1JϕKV

where V is a set of variables with J ∪FV(ϕ) ⊆ V and V ′ = V \ (J ∩V1). Then for all a ∈ A
and all sets of variables J there exist formulae (a, J)−1 ∃X ϕ and (a, J)−1 ∀X ϕ which satisfy

(a, J)−1 ∃X ϕ ≤F ∃X ϕ for all F ∈ F, J(a, J)−1 ∃X ϕ)KV ′ = (a, J)−1J∃X ϕKV ,

(a, J)−1 ∀X ϕ ≤F ∀X ϕ for all F ∈ F, J(a, J)−1 ∀X ϕ)KV ′ = (a, J)−1J∀X ϕKV

where V is a set of variables with J ∪FV(∃X ϕ) = J ∪FV(∀X ϕ) ⊆ V and V ′ = V \ (J ∩V1).

Proof: Let w = (a1, J1) · · · (an, Jn) and let w′ = (a, J)w where ai ∈ Λ and Ji ⊆ V ′. We
only argue for the existential quantifier; the universal quantifier is analogue. Suppose
(a, J ′)(a1, J

′
1) · · · (an, J ′n) ∈ JϕKV ∪{X} for some J ′ and J ′i with J ′ ∆ J ⊆ {X} and J ′i ∆ Ji ⊆

{X}. Now, either X ∈ J ′ or X 6∈ J ′. The premise for ϕ yields (a1, J
′
1) · · · (an, J ′n) ∈

J(a, J ∪ {X})−1ϕKV ∪{X} in the first case (and (a1, J
′
1) · · · (an, J ′n) ∈ J(a, J \ {X})−1ϕKV ∪{X}

in the second case, respectively). Therefore we define

(a, J)−1 ∃X ϕ = ∃X
(
(a, J ∪ {X})−1ϕ ∨ (a, J \ {X})−1ϕ

)
,

(a, J)−1 ∀X ϕ = ∀X
(
(a, J ∪ {X})−1ϕ ∧ (a, J \ {X})−1ϕ

)
.

Next, we show the syntactic property. Let F be a fragment in F. The assumption
on ϕ yields (a, J ∪ {X})−1ϕ ≤F ϕ and (a, J \ {X})−1ϕ ≤F ϕ. Thus (a, J ∪ {X})−1ϕ ∨
(a, J \ {X})−1ϕ ≤F ϕ and finally (a, J)−1 ∃X ϕ ≤F ∃X ϕ. The argument for the universal
quantifier is analogue. �

19

The following lemma lifts the residual construction to the modular counting quantifier. It
in particular applies to mod-stable fragments but is formulated slightly more general.

Lemma 10 Consider the formula ∃r mod qx ϕ for some x ∈ V1 and some r, q ∈ Z. Let F be
a family of fragments such that the formulae ∃r mod qx ϕ and ∃s mod qx ϕ are F-equivalent
for all s ∈ Z and such that ψ ≤F ∃r mod qx ϕ and ¬ψ ≤F ∃r mod qx ϕ for all ψ ≤F ϕ with
x 6∈ FV(ψ). Suppose for all a ∈ A and all sets of variables J there exists a formula (a, J)−1ϕ
which satisfies

(a, J)−1ϕ ≤F ϕ for all F ∈ F and

J(a, J)−1ϕKV ′ = (a, J)−1 JϕKV

where V is a set of variables with J ∪FV(ϕ) ⊆ V and V ′ = V \ (J ∩V1). Then for all a ∈ A
and all sets of variables J there exists a formula (a, J)−1 (∃r mod qx ϕ) which satisfies

(a, J)−1 (∃r mod qx ϕ) ≤F ∃r mod qx ϕ for all F ∈ F and

J(a, J)−1 (∃r mod qx ϕ)KV ′ = (a, J)−1 J∃r mod qx ϕKV

where V is a set of variables with J ∪ FV(∃r mod qx ϕ) ⊆ V and V ′ = V \ (J ∩ V1).

Proof: Let ϕ1 = (a, J ∪ {x})−1ϕ and ϕ2 = (a, J \ {x})−1ϕ be the formulae from the premise.
Let

(a, J)−1∃r mod qx ϕ =
(
ϕ1 ∧ ∃r−1 mod qx ϕ2

)
∨
(
¬ϕ1 ∧ ∃r mod qx ϕ2

)
.

Suppose we are given a model w. The formula realizes a straightforward case distinction:
Either the first position of (a, J)w is a ϕ-position and then the number of ϕ-positions in the
factor w has to be r−1 (modulo q), or it is not a ϕ-position and then the number of ϕ-positions
in w is r (modulo q). Here, for conciseness we say that a position i of hδ(w) is a ϕ-position, if
(hδ(w))[x/i] ∈ JϕKV ∪{x}, i.e., ϕ is true if x is interpreted by the position i. Given the closure

properties of a fragment F ∈ F, it is easy to see that (a, J)−1∃r mod qx ϕ ≤F ∃r mod qx ϕ is
inherited from ϕ1 and ϕ2. Notice x 6∈ FV(ϕ1). �

Right Residuals. There are of course dual statements providing us with formulae ϕ(a, J)−1

defining the right residual. We shall only make those explicit where some attention has to be
paid for the premises.

Lemma 11 Consider the atomic formula suc(x, y) for some x, y ∈ V1. Let F be a family of
fragments F such that max(x) ≤F suc(x, y). Then for all a ∈ A and all sets of variables J
there exists a formula suc(x, y)(a, J)−1 which satisfies

suc(x, y)(a, J)−1 ≤F suc(x, y) for all F ∈ F and

Jsuc(x, y)(a, J)−1KV ′ = Jsuc(x, y)KV (a, J)−1

where V is a set of variables with J ∪ {x, y} ⊆ V and V ′ = V \ (J ∩ V1).

20

Proof: Let w be a word over Λ×2V
′

and suppose y ∈ J . Then x(w(a, J)) + 1 = y(w(a, J)) =
|w(a, J)| if and only if x(w) = |w|. Suppose now y 6∈ J , then x((a, J)w) + 1 = y((a, J)w) if
and only if x 6∈ J and x(w) + 1 = y(w). Let thus

suc(x, y)(a, J)−1 =


suc(x, y) if x 6∈ J and y 6∈ J ,

max(x) if x 6∈ J and y ∈ J ,

⊥ else.

This formula satisfies the syntactic property. �

Lemma 12 Consider the atomic formula min(x) for some x ∈ V1. Let F be a family of
fragments F such that empty ≤F min(x). Then for all a ∈ A and all sets of variables J
there exists a formula min(x)(a, J)−1 which satisfies

min(x)(a, J)−1 ≤F min(x) for all F ∈ F and

Jmin(x)(a, J)−1KV ′ = Jmin(x)KV (a, J)−1

where V is a set of variables with J ∪ {x} ⊆ V and V ′ = V \ (J ∩ V1).

Proof: Let w be a word over Λ× 2V
′

and suppose x ∈ J . Then x(w(a, J)) = |w(a, J)| and
consequently x(w(a, J)) = 1 if and only if |w| = 0. If x 6∈ J , then x(w(a, J)) = x(w). Let
therefore

(a, J)−1min(x) =

{
min(x) if x 6∈ J ,

empty else.

This formula satisfies the syntactic property. �

We are now ready to show Proposition 1.

Proposition 1. Let F be a fragment and suppose that F is suc-stable and mod-stable. Then
the class of languages defined by F is closed under residuals.

Proof: We show closure under left residuals. By induction on the structure of ϕ we see
that for for all a ∈ A and all sets of variables J there exists a formula (a, J)−1ϕ which
satisfies (a, J)−1ϕ ≤F ϕ and J(a, J)−1ϕKV ′ = (a, J)−1 JϕKV where V is a set of variables
with J ∪FV(ϕ) ⊆ V and V ′ = V \ (J ∩V1). For the atomic modalities >, ⊥, λ(x) = a, x = y,
x < y, x ≤ y, empty, min(x) and x ∈ X this is Lemma 3. Let F = {F}. The predicates
suc(x, y), max(x) and x ≡ r (mod q) are Lemma 4, Lemma 5 and Lemma 6, respectively.
Note that in all cases F meets the requirements of the respective lemmas. For Boolean
connectives, first-order quantification, second-order quantification and modular quantification,
the claim follows by induction and Lemma 7, Lemma 8, Lemma 9 and Lemma 10, respectively.
Now, using the claim and setting a−1ϕ = (a, ∅)−1ϕ yields a−1LA(ϕ) = LA(a−1ϕ) for every
finite alphabet A ⊆ Λ and a−1ϕ ≤F ϕ. In particular, if ϕ ∈ F , then a−1ϕ ∈ F , that is,
if L ∈ LA(F), then also a−1L ∈ LA(F). Closure of LA(F) under right residuals follows
symmetrically. �

21

D. Proof of Proposition 2.

In order to proof Proposition 2, we give a construction for the formula defining the inverse
morphic image. More specifically, let A,B ⊆ Λ be finite alphabets. For a morphism
h : B∗ → A∗ and a formula ϕ we construct a formula h−1(ϕ) which, interpreted over w, has
the same truth value as ϕ interpreted over h(w). In addition, h−1(ϕ) meets the syntactic
property of being not “more complicated” than ϕ in a certain sense.

As for residuals the application will mainly be to sentences, but we intermediately need to
handle formulae with free variables. We need some more notation to formulate this concisely.
Let h : B∗ → A∗ be a morphism, let w = b1 · · · bm for bi ∈ B and suppose h(w) = a1 · · · an
for ai ∈ A. Then for every i ∈ {1, . . . , n} there exist unique numbers j ∈ {1, . . . ,m} and
d ∈ {1, . . . , |h(bj)|} such that |a1 · · · ai| = |h(b1 · · · bj−1)|+ d. The numbers (j, d) are called
h-coordinates on w of the position i of h(w); the number j basically identifies the position
of w where i originates from and d is the offset within the image of bi. See also Figure 1 for
an illustration. Note that if B is finite, then maxb∈B |h(b)| is a well-defined upper bound
for d.

b1 b2 b3 b4 b5 · · · bj · · · bm

a1 a2 a3 a4 a5 a6 · · · · · · ai · · · · · · an
1 2 1 2 3 1 1 d

Figure 1: The h-coordinates of h(w). In this example, h(b1) = a1a2, h(b2) = h(b3) = 1,
h(b4) = a3a4a5 and h(b5) = a6; position 5, for example, has h-coordinates (4, 3).

The idea is encode the variables of h(w) in the alphabet of w. Let i be a position of h(w)
with h-coordinates (j, d). A first-order variable is encoded by the h-coordinates (j, d). A
second-order variable X is distributed over several second-order variables Xi in such a way
that X contains the position i of h(w) if Xd contains the position j of w. To formalize this
we first introduce for every set of variables V a derived set of variables Vn with the same
first-order variables as V such that for every second-order variable X there are n distinct
variables X1, . . . , Xn. If now δ : V1 →p N is a partial function mapping a first-order variable
to its offset, then the above encoding is realized by the morphism hδ : (B×2Vn)∗ → (A×2V)∗

given by the following definition.

Definition 4 Let V be a set of variables and let n ∈ N. Then Vn is some fixed minimal
set of variables with Vn ∩ V1 = V ∩ V1 and for every second-order variable X ∈ V we have
X ∈ Vn and there exist distinct second-order variables X = X1, . . . , Xn ∈ Vn such that
{X1, . . . , Xn} and {Y1, . . . , Yn} are disjoint for X 6= Y .

Let h : B∗ → A∗ be a morphism, let δ : V1 →p N and let n ∈ N. Let the morphism
hδ : (B × 2Vn)∗ → (A× 2V)∗ be given by h(b) = (a1, J1) · · · (a`, J`) if h(b) = a1 · · · a` and

1. x ∈ Ji if and only if x ∈ J and δ(x) = i for all first-order variables x and

2. X ∈ Ji if and only if Xi ∈ J for all second-order variables X. �

Note that in order to avoid an all to tedious notation, the parameter n is understood implicitly
in hδ.

22

In this section we are going to give for every formula ϕ and every “appropriate” homomor-
phism hδ, a formula h−1δ (ϕ) such that

1. h−1δ (ϕ) ≤F ϕ for all “appropriate” fragments F , and

2. Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V)

where V is a set of variables with FV(ϕ) ⊆ V .
By the first, syntactic property in particular h−1δ (ϕ) ∈ F if ϕ ∈ F . What is appropriate

depends on the predicates used by the formula. The second property is semantic correctness,
i.e., h−1δ (ϕ) indeed defines the inverse image of hδ; again “appropriate” depends on the
predicates of the formula. Note that the statement is stronger than just closure of a fragment
under inverse morphisms because we get one formula which works for all appropriate fragments.
Also note that for first-order formulae we may choose V ⊆ V1 and thus Vn = V .

For the atomic formulae these are the following five lemmas. Lemma 13 gives the con-
struction for >, ⊥, λ(x) = a and x = y; Lemma 14 is for x < y and x ≤ y; Lemma 15 is
for suc(x, y), min(x), max(x) and empty; Lemma 16 is for x ≡ r (mod q); and Lemma 17 is
for the second-order predicate x ∈ X. Subsequently, we give lifting arguments for Boolean
combinations (Lemma 18), first-order, second-order and modular quantification (respectively,
Lemma 19, Lemma 20 and Lemma 21).

The lemmas in this section can be seen as a toolbox for the closure under inverse morphisms
of which one needs to consider only those lemmas which are relevant in a given situation.
These are then connected by an easy induction. For example, for a fragment of first-order logic
without modular quantifiers using only the order predicates, it suffices to consider Lemma 13
for true, false and label, Lemma 14 for the order, Lemma 18 for Boolean connectives and
Lemma 19 for first-order quantification.

Lemma 13 Let ϕ be one of the atomic formulae >, ⊥, λ(x) = a or x = y and let V be a
set of variables with FV(ϕ) ⊆ V . Then for all morphisms h : B∗ → A∗ and all δ : V1 →p N
there exists a formula h−1δ (ϕ) which for all fragments F and all n ≥ maxb∈B |h(b)| satisfies

h−1δ (ϕ) ≤F ϕ and

Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V).

Proof: We have hδ(w) ∈ J>KA,V if δ(x) is defined and if 1 ≤ δ(x) ≤ |hδ(λw(x))| for all
first-order variables x ∈ V . Therefore, if δ(x) is undefined for some x ∈ V ∩ V1, then we let
h−1δ (>) = ⊥. Else we let

h−1δ (>) =
∧

x∈V ∩V1

λ(x) ∈ Bδ(x)

where Bi = {b ∈ B | 1 ≤ i ≤ |h(b)|} is the set of letters b ∈ B such that i is a position of
h(b). By the above considerations we see Jh−1δ (>)KB,Vn = h−1δ (J>KA,V). Note that if h is
length-multiplying, then we could also set h−1δ (>) = > if δ(x) is defined and in {1, . . . ,m}
and h−1δ (>) = ⊥ otherwise; here m = |h(b)| for some b ∈ B. Consider a position i of h(w)
with h-coordinates (j, d). Then λh(w)(i) = a is equivalent to λh(b)(d) = a where b = λw(j).
Let C = {b ∈ B | λh(b)(δ(x)) = a} be the set of letters b ∈ B such that h(b) has label a at
position δ(x). Let i′ be a position of h(w) with h-coordinates (j′, d′). Then i = i′ if and only

23

if j = j′ and d = d′. We therefore let

h−1δ (⊥) = ⊥
h−1δ (λ(x) = a) = h−1δ (>) ∧ λ(x) ∈ C,

h−1δ (x = y) = h−1δ (>) ∧

{
x = y if δ(x) = δ(y),

⊥ else.

It is easy to see, that these formulae satisfy the syntactic property h−1δ (ϕ) ≤F ϕ for all
fragments F . �

Lemma 14 Let x . y be one of the atomic formulae x < y or x ≤ y for some x, y ∈ V1.
Let V be a set of variables with FV(x . y) ⊆ V . Then for all morphisms h : B∗ → A∗ and
all δ : V1 →p N there exists a formula h−1δ (x . y) which for all order-stable fragments F and
all n ≥ maxb∈B |h(b)| satisfies

h−1δ (x . y) ≤F (x . y) and

Jh−1δ (x . y)KB,Vn = h−1δ (Jx . yKA,V).

Moreover, if h is length-reducing, then h−1δ (x . y) ≤F (x . y) for all fragments F .

Proof: Consider positions i and i′ of h(w) with h-coordinates (j, d) and (j′, d′), respectively.
Suppose h is length-reducing. Then d = d′ = 1 and hence i < i′ if and only if j < j′

and i ≤ i′ if and only if j ≤ j′. Thus we let h−1δ (x < y) = (h−1δ (>) ∧ x < y) and
h−1δ (x ≤ y) = (h−1δ (>) ∧ x ≤ y) where h−1δ (>) is the formula from Lemma 13 for the set V .
It is easy to see that these formulae satisfies the syntactic property h−1δ (x < y) ≤F (x < y)
and h−1δ (x ≤ y) ≤F (x ≤ y) for all fragments F .

Suppose now h is not length-reducing. Then i < i′ if j < j′ or if j ≤ j′ and d < d′; and
i ≤ i′ if j < j′ or if j ≤ j′ and d ≤ d′. Let therefore

h−1δ (x < y) = h−1δ (>) ∧

{
x ≤ y if δ(x) < δ(y),

x < y else,

h−1δ (x ≤ y) = h−1δ (>) ∧

{
x ≤ y if δ(x) ≤ δ(y),

x < y else.

It is easy to verify that these formulae satisfies the syntactic property h−1δ (x < y) ≤F (x < y)
and h−1δ (x ≤ y) ≤F (x ≤ y) for all order-stable fragments F . �

Lemma 15 Let ϕ be one of the atomic formulae suc(x, y), min(x), max(x) or empty and
let V be a set of variables with FV(ϕ) ⊆ V . Then for all non-erasing morphism h : B∗ → A∗

and all δ : V1 →p N there exists a formula h−1δ (ϕ) which for all fragments F and all
n ≥ maxb∈B |h(b)| satisfies

h−1δ (ϕ) ≤F ϕ and

Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V).

24

Proof: Suppose h is non-erasing. Clearly, h(w) is empty only if w is empty. Consider a
position i of h(w) with h-coordinates (j, d). Then i = 1 is equivalent to j = d = 1; note that
for non-erasing morphisms we may have i = 1 but nonetheless j > 1. We therefore let

h−1δ (empty) = empty,

h−1δ (min(x)) =

{
h−1δ (>) ∧ min(x) if δ(x) = 1,

⊥ else.

For the max predicate we observe that i = |h(w)| if j = |w| and δ = |h(b)| where b = λw(j);
note that for erasing morphisms we may have i = |h(w)| but nonetheless j < |w|. For suc
consider positions i and i′ of h(w) with h-coordinates (j, d) and (j′, d′), respectively. Suppose
i+ 1 = i′. We consider two cases. If d′ = 1, then necessarily j + 1 = j′ and d = |h(b)| where
b = λw(j); otherwise j = j′ and d+ 1 = d′. Note that for erasing morphisms we may have
i+ 1 = i but j + 1 < j. Now, let C = {b ∈ B | δ(x) = |h(b)|} be the set of labels, for which
δ(x) is the maximum position in the image under h. Then we let

h−1δ (max(x)) = h−1δ (>) ∧ λ(x) ∈ C ∧ max(x)

h−1δ (suc(x, y)) =


h−1δ (>) ∧ suc(x, y) ∧ λ(x) ∈ C if δ(y) = 1,

h−1δ (>) ∧ x = y else if δ(x) + 1 = δ(y),

⊥ else.

It is easy to see, that these formulae satisfy the syntactic property h−1δ (ϕ) ≤F ϕ for all
fragments F . �

Lemma 16 Consider the atomic formula x ≡ r (mod q) for some x ∈ V1 and some r, q ∈ Z.
Let F be a family of fragments F such that x ≡ r (mod q) and x ≡ s (mod q) are F-
equivalent for all s ∈ Z. Let V be a set of variables with FV(x ≡ r (mod q)) ⊆ V . Then for
all length-multiplying morphisms h : B∗ → A∗ and all δ : V1 →p N there exists a formula
h−1δ (x ≡ r (mod q)) which for all F ∈ F and all n ≥ |h(b)| for b ∈ B satisfies

h−1δ
(
x ≡ r (mod q)

)
≤F

(
x ≡ r (mod q)

)
and

Jh−1δ
(
x ≡ r (mod q)

)
KB,Vn = h−1δ

(
Jx ≡ r (mod q)KA,V

)
.

Moreover, if h is length-preserving, then h−1δ
(
x ≡ r (mod q)

)
≤F

(
x ≡ r (mod q)

)
for all

fragments F .

Proof: Let h be length-multiplying and let m = |h(b)| for some b ∈ B. If m = 0 or if δ(y)
is undefined for some y ∈ V ∩ V1, then h−1δ (x ≡ r (mod q)) = ⊥. Let i be a position of
h(w) with h-coordinates (j, d). Since h is length-multiplying, we have i = m(j − 1) + d.
Let t = gcd(q,m) be the greatest common divisor of q and m. Let q = pt, m = `t and let
r′ = r +m− d. Then i ≡ r (mod q) if and only if mj ≡ r′ (mod q). Hence, t is a divisor of
r′ and mj ≡ r′ (mod q) is equivalent to `j ≡ r′/t (mod p). Since gcd(`, p) = 1 there exists
a number `−1 such that `−1` ≡ 1 (mod p) and `j ≡ r′/t (mod p) if and only if j ≡ `−1r′/t
(mod p). Now the latter is equivalent to the existence of 0 ≤ k < t such that j ≡ `−1r′/t+kp
(mod q).

25

These considerations lead to the following formula. If r +m− δ(x) 6≡ 0 (mod t), then let
h−1δ (x ≡ r (mod q)) = ⊥. Let otherwise s = `−1(r +m− δ(x))/t and

h−1δ (x ≡ r (mod q)) = h−1δ (>) ∧
t−1∨
k=0

x ≡ s+ kp (mod q).

It is easy to see the syntactic property h−1δ (x ≡ r (mod q)) ≤F
(
x ≡ r (mod q)

)
for all

fragments F ∈ F.
Note that if h is length-preserving, then h−1δ (x ≡ r (mod q)) = h−1δ (>) ∧ x ≡ r (mod q)

because m = 1, t = 1 and s = r. In this case h−1δ
(
x ≡ r (mod q)

)
≤F

(
x ≡ r (mod q)

)
for

all fragments F . �

Lemma 17 Consider the atomic formula x ∈ X for some x ∈ V1 and X ∈ V2. Let V
be a set of variables with FV(x ∈ X) ⊆ V . Then for all morphisms h : B∗ → A∗ and all
δ : V1 →p N there exists a formula h−1δ (x ∈ X) which for all MSO-stable fragments F and
all n ≥ maxb∈B |h(b)| satisfies

h−1δ (x ∈ X) ≤F (x ∈ X) and

Jh−1δ (x ∈ X)KB,Vn = h−1δ (Jx ∈ XKA,V).

Moreover, if h is length-reducing, then h−1δ (x ∈ X) ≤F (x ∈ X) for all fragments F .

Proof: Let i be a position of h(w) with h-coordinates (j, d). Then, by definition of hδ, we see
λhδ(w)(i) = (a, J) for some J ⊆ V with X ∈ J if and only if λw(j) = (b, J ′) for some J ′ ⊆ Vn
with Xd ∈ J ′. Now, if δ(x) 6∈ {1, . . . , N} where N = maxb∈B |h(b)|, then h−1δ (x ∈ X) = ⊥;
otherwise let

h−1δ (x ∈ X) = h−1δ (>) ∧ x ∈ Xδ(x).

This formula is easily seen to satisfy the syntactic property h−1δ (x ∈ X) ≤F (x ∈ X) for all
MSO-stable fragments F . Moreover, if h is length-reducing, then clearly h−1δ (x ∈ X) ≤F
(x ∈ X) for all fragments F ; notice that X1 = X by definition of Vn. �

Next, we give the following “lifting lemmas”: If for some formulae the inverse morphic
images are definable, then so are the inverse morphic images of their Boolean combinations
(Lemma 18), their first-order and second-order quantification (Lemma 19 and Lemma 20,
respectively) and their modular counting quantification (Lemma 21). Moreover, the con-
struction respects every family of morphisms and every collection of fragments (in the case
of second-order quantification every collection of MSO-stable fragments; and for the modular
counting quantifier every collection of mod-stable fragments).

Lemma 18 Let ψ be one of the formulae ¬ϕ1 or ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2. Let F be a family of
fragments and let C be a family of morphisms between finitely generated free monoids. Suppose
for all sets of variables V ⊇ FV(ϕi), all C-morphisms h : B∗ → A∗ and all δ : V1 →p N there
exist formulae h−1δ (ϕi), i ∈ {1, 2}, which for all F ∈ F and all n ≥ maxb∈B |h(b)| satisfy

h−1δ (ϕi) ≤F ϕi and

Jh−1δ (ϕi)KB,Vn = h−1δ (JϕiKA,V).

26

Let V be a set of variables with FV(ψ) ⊆ V . Then for all C-morphisms h : B∗ → A∗ and all
δ : V1 →p N there exists a formula h−1δ (ψ) which for all F ∈ F and all n ≥ maxb∈B |h(b)|
satisfies

h−1δ (ψ) ≤F ψ and

Jh−1δ (ψ)KB,Vn = h−1δ (JψKA,V).

Proof: The formulae for disjunction and conjunction are straightforward:

h−1δ (ϕ1 ∨ ϕ2) = h−1δ (ϕ1) ∨ h−1δ (ϕ2),

h−1δ (ϕ1 ∧ ϕ2) = h−1δ (ϕ1) ∧ h−1δ (ϕ2).

For the negation, we have to take more care. For w ∈ J>KB,Vn we may have hδ(w) 6∈ Jϕ1KA,V
simply because hδ(w) 6∈ J>KA,V . This may happen, e.g., if δ is such that hδ(w) does not
allow to interpret all first-order variables of V . Therefore J¬h−1δ (ϕ1)KB,Vn is not a subset of
J>KB,Vn in general. This is enforced by a conjunction with h−1δ (>) and we let

h−1δ (¬ϕ1) = h−1δ (>) ∧ ¬h−1δ (ϕ1).

It is easy to verify that the syntactic property of the h−1δ (ϕi) conveys to h−1δ (ψ), i.e., we
have h−1δ (ψ) ≤F ψ for all F ∈ F. Note that ¬h−1δ (ϕ1) ≤F ¬ϕ1. �

Lemma 19 Consider the formulae ∃x ϕ and ∀x ϕ for some x ∈ V1. Let F be a family
of fragments and let C be a family of morphisms between finitely generated free monoids.
Suppose for all sets of variables V ⊇ FV(ϕi), for all C-morphisms h : B∗ → A∗ and all
δ : V1 →p N there exists a formula h−1δ (ϕ) which for all F ∈ F and all n ≥ maxb∈B |h(b)|
satisfies

h−1δ (ϕ) ≤F ϕ and

Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V).

Let V be a set of variables with FV(∃x ϕ) = FV(∀x ϕ) ⊆ V . Then for all C-morphisms
h : B∗ → A∗ and all δ : V1 →p N there exist formulae h−1δ (∃x ϕ) and h−1δ (∀x ϕ) which for
all F ∈ F and all n ≥ maxb∈B |h(b)| satisfy the following properties:

h−1δ (∃x ϕ) ≤F ∃x ϕ, Jh−1δ (∃x ϕ)KB,Vn = h−1δ (J∃x ϕKA,V),

h−1δ (∀x ϕ) ≤F ∀x ϕ, Jh−1δ (∀x ϕ)KB,Vn = h−1δ (J∀x ϕKA,V).

Proof: Let i be a position of hδ(w) with h-coordinates (j, d). Then hδ(w)[x/i] = hδ[x/d](w[x/j])
where δ[x/d] is given by x 7→ d and y 7→ δ(y) if y 6= x. This leads to

h−1δ (∃x ϕ) = ∃x
N∨
d=1

h−1δ[x/d](ϕ)

h−1δ (∀x ϕ) = ∀x
N∧
d=1

h−1δ[x/d](ϕ)

where N = maxb∈B |h(b)| and h−1δ[x/d](ϕ) is the formula from the premise for the mapping

hδ[x/d] and set of variables V ∪ {x}. Note that for the h-coordinates (j, d) of every position

of h(w) we have 1 ≤ d ≤ N by choice of N . The syntactic properties h−1δ (∃x ϕ) ≤F ∃x ϕ
and h−1δ (∀x ϕ) ≤F ∀x ϕ for all F ∈ F are easily verified. �

27

Lemma 20 Consider the formulae ∃X ϕ and ∀X ϕ for some X ∈ V2. Let F be a family
of fragments and let C be a family of morphisms between finitely generated free monoids.
Suppose for all sets of variables V ⊇ FV(ϕ), for all C-morphisms h : B∗ → A∗ and all
δ : V1 →p N there exists a formula h−1δ (ϕ) which for all F ∈ F and all n ≥ maxb∈B |h(b)|
satisfies

h−1δ (ϕ) ≤F ϕ and

Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V).

Let V be a set of variables with FV(∃X ϕ) = FV(∀X ϕ) ⊆ V . Then for all C-morphisms
h : B∗ → A∗ and all δ : V1 →p N there exist formulae h−1δ (∃X ϕ) and h−1δ (∃X ϕ) which for
all MSO-stable fragments F ∈ F and all n ≥ maxb∈B |h(b)| satisfy the following properties:

h−1δ (∃X ϕ) ≤F ∃X ϕ, Jh−1δ (∃X ϕ)KB,Vn = h−1δ (J∃X ϕKA,V),

h−1δ (∀X ϕ) ≤F ∀X ϕ, Jh−1δ (∀X ϕ)KB,Vn = h−1δ (J∀X ϕKA,V).

Moreover, if h is length-reducing, then h−1δ (∃X ϕ) ≤F ∃X ϕ and h−1δ (∀X ϕ) ≤F ∀X ϕ for
all fragments F ∈ F.

Proof: Let i be a position of hδ(w) with h-coordinates (j, d). Then λhδ(w)(i) ∈ A×({X}∪2V)
if λw(j) ∈ B × ({Xd} ∪ 2Vn) by definition of hδ. Hence we let

h−1δ (∃X ϕ) = ∃X1 · · · ∃XN h−1δ (ϕ),

h−1δ (∀X ϕ) = ∀X1 · · · ∀XN h−1δ (ϕ)

where N = max({1} ∪ {|h(b)| | b ∈ B}) and h−1δ (ϕ) is the formula from the premise for
the set of variables V ∪ {X}. Note that for the h-coordinates (j, d) of every position of
h(w) we have 1 ≤ d ≤ N by choice of N . It is easily verified that the syntactic properties
h−1δ (∃X ϕ) ≤F ∃X ϕ and h−1δ (∀X ϕ) ≤F ∀X ϕ hold for F ∈ F if F is MSO-stable or if h is
length-reducing. Notice that X1 = X by definition of Vn, and that if h is length-reducing,
then N = 1. �

The following lemma lifts the inverse morphism construction to modular counting quanti-
fiers. It in particular applies to mod-stable fragments, but holds in a more general setting.
Specifically, we do not need the closure under negation required for mod-stability.

Lemma 21 Consider the formula ∃r mod qx ϕ for some x ∈ V1 and some r, q ∈ Z. Let F
be a family of fragments and let C be a family of morphisms between finitely generated free
monoids. Suppose for all sets of variables V ⊇ FV(ϕ), for all C-morphisms h : B∗ → A∗ and
all δ : V1 →p N there exists a formula h−1δ (ϕ) which for all F ∈ F and all n ≥ maxb∈B |h(b)|
satisfies

h−1δ (ϕ) ≤F ϕ and

Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V).

Let V be a set of variables with FV(∃r mod qx ϕ) ⊆ V . Then for all C-morphisms h : B∗ → A∗

and all δ : V1 →p N there exists a formula h−1δ (∃r mod qx ϕ) which for all F ∈ F with(
∃r mod qx ϕ

)
≡F

(
∃s mod qx ϕ

)
(for all s ∈ Z) and all n ≥ maxb∈B |h(b)| satisfies

h−1δ (∃r mod qx ϕ) ≤F ∃r mod qx ϕ and

Jh−1δ (∃r mod qx ϕ)KB,Vn = h−1δ (J∃r mod qx ϕKA,V).

Moreover, if h is length-reducing, then h−1δ (∃r mod qx ϕ) ≤F ∃r mod qx ϕ for all F ∈ F.

28

Proof: For d ∈ N by δ[x/d] : V1 →p N we denote the mapping x 7→ d and y 7→ δ(y) if y 6= x.
Let h−1δ[x/d](ϕ) be the formula from the premise for the set of variables V ∪ {x}. Let

h−1δ (∃r mod qx ϕ) =
∨
s∈S

N∧
d=1

∃s(d) mod q x h−1δ[x/d](ϕ)

where N = maxb∈B |h(b)| and S is the set of functions s : {1, . . . , N} → {0, . . . , q − 1} such

that
∑N
d=1 s(d) ≡ r (mod q). A position is a ϕ-position if ϕ holds when x is interpreted

to be this position. The idea is that the ϕ-positions of hδ(w) are partitioned; for every
d ∈ {1, . . . , N} the number of ϕ-positions of hδ(w) originating from a position in w with
offset d is counted separately (modulo q). The total sum of these counts then has to be r
(modulo q). Note that S is finite and that for the h-coordinates (j, d) of every position of h(w)
we have 1 ≤ d ≤ N by choice of N . Hence, every ϕ-position of hδ(w) is counted in precisely
one of the terms of the conjunction. The syntactic property h−1δ (∃r mod qx ϕ) ≤F ∃r mod qx ϕ
for all F ∈ F with

(
∃r mod qx ϕ

)
≡F

(
∃s mod qx ϕ

)
is easily verified.

Suppose h is length-reducing, i.e., N ≤ 1. Consider first the case N = 0. If r ≡ 0 (mod q),
then h−1δ (∃r mod qx ϕ) = > and else h−1δ (∃r mod qx ϕ) = ⊥. If N = 1, then S contains only
the function s with s(1) = (r mod q) and we redefine h−1δ (∃r mod qx ϕ) = ∃r mod q x h−1δ[x/1](ϕ).
In both cases the formulae satisfy h−1δ (∃r mod qx ϕ) ≤F ∃r mod qx ϕ for all F ∈ F. �

We are now ready to prove Proposition 2.

Proposition 2. Let F be a fragment and let C be a family of morphisms between finitely
generated free monoids. Suppose the following:

1. If F contains a second-order quantifier, then F is MSO-stable or all C-morphisms are
length-reducing.

2. If F contains the predicate ≤ or <, then F is order-stable or all C-morphisms are
length-reducing.

3. If F contains the predicate suc, min, max or empty, then all C-morphisms are non-
erasing.

4. If F contains a modular predicate, then all C-morphisms are length-multiplying and
either F is mod-stable or all C-morphisms are length-preserving.

5. If F contains a modular quantifier, then F is mod-stable or all C-morphisms are
length-reducing.

Then the class of languages defined by F is closed under inverse C-morphisms.

Proof: We show by induction on the structure of ϕ that for all sets of variables V containing
FV(ϕ) for all C-morphisms h : B∗ → A∗ and for all δ : V1 →p N there exists a formula h−1δ (ϕ)
which satisfies h−1δ (ϕ) ≤F ϕ and Jh−1δ (ϕ)KB,Vn = h−1δ (JϕKA,V) for all n ≥ maxb∈B |h(b)|. For
the atomic modalities >, ⊥, λ(x) = a and x = y this is Lemma 13; for x < y and x ≤ y
it is Lemma 14; for suc(x, y), min(x), max(x) and empty it is Lemma 15; for the modular
predicate x ≡ r (mod q) it is Lemma 16; and for x ∈ X it is Lemma 17. Note that in all
cases the lemmas do apply. For Boolean connectives, first-order quantification, second-order
quantification and modular quantification, this follows by induction and Lemma 18, Lemma 19,
Lemma 20 and Lemma 21, respectively (where F = {F}). With this claim closure under
inverse morphic images follows readily: Suppose ϕ is a sentences and let h−1(ϕ) = h−1δ (ϕ) for
some arbitrary δ. Then we get h−1(LA(ϕ)) = LB(h−1(ϕ)) and h−1(ϕ) ≤F ϕ. In particular
ϕ ∈ F implies h−1(ϕ) ∈ F , that is, if L ∈ LA(F), then h−1(L) ∈ LB(F). �

29

E. Remaining Proofs from Section 3

Corollary 1. Let F ⊆MSO[<,≤,=] be a fragment which is MSO-stable and order-stable.
Then F defines a positive ∗-variety.

Proof: This is a direct consequence of Theorem 1. �

Corollary 2. Let F ⊆ MSO[<,≤,=, suc,min,max] be a fragment which is MSO-stable
and order-stable. Suppose min(y) ≤F suc(x, y) and max(x) ≤F suc(x, y) for all first-order
variables x and y. Then the languages defined by F over nonempty words is a positive
+-variety.

Proof: Let L = LA(ϕ) ∩ A+ be the language defined by ϕ ∈ FA over A+. We first show
closure under left residuals. Let G be the smallest fragment containing F and satisfying
empty ≤G min(x) and empty ≤G max(x) for all first-order variables x. Then G is suc-stable
and MSO-stable. Of course, LA(ϕ) ∈ LA(G) and hence a−1LA(ϕ) ∈ LA(G) via some formula
a−1ϕ ∈ G because L(G) is closed under residuals by Proposition 1. Replacing in a−1ϕ each
predicate empty by ⊥ to obtain ψ, we get ψ ≤F a−1ϕ. Hence ψ ∈ G which implies ψ ∈ F .
But ψ and a−1ϕ are equivalent over nonempty words, i.e, LA(ψ) ∩A+ = LA(a−1ϕ) ∩A+ =
a−1LA(ϕ)∩A+ = a−1L∩A+. This shows that ψ defines the left residual by a of L over A+.

Closure under right residuals follows by symmetry and closure of L(F) under inverse
non-erasing morphisms is an immediate consequence of Proposition 2. �

F. Proof of Theorem 2

Theorem 2. A language is definable in FO2[<] if and only if it is definable by a formula in
Σ2[<,≤] with an acyclic comparison graph.

Proof: Suppose L ⊆ A∗ is FO2[<]-definable. Then L is a finite union of unambiguous
monomials, i.e., languages of the form P = A∗1a1 · · ·A∗nanA∗n+1 such that each w ∈ P has
a unique factorization w = w1a1 · · ·wnanwn+1 with wi ∈ A∗i ; see [20, 5]. The parameter n
is the degree of P . There exists i ∈ {1, . . . , n} such that ai 6∈ A1 ∩An+1 because otherwise
(a1 · · · an)2 admits two different factorizations. Suppose ai 6∈ A1 and let a = ai. Making
the first occurrence of a explicit in P shows that P is a finite union of languages of the
form Q1aQ2 where Q1 and Q2 are unambiguous monomials with degree smaller than k.
Inductively, there exist ϕj ∈ Σ2[<,≤] with acyclic comparison graph such that ϕj defines
Qj . We may assume that the variables used by ϕ1 and ϕ2 are disjoint. The next step is to
relativize ϕ1 to the factor to the left of the first a-position. For this let

ϕ′1 = ∃x1∃x2
(
ϕ1(<) ∧

∧
j∈{1,2}

λ(xj) = a ∧ ∀y (xj ≤ y ∨ λ(y) 6= a
)

(1)

where x1, x2, y are new variables. Before turning to the formula ϕ1(<) note that both x1 and
x2 specify the first a-position thus ensuring x1 = x2 without actually using equality. (This will
become important for acyclicity.) Also take notice that λ(y) 6= a can be expressed positively
by λ(y) ∈ A \ {a}. The construction of ϕ1(<) is by induction on the structure of the formula.

30

Let ψ(<) = ψ for atomic formulae, (¬ψ)(<) = ¬ψ(<), (ψ1 ∨∧ ψ2)(<) = ψ1(<) ∨∧ ψ2(<) for
∨∧ ∈ {∨,∧} and

(∃z ψ)(<) = ∃z (z < x1 ∧ ψ(<)),

(∀z ψ)(<) = ∀z (x2 ≤ z ∨ ψ(<)).

The formula ϕ′1 holds on a word if and only if the word has an a-position and ϕ1 holds on
the factor before the first a-position. One can verify that ϕ′1 is acyclic since ϕ1 is. A similar
construction yields an acyclic formula ϕ′′2 which evaluates ϕ2 on the factor beyond the first
a-position. This shows that Q1aQ2 is defined by the acyclic formula ϕ′1 ∧ ϕ′′2 . Hence, P is a
disjunction of acyclic formulae which, after renaming variables, yields an acyclic formula.
The construction for ai 6∈ An+1 is similar but the xj in (1) then specify the last a-position,
i.e., “xj ≤ y” is replaced by “y ≤ xj”.

Let L ⊆ A∗ be defined by ϕ ∈ Σ2[<,≤] with G(ϕ) = (V,E) acyclic. Suppose ϕ is in
prenex form, i.e., ϕ = ∃x1 · · · ∃xk∀yk+1 · · · ∀y` ψ where ψ is quantifier-free. We shall show
that p(uv)nu(uv)nq ∈ L⇔ p(uv)3nq ∈ L for n ≥ `2 and u, v, p, q ∈ A∗. From this it follows
that the syntactic monoid of L is in DA which is known to be equivalent to L being definable
in FO2[<], see [20, 5].

The implication p(uv)3nq ∈ L(ϕ) ⇒ p(uv)nu(uv)nq ∈ L(ϕ) holds for all ϕ ∈ Σ2[<,≤]
without acyclicity condition [20, 5]. It therefore suffices to show the converse implication.
We may assume that E is a linear order on V such that (j, j + 1) ∈ E for 1 ≤ j < k and
for k < j < `. For simplicity, we identify variables with their interpretation on a word.
Consider an interpretation x1, . . . , xk ∈ N on p(uv)nu(uv)nq such that for all interpretations
of the yj the formula ψ holds on p(uv)nu(uv)nq. By choice of n, there exists a factorization
p(uv)nu(uv)nq = p′(uv)`w(uv)`q′ with p′(uv)` being a prefix of p(uv)n and (uv)`q′ being a
suffix of (uv)nq and such that none of the xj is in one of the factors (uv)` of this factorization.
Specifically, xj ∈ I1 ∪ I2 ∪ I3 for 1 ≤ j ≤ k where

• I1 = {1, . . . , | p′ |},
• I2 =

{
| p′(uv)` |+ 1, . . . , | p′(uv)`w |

}
, and

• I3 =
{
| p′(uv)`w(uv)` |+ 1, . . . , |p(uv)nu(uv)nq|

}
.

Let p(uv)3nq = p′(uv)`w′(uv)`q′ and let I ′1, I ′2, and I ′3 be defined analogously to I1, I2 and
I3, respectively, with w replaced by w′. Let π : N → N be an order-respecting injection
mapping Ij to I ′j , j ∈ {1, 2, 3}.

We construct an interpretation x′j of the xj on p(uv)3nq as follows. For xj ∈ I1 ∪ I3 we set
x′j = π(xj). For the positions xj ∈ I2 we let x′j ∈ I ′2 such that x′j and xj have the same label
and such that j < j′ implies x′j < x′j′ . Assume there exists an interpretation y′k+1, . . . , y

′
`

on p(uv)3nq for yk+1, . . . , y` making ψ false. We are going to construct an interpretation
of the yj on p(uv)nu(uv)nq such that ψ is false. If y′j ∈ I ′1 ∪ I ′3, then yj = π−1(y′j). Every

y′j 6∈ I ′1 ∪ I ′3 is classified into “left” or “right” as follows. If y′j < min
{
y′j′ ∈ I ′2

∣∣ j′ ≤ k}, then

y′j is “left”. If y′j > max
{
y′j′ ∈ I ′2

∣∣ j′ ≤ k}, then y′j is “right”. Else y′j′ ≤ y′j ≤ y′j′′ for some
j′, j′′ ≤ k. We distinguish three cases:

31

1. If (j′, j) ∈ E and (j′′, j) ∈ E, then y′j is “left”.

2. If (j, j′) ∈ E and (j, j′′) ∈ E, then y′j is “right”.

3. If (j′, j) ∈ E and (j, j′′) ∈ E, then y′j is “right”.

(In the third case the classification does not really matter.) Note that by acyclicity, (j′′, j) ∈
E and (j, j′) ∈ E cannot happen. The “left” (respectively “right”) positions are set
label-respecting in the range between |p′| + 1 and

∣∣p′(uv)`
∣∣ (between

∣∣p′(uv)`w
∣∣ + 1 and∣∣p′(uv)`w(uv)`

∣∣, respectively) such that yj < yj′ for “left”-positions (respectively “right”-
positions) y′j and y′j′ with j′ < j. By construction every atomic formula which is true on

p(uv)nu(uv)nq is also true on p(uv)3nq. Since ψ does not contain negations, it is monotonic
in its atoms and thus ψ is false on p(uv)nu(uv)nq for this valuation, a contradiction. �

32

	Introduction
	Preliminaries
	Fragments and C-varieties
	Stutter-Invariant Piecewise Testable Languages
	The Acyclic Fragment of 2
	Conclusion
	Formal Syntax and Semantics of Monadic-Second Order Logic with Modular Quantifiers
	Proof of Lemma ??
	Proof of Proposition ??.
	Proof of Proposition ??.
	Remaining Proofs from Section ??
	Proof of Theorem ??

