

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

CR: D.2.11, D.3.1, D.3.2, F.3.2, F.4.2, H.4.1

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

A Generic Transformation of Existing Service
Composition Models to a Unified Model

Katharina Görlach

Report 2013/01

(Version 2.0)

Report 2013/01 2

Abstract

This report presents a generic transformation from existing service composi-
tion models to a unified model based on formal grammars. The presented uni-
fied model is especially designed to be suitable for different kinds of modeling
paradigms, e.g. imperative and declarative models.

At first, the formal grammars that are used for service compositions are de-
fined. Afterwards, grammar-based representations for modeling constructs pro-
vided by the existing service composition specification languages WS-BPEL, Scufl,
and ConDec are presented. However, the transformation to the grammar-based
representations is discussed by use of general modeling constructs, e.g. looping
control flow. The transformation of concrete modeling constructs, e.g. while and
for loops can be implemented in the same way.

Report 2013/01 3

1 Introduction

High modeling languages for service compositions provide simple modeling constructs
mostly hiding complex operational semantics. A modeler that uses a modeling con-
struct needs to be aware of the operational semantics but is not supposed to implement
the corresponding logic. Instead, an engine supporting a specific modeling language
provides the implementation of the operational semantics, i.e. is suitable to interpret
and execute a model. However, various modeling languages exist and even multiple
engines exist corresponding to one single modeling language. Engine providers often
implement their own view on the modeling language, e.g. specialize fuzzy issues in the
meta-model, modify the predefined operational semantics, or introduce additional mod-
eling constructs. Furthermore, each engine provide implements an own internal model
that is used for the execution of service compositions. In summary, multiple modeling
languages with multiple engines each implementing an own internal processing model
is the state of the art.
The approach at hand introduces a unified model that is intended to be used as internal
processing model enabling a unified execution of service compositions and avoiding the
need for multiple engines in case multiple specification languages need to be supported.
The unified model is intended to be suitable for different kinds of modeling paradigms.
In particular, imperative, i.e. control-flow-based languages and data-flow-based lan-
guages as well as declarative, i.e. constraint-based languages need to be supported.
This report presents a generic transformation from the existing service composition
specification languages BPEL [2], Scufl [3], and ConDec [4] to the unified model. The
unified model is based on formal grammars and is intended to be derived by transfor-
mation. That means, no human is assumed to directly define grammar-based models.
In the grammar-based unified model production rules specify single steps in the exe-
cution of a service composition similar to assembler code that specifies single steps in
the execution of an application that also can be implemented by using a high specifi-
cation language. A formal automaton implementing the operational semantics of the
unified model is suitable to execute service composition by interpreting and process-
ing the grammar-based model. However, a single automaton is considered to be an
instance-specific engine. That means, an automaton is aware about the model by the
given grammar but doesn’t implement instance management. Instead, for each service
composition instance a new instance of the automaton is created. However, automata
are related to the same grammar iff the service composition instances realized by the
automata are related to same service composition model.
For an appropriate usage of formal grammars for the modeling of service compositions
formal grammars need to be modified. In particular, non-terminals in formal grammars
are extended by types in order to enable an association with services. Furthermore,
the structure of production rules is restricted and the rules are interpreted in a special

Report 2013/01 4

way. Special attention is payed to the processing of grammars, i.e. the application
of production rules instead of focusing on the created words. In detail, a sequence of
applied production rules is considered to represent a specific run of a service composition.
Different sequences of applied rules represent different runs (showing different runtime
behaviour) but do not necessarily produce different words.

Report 2013/01 5

2 Formal Grammars for Service Composition
Models

A formal grammar G = (N, Σ, P, S) is a special rewriting system (N ∪ Σ, P). In detail,
the alphabet of rewriting systems is separated into a set of non-terminal and terminal
symbols. Furthermore, a specific non-terminal is explicitly specified as the start symbol.
However, rewriting systems do not provide an algorithm for substituting terms with
each other but provide a set of possible rule applications. The substitution algorithm
defines the operational semantics of a rewrite system. Considering formal grammars
the corresponding automata implement the substitution algorithm, i.e the operational
semantics of formal grammars.
The approach at hand uses special formal grammars and special automata for the rep-
resentation and the processing of service composition models. Regarding the formal
grammars that are used for service compositions further separation of symbols is re-
quired. In particular, the non-terminals are typed and the non-terminal types can be
associated with a service. By use of the non-terminal types the non-terminals can be
classified. Additionally, the production rules that are used for service composition are
considered to specify an unordered set of non-terminals and terminal on the left-hand-
side (lhs) as well as on the right-hand-side (rhs). This means, in contrast to formal
grammars where the production rules specify an ordered set of symbols the approach at
hand ignores the order of symbols but focusses on the (concurrent) existence of symbols.
Furthermore, the approach at hand neglects the language that is related to the used
grammars but pays special attention to the grammar itself. That means, the processing
of a grammar is of high importance whereas the result is of less importance. Regarding
the correlation to service compositions that means the processing of a service composi-
tion is of high importance whereas the trace is of less importance.
In the following preliminary definitions are presented. Afterwards, the characteristics
of formal grammars that are used for service compositions, i.e. service grammars are
discussed and service grammars are defined. Additionally, a substitution algorithm for
service grammars is presented for determining the operational semantics of grammar-
based service compositions.

2.1 Preliminary Definitions

Definition 1 (Formal Grammar)
A formal grammar is a 4-Tupel G = (V, Σ, P, S) with

• V as set of non-terminal symbols;

• Σ as set of terminal symbols;

Report 2013/01 6

• P ⊆ (V ∪ Σ)+ × (V ∪ Σ)∗ as a set of production rules;

• S ∈ V as start symbol;

where + denotes the Kleene Plus, ∗ denotes the Kleene star, and ∪ denotes the set union.
y

Definition 2 (Word)
A word w over an alphabet set Σ is a finite sequence (x1, x2, x3, . . . , xn) with xi ∈ Σ and
n ≥ 0. For n = 0 the empty word is denoted ε. y

Definition 3 (Word Concatenation ⊕)
Two words w = (x1, x2, ..., xn) and v = (y1, y2, ..., ym) can be concatenated by the oper-

ator ⊕ that is defined by:

w ⊕ v = (x1, x2, ..., xn) ⊕ (y1, y2, ..., ym) := (x1, x2, ..., xn, y1, y2, ..., ym)

y

Definition 4 (Word Subtraction ⊖)
A word w over an alphabet A minus a word v can be calculated if the word v is included
in the word w and is defined by:

w ⊖ v := u ⇔ ∃m, n ∈ A∗ : w = m ⊕ v ⊕ n ∧ u = m ⊕ n

y

Definition 5 (Operation word ∩ set)
Assuming a finite word ω = (x1, x2, ...xn) and a set of symbols Φ.

Then the operation ω ∩Φ calculates the partial word ωΦ containing all symbols of ω that
are part of Φ:

ω ∩ Φ = ωΦ :=
{

ω, ∀xi ∈ ω : xi ∈ Φ;
(ω ⊖ xi) ∩ Φ, ∃xi ∈ ω : xi ̸∈ Φ.

y

Definition 6 (Word Union ⊔)
Assuming a word α = (α1, α2, ..., αm) and a word β = (β1, β2, ..., βn).
Then the word union α ⊔ β is defined by:

α ⊔ β = (α1, α2, ..., αm) ⊔ (β1, β2, ..., βn) := α ⊕ β ⊖ (αi, αj, ..., αk) ∧

Report 2013/01 7

(αi ∈ α ∧ αi ∈ β) ∧ (αj ∈ α ∧ αi ∈ β) ∧ ... ∧ (αk ∈ α ∧ αk ∈ β) , 1 ≤ i ≤ j ≤ k ≤ n

y

Definition 7 (Multiset)
A multiset M over a set A is a function M : A → N0 represented by a finite collection
M = [x1, x2, x3, . . . , xn] with xi ∈ Σ. That means, a multiset is denoted using square
brackets, e.g. [a, a, b, c], where [a, a, b, c] = [a, b, a, c] = [a, b, c, a] = [b, a, a, c] etc.
The emtpy multiset is denoted ε. y

Definition 8 (Multiset Union ⊕)
The union of two multisets W = [x1, x2, ..., xn] and V = [y1, y2, ..., ym] is defined by:

W ⊕ V = [x1, x2, ..., xn] ⊕ [y1, y2, ..., ym] := [x1, x2, ..., xn, y1, y2, ..., ym]

y

Definition 9 (Multiset Subtraction ⊖)
A multiset W over a set A minus a multiset V can be calculated if the multiset V is
included in the multiset W and is defined by:

W ⊖ V := U ⇔ ∃U : B → N0 ∧ W = V ⊕ U

y

Definition 10 (Operation multiset ∩ set)
Assuming a multiset M = [x1, x2, ...xn] and a set of symbols Φ.

Then the operation M ∩ Φ calculates the partial multiset MΦ : Φ → N0 containing all
symbols of M that are part of Φ:

M ∩ Φ = MΦ(xi) :=
{

0, xi ∈ Φ ∧ xi ̸∈ M;
M(xi), xi ∈ Φ ∧ xi ∈ M.

y

Definition 11 (Multiset Union ⊔)
Assuming a multiset M : A → N0 and a multiset N : B → N0.

Then the union M ⊔ N calculates the multiset U : A ∪ B → N0 that is defined by:

U(xi) :=
{

M(xi), xi ∈ A ∧ ((xi ∈ B ∧ M(xi) ≥ N(xi)) ∨ xi ̸∈ B);
N(xi), xi ∈ B ∧ ((xi ∈ A ∧ M(xi) < N(xi)) ∨ xi ̸∈ A).

y

Report 2013/01 8

2.2 Service Grammars

For enabling service-oriented computing in formal grammars non-terminals are asso-
ciated with service operations. The additional information, e.g. associated service
operations increase the complexity of non-terminals.

Definition 12 (Complexity of Non-Terminals)
Assuming a grammar G = (V, Σ, P, S) each non-terminal N ∈ V is represented by a

• 1-tuple (d1) if the non-terminal is 1-dimensional;

• 2-tuple (d1, d2) if the non-terminal is 2-dimensional;

• 3-tuple (d1, d2, d3) if the non-terminal is 3-dimensional;

where:

• d1 specifies the identifier N of the non-terminal;

• d2 = (Type, (Input, Ouput)) specifies the associated service operation (Type) in-
cluding input and output parameters where Input and Output may be empty,

• d3 : String → V specifies the mapping of service operation results and 1-dimensional
non-terminals.

y

Conventional Chomsky non-terminals are 1-dimensional non-terminals exclusively spec-
ifying the identifier of the symbol. In the unified model 1-dimensional non-terminals are
helper symbols that are required for ensuring the correct order of service calls. However,
2-dimensional non-terminals represent service calls whereas the associated service opera-
tion is specified by use of a non-terminal type. The invocation parameters of the service
call that is represented by a 2-dimensional non-terminal are specified by constant values
or data references in the second dimension of the non-terminal next to the non-terminal
type. 3-dimensional non-terminals also represent service calls but the return value of
a 3-dimensional is not stored by use of a data reference, e.g. a variable. In contrast,
the return value of a service call that is represented by a 3-dimensional non-terminal
is mapped to a grammar-internal representation, i.e. a non-terminal corresponding to
the third dimension.
The production rules of formal grammars that are used for service composition are c-
interpreted. The c-interpretation of production rules covers the concurrent existence of
symbols but ignore the order of symbols. That means, c-interpreted production rules
handle multisets instead of words.

Report 2013/01 9

Definition 13 (Multiset-Interpretation of Words)
The multiset-interpretation m(w) of a word w = (x1, x2, ..., xn) over an alphabet Σ is

defined by the multiset M : Σ → N0 with:

m(w) = [x1, x2, ..., xn]

y

Definition 14 (c-Interpretation of Production Rules)
The c-interpretation ic of a production rule p = (α, β) specifying the words α, β results

in a c-interpreted production rule pc = (m(α),m(β)) with the multiset-interpretation m.

ic : Words × Words → Multisets × Multisets

ic((α, β)) = (m(α),m(β))

y

The structure of production rules in formal grammars that are used for service grammars
are restricted for ensuring the simplest automaton class for processing. In particular, the
production rules are restricted to specify variant, terminal-based context. The variant
context allows to change the context that is specified in production rules. In particular,
the production rules may substitute multiple symbols on the lhs by a single or multiple
symbols on the rhs. However, the terminal-based context allows to exclusively specify
a single non-terminal on the lhs whereas multiple terminals may be specified on the
lhs. Terminal-based context enables to uniquely determine the processing symbol of a
production rule. The processing symbol is defined by the non-terminal on the lhs that
is intended to be substituted by the rhs while rule application. For more information
about context types please see [1].

Definition 15 (Variant, Terminal-based Context)
Let G = (Σ, V, P, S) be a formal grammar. Then the grammar provides variant,

terminal-based context if P ⊆ Σ∗V Σ∗ × (Σ ∪ V)∗ y

For the executability of formal grammars that are used for service compositions the
grammars need to provide exclusive and complete context as well as dynamic determin-
ism. Exclusive context ensures that at most a single context-sensitive or unrestricted
production rule can be applied in each reachable automaton configuration. Complete
context ensures that all possible context alternatives that can occur at runtime are speci-
fied in context-sensitive or unrestricted production rules. Finally, dynamic determinism
ensures the deterministic selection of production rules at runtime.

Definition 16 (Exclusive Context)
A formal grammar G = (V, Σ, P, S) provides exclusive context if for each pair of

Report 2013/01 10

context-sensitive or unrestricted production rules x, y with the same processing symbol
N but different context symbols of N the entire entire set of context symbols of rule
x cannot occur at the same time as the entire set of context symbols of rule y. That
means, the context of a fixed processing symbol in production rules is mutually exclusive
at runtime.
∀x, y ∈ P ∧N ∈ V ∧N ∈ LHS(x)∧N ∈ LHS(y)∧LHS(x)\{N} ̸= LHS(y)\{N} ̸= ∅
@wi ∈ σ = S → w1 → w2 → ... → wn ∧ LHS(x) ∈ wi ∧ LHS(y) ∈ wi

y

Exclusive context is achieved by context symbols that are mutually exclusive at runtime.
By use of the mutual exclusive context symbols the deterministic selection of context-
sensitive or unrestricted production rules with different lhs is ensured by enabling at
most a single context-sensitive or unrestricted production rule for application in each
reachable automaton configuration.

Definition 17 (Complete Context)
A formal grammar G = (V, Σ, P, S) provides complete context if for each non-terminal

N representing the processing symbol in a context sensitive or unrestricted production
rule

(1) there exist exclusively context-sensitive rules specifying the non-terminal N as
processing symbol
p ∈ P ∧ N ∈ LHS(p) ∧ LHS(p) \ {N} ̸= ∅ ⇒ ∀q ∈ P∃α ∈ (Σ ∪ V)+ ∧ N ∈
LHS(q) ∧ α ∈ LHS(q)

(2) the set of all rules specifying N as processing symbol covers all possible context
alternatives that can occur at runtime.
∀wi ∈ σ = S → w1 → w2 → ... → wn ∧ N ∈ wi

∃p ∈ P ∃α ∈ (Σ ∪ V)+ ∧ N ∈ LHS(p) ∧ α = LHS(p) \ {N} ∧ α ∈ wi

y

Property (1) in definition 17 ensures the deterministic selection of production rules
with different lhs at runtime by enabling either context-free or context-sensitive (and
unrestricted) production rules for application in each reachable automaton configura-
tion. Furthermore, property (2) ensures the termination of the processing of a context-
sensitive or unrestricted grammar, i.e. at least one production rule can be applied in
case a processing symbol needs to be processed in context of other symbols.
Dynamic determinism ensures the deterministic selection of rules with the same lhs at
runtime. The use of complex non-terminals enables the inclusion of dynamic informa-
tion at runtime. Based on the dynamic information at runtime a deterministic selection
of rules at runtime can be realized.

Report 2013/01 11

Definition 18 (Dynamic Determinism)
A formal grammar is dynamic deterministic, i.e. deterministic at runtime iff a single

rule can be deterministically selected out of production rules specifying the same lhs based
on dynamic information at runtime.
A formal grammar G = (V, Σ, P, S) using complex non-terminals is dynamic
deterministic iff each production rule with a lhs that is also specified by another rule spec-
ifies a 3-dimensional non-terminal N on the lhs and exclusively a single non-terminal
M on the rhs which need to be part of the third dimension of N :
∀r ∈ {p ∈ P | ∃q ∈ P ∧ q ̸= p ∧ N ∈ V ∧ LHS(q) = LHS(p) ∧ N ∈ LHS(p) ∧ N ∈
LHS(q)} :

1. r ∈ Σ∗V Σ∗ × V

2. (V ∩ LHS(r)).d3 ̸= ∅

3. ∃x : RHS(r) = (V ∩ LHS(r)).d3(x)

y

By use of the previous definitions the formal grammars that are used for service compo-
sition, i.e service grammars can be defined as presented in definition 19. Furthermore,
definition 20 presents a substitution algorithm for service grammars determining the op-
erational semantics. The presented substitution algorithm requires a normal form V ∗Σ∗

for stored symbols at runtime. For the processing of a service grammar the approach
at hand assumes a queued automaton that naturally provides the normal form required
by the substitution algorithm. In particular, the queue of the queued automaton is
assumed to store non-terminals whereas the tape exclusively stores terminals.

Definition 19 (Service Grammar)
A service grammar is a formal grammar G = (V, Σ, P, S) providing dynamic determin-

ism and exclusive, complete context with:

V - Non-empty and finite set of complex non-terminals

Σ - Non-empty and finite set of terminals

P - Non-empty and finite set of c-interpreted production rules with variant, terminal-
based context

S - Start symbol S ∈ V

y

Report 2013/01 12

Definition 20 (Substitution Algorithm for Service Grammars)
Assuming a service grammar G = (V, Σ, P, S) and a sequence Γ = Ωα of symbols with

Ω ∈ V ∗ and α ∈ Σ∗. Then, the substitution of symbols in Γ following the rules in P is
defined by the function substituteP : V ∗Σ∗ → V ∗Σ∗ with:

substitute(Γ) =
{

fP (Γ), fP (Γ) ∩ V = ε;
substitute(fP (Γ)), fP (Γ) ∩ V ̸= ε.

with:

fP (Γ) =



Γ, Ω = ε;

∆ fP (βδ′Ω′), Ω = NΩ′, N ∈ V, r = ruleSelectionP (α, N),
δ = LHS(r) ∩ Σ, β = α ⊖ δ,
δ′ = RHS(r) ∩ Σ, ∆ ∈ RHS(r) ∩ V.

y

Definition 21 (Rule Selection)
Assuming the processing of a service grammar G = (V, Σ, P, S) at a specific point

in time the selection of a rule is defined by the function ruleSelectionP : Σ∗ × V →
(Σ∗V × (Σ ∪ V)∗)
ruleSelection(α, N) = p ∈ P :

N ∈ LHS(p) ∧ (LHS(p) ∩ Σ) ∈ α, 1-dimensional N ;

N ∈ LHS(p) ∧ (LHS(p) ∩ Σ) ∈ α ∧ invoke(dim2(N)), 2-dimensional N ;

N ∈ LHS(p) ∧ (LHS(p) ∩ Σ) ∈ α ∧ M ∈ RHS(p)
∧o = invoke(dim2(N)) ∧ dim3(N, o) = M, 3-dimensional N.

y

When processing a service grammar the set of applicable rules needs to be determined by
the processing automaton. Definition 22 defines the set of applicable rules at runtime.

Definition 22 (Set of Applicable Rules)
Assuming a service grammar and a specific point in processing time providing a current

processing symbol, i.e. non-terminal as well as a current context.
Then the set of applicable rules is determined by the set of production rules in the
grammar that specify the current processing symbol on the lhs and all other symbols on
the lhs are part of the current context. y

Report 2013/01 13

While rule application, i.e. after reading the lhs and before writing the rhs, service
invocation might be required if the automaton’s current processing symbol is a two- or
three-dimensional non-terminal. In detail:

Definition 23 (Need for Service Invocation while Rule Application)
A service invocation is required while rule application if

• A two-dimensional non-terminal X is the processing symbol and

– the set of applicable rules exclusively contains regular or context-free produc-
tion rules;

– the set of applicable rules A exclusively contains context-sensitive or unre-
stricted production rules and all rules in A specify significant modifications
as effects to the processing of X:
∀r ∈ A : RHS ̸= LHS ⊖ X

• A three-dimensional non-terminal is processed and

– the set of applicable rules exclusively contains regular or context-free produc-
tion rules;

– the set of applicable rules A exclusively contains context-sensitive or unre-
stricted production rules and all rules in A specify exclusively non-terminals
on the rhs.

y

Report 2013/01 14

3 Unified Model

This chapter introduces grammar-based representations for modeling constructs in ex-
isting service composition specification languages. At first, the representation of ser-
vice calls in the unified model are discussed in general as service calls create the com-
mon basis for service composition specification language. Afterwards, the representa-
tions of modeling constructs in imperative, i.e. flow-based specification languages (e.g.
BPEL [2], Scufl [3]) are discussed in detail. Finally, representations of modeling con-
structs in declarative, i.e. constraint-based specification languages (e.g. ConDec [4])
are discussed and an algorithm for the combination of grammar-based models realizing
constraints is presented.
The unified model presented in this section use non-terminal types that are identified
by studying BPEL and corresponding engines. In summary, information related to the
engine’s navigator is assumed to be implemented by service grammars, i.e. no external
service and no non-terminal type is used for implementing navigator functionality. How-
ever, other engine functionality is assumed to be provided by external services. That
means, corresponding services and non-terminal types are used in the unified model
presented in this section. Table 1 summarizes the non-terminal types that are used in
this section.

Table 1: Non-terminal types in the unified model.

Type of Non-
Terminals

Complexity
of Associated
Non-Terminals

Description

Helpers 1-dimensional Non-Terminals representing navigator-
related information without association to
an external service.

ExpressionEvaluator 2- or 3-
dimensional

A (synchronous) web service operation that
is responsible for expression evaluation, e.g.
for expression-based data assignments or
conditional control flow.

InsertData 2-dimensional A (synchronous) web service operation of a
reference resolution system that allows the
creation of a data reference (cf. [8]).

GetData 2-dimensional A (synchronous) web service operation of
a reference resolution system that returns
data related to a reference (cf. [8]).

Report 2013/01 15

Type of Non-
Terminals

Complexity
of Associated
Non-Terminals

Description

UpdateData 2-dimensional A (synchronous) web service operation of
a reference resolution system that allows
to change the data related to a reference
(cf. [8]).

DeleteData 2-dimensional A (synchronous) web service operation of a
reference resolution system that allows the
deletion of a data reference (cf. [8]).

AlarmService_For 2.dimensional An (asynchronous) operation of a web ser-
vice providing alarm events that are deter-
mined by for expressions (cf. section 3.2.6).

EventX 3-dimensional A (synchronous) web service operation that
provides information about the occurrence
of event X to the service composition (cf.
section 3.2.6).

GetEventX 2-dimensional A (synchronous) web service operation that
provides an occurring event X to the service
composition (cf. section 3.2.6).

AlarmX 3-dimensional A (synchronous) web service operation that
provides information about the occurrence
of an alarm X to the service composition (cf.
section 3.2.6).

FaultX 3-dimensional A (synchronous) web service operation that
provides information about the occurrence
of a fault X to the service composition (cf.
section 3.2.6).

GetFaultX 2-dimensional A (synchronous) web service operation that
provides an occurring fault X to the service
composition (cf. section 3.2.6).

(Services) (2-dimensional) (An abstract type representing associated
services that are composed by a service com-
position.)

Calculator 2-dimensional A synchronous web service operation for cal-
culations with numbers, e.g. operation add
is provided for adding two numbers.

Calculatorin 2-dimensional An asynchronous web service operation for
calculating with numbers.

Calculatorout 2-dimensional Callback of the asynchronous web service
operation for calculating with numbers.

Report 2013/01 16

3.1 Service Calls

This section introduces the unified model for service calls. The called service is specified
by use of WSDL [6]. The original models are specified by use of BPEL [2]. However,
specifications by use of other service composition languages can be transformed in the
same way as introduced in this section.
In general, a service call in the unified model requires a 2-dimensional non-terminal
representing the service call. The definition of the 2-dimensional non-terminal requires
information from the original service composition model, i.e. the invoked service op-
eration as well as the invocation parameters. The service operation is specified in a
non-terminal by use of a non-terminal type. A non-terminal type needs to be intro-
duced for each operation that is invoked by the respective service composition. The
non-terminal type specifies the service address and the associated operation. Assuming
a web service that is defined by WSDL the definition of a non-terminal type requires
information from the particular WSDL description (i.e. the location of the WSDL file,
the service name, and the port) as well as information from the original service com-
position model (i.e. the called operation) where the information needs to be correlated
by means of the called operation and the selected port.
Typically, service composition distinguishes between synchronous and asynchronous
calls of services. For instance, BPEL provides the invoke activity for synchronous
calls and for asynchronous calls. The unified model reflects these differences by use of
non-terminal types but not by use of production rules. In particular, separated types
exist for synchronous and asynchronous calls analogous to the different kinds of service
operations. For the discussion of the unified model for service calls a sample web service,
i.e. the calculator service is used in the following. The complete WSDL description of
the calculator is presented in appendix A. In summary, the calculator service provides
two operation, i.e. a synchronous and a asynchronous operation add.
Figure 1 shows a BPEL specification of a synchronous service call by use of the invoke
activity. Figure 2 presents the unified model for a synchronous service call corresponding
to the original model in figure 1. In the unified model the invoke activity in the original
model is represented by a non-terminal S1 of type Calculator. Rule (2) in the unified
model realizes the execution of the service call. That means, the service call is processed
between reading the lhs and writing the rhs of the production rule. After the service
call a produced terminal s1 indicates the successful finishing of the service call.
Figure 2(a) shows the xml-based representation of the non-terminal S1. Figure 2(c)
shows the xml-based representation of the non-terminal type Calculator. The service
name, the partnerLink, the service operation, and the name of the WSDL port in the
non-terminal type are adopted from the original BPEL specification of the service call
or the WSDL file of the calculator service. Additionally, the non-terminal type explic-
itly specifies the location of the service operation implementation by a WS-Addressing

Report 2013/01 17

EndpointReference [7] that is adopted from the utilized WSDL port. The port is
determined by use of the WSDL description of the calculator service. However, the
selected port needs to specify the service operation that is specified for the service call
in the original the BPEL model.
A service call does not necessarily finish successfully, i.e. can finish with returning a
fault. The invoke activity allows to specify the faults that can be returned from the
web service as well as fault handling logic. However, in BPEL an invoke activity that
specifies fault handling is equivalent to a scope activity containing the invoke activity
but specifying the fault handling logic by use of fault handlers. In the unified model
a service call including fault handling is also specified by use of the equivalent model
specifying scopes that are responsible for the fault handling. That means, the original
model is transformed to the equivalent model specifying scopes at first. Afterwards,
the equivalent model is transformed to the unified model. The unified model for scopes
including fault handling is presented in the following. However, for reasons of simplicity
exclusively service calls without fault handling are considered in the following.
The BPEL invoke activity also can be used for specifying an asynchronous call of a
web service. In contrast to the synchronous call the asynchronous call only provides
a variable for the input parameter but does not provide a variable for the output
parameter. That means, the corresponding non-terminal also provides only an input
parameter but no output parameter. However, a following receive activity needs to be
specified in order to catch the response of the asynchronous call. Figure 3(b) shows
the BPEL specification of an asynchronous call of the calculator service by use of the
invoke activity with a following receive activity for the receiving of the response. For
the asynchronous call an asynchronous operation add2 is provided by the calculator
service.
Figure 4 presents the unified model for an asynchronous service call corresponding to
the original model in figure 3. The non-terminal S1 represents the call of the calculator
service that is originally specified by the invoke activity. The non-terminal S2 repre-
sents the callback that is originally specified by the receive activity. Activities that
are assumed to be executed in between the invoke activity and the receive activity
are represented by the 1-dimensional helper non-terminal H.
Note that the operation specified in the receive activity is provided by the service
composition instance but not by the calculator service. That means, the corresponding
non-terminal type does not specify the endpoint for the calculator service. In particular,
the non-terminal type Calculatorout information that is adopted from a utility service
that is related to the service composition instance, i.e. processing automaton. The
utility service is responsible for receiving messages and providing received messages to
the service composition instance. That means, for each incoming message the utility
service provides two operations. One operation is called by other services for sending

Report 2013/01 18

<wsdl:definitions targetNamespace="http://example"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:cal="http://calculator" >

...
<plnk:partnerLinkType name="CalculatorPLT">

<plnk:role name="CalculatorService" portType="cal:CalculatorPT" />
</plnk:partnerLinkType>

</wsdl:definitions>

(a) WSDL description of the service composition that synchronously calls the calculator service (Compo-
sition.wsdl).

<process name="sampleProcess"
targetNamespace="http://example"
xmlns:tns="http://example"

xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:cal="http://calculator" />

<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="Calculator.wsdl"
namespace="http://calculator" />

<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="Composition.wsdl"
namespace="http://example" />

...
<bpel:partnerLinks>

<bpel:partnerLink name="partnerLink1"
partnerLinkType="tns:CalculatorPLT"
partnerRole="CalculatorService" />

</bpel:partnerLinks>
...
<bpel:variables>

<bpel:variable name="in" messageType="cal:addRequest" />
<bpel:variable name="out" messageType="cal:addResponse" />

</bpel:variables>
...
<bpel:invoke partnerLink="partnerLink1"

operation="add"
inputVariable="in"
outputVariable="out" />

</bpel:process>

(b) BPEL-based service composition specifying a synchronous call of the operation add provided by
calculator service.

Figure 1: Original service composition model specifying a synchronous call of the cal-
culator service.

Report 2013/01 19

<nonTerminal>
<name> S_1 </name>

<type> Calculator </type>
<parameters>

<input>
<reference> in </reference>

</input>
<output>

<reference> out </reference>
</output>

</parameters>
</nonTerminal>

(a) Non-Terminal S1 representing a synchronous
service call.

(1) Start −→ S1
(2) S1 −→ s1

with : S1 � Calculator
S1 ∈ V
s1 ∈ Σ

(b) Production rules for the processing of
a synchronous service call.

<nonTerminalType name=‘‘Calculator’’>
<service>Calculator</service>
<operation> add </operation>
<port>CalculatorHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/Calculator.CalculatorHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>
<partnerLink> partnerLink1 </partnerLink>

</nonTerminalType>

(c) Non-terminal type Calculator

Figure 2: Unified service composition model specifying a synchronous call of the calcu-
lator service.

Report 2013/01 20

<wsdl:portType name="CalculatorCallbackPT">
<wsdl:operation name="addResponse">

...
</wsdl:operation>
...

</wsdl:portType>
...
<plnk:partnerLinkType name="CalculatorPLT">

<plnk:role name="CalculatorService" portType="cal:CalculatorPT" />
<plnk:role name="CalculatorRequester" portType="CalculatorCallbackPT" />

</plnk:partnerLinkType>

(a) Extension to the WSDL description of the service composition presented in figure 1 for enabling a
asynchronously call of the calculator service (Composition.wsdl).

<partnerLinks>
<partnerLink name="PartnerLink3"

partnerLinkType="CalculatorCallbackPLT"
myRole="CalculatorRequester"
partnerRole="CalculatorService"/>

</partnerLinks>
...
<invoke partnerLink="PartnerLink1"

operation="add2"
inputVariable="in" />

...
<receive partnerLink="PartnerLink3"

operation="addResponse"
variable="out" />

(b) Adaptations to the BPEL-based service composition in figure 1 for specifying an asynchronous call of
the operation add2 provided by calculator service.

Figure 3: Original service composition model specifying an asynchronous call of the
calculator service.

Report 2013/01 21

<nonTerminal>
<name> S_1 </name>
<type> Calculator_in </type>
<parameters>

<input>
<reference> in </reference>

</input>
</parameters>

</nonTerminal>

<nonTerminal>
<name> S_2 </name>
<type> Calculator_out </type>
<parameters>

<output>
<reference> out </reference>

</output>
</parameters>

</nonTerminal>

(a) Non-Terminal S1 representing an asynchronous service call and non-terminal S2 representing the
receiving of the response.

(1) Start −→ S1 with : S1 � Calculatorin

(2) S1 −→ s1H S2 � Calculatorout

(3) H −→ h1S2 H � Helpers
(4) S2 −→ s2 Si, H ∈ V

si ∈ Σ

(b) Production rules for the processing of an asynchronous service call and the receiving of the response.

<nonTerminalType name="Calculator_in">
<service>Calculator</service>
<operation> add2 </operation>
<port>CalculatorHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/Calculator.CalculatorHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>
<partnerLink> PartnerLink1 </partnerLink>

</nonTerminalType>
<nonTerminalType name=‘‘\emph{Calculator_out}’’>

<service>CompositionUtils</service>
<operation> addResponse </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/
</wsa:Address>

</wsa:EndpointReference>
<partnerLink> PartnerLink3 </partnerLink>

</nonTerminalType>

(c) Non-terminal types Calculatorin and Calculatorout.

Figure 4: Unified service composition model specifying an asynchronous service call of
the calculator service.

Report 2013/01 22

a message to the service composition instance. The second operation is called by the
service composition for fetching a received message.

3.2 Imperative Languages

This section introduces grammar-based representations for the most common control
and data flow constructs. The transformation to the unified model is conceptually
described. That means, the grammar-based representation is introduced for a single
representative of the modeling constructs instead of discussing all forms of the modeling
constructs. For instance, looping control flow is discussed by use of a while loop whereas
other loops (e.g. repeat-until, for) can be transformed in the same way.

3.2.1 Sequential Control Flow

Figure 5 presents the unified model for sequential control flow by use of a sequence
of service calls S1, S2, and S3. Sequential control flow is realized by production rules
specifying the sequential dependencies between the activation and finishing of activities,
e.g. service calls. In particular, rule (2) in figure 5 realizes the execution of service S1
and the following activation of the service call S2.

<sequence>
<invoke name="S_1" ... />
<invoke name="S_2" ... />
<invoke name="S_3" ... />

</sequence>

(a) BPEL-based sequence activity specifying the
successive service calls S1, S2, and S3.

(1) Start −→ S1
(2) S1 −→ s1S2
(3) S2 −→ s2S3
(4) S3 −→ s3

with : Si � Services
Si ∈ V
si ∈ Σ

(b) Production rules for sequential control flow,
i.e. the sequence S1, S2, S3 is executed.

Figure 5: Unified model for sequential control flow.

3.2.2 Alternative Control Flow

Control flow alternatives are realized by alternative production rules that are activated
at the same time in the unified model. For instance, the following production rules

Report 2013/01 23

concurrently activate the rules (2) and (3) realizing the execution of the service call S1
but specifying different alternatives for further processing. However, both rules specify
alternatives for the further processing. The decision about selecting rule (2) or rule (3)
is non-deterministically taken in general.

(1) Start −→ S1 with : Si ∈ Services
(2) S1 −→ s1S2 si ∈ Σ
(3) S1 −→ s1S3
(4) S2 −→ s2
(5) S3 −→ s3

Conditional Control Flow Alternative control flow usually becomes deterministic
by including conditions. The conditions decide for each alternative control flow path
whether it is executed. Figure 6(c) presents the unified model for conditional control
flow. The production rules in figure 6(b) are static non-deterministic as the rules (3)
and (4) are concurrently activated. However, the production rules are assumed to be
dynamic deterministic, i.e. a single rule can be deterministically selected at runtime. In
detail, the 3-dimensional non-terminal C1 represents the call of an expression evaluator
supporting the particular condition language, e.g. an XPath-solver for XPath expres-
sions. After the execution of the call the return value is mapped to a grammar-based
representation, i.e. a non-terminal corresponding to the third dimension of C1 (cf. fig-
ure 6(c)). In dependence of the mapped non-terminal the production rule (2) or (3) in
figure 6(b) is deterministically selected for further processing.

3.2.3 Looping Control Flow

Figure 7 presents the unified model for looping control flow. The non-terminal L1
represents the entry point of the loop that is repeatedly activated. The loop condition
is specified in the 3-dimensional non-terminal C1 representing a call of the expression
evaluator. In dependence of the evaluation result the loop body is executed, i.e. the
sequential services S1 and S2 are executed.

3.2.4 Parallel Control Flow

Figure 8 presents the unified model for parallel control flow. Rule (1) simultaneously
activates the parallel service calls S1, S2, and S3.1 Additionally, a 1-dimensional non-
terminal H2 representing the need for synchronization is activated. Rule (5) realizes

1The order of symbols is specified w.l.o.g. in the c-interpreted production rules.

Report 2013/01 24

<if>
<condition> \$account/type="Gold" </condition>

<invoke name="S_2" .../>
<else>

<invoke name="S_3" .../>
</else>

</if>

(a) BPEL-based if activity specifying condition control flow concerning the alternative service calls S2
and S3.

(1) Start −→ C1 with : Si � Services
(2) C1 −→ T1 C1 � ExpressionEvaluator
(3) C1 −→ F1 T1, F1 � Helpers
(4) T1 −→ S2 Si, C1, T1, F1 ∈ V
(5) F1 −→ S3 si ∈ Σ
(6) S2 −→ s2
(7) S3 −→ s3

(b) Production rules for conditional control flow concerning the alternative service calls S2 and S3.

<nonTerminal>
<name> C_1 </name>
<type> ExpressionEvaluator </type>
<parameters>

<input>
<reference position="1"> account </reference>
<value position="2"> account/type="Gold" </value>

</input>
</parameters>
<relations>

<relation>
<outputValue> True </outputValue>
<nonTerminalRef> T_1 </nonTerminalRef>

</relation>
<relation>

<outputValue> False </outputValue>
<nonTerminalRef> F_1 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

(c) Non-terminal C1 representing condition evaluation.

Figure 6: Unified model for conditional control flow.

Report 2013/01 25

<sequence>
<while>

<condition> x > 5 </condition>
<sequence>

<invoke name="S_1" .../>
<invoke name="S_2" .../>

</sequence>
</while>
<invoke name="S_3" .../>

</sequence>

(a) BPEL-based while activity specifying the successive service calls S1 and S2 in the loop body and a
successive service call S3.

(1) Start −→ L1 with : Si � Services
(2) L1 −→ C2 C2 � ExpressionEvaluator
(3) C2 −→ T1 L1, T1, F1 � Helpers
(4) C2 −→ F1 Si, C2, L1, T1, F1 ∈ V
(5) T1 −→ S1 si ∈ Σ
(6) F1 −→ S3
(7) S1 −→ s1S2
(8) S2 −→ s2L1
(9) S3 −→ s3

(b) Production rules for looping control flow with the successive service calls S1 and S2 in the loop body
and a successive service call S3.

Figure 7: Unified model for looping control flow.

Report 2013/01 26

the execution of the synchronization in case the execution of the parallel control flow
paths is finished.

<sequence>
<flow>

<invoke name="S_1" .../>
<invoke name="S_2" .../>
<invoke name="S_3" .../>

</flow>
<invoke name="S_4" .../>

</sequence>

(a) BPEL-based flow activity specifying the par-
allel service calls S1, S2 and S3.

(1) Start −→ S1S2S3H2
(2) S1 −→ s1
(3) S2 −→ s2
(4) S3 −→ s3
(5) s1s2s3H2 −→ s1s2s3S4
(6) S4 −→ s4

with : Si � Services
H2 � Helpers

Si, H2 ∈ V
si ∈ Σ

(b) Production rules for parallel control flow, i.e.
the service calls S1, S2 and S3 are executed in
parallel.

Figure 8: Unified model for parallel control flow.

Links In BPEL a flow activity allows to specify links between activities that are
contained in the flow activity. The links specify sequential dependencies are represented
by sequential control flow in the unified model. Assuming an additional service call Sx

in figure 8(a) and a link between the service call S1 and the newly introduced service
call Sx requires the substitution of the rules (2) and (5) by the following rules (2’) and
(5’) as well as the introduction of the following rule (7):

(2′) S1 −→ s1Sx

(5′) s1s2s3sx −→ s2s3sxS4
(7) Sx −→ sx

Additionally, transition conditions and join conditions can be specified in case links are
specified in a BPEL flow activity. Transition conditions are evaluated by use of the
external expression evaluation service. In contrast, join conditions can be internally
evaluated as join conditions in BPEL are allowed to exclusively specify link statuses
and operations on boolean values. However, an explicit representation of link statuses
by terminal symbols is needed in the unified model for enabling the internal evaluation
of join conditions. That means, the result of a transition condition evaluation must be
mapped to a grammar-internal representation instead of storing the result in a variable.

Report 2013/01 27

Figure 9 shows a BPEL-based original model with an explicit transition condition and
an explicit join condition in linked control flow. Figure 10 presents the unified model
corresponding to the original model in figure 9. The evaluation of the transition con-
dition of the link from S1 to S3 is represented by a 3-dimensional non-terminal C4 in
the unified model. The evaluation result is mapped to a non-terminal T1 or F1 corre-
sponding to the third dimension of the non-terminal C4. Afterwards, the non-terminals
T1 and F1 are substituted by the terminals t1 and f1 as the represented information is
context information for the production rules realizing the join condition evaluation and
production rules in service grammars are assumed to provide terminal-based context.
The default transition condition of the link from S2 to S3 is not evaluated by use of the
external evaluation service as the default transition condition is evaluated to true by
definition. In contrast, the evaluation result of the default transition condition of the
link from S2 to S3 is immediately represented by a terminal t2 in the unified model.
The join condition is internally evaluated in the unified model presented in figure 10,
i.e. no external service is used for the evaluation. In particular, the production rules
realize the evaluation of the join condition by implementing the lookup table for the
join condition on the lhs. For instance, the rules (8–10) in figure 10 represent the rows
in the lookup table that are evaluated to true. In contrast, rule (11) represents the
single row in the lookup table that is evaluated to false.

Dead Path Elimination In case a join condition is evaluated to false the correspond-
ing activity is not executed and the status of all outgoing links of this activity needs to
be set to false. That means, the link status false is propagated along successive links
until a join condition is evaluated to true. In BPEL this approach is called Dead-Path
Elimination. Figure 11 illustrates the Dead-Path Elimination in the unified model. The
service call S6 specifies a single incoming link, the default join condition, and a single
outgoing link. Because of the default join condition the service call S6 is not allowed
to be executed if the status of the incoming link is false and the link status false needs
to be propagated to the outgoing link of S6. Rule (10) in figure 11 realizes the propa-
gation of the link status false in case the default join condition of the service call S6
is evaluated to false. In particular, the terminal f5 representing the value false for the
status of the link from S5 to S6 is substituted by the terminal f6 representing the value
false for the status of the link from S6 to S7.

3.2.5 Data Handling

In the unified model data values are explicitly represented only if the particular data is
needed for the service composition logic. In detail, the handling of data by value is only
supported for data specifying decisions about the processing of control flow alternatives
or for data specifying states of scopes. Other data is handled by reference as it is

Report 2013/01 28

<sequence>
<flow>

<links>
<link name="1to3" />
<link name="2to3" />

</links>
<invoke name="S_1" ... >

<sources>
<source linkName="1to3">

<transitionCondition>contains($var1, $var2)</transitionCondition>
</source>

</sources>
</invoke>
<invoke name="S_2" ...>

<sources>
<source linkName="1to3" />

</sources>
</invoke>
<invoke name="S_3" ...>

<targets>
<joinCondition>$1to3 or $2to3</joinCondition>
<target linkName="1to3">
<target linkName="2to3">

</targets>
</invoke>

</flow>
<invoke name="S_4" .../>

</sequence>

Figure 9: BPEL-based flow activity specifying links with explicit transition and join
condition.

Report 2013/01 29

(1) Start −→ S1S2J1H3 with : Si � Services
(2) S1 −→ s1C4 C4 � ExpressionEvaluator
(3) S2 −→ s2t2 F1, T1, J1 � Helpers
(4) C4 −→ T1 Si, C4, F1, T1, J1 ∈ V
(5) C4 −→ F1 si, j3, t1, f1 ∈ Σ
(6) T1 −→ t1
(7) F1 −→ f1
(8) t1t2J1 −→ S3
(9) t1f2J1 −→ S3
(10) f1t2J1 −→ S3
(11) f1f2J1 −→ j3
(12) S3 −→ s3j3
(13) j3H3 −→ S4
(14) S4 −→ s4

(a) Production rules realizing an internal evaluation of a join condition and an external evaluation of a
transition condition.

<nonTerminal>
<name> C_4 </name>
<type> ExpressionEvaluator </type>
<parameters>

<input>
<reference position="1"> var1 </reference>
<reference position="1"> var2 </reference>
<value position="2"> contains(var1, var2) </value>

</input>
</parameters>
<relations>

<relation>
<outputValue> True <outputValue>
<nonTerminalRef> T_1 </nonTerminalRef>

</relation>
<relation>

<outputValue> False <outputValue>
<nonTerminalRef> F_1 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

(b) Non-Terminal C4 representing the evaluation of the transition condition of the link from S1 to S3.

Figure 10: Unified model for the evaluation of transition conditions and join conditions
corresponding to the original model in figure 9.

Report 2013/01 30

<flow>
<links>

<link name="5to6" />
<link name="6to7" />

</links>
<invoke name="S_5" ... >

<sources>
<source linkName="5to6" >

<transitionCondition> contains($var1, $var2) </transitionCondition>
</source>

</sources>
</invoke>
<invoke name="S_6" ...>

<targets> <target linkName="5to6" /> </targets>
<sources>

<source linkName="6to7" />
<transitionCondition> contains($var3, $var4) </transitionCondition>

</source>
</sources>

</invoke>
<invoke name="S_7" ...>

<targets> <target linkName="6to7" /> </targets>
</invoke>

</flow>

(a) BPEL-based flow activity specifying a link-based sequence of service calls S5, S6, and S7 as well as
explicit transition conditions.

(1) Start −→ S5J6H7 with : Si � Services
(2) S5 −→ s5C5 Ci � ExpressionEvaluator
(5) C5 −→ T5 Ji, Ti, Fi, H7 � Helpers
(6) C5 −→ F5 Si, Ci, H7, Ji, Ti, Fi ∈ V
(7) T5 −→ t5 si, di, ji, ti, fi ∈ Σ
(8) F5 −→ f5
(9) t5J6 −→ S6J7
(10) f5J6 −→ f6J7
(11) S6 −→ s6C6
(16) C6 −→ T6
(17) C6 −→ T6
(18) T6 −→ t6
(19) F6 −→ f6
(20) t6J7 −→ S7
(21) f6J7 −→ j7
(22) S7 −→ s7j7
(23) j7H7 −→ ...

(b) Production Rules illustrating Dead-Path Elimination in a link-based sequence of service calls S5, S6,
and S7 in combination to the internal evaluation of join conditions.

Figure 11: Unified model illustrating Dead-Path Elimination in combination with the
internal evaluation of join conditions.

Report 2013/01 31

simply transmitted from service to service, i.e. the service composition does not need
to be aware of concrete values. Data references are specified in the second dimension
of non-terminals.
For the handling of data by reference the unified model uses an external data manage-
ment service implementing a reference resolution system [8]. In detail, the reference
resolution system is responsible for storing data in a database as well as for assigning
and resolve reference identifiers. The non-terminal types InsertData, GetData, Update-
Data, and DeleteData are associated with the data management service but address
different operations. However, the output of non-terminals of type InsertData does not
specify the storage location of the operation return value. Instead, the output specifies
the variable name that needs to be mapped to the reference identifier that is returned
by the service operation. Furthermore, the input of non-terminals of type DeleteData
does not specify the storage location of the operation input value. Instead, the input
specifies the variable name that needs to be mapped to the reference identifier that is
the concrete input parameter for the service operation. The processing automaton is
responsible for the mapping of variable names and reference identifiers.

Data Containers Figure 12 presents the unified model for variable creation, variable
initialization with constants, and variable deletion. For each variable a non-terminal of
type InsertData representing the storage allocation is introduced. In case the variable is
initialized by a constant the initial value is specified as input parameter. Otherwise the
value null is specified as input parameter. As mentioned before, the output parameter
needs to be mapped to the reference identifier that is returned by the data management
service. Furthermore, a non-terminal of type DeleteData representing the deallocation
of the storage needs to be introduced for each variable. The non-terminals of type
DeleteData are processed at the end of the lifetime of the corresponding variable. In
general, the creation of variables needs to be processed sequentially as variables can be
initialized by use of previously created variables. In contrast, the deletion of variables
can be processed simultaneously.
A variable that is initialized by use of expressions but not by constants requires an addi-
tional non-terminal of type ExpressionEvaluator that is processed immediately after the
storage allocation, i.e the non-terminal of type insertData. However, the initialization
by use of expressions is equivalent to data assignments using expressions.

Data Assignment The unified model for assignments of constants is presented in
figure 13. For each assignment of a constant a single non-terminal (e.g. D1) of type
UpdateData is introduced. The first input parameter of the associated service operation
specifies the data reference whereas the second input parameter specifies the new value
of the referenced data. That means, the first input parameter of the introduced non-

Report 2013/01 32

<process>
<variables>

<variable name="varX"
messageType="sResponse"/>

<variable name="varY"
type="xsd:integer">

<from> 1 </from>
<\variable>

</variables>
...

</process>

(a) BPEL-based variable declaration and initial-
ization with constants.

(1) Start −→ D1
(2) D1 −→ D2
(3) D2 −→ ...
(4) ... −→ D3D4
(5) D3 −→ ε
(6) D4 −→ ε

with : D1, D2 � InsertData
D3, D4 � DeleteData

Di ∈ V

(b) Production rules for variable creation, initial-
ization with constants, and variable deletion.

<nonTerminal>
<name> D_1 </name>
<type> InsertData </type>
<parameters>

<input>
<value> null </value>

</input>
<output>

<reference> varX </reference>
</output>

</parameters>
</nonTerminal>

<nonTerminal>
<name> D_2 </name>
<type> InsertData </type>
<parameters>

<input>
<value> 1 </value>

</input>
<output>

<reference> varY </reference>
</output>

</parameters>
</nonTerminal>

(c) Non-Terminals D1 and D2 for variable creation and initialization with constants.

<nonTerminal>
<name> D_3 </name>
<type> DeleteData </type>
<parameters>

<input>
<reference>

varX
</reference>

</input>
</parameters>

</nonTerminal>

<nonTerminal>
<name> D_4 </name>
<type> DeleteData </type>
<parameters>

<input>
<reference>

varY
</reference>

</input>
</parameters>

</nonTerminal>

(d) Non-Terminals D3 and D4 for variable deletion.

Figure 12: Unified model for data variables.

Report 2013/01 33

terminal (e.g. D1) is given by the content of the assignment target whereas the second
input parameter is given by the assignment source.

<assign>
<copy>

<from> 24 </from>
<to variable="x" />

</copy>
</assign>
...

(a) BPEL specification of an assignment of
constants.

(1) Start −→ D1
(2) D1 −→ ..

with : D1 � UpdateData
D1 ∈ V

(b) Production rules for the assignment of
constants.

<nonTerminal>
<name> D_1 </name>
<type> UpdateData </type>
<parameters>

<input>
<reference position="1">

x
</reference>
<value position="2">

24
</value>

</input>
</parameters>

</nonTerminal>

(c) Non-terminal for the assignment of constants.

Figure 13: Unified model for assignment of constants.

The unified model for assignments using expressions is presented in figure 14. Similar to
conditions the expression that is used by an assignment needs to be evaluated. However,
the return value of the evaluator need to be stored in a data container in contrast to
condition evaluation where the return value needs to be mapped to a non-terminal.
That means, for data assignment the handling of the return value is specified in the
second dimension of the corresponding non-terminal.
In the unified model for each assignment using an expression a non-terminal (e.g. E3
in figure 14) of type ExpressionEvaluator is introduced. The non-terminal represents
the evaluation of the expression and the storage of the evaluation result in the assign-
ment target. That means, the non-terminal specifies the assignment source, i.e. the
expression as well as variables that are used in the expression as input parameters.

Report 2013/01 34

Additionally, the non-terminal specifies the assignment target as output parameter for
enabling the storing of the assigned data, i.e. the expression evaluation result.

<assign>
<copy>

<from>
$bookstore/book[price>25]/title
</from>
<to variable="titles" />

</copy>
</assign>
...

(a) BPEL specification for assignments using ex-
pressions.

(1) Start −→ E3
(2) E3 −→ ...

with : E3 � ExpressionEvaluator
E3 ∈ V

(b) Production rules for assignments using
expressions.

<nonTerminal>
<name> E_3 </name>
<type> ExpressionEvaluator </type>
<parameters>

<input>
<reference position="1"> bookstore </reference>
<value position="2"> bookstore/book[price>25]/title </value>

</input>
<output>

<reference> titles </reference>
</output>

</parameters>
</nonTerminal>

(c) NonTerminals for assignmnents using expressions.

Figure 14: Unified model for assignments using expressions.

In case the assignment source is a child element of a variable, e.g. a BPEL variable
part, the input parameter of the non-terminal realizing the data assignment needs to
be prepared. In particular, the child element needs to be prefixed to the expression.
For instance, figure 15 assumes a variable myAddRequest storing an input message
addRequest for the calculator service. The WSDL file (cf. section A) specifies the
message addRequest that contains a part parameters referencing to an element add.
That means, the variable myAddRequest is required to contain a child element add.
Consequently, the expression that is used to determine assignment source needs to be
prefixed by the add element (cf. figure 15(c)).
In case the assignment target is a child element of a variable (e.g. a BPEL variable
part) the storage of the assigned data requires further preparation. At first, the variable
enclosing the assignment target needs to be fetched by use of a non-terminal of type
GetData. Afterwards, XSL Transformation (XSLT) [5] can to be applied for changing

Report 2013/01 35

<assign>
<copy>

<from variable="myAddRequest"
part="parameters"/>

<query>
/x

</query>
<to variable="y" />

</copy>
</assign>
...

(a) BPEL specification of an assignment of
a variable part.

(1) Start −→ E6
(2) E6 −→ ...

with : E6 � ExpressionEvaluator
E6 ∈ V

(b) Production rules for the assignment of a vari-
able part.

<nonTerminal>
<name> E_6 </name>
<type> ExpressionEvaluator </type>
<parameters>

<input>
<reference position="1">

myAddRequest
</reference>
<value position="2">

/add/x
</value>

</input>
<output>

<reference> y </reference>
</output>

</parameters>
</nonTerminal>

(c) Non-terminals for the assignment of a variable
part.

Figure 15: Unified model for assignments of variable parts.

Report 2013/01 36

the data of the variable’s child element. However, the XSLT stylesheet needs to be
parameterized with the assignment source. Finally, the changed variable needs to be
stored by use of a non-terminal of type UpdateData.

Data Flow Data flow in service compositions specifies the transfer of data between
service calls or other tasks. Data flow always implies control flow, i.e. a data dependency
from A to B implies a sequential control dependency from A to B. Figure 16 presents
the unified model for data flow from a service call S1 to a service call S3. Figure 16(a)
shows a graphical representation of the original model where the SCUFL specification
language is used as SCUFL allows an explicit specification of data flow. The xml-based
specification of the SCUFL workflow in figure 16(a) is presented in section A.2.
Rule (2) in the unified model realizes the sequential control dependency corresponding
to the data flow between S1 and S3. The data aspect of the data flow is realized by the
non-terminals S1 and S3 where the output parameter x of S1 is us as input parameter
of S3. The independent service call S2 is activated at the very beginning of the service
composition. In particular, S2 is activated in rule (1) simultaneously to S1 as S2 has
no data dependency to S1 and S3.

3.2.6 Scopes

Scopes isolate the lifetime of data containers, i.e. variables and restrict their visibility
allowing the reuse of variable names. The life time of data variables is correlated with
the life time of scopes, i.e. variables are created, accessible and deleted in the context of
a specific scope. Figure 17 presents the unified model for a scope containing a variable
as well as a service call. The activation of the scope is represented by non-terminal
R1 of the type Helpers. Rule (1) activates the scope by producing the non-terminal
R1 simultaneously to the creation of the data variable represented by D1. After the
variable creation the first task in the scope, i.e. the service call S1 is activated. The
last task in the scope needs to create a terminal b1 indicating the ability to complete
the scope. Rule (4) completes the scope and activates the deletion of the contained
variable by producing the non-terminal D2.
In BPEL a scope additionally provides event handlers, fault handlers, termination han-
dlers, and compensation handlers. The realization of these handlers in the unified
model is discussed in the following. Typically, events and faults are produced in the
environment and need to be integrated at runtime. The approach at hand integrates
information from the environment by calling the utility service corresponding to a ser-
vice composition instance, i.e. processing automaton. The utility service is responsible
for receiving events and faults and providing them to the service composition instance.

Report 2013/01 37

S1 S3

S2

(a) Graphical representation of a scufl work-
flow with data flow from service call S1
to service call S3.

(1) Start −→ S1S2
(2) S1 −→ s1S3
(3) S2 −→ s2
(4) S3 −→ s3

with Si � Services
Si ∈ V
si ∈ Σ

(b) Production rules specifying the control de-
pendency between the service calls S1 and
S3 resulting from the data flow.

<nonTerminal>
<name> S_1 </name>
<type> Services </type>
<parameters>

<input> ... </input>
<output>

<reference>
x

</reference>
</output>

</parameters>
</nonTerminal>

<nonTerminal>
<name> S_3 </name>
<type> Services </type>
<parameters>

<input>
<reference>

x
</reference>

</input>
<output> ... </output>

</parameters>
</nonTerminal>

(c) Non-Terminals S1 and S3 specifying the data aspect of the data flow by parameters.

Figure 16: Unified model for data flow.

Report 2013/01 38

<scope name="R_1">
<variables>

<variable name="myVarX"
type="xs:integer"/>

</variables>
<invoke name="S_1" ... />

</scope>

(a) BPEL-based scope activity defining a
variable and containing a service call.

(1) Start −→ D1R1
(2) D1 −→ S1
(3) S1 −→ s1b1
(4) b1R1 −→ D2
(5) D2 −→ ε

with : R1 � Helpers
D1 � InsertData
S1 � Services
D2 � DeleteData

Di, R1, S1 ∈ V
s1, b1 ∈ Σ

(b) Production rules for a scope defining a vari-
able and containing a service call.

Figure 17: Unified model for scopes

Event Handlers Event handlers are executed concurrently to the regular logic of
the corresponding scope. Figure 18 shows a BPEL scope R1 specifying a message
event handler and an alarm event handler by an onEvent element and an onAlarm
element, respectively. The unified model for event handlers is presented in figure 19
corresponding to the original model in figure 18. The detailed specifications of the 2-
and 3-dimensional non-terminals in the unified model for event handlers are presented
in section B. The meaning of non-terminals and terminals in the unified model for event
handlers is summarized in the following:

Ri: Represents the activated scope Ri

Di: Represents the insertion or the deletion of a data variable at the beginning or end
of a scope

Ei: Represents the evaluation of an alarm expression

Ai: Represents a call of the alarm service

Hi: Represents a helper for synchronization

Si: Represents a call of a composed service

Mi: Represents the check for the occurrence of an event by use of the utility service

Report 2013/01 39

Gi: Represents a call of the utility service for getting an occurred event and storing the
event in a local variable

Ui: Represents a call of the utility service for informing the service about the completion
of the scope, i.e. following events need to be rejected

Ti: Represents a helper symbolizing the boolean value true

Fi: Represents a helper symbolizing the boolean value true

xi: Indicates the execution of the regular logic of scope Ri

yi: Indicates a running event handler and separates the regular processing of events
from the processing of waiting events

bi: Indicates the finishing of the processing of the regular logic in scope Ri

ui: Indicates that the utility service is aware of the completion of the scope’s regular
logic

mi: Indicates that no waiting event for a specific event handler is remaining

For each alarm handler some preparation is needed at the very beginning of the asso-
ciated scope. In particular, the alarm expression needs to be evaluated (cf. E1) and
the alarm service needs to be called for starting the clock and ordering alarms (cf. A1).
Afterwards, the regular logic of the scope can be executed and the event handlers are
enabled to process events. Rule (4) in figure 19 produces a terminal x1 indicating the
execution of the regular logic of scope R1 and activates the first task, i.e. service call
S1. Furthermore, rule (4) activates the checking for events by a non-terminal Mi for
each event handler as well as a non-terminal H1 enabling the synchronization after the
event handling when the regular logic of scope R1 finishes.
The 3-dimensional non-terminals Mi are repetitively activated as long as the regular
logic of scope R1 is executed (cf. rule (10), (18), (23), (26)). That means, the instances
of an event handler are executed successively in the unified model as the number of
required handler instances cannot be statically determined. However, in case the check
for an event was true the corresponding event handler is activated. For instance, the
message event handler, i.e. scope R2 is activated in rule (9). At the very beginning
of the scope R2 two variables are created by use of the non-terminals D2 and D3.
Afterwards, the message event is stored in a previously created variable by use of the
non-terminal G1. Finally, the regular logic of the event handler scope is executed and
the scope is completed. The event handler is allowed to be executed again in case the
regular logic of scope R1 is still be executed. Rule (18) and (19) realize the reactivation
or the stopping of reactivating the check for events in dependence of the existence of
the mutual existing terminals x1 and b1.

Report 2013/01 40

<scope name="R_1" >
<variables>

<variable name="duration" type="xs:integer">
<from> 4 </from>

</variable>
</variables>
<eventHandlers>

<onEvent partnerLink="event1PL" operation="event1op" variable="myEvent">
<scope name="R_2">

<variables>
<variable name="b" type="xs:string" />

</variables>
<invoke name=" S_3" />

</scope>
</onEvent>
<onAlarm>

<for>$duration</for>
<scope name = "R_3">

<invoke name=" S_4" />
</scope>

</onAlarm>
</eventHandlers>
<sequence>

<invoke name=" S_1" />
<invoke name=" S_2" />

</sequence>
</scope>

Figure 18: BPEL specification of a scope with event handlers.

Report 2013/01 41

(1) Start −→ D1R1 with :
(2) D1 −→ E1
(3) E1 −→ A1 D1, D3, D4 � InsertData
(4) A1 −→ x1M1M2H1S1 Ti, Fi, Hi, Ri � Helpers
(5) S1 −→ s1S2 E1 � ExpressionEvaluator
(6) x1S2 −→ s2b1 A1 � AlarmService_For
// Message event handler M1, M3 � Event1
(7) M1 −→ T1 M2, M4 � Alarm1
(8) M1 −→ F1 Si � Services
(9) T1 −→ y1D3R2 G1 � GetEvent1
(10) x1F1 −→ x1M1 U1 � CancelEvent1
(11) b1F1 −→ b1m1 U2 � CancelAlarm1
(12) D3 −→ D4 D2, D5, D6 � DeleteData
(13) D4 −→ G3
(14) G3 −→ S3 Ti, Fi, Gi, Hi, Ri, Si, Mi, Ai, Ui, Di ∈ V
(15) S3 −→ s3b2 si, bi, xi, yi, mi, ui ∈ Σ
(16) b2R2 −→ D5D6
(17) D5 −→ ε
(18) x1y1D6 −→ x1M1
(19) b1y1D6 −→ b1m1
// Alarm event handler
(20) M2 −→ T2
(21) M2 −→ F2
(22) T2 −→ y2S4R3
(23) x1F2 −→ x1M2
(24) b1F2 −→ b1m2
(25) S4 −→ s4b3
(26) x1y2b3R3 −→ x1M2
(27) b1y2b3R3 −→ b1m2
// Prepare the completion of scope R_1
(28) b1m1m2H1 −→ U1U2H2
(29) U1 −→ u1
(30) U2 −→ u2
(31) u1u2H2 −→ M3M4H3
// Process waiting events
(32) M3 −→ T3
(33) M3 −→ F3
(34) T3 −→ y3D3R2
(35) F3 −→ m1
(36) y3D6 −→ M3
(37) M4 −→ T4
(38) A4 −→ F4
(39) T4 −→ y4S4R3
(40) F4 −→ m2
(41) y4b3R3 −→ M4
// Complete scope R_1
(42) m1m2R1 −→ D2
(43) D2 −→ ...

Figure 19: Unified model for event handlers corresponding to the original model in
figure 18.

Report 2013/01 42

After the finishing of the regular logic of scope R1 the handling of events is not allowed
any longer. The non-terminals Ui represent a call of the utility service for informing
the service about the point in time when following events need to be rejected. However,
waiting events possibly exist as events are sequentially processed in the unified model.
For the processing of waiting events additional non-terminals Mi need to be introduced.
For instance, the non-terminal M3 is introduced for the check for waiting message events
additionally to the non-terminal M1 for the check for message events while running the
regular scope’s logic.

Termination Handlers The termination of a scope requires to delete all activated
tasks without further effects. Figure 20 presents the unified model for termination as-
suming a scope R1 as defined figure 18 but without regard to the event handlers. For
enabling the termination of a scope R1 mutual exclusive context symbols, i.e. terminals
t1 and f1 need to be introduced. Furthermore, the lhs of production rules realizing
the regular logic of the scope need to be extended by a context symbol t1. Addi-
tionally, production rules specifying a context symbol f1 and realizing the deletion of
non-terminals without further effects need to be introduced. For instance, rule (5) and
rule (8) realize the deletion of the non-terminals S1 and S2 without service invocation
(cf. definition 23).

(1) Start −→ D1t1x1R1 with : D1 � InsertData
(2) D1 −→ S1 R1 � Helpers
(3) ...t1x1... −→ ...f1... Si � Services
(4) t1S1 −→ t1s1S2 D2 � DeleteData
(5) f1S1 −→ f1
(6) k1S1 −→ k1 Di, R1, Si ∈ V
(7) t1x1S2 −→ t1s2b1 t1, f1, si, b1, ri, ki ∈ Σ
(8) f1S2 −→ f1
(9) k1S2 −→ k1
(10) t1b1R1 −→ r1D2
(11) f1R1 −→ k1D2
(12) D2 −→ ε

Figure 20: Unified model for termination in the scope R1 of figure 18 without regard
to the event handlers.

Termination handlers allows to control the termination behavior to some degree. In
particular, a user-defined termination handler allows to specify extra activities that are
executed after the termination of a scope. Figure 21 presents the unified model for
a user-defined termination handler by use of a scope R0 containing a child scope R1

Report 2013/01 43

specifying an user-defined termination handler. The termination of a scope R0 requires
the termination of a child scope R1. Therefore, the terminal f0 indicating the need
for termination of scope R0 also indicates the need for termination of the enclosing
scope R1 (cf. rule (8), rule (12), and rule (16)). The activation of the user defined
termination handler of R1 is represented by the 1-dimensional non-terminal H1. In
figure 21 exclusively rule (16) activates the user-defined termination handler of R1 as a
termination handler is only enabled for scopes that are in a normal mode.
The default termination handler in BPEL executes the compensation activity after ter-
minating all activated activities. That means, the default termination handler behaves
like the default fault handler. Therefore, the production rules for the default fault
handler that are introduced in the following are also valid for the default termination
handler.

Fault Handlers In general, the occurrence of a fault requires termination. After-
wards, the logic given by a fault handler is executed. Fault handlers are enabled as
long as the scope is not completed. The unified model for fault handlers is similar to
the unified model for event handlers. In particular, fault handlers are also repeatedly
activated as long as the regular logic of the scope is not completed. However, the exe-
cution of the fault handler requires the termination of the associated scope in contrast
to the execution of an event handler.
Figure 22 presents the unified model for a user-defined fault handler. The meaning
of used non-terminals and terminals is summarized in the following in addition or in
substitution to the already presented meaning of non-terminals and terminals for event
handlers:

Ni: Represents the check for the occurrence of a fault

Ti: Indicates that the check for a fault was true

Fi: Indicates that the check for a fault was false

ti: Indicates the regular processing mode of scope Ri

fi: Indicates the termination mode of scope Ri

hi: Indicates the finished handling of a fault that was checked by use of Ni or Ni+1

ni: Indicates the completion of the check for a fault with Ni

ri: Indicates the successfully finished and completed scope Ri

qi: Indicates the unsuccessfully finished and completed scope Ri because of a fault

Report 2013/01 44

<scope name="R_0" >
<sequence>
...
<scope name="R_1" >

<terminationHandler>
<invoke name=" S_5" />

</terminationHandler>
<sequence>

<invoke name=" S_1" />
<invoke name=" S_2" />

</sequence>
</scope>
</sequence>

</scope>

(a) BPEL-based scope R1 defining a user-
defined termination handler.

(1) Start −→ t0x0Y0R0
(2) t0Y0 −→ t0...
(...) ...t0x0... −→ ...f0...
(3) ... −→ X1
(4) t0X1 −→ t0t1x1S1R1
(5) f0X1 −→ f0k1
(6) k0X1 −→ k0k1
(7) t0t1S1 −→ t0t1s1S2
(8) f0t1S1 −→ f0t1
(9) f1S1 −→ f1
(10) k1S1 −→ k1
(11) t0t1S2 −→ t0t1s2b1
(12) f0t1S2 −→ f0t1
(13) f1S2 −→ f1
(14) k1S2 −→ k1
(15) t0x0t1b1R1 −→ t0r1y1b0
(16) f0t1x1R1 −→ f0H1
(17) f1R1 −→ k1y1b0
(18) H1 −→ S5
(19) S5 −→ s5k1y1
(20) t0b0y1R0 −→ r0
(21) f0y1R0 −→ k0

with : R1, H1 � Helpers
D1 � InsertData
Si � Services

D2 � DeleteData
Di, R1, Si ∈ V

t1, f1, si, b1, ri, ki ∈ Σ

(b) Production rules for a scope R1 defining a
user-defined termination handler.

Figure 21: Unified model for user-defined termination handlers.

Report 2013/01 45

<scope name="R_1" >
<faultHandlers>

<catch faultName="F_2" variable="myFault">
<invoke name="S_4" />

</catch>
<catchAll>

<invoke name="S_5" />
</catch>

</faultHandlers>
<sequence>

<invoke name="S_1" />
<invoke name="S_2" />
<invoke name="S_3" />

</sequence>
</scope>

(a) BPEL specification of a scope with user-defined fault handlers.

(1) Start −→ t1x1N2N4S1H1R1
(2) t1S1 −→ t1s1S2
(3) f1S1 −→ f1
(4) q1S1 −→ q1
(5) t1S2 −→ t1s2S3
(6) f1S2 −→ f1
(7) q1S2 −→ q1
(8) t1x1S3 −→ t1s3b1
(9) f1S3 −→ f1
(10) q1S3 −→ q1
// Check for fault F_2
(11) N2 −→ T2
(12) N2 −→ F2
(13) t1x1F2 −→ t1x1N2
(14) t1b1F2 −→ t1b1n2
(15) f1F2 −→ f1n2
(16) t1x1T2 −→ f1D1n2
(17) t1b1T2 −→ t1b1n2
(18) f1T2 −→ f1n2
// Fault handler for F_2
(19) D1 −→ G1
(20) G1 −→ S4
(21) S4 −→ s4D2
(22) D2 −→ h2
// Check for other faults
(23) N4 −→ T4
(24) N4 −→ F4
(25) t1x1F4 −→ t1x1N4
(26) t1b1F4 −→ t1b1n4
(27) f1F4 −→ f1n4
(28) t1x1T4 −→ f1S5n4
(29) t1b1T4 −→ t1b1n4
(30) f1T4 −→ f1n4

// Fault handler for other faults
(31) S5 −→ s5h4

// Prepare completion of the scope
(32) b1n2n4H1 −→ N3N5
(33) h2n2n4H1 −→ h2n3n5
(34) h4n2n4H1 −→ h4n3n5

// Final fault handling
(35) N3 −→ T3
(36) N3 −→ F3
(37) t1F3 −→ t1n3
(38) f1F3 −→ f1n3
(39) t1T3 −→ f1D1n3
(40) f1T3 −→ f1n3
(41) N5 −→ T5
(42) N5 −→ F5
(43) t1F5 −→ t1n5
(44) f1F5 −→ f1n5
(45) t1T5 −→ f1S3n5
(46) f1T5 −→ f1n5

// Complete the scope
(47) t1n3n5R1 −→ r1
(48) f1h2n3n5R1 −→ q1
(49) f1h4n3n5R1 −→ q1

with : H1, R1, Ti, Fi � Helpers
N2, N4 � Fault2
N3, N5 � Fault3

Si � Services
D1 � InsertData
D2 � DeleteData
G1 � GetFault2

H1, R1, Ti, Fi, Ni, Si, Di, Gi ∈ V
bi, ti, fi, xi, ni, ri, qi ∈ Σ

(b) Production rules for user-defined fault handlers.

Figure 22: Unified model for user-defined fault handlers.

Report 2013/01 46

For each user-defined fault handler a 3-dimensional non-terminal Nj representing the
check for the occurrence of a fault needs to be introduced similar to the check for events.
The result of the check is only considered if the associated scope Ri is in the regular
processing mode (indicated by ti) and the scope didn’t finish the regular logic (indicated
by xi).The check for faults are repeatedly activated as long as the regular logic of the
corresponding scope is processed. For instance, rule (13) reactivates the non-terminal
N2 in case the the check for a fault was false and the regular logic of the scope is
processed. In contrast, rule (16) starts the termination of the scope R1 by producing
the terminal f1 and starts the user defined fault handling procedure by activating the
non-terminal D1. Furthermore, a terminal n2 is produced indicating that the check for
the fault is completed, i.e. is not required to be reactivated. The rules (19–22) realize
the user-defined fault handling procedure including the creation of the variable myFault
(cf. D1), the request for the fault and storing the fault in the variable (cf. G1), the
service call S4, and the variable deletion (cf. D2). Finally, a terminal h2 is produced
indicating the finished processing of the fault.
As the checks for faults are successively processed a final check for each fault need to
be processed after the finishing of the regular scope logic and before scope completion.
The final check is also true for faults that are previously ignored because of the finishing
of the scope’s regular logic in order to ensure the handling of these faults. However,
the final check is only activated in case no fault was previously handled (cf. rule (32)).
In all other cases the final check is not activated but the immediate completion of the
scope is enabled (cf. rule (33) and rule (34)). In case no fault occurred at all rule (47)
completes the scope by producing a terminal r1 indicating the successful completion of
the scope R1. In case a fault was handled the rule (48) or rule (49) completes the scope
R1 by producing a terminal q1 indicating the unsuccessful completion of the scope R1.
The user-defined fault handler is allowed to rethrow the original fault to the parent
scope. The realization of rethrowing a fault is presented in the unified model for the
default fault handler in the following. The default fault handler is executed if no user-
defined fault handler is specified for an occurring fault. That means, the production
rules realizing the user-defined fault handler need to be combined with the production
rules realizing the default fault handler if the user-defined fault handler does not specify
fault handling logic for each fault that can occur at runtime.
The BPEL default fault handler terminates the associated scope R1 and compensates
the child scopes of R1 in the reverse order afterwards. After the compensation the
fault is rethrowed to the parent scope of R1. In the following the unified model for the
default fault handler is presented covering the compensation of a child scope as well
as the rethrowing of faults to the parent scope. However, the compensation of child
scopes in the reverse order is delayed to the unified model for the default compensation
handler.

Report 2013/01 47

Figure 23 shows a BPEL specification of scope R1 containing the default fault handler
and a single child scope R2. Figure 24 presents the unified model for the default
fault handler corresponding to the original model in figure 23. The meaning of used
non-terminals and terminals is summarized in the following in addition to the already
presented meaning of non-terminals and terminals for user-defined fault handlers and
event handlers:

Zi: Represents the check for the need for compensation of the scope Ri

Wi: Represents the rethrowing of a fault to the parent scope of scope Ri

zi: Indicates the finished check for the need for compensation

wi: Indicates the finished rethrowing of a fault

ki: Indicates the terminated and completed scope Ri without fault handling

ci: Indicates the compensated scope Ri

<scope name="R_1" >
<sequence>

<scope name="R_2">
<compensationHandler>

<invoke name=" S_C" />
</compensationHandler>
<sequence>

<invoke name="S_1" />
<invoke name="S_2" />

</sequence>
</scope>
<invoke name="S_3" />

</sequence>
</scope>

Figure 23: BPEL specification of a scope with the default fault handler.

Similar to the unified model for user-defined fault handlers the unified model for the
default fault handler realizes the checks for faults, preparation for the completion of
scopes as well as the completion of scopes. In contrast to the user-defined fault handler
the unified model for the default fault handler activates a non-terminal Z2 in rule
(15) representing the check for the need for the compensation of the scope R2. The
compensation of the scope R2 is exclusively allowed if the scope is successfully completed
(cf. rule (67)). In all other cases the scope is not allowed to be compensated and the
non-terminal Zi is deleted without further effects (cf. rules (68–70)). The rule (71)
realizes the execution of the user-defined compensation handler of R2 by executing the

Report 2013/01 48

// Scope R_1
(1) Start −→ t1x1N3H1X2R1
(2) t1X2 −→ t1t2x2N5H2S1R2
(3) f1X2 −→ f1k2y2
(4) q1X2 −→ q1k2y2
(5) t1x1S3 −→ t1s3b1
(6) f1S3 −→ f1
(7) q1S3 −→ q1
// Check for faults in R_1
(8) N3 −→ T3
(9) N3 −→ F3
(10) t1x1F3 −→ t1x1N3
(11) t1b1F3 −→ t1b1n3
(12) f1F3 −→ f1n3
(13) t1b1T3 −→ t1b1n3
(14) f1T3 −→ f1n3
// Run default fault hander in R_1:
(15) t1x1T3 −→ f1Z2H12n3
(16) z2H12 −→ h3
//Prepare completion of scope R_1
(17) b1n3y2H1 −→ N4
(18) h3n3y2H1 −→ h3n4
(19) N4 −→ T4
(20) N4 −→ F4
(21) t1F4 −→ t1n4
(22) f1F4 −→ f1n4
(23) t1T4 −→ f1Z2H12n4
(24) f1T4 −→ f1n4
// Complete R_1
(25) t1n4R2 −→ r1
(26) f1h3n4R2 −→ q1

with : Hi, X2, Ri, Ti, Fi � Helpers
N3, N5 � FaultR1
N4, N7 � FaultR2

D1 � InsertData
G2 � GetFaultR2
W2 � SetFaultR1
D2 � DeleteData
Si � Services

Hi, Xi, Ri, Ti, Fi, Ni, Di, Gi, Wi, Si ∈ V
bi, di, ti, fi, xi, yi, ni, ri, qi, ki, ci, zi ∈ Σ

// Scope R_2
(27) t1t2S1 −→ t1t2s1S2
(28) f1t2S1 −→ f1t2
(29) f2S1 −→ f2
(30) k2S1 −→ k2
(31) q2S1 −→ q2
(32) t1t2x2S2 −→ t1t2s2b2
(33) f1t2S2 −→ f1t2
(34) f2S2 −→ f2
(35) k2S2 −→ k2
(36) q2S2 −→ q2
// Check for faults in R_2
(37) N5 −→ T5
(38) N5 −→ F5
(39) t1t2x2F5 −→ t1t2x2N5
(40) t1t2b2F5 −→ t1t2b2n5
(41) f1t2F5 −→ f1t2n5
(42) f2F5 −→ f2n5
(43) t1t2x2T5 −→ t1f2D1H21n5
(44) t1t2b2T5 −→ t1t2b2n5
(45) f1t2T5 −→ f1t2n5
(46) f2T5 −→ f2n5
// Default fault hander in R_2:
(47) D1 −→ G2
(48) G2 −→ W2
(49) W2 −→ D2
(50) D2 −→ d2
(51) d2H21 −→ h5
// Prepare completion of scope R_2
(52) b2n5H2 −→ N6
(53) h5n5H2 −→ h5n6
(54) f1t2x2n5H2 −→ f1t2n6
(55) N6 −→ T6
(56) N6 −→ F6
(57) t1t2F6 −→ t1t2n6
(58) f1t2F6 −→ f1t2n6
(59) f2F6 −→ f2n6
(60) t1t2T6 −→ t1f2W2H21n6
(61) f1t2T6 −→ f1t2n6
(62) f2T6 −→ f2n6
// Complete R_2
(63) t1t2n6R2 −→ t1r2y2S3
(64) f1t2n6R2 −→ f1k2y2
(65) t1f2h5n6R2 −→ t1q2y2S3
(66) f1f2h5n6R2 −→ f1q2y2
//Compensation handler of R_2
(67) r2Z2 −→ SC

(68) q2Z2 −→ q2z2
(69) k2Z2 −→ k2z2
(70) c2Z2 −→ c2z2
(71) SC −→ scc2z2

Figure 24: Unified model for the default fault handler corresponding to the original
model in figure 23.

Report 2013/01 49

service call SC . The eventually produced terminal z2 indicates the finishing of the
compensation and the ability to proceed the default fault handler.
In general, the default fault handler of a scope Rx proceeds with rethrowing the handled
fault to the parent scope of Rx. The default fault handler of the scope R1 in figure 24
does not rethrow the handled fault as the scope R1 has no parent scope. However, scope
R2 also specifies the default fault handler requiring to rethrow a handled fault to the
parent scope R1. For the rethrowing the default fault handler of scope R2 starts with
processing the non-terminal D1 representing the creation of a variable that is used to
store the fault. Afterwards, the 2-dimensional non-terminal G2 representing a call of
the utility service for getting the particular fault data is processed. The rethrowing is
realized by processing the non-terminal W2 in the following whereas the non-terminal
W2 represents a call of the utility service for registering a fault for scope R1. Finally, the
non-terminal D2 representing the deletion of the variable storing the fault is processed.
The terminals ki and ci represent the completion states of scopes that are introduced
by the default fault handling. The terminal ki indicates the terminated and completed
scope Ri without fault handling in Ri. The terminal ci indicates the compensated
scope Ri and disallows the repeated compensation of the scope Ri in further processing.
Regarding the production rules realizing the deletion of non-terminals without further
effects after the (termination and) unsuccessful completion of a scope Ri rules specifying
the context symbol ki need to be introduced in addition to the rules specifying the
context symbol qi (cf. rules (30–31) and (35–36) in figure 24). However, rules specifying
the context symbol ci and realizing the deletion without further effects do not need to
be introduced as the compensation requires the successful completion of the scope’s
regular logic previously to the compensation. That means, no non-terminals need to
be deleted without further effects in this case.

Compensation Handlers The representation of a user-defined compensation han-
dler in the unified model was already introduced in figure 24 (cf. rules (67–71)). Fig-
ure 25 shows an original BPEL model specifying a scope R1 with the child scope R2
containing the default compensation handler. The default compensation handler of
scope R2 needs to compensate the child scopes R3, R4, and R5 in the reverse order.
Figure 26 presents the unified model for the default compensation handler correspond-
ing to the original model in figure 25.
As mentioned before, the default compensation handler of a scope needs to compensate
the child scopes in the reverse order. In general, the reverse order of child scopes needs
to be statically determined for the representation of the default compensation handler
in the unified model. For instance, the scope R2 executes the child scope R3 at first.
Afterwards, the child scopes R4 and R5 are executed simultaneously. Therefore, default
compensation handler of R2 needs to simultaneously compensate the child scopes R4
and R5 at first. Afterwards, the child scope R3 needs to be compensated.

Report 2013/01 50

<scope name="R_1" >
<scope name="R_2" >

<sequence>
<scope name="R_3">

<compensationHandler>
<invoke name=" S_6" />

</compensationHandler>
<invoke name=" S_3" />

</scope>
<flow>

<scope name="R_4">
<compensationHandler>

<invoke name=" S_7" />
</compensationHandler>
<invoke name=" S_4" />

</scope>
<scope name="R_5">

<compensationHandler>
<invoke name=" S_8" />

</compensationHandler>
<invoke name=" S_5" />

</scope>
</flow>

</sequence>
</scope>

</scope>

Figure 25: BPEL specification of a scope R1 with the default fault handler invoking
the default compensation handler of the child scope R2.

As mentioned before, the non-terminals Zi represent the checks for the need of the com-
pensation of the scopes Ri in the unified model. In figure 28 the default compensation
handlers of R2 starts with activating the non-terminals Z4 and Z5. Similar to the paral-
lel execution of the scopes R4 and R5 the parallel compensation of the scopes requires
a following synchronization that is realized by use of the helper non-terminal H6. After
the synchronization the non-terminal Z3 is activated for enabling the compensation of
the scope R3.

3.3 Declarative Languages

This section introduces grammatical production rules for constraints provided in Con-
Dec [4]. The discussed constraints exemplarily illustrate grammatical representations
for dependencies between activities specified in declarative workflow models. In declar-
ative languages for service compositions a model specifies requirements on the order of
tasks but a human or an external software component needs to select an enabled task
for further processing. In the unified model the selection of an enabled task for further

Report 2013/01 51

// Scope R_1
(1) See figure 24
(2) t1X2 −→ t1t2x2N5H2X3R2

(3 − 26) See figure 24

// Scope R_2
(27) t1t2X3 −→ t1t2t3x3N31H3S3R3
(28) f1t2X3 −→ f1t2k3y3y4y5
(29) f2X3 −→ f2k3y3y4y5
(30) k2X3 −→ k2k3
(31) q2X3 −→ q2k3
(32) t1t2X4 −→ t1t2t4x4N41H4S4R4
(33) f1t2X4 −→ f1t2k4y4
(34) f2X4 −→ f2k4y4
(35) k2X4 −→ k2k4
(36) q2X4 −→ q2k4
(37) t1t2X5 −→ t1t2t5x5N51H5S5R5
(38) f1t2X5 −→ f1t2k5y5
(39) f2X5 −→ f2k5y5
(40) k2X5 −→ k2k5
(41) q2X5 −→ q2k5
(42) t1t2x2y4y5H45 −→ t1t2b2y4y5
(43) f1t2H45 −→ f1t2
(44) f2H45 −→ f2
(45) k2H45 −→ k2
(46) q2H45 −→ q2

// Check for faults in R_2
(47) N5 −→ T5
(48) N5 −→ F5
(49) t1t2x2F5 −→ t1t2x2N5
(50) t1t2b2F5 −→ t1t2b2n5
(51) f1t2F5 −→ f1t2n5
(52) f2F5 −→ f2n5
(53) t1t2x2T5 −→ t1f2Z2D1H21n5
(54) t1t2b2T5 −→ t1t2b2n5
(55) f1t2T5 −→ f1t2n5
(56) f2T5 −→ f2n5

// Default fault hander in R_2:
(57) z2D1 −→ G2
(58) G2 −→ W2
(59) W2 −→ D2
(60) D2 −→ d2
(61) d2H21 −→ h5

// Prepare completion of scope R_2
(62) b2n5y3y4y5H2 −→ N6
(63) h5n5y3y4y5H2 −→ h5n6
(64) f1t2x2n5y3y4y5H2 −→ f1t2n6
(65) N6 −→ T6
(66) N6 −→ F6
(67) t1t2F6 −→ t1t2n6
(68) f1t2F6 −→ f1t2n6
(69) f2F6 −→ f2n6
(70) t1t2T6 −→ t1f2W2H21n6
(71) f1t2T6 −→ f1t2n6
(72) f2T6 −→ f2n6

// Complete R_2
(73) t1t2n6R2 −→ t1r2b1
(74) f1t2n6R2 −→ f1k2
(75) t1f2h5n6R2 −→ t1q2b1
(76) f1f2h5n6R2 −→ f1q2

// Default Compensation Handler R_2
(77) r2Z2 −→ Z4Z5H6
(78) q2Z2 −→ q2z2
(79) k2Z2 −→ k2z2
(80) c2Z2 −→ c2z2
(81) z4z5H6 −→ Z3H3
(82) z3H3 −→ c2z2

with :
Hi, Xi, Ri, Ti, Fi, Wi � Helpers

N3, N5 � FaultR1
N4, N7 � FaultR2

N31, N32 � FaultR3
N41, N42 � FaultR4
N51, N52 � FaultR5

D1, D3, D5, D7 � InsertData
Gi � GetFaultRi

W2 � SetFaultR1
W3, W4, W5 � SetFaultR2

D2, D4, D6, D8 � DeleteData
Si � Services

Hi, Xi, Ri, Ti, Fi, Ni, Di, Gi, Wi, Si ∈ V
bi, di, ti, fi, xi, yi, ni, ri, qi, ki, ci, zi ∈ Σ

Figure 26: Unified model for the default compensation handler corresponding to the
original model in figure 25. Differences to figure 24 regarding the compensation handler
are highlighted. Continuation of the model is presented in figure 27 and figure 28.

Report 2013/01 52

// Scope R_3
(83) t1t2t3x3S3 −→ t1t2t3s3b3
(84) f1t2t3S3 −→ f1t2t3
(85) f2t3S3 −→ f2t3
(86) f3S3 −→ f3
(87) k3S3 −→ k3
(88) q3S3 −→ q3
// Check for faults in R_3
(89) N31 −→ T31
(90) N31 −→ F31
(91) t1t2t3x3F31 −→ t1t2t3x3N31
(92) t1t2t3b3F31 −→ t1t2t3b3n31
(93) f1t2t3F31 −→ f1t2t3n31
(94) f2t3F31 −→ f2t3n31
(95) f3F31 −→ f3n31
(96) t1t2t3x3T31 −→ t1t2f3D3H31n31
(97) t1t2t3b3T31 −→ t1t2t3b3n31
(98) f1t2t3T31 −→ f1t2t3n31
(99) f2t3T31 −→ f2t3n31
(100) f3T31 −→ f3n31
// Default fault hander in R_3:
(101) D3 −→ G3
(102) G3 −→ W3
(103) W3 −→ D4
(104) D4 −→ d4
(105) d4H31 −→ h31
//Prepare completion of scope R_3
(106) b3n31H3 −→ N32
(107) h31n31H3 −→ h31n32
(108) f1t2t3x3n31H3 −→ f1t2t3n32
(109) f2t3x3n31H3 −→ f2t3n32
(110) N32 −→ T32
(111) N32 −→ F32
(112) t1t2t3F32 −→ t1t2t3n32
(113) f1t2t3F32 −→ f1t2t3n32
(114) f2t3F32 −→ f2t3n32
(115) f3F32 −→ f3n32
(116) t1t2t3T32 −→ t1t2f3W3H31n32
(117) f1t2t3T32 −→ f1t2t3n32
(118) f2t3T32 −→ f2t3n32
(119) f3T32 −→ f3n32
// Complete R_3
(120) t1t2t3n32R3 −→ t1t2r3y3X4X5H45
(121) f1t2t3n32R3 −→ f1t2k3y3y4y5
(122) f2t3n32R3 −→ f2k3y3y4y5
(123) t2f3h31n32R3 −→ t2q3y3X4X5H45
(124) f2f3h31n32R3 −→ f2q3y3y4y5
//Compensation handler of R_3
(125) r3Z3 −→ S6
(126) q3Z3 −→ q3z3
(127) k3Z3 −→ k3z3
(128) c3Z3 −→ c3z3
(129) S6 −→ s6c3z3

// Scope R_4
(130) t1t2t4x4S4 −→ t1t2t4s6b4
(131) f1t2t4S4 −→ f1t2t4
(132) f2t4S4 −→ f2t4
(133) f4S4 −→ f4
(134) k4S4 −→ k4
(135) q4S4 −→ q4
// Check for faults in R_4
(136) N41 −→ T41
(137) N41 −→ F41
(138) t1t2t4x4F41 −→ t1t2t4x4N41
(139) t1t2t4b4F41 −→ t1t2t4b4n41
(140) f1t2t4F41 −→ f1t2t4n41
(141) f2t4F41 −→ f2t4n41
(142) f4F41 −→ f4n41
(143) t1t2t4x4T41 −→ t1t2f4D5H41n41
(144) t1t2t4b4T41 −→ t1t2t4b4n41
(145) f1t2t4T41 −→ f1t2t4n41
(146) f2t4T41 −→ f2t4n41
(147) f4T41 −→ f4n41
// Default fault hander in R_4:
(148) D5 −→ G4
(149) G4 −→ W4
(150) W4 −→ D6
(151) D6 −→ d6
(152) d6H41 −→ h41
//Prepare completion of scope R_4
(153) b4n41H4 −→ N42
(154) h41n41H4 −→ h41n42
(155) f1t2t4x4n41H4 −→ f1t2t4n42
(156) f2t4x4n41H4 −→ f2t4n42
(157) N42 −→ T42
(158) N42 −→ F42
(159) t1t2t4F42 −→ t1t2t4n42
(160) f1t2t4F42 −→ f1t2t4n42
(161) f2t4F42 −→ f2t4n42
(162) f4F42 −→ f4n42
(163) t1t2t4T42 −→ t1t2f4W4H41n42
(164) f1t2t4T42 −→ f1t2t4n42
(165) f2t4T42 −→ f2t4n42
(166) f4T42 −→ f4n42
// Complete R_4
(167) t1t2t4n42R4 −→ t1t2r4y4
(168) f1t2t4n42R4 −→ f1t2k4y4
(169) f2t4n42R4 −→ f2k4y4
(170) t2f4h41n42R4 −→ t2q4y4
(171) f2f4h41n42R4 −→ f2q4y4
//Compensation handler of R_4
(172) r4Z4 −→ S7
(173) q4Z4 −→ q4z4
(174) k4Z4 −→ k4z4
(175) c4Z4 −→ c4z4
(176) S7 −→ s7c4z4

Figure 27: Continuation of the unified model in figure 26.

Report 2013/01 53

// Scope R_5
(177) t1t2t5x5S5 −→ t1t2t5s6b5
(178) f1t2t5S5 −→ f1t2t5
(179) f2t5S5 −→ f2t5
(180) f5S5 −→ f5
(181) k5S5 −→ k5
(182) q5S5 −→ q5
// Check for faults in R_5
(183) N51 −→ T51
(184) N51 −→ F51
(185) t1t2t5x5F51 −→ t1t2t5x5N51
(186) t1t2t5b5F51 −→ t1t2t5b5n51
(187) f1t2t5F51 −→ f1t2t5n51
(188) f2t5F51 −→ f2t5n51
(189) f5F51 −→ f5n51
(190) t1t2t5x5T51 −→ t1t2f5D7H51n51
(191) t1t2t5b5T51 −→ t1t2t5b5n51
(192) f1t2t5T51 −→ f1t2t5n51
(193) f2t5T51 −→ f2t5n51
(194) f5T51 −→ f5n51
// Default fault hander in R_5:
(195) D7 −→ G5
(196) G5 −→ W5
(197) W5 −→ D8
(198) D8 −→ d8
(199) d8H51 −→ h51
//Prepare completion of scope R_5
(200) b5n51H5 −→ N52
(201) h51n51H5 −→ h51n52
(202) f1t2t5x5n51H5 −→ f1t2t5n52
(203) f2t5x5n51H5 −→ f2t5n52
(204) N52 −→ T52
(205) N52 −→ F52
(206) t1t2t5F52 −→ t1t2t5n52
(207) f1t2t5F52 −→ f1t2t5n52
(208) f2t5F52 −→ f2t5n52
(209) f5F52 −→ f5n52
(210) t1t2t5T52 −→ t1t2f5W5H51n52
(211) f1t2t5T52 −→ f1t2t5n52
(212) f2t5T52 −→ f2t5n52
(213) f5T52 −→ f5n52
// Complete R_5
(214) t1t2t5n52R5 −→ t1t2r5y5
(215) f1t2t5n52R5 −→ f1t2k5y5
(216) f2t5n52R5 −→ f2k5y5
(217) t2f5h51n52R5 −→ t2q5y5
(218) f2f5h51n52R5 −→ f2q5y5
//Compensation handler of R_5
(219) r5Z5 −→ S8
(220) q5Z5 −→ q5z5
(221) k5Z5 −→ k5z5
(222) c5Z5 −→ c5z5
(223) S8 −→ s8c5z5

Figure 28: Continuation of the unified model in figure 26 and figure 27.

Report 2013/01 54

processing is realized by use of 3-dimensional non-terminals. Similar to conditional
control flow introduced in section 3.2.2 the selected task leads to a production rule that
is used for further processing.
In general the rules for declarative service compositions intensively use the start symbol,
i.e. a start symbol S is provided in different versions S1, S2, S3 etc.. Furthermore,
multiple grammatical production rules with a start symbol version on the lhs exist.
Production rules with the same lhs specify different alternative tasks on the rhs that
are enabled at the same point in runtime. Similar to conditional control flow introduced
in the section 3.2 a component in the environment needs to select an enabled task
for further processing leading to the selected production rule that is used for further
processing. The selection of the symbol ε that is possibly specified on the rhs of a
production rule represents the finishing of the execution of the service composition.
The unified model presented in this section assumes tasks that are exclusively imple-
mented by service calls. That means, this section assumes original models that exclu-
sively compose service calls. Data is handled by reference, i.e. in the same way as in
the unified model for imperative service compositions.
The grammatical production rules introduced in this section assume a complete set of
tasks in the considered service composition (e.g. {A, B, C, D}). Furthermore, rules
that basically specify a constraint concerning two tasks A and B also needs to cover
side effects to other tasks in the service composition. For example, the constraint
response(A,B) specifies that B must be executed in future when A is executed at least
once. However, in between the execution of other tasks (e.g. C, D) is allowed. Therefore,
the rules specifying the constraint response(A,B) needs to ensure the particular relation
between A and B but also needs to cover the relation to other tasks, e.g. C, D.
This section presents grammar-based representations for single constraints. For the
transformation of a complete ConDec model containing multiple constraints the con-
straints are assumed to be transformed independently at first. Afterwards, the resulting
grammars are combined by use of a combination algorithm that is presented at the end
of this section.
In the following let

• S1 be the start symbol of the presented grammars,

• Tasks = {A, B, C} be the complete set of tasks.

3.3.1 Existence Templates

In the following production rules for the existence templates provided by ConDec are
introduced. The existence templates cover unary constraints. That means, introduced
rules basically restrict the execution of the single task A. The execution of the tasks

Report 2013/01 55

B and C is not restricted by the constraints but covered in the presented production
rules.
Figure 29 presents the unified model for the constraint existence(A). This constraint is
parameterized with a natural number indicating the minimum number of occurrences of
the task A. For example, figure 29 shows the rules for the number 2.2 In the beginning
all possible tasks are allowed to be activated and executed. Therefore, the rules (1–3)
specify the start symbol S1 on the lhs but provide alternative rhs for each possible task
A, B, and C. However, if task A is executed the occurrence of this task needs to be
counted in order to evaluate the constraint. The approach at hand implements the
required counting by switching to another version of the start symbol, i.e. to switch to
S2 (cf. rule (4)). The execution of tasks that can occur in between of the executions
of task A do not switch the version of the start symbol as they are not effected by this
constraint (cf. rule (5),(6),(11),(12)). For finishing the service composition rule (16)
specifies the ε on the rhs.

(1 − 3) S1 −→ A1 | B1 | C1 with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) B1 −→ bS1 a, b, c ∈ Σ
(6) C1 −→ cS1

(7 − 9) S2 −→ A2 | B2 | C2
(10) A2 −→ aS3
(11) B2 −→ bS2
(12) C2 −→ cS2

(13 − 16) S3 −→ A3 | B3 | C3 | ε
(17) A3 −→ aS3
(18) B3 −→ bS3
(19) C3 −→ cS3

Figure 29: Unified model for the constraint existence2(A), i.e. activity A occurs at least
2 times.

Similar to the existence of a task execution the absence of task executions can be speci-
fied by constraints. Figure 30 presents the unified model for the constraint absence(A),
i.e. the rules are exemplarily shown for the parameter number 2.3 The constraint is
parameterized with the maximum number of occurrences of the particular task A anal-
ogous to the existence constraint. However, in contrast to the existence constraint the
execution of the task A is limited to a maximum number in the absence constraint.

2Rules for the generic constraint existenceN (A) are analogous to the rules in figure 29 specifying
the concrete constraint existence2(A).

3Rules for the generic constraint absenceN (A) are analogous to the rules in figure 30 specifying the
concrete constraint absence2(A).

Report 2013/01 56

In particular, the rules in figure 30 allows to execute the task A twice in maximum.
The start symbol version S3 indicates that task A was executed twice and cannot be
activated again.

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 11) S2 −→ A2 | B2 | C2 | ε
(12) A2 −→ aS3
(13) B2 −→ bS2
(14) C2 −→ cS2

(15 − 17) S3 −→ B3 | C3 | ε
(18) B3 −→ bS3
(19) C3 −→ cS3

Figure 30: Unified model for the constraint absence2(A), i.e. activity A occurs at most
2 times.

The constraint exactlyN(A) is used to specify that a task A should be executed exactly
N times. Similar to previously discussed constraint this constraint is parameterized
with the natural number N indicating the exact number of occurrences of the task A.
Figure 31 presents the unified model for the constraint exactly2(A).4 Characteristically,
the rules do not allow the finishing of the composition until task A is executed twice.
In particular, the symbol ε is only allowed to be selected if S3 is activated (cf. rule(16)).

The constraint init(A) is used to specify that activity A must be the first executed in
the service composition. Figure 32 presents the unified model for the init constraint.
Rule (1) exclusively allows the task A at the beginning. If task A is executed once
rule (3)5 switches to the start symbol version S1. Afterwards, the rules (4–7) allow
to activate all tasks in Tasks. The execution of these tasks have no further effect and
require no further switch of the start symbol version (cf. rule (8–10)).
A service composition can specify multiple init constraints for different tasks. Therefore,
rule (1) is required to specify a helper non-terminal H0 for the synchronization after
the execution of all initial tasks. For example, assuming two tasks A and B to be initial
tasks in one single service composition the following rules need to be provided:

4Rules for the generic constraint exactlyN (A) are analogous to the rules in figure 31 specifying the
concrete constraint exactly2(A).

5The order of symbols is presented w.l.o.g. However, each order of specified symbols is covered by
the presented production rule.

Report 2013/01 57

(1 − 3) S1 −→ A1 | B1 | C1 with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) B1 −→ bS1 a, b, c ∈ Σ
(6) C1 −→ cS1

(7 − 10) S2 −→ A2 | B2 | C2
(11) A2 −→ aS3
(12) B2 −→ bS2
(13) C2 −→ cS2

(14 − 16) S3 −→ B3 | C3 | ε
(17) B3 −→ bS3
(18) C3 −→ cS3

Figure 31: Unified model for the constraint exactly2(A), i.e. activity A occurs exactly
2 times.

(1) S0 −→ A0H0 with : Ai, Bi, Ci ∈ Services
(2) A0 −→ a Si, Hi ∈ Helpers
(3) aH0 −→ aS1 a, b, c ∈ Σ

(4 − 7) S1 −→ A1 | B1 | C1 | ε
(8) A1 −→ aS1
(9) B1 −→ bS1
(10) C1 −→ cS1

Figure 32: Unified model for the constraint init(A), i.e. activity A must be the first
executed activity in the service composition.

Report 2013/01 58

(1) S0 −→ A0B0H0 with : Ai, Bi ∈ Services
(2) A0 −→ a Si, Hi ∈ Helpers
(2′) B0 −→ b a, b, c ∈ Σ
(3) abH0 −→ abS1

Note that the init constraint has special semantics that need to be handled different to
other constraints in ConDec. In detail, the combination of init constraints requires an
union operator whereas the combination of other constraints in ConDec require an inter-
section operator (cf. section 3.3.6). In order to simplify the algorithm in section 3.3.6
production rules covering the init constraint are required to provide synchronization
after the execution of the initial tasks. Note that this is also required for production
rules covering exactly one initial task.
In order to allow a special handling of production rules covering the init constraints
in the algorithm of section 3.3.6 such production rules are related to the start symbol
version S0, i.e. the symbol S0 creates the start symbol of the grammar. Instead,
production rules for other constraints are related to the start symbol version S1 or
higher, i.e. the symbol S1 creates the start symbol of the grammar.

3.3.2 Relation Templates

In contrast to existence templates covering unary constraints the relation templates
provide binary constraints. This section discusses these constraints specifying depen-
dencies between two tasks are discussed. In general, the execution of other tasks is
allowed in between.
The constraint responded existence(A,B) is used to specify that task B has to be exe-
cuted if task A is executed. However, task B can be executed before or after task A.
Figure 33 presents the unified model for the constraint responded existence. If task
B is not executed the first execution of task A requires to switch to the start symbol
version S2 in rule (5). In the following, all tasks in Tasks are allowed to be activated
but the finishing of the service composition is not allowed as the constraint requires to
execute task B (cf. rule (8–10)). However, if task B is executed in further processing
rule (12) is applied causing a switch to the start symbol version S4. The version S4 indi-
cates the fulfillment of the constraint allowing all tasks as well as the finishing without
restrictions in further processing (cf. rule (21–24)).
In contrast to the constraint responded existence(A,B) specifying a directed dependency
between A and B the constraint co-existence(A,B) specify the same dependency in both
directions, i.e. A needs to be executed if B is executed and vice versa. Figure 34 presents
the unified model for the co-existence constraint. The rules are equal to the rules in
figure 33 for the responded existence constraint excepts rule (17) in figure 33. The rule

Report 2013/01 59

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS3 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | B2 | C2
(11) A2 −→ aS2
(12) B2 −→ bS4
(13) C2 −→ cS2

(14 − 17) S3 −→ A3 | B3 | C3 | ε
(18) A3 −→ aS4
(19) B3 −→ bS3
(20) C3 −→ cS3

(21 − 24) S4 −→ A4 | B4 | C4 | ε
(25) A4 −→ aS4
(26) B4 −→ bS4
(27) C4 −→ cS4

Figure 33: Unified model for the constraint responded existence(A,B), i.e. if A is exe-
cuted B also has to be executed at any time (either before or after A).

(17) allows the finishing if task B is executed but task A is not executed. However, the
co-existence constraint does not allow the finishing in this case.
The constraint response(A,B) is used to specify that task B must be executed in future
when task A is executed at least once. Figure 35(a) presents the unified model for the
constraint response. In the beginning, the activation of all tasks as well as the finishing
of the execution of the service composition is allowed (cf. rule (1–4)). However, if task
A is executed the rule (5) causes the switch to S2 disabling the finishing of the service
composition. If task B is finally executed rule (12) switches back to S1 allowing to
finish the service execution as the constraint is fulfilled.
For the response constraint and other constraints supplements exists that strengthen the
restrictions to the order of participating tasks. In particular, the alternate supplement
requires that participating tasks alternate whereas the chain supplement requires that
executions of participating tasks are next to each other.
Figure 35(b) presents the unified model for the constraint alternate response(A,B). The
constraint alternate response(A,B) is used to specify that task B must be executed after
the execution of task A and A can be executed again only after activity B is executed.
The rules for the alternate response constraint are similar to the rules for the response
constraint shown in figure 35(a). However, rule (8) in figure 35(a) is not allowed to be

Report 2013/01 60

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS3 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | B2 | C2
(11) A2 −→ aS2
(12) B2 −→ bS4
(13) C2 −→ cS2

(14 − 16) S3 −→ A3 | B3 | C3
(17) A3 −→ aS4
(18) B3 −→ bS3
(19) C3 −→ cS3

(20 − 23) S4 −→ A4 | B4 | C4 | ε
(24) A4 −→ aS4
(25) B4 −→ bS4
(26) C4 −→ cS4

Figure 34: Unified model for the constraint co-existence(A,B), i.e. if one of the activities
A or B is executed the other one has to be executed as well.

part of the rules for the alternate response constraint as task A is not allowed to be
executed after another execution of A as long as task B is executed.
The constraint chain response(A,B) is even more restrictive than the alternate response
constraint. In detail, the constraint requires that task B has to be executed directly
after an execution of task A. Figure 35(c) presents the unified model for the chain
response. The rules are similar to the rules for the (alternate) response constraint.
However, after the execution of task A exclusively task B can be executed, i.e. the
rules (8–9) in figure 35(a), i.e. the rule (9) in figure 35(b) are not allowed to be part of
the rules for the chain response constraint.
Similar but not equal to the response constraint the constraint precedence(A,B) is used
to specify that A needs to have been executed when B is activated. Figure 36(a)
presents the unified model for the precedence constraint. In the beginning only task A
and other tasks in Tasks excepts B are allowed to be executed (cf. rule (1–3)). Once
task A is executed rule (4) switches to the start symbol version S2 indicating that task
B is allowed to be executed. In the following the execution of all tasks in Tasks as well
as the finishing of the service composition is allowed.
Figure 36(b) presents the unified model for the constraint alternate precedence(A,B).
This constraint is used to specify that A needs to have been executed when B is activated
and task B cannot be repeatedly executed before A is also executed again. That
means, the rules for the alternate precedence constraint are similar to the rules for the

Report 2013/01 61

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | B2 | C2
(11) A2 −→ aS2
(12) B2 −→ bS1
(13) C2 −→ cS2

(a) Constraint response(A,B), i.e. activity B must be executed in future when A is
executed at least once.

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 9) S2 −→ B2 | C2
(10) B2 −→ bS1
(11) C2 −→ cS2

(b) Constraint alternate response(A,B), i.e. after the execution of A activity B has
to be executed and the activity A can be executed again only after activity B is
executed.

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1
(8) S2 −→ B2
(9) B2 −→ bS1

(c) Constraint chain response(A,B), i.e. activity B has to be executed directly after A.

Figure 35: Unified model for the response constraints.

Report 2013/01 62

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ

(6 − 9) S2 −→ A2 | B2 | C2 | ε
(10) A2 −→ aS2
(11) B2 −→ bS2
(12) C2 −→ cS2

(a) Constraint precedence(A,B), i.e. activity A needs to be executed when B begins
to execute.

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ

(6 − 8) S2 −→ A2 | B2 | C2
(9) A2 −→ aS2
(10) B2 −→ bS1
(11) C2 −→ cS2

(b) Constraint alternate precedence(A,B), i.e. activity B has to be executed after
A and B cannot be executed again before the activity A is also executed
again.

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ

(6 − 9) S2 −→ A2 | B2 | C2 | ε
(10) A2 −→ aS2
(11) B2 −→ bS1
(12) C2 −→ cS1

(c) Constraint chain precedence(A,B), i.e. each B is directly preceded by an A.

Figure 36: Unified model for the precedence constraints.

Report 2013/01 63

precedence constraint but rule (10) is not allowed to hold the start symbol version S2
as shown in figure 36(a). Instead, rule (10) needs to switch to the start symbol version
S1 disabling the execution of task B until A is executed once again.
Figure 36(c) presents the unified model for the constraint chain precedence(A,B). This
constraint is used to specify that A needs to have been executed immediately before B
is activated and executed. This additional restriction restricts the rules in figure 36(a).
Therefore, rule (11) in figure 36(a) needs to be adapted analogous to adaptations re-
quired by the alternate precedence constraint. Furthermore, rule (12) is not allowed to
hold the start symbol version S2 as shown in figure 36(a). Instead rule (12) needs to
switch to the start symbol version S1 disabling the execution of task B as task C is
executed immediately after A, i.e. B is not executed immediately after A.
Figure 37 presents the unified model for the constraints succession, alternate succession,
and chain succession. The constraint succession(A,B) specifies the combination of the
response and precedence constraints, i.e. both constrained need to be fulfilled for par-
ticipating tasks. Therefore, production rules for both constraints need to be merged.
The merging algorithm introduced at the end of this section can be used. Similar to
the response and precedence constraints the supplements alternate and chain also exist
for the succession constraint.

3.3.3 Negation Templates

Negation templates provide constraints representing the negated versions of some rela-
tion templates. However, the negation should not be interpreted as the “logical nega-
tion” [4]. At first, figure 38 presents the unified model for the constraints not responded
existence and not co-existence. The constraint not responded existence(A,B) is used to
specify that task B is not allowed to be executed at all if task A is executed. In partic-
ular, task B is not allowed to be executed either before or after the execution of task A.
The constraint not co-existence(A,B) specifies the same dependency in both directions,
i.e. A is not allowed to be executed if B is executed and vice versa. As both constraint
are equivalent (cf. the ConDec specification in [4]) the production rules presented in
figure 38 are valid for both constraints.
The constraints not response, not precedence, and not succession create an equivalence
class similar to the equivalence class created by the constraints not responded exis-
tence and not co-existence. The unified model for the constraints not response, not
precedence, and not succession is represented in figure 39. In detail, the constraint not
response(A,B) is used to specify that the task B cannot be executed after the execution
of task A. Similar, the constraint not precedence(A,B) is used to specify that task B
cannot be preceded by task A. As both constraint are equivalent the combination of
these constraint, i.e. the constraint not succession(A,B) is also equivalent to the not
response and the not precedence constraint.

Report 2013/01 64

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ

(6 − 8) S2 −→ A2 | B2 | C2
(9) A2 −→ aS2
(10) B2 −→ bS3
(11) C2 −→ cS2

(12 − 15) S3 −→ A3 | B3 | C3 | ε
(16) A3 −→ aS2
(17) B3 −→ bS3
(18) C3 −→ cS3

(a) Constraint succession(A,B), i.e. response(A,B) AND precedence(A,B).

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ

(6 − 7) S2 −→ B2 | C2
(8) B2 −→ bS1
(9) C2 −→ cS2

(b) Constraint alternate succession(A,B), i.e. alternate response(A,B) AND
alternate precedence(A,B).

(1 − 3) S1 −→ A1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(4) A1 −→ aS2 Si ∈ Helpers
(5) C1 −→ cS1 a, b, c ∈ Σ
(6) S2 −→ B2
(7) B2 −→ bS1

(c) Constraint chain succession(A,B), i.e. chain response(A,B) AND chain
precedence(A,B).

Figure 37: Unified model for the succession constraints.

Report 2013/01 65

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS3 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | C2 | ε
(11) A2 −→ aS2
(12) C2 −→ cS2

(13 − 15) S3 −→ B3 | C3 | ε
(16) B3 −→ bS3
(17) C3 −→ cS3

Figure 38: Unified model for the constraint not responded existence(A,B), i.e. if A is
executed B must never be executed (before and after A) and the constraint not co-
existence(A,B), i.e. not responded existence(A,B) AND not responded existence(B,A).

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | C2 | ε
(11) A2 −→ aS2
(12) C2 −→ cS2

Figure 39: Unified model for the constraint not response(A,B), i.e. if A is executed
B cannot be executed any more, the constraint not precedence(A,B), i.e. B cannot be
preceded by A, and the constraint not succession(A,B), i.e. not response(A,B) AND
not precedence(A,B).

Report 2013/01 66

Similarly, the constraints chain response, chain precedence, and chain succession create
an equivalence class. Figure 40 presents the unified model for this class. The constraint
not chain response is used to specify that task A is not allowed to be directly followed
by the task B. Equivalently, the constraint not chain precedence is used to specify that
task B is not allowed to be directly preceded by the task A. The constraint not chain
succession the constraints not chain response and not chain precedence.

(1 − 4) S1 −→ A1 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS1 a, b, c ∈ Σ
(7) C1 −→ cS1

(8 − 10) S2 −→ A2 | C2 | ε
(11) A2 −→ aS2
(12) C2 −→ cS1

Figure 40: Unified model for the constraint not chain response(A,B), i.e. A should never
be followed directly by B, the constraint not chain precedence(A,B), i.e. B should never
be preceded directly by A, and the constraint not chain succession(A,B), i.e. not chain
response(A,B) AND not chain precedence(A,B).

3.3.4 Choice Templates

In contrast to previous templates covering unary and binary constraints this section
introduces n-ary constraints for the first time. The constraints covered by the choice
templates specify the need for choosing between several activities. In general, the exe-
cution of other tasks in between is allowed. Consistently to previous sections the other
tasks are exemplarily represented by the task C in introduced grammatical production
rules. However, the set of all possible tasks need to be extended in order to allow further
tasks next to A, B, and C. In the following the utilized sets of all possible tasks are
individually specified as needed.
Let Tasks = {A, B, C, D} be the set of all possible tasks. Then, the constraint
1of3(A,B,D) can be used to specify that at least one of the three tasks A, B, and
D has to be executed. However, all three tasks can be executed and each of them can
be executed multiple times. Figure 41 presents the unified model for the constraint 1of3.
Actually the constraint 1of3 is an instance of the generic constraint NofM. Additionally
other instances can be specified, e.g. 1of2, 1of3, 1of8, 2of21. However, the creation of
rules implements the same procedure for each instance. Figure 42 shows the algorithm
implementing the creation of rules for the generic constraint NofM (X1, X2, ..., XM) as-
suming a concrete value for N and M . That means, the algorithm can be used for
generating the production rules for all instances of the constraint NofM. In detail, the

Report 2013/01 67

(1 − 4) S1 −→ A1 | B1 | C1 | D1 with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS2 a, b, c ∈ Σ
(7) C1 −→ cS1
(8) D1 −→ dS2

(9 − 13) S2 −→ A2 | B2 | C2 | D2 | ε
(14) A2 −→ aS2
(15) B2 −→ bS2
(16) C2 −→ cS2
(17) D2 −→ dS2

Figure 41: Unified model for the constraint 1of3(A,B,D), i.e. at least one of the three
activities A, B, and D has to be executed.

algorithm creates a grammar storing the set of non-terminals V , the set of terminals
Σ, and the start symbol S next to the production rules P . In this case the set of all
possible tasks is Tasks = {X1, X2, ..., XN , C} where C represents another task that is
not covered by the constraint.
In created production rules the index indicating the version of the start symbol version
is more complex than in previously introduced rules. In detail, the index i is generic as
the constraint and is represented by an M -tuple. For each task covered by the constraint
the index indicates whether the task was executed once or not. In particular,

i ⊆ {0, 1} × ... × {0, 1} = {0, 1}M

The concrete value i(k) = 1 indicates that the task Xk ∈ {X1, X2, ..., XM} is executed
one or more times. In contrast the concrete value i(k) = 0 indicates that the task Xk

was not executed so far. For example, the index i = (0, 0, ..., 0) was introduced for
the start symbol version S(0,0,...,0) indicating the very beginning of the execution. The
complex index, i.e. the m-tuple needs to be transferred to a simple index before the
grammar is allowed to be merged by the corresponding algorithm introduced at the end
of this chapter. In particular, the m-tuple needs to be transferred to a single number.
For example, the index i = (0, 0, ..., 0) should be transferred to the index i = 0 and the
index i = (0, 1, 0, ..., 0) should be transferred to the index i = 0 and so on.
Exemplarily, the production rules for the constraint 2of4(X1, X2, X3, X4) created by
the algorithm in figure 42 are shown in figure 43. Obviously, the execution of the task
X2 causes the switch to the start symbol version S(0,1,0,0) in rule (7). This start symbol
version with index = (0, 1, 0, 0) indicates that the task X2 was executed at least once
as index(2) = 2. If the task X2 is executed once again in the next step rule (27) causes
to stay in this start symbol version as no important information for the constraint was
added by the repeated execution of the task X2. However, if another task, e.g. X1

Report 2013/01 68

Require: Constraint NofM(X1, X2, ..., XM)
Ensure: G = (V, Σ, P, S)

1: S = {S(0,0,...,0)}
2: S = S(0,0,...,0)
3: while S ̸= ∅ do
4: V = V ∪ S
5: for all q : Sq ∈ S do
6: ∃Xjq ∈ V ∀j ∈ {1, 2, ..., M}
7: ∃(Sq, Xjq) ∈ P ∀j ∈ {1, 2, ..., M}
8: ∃Cq ∈ V
9: ∃(Sq, Cq) ∈ P

10: ∃(Cq, cSq) ∈ P
11: end for
12: T = {Xjq | ∀q : Sq ∈ S, ∀j ∈ {1, 2, ..., M}}
13: S = ∅
14: for all Xji

∈ T do
15: i = (r1, r2, ..., rM)
16: if card(1 ∈ i) = N − 1 then
17: Sk = SF

18: else if card(1 ∈ i) < N − 1 then

19: Sk = Sq with q =


(1, r2, ..., rM) j=1
(r1, 1, ..., rM) j=2
...

(r1, r2, ..., 1) j=M
20: end if
21: ∃(Xji

, xjSk) ∈ P
22: if Sk ̸= SF ∧ Sk ̸∈ V then
23: S = S ∪ {Sk}
24: end if
25: end for
26: end while
27: ∃SF ∈ V
28: ∃XjF

∈ V ∀j ∈ {1, 2, ..., M}
29: ∃(SF , XjF

) ∈ P ∀j ∈ {1, 2, ..., M}
30: ∃(SF , ε) ∈ P
31: ∃(XjF

, xjSF) ∈ P ∀j ∈ {1, 2, ..., M}
32: ∃(SF , CF) ∈ P
33: ∃(CF , cSF) ∈ P

Figure 42: Creating production rules for the constraint NofM(X1, X2, ..., XM), i.e. at
least N of the M tasks X1, ..., XM have to be executed.

Report 2013/01 69

would be executed in the next step rule (26) would allow to switch to the final version
SF of the start symbol as the constraint 2of4 would be fulfilled.

(1 − 5) S(0,0,0,0) −→ X1(0,0,0,0) | X2(0,0,0,0) | X3(0,0,0,0) | X4(0,0,0,0) | C(0,0,0,0)
(6) X1(0,0,0,0) −→ x1S(1,0,0,0)
(7) X2(0,0,0,0) −→ x2S(0,1,0,0)
(8) X3(0,0,0,0) −→ x3S(0,0,1,0)
(9) X4(0,0,0,0) −→ x4S(0,0,0,1)
(10) C(0,0,0,0) −→ cS(0,0,0,0)

(11 − 15) S(1,0,0,0) −→ X1(1,0,0,0) | X2(1,0,0,0) | X3(1,0,0,0) | X4(1,0,0,0) | C(1,0,0,0)
(16) X1(1,0,0,0) −→ x1S(1,0,0,0)
(17) X2(1,0,0,0) −→ x2SF

(18) X3(1,0,0,0) −→ x3SF

(19) X4(1,0,0,0) −→ x4SF

(20) C(1,0,0,0) −→ cS(1,0,0,0)
(21 − 25) S(0,1,0,0) −→ X1(0,1,0,0) | X2(0,1,0,0) | X3(0,1,0,0) | X4(0,1,0,0) | C(0,1,0,0)

(26) X1(0,1,0,0) −→ x1SF

(27) X2(0,1,0,0) −→ x2S(0,1,0,0)
(28) X3(0,1,0,0) −→ x3SF

(29) X4(0,1,0,0) −→ x4SF

(30) C(0,1,0,0) −→ cS(0,1,0,0)
...

(51 − 55) SF −→ X1F
| X2F

| X3F
| X4F

| CF | ε
(56) X1F

−→ x1SF

(57) X2F
−→ x2SF

(58) X3F
−→ x3SF

(59) X4F
−→ x4SF

(60) CF −→ cSF

with : Xi, Ci ∈ Services
Si ∈ Helpers

a, b, c ∈ Σ

Figure 43: Creating production rules for the constraint 2of4(X1, X2, X3, X4), i.e. at
least 2 of the 4 tasks X1, X2, X3, X4 have to be executed.

The constraint exclusive NofM(X1, X2, ..., XM) is similar to the constraint NofM but
restricts the tasks that can be executed in the final version of the start symbol. For
example, the constraint exclusive 1of3(A,B,D) is used to specify that one fixed task
of the three tasks A, B, and D can be executed one or multiple times but the other
ones cannot be executed at all. Similar, the constraint exclusive 2of4(X1, X2, X3, X4)

Report 2013/01 70

is used to specify that two of the four tasks can be executed but the remaining two
tasks cannot be executed at all. Figure 44 presents the unified model for the constraint
exclusive 1of3(A,B,D). Obviously, the execution of one of the tasks covered by the
constraint causes the switch to a start symbol version only allowing the execution of
the same task, the execution of the other task C, and the finishing of execution but
not the execution of another task covered by the constraint. For example the execution
of the task A causes the switch to the start symbol version S2 that does not allow the
execution of the tasks B and D in further processing.

(1 − 4) S1 −→ A1 | B1 | C1 | D1 with : Ai, Bi, Ci ∈ Services
(5) A1 −→ aS2 Si ∈ Helpers
(6) B1 −→ bS3 a, b, c ∈ Σ
(7) C1 −→ cS1
(8) D1 −→ dS4

(9 − 11) S2 −→ A2 | C2 | ε
(12) A2 −→ aS2
(13) C2 −→ cS2

(9 − 13) S3 −→ B3 | C3 | ε
(14) B3 −→ bS3
(15) C3 −→ cS3

(9 − 13) S4 −→ D4 | C4 | ε
(14) D4 −→ dS4
(15) C4 −→ cS4

Figure 44: Unified model for the constraint exclusive 1of3(A,B,D), i.e. one of the three
tasks A, B and D has to be executed, while the others cannot be executed at all.

The algorithm generating the production rules for all instances of the constraint exclu-
sive NofM is shown in figure 45. The algorithm is similar but not equal to algorithm
for the constraint NofM shown in figure 42. In particular, there exists no single final
version SF of the start symbol for the constraint exclusive NofM. Therefore, the lines
6–14 are required for the constraint exclusive NofM in figure 45 instead of the lines
27–33 in figure 42. As shown in line 14 the varied number of final states also affects
to the set T storing newly introduced non-terminals for tasks in Tasks requiring the
creation of further production rules. Figure 46 shows the production rules generated
by the presented algorithm for the constraint exclusive 2of4(X1, X2, X3, X4).

3.3.5 Branching of Constraints

Each of the previously introduced constraints can be extended in order to deal with
more tasks than predefined. For example the constraint response(A, B) can be extended

Report 2013/01 71

Require: Constraint exclusive NofM(X1, X2, ..., XM)
Ensure: G = (V, Σ, P, S)
1: S = {S(0,0,...,0)}
2: S = S(0,0,...,0)
3: while S ≠ ∅ do
4: V = V ∪ S
5: for all q : Sq ∈ S do
6: if card(1 ∈ q) = N then
7: ∃(Sq, ε) ∈ P
8: for all j ∈ {1, 2, ..., M} do
9: if q(j) = 1 then

10: ∃Xjq ∈ V
11: ∃(Sq, Xjq) ∈ P
12: end if
13: end for
14: T = {Xjq | ∀q : Sq ∈ S ∧ ∀j ∈ {1, 2, ..., M} : q(j) = 1}
15: else
16: ∃Xjq ∈ V ∀j ∈ {1, 2, ..., M}
17: ∃(Sq, Xjq) ∈ P ∀j ∈ {1, 2, ..., M}
18: T = {Xjq | ∀q : Sq ∈ S ∀j ∈ {1, 2, ..., M}}
19: end if
20: ∃Cq ∈ V
21: ∃(Sq, Cq) ∈ P
22: ∃(Cq, cSq) ∈ P
23: end for
24: S = ∅
25: for all Xji ∈ T do
26: i = (r1, r2, ..., rM)
27: if card(1 ∈ i) = N then
28: Sk = Si

29: else if card(1 ∈ i) < N then

30: Sk = Sq with q =


(1, r2, ..., rM) j=1
(r1, 1, ..., rM) j=2
...

(r1, r2, ..., 1) j=M
31: end if
32: ∃(Xji , xjSk) ∈ P with
33: if Sk ̸∈ V then
34: S = S ∪ {Sk}
35: end if
36: end for
37: end while

Figure 45: Creating production rules for the constraint exclusive NofM(X1, X2, ..., XM),
i.e. N of the M tasks X1, ..., XM have to be executed while the remaining ones cannot
be executed at all.

Report 2013/01 72

(1 − 5) S(0,0,0,0) −→ X1(0,0,0,0) | X2(0,0,0,0) | X3(0,0,0,0) | X4(0,0,0,0) | C(0,0,0,0)
(6) X1(0,0,0,0) −→ x1S(1,0,0,0)
(7) X2(0,0,0,0) −→ x2S(0,1,0,0)
(8) X3(0,0,0,0) −→ x3S(0,0,1,0)
(9) X4(0,0,0,0) −→ x4S(0,0,0,1)
(10) C(0,0,0,0) −→ cS(0,0,0,0)

(11 − 15) S(1,0,0,0) −→ X1(1,0,0,0) | X2(1,0,0,0) | X3(1,0,0,0) | X4(1,0,0,0) | C(1,0,0,0)
(16) X1(1,0,0,0) −→ x1S(1,0,0,0)
(17) X2(1,0,0,0) −→ x2S(1,1,0,0)
(18) X3(1,0,0,0) −→ x3S(1,0,1,0)
(19) X4(1,0,0,0) −→ x4S(1,0,0,1)
(20) C(1,0,0,0) −→ cS(1,0,0,0)

(21 − 25) S(0,1,0,0) −→ X1(0,1,0,0) | X2(0,1,0,0) | X3(0,1,0,0) | X4(0,1,0,0) | C(0,1,0,0)
(26) X1(0,1,0,0) −→ x1S(1,1,0,0)
(27) X2(0,1,0,0) −→ x2S(0,1,0,0)
(28) X3(0,1,0,0) −→ x3S(0,1,1,0)
(29) X4(0,1,0,0) −→ x4S(0,1,0,1)
(30) C(0,1,0,0) −→ cS(0,1,0,0)
...

(51 − 54) S(1,1,0,0) −→ X1(1,1,0,0) | X2(1,1,0,0) | C(1,1,0,0) | ε
(55) X1(1,1,0,0) −→ x1S(1,1,0,0)
(56) X2(1,1,0,0) −→ x2S(1,1,0,0)
(57) C(1,1,0,0) −→ cS(1,1,0,0)

(58 − 61) S(1,0,1,0) −→ X1(1,0,1,0) | X3(1,0,1,0) | C(1,0,1,0) | ε
(62) X1(1,0,1,0) −→ x1S(1,0,1,0)
(63) X3(1,0,1,0) −→ x3S(1,0,1,0)
(64) C(1,0,1,0) −→ cS(1,0,1,0)

(65 − 68) S(1,0,0,1) −→ X1(1,0,0,1) | X4(1,0,0,1) | C(1,0,0,1) | ε
(69) X1(1,0,0,1) −→ x1S(1,0,0,1)
(70) X4(1,0,0,1) −→ x4S(1,0,0,1)
(71) C(1,0,0,1) −→ cS(1,0,0,1)

(72 − 75) S(0,1,1,0) −→ X2(0,1,1,0) | X3(0,1,1,0) | C(0,1,1,0) | ε
(76) X2(0,1,1,0) −→ x2S(0,1,1,0)
(77) X3(0,1,1,0) −→ x3S(0,1,1,0)
(78) C(0,1,1,0) −→ cS(0,1,1,0)

(79 − 82) S(0,1,0,1) −→ X2(0,1,0,1) | X4(0,1,0,1) | C(0,1,0,1) | ε
(83) X2(0,1,0,1) −→ x2S(0,1,0,1)
(84) X4(0,1,0,1) −→ x4S(0,1,0,1)
(85) C(0,1,0,1) −→ cS(0,1,0,1)

(86 − 89) S(0,0,1,1) −→ X3(0,0,1,1) | X4(0,0,1,1) | C(0,0,1,1) | ε
(90) X3(0,0,1,1) −→ x3S(0,0,1,1)
(91) X4(0,0,1,1) −→ x4S(0,0,1,1)
(92) C(0,0,1,1) −→ cS(0,0,1,1)

with : Xi, Ci ∈ Services
Si ∈ Helpers

a, b, c ∈ Σ

Figure 46: Creating production rules for the constraint exclusive 2of4(X1, X2, X3, X4),
i.e. 2 of the 4 tasks X1, X2, X3, X4 have to be executed while the remaining ones cannot
be executed at all.

Report 2013/01 73

to response(A1, A2, B), response(A, B1, B2), or response(A1, A2, B1, B2, B3). However,
ConDec calls this extension mechanism branching which is mainly driven by the graph-
ical representation. The constraint response(A, B) is graphically represented by a spe-
cific arrow from the task A to the task B. This arrow can be branched in order to include
further tasks in the dependency. For example, an arrow can have a single source A and
two targets B1 and B2 in order to represent the constraint response(A, B1, B2). However,
the branching requires to explicitly specify the sources distinct from the targets.
Branching fundamentally implements an OR-dependency between tasks. Therefore,
branching requires additional alternatives in production rules. Considering the con-
straint response(A, B) the branching of the target into the alternatives B1 and B2
requires to provide production rules specifying B1 and B2 instead of the rules specify-
ing B. That means, each production rule that is valid for the constraint response(A, B)
is also valid for the constraint response(A, B1, B2) if the occurrence of B is substituted
with B1 and B2 whereas the occurrences on the lhs as well on the rhs need to be covered.
However, the method is also valid for a branching covering the source A of the constraint.
Figure 47 shows the production rules for the branched versions response(A, (B1, B2))
and response((A1, A2), B).
In general, definition 24 can be used to derive a grammar G′ that is valid for a branched
version of a constraint given by a grammar G. For example, the production rules for the
constraint responded existence((A1, A2), B) can be derived by using definition 24 with
the given grammar G specifying the constraint responded existence(A, B) as introduced
in figure 33 by substituting the non-terminal A by the non-terminals A1 and A2.

Definition 24 (Branching Constraints)
Let G = (V, Σ, P, S) be a grammar that is valid for a constraint covering a set of tasks

T = Y1, ..., X, ..., Yn. Then the grammar G′ = (V ′, Σ′, P ′, S) is valid for the branched
version of the constraint substituting the task X by the tasks X1 and X2 with:

V ′ = V \ {X} ∪ {X1, X2}
Σ′ = Σ \ {x} ∪ {x1, x2}
P ′ = P \ {(α, β) |X ∈ α ∨ X ∈ β} ∪ Q

Q = {(α′, β′) |∃(α, β) ∈ P ∧ (X ∈ α ∨ X ∈ β)} with:
α′ = substitute X by Xi and x by xi in α

β′ = substitute X by Xi and x by xi in β

i ∈ {1, 2}

y

Report 2013/01 74

(1 − 5) S1 −→ A1 | B11 | B21 | C1 | ε with : Ai, Bi, Ci ∈ Services
(6) A1 −→ aS2 Si ∈ Helpers
(7) B11 −→ b1S1 a, b, c ∈ Σ
(8) B21 −→ b2S1
(9) C1 −→ cS1

(10 − 13) S2 −→ A2 | B12 | B22 | C2
(14) A2 −→ aS2
(15) B12 −→ b1S1
(16) B22 −→ b2S1
(17) C2 −→ cS2

(a) Constraint response(A, (B1, B2)), i.e. both tasks B1 and B2 are the target of the dependency
specified by the constraint.

(1 − 4) S1 −→ A11 | A21 | B1 | C1 | ε with : Ai, Bi, Ci ∈ Services
(5) A11 −→ a1S2 Si ∈ Helpers
(5) A21 −→ a2S2 a, b, c ∈ Σ
(6) B1 −→ bS1
(7) C1 −→ cS1

(8 − 10) S2 −→ A12 | A22 | B2 | C2
(11) A12 −→ a1S2
(11) A22 −→ a2S2
(12) B2 −→ bS1
(13) C2 −→ cS2

(b) Constraint response((A1, A2), B), i.e. both tasks A1 and A2 are the source of the dependency
specified by the constraint.

Figure 47: Production rules for branched versions of the constraints response(A, B), i.e.
for the version response(A, (B1, B2)) and the version response((A1, A2), B).

Report 2013/01 75

3.3.6 Combination Algorithm

Typically, a declarative service composition model specifies multiple tasks and different
constraints between the tasks. The approach at hand firstly transforms single con-
straints to grammars, i.e. production rules. In order to combine the grammars covering
constraints in the same service composition model the approach at hand calculates the
cross product of production rules in the grammars covering single constraints. There-
fore, all constraints excepts the init-constraints need to be merged, i.e. the intersection
of related production rules need to be calculated in order to satisfy the constraints con-
currently. In contrast, production rules specifying the init-constraints need to be joined,
i.e. the union of related production rules need to be calculated in order to satisfy the
combination of init constraints (i.e. constraint instances covering different tasks). The
combination of grammars assume that the same tasks in the grammars are represented
by the same symbols, e.g. the task A is always represented by the non-terminals Ai

and the finishing of the task is always represented by the terminal a.
Figure 48 shows the algorithm for combining two grammars specifying declarative ser-
vice composition models. At first the algorithm extracts the production rules from both
grammars covering the init constraint. Afterwards, the production rules of grammar
G1 exclusively covering the init constraint are joined with the production rules of gram-
mar G2 exclusively covering the init constraint. Then, the remaining production rules
of grammar G1 (covering all other constraints excepts the init constraint) are merged
with the remaining production rules of grammar G2. Finally, the resulting grammars
from the join and the merge are combined in order to create the combined grammar G3.
Note that the combination algorithm is not commutative as the used merging algorithm
is not commutative. However, the combination algorithm becomes commutative if the
used merging algorithm is commutative.

Merging Algorithm The merging of constraints typically strengthen the restrictions
as all participating constraints need to be satisfied and the particular restrictions are
concurrently valid. Therefore, the introduced merging algorithm creates the intersection
of related sets of production rules. In particular, production rules that provide the
same lhs and that specify different constraints are related to each other. The merging
algorithm only covers tasks and relations that are specified in the given rules, i.e. no
further information is added.
Note that the merging operation is not commutative. In particular, the merging al-
gorithm allows to merge a grammar G1 covering one or multiple constraints with a
grammar G2 that is allowed to cover exactly one single constraint. Figure 49 shows the
merging algorithm for constraint-based grammars G1 and G2. The algorithm uses com-
plex indexes for non-terminals representing the correlation between the two grammars
G1 and G2. In particular, the index is implemented by a tuple where the first value

Report 2013/01 76

Require: G1 = (V1, Σ1, P1, Su) ∧ G2 = (V2, Σ2, P2, Sv)
Ensure: G3 = combine(G1, G2) = (V3, Σ3, P3, S(u,v))

1: Sinit1 = Su

2: Vinit1 = {Xi | Xi ∈ V1 ∧ i = u}
3: Σinit1 = {x | x ∈ Σ1 ∧ ∃(Xi, αxβ) ∈ P1 ∧ i = u ∧ Xi ∈ V1 ∧ α, β ∈ (V1 ∪ Σ1)∗}
4: Pinit1 = {(αXiβ, γ) | ∀Xi ∈ V1∧i = u∧∃(αXiβ, γ) ∈ P1∧α, β ∈ Σ∗

1∧γ ∈ (V1∪Σ1)∗}
5: Sinit2 = Sv

6: Vinit2 = {Xi | Xi ∈ V2 ∧ i = v}
7: Σinit2 = {x | x ∈ Σ2 ∧ ∃(Xi, αxβ) ∈ P2 ∧ i = v ∧ Xi ∈ V2 ∧ α, β ∈ (V2 ∪ Σ2)∗}
8: Pinit2 = {(αXiβ, γ) | ∀Xi ∈ V2∧i = v∧∃(αXiβ, γ) ∈ P2∧α, β ∈ Σ∗

2∧γ ∈ (V2∪Σ2)∗}
9: if u = 0 ∧ v = 0 then

10: (G4, Ω) = join((Vinit1 , Σinit1 , Pinit1 , Sinit1), (Vinit2 , Σinit2 , Pinit2 , Sinit2))
11: else if u = 0 ∧ v ̸= 0 then
12: (G4, Ω) = join(Ginit1 , u, v)
13: else if u ̸= 0 ∧ v = 0 then
14: (G4, Ω) = join(Ginit2 , u, v)
15: end if
16: Select S(u′,v′) ∈ Ω
17: G5 = (V1\Vinit1 ∪ {Su′}, Σ1, P1\Pinit1 , Su′)
18: G6 = (V2\Vinit2 ∪ {Sv′}, Σ2, P2\Pinit2 , Sv′)
19: if u = 0 ∧ v = 0 then
20: G7 = merge(G5, G6)
21: else if u = 0 ∧ v ̸= 0 then
22: G7 = merge(G5, G2)
23: else if u ̸= 0 ∧ v = 0 then
24: G7 = merge(G1, G6)
25: end if
26: V3 = V4 ∪ V7
27: Σ3 = Σ4 ∪ Σ7
28: P3 = P4 ∪ P7

Figure 48: Combining two grammars, i.e. production rules for combining constraint-
based process models.

Report 2013/01 77

represents the particular start symbol version in G1 and the second value represents
the particular start symbol version of G2. For example, the index S(8,9) combines the
version S8 from G1 and S9 from G2.

Require: G1 = (V1, Σ1, P1, Su) ∧ G2 = (V2, Σ2, P2, Sv)
Ensure: G3 = merge(G1, G2) = (V3, Σ3, P3, S(u,v))

1: S = {S(u,v)}
2: while S ̸= ∅ do
3: S = S \ {S(i,j)}
4: ∃S(i,j) ∈ V3
5: for all (Si, Yi) ∈ P1 ∧ (Sj, Yj) ∈ P2 do
6: ∃Y(i,j) ∈ V3
7: ∃(S(i,j), Y(i,j)) ∈ P3
8: end for
9: for all (Xi, xSk) ∈ P1 ∧ (Xj, xSl) ∈ P2 with x ∈ Σ1 ∪ Σ2 do

10: ∃x ∈ Σ3
11: ∃(X(i,j), xS(k,l)) ∈ P3
12: if S(k,l) ̸∈ V3 then
13: S = S ∪ {S(k,l)}
14: end if
15: end for
16: end while

Figure 49: Merging algorithm for grammars specifying constraints, i.e. calculating the
intersection of contained production rules.

The merging algorithm relates similar production rules in both input grammars in
order to create correlated production rules in the merged grammar G3. Therefore,
the restrictions given by both grammars are fulfilled in combination in the resulting
grammar. Figure 50 shows the production rules created by the merging algorithm by
merging the constraints response(A,B) and precedence(A,C).

Join Algorithm As mentioned before, the combination of production rules covering
the init constraint requires a special operator with different semantics than introduced
by the merging algorithm in figure 49. In detail, the combination of init constraints
require the union of correlated production rules instead of the intersection. Using the
union of production rules ensure the semantics of satisfying the init constraint of both
input grammars concurrently in the output grammar.
Figure 51 shows the join algorithm for grammars specifying the init constraint. The
join algorithm assumes that a tasks can be initially executed at most one time in
a single grammar. That means, corresponding to the init constraint in ConDec a

Report 2013/01 78

(1 − 3) S(1,1) −→ A(1,1) | B(1,1) | ε with : Ai, Bi, Ci ∈ Services
(4) A(1,1) −→ aS(2,2) Si ∈ Helpers
(5) B(1,1) −→ bS(1,1) a, b, c ∈ Σ

(1 − 4) S(2,2) −→ A(2,2) | B(2,2) | C(2,2)
(4) A(2,2) −→ aS(2,2)
(4) B(2,2) −→ aS(1,2)
(4) C(2,2) −→ aS(2,2)

(1 − 4) S(1,2) −→ A(1,2) | B(1,2) | C(1,2) | ε
(4) A(1,2) −→ aS(2,2)
(4) B(1,2) −→ aS(1,2)
(4) C(1,2) −→ aS(1,2)

Figure 50: Resulting production rules for the merged constraints response(A,B) and
precedence(A,C).

task A is allowed to be specified in a single init(A) constraint. The specification of
two init constraints regarding the same task (A) is not allowed, i.e. would result in
a redundant specification. The join algorithm uses complex indexes in the output
grammar indicating the symbol version of both input grammars similar to the merging
algorithm. However, the join algorithm is required to simultaneously activate multiple
tasks at the very beginning. That means, synchronization is required afterwards. The
synchronization requirements need to be newly calculated as the output grammar needs
to synchronize over all tasks at the very beginning whereas the input grammars “only”
synchronize over the tasks that are part of the particular input grammar. In figure 51
the lines (7–18) calculate the production rules specifying the synchronization of tasks in
the output grammar. Each synchronization rule of the first input grammar is combined
with each synchronization rule of the second input grammar, i.e. the cross product of
synchronization rules is calculated. The concrete tasks that are required to be activated
at the very beginning of the output grammar are given by the union of tasks that are
activated at the very beginning of both input grammars. Line (20–26) in figure 51
calculates all symbols for tasks that need to be activated at the very beginning as well
as symbols required for synchronization in order to specify the production rule(s) for
the very beginning of the output grammar. Finally, rules specifying the service calls for
the tasks are calculated in the lines (28–31).
Figure 52 shows the joining algorithm for a single non-empty grammar with the empty
grammar. In particular, the joining algorithm in figure 51 is applicable only if both
grammars that are intended to be joined specify an init constraint. In case only one
grammar specifies the init constraint when the combination of two grammars needs
to be calculated requires the application of the algorithm in figure 52 instead of the
algorithm in figure 51. In detail, the algorithm in figure 52 doesn’t need to correlate

Report 2013/01 79

Require: G1 = (V1, Σ1, P1, Su) ∧ G2 = (V2, Σ2, P2, Sv)
Ensure: G3 = join(G1, G2) = (V3, Σ3, P3, S(u,v))

1: ∃S(u,v) ∈ V3
2: for all (Su, α1) ∈ P1 do
3: for all (Sv, α2) ∈ P2 do
4: TmpV = {Xi|(Xi ∈ α1 ∨ Xi ∈ α2) ∧ ∃(Xi, x) ∈ P1 ∪ P2 ∧ x ∈ Σ1 ∪ Σ2}
5: Tmp2V = {X(i,j)|Xi ∈ TmpV ∧Xj ∈ TmpV ∧i ̸= j}∪{X(i,i)|Xi ∈ TmpV ∧@Xj ∈

TmpV ∧ i ̸= j}
6: ∃X(i,j) ∈ V3 ∀X(i,j) ∈ Tmp2V

7: // Closing rules (synchronizing)
8: for all Hk ∈ α1 ∧ Hk ̸∈ TmpV do
9: for all (γHkδ, γYmδ) ∈ P1 do

10: for all Hl ∈ α2 ∧ Hl ̸∈ TmpV do
11: for all (γ′Hlδ

′, γ′Ynδ′) ∈ P2 do
12: ∃(γ ⊔ γ′H(k,l)δ ⊔ δ′, γ ⊔ γ′Y(m,n)δ ⊔ δ′) ∈ P3
13: ∃H(k,l) ∈ V3 ∧ ∃Y(m,n) ∈ V3
14: ∃H(k,l) ∈ TmpH

15: ∃Y(m,n) ∈ Ω
16: end for
17: end for
18: end for
19: end for
20: // Entry rules
21: ∃(S(u,v), α3) ∈ P3 with:
22: for all X(i,j) ∈ Tmp2V do
23: ∃X(i,j) ∈ α3
24: end for
25: for all X(i,j) ∈ TmpH do
26: ∃X(i,j) ∈ α3
27: end for
28: // Intermediate rules
29: for all X(i,j) ∈ Tmp2V ∧ (Xi, x) ∈ P1 ∪ P2 ∧ x ∈ Σ1 ∪ Σ2 do
30: ∃(X(i,j), x) ∈ P3
31: ∃x ∈ Σ3
32: end for
33: end for
34: end for
35: return ((V3, Σ3, P3, S(u,v)), Ω)

Figure 51: Joining algorithm for grammars specifying the init-constraint, i.e. calculat-
ing the union of contained production rules.

Report 2013/01 80

production rules of both input grammars. Instead, only the indexes of non-terminals
need to be substituted by complex indexes.

Require: G1 = (V1, Σ1, P1, Su) ∧ m ∧ n
Ensure: (G3, Ω) = join(G1, m, n) = ((V3, Σ3, P3, S(u,u)), Ω)

1: V3 = {X(i,i) | Xi ∈ V1}
2: Σ3 = Σ1
3: ∃(α′, β′) ∈ P3 with:
4: for all (α, β) ∈ P1 do
5: for all Xi ∈ α ∧ Xi ∈ V1 do
6: ∃X(i,i) ∈ α′

7: end for
8: for all x ∈ α ∧ x ∈ Σ1 do
9: ∃x ∈ α′

10: end for
11: for all Xi ∈ β ∧ Xi ∈ V1 do
12: if X = S then
13: if m = 0 ∧ n ̸= 0 then
14: ∃S(i,n) ∈ β′

15: ∃S(i,n) ∈ Ω
16: else if m ̸= 0 ∧ n = 0 then
17: ∃S(m,i) ∈ β′

18: ∃Sm,i) ∈ Ω
19: end if
20: else
21: ∃X(i,i) ∈ β′

22: end if
23: end for
24: for all x ∈ β ∧ x ∈ Σ1 do
25: ∃x ∈ β′

26: end for
27: end for

Figure 52: Joining a non-empty grammar with an empty grammar.

Index Transformation Note that the resulting grammar of the merging algorithm
needs to be prepared before the grammar can create an input for the algorithm. In par-
ticular, the complex index of non-terminals needs to be transferred to a single number.
The approach at hand recommends to transfer complex indexes specifying the same
number in each part to the particular number, e.g. S(1,1) should be transferred to S1

Report 2013/01 81

and A(2,2) should be transferred to A2. Indexes specifying different numbers in each
part should be transferred to indexes that are successively numbered.

Report 2013/01 82

4 References

[1] Katharina Görlach, Frank Leymann, and Volker Claus. Unified execution of ser-
vice compositions. In 2013 IEEE 6th International Conference on Service-Oriented
Computing and Applications, Koloa, HI, USA, December 16-18, 2013, pages 162–167.
IEEE, 2013.

[2] OASIS. Web Services Business Process Execution Language Version 2.0 – OASIS
Standard. Organization for the Advancement of Structured Information Standards,
2007.

[3] Thomas M. Oinn, R. Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin
Ferris, Kevin Glover, Carole A. Goble, Antoon Goderis, Duncan Hull, Darren Mar-
vin, Peter Li, Phillip W. Lord, Matthew R. Pocock, Martin Senger, Robert Stevens,
Anil Wipat, and Chris Wroe. Taverna: lessons in creating a workflow environ-
ment for the life sciences. Concurrency and Computation: Practice and Experience,
18(10):1067–1100, 2006.

[4] Maja Pesic. Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Technische Universiteit Eindhoven, 2008.

[5] W3C. XSL Transformations (XSLT) Version 1.0. World Wide Web Consortium
(W3C), 1999.

[6] W3C. Web Services Description Language (WSDL) 1.1. World Wide Web Consor-
tium (W3C), 2001.

[7] W3C. Web Services Addressing (WS-Addressing). World Wide Web Consortium
(W3C), 2004.

[8] Matthias Wieland, Katharina Görlach, David Schumm, and Frank Leymann. To-
wards reference passing in web service and workflow-based applications. In Pro-
ceedings of the 13th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2009, 1-4 September 2009, Auckland, New Zealand, pages 109–
118. IEEE Computer Society, 2009.

Report 2013/01 83

A Files

A.1 Calculator.wsdl

</wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ns="http://test .de"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://test.de">

<wsdl:documentation>Calculator.wsdl</wsdl:documentation>

<wsdl:types>
<xs:schema attributeFormDefault="qualified"

elementFormDefault="qualified"
targetNamespace="http://test.de">

<xs:element name="add">
<xs:complexType>

<xs:sequence>
<xs:element minOccurs="0" name="x" type="xs:int"/>
<xs:element minOccurs="0" name="y" type="xs:int"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="addResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="return"
type=" xs:int "/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<wsdl:message name="addRequest">
<wsdl:part name="parameters" element="ns:add"/>

</wsdl:message>
<wsdl:message name="addResponse">

<wsdl:part name="parameters" element="ns:addResponse"/>
</wsdl:message>

<wsdl:portType name="CalculatorPT">
<wsdl:operation name="add">

<wsdl:input message="ns:addRequest"
wsaw:Action="urn:add"/>

<wsdl:output message="ns:addResponse"
wsaw:Action="urn:addResponse"/>

Report 2013/01 84

</wsdl:operation>
<wsdl:operation name="add2">

<wsdl:input message="ns:addRequest"
wsaw:Action="urn:add2"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="CalculatorSOAPbinding" type="ns:CalculatorPT">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>
<wsdl:operation name="add">

<soap:operation soapAction="urn:add" style="document"/>
<wsdl:input>

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="Calculator">
<wsdl:port name="CalculatorHttpSOAPEndpoint"

binding="CalculatorSOAPBinding">
<soap:address location=
" http:// localhost:9763 / services /Calculator .CalculatorHttpSoapEndpoint/"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Report 2013/01 85

A.2 ExampleDF.scufl2.xml

<tavernaResearchObject>
<workflows>

<workflow>
<name>myWorkflow</name>
<inputWorkflowPorts/>
<outputWorkflowPorts/>
<processors>

<processor>
<name>S1</name>
<configurableProperties/>
<dispatchStack/>
<inputProcessorPorts/>
<outputProcessorPorts>

<outputProcessorPort>
<name>S1_out</name>
<depth>0</depth>
<configurableProperties/>

</outputProcessorPort>
</outputProcessorPorts>
<startConditions/>

</processor>
<processor>

<name>S2</name>
<configurableProperties/>
<dispatchStack/>
<inputProcessorPorts/>
<outputProcessorPorts/>
<startConditions/>

</processor>
<processor>

<name>S3</name>
<configurableProperties/>
<dispatchStack/>
<inputProcessorPorts>

<inputProcessorPort>
<name>S3_in</name>
<depth>0</depth>
<configurableProperties/>

</inputProcessorPort>
</inputProcessorPorts>
<outputProcessorPorts/>
<startConditions/>

</processor>
</processors>
<datalinks>

<datalink>
<senderPortReference>

<identification>

Report 2013/01 86

workflow/myWorkflow/processor/S1/outputprocessorport/S1_out
</identification>

</senderPortReference>
<receiverPortReference>

<identification>
workflow/myWorkflow/processor/S3/inputprocessorport/S3_in

</identification>
</receiverPortReference>

</datalink>
</datalinks>
<configurableProperties/>

</workflow>
</workflows>

</tavernaResearchObject>

Report 2013/01 87

B Non-Terminal Specifications

<nonTerminal>
<name> M_1 </name>
<type> Event1 </type>
<parameters />
<relations>

<relation>
<outputValue>

True </outputValue>
<nonTerminalRef>

T_1 </nonTerminalRef>
</relation>
<relation>

<outputValue>
False </outputValue>

<nonTerminalRef>
F_1 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

<nonTerminal>
<name> M_3 </name>
<type> Event1 </type>
<parameters />
<relations>

<relation>
<outputValue>

True </outputValue>
<nonTerminalRef>

T_3 </nonTerminalRef>
</relation>
<relation>

<outputValue>
False </outputValue>

<nonTerminalRef>
F_3 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

(a) Non-terminals for checking the occurrence of an event (see figure 54 for the non-terminal
type).

<nonTerminal>
<name> G_1 </name>
<type> GetEvent_1 </type>
<parameters>

<output>
<reference>

myEvent
</reference>

</output>
</parameters>

</nonTerminal>

(b) Non-terminal for receiving an event (see fig-
ure 54 for the non-terminal type).

<nonTerminal>
<name> U_1 </name>
<type> CancelEvent_1 </type>
<parameters />

</nonTerminal>

(c) Non-terminal for setting the point in time
where following events are rejected (see fig-
ure 54 for the non-terminal type).

Figure 53: Non-Terminals for the message event handlers (cf. unified model for event
handlers in figure 19).

Report 2013/01 88

<nonTerminalType name="Event_1">
<service>CompositionUtils</service>
<operation> event1 </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>

</nonTerminalType>

<nonTerminalType name="GetEvent_1">
<service>CompositionUtils</service>
<operation> event1op </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>

</nonTerminalType>

<nonTerminalType name="CancelEvent1">
<service>CompositionUtils</service>
<operation> cancelEvent1 </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>

</nonTerminalType>

Figure 54: Types of the non-terminals in figure 53.

Report 2013/01 89

<nonTerminal>
<name> M_2 </name>
<type> Alarm1 </type>
<parameters />
<relations>

<relation>
<outputValue>

True </outputValue>
<nonTerminalRef>

T_2 </nonTerminalRef>
</relation>
<relation>

<outputValue>
False </outputValue>

<nonTerminalRef>
F_2 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

<nonTerminal>
<name> M_4 </name>
<type> Alarm1 </type>
<parameters />
<relations>

<relation>
<outputValue>

True </outputValue>
<nonTerminalRef>

T_4 </nonTerminalRef>
</relation>
<relation>

<outputValue>
False </outputValue>

<nonTerminalRef>
F_4 </nonTerminalRef>

</relation>
</relations>

</nonTerminal>

(a) Non-terminals for checking the occurrence of an alarm (see figure 56 for the non-terminal
type).

<nonTerminal>
<name> E_1 </name>
<type> ExpressionEvaluator </type>
<parameters>

<input>
<reference position="1">

duration
</reference>
<value position="2">

duration
</value>

</input>
<output>

<reference>
myAlarm

</reference>
</output>

</parameters>
</nonTerminal>

(b) Non-terminal for evaluation of an alarm ex-
pression.

<nonTerminal>
<name> A_1 </name>
<type> AlarmService_For </type>
<parameters>

<input>
<reference>

myAlarm
</reference>

</input>
</parameters>

</nonTerminal>

(c) Non-terminal A1 for starting the alarm ser-
vice.

<nonTerminal>
<name> U_2 </name>
<type> CancelAlarm_1 </type>
<parameters />

</nonTerminal>

(d) Non-terminal for setting the point in time
where following alarms are rejected (see fig-
ure 56 for the non-terminal type).

Figure 55: Non-Terminals for alarm event handlers (cf. unified model for event handlers
in figure 19).

Report 2013/01 90

<nonTerminalType name="Alarm_1">
<service>CompositionUtils</service>
<operation> alarm1 </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>

</nonTerminalType>

<nonTerminalType name="CancelAlarm1">
<service>CompositionUtils</service>
<operation> cancelAlarm1 </operation>
<port>CompositionUtilsHttpSOAPEndpoint</port>
<wsa:EndpointReference>

<wsa:Address>
http://localhost:9763/services/CompositionUtils.CompositionUtilsHttpSoapEndpoint/

</wsa:Address>
</wsa:EndpointReference>

</nonTerminalType>

Figure 56: Types of the non-terminals in figure 55.

