Technical Report 2013/02

An Access Control Concept for Novel Automotive
HMI Systems

Simon Gansel!, Stephan Schnitzer?, Ahmad Gilbeau-Hammoud?, Viktor
Friesent, Frank Duirr2, Kurt Rothermel?, and Christian Maihofer?

1 System Architecture and Platforms Department
Daimler AG

Benzstralle
71063 Sindelfingen
Germany

2 Institute of Parallel and Distributed Systems
Universitat Stuttgart

Universitatsstrale 38
70569 Stuttgart
Germany

October 2013

An Access Control Concept for Novel Automotive
HMI Systems

Simon Gansel®, Stephan Schnitzer?, Ahmad Gilbeau-Hammoud!, Viktor
Friesen', Frank Diirr?, Kurt Rothermel?, and Christian Maihofer!

! System Architecture and Platforms Department, Daimler AG, Germany™*
2 Institute of Parallel and Distributed Systems, University of Stuttgart, Germany™*

Abstract. The relevance of graphical functions in vehicular applica-
tions has increased significantly during the last years. Modern cars are
equipped with multiple displays used by different applications such as
speedometer, navigation system, or media players. However, so far ap-
plications are restricted to using dedicated displays. In order to increase
flexibility, the requirement of sharing displays between applications has
emerged. Sharing displays leads to safety and security concerns since
safety-critical and trusted applications as the dashbord warning lights
share the same displays with uncritical or untrusted applications like the
navigation system or third-party applications. To guarantee the safe and
secure sharing of displays, we present a formal model for defining and
controlling the access to display areas in this paper. We proof the va-
lidity of this model, and present a proof-of-concept implementation to
demonstrate the feasibility of our concept.

1 Introduction

Innovations in cars are mainly driven by electronics and software today [6].
In particular, graphical functions and applications enjoy growing popularity as
shown by the increasing number of displays integrated into cars. For instance,
the head unit (HU)—the main electronic control unit (ECU) of the infotainment
system—uses the center console screen to display the navigation system, or dis-
plays integrated into the backside of the front seats together with the center con-
sole screen to display multimedia content. Displays connected to the instrument
cluster (IC) replace analog indicators displaying speed information or warnings.
Moreover, head-up displays are used for displaying navigation instructions or
assistance messages on the windshield.

Moreover, as demonstrated by advanced used cases already implemented in
concept cars, there is a trend to share the different available displays flexibly
by displaying content from different applications on dynamically defined display
areas. For instance, while parking, applications can output information on any
display including, in particular, the IC display. For example, this allows for play-
ing fullscreen videos on the IC display while the car is not moving. Moreover,

* firstname.lastname <at> daimler.com
** lastname <at> ipvs.uni-stuttgart.de

2 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

the window size can be configured dynamically, for instance, to reduce the size
of the speedometer in favor of a larger display area of the navigation software.
Note that the flexible and dynamic usage of displays allows applications running
on different ECUs to access all available displays. Even third-party applica-
tions downloaded from an app store [2, 12] and running in isolated execution
environments—e.g., an Android partition within QNX [2]—or on the mobile
phone of the user [1] can be granted access to these displays.

Although these uses cases are very attractive for the user, they come with
a great challenge: ensuring safety. Different standards and guidelines consider
the safety aspect of displaying information in vehicles. For instance, current
standards regulate that the level of safety criticality of each functionality has to
be assessed and suitable methods must be implemented to minimize the risks
caused by malfunctions [16, ISO 26262]. Moreover, automotive design guidelines
[3, 9, 17] require that safety-critical content must be displayed at defined display
areas and for all content that is visible to the driver while driving, the potential of
distraction must be restricted. For instance, video playback must not be visible to
the driver while the vehicle is in motion. Additionally, country-specific laws must
be fulfilled, e.g., as regulated by German law (StVZO §57 [18]), the speedometer
must always be visible while the car is moving.

Since display sharing results in scenarios where safety-critical applications
like the brake warning light share the same display with uncritical applications,
concepts for the safe sharing of displays between applications are required. In
more detail, display areas have to be isolated such that it is guaranteed that
the output of different applications does not interfere. For instance, the break
warning light may indicate a potentially severe hydraulic problem in the break
system and being covered by other application windows could be critical to the
safety of the driver. Therefore, the output of safety-critical applications must
be guaranteed to be always visible if required by the status of the car or traffic
conditions. Since this also applies to third-party applications, it is the responsi-
bility of the OEMs to ensure that graphical outputs from different applications
do not interfere. One approach to ensure this is to test and certify the correct
behavior of all applications by the OEM. However, such a certification process is
expensive and cumbersome. Therefore, technical solutions are required to ensure
the isolation of display areas.

A naive approach to provide isolation for window placement is to define a
static mapping in which the IC applications only access the IC display and the
HU applications access the HU display and, additionally, the IC display within
a reserved area. However, this approach lacks flexibility since only a predefined
number of applications can be supported, and sharing is restricted to pre-defined
display areas. Therefore, more flexible methods for dynamic display sharing are
required.

In this paper, we present a novel access control model for sharing graphi-
cal displays to offer flexibility without compromising on safety. Basically, our
model grants applications dynamic permissions to draw into certain display ar-
eas. To support the decentralized software development process involving OEMs

Access Control Concept for Novel Automotive HMI Systems 3

and sub-contractors, and possibly third-party developers like app developers,
permissions are managed based on a delegation hierarchy such that applications
can pass permissions to sub-components, e.g., third-party or sub-contractor com-
ponents. In detail, we make the following contributions in this paper: 1. A formal
definition of the access control model and the required properties such as iso-
lation. 2. A formal proof of correctness of this model. 3. A proof-of-concept
implementation to show the feasibility of the approach.

The rest of this paper is structured as follows. In Sec. 2.1 we present our
system model and requirements. In Sec. 3 we define our access control model
and present properties for the model and proof them in Sec. 4. We present our
implementation in Sec. 5, and discuss related work in Sec. 6. We conclude this
paper with a summary and an outlook on future work in Sec. 7.

2 System Model and Requiremens

In this section, we describe the components, assumptions and requirements of
our system for display access control in an automotive HMI system.

2.1 System Model

The components of our system are depicted in Fig. 1. First of all, we assume that
the available display surface consists of multiple displays. The display surface
is shared between all applications. We define a display area as a subset of the
pixels of the display surface. Each pixel of the display surface is indexed by x
and y coordinates and is unambiguously identifiable by its position.

_ Appl || App2 |

Permissions

Access control layer

Shared displays

Fig. 1. System model

Applications communicate with the Access Control Layer to get access to
display areas. We assume that all applications can be unambiguously identi-
fied, e.g., by using Universally Unique Identifiers (UUID). Applications can be
deployed or removed dynamically during runtime. Moreover, the usage of the
displays by applications is restricted by the context of the car. For instance,
video playback is permitted only if the car is not in motion.

4 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

The Access Control Layer restricts access to the display surface. Since
there is no static mapping between applications and display areas, the mapping
is performed by the Access Control Layer. Before an application can access a
display area, it needs permission from the Access Control Layer, which manages
all permissions. All granted permissions are stored within the Access Control
Layer so that it is any time decidable if an application get access to a display
area or not.

2.2 Requirements

In the following, we present requirements targeting access control of the display
surface which need to be fulfilled to ensure safety in automotive HMI systems.

Req. 1 — Dynamic permissions: An application shall be allowed to access a
display area if and only if there exists a corresponding permission. A permission
shall be grantable and revokable during runtime of the system to meet the dif-
ferent demands of the applications which can be influenced by the status of the
car or traffic conditions.

Req. 2 — Priorities: Applications shall have priorities assigned. Priorities can
depend on importance, urgency, criticality, and legal requirements for displaying
graphical content (cf. [13], Req. 2.2 — Priority-based Displaying of Windows). If
multiple applications want to access the same display area, access shall depend
on their priorities.

Req. 3 — Safe access: Each pixel shall be mapped to exactly one application.

This requirement consists of the following two sub requirements.

Req. 3.1 — Exclusive access: Each pixel shall be mapped to at most one appli-
cation. Thus, an application that has access to a pixel is guaranteed to
be visible there. This effectively prevents competing access to display areas
caused by malicious or malfunctioning applications.

Req. 3.2 — Completeness: Each pixel shall be mapped to at least one applica-
tion. For each pixel there exists an application that has a permission to set
its content and can grant access to it, and dead pixels are avoided.

Req. 4 — Delegation: Also for the sake of flexibility, the OEM may pass usage
permissions for display areas to software development companies or even indi-
vidual developers, which can likewise pass usage permissions to others. Passing
usage permissions must happen in a way that the OEM can ensure to meet all
safety-relevant requirements without being a central certification authority for
all applications. Therefore, the applications must have priorities. For instance,
as depicted in Fig. 2, the OEM passes different usage permissions to Company 1.
Company 1 decides to pass a subset of its permissions to Company 2. Therefore,
the installation of third-party applications does not require the involvement of
the OEM if the applications are only permitted while the car is not in motion

Access Control Concept for Novel Automotive HMI Systems 5

and therefore cannot violate safety-relevant requirements. But this requires a
delegation relation between the parties for exchanging permissions.

OEM
Dep. 1 Dep. 2 Provides HMI base system
Sub- Defines interfaces
Contractor

Develops for

| Company 1 ‘ Sells certified navi SW
A

Develops for

| Company 2 ‘ Sells plugin for navi SW

Fig. 2. Example for software development hierarchy

A decentralized development process is commonly applied in today’s car in-
dustry, e.g., service-based software development [19]. This process involves differ-
ent departments of the OEM, sub-contractors, as well as third-party developers
like application developers for a (future) app store for vehicular apps. An possible
scenario is depicted in Figure 2.

In this scenario, the OEM software development is done by different depart-
ments and subcontractors. The OEM provides the HMI base system, interface
definitions, and certification policy. Company 1 is independent from the OEM
and sells navigation software which is compatible and certified for the OEM’s
HMI system. This navigation software uses display areas dedicated by the OEM
to display navigation information to the driver. Company 2 sells an application
that enhances the features of this navigation system. For instance, an applica-
tion could display relevant information about points of interest to the driver at
its current position.

As becomes obvious from this scenario, our system has to support the del-
egation of permissions to access display areas between the involved parties to
facilitate the decentralized development process. For instance, Company 1 should
be able to delegate a permission for part of its display area to Company 2 for
displaying the plugin content.

3 Access Control Model

In order to restrict access of applications to shared display areas, an access con-
trol layer is required. To guarantee safety, the access control layer must conform
to a well-defined mathematical model that fulfills the requirements of Sec. 2.1.
In this section we present our formal state-based model. We define the entities

6 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

Display Surface

*

Pixel Display Area
(Atomic Object) (Object)

Fig. 3. Entities: Pixels and display areas

and states of our model, the rules for the transitions to change states, and finally
present important properties of our system.

3.1 Entities

In general, an access control mechanism controls which subjects can access which
objects. In our context, subjects correspond to applications and objects to display
areas. A display area is defined as a set of pixels as depicted in Fig. 3. The smallest
area is one pixel corresponding to an atomic object. The complete display area
consists of all pixels and is called the display surface.

Definition 1. AO = {aoy,...,a0,} is a finite set of pixels (atomic objects). A
display area is a subset of the set of pixels, formally a display area o is an object
0 € O =P(AO)\ with O representing the set of all display areas.

Definition 2. S = {s1,...,s,} is a set of applications (subjects) with n > 1.

3.2 States

Each state of our model is represented by the currently valid permissions and
delegation relations. The delegation relationships that are defined between ap-
plications determine to which other applications a subset of a permission can be
passed.

Definition 3. A permission grants an application access to a certain display
area. Formally, P = P(S x O) represents the set of sets of permissions.
B ={f:S5 — PxP} maps to each application in S two sets of sets of permissions
(P x P) representing the permissions in P an application has received from other
applications and permissions in P it has granted to other applications.

Let b € B,s € S. The set
received(b, s) := {r|(r,g) € b(s)}

Access Control Concept for Novel Automotive HMI Systems 7

Received

Used

Granted

Fig. 4. Example for a set of received, granted, and used display areas of an application

denotes the set of permissions application s has received.
And the set

granted(b, s) := {g|(r,g) € b(s)}
denotes the set of permissions application s has granted. (s,0) € received(b, s)
indicates that application s’ has received the permission to access display area
o from application s. (s,0) € granted(b,s’) indicates that application s’ has
granted the permission to access display area o to application s.
The function

A(b, s) := U{o € 0|3s" € S: (s',0) € received(b, s)}

returns a union of sets of received display areas of an application in b.
The function

I'(b,s) := U{o € 0|3s' € S: (§',0) € granted(b, s)}

returns a union of sets of granted display areas of an application in b.
Permissions for display areas can be dynamically granted and revoked by
applications that have received a permission. If an application has granted a per-
mission, it can no longer set the graphical content for the display area contained
in that permission. However, it can at any time revoke the granted permission.

Definition 4. We distinguish between received permissions for display areas
and actually used display areas. A display area o is used by an application if it
is setting the graphical content of o. used : B x S — P(O) is a function which
returns the set of display areas used by an application.
Let 0 € O,s € S,b € B. We define o € used(b, s) &
3(8,6) € S x O :(8,06) € received(b, s) Ao C 6A (4.1)
V(s',0') € S x O:(s',0') € granted(b,s) = oNo = {} (4.2)
useda : B — P(O0) is a function which returns a set of all used objects
according to b. Let b € B. We define:

Qusea(d) = U{o € 0|3s € S: 0 € used(b,s)}

8 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

In Fig. 4 we depicted an example of the sets of received, granted, and used
display areas. A display area is in the set of used display areas of an application
if the following two conditions hold. Condition (4.1) states that the display area
needs to be in the set of received display areas and Condition (4.2) states that it
must not be granted to other applications. §2,5.4(b) is the union set of all pixels
in the sets of used display areas in b. The set @(b, s) := | Jused(b, s) denotes the
union set of all pixels in the sets of used display areas of an application s in b.

Definition 5. We define the transitive operator <, denoting whether an appli-
cation has granted a given display area to another application.
Let 5,58 € S;0€ O; b€ B. We define s <, s’ &

ds1,...,8, € S;301,...,0n_1 € O : (5.1)
s1=8ANsp=8AN0C 0p_1A (5.2)
Vi:l<i<mn:(s;o0;) € received(b, s;t1)A (5.3)
Vi:1<i<n—2:041 Co (5.4)

Let 5,8 € S. We define s #, s’ < Ao € O : s <, s Vs <,s. Thatis, if s <, &
then s has received o either directly from s’ or by using a chain of intermediate
applications, i.e., s depends on s’ according to o.

Definition 6. We map to each application the set of applications it wants to
delegate permissions to. This mapping is performed by a function dr € DR =
{f: S5 = P(S)}. Applications will only grant permissions to or receive permis-
sions from applications if they are in a delegation relation. Application s and §
are in a delegation relation if and only if s € dr(s) and § € dr(s).

The delegation relations correspond to the development hierarchy, cf. Sec. 2.1.
Hence, the delegation relationship between applications restricts the propagation
of permissions.

Delegation relations can be represented as a directed graph (delegation graph,
Fig. 5) in which each application can have multiple edges to other applications.
To support dynamic deployment of applications during runtime, applications are
allowed to dynamically declare which applications they want to be in a delegation
relation with.

Definition 7. A state consists of permissions and delegation relations between
applications. Formally, v € V is a state in V = B x DR.

3.3 Transitions

To support dynamic state changes our model supports transitions from one state
to another state using requests.

Definition 8. A transition uses a request to add or delete permissions or delega-
tion relations. The operation mode is determined by RA = {append, discard}.
The request to alter permissions consists of operation mode, grantor, grantee

Access Control Concept for Novel Automotive HMI Systems 9

and the display area; formally, RO = RA x S x S x O. The request to al-
ter delegation relations consists of operation mode and the two applications of

which the first wants to establish a delegation relation with the second; formally,
RD = RA x S x 5. The set of all possible requests is R = RO U RD.

S1

/Sl\‘ safety-critical
S2«—»S3) S2
AN -

S5«—S6 S4fEE ScEE seHEER

Delegation graph Permission dependency graph untrusted

Fig. 5. Example: Delegation graph and permission dependency graph

Definition 9. trans:V x R — V is a function which represents the transition
from one state to another state initiated by a request.

In the following, we define Rule 1 to describe how permissions can be changed,
and Rule 2 to describe how delegation relations can be changed using trans.

Rule 1. If application s’ wants to have a permission for display area o from
application s, this is expressed by the request r € RO with r = (append, s, s', 0).
If application s decides to grant the permissions, trans(v, r) is executed. In detail,
trans calls addg,(b, s, s’,0), which adds o to the set of granted permissions of s
and adds it to the set of received permissions of s'.

Formally, function adds, : B x S x S x O — B is defined as follows. Let
b,/ € B;s,s’ € S;0 € O. We define
b = addg(b,s,s',0) &

b'(s) = (received(b, s), granted(b, s) U {(s",0)})A (9.1.1)
b (s") = (received(b, s') U {(s,0)}, granted(b, s"))A (9.1.2)
[Vs3 € S\{s,s} : b'(s3) = b(s3)] (9.1.3)

An application s can revoke a permission for display area o from another ap-
plication s’. This is expressed by the request r € RO with r = (discard, s, s', 0).
In this case, trans calls dels, (b, s, ', 0), which removes o from the set of granted
permissions of s and removes it from the set of received permissions of s’. If s’ has
granted permissions that contain part of o, function del,, will recursively revoke
all these permissions. Formally, function dels, : B x S x S x O — B is defined

10 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

as follows. Let b,b’ € B;s,s" € S;0 € O. We define b/ = del,, (b, s,5",0) <
Vse S:§<,s=
received(b’, 8) = received(b, 5)\{(5,0") € S x Olo' Co A5 <y S}A
granted(V', §) = granted(b, $)\{(5,0") € S x Olo' CoA§ <y S}HA
b'(s) = (received(b, s), granted(b, s)\{(s",0)})A
Vs" € S\{s',s};Vo' € 0: 0 CoNns" #, 5Vs<,s" =(s")=b(s") (9.1.8)

In (9.1.5 — 6) all permissions with display areas that are part of display area o
are removed from the sets of granted and received permission if the applications
depend on application s (9.1.4). In (9.1.7) the permission which application s
granted to s’ is removed from the set of granted permissions of s. The sets of
permission of all applications that do not depend on s will not be changed (9.1.8).

Rule 2. The permission dependency graph based on granted permissions is a
sub graph of the delegation graph and, therefore, restricts granting of permis-
sions only between applications which are in a delegation relation. For instance,
in Fig. 5 application Sy is in a delegation relation with application S3 but no
permissions were granted between them. All applications which granted a per-
mission to other applications are in a delegation relation as depicted in the
delegation graph.
The set of delegation relations DR can also be changed by using transitions.
If application s wants to be in a delegation relation with application s, this
is expressed by the request r € RD with r = (append, s, s’). Then trans calls
addg,-(dr, s, s"), which adds the new relation s — s’ to dr.
Formally, Function addg,. : DR x S x S — DR is defined as follows.
Let dr,dr’ € DR;s,s’ € S. We define dr’ = addg,(dr, s, s’) <
dr'(s) =dr(s)U{s'} AVE € S: 8+ s=dr'(5) =dr(3) (9.2.1)
Similarly, if application s no longer wants to be in a delegation relation with
application s, this is expressed by the request r € RD with r = (append, s, s').
In this case, trans calls delg.(dr, s, s’), which removes the delegation relation
s — & from dr. Formally, function delg. : DR x S x S — DR is defined as
follows.
Let dr,dr’ € DR;s,s’ € S. We define dr’ = delg.(dr, s, s’) <
dr'(s) =dr(s)\{s'} AVS € S:5+#s=dr'(3) =dr(3) (9.2.2)
Next, we formally define trans using the two rules. Let v = (b,dr) € V; and
r € R with r = (ra, s, s’,0) € RO or r = (ra, s,s’) € RD. We define
(addso(b, s,8",0),dr) if cond; (R1.1)
(delso(b, s,8',0),dr) if condy ()
trans(v,r) = < (b, addg,(dr, s,s")) if conds (R2.1)
b, del g, (dr, s,s")) if condy ()
v otherwise

with

Access Control Concept for Novel Automotive HMI Systems 11

condi= r € RO Ara=append A\ s # s A
s'edr(s)Nse€dr(s)ANJo€ O :6€used(b,s) Ao oA
3(3,0) € granted(b,s') : 0 C 6

conds= r € RO Ara = discard N s # s N\
(s',0) € granted(b, s) A (s,0) € received(b, s”)

conds= r € RD Ara = append A s # s

condy= r € RD ANra=discard Ns # s AN\Yo€ O :s#, s

Condition cond; ensures that the application s and s’ are in a delegation rela-
tion. Furthermore, cond; prevents an application s’ from receiving a permission
for a display area which is part of a display area granted by s’, thus, preventing
cyclic grants. Additionally, application s can only grant a display area o to s’
if 0 is in its set of used objects. Condition conds ensures that the revoking of a
display area o only takes place if it previously was granted by application s to
s'.

The conditions conds and cond, reject self-referencing delegation relations, and
condy additionally ensures that if application s no longer wants to be in a dele-
gation relation with s, it must revoke or return all permissions granted between
s and s’ beforehand. If none of the conditions of Rule 1 and 2 is fulfilled, then
the state v does not change.

3.4 System Consistency

We define three properties that define the consistency of our system and corre-
spond directly to three requirements introduced in Sec 2.1. A system consists
of all possible sequences of requests and the sequence of all states starting from
initial state vgtqrt. States satisfying all properties are safe states and a sequence
of safe states is called safe state sequence. If all possible state sequences of a
system are safe state sequences, the system is called safe system.

Exclusive Access Property (EAP): In a state that satisfies EAP, each dis-
play area is used by at most one application. Let v = (b,dr) € V.
v satisfies EAP & Vs, s’ € S:s# s = &(b,s) NP(b,s") = 0.
The sets of used display areas of all applications are intersection-free. Therefore,
the setting of content of a display area is restricted in a way that no concurrent
writing or unintended overlapping is possible and Req. 3.1 is fulfilled.

Completeness Property (CP): In a state that satisfies CP, each pixel is used
by at least one application. Let v = (b,dr) € V.
v satisfies CP < (2,5.q4(b) = AO.
All pixels need to be in (2,,.4(b) which represents all pixels of all sets of used
display areas. This means, that the complete display surface is covered by dis-

12 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

play areas and assigned to at least one application and Req. 3.2 is fulfilled.

Delegation Property (DP): In a state that satisfies DP, permissions are only
granted between applications with according delegation relations. Let v =

(b,dr) € V.

v satisfies the DP <
Vs, s € S,Yoe O :s#s Ns<,s = (DP.1)
380, ., 8041 €5 180 = 8 A S = 8'A (DP.2)

Vi € {07 ,n} CNp:s; <o Sit1 N\ 8; € d/r(siJr]) N Sit1 € d’I“(SZ') (DP3)

Each application that received a permission is in a delegation relation with the
permission grantor (Req. 4). (DP.1) implies that for all applications which de-
pend on another application according to a display area a chain of applications
exists (DP.2) for which every application is in a delegation relation with its pre-
decessor and successor (DP.3).

Next, we give the formal definitions for the sequence of states and the system.
We first define I" C Ny as a finite set with I = {0,1,2,3,...,n}.

Definition 10. Operator > indicates whether an element is part of a sequence
of states. The set of sequences of states is a set of n-tuples and defined as X" =
{(®o, .oy iy ooy)|y € X N € I™ ANy = f(i) with f: " — X}

(20,21, ...,x,) € X" is a sequence with z¢ := zo € X, z; = 2} € X,...,
2n =2 € X. Let (z0, 1, ...,) € X1,

We define z = (zg,21,...,2,) & H € I" 1 z = a;.

Based on Def. 10, we next define the sequences of requests, the sequences of
states and a distinct mapping between these sequences by using transitions.

Definition 11. For a sequence of requests (1o, ...,7,—1) € RI"™ the sequence
of states generated by (rg, ..., 7n—1) is given as (vg, v1, ..., Vn) € VI" with

Vie 1"t v = trans(vi,r;).

Recall that a system is a sequence of requests and states initiated by vssqrt. The
operator > indicates whether a sequence of requests and states is part of it.

Definition 12. A system generated by vsiere € V is stated as ¥ (vsiart) C

R x vI". Let z, = (roy..eyTn—1) € Rlnfl, Ty = (Vg, ..., Up) € v,

We definee (., 2,) € ¥ (Vstart) < Vo = Vstart AV € I™"\{0} : v; = trans(vi_1,7;-1).

Let (v,7,v") € VX Rx V, vy € V we define (v,7,v") > ¥(vy) &
., € R, 3z, € VI, 3i € IM\{0} : (12.
(Tr,) ET(V0) AV; = Ty A Vi1 = Ty AT > Tp A (12.2
(v, 7/) = (Vi—1,7i-1,0;)- (12.

We define (v, r,v’) is part of a system if a sequence of requests and states (12.1

exists of which v, 7 and v" are part of (12.2) and furthermore a valid state tran-
sition from state v to state v’ by request r (12.3) exists.

Access Control Concept for Novel Automotive HMI Systems 13

In the following we use the properties EAP, CP and DP to define a safe
state, a safe state sequence and a safe system which consists only of safe state
sequences.

Definition 13. v € V is a safe state < v satisfies EAP and CP and DP.

(Vgy vovs V) € VI" is a safe state sequence < Vi € I"™ : v; is a safe state.

A system ¥ (vgqp) C VI x RI" with z, € RI"™" and Ty = (vg,...,vp) € VI is
a safe system < V(z,,2,) € U(vg) : Vstart = Vo A T, is a safe sequence.

4 System Verification

In this section, we verify our access control model against the requirements in
Sec. 2.1. Req. 1 and Req. 2 are direclty given by the model. A path in the
permission graph represents presentation priorities between the applications for
dedicated display areas. The properties defined in Sec. 3.4 correspond to Req. 3.1,
Req. 3.2 and Req. 4. While Req. 1 and Req. 2 are given by the way the model
is used, fulfilling Req. 3 and 4 are properties of which we have to proof that our
system fulfills them.

Next, we define three propositions that correspond to the properties and help
us to proof the safety of our model. Let v,v" ;v € V; o' = (b/,dr'); v = (b,dr)
and r € R.

Proposition 1: All sequences in ¥(vg) satisfy EAP for any vy which satisfies
EAP < V(u,1,v") € VX RXV : (v,r,0") > W(vg) = v,v’ satisfies EAP

Proposition 2: All sequences in ¥(vg) satisfy CP for any vy which satisfies CP
S V(u,rv) eV XRxV:(v,r,v) > W¥(v) = v,v satisfies CP

Proposition 3: All sequences in ¥(vy) satisfy DP for any vy which satisfies DP
< V(,rv") eV x RxV:(v,rv) > ¥(vy) = v,v satisfies DP

To proof the correctness of the propositions EAP, CP and DP, we define a lemma
for each of them. Furthermore, we define Lemma 1 and 2 for the similar proofs of
Lemma EAP and CP. Finally, we use complete induction over the system states
to proof the propositions. Due to space restrictions we only present the proof of
Lemma EAP. The proofs for Lemma 1, 2, CP and DP can be found in [14].

We first define Lemma 1, which states that after a transition using rule (R1.1)
with adds, (b, s,s’,0) the display area o has moved from the sets of used display
areas of application s to application s’.

Lemma 1: Let vg € V, ¥(vg) be a system and (v,7,0v") € V x R x V with
(v,7,0") > ¥(vg). Let v = (b,dr) satisfy EAP and ra = append and cond; =
trans(v,r) = (V/,dr) € V with ¥’ = add(b, s, s',0):

S, 5) =b(b,s)\o (L1.1)
Db, s") = D(b,s") U {o} (L1.2)

14 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

Proof for Lemma 1
We first show (L1.1): Let 6 € used(b,s) be the display area in (cond;) with
o C 6. We have to prove:

o LD, s) (i)
(6\o) C PV, s) (ii)
Due to 6N o = o, for (i) we only have to show that 6 € @(V', s) is true.

(i): Due to (9.1.1), we know (s',0) € granted(V', s) after a transition to state
v’. Since o C 6 is true, it is obviously that 6 N o = o # 0 follows. Hence the
condition in (4.2) is no longer valid for b which proves (¢). This means, all
subsets of 6 are not in the set of used display areas of application s in '

(ii): To prove statement (i7) we have to show that display area (6\o) fulfills the
condition of Def. 4. Therefore we prove the following two conditions:

(0\o) C A(l',) (a)

(d\o)NI(V,5) =0 (b)
(a): Due to 6 C ®(b, s), we know 6 C A(b, s). After a transition with add,, to
v’ we conclude with (9.1.1) A(b,s) = A(Y, s). Hence, (6\o) C 6 C A(b,s) =
A(V', s) and therefore (a) is true.
(b): We know that 6 € used(b, s) is true. Since we assume EAP is statis-
fied in v = (b,dr) we conclude 6 N I'(b,s) = 0. With (9.1.1) we conclude
(b, s) = I'(b, s) Uo and therefore (b) is true in state v’.

(6\o) N (V' s) = (6\o) N (I'(b,s) Uo) (9.1.1)
= ((8\o) N (I'(b, 5))) U ((6\0) N o) (Distr. law)
=0QuU((6\o)No) (6N I'(b,s)=0)

0

Therefore, we conclude statement (ii) (6\o) C @(¥, s).
We show (L1.2): We need to prove that the display area o fulfills the conditions
of Def. 4 for b'. Therefore we show in a similar approach like in the proof of L1.1
that the following two conditions are satisfied:
0o C AV, (i)
onI'(,s)=10 (ii)
(i): We directly follow received(V', s') = received(b, s") U{o} due to (9.1.2).
(ii): We know that I'(b,s) No = @ is valid in b. We conclude I'(b,s’) No = 0
from the following: We assume I'(b,s’) N o # () and conclude o C A(b, s")
which leads to I'(b, s) Mo # 0. But this is in contradiction to I'(b,s’)No = .
Hence, I'(b,s")No = (is valid. With (9.1.2) we know I'(V/,s’) = I'(h, s') and
we conclude I'(V/,s")No = I'(b,s") = BNo. The sets of granted and received
display areas of all other applications are unmodified due to (9.1.3).
Hence, the conditions of Def. 4 and therefore (L1.2) are satisfied. O

The following Lemma 2 says that after a transition using rule (R1.2) with dels,
each display area o’ which is a subset of the display area o moves from the set of

Access Control Concept for Novel Automotive HMI Systems 15

used display areas of the according application to the set of used display areas
of application s. Hence, a previously granted display area can be revoked to be
able to set the content of this display area.

Lemma 2: Let vg € V, ¥(vg) be a system and (v,r,v') € V x R x V with
(v,7,0") > W(vg). Let v = (b, dr) satisfies EAP and ra = discard and conds =
trans(v,r) = (b',dr) € V with b’ = dels,(b, s, s, 0):

Vs € S\{s} : used(V',3) = used(b,5)\{0’ € Olo' CoAs <, s} (L2.1)

P(b',s) = b(b,s)Uo (L2.2)

Proof for Lemma 2
We first prove (L2.1): Let s # s’ and state v satisfies EAP. In function dels,
(9.1.4 - 8) all display areas o’ which are a subset of o are removed from the sets
of received display areas of all applications depending on s according to o’. We
follow Vs € S\{s} : A(V',8) = A(b,8)\U{0’ € Olo’ C oA § <, s}. This means,
(4.1) is violated and the display area o’ is no longer in the set of used display
areas of the according applications. Hence, we can directly conclude statement
(L2.1).
We proof (L2.2): Due to (R1.2), we know (s’,0) € granted(b,s) which leads
to o C A(b,s). Hence, (4.1) is satisfied. With (9.1.7) we conclude I'(V/,s) =
I'(b, s)\o. Next, we show o N I'(V/, s) = 0, which means (4.2) is satisfied:

oNIY,s)=o0n(L'(b,s)\o) (7.4)
=(onI'(b,s))\(oNo) (Distr. law)
=(onT'(b,s))\o
=0 (since oN I'(b,s) C o)

We conclude statement (L2.2). O

Lemma 1 and 2 say that a transition applying an adds, or a dels, operation do
not modify the united set of used display areas of all applications.

Next, we define the Lemma EAP which states that a transition from a state
which satisfies EAP will always end in a state which also satisfies EAP.

Lemma EAP: Let vy € V, ¥(vp) be a system and (v,7,v') € V x R x V with
(v,7,0") > ¥ (vg). v = (b, dr) satisfies EAP = o' = (V/, dr’) satisfies EAP.

Proof for Lemma EAP

According to Def. 9, the request r is in RO or in RD. The case r € RD is trivial,
since b’ = b due to v = v’ (Def. 9 Rule 2). Hence, changes in dr are not relevant
in Lemma EAP. In case r = (ra, s, s’,0) € RO, we have to consider the following
three subcases:

(R1.1): Let ra = append and cond; be fulfilled. It follows trans(v,r) = (¥, dr) €
V with b = adds (b, s, s’,0). The set of permissions and used display areas
of all applications beside s and s’ do not change in v’ (9.1.3). Hence, V3 €
S\{s,s'} : (used(V',3) = used(b,5)) due to b'(8) = b(3). This means we
only have to prove EAP in v’ for s and s’. Therefore we show the following

16 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

statements:
S, s)NdW,s") =10 (i)
Ve S\{s,s'}: d(b,s)NdH,3) =0 (ii)
Vs e S\{s,s'}: ', s)NdH,3) =10 (iii)

We prove the statements (i), (ii) and (iii) by using Lemma 1 and 2.

= (&(b, s)\o) NPV, s") (L1.1)
= (®(b, s)\o) N (P(b,s") Uo) (L1.2)
= ((®(b, 5)\o) NP(b,s")) U ((@(b,s) No)\(oNo)) (Distr. law)
= ((D(b,s)\o) NB(b,s")) U (0\o) (R1.1)
— (@(b,5)\0) N B(b, 5))
= (D(b,s) NP(b,s"))\(oNP(b,s")) (Distr. law)
=P\(oN®(b,s")) (EAP)
=0
(ii): Let s” € S\{s, s’} be arbitrary. Then the following is valid:
Db, s) NP, s") = (P(b,s)\o) NBW,s") (L1.1)
= (®(b,s)\o) NP(b,s") (9.1.3)
= (P(b, s)\@(b,s"))\(oN®(b,s")) (Distr. law)
=0M\(oN®(b,s")) (EAP)
=0
(iii): Let s” € S\{s, s’} be arbitrary. Then the following is valid:
S, s") NP, s") = (P(b,s)\o) NP, s") (L1.2)
= (®(b, s")\o) N B (b, s") (9.1.3)
= (&(b, s")\®(b,s")) U (oN®(b,s")) (Distr. law)
=0U(oN®(b,s")) (EAP)

(R1.2): Let ra = discard and conds be satisfied. Hence, trans(v,r) = (b, dr) €
V with b = delso(b, 8, 5,0). In this case, we have to consider those applica-
tions which are in relation according to a display area o’ C o (9.1.8). We know
with (L2.1) that the following is satisfied: V§ € S\{s} : &(V/,3) C &(b, 3).
Since state v is satisfying EAP we only have to prove EAP for the applica-
tions s and s’ in state v’. The proof for this case is similar to the first case.
This means, we have to prove the following:

o, s)NB,s") =0 (i)
Vs e S\{s,s'}: Bl ,s)NBV,35) =0 (ii)
Vs e S\{s,s'}: W,)NPW,5) =0 (iii)

Access Control Concept for Novel Automotive HMI Systems 17

The proofs for (i), (ii) and (iii) are similar to the case (R1.1).

(i): (', s") NPV, s)
= (®(b, s")\o) N BV, s) (L2.1)
= (&(b, s")\o) N (@(b, s) U o) (L2.2)
= ((@(b,s")\o) NP(b, s)) U ((®(b,s") No)\(oNo)) (Distr. law)
= ((2(b,s")\o) N @(b, 5)) U ((P(b,5") N0)\o)
= ((@(b,s')\o) N @(b, 5)) (@(b,5") o) € o)
= (@(b, s") N B(b, s))\(®(b,s) No) (Distr. law)
= \(2(b,s) N o) (EAP)
=0
(ii): Let § € S\{s, s’} be arbitrary then the following is valid:
Db, s)NB(, 5) = (B(b,s)\o) ND(V, 3) (L2.2)
= (®(b,s)\o) ND(b, §) (9.1.8)
= (P(b, s)\D(b, 8))\ (0N P(b, 3)) (Distr. law)
=M\ (oN®(b,3)) (EAP)
=0

(iii): Let § € S\{s, s’} be arbitrary then the following is valid:

Db, sy Nd,5) = (P(b,s')\o) NPV, 35) (L1.2)
= (D(b, s")\o) N B(b, 3) (9.1.8)
= (®(b,s")\@(b,3)) U (oNP(b,3)) (Distr. law)

—0U (0N (b, 8)) (EAP)

pu
0

(otherwise): Since v satisfies EAP and v’ = v then v’ also satisfies EAP. [

sThe following Lemma CP states that a transition from a state which satisfies
CP and EAP will always end in a state which also satisfies CP.

Lemma CP: Let vy € V, ¥(vg) be a system with (v,r,v") € V x R x V and
(v,7,0") > W(vg): v = (b, dr) satisfies CP and EAP = o' = (V/, dr’) satisfies CP.

Proof for Lemma CP: Let 2,5.4(b) = AO. We show (2,5cq4(0') = AO. The
request r is either in RD or in RO (Def. 9). The case r € RD is trivial, since
b = b due to v =o' (Def. 9 Rule 2), and dr does not affect Lemma CP. Let
r=(ra,s,s',0) € RO.

With {0 € O|3s € S : 0 € used(b, s)} = {0€0|Fs €S :0€cused,s)} *)

18 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

we conclude:
AO = 2yseq(b)
= U{o € 0|3s € S: 0 € used(b,s)}
= U{o € 0|3s € S:0€used(t,s)}

- Qused(b/)

Hence, we only need to prove the proposition (*). Therefore, we show that the

union of the sets of used display areas does not change if a transition is applied.

Three cases have to be considered.

(R1.1): Let ra = append and condy be fulfilled. It follows trans(v,r) = (¥, dr)
with b/ = adds (b, s, ', 0). Therefore, the following is valid: V§ € S\{s,s'} :
&b, §) = P(b', 8). The sets of used display areas are trivially equal. Hence,
we need to prove the following: &(b,s) UP(b,s") = &V, s) UP(V, s).

B, s) U, s') = (B(b, s)\o) UB(W, s (L1.1)
= ((b,5)\o) U (&(b, s") Uo) (L2.1)
= ((2(b,5)\0) U (2(b,s")) U ((2(b,s)\o) Uo) (Distr. law)
= ((2(b,5)\o) U (2(b, s")) U D(b, 5)
= 9(b,s) U ((2(b, 5)\0) UD(b,s")) (Com. law)
= (9(b, s) U (2(b, 5)\o) UD(b, ")) (Ass. law)

= &(b,s) UD(b,s")

Hence, the union of the sets of used display areas is in b and b’ equal.
(R1.2): Let ra = discard and conds be fulfilled.

V3e S :®(b,s)Ud(b,3) =P, s)Ud(,3) (**)
Let s” € S be arbitrary and o” := U{0’ € O|o' C oA s" <o s}.

We conclude: &V, s") U PV, s)
= (&(b, s")\o")UBW,s) (L2.1)
= (@(b, s")\0") U (®(b,s) Uo) (L2.2)
= ((®(b, s")\o" Y UB(b,s)) U ((P(b,s")\0") U o) (Distr. law)
= ((®(b,s")\0")Ud(b,s)) U ((®(b,s")Uo)\(0" Uo)) (Distr. law)
= ((®(b,s")\0") UD(b,s)) Ud(b,s") 0" Co
=@(b,s")U ((®(b,s")\0") UD(b,s")) (Com. law)
= (D(b,s") U (D(b,s")\0")) UB(b,s) (Ass. law)

= &(b,s")UD(b,s)
(otherwise): Since v satisfies CP and v = v then v’ also satisfies CP. O

The Lemma DP states that a transition from a state which satisfies DP will
always end in a state which also satisfies DP.

Lemma DP: Let ¥(vy) be a system and vy € V which satisfies DP. Let
(v,7,0") € V x R x V with (v,7,v") > W(vg): v satiesfies DP = v satiesfies

Access Control Concept for Novel Automotive HMI Systems 19

DP.

Proof for Lemma DP: We prove this lemma using a proof by contradiction.

Let s, € S;0 € O, s # s'. We assume state v = (b, dr) satisfies DP but state

v' = (b, dr’) does not satisfies DP.

Therefore, we consider the two possible cases in which DP can be violated.

(1) Permissions are granted between applications which are not in a delegation
relation (R1.1)

(2) The delegation relation between applications was removed but they still have
permissions granted between each other (R1.2).

Hence, we have to consider (R1.1) and (R1.2).

We first show (1): Let w.l.o.g. the application s be granting a permission for dis-
play area o. Since in state v’ DP is not satified the following is valid: I"(V/, s) N
AW ,s) # 0 and s & dr(s’) or s’ & dr(s). Due to (R1.1) we know that the
transition trans(v,r) = v’ with rule ' = adds,(b, s,s’,0) will not be applied
since cond; is not satified. Hence, b = b’ is valid. This means, that the following
have to be valid: @ # I'(t/,s) N AV, s") = I'(b,s) N A(b,s"). But s & dr(s’) or
s' & dr(s) does not satisfy DP in state v which contradicts our assumption.

We show (2): Let i,j € I and s,5,s1,...55,...5; € S with s <, 51 <5 ... <o
8j <o - <o Six1 <o §'. Let w.lo.g. application s; remove the delegation relation
to application s,41 from its set. State v' does not satiesfies CP and the following
is valid: I'(b, s)NA(b, s") # 0 and s,41 & dr’(s;). Due to (R2.2) we know that the
transition trans(v,r) = v’ with rule dr’ = delg,.(dr, s, s") will not be applied since
condy is not satified. But state v does not satiesfies DP due to I'(b, s)NA(b, ") # 0
and sj41 & dr'(s;) = dr(s;) which contradicts our assumption. [

Finally, we proof Proposition 1, 2 and 3 by complete induction.

Let (zr, 2y) € ¥(Vstart) with 2. = (19, ..., Tn—1) € RInfl7 T, = (vg,...,vp) € V1",
We define vy = vgtqr+ as a initial state and generates the states in x, by using
our transition: Vi € I"\{0} : v; = trans(v;_1,7;—1). The state vy satisfies CP,
EAP and DP. Let Vi € I™\{0} : (vi—1,7i—1,v;) > ¥(vp) according to Def. 12.3.
Base: vg satisfies CP, EAP and DP. With v; = trans(vg,ro) we conclude vq
satisfies CP, EAP and DP according to Lemma EAP, CP and DP.

Induction hypothesis: v; satisfies CP, EAP and DP.

Induction step: Let v; satisfy CP, EAP and DP. From the Lemmas CP, EAP
and DP follows with v;11 = trans(v;, r;) satisfies CP, EAP and DP. [

5 Implementation

We have created a proof-of-concept implementation which demonstrates the
feasibility to implement our access control system. The system architecture of
our Linux-based implementation is depicted in Fig. 6. We deployed our imple-
mentation in the cockpit demonstrator depicted in Fig. 7. The demonstrator

20 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

_ Appl || App2 | | App3 |
| Communication layer \

Access Control .
Window Manager

Access control layer

\ Compositing \

Displays \

Fig. 6. Implemented architecture

uses two automotive 12" displays each with a resolution of 1440 x 540 pixels
which are connected to an embedded i.MX6 platform from Freescale. We also
connected the steering wheel buttons and the central control knob which are
used to control the applications.

Next, we describe the components of our demonstrator. We use different typ-
ical IC and HU applications, e.g., speedometer, check engine indicator, phone,
and navigation software. We implemented a client API for access control man-
agement and window management that can be used by the applications to inter-
act with the Access Control Manager (ACM) and the Window Manager
(WM). The applications do not directly communicate with each other for per-
mission exchange and do not know all applications currently displaying windows.
Requests and responses for permission exchange are complete managed by the
ACM as a mediator. Each application has an unique id and optionally an appli-
cation class (e.g., an application class for indicators).

Fig. 7. Cockpit demonstrator

The Communication Layer provides session-based fifo communication be-
tween applications, ACM and WM. The ACM is the access control unit that per-

Access Control Concept for Novel Automotive HMI Systems 21

forms access decisions in the access control layer. Each application is connected
to the ACM and can send requests which the ACM forwards to the application
specified in the request. If the receiving application wants to grant a permission
to the requesting application, it sends it to the ACM. The ACM checks the valid-
ity, updates its permission mapping tables and notifies the client. A permission
is only valid if it can be derived from a root permission by a chain of grants.
The root permission covers the whole display surface and is initialized by the
ACM at startup of the system. If an applications want to grant a permission in
response to a request the ACM first checks the validity of the permissions. This
means, permissions will only be forwarded if the granting application has the
according permissions. If the permissions are valid the ACM stores them locally
and transmits the permissions to the intended application. Hence, the ACM has
always a consistent view of all granted permissions and can ensure consistency
by preventing invalid permission exchanges. Each display area is defined by the
position and size. A permission depends on another permission if the rectangu-
lar area is completely included in the rectangular area of the other permission.
Each application has a set of XML files which contain the application IDs or
application class IDs of the applications they want to be in a delegation relation
with.

The WM is responsible for creating, destroying and positioning of windows.
Applications that want to create or move a window send a request to the WM.
The WM checks by calling the ACM if the request matches existing permissions
of the according application and initiates the creating or moving of the window
by interacting then performs respective API calls to the compositing layer. Oth-
erwise the WM rejects the request. Windows will be deleted on behalf of the
according application but also if the necessary permission for the windows is
revoked. Each time the WM applies changes to windows it updates the screen
by initiating in the compositing layer the respective API call for the affected
windows.

Our proof-of-concept implementation of the compositing layer uses X11
with Mesa 8.01 for compositing. The WM is the only process that can access
X11. for creating, destroying, and mapping of windows. The X-server creates a
window on WM request and sends back the windowID which the WM forwards to
the applications. Applications send configuration messages (e.g., eglCreateWin-
dowSurface for mapping a 3D surface to the window) to the WM instead of
X11. Since the X-server lacks suitable security mechanisms the interception of
the communication by the WM is necessary to prevent security issues like resiz-
ing of windows by any application [8].

Implemented Scenarios

Next, we describe two scenarios in our proof-of-concept implementation where
an application uses—depending on the current state—either a display area on
the IC display, the HU display, or no display area.

In the first scenario we describe the granting and revoking of permissions to
display a media application. The required request-response calls are depicted in

22 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

events IC HU WM Media

Car is parking grantperm_1 | conqnerm 1
P P =

P

Y

Button pressed | grant perm_2

P

A 4

send perm_2

<

revoke perm_1

. | delete perm_1
»

A 4

grantperm_2 | send perm_2
P

v

Caris mOVing‘ revoke perm_2
>

A 4

delete perm_2 N
delete perm_2 4

hl

 / / \/ \J

Fig. 8. Sequence of operations for scenario 1

Fig. 8. If the car reaches parking position, the HU application detects that state
change and grants the HU display area (message “grant perm_17) to the (yet
hidden) media application which plays a video after receiving the permission
from the WM (message “send perm_1”). In order to playback videos on the IC
display, we implemented a button at the IC which switches the assigned display
area between IC and HU display. If the user presses this button, the IC grants
a permissions for the IC display to the HU (message “grant perm_27). The
HU passes this permissions to the media application (message “grant perm 2”)
and revokes the previously granted permission (message “revoke perm _1”). The
WM deletes the previously granted permission (message “delete perm_ 17), sends
the new permission (message “send perm_2”) and updates the location of the
media player window, which then will be visible on the IC display according to
the permission. As soon as the car starts moving again, the IC will revoke the
granted permission from the IC (message “revoke perm_ 2”); which automatically
revokes the IC permission from the media player making the video disappear
immediately (message “delete perm_ 2”).

In the second scenario we describe the pro-active granting of a permission
to display a warning. In particular, we assume the car is using adaptive cruise
control system that uses radar to monitor the distance to the next object (e.g.,
another vehicle) in front of the car. Initially, the application Trip Computer re-
quests access to the IC display (message “request access”). After receiving the
request forwarded by the WM the IC grants a permission to the Trip Computer
(message “grant perm_ 1”). Next the Trip Computer receivs the permission from
the WM (message “send perm_17) and displays information about average fuel
consumption or traveled distance. This state persists until the adaptive cruise
control system detects that the distance to the vehicle in front is falling below
the safety threshold. Thus, the event “Emergency brake” is immediately signaled
to the IC and the application Warning and Information Manager (WIM) gets a

Access Control Concept for Novel Automotive HMI Systems 23

events IC WM WIM Trip

request access request access

grantperm_1 | send perm_1
g

»
P

Emergency brake | revoke perm_1 | delete perm_1
Ll L =

A 4

grantperm_2 [send perm_2
g

\/ \/ \/ \/

Fig. 9. Sequence of operations for scenario 2

permission pro-actively granted by the IC (message “grant perm_ 2”), i.e., with-
out a request initiated by the WIM. Therefore, the IC automatically revokes the
permission for the according display area (message “revoke perm 1”) which cur-
rently is used by the application Trip Computer and therefore will be deleted by
the WM (message “delete perm_17). The WIM immediately displays the warn-
ing “Please brake” as soon as it receives the permission from the WM (message
“send perm_2"). This event-driven assignment of permissions helps to reduce
the latency for granting permissions.

6 Related Work

So far, there exists no fine-grained access control for displays or graphics re-
sources. Feske et al. provide a concept for overlay management [10] of appli-
cation windows executed in different virtual machines and a minimized secure
graphical user interface called Nitpicker [11] with focus on low-level mechanisms
to address security issues caused by spyware or Trojan horses. Hansen proposes
a display system called Blink [15] which allows multiplexing of graphical content
from different virtual machines onto a single GPU in a safe manner. However,
both related works neglect any restriction in window management and consider
the user as the supervisor for window placement. Similarly, Epstein et al. address
security issues in the X-server [8] and propose mechanisms [7] to prevent them.

Protection of shared resources by using access control has been researched
almost since the beginnings of operating systems [20]. Although later work (e.g.,
[22]) is based on hierarchical permissions, related work does not support priority-
based access control using hierarchical granting and revoking of permissions.
Birget et al. [5] unifies a user and a resource hierarchy based on access relations
into a single one which simplifies access control management but this technique
is only applicable when the system changes slowly.

Our model is a state-based system similar to the Bell and LaPadula model
(BLP) [4]. BLP also defines a state machine for enforcing access control and
uses an access control matrix for restricting access to data in order to provide
confidentiality of information. However, BLP does neither prevent concurrent

24 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

access nor allow flexible granting of permission by subjects. Related work based
on the BLP is provided by [21] which extended the BLP for access control in
hierarchical organizations but only targets on the information flow and not on
permission granting with exclusive access.

7 Summary and Future Work

In this paper, we presented an access control model which can be used for safety-
critical automotive HMI systems. Our model supports hierarchical granting of
display permissions and allows applications to be dynamically added and re-
moved during runtime without modifying the access control layer. We proofed
the correctness of our model and showed that it fulfills all the requirements we
consider to be relevant for safe automotive HMI systems. Finally, we described
our proof-of-concept implementation showing its feasibility in an automotive
cockpit demonstrator. In future work we want to extend our access control model
for context handling and constraints. Additionally, we want to improve our im-
plementation by using native hardware accelerated window compositing without
the X-server. Furthermore we want to evaluate the overhead and the timing paths
of our implementation.

Acknowledgment This paper has been supported in part by the Automotive,
Railway and Avionics Multicore Systems (ARAMIS) project under the research
grant of the German Federal Ministry of Research and Education (BMBF),
project number 01IS11035R.

Bibliography
[1] Mercedes-Benz integration of iPhone App
in A-Class. http://www.iphone-ticker.de/

mercedes-benz-iphone-integration-a-klasse-30952/ (2013)

[2] New Version of QNX CAR Platform... http://www.qnx.com/news/pr_
5602_1.html (Jun 2013)

[3] AAM: Statement of Principles, Criteria and Verification Procedures on
Driver Interactions with Advanced In-Vehicle Information and Communi-
cation Systems. Alliance of Automotive Manufacturers (July 2006)

[4] Bell, D.E., Lapadula, L.J.: Secure Computer System: Unified Exposition
and MULTICS Interpretation. Tech. Rep. ESD-TR-75-306, The MITRE
Corporation (1976)

[5] Birget, J.C., Zou, X., Noubir, G., Ramamurthy, B.: Hierarchy-based access
control in distributed environments. In: In IEEE International Conference
on Communications (ICC01). vol. 1, pp. 229 —233

[6] Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42-52 (April 2009)

Access Control Concept for Novel Automotive HMI Systems 25

[7] Epstein, J., McHugh, J., Pascale, R., Orman, H., Benson, G., Martin, C.,
Marmor-Squires, A., Danner, B., Branstad, M.: A prototype b3 trusted
x window system. In: Proceedings of the 7th Annual Computer Security
Applications Conference. pp. 44-55 (Dec 1991)

[8] Epstein, J., Picciotto, J.: Trusting X: Issues in building Trusted X window
systems — or — what’s not trusted about X. In: Proc. of the 14th National
Computer Security Conference. vol. 1. National Institute of Standards and
Technology, National Computer Security Center (Oct 1991)

[9] ESOP: On safe and efficient in-vehicle information and communication sys-
tems: update of the European Statement of Principles on human-machine
interface. Commission of the European Communities (2008)

[10] Feske, N., Helmuth, C.: Overlay window management: User interaction with
multiple security domains (2004)

[11] Feske, N., Helmuth, C.: A Nitpicker’s guide to a minimal-complexity secure
GUI. In: Proceedings of the 21st Computer Security Applications Confer-
ence. pp. 85-94 (Dec 2005)

[12] Ford: Software development kit (sdk). https://developer.ford.com/
develop/openxc/ (Feb 2013)

[13] Gansel, S., Schnitzer, S., Diirr, F., Rothermel, K., Maihofer, C.: Towards
Virtualization Concepts for Novel Automotive HMI Systems. In: Proceed-
ings of IESS. IFIP LNCS, Springer Berlin Heidelberg (2013)

[14] Gansel, S., Schnitzer, S., Gilbeau-Hammoud, A., Friesen, V., Diur, F.,
Rothermel, K., Maihofer, C.: An Access Control Concept for Novel Au-
tomotive HMI Systems. Tech. Report 2013/02, University of Stuttgart,
IPVS, Germany (July 2013), http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-02

[15] Hansen, J.G.: Blink: Advanced Display Multiplexing for Virtualized Appli-
cations. In: Proceedings of the 17th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV).
pp- 15-20 (2007)

[16] ISO 26262: Road vehicles — Functional Safety. ISO, Geneva, Switzerland
(Nov 2011)

[17] JAMA: Guideline for In-vehicle Display Systems — Version 3.0. Japan Au-
tomobile Manufacturers Association (Aug 2004)

[18] Janker, H.: Strafenverkehrsrecht: StVG, StVO, StVZO, Fahrzeug-Zulas-
sungsVO, Fahrerlaubnis-VO, Verkehrszeichen, Bufigeldkatalog. C.H. Beck

2011

[19] ﬁirﬁggr, I.H., Nelson, E.C., Prasad, K.V.: Service-Based Software Devel-
opment for Automotive Applications. In: Proceedings of the CONVER-
GENCE 2004. Convergence Transportation Electronics Association (Jan
2004

[20] Laumg)son7 B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18-24 (Jan
1974

[21] Wanz{, J., Zhou, L., Tan, C.: A blp-based model for hierarchical orgniza-
tions. In: Proceedings of the 2009 Second International Workshop on Com-
puter Science and Engineering - Volume 01. pp. 456-459. IWCSE 09, IEEE
Computer Societyl, Washington, DC, USA (2009)

26 Gansel, Schnitzer, Gilbeau-Hammoud, Friesen, Diirr et al.

[22] Wilde, E., Nabholz, N.: Access control for shared resources. In: Proceedings
of the International Conference on Computational Intelligence for Mod-
elling, Control and Automation and International Conference on Intelli-
gent Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-
TAWTIC’06) - Volume 01. pp. 256-250. CIMCA ’05, IEEE Computer Soci-
ety, Washington, DC, USA (2005)

