Technischer Bericht 2012/05

Towards Optimized Public Sensing
Systems using Data-driven Models

Damian Philipp, Jarostaw Stachowiak,
Frank Durr, Kurt Rothermel

Institut fur Parallele und Verteilte Systeme
Universitat Stuttgart

Universitatsstralle 38
70569 Stuttgart

August 2012

Towards Optimized Public Sensing Systems using
Data-driven Models

Damian Philipp, Jarostaw Stachowiak, Frank Diirr, Kurt Rothermel
Institute of Parallel and Distributed Systems
University of Stuttgart
Stuttgart, Germany
Email: firstname.lastname @ipvs.uni-stuttgart.de

Abstract—The proliferation of modern smartphones has given
rise to Public Sensing, a new paradigm for data acquisition
systems utilizing smartphones of mobile users. In this paper,
we present DrOPS, a system for improving the efficiency of data
acquisition in Public Sensing Systems. DrOPS utilizes a model-
driven approach, where the number of required readings from
mobile smartphones is reduced by inferring readings from the
model. Furthermore, the model can be used to infer readings
for positions where no sensor is available. The model is directly
constructed from the observed phenomenon in an online fashion.
Using such models together with a client-specified quality bound,
we can significantly reduce the effort for data acquisition while
still reporting data of required quality to the client. To this effect,
we develop a set of online learning and control algorithms to
create and validate the model of the observed phenomenon and
present a sensing task execution system utilizing our algorithms
in this paper. Our evaluations show that we obtain models
in a matter of just hours or even minutes. Using the model-
driven approach for optimizing the data acquisition, we can save
up to 38 % of energy for communication and provide inferred
temperature readings for uncovered positions matching an error-
bound of 1°C up to 99 % of the time.

I. INTRODUCTION

The proliferation of modern smartphones such as the Apple
iPhone or Google Android Phones has given rise to Public
Sensing (PS), a new paradigm for data acquisition systems
utilizing smartphones of mobile users [6], [8]. These devices
are equipped with various sensors such as accelerometers,
cameras, light sensor, and positioning sensors like GPS. To-
gether with their capability of processing and communicating
captured sensor data, smartphones have become powerful
networked sensor platforms that can be used to obtain sensor
data without the cost of managing a dedicated fixed sensor
network.

However, due to the mobility of users, capturing sensor data
at certain points of interests (POI) is more challenging than for
fixed sensor networks where a sensor could simply be installed
at each POL In [22], Philipp et al. introduced the concept
of virtual sensors as a mobility-transparent abstraction of the
PS system. Similar to the sensors of a fixed sensor network,
virtual sensors can be placed at POIs and report readings
with a certain client-defined sampling rate. The PS system
is responsible for selecting suitable mobile devices to capture
data for virtual sensors such that the client-defined quality
specifications are fulfilled.

Although the concept of virtual sensors provides a user-
friendly abstraction, an open problem is how to deal with
virtual sensors without a mobile device in their vicinity (un-
available virtual sensors). In particular for lower densities of
mobile devices and higher requested sampling rates of virtual
sensors, this becomes and inherent problem of PS.

Another inherent problem of PS is the energy required for
sensing, processing, and communicating data. Since PS utilizes
mobile devices of users, the energy spent for PS must be kept
to a minimum or users might not be willing to support PS. In
other words, unnecessary sensor readings should be avoided.

In this paper, we tackle both of these problems by proposing
a model-driven approach for PS. The basic idea of model-
driven PS is to infer readings of virtual sensors from data
captured by mobile devices, based on a previously learned
model. On the one hand, using a model-driven approach, we
can alleviate the problem of unavailable virtual sensors by
inferring missing readings. On the other hand, we can avoid
unnecessary readings by actively omitting readings of virtual
sensors whose values can be inferred.

Model-driven sensing has already proven to increase the
performance of fixed sensor networks and actuated sensing
systems [7], [12], [27]. These approaches target long-running
sensing tasks, and use either expert knowledge or a pilot
deployment to obtain the model a priori. Although these are
reasonable approaches for long-running tasks, PS requires a
different approach to support queries for virtual sensors over
shorter periods of time that can be defined spontaneously by
the client. Therefore, we propose an approach for obtaining
models online within short time. Following the general goal
of saving energy, we additionally optimize the acquisition of
models for low energy consumption by keeping valid models
as long as possible.

In more detail, the contributions of this paper are:

1) An online learning algorithm for models of spatially dis-
tributed phenomenons that can obtain training data from
running queries and quickly creates a model suitable for
model-driven sensing. To minimize energy as well as the
time to learn a model, we try to re-use historic readings
and only update portions of the model if possible.

2) An online model validity check algorithm (MOCHA)
that verifies whether a model still accurately reflects the
underlying phenomenon. In order to minimize the en-

ergy spent for checking the validity, MOCHA uses only
a small fraction of additional control readings, which
are continuously monitored and compared to inferred
readings. Moreover, MOCHA avoids abandoning models
too quickly by applying smoothing techniques.

Our evaluations show that we obtain models in a matter of
just hours or minutes. Using our model-driven approach, we
can save up to 38 % of energy for communication and provide
inferred readings for unavailable positions matching an error-
bound of 1°C up to 99 % of the time.

The remainder of this paper is structured as follows. We
present the system model and problem statement in Section II
before discussing the basic operation of the DrOPS system
in Section III. Section IV details the optimized operation and
gives a brief introduction to the spatial models used in DrOPS,
while Section V presents our online learning and validation
algorithms. We evaluated the DrOPS system in a simulated
environment, whose methodology and results are discussed in
Section VI. Related work is discussed in Section VII, before
we conclude this paper with a short summary in Section VIII.

II. SYSTEM MODEL AND GOALS

Before introducing the system model, we first define some
terminology. We will refer to smartphones carried by users as
mobile nodes. A virtual sensor v is a point in space for which
our system should provide a measurement. Each virtual sensor
has a coverage area area(v), comprising a set of positions.
area(v) can be defined arbitrarily, as long as the coverage
areas of all virtual sensors are pairwise non-overlapping to
ensure a unique mapping of mobile nodes to virtual sensors.
If there is at least one mobile node located in area(v) to capture
sensor readings for v, we say that v is available. Otherwise,
v is unavailable. The set of all unavailable virtual sensors is
denoted as Unavailable(V).

For the sake of simplicity, we assume a circular model based
on Euclidean distance §() for the coverage area of virtual
Sensors, using v.0,,q, as the radius of the coverage area. So,
for a set of virtual sensors V we define individual coverage
areas as Vv € V : pos € area(v) < §(pos,v) < v.0pmaz-

Virtual sensors provide measurements as virtual readings,
which can either be effective readings or inferred readings.
An effective reading r is taken by a mobile node at position
pos(r) € area(v), whereas an inferred reading is computed
using a model of the observed phenomenon.

In order to define which virtual sensors should report effec-
tive readings and for which virtual sensors readings should be
inferred, we split a set of virtual sensors V into subsets Vs
and Vi, 5, where V = Vs UVipg, Verpr N Vipy = 0. It should
be noted that virtual sensors v € V,;y may turn out to be
unavailable. In this case, no effective reading will be available
for v. We therefore define V7, = V¢ ¢\ Unavailable(V') as the
(reduced) set of effective sensors that are actually available.
Vijz—f = Viny U Unavailable(V) denotes the extended set of
virtual sensors returning inferred readings either intentionally
(set Vinp) or due to being unavailable.

The DrOPS system consists of a gateway service and a set
of mobile nodes. The gateway service serves as an interface
to submit queries to the system and to store, browse, and
return historic data. To ensure the scalability of the system, the
geographical area for which the system can service requests
for data is partitioned into a set of service areas. Each service
area is serviced by a gateway server, which is responsible for
tracking which nodes are located in its service area, and for
communicating with these nodes.

Mobile nodes can determine their position using a position-
ing system such as GPS, and use a set of environmental sensors
(light, sound, temperature, air pollution, etc.) to observe their
environment. We assume that all nodes are equipped with the
appropriate sensor hardware to provide readings for all data
requests occurring in the system and that readings are provided
instantly upon accessing a sensor. Furthermore, nodes are
equipped with a 3G interface allowing for communication with
the gateway server whose service area contains the mobile
nodes position. DrOPS does not make any assumption about
the mobility of nodes, which is in general uncontrollable in a
PS system.

The DrOPS system accepts queries R = (V,y,p,Q) issued by
clients, where V represents the set of virtual sensors, y denotes
the type of the reading to be taken, e.g., light, temperature,
and p is the sampling period. Q is a set of quality parameters
required by the client. The content of Q depends on the
selected algorithms and, therefore, will be explained in detail
in the corresponding sections. At the end of every sampling
period, a result set F'Ry is sent to the client. 'Ry contains
all effective readings for virtual sensors in V_ ;.. Depending on
the selected algorithm, it may also contain inferred readings
for virtual sensors in sz;f

Our goal is to create a system for obtaining data on
spatially distributed environmental phenomena according to
several quality and optimization objectives. First, the system
should maximize the number of virtual sensors for which
readings are reported, i.e., compensate for unavailable virtual
sensors by inferring readings using a model of the observed
phenomenon. Second, it should optimize the data acquisition
process, i.e., increase efficiency by minimizing the number
of effective readings while still returning data that meets
application-defined quality constraints, given as part of the
quality parameters Q.

More precisely, to optimize data acquisition we will select
a set of virtual sensors V.¢s C V, minimizing |V.s¢| under
the constraint that Vu € Vj,,s : i, — ry| < Q.T. Here, 7,
represents the real value at virtual sensor u while ¢, is the
inferred reading for u. Note that we cannot guarantee that
the quality constraints are always met, for instance, if certain
areas are not covered by mobile nodes. However, we aim to
minimize the number of violations of the above constraint.

III. BASIC SENSING ALGORITHM

Next, we explain the basic execution of queries, before
we describe the optimized model-driven operation and the
process of model maintenance in subsequent sections. The

Temporal
Decomposition
2
R
ST Spatial
Decomposition

Service
Areas

O Mobil; Node x Virtual Sensor

Figure 1: Overview of Sensing Task Execution

basic sensing algorithm is used to illustrate the operation of
DrOPS and will later serve as a baseline for comparing the
performance of our optimized approaches.

To issue a query R = (Vyp,Q), the client submits it to
the gateway service. The gateway then performs a temporal
decomposition of the query by generating a new task T' =
(V,y,Q) every p seconds at the beginning of each sampling
period until the client cancels the query. Note that for the
basic algorithm, V' = V¢yy and Vi, y = @, i.e., all sensors
should return effective readings, since the basic algorithm does
not use inference to compensate for unavailable sensors or
for optimization. For each T, the gateway performs a spatial
decomposition by creating one sub-task s, = (Vp? 7Y, Q) per
service area A, where Ve‘;‘p ¥ C V denotes the virtual sensors
located in A for which effective readings should be taken.
Each s4 is then sent to all mobile nodes in A. This process is
illustrated in Fig. 1. Note that we do temporal decomposition
first to later allow for a global optimization of task execution
over all service areas.

On receiving a task, each node determines whether it is
located within the coverage area of any virtual sensor v € V.
If so, it takes an effective reading r and returns (v, r, pos(r)) to
the gateway. Otherwise, it discards the query. In case there are
multiple effective readings taken for v, the gateway only selects
the reading 7 with minimum §(pos(7),v). The gateway stores
all selected readings together with the starting time of the
corresponding sampling period. At the end of each sampling
period, the effective readings for virtual sensors v € V,;, is
returned to the client as result F'Ry . No data is returned for
other virtual sensors.

In the following sections, we extend this basic sensing
algorithm with our model-driven approach to compensate
for unavailable virtual sensors and minimize the number of
necessary effective readings.

IV. MODEL-DRIVEN OPTIMIZATION

The basic sensing algorithm presented in the previous
section has two problems, which we solve with our model-
driven approach. First, the basic sensing algorithm cannot

obtain readings for unavailable virtual sensors. In these cases,
DrOPS can use its model of the observed phenomenon to infer
readings for these virtual sensors. Second, we can use the same
model to identify strongly correlated virtual sensors. We use
this to minimize the size of Vs, thus, reducing the effort
required for task execution.

Since the focus of DrOPS is to obtain data for spatially
distributed environmental phenomena, we need to select an
appropriate model for this data. One kind of mathematical
model that has been identified as suitable for general spatially
distributed environmental phenomena is a multivariate Gaus-
sian distribution (MGD). Note that capturing other phenomena,
e.g., discrete environmental phenomena such as individual
events (e.g., lightning strikes), may require a different model or
a different optimization approach altogether. We will briefly
introduce the structure of an MGD and show how to apply
MGDs to infer and optimize readings in principle, before
we present an extended version of DrOPS based on these
principles. For more in-depth information about the application
of MGDs, we refer to [7], [12], [17].

A. Multivariate Gaussian Distribution

In an MGD, each virtual sensor v is modeled using a
one-dimensional Gaussian distribution with mean u, and
variance o2. Individual distributions for virtual sensors v, v’
are dependent on each other. This dependency is expressed in
a covariance matrix Xy, where each entry oy, v # V'
signifies the covariance of the values for virtual sensors v
and v’. Consequently, the entries on the diagonal o, , = 02
represent the variance of each individual distribution. We
define My, to be the vector of mean values of each individual
distribution and write a multivariate Gaussian distribution over
the virtual sensors in V as MGDy = (My,Zy,v).

Given an incomplete vector of effective readings Py from
virtual sensors e € W C V, we can use M GDy, to infer the
missing values for virtual sensors v € U = V' \ W based on
the following equations:

L) Py = Ha + S Syt (P — M) (1)
TPy = T = Suw Sy S @)

In these equations, Xy w denotes the covariance matrix
reduced to the entries corresponding to oy, ., u € U,w € W.

The output of this inference are not exact individual values
but rather one-dimensional Gaussian distributions encoding the
estimate about the current value at each u. Note that both the
inferred mean ., p,, and the variance 03‘ py, depend on the
set of virtual sensors W, but only (i, p,, depends on the actual
values in Py .

In the following, we will also refer to this process as
function INFER(U, M GDy, Py).

B. Near-Optimal Sensor Selection

Using INFER, we can infer readings for unavailable virtual
sensors, on the one hand. On the other hand, we can also
use an MGD model to optimize the data acquisition process
by explicitly moving virtual sensors from V.¢s to Vi, and

Algorithm 1 Modified GREEDY algorithm for selecting Vs
[12].
Require: T = (V,y,Q), MGDy = (Mv, EV,V)
Veff < @,me +—V
2: while (Jv € Vi : Jflveff > Q.02,4.) A (Viny # 0) do

Imafc +~0
4. w+<+ L

for all u € V' \ Voss do
6: I,, < mutuallnformation(u, Xv,v, Veyrs)

if I, > I,,,. then
8: w<— U
Imam — Iu

10: end if

end for
122 Vegg < Vepp U{w}, Ving < Ving \ {w}

end while

14: return ngf

then inferring their values. The rationale behind this is that
for sets of strongly correlated virtual sensors, it is sufficient
to request effective readings for a small subset of these to still
yield accurate inferred readings (i.e., readings with a variance
below a given threshold o2,,) for all virtual sensors.

As stated before, we strive to minimize the size of set Vs
in order to achieve the best optimization. Guestrin et al. have
shown that this problem is NP hard [12] and have developed
a set of near-optimal heuristic algorithms to address this
problem. We use a slightly modified version of their GREEDY
algorithm, presented in Alg. 1. Given a task T=(V,y,Q) and
a covariance matrix Xy, the GREEDY algorithm selects
Verr € V. Note that the gateway is not aware which virtual
sensors are available. Therefore, selecting Vs is done in an
optimistic fashion, assuming that they will be available.

Our variant of GREEDY selects effective sensors as follows.
Initially, Vis¢ = @ and V;, ¢t = V. Sensors are moved to
Vesr in sequence, where each time the sensor with the highest
mutual information I,,,, is selected, i.e., the sensor that
most significantly reduces the uncertainty about the inferred
readings for virtual sensors remaining in V, ;. For a formal
definition of the mutual information criterion, see the original
publication [12].

Whereas the original algorithm limited the set of virtual
sensors to a fixed size, we use a target maximum variance
Q.02 provided as a quality parameter. The modified sensor
selection algorithm will then add as many sensors as necessary
to Vs to ensure that the variance of any virtual sensor is less
or equal to Q.02

max*

C. Optimized Sensing Algorithm

Given an MGD and a sensing task T = (V,y,Q), we
modify the operations of DrOPS to use the model-driven
optimization as shown in Alg. 2. At the beginning of each
sampling period, we use the modified GREEDY-Algorithm to
select a set Vory C V' of virtual sensors (line 2).

Algorithm 2 Model-driven sensing task execution
Require: R = (V,y,p,Q), MGDy = (My,Xvy)
for all task € temporalDecomposition(p) do
2 Veps < GREEDY(V. Xy v,Q.02,,,)
task.V < Vgs; readings < 0
4: for all subtask € spatialDecomposition(task) do
readings < readings U execute(subtask)
6: end for
FRy + readingsU INFER(VZ.;”;JC7 MGDy,readings)
8: return Final Result F Ry
end for

The task is then executed in lines 3 to 6 as in the basic
algorithm. At the end of the sampling period, after collecting
all effective readings at the gateway, the gateway performs
the inference step. Using INFER, readings for virtual sensors
in V;gf are inferred from the available effective readings in
line 7. For mimicking a classic sensor network, we output the
inferred mean values for each v € VZZ fasan inferred reading.
If a client demands additional information, we also include the
variances in the final result F'Ry .

V. MODEL MANAGEMENT

To use the optimized sensing algorithm, an accurate model
of the observed phenomenon must be available. As already
motivated in Section I, PS requires such a model to be
available quickly whereas existing approaches use long-term
training periods to learn a model. For instance, consider a
temperature monitoring application. Intuitively, the temper-
ature will rise in the morning and drop in the afternoon.
Existing approaches take several days of training data to create
a model that accurately reflects this shift in temperature over
the day. Such a long training period is much too long for a
PS application that spontaneously requests current temperature
values for virtual sensors at certain POlIs.

Therefore, the basic idea of our approach is to quickly
derive a model of the observed phenomenon on demand that
is sufficiently accurate for the near future using an online
learning algorithm. Since such a model might not be able
to reflect changes happening over a longer time period—such
as the temperature rising in the morning and falling in the
evening in the previous example—, we continuously monitor
model accuracy using an online model validity check algorithm
(MOCHA) to learn a new model when the old one becomes
too inaccurate.

Next, we start by presenting our online model validity check
algorithm MOCHA, before we present our online learning
algorithms.

A. MOCHA

The goal of MOCHA is to check a model for correctness.
Intuitively, a model is correct if the Gaussian distributions
of inferred readings fit the real data, i.e., inferred values
from virtual sensors in VJ:f center around the true mean
value and the variance matches the true variance. However,

Algorithm 3 MOCHA algorithm. C denotes the set of virtual
sensors used for control readings.
Require: Final Result 'Ry, Control Readings C', - , Thresh-
old Q.T, Acceptable Violations Q.violations o
RMSE < 0
2: forall ce V, do
RMSE « RMSE + (FR. — C.)?
4: end for
RMSE <+

6: if RMSE > Q.T then
Add “violation” to window
8: else
Add “no violation” to window
10: end if
if Number of violations in window < Q.violations then
12: return “Model Valid”
else
14: return
end if

RMSE

“Model Invalid”

checking this property for every virtual sensor in V;gf is
inefficient or impossible. On the one hand, this would require
constant sampling of all virtual sensors, i.e., Voyr = V, which
would render the whole optimization useless. On the other
hand, inferred distributions are not constant since they depend
on values and sources of effective readings, which may be
different in every sampling period.

Therefore, we take a different approach for MOCHA (see
Algorithm 3). At the beginning of each sampling period, we
randomly choose a set of control sensors V. C Vi, of
size Q.control. In addition to the virtual sensors Vs selected
by the GREEDY algorithm, we request effective readings for
virtual control sensors in V.. At the end of the corresponding
sampling period, only effective readings from virtual sensors
in V_;, are used as input for the inference algorithm. We
then compare the inferred readings for available virtual control
sensors in V_; = V.4 \ Unavailable(V) to their corresponding
effective control readings by computing the root mean squared
error (RMSE, lines 1 to 5) for each virtual sensor. If the RMSE
is greater than a predefined threshold @.T, which is part of the
extended quality specification @ of a sensing task, we consider
the model to be inaccurate. ().7 defines the average error for
inferred readings that is still acceptable to the client. Thus, we
can define RMSE >).T' to indicate an inacceptable model
accuracy.

Using the RMSE, we avoid the problem of comparing indi-
vidual samples to inferred distributions since we can compare
absolute values directly. Furthermore, by adjusting the size of
V., we can trade off the costs for effective sampling and the
probability of detecting inaccurate models (model quality).

Immediately discarding a model when RMSE > Q.T
might lead to abandoning an accurate model in case the
observed error was a single outlier. We therefore use a sliding
window approach (lines 6 to 15) to dampen the reactivity of

MOCHA. We define a model to be inaccurate if there are
Q.violations (RMSE > Q.T) within the last Q.window samples.
For example, for Q.window = 2 and Q.violations = 1, we
will abandon the model only when observing RMSE > Q.T
in two consecutive sampling periods.

Using MOCHA, we next introduce our online learning
algorithms.

B. Simple Online Learning Algorithm

The simple online learning algorithm (S-OL) creates a MGD
model for the optimized sensing algorithm while a task is
executed. It uses MOCHA to monitor model accuracy and
creates a new model whenever the current model is discarded
by MOCHA.

The runtime of a query is divided into learning phases
and optimization phases. The duration of learning phases is
configured to a constant time using the quality parameter
Q.learnTime, e.g., 1hour. During this time, queries are exe-
cuted using the basic sensing algorithm, i.e., V,;y = V. At the
end of the learning phase, we run an existing offline learning
algorithm on the available data to create a new MGD. This
includes data from the current learning phase and all previous
phases (both learning and optimization) for the same task up
to a certain age given in Q.maxAge. Note that reducing the
maximum age of data reduces the runtime of the learning algo-
rithm. However, when setting Q.maxAge too short, the learned
model will forget global shifts in the observed phenomenon
that have been encountered before. Therefore, if periodic shifts
can be expected, e.g., temperature shifts in day/night cycles,
Q.maxAge should be set to a multiple of the cycle duration.

The number of effective readings required to learn an oper-
ational MGD depends on the learning algorithm. We used the
approach by Schwaighofer et al. [24], which can be configured
to work with as little as two samples per virtual sensor. If the
number of effective readings available for a virtual sensor v
at the end of the learning phase is insufficient, e.g., for the
approach of Schwaighofer et al. at most one effective reading
newer than Q.maxAge is available, v is excluded from the
model. Thus, rather than not performing any optimization at
all, we set v € Vs in every sampling period and no inference
is done when the virtual sensor is unavailable.

After @Q.learnTime, we switch to the optimization phase,
where we use the MGD as described in Section IV to reduce
the number of effective readings taken. Furthermore, we
continuously run MOCHA to monitor the accuracy of the
current MGD. When MOCHA considers the current MGD to
be inaccurate, we switch back to the next learning phase.

C. Improved Online Learning Algorithm

The adaptive online learning algorithm (A-OL) improves
the learning phase of S-OL w.r.t. two issues of S-OL. First,
the learning phase in S-OL is of constant duration. However,
the optimum duration is dependent on the availability of virtual
sensors. Ideally, the learning phase is terminated when a
sufficient number of samples has been gathered. Therefore,

1 1
! Delayed Mean ! !
1 Update Step 1
Model Invalid |

Update Step

1
: Update Step 1.
5[Model Invalid | »

Model Invalid |

'
Wait for data |
1
1

'
H Recompute Mean

Learn Model

Recompute Mean

Replay
Validity Check

Figure 2: Optimized learning phase of A-OL

Algorithm 4 Instant Mean Update Step
Require: R = (V,y,p,Q), MGDy = (My,Xvy)
YoeV:M,v =1
2 W0
for all v € V do
4: data < getHistoricData(v, [Q.maxAge, now()]))
if |data| > 0 then

6: M, [v] < mean(data)
else

8: W+ Wu {U}
end if

10: end for

M, [W] < INFER(W, MG Dy, My,)
12: return MGDy, = (M{,,Zv.v)

A-OL adapts the length of the learning phase to the number
of gathered effective readings.

Second, in S-OL the complete model is recomputed from
scratch in every learning phase. However, in many cases the
covariance matrix is still correct while only the mean vector
is inaccurate due to some global shift that has not been
observed before, e.g., temperature rising in the morning while
a query was started the night before and has only seen low
night-time temperatures. Therefore, A-OL uses a model update
mechanism that adjusts only the mean vector whenever this is
sufficient.

The learning phase in A-OL is subdivided into four steps
(cf. Fig. 2). At the end of every step, we replay the whole
set of GREEDY, INFER, and MOCHA on data from the last
Q.window sampling periods to compare the performance of
the updated model to that of the previous model. If the new
model is considered valid by MOCHA, we immediately switch
to the next optimization phase using this model.

In the instante mean update step (Alg. 4) we keep the
covariance matrix and update only the mean vector from
existing data, to avoid costly requests for effective readings
from all virtual sensors. We compute the mean of all effective
readings newer than Q.maxAge that we have seen for each
virtual sensor (lines 3 to 10). If no effective reading has been
reported within the considered history for a virtual sensor, e.g.,
if the virtual sensor was never available, we use the old model
to infer a mean value for this virtual sensor (line 11). This
might yield a greater error in inferred readings using the new
mean vector, which, however, would be detected by MOCHA.

Algorithm 5 Delayed Mean Update Step
ReqUire: R = (‘/7 Y, D, Q), MGDV = (MVa EV,V)
waitStart < now()

2: repeat
wait for next sampling period
4: V;ff ~—V

request data
6: until [{v € V||getHistoricData(v, [waitStart, now()])| >
Q.minReadings}| > Q.minSensors or totalWaitTime
> Q.learnTime
return INSTANTMEANUPDATE(R, MGDy)

Algorithm 6 Instant Full Update Step
Require: R = (V,y,p,Q)
data < getHistoricData(V, [Q.max Age, now()])
2: return learnModel(data)

If the new model is still invalid, we start the delayed mean
update step (Alg. 5). In the delayed mean update step, we
issue queries to all virtual sensors for effective readings and
update only the mean vector. Unlike in S-OL, the time spent on
obtaining fresh data is not fixed. We use an adaptive criterion,
where readings are requested until at least Q.minReadings
effective readings have been received for at least Q.minSensors
virtual sensors each (line 6). The mean vector is then updated
as in the instant mean update step (line 7). Waiting for more
readings or more sensors, respectively, will yield a more
accurate model but degrades the overall efficiency since more
time is spent in the learning phase.

If the model is still considered invalid after the delayed
mean update step, we move to updating the entire model (mean
vector and covariance matrix) in the instant full update step
(Alg. 6) using the same learning algorithm as used in the
learning phase of S-OL. As input for the learning algorithm,
we use the effective readings obtained in the delayed mean
update step along with the available historic data. So no new
data has to be gathered in this step.

If the new model remains invalid, we continue with the
delayed full update step (Alg. 7). In this step, we again
try to rebuild the complete model based on fresh data. To
this end, we again request fresh effective readings from all
virtual sensors. When sufficient data has arrived, we execute
the learning algorithm. If the model remains invalid, we repeat
this step until a valid model has been created.

There are two issues that can degrade the performance of the
A-OL algorithm, the first being unavailable virtual sensors. If
a fraction larger than |V| — Q.minSensors virtual sensors do
not report a sufficient number of effective readings, the waiting
time will be infinite. The second issue is that the replay of
sensor data may cause a model to be falsely considered invalid.
To tackle these issues, we set Q.learnTime as a hard limit on
the total time spent in these four steps (fotalWaitTime). When
this limit is reached, a new full model is constructed from
the available data and considered to be valid without further

Algorithm 7 Delayed Full Update Step
Require: R = (V,y,p,Q)
waitStart < now()

2: repeat
wait for next sampling period
4: V. ff < Vv

request data
6: until [{v € V||getHistoricData(v, [waitStart, now()])| >
Q.minReadings}| > Q.minSensors or totalWaitTime
> Q.learnTime
data + getHistoricData(V, [Q.max Age, now()])
8: return learnModel(data)

checking. Should the new model be invalid, this is detected by
MOCHA after at most Q.window sampling periods. Thus, the
learning phase in A-OL cannot last longer than that of S-OL,
but A-OL has the opportunity to return to the optimization
phase much quicker.

VI. EVALUATION

In this section, we briefly evaluate the performance of the
DrOPS system. We will first discuss the setup of our simu-
lation environment. Then we look at preliminary results for
the performance and energy consumption of data acquisition
using S-OL and A-OL.

A. Simulation Setup

We evaluated the DrOPS system using two real-world
datasets: Ten days from the Intel Lab data set [10] and seven
non-consecutive weeks (“epochs”) of data from the Lausanne
Urban Canopy Experiment (LUCE) of the SensorScope project
[21]. Both data sets contain environmental readings, e.g.,
temperature. Data tuples (Sensor ID, Timestamp, Value) are
reported by a set of fixed sensors. The Intel Lab data contains
about 50 fixed sensors in an indoor deployment while the
LUCE data contains around 100 fixed sensors in an outdoor
setting. Positions of the fixed sensors are available for each
dataset. Sensors report data at individual, irregular intervals.
In the Intel Lab data, all intervals are a multiple of 10, 20, or
30s. In the LUCE data, the intervals of individual sensors are
not synchronized, therefore we aggregated the data into 30s
intervals. Fig. 3a and 4 show an excerpt of the temperature
data from each data set, where Real Mean denotes the mean
temperature of all virtual sensors in each sampling period.

We generate queries by placing a virtual sensor for temper-
ature data at the position of every real sensor in each data set,
basically requesting a temperature map for the service area.
Thus, we can directly use the values from the underlying data
sets instead of performing some interpolation. Additionally,
we can directly compare inferred readings to ground truth.
The sampling period is adapted to match the interval at which
data is provided by the data set to get as many tasks as
possible out of the data. Note that in both data sets, the data
in each sampling period is incomplete. Thus, in each sampling
period there is a varying number of sensors that do not report

Parameter Intel Lab | LUCE

Error Threshold 0T 1°C 1°C
Max. Variance Q.02 .0 0.3 0.1
Window Size Q.window 8 1
Violations Q.violations 5 0
Control Readings Q.control 2 1

Learning Time Q.learnTime 1 hour 1 hour

Maximum Age Q.maxAge 3 days 3 days
Q.minReadings 5 5
A-OL Paramters Q.minSensors 49 98

Table I: Quality parameters used in the simulation

readings. In the Intel Lab data, there are an average of 20 out of
50 virtual sensors with available data in each sampling period,
thus, there are relatively few effective readings per sampling
period available. In the LUCE data, there are always more
than 70 out of about 100 virtual sensors with available data
in each sampling period.

To integrate node mobility and communication, we used
two simulation environments implemented in the network
simulator Omnet++ [28] that differ w.r.t. the level of detail
and the computational complexity. The detailed simulation in-
cludes fine-grained models for mobility and communications.
However, it has a huge computational complexity, prohibiting
its use for parameter studies. Therefore, we created the fast
simulation, built for low computational complexity. It is used
for parameter tuning and initial comparison of our algorithms.
The use of the detailed simulation environment is limited to
the final energy evaluation.

In the fast simulation environment, no communication is
simulated and node mobility is taken directly from the un-
derlying data sets: Virtual sensors are available iff there is a
reading available in the underlying data set. These abstractions
allow us to run each simulation for the complete duration (10
days and 1 week, respectively) of the underlying real-world
data sets. We introduced a single query for all virtual sensors,
lasting for the entire simulated time, in each simulation run.

In the detailed simulation environment, we use the INET-
MANET extension of Omnet++ and a custom 3G model to
create a detailed implementation of DrOPS. Energy consump-
tion is quantified using an empirical energy model [3].

Note that the energy model includes neither energy spent
on position fixes nor energy used for sampling sensors. If we
were to include energy usage for position fixes, we would
merely see a constant offset to our results. For the energy
consumption of environmental sensors, no consistent energy
model is available. Energy usage may vary strongly between
built-in sensors of different types or external sensors, e.g.,
connected via Bluetooth. For very cheap sensors, the energy
required for sampling is insignificant compared to the com-
munication energy. For very expensive sensors, our evaluation
underestimates the possible energy savings, as we reduce the
number of sensor samplings by replacing effective readings
with inferred readings. Therefore, the absolute energy savings
would be even higher for expensive sensors.

To generate node mobility for the Intel Lab data, we placed
70 mobile nodes on an abstract representation of the labs’

6 26 T T T T T T 4
o 24| Real Mean Temperature
o) 22 |+ Inital Rise f m
2 20t 2 2
g 18 F r ~
g 16 |
ﬁ 14 ! ! ! ! ! ! ! 0
0 6 12 18 24 30 36 42 48
Time [A]
(a) True mean of sensor readings (ground truth)
6 26 T T T T T T T 4
o 24 L Inferred Mean Temperature
© 22 | Learning Phase Real RMSE + m
E 20 - +, 2 wn
E Tl) o 3
[5 i "
g- 16 N % +++ AN i’ ™ ++ tr N t l,
£ 14 L AP P e i e |
0 6 12 18 24 30 36 42 48
Time [A]
(b) S-OL
8 26 T T T T T T T 4
o, 24 L More optimization _. Inferred Mean Temperature
s 22 | phases ——= _ @®° Real RMSE + "
5) - 2
= 20 u t+ i 2 2
5 18| i | B
£ 16 %* L
5 §! e + .+t
2 14 H ‘ ‘ —— 0
0 30 36 42 48
Time [A]
(c) A-OL
Figure 3: Excerpt of data from the Intel Lab data set (fast simulation environment).
8 18 T T + T T T T T + 4
s, 16 }. Inferred Mean Temperature -
o 14 + . Real Mean Temperature ------—-- ; m
5 12 Real RMSE 2 @
s 10 5 =
1} 8 + BECAN o~
¥ Dy
= 6 A j
£ 4 0
0 6 12 18 24 30 36 42 48
Time [h]

Figure 4: Excerpt of data from one epoch in the LUCE data set (S-OL only, fast simulation environment).

floor plan. Nodes move around randomly along the available
paths in the lab. For the LUCE data, we used a road graph
of the deployment area extracted from OpenStreetMap [13] as
input for the CanuMobiSim mobility simulator [26] to generate
random mobility traces for 150 nodes.

Due to the level of detail, the detailed simulations are several
orders of magnitude slower than the fast simulations, making
it infeasible to simulate the entire length of each data set.
Instead of running one long simulation, we ran a set of short
simulations in parallel. Simulations began every 3 hours from

10

the beginning of the data file and continued for 6 simulated
hours each. For the Intel Lab data set this was sufficient to
allow for running the detailed simulations. The LUCE data,
however, consists of several epochs and more virtual sensors,
requiring more mobile nodes. Therefore, for the LUCE data,
we further limited the number of simulations by only including
simulations beginning within the first 9 hours of each epoch.
As with the fast environment, we introduced a single query
for all virtual sensors in each simulation run.

The detailed environment has a drawback causing the simu-

lation to systematically underestimate the performance of our
system. In a real system, we require only that a virtual sensor
is available to obtain an effective reading. However, since we
are using preexisting data sets, besides there being a node
in the coverage area of the virtual sensor, there also has to
be a sample for that virtual sensor in the data set. Thus, the
chance of obtaining effective readings is significantly reduced
compared to a real system. Therefore, the amount of data
available for learning a new model or inferring readings is
reduced, which then degrades the accuracy of inferred readings
in the detailed environment.

B. Performance Evaluation

Using the optimized parameters determined in the previous
section, we now evaluate quality and efficiency of A-OL.
Fig. 3 and 4 show example executions of the DrOPS system
on temperature data from the Intel Lab data and LUCE data,
respectively. For the Intel Lab data, the mean temperature from
the underlying data set is depicted in Fig. 3a while 3b and 3c
show the mean temperature as output by DrOPS along with
the real RMSE of each task in an optimization phase. For the
LUCE data, we limit the presentation to an example execution
using S-OL and can thus show all graphs in a single plot. Note
that when there are no values for real RMSE, the system is in
a learning phase, otherwise it is in a optimization phase.

We can see in Fig. 3 that during the initial rise of the mean
temperature, A-OL manages to rebuild the model more quickly
than S-OL and thus spends more time in the optimization
phases overall. Thus we will limit further analysis to A-OL.
Fig. 5 shows the quality and efficiency achieved for each data
set by A-OL. For the LUCE data, quality is better than for the
Intel Lab data. We attribute this to the fact that for the LUCE
data, no smoothing step in MOCHA is necessary (cf. Table I).
Therefore, whenever inferred results start deviating from real
values, DrOPS immediately switches to a learning phase. For
the case of the Intel Lab data, smoothing was necessary, as
many individual outliers occurred. In total, these outliers as
well as readings taken during the time it takes to fill the
smoothing window degrade the quality.

When looking at the plot for efficiency, we can see that
for the LUCE data, efficiency is lower than for the Intel Lab
data. This is likely caused by the fact that in the LUCE data
the temperature values are shifting very quickly, sometimes
irregularly, whereas the values in the Intel Lab data are
comparatively smooth. Thus, models for the LUCE data are
valid for shorter time periods, i.e., more time is spent in
learning phases.

C. Energy Evaluation

We analyze the energy consumption of task execution in
the DrOPS system using the detailed simulation environment.
Fig. 6 shows the result of our simulations. The energy con-
sumption of each node was normalized to the average energy
consumption of nodes using the basic approach. We can see
that DrOPS greatly increases the energy efficiency of data
acquisition.

11

100 %

95 %

SO
NNy

90 %

&I
SN

v

85 %

v

R VRN RN X
O

80 %

xS x>
Na

XX

75 %

SREFTK LKL X T A LN
A X

SIS,

OCC0K

Cy

70 %

>K

>

%
>
%
<
>
Y
<
>
<
~
P S<x X
X >

Quality

P

65 %

Efficiency

Figure 5: Performance of A-OL under both Intel Lab data and
LUCE data.

100 %

80 %

60 %

40 %

20 %

Normalized Energy Usage

Intel Lab ———
LUCE

40% 60% 80% 100%

0% !
0% 20%

Fraction of Nodes

Figure 6: Normalized cumulated energy usage of nodes

To quantify the energy savings, we calculated the total
energy used by all nodes in all simulation runs for each
approach. Compared to the basic approach, A-OL requires
70 % of energy for the LUCE data and only 62 % for the Intel
Lab data. Thus, we can save up to one third of the energy
compared to the basic approach.

VII. RELATED WORK

Research interest in Public Sensing has been growing over
the last few years [6], [8]. Several prototype systems and
system architectures have been proposed. CenceMe [20] uses
activity recognition techniques to share data about the current
state of a participating person to social networks. MobGeoSen
[15] is a system architecture for environmental monitoring
applications. CarTel [14] focuses on car-based sensor net-
works making observations about traffic and road conditions.
MetroSense [5] provides a system for arbitrary sensing tasks.
However, all of these approaches focus on general hardware
and software systems challenges and neither discusses possible

optimizations nor challenges due to node mobility.

Several simple prototype systems aimed at monitoring en-
vironmental variables have been developed [19], [25]. They
require inefficient constant sampling from each participating
mobile node.

Previous approaches for optimizing public sensing focused
on nodes that read fixed sensors using RFID [29]. Mobile
nodes coordinate to sample each sensor at most once in
every sampling period. Further optimizations are presented by
Weinschrott et al. for sensors taking continuous measurements
along street segments [30]. Nodes coordinate to achieve k-
coverage, however, no additional optimization to completely
eliminate readings is done. In the MapCorrect approach [2]
for creating and validating road maps from GPS traces this
coordination is extended by mobility prediction to improve
the duty cycle of individual devices.

Lu et al. present another [18] approach for location-centric
sensing task execution. However, their system only focuses
on individual points of interest rather than observing a larger
area.

To determine mobile nodes most suitable for executing a
sensing task, Reddy et al. developed a reputation system [23].
The reputation is built over a long time from geographical
and temporal availability and willingness to participate in task
execution. The output of the system is however designed to
aid a human operator in node selection rather than providing
automatic selection.

Several works exist in optimizing the placement and
scheduling of sensors in traditional sensor networks. In
coverage-based approaches, sensor nodes are placed to min-
imize the overlap of their respective coverage areas to yield
full coverage of an observed area with a minimum number of
sensors [1], [31]. More closely related to our work, model-
driven approaches determine the information value of individ-
ual sensors and limit data acquisition to those sensors [9]-[11],
[16]. However, none of these systems have to deal with either
online learning of models or unavailability of sensors.

Using mobile sensors, works in actuated sensing also focus
on model-driven optimizations for data acquisition [4], [27].
In these approaches, optimal paths for mobile sensors are
computed to take the most interesting readings in a given area
within a given time limit. The underlying assumption is that
the mobility of nodes can be controlled by the system, which
does not hold in public sensing.

VIII. CONCLUSION

In this work, we presented the DrOPS system for monitoring
environmental values using public sensing. DrOPS uses a
model-driven sensing approach based on multivariate Gaussian
distributions to infer readings, in order to reduce the set of
mobile nodes that are queried for effective readings to reduce
the energy consumption. Moreover, we can compensate for
missing readings due to unavailable virtual sensors. Further-
more, we introduced an online learning algorithm to learn
multivariate Gaussian distributions over short time periods,
and MOCHA, an online model validity check algorithm to

12

determine whether a given multivariate Gaussian distribution
fits current sensor readings.

Our evaluations show that we obtain optimization models
in a matter of just hours or minutes. Using the model-driven
approach for optimizing the data acquisition, we can save up
to 38 % of energy for communication and provide inferred
readings for uncovered positions matching an error-bound of
1°C up to 99 % of the time.

In current work, we are building a prototype implementation
of the DrOPS system to evaluate the system performance in a
real-world setup. Furthermore, we plan to introduce an energy
efficient hybrid 3G/WiFi routing algorithm to further reduce
the energy cost for communication.

IX. ACKNOWLEDGMENTS

This work was partially funded by the SpoVNet project of
Baden-Wiirttemberg Stiftung gGmbH.

REFERENCES

[1] Z. Abrams, A. Goel, and S. Plotkin. Set K-Cover Algorithms for Energy
Efficient Monitoring in Wireless Sensor Networks. In IPSN ’04: Proc.
of the 3rd intl. Symp. on Inform. Process. in Sensor Networks, pages
424-432, New York, NY, USA, 2004. ACM.

P. Baier, H. Weinschrott, F. Diirr, and K. Rothermel. MapCorrect:
automatic correction and validation of road maps using public sensing.
In 36th Annu. IEEE Conf. on Local Comput. Networks (LCN 2011),
Bonn, Germany, Oct. 2011.

N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: a measurement study and impli-
cations for network applications. In Proc. of the 9th ACM SIGCOMM
Conf. on Internet Measurement, IMC 09, pages 280-293, New York,
NY, USA, 2009. ACM.

D. Budzik, A. Singh, M. Batalin, and W. Kaiser. Multiscale Sensing
with Stochastic Modeling. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Syst., IROS 2009., pages 46374643, 2009.

A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson. People-Centric Urban Sensing. In WICON’06: Proc. of the
2nd Annu. Intl. Work. on Wireless Internet, New York, NY, USA, 2006.
ACM.

A.T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,
H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The Rise of
People-Centric Sensing. IEEE Internet Computing, 12(4):12-21, 2008.
N. A. C. Cressie. Statistics for Spatial Data. Wiley-Interscience, Oct.
1993.

D. Cuff, M. Hansen, and J. Kang. Urban Sensing: Out of the Woods.
Commun. ACM, 51(3):24-33, Mar. 2008.

A. Das and D. Kempe. Sensor Selection for Minimizing Worst-Case
Prediction Error. In IPSN ’08: Proc. of the 7th Int. Conf. on Inform.
Process. in Sensor Networks, pages 97-108, Washington, DC, USA,
Apr. 2008. IEEE Computer Society.

A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Networks. In VLDB
’04: Proc. of the 30th Int. Conf. on Very large data bases, pages 588—
599. VLDB Endowment, 2004.

H. Gonzdlez-Banos. A Randomized Art-Gallery Algorithm for Sensor
Placement. In SCG '01: Proc. of the 17th Annu. Symp. on Computational
Geometry, pages 232-240, New York, NY, USA, June 2001. ACM.

C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements
in gaussian processes. In Proc. of the 22nd Int. Conf. on Machine
learning, ICML ’05, pages 265-272, New York, NY, USA, 2005. ACM.
M. M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12-18, Oct. 2008.

B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden. Cartel: a distributed mobile
sensor computing system. In SenSys’06: Proc. of the 4th Int. Conf.
on Embedded Networked Sensor Syst., pages 125-138, New York, NY,
USA, 2006. ACM.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E. Kanjo, S. Benford, M. Paxton, A. Chamberlain, D. S. Fraser,
D. Woodgate, D. Crellin, and A. Woolard. MobGeoSen: Facilitating
Personal Geosensor Data Collection and Visualization Using Mobile
Phones. Personal and Ubiquitous Computing, 12:599-607, 2008.

A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward Community
Sensing. In IPSN '08: Proc. of the 7th Int. Conf. on Inform. Process. in
Sensor Networks, pages 481-492, Washington, DC, USA, 2008. IEEE
Computer Society.

D. G. Krige. A statistical approach to some basic mine valuation
problems on the witwatersrand. J. of the Chem., Metal. and Mining
Soc. of South Africa, 52(6):119-139, 1951.

H. Lu, N. D. Lane, S. B. Eisenman, and A. T. Campbell. Bubble-sensing:
Binding Sensing Tasks to the Physical World. Pervasive and Mobile
Computing, 6(1):58 — 71, 2009.

N. Maisonneuve, M. Stevens, M. E. Niessen, P. Hanappe, and L. Steels.
Citizen Noise Pollution Monitoring. In Proc. of the 10th Annu. Int.
Conf. on Digital Government Research, dg.o 09, pages 96—103. Digital
Government Society of North America, 2009.

E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell. CenceMe
— Injecting Sensing Presence into Social Networking Applications. In
G. Kortuem, J. Finney, R. Lea, and V. Sundramoorthy, editors, Smart
Sensing and Context, volume 4793 of Lecture Notes in Computer
Science, pages 1-28. Springer Berlin / Heidelberg, 2007.

D. Nadeau, W. Brutsaert, M. Parlange, E. Bou-Zeid, G. Barrenetxea,
O. Couach, M.-O. Boldi, J. Selker, and M. Vetterli. Estimation of
urban sensible heat flux using a dense wireless network of observations.
Environmental Fluid Mechanics, 9:635-653, 2009.

D. Philipp, F. Diirr, and K. Rothermel. A sensor network abstraction for
flexible public sensing systems. In Mobile Adhoc and Sensor Systems
(MASS), 2011 IEEE 8th Int. Conf. on, pages 460-469, Oct. 2011.

13

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

S. Reddy, D. Estrin, and M. B. Srivastava. Recruitment Framework
for Participatory Sensing Data Collections. In Int. Conf. on Pervasive
Computing (Pervasive), page 18, May 2010.

A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels
via hierarchical bayes. In Adv. in Neural Information Processing Systems
(NIPS), number 17, pages 1209-1216. MIT Press, 2005.

A. Steed and R. Milton. Using Tracked Mobile Sensors to Make Maps of
Environmental Effects. Personal and Ubiquitous Computing, 12(4):331—
342, 2008.

I. Stepanov. CANU Mobility Simulation Environment (CanuMobiSim).
Online.

R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised
Coordination of Mobile Sensors Using the Max-Sum Algorithm. In
IJCAI'09: Proc. of the 21st Int. joint Cinf. on Artifical Intell., pages
299-304, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers
Inc.

A. Varga. The OMNeT++ Simulator. Online.

H. Weinschrott, F. Diirr, and K. Rothermel. Efficient Capturing of
Environmental Data with Mobile RFID Readers. In MDM ’09: Proc.
of the 10th Int. Conf. on Mobile Data Manage.: Syst., Services and
Middleware, pages 41-51, Washington, DC, USA, 2009. IEEE Computer
Society.

H. Weinschrott, F. Diirr, and K. Rothermel. StreamShaper: Coordination
Algorithms for Participatory Mobile Urban Sensing. In Proc. of the 7th
IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS’10), pages
1-10, San Francisco, CA, USA, Nov. 2010. IEEE.

H. Zhang and J. Hou. Maintaining Sensing Coverage and Connectivity
in Large Sensor Networks. Ad Hoc & Sensor Wireless Networks, 1(1-2),
2005.

