

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

CR: D.2.2

Institut für Architektur von
Anwendungssystemen

 Universitätsstraße 38
70569 Stuttgart
Germany

Modeling Choreographies using the
BPEL4Chor Designer: an Evaluation Based

on Case Studies

Andreas Weiß, Vasilios Andrikopoulos,
Santiago Gómez Sáez, Dimka Karastoyanova,

Karolina Vukojevic-Haupt

Report 2013/03

Modeling Choreographies using the BPEL4Chor Designer 2

Contents
1 Introduction 3

2 Modeling Choreographies with the BPEL4Chor: Overall Approach 3

3 BPEL4Chor 4

4 The BPEL4Chor Designer 7
4.1 Modeling With the BPEL4Chor Designer 8

4.1.1 Taxi Application Scenario . 8
4.1.2 FlexiBus Scenario . 11

4.2 State Of The Implementation . 12
4.3 BPEL4Chor Designer: Evaluation Findings 13

5 Transformation Steps 14
5.1 High-Level Architecture . 14
5.2 Transformation From Chor Model to BPEL4Chor 15
5.3 Transformation From BPEL4Chor To Abstract BPEL 16
5.4 Basic Executable Completion . 17
5.5 Transformation Steps: Evaluation Findings 18

6 Manual Refinement 20

7 Conclusion 21

Modeling Choreographies using the BPEL4Chor Designer 3

1 Introduction
This Technical Report shows a tool for modeling complex systems and it evaluation in
the scope of case studies. The tool supports a top-down approach for modeling systems
as choreographies in BPEL4Chor [DKLW07], [DKLW09], which can be transformed
into executable BPEL processes and be executed on BPEL engines. The approach
allows for a distributed enactment of a choreography. The approach has been introduced
in [DKLW09]. The focus of this work is to demonstrate capabilities of the choreography
modeling tool BPEL4Chor Designer, developed in the scope of our research work.

For this purpose we use two scenarios: the Taxi Application scenario [Hag11] depicted
in Figure 4 and a scenario from the field of Smart Transportation, the FlexiBus scenario1.

The remainder of this Technical Report is structured as follows: Section 2 shows an
overview of the approach. Section 3 reviews the choreography language BPEL4Chor.
In Section 4 the modeling of choreographies with our choreography editor is discussed
and the state of the current implementation is analyzed. The transformations that
are necessary to create executable processes for the participants of a choreography are
covered in Section 5. In Section 6, we show by example how the generated processes can
be refined manually with further non-communication process logic. Finally, in Section 7
we sum up the Technical Report and draw a conclusion.

2 Modeling Choreographies with the BPEL4Chor:
Overall Approach

Figure 1 shows the steps of the overall approach starting with the domain problem
definition and producing the executable processes in BPEL as a last step, as it was
introduced by [DKLW09]. We assume that the domain problem description exists
as plain text or a graphical process modeling language such as BPMN2. The domain
problem is then modeled as a choreography using our Eclipsed-based choreography
editor, the BPEL4Chor Designer [Son13] . The choreography model is an instance of
the editor’s choreography meta-model.

After modeling with the graphical choreography editor, described later in section
4, the choreography model can be transformed automatically into the choreography
language BPEL4Chor [DKLW07], [DKLW09]. The generated BPEL4Chor artifacts
can be used in a second transformation step to generate abstract BPEL processes and
WSDL files. These WSDL files contain the technical information about the interfaces
between the participants, i.e the port types, operations, messages, and partner links.
Each previously modeled participant is transformed into exactly one abstract BPEL
process. The abstract BPEL processes are input for the basic executable completion

1http://www.allow-ensembles.eu/
2http://www.bpmn.org/

Modeling Choreographies using the BPEL4Chor Designer 4

Domain problem
described as text or

BPMN diagram

Abstract BPEL processes
with references to WSDL

definitions

Participant Topology

Participant
Behavior

Descriptions
Participant Grounding

BPEL4Chor Description

Choreography described
by

choreography editor
meta-model

Executable BPEL
processes

Basic Executable

Completion

Automatic

Transformation

WSDL Definitions

Automatic

Transformation

Manual modeling with

choreography editor

Refined executable BPEL
processes

Manual Refinement

Figure 1: From a domain problem to executable BPEL processes. Adapted from:
[DKLW09]

step, which transforms the abstract processes into executables ones. They can then be
refined manually with the necessary domain logic that is not part of the communication
behavior of the participants.

3 BPEL4Chor
BPEL4Chor [DKLW07] is a choreography language forming an additional layer on top
of the BPEL standard [OAS07]. Whereas BPEL aims for orchestrating Web Services,
BPEL4Chor specifies choreographies of orchestrated services, i.e. choreographies of
workflows. The language follows the so-called interconnected interface behavior model
approach. This approach avoids issues of locally unenforceable behavior that languages
following the interaction model approach have. Interaction models comprise of request
and request-response messages exchanges as basic interactions that can be grouped into
more complex ones while behavioral dependencies are described between them. The
dependencies are defined from a global perspective but possibly cannot be enforced.
An example would be the sending of messages that depend on the sending of other

Modeling Choreographies using the BPEL4Chor Designer 5

messages but it is left unspecified how the current sender can learn of the previous
messages. Additional synchronization messages must be used to overcome this problem.
The interconnected interface behavior models, e.g. BPMN and BPEL4Chor on the
other hand prevent these issues by specifying the control flow of every participant.
Nevertheless, deadlocks could arrive when a participant waits for a message from another
participant in order to proceed but the message never arrives. Timeout mechanisms
must be present to avoid deadlocks.

Figure 2 shows the artifacts the language consists of. The Participant Behavior
Descriptions (PDB) use abstract BPEL processes to specify the communication behavior
of choreography participants. Only activities that are allowed according to the Abstract
Process Profile for Observable Behavior [OAS07] specified by the BPEL standard must
be used for the description of the communication behavior. Furthermore, BPEL4Chor
forbids partnerLink, portType and operation attributes. This helps to achieve the goal
of decoupling the PBDs and the description of the message exchange from a concrete
technical realization.

The structural aspects of a choreography are captured in the Participant Topology.
It consists of Participant Types, Participant References, and Message Links. Participant
Types are represented by the abstract BPEL processes of the Participant Behavior
Description. Participant References are the BPEL4Chor representation of choreography
participants. The Message Links indicate which participants can exchange messages
with each other. Therefore, the participant topology connects the different Participant
Behavior Descriptions in a choreography.

Participant
Topology

Structural Aspects

Participant Behavior
Descriptions (PBDs)

Observable Behavior

Participant Grounding

Technical Configuration

Participant Declaration

List of Participants

Message Links

Connecting PBDs

Figure 2: BPEL4Chor artifacts. Source: [DKLW09]

The third artifact in BPEL4Chor is the Participant Grounding. BPEL4Chor offers

Modeling Choreographies using the BPEL4Chor Designer 6

the possibility to separate technical information such as the message format, the port
types, and operations of processes from the abstract communication behavior, i.e. from
the Participant Behavior Description and the Participant Topology. The technical
information is specified in a grounding file.

Modeling Choreographies using the BPEL4Chor Designer 7

4 The BPEL4Chor Designer
Our choreography editor, the BPEL4Chor Designer, was built using the Eclipse Platform
in the context of the work of [Son13]. The Eclipse Modeling Framework (EMF)3 is part
of the Eclipse Platform and follows a model-driven-architecture4 approach where code is
generated from models. It provides facilities to build own meta-models with the meta-
meta-model Ecore notation, which is similar to UML5. Furthermore, the BPEL4Chor
Designer uses the Graphical Modeling Framework (GMF)6 and the Graphical Editing
Framework (GEF)7.

The BPEL4Chor Designer’s meta-model (called in the following Chor Model) specifies
the diagram elements independently from existing choreography languages. Nevertheless,
the meta-model is oriented on BPEL4Chor and BPEL concepts as they facilitate the
description of choreographies and orchestrations, respectively. The meta-model consists
of four Ecore models: Chor Model, PBD Model, Topology Model, and Grounding Model.

chor::Choreography

name : String
scope : Scope

chor::CParticipantCommon

chor::CParticipant chor::CParticipantSet

pbd::Process

participants1

*

process

1 1

«extends»

*

-selects

*

participants0..1*

participantSets

0..1

*

Figure 3: Chor Model with participants. Source: [Son13]
3http://www.eclipse.org/modeling/emf/
4http://www.omg.org/mda/
5http://www.uml.org
6http://www.eclipse.org/modeling/gmp/
7http://www.eclipse.org/gef/

Modeling Choreographies using the BPEL4Chor Designer 8

The Chor Model specifies all elements that can be placed on the drawing area of the
editor. Figure 3 shows an excerpt of the Chor Model in the EMF Ecore notation. The
communication activities of a participant can be captured with the PBD Model and
correspond to the notion of a Participant Behavior Description in BPEL4Chor. The
participant classes in the Chor Model reference the Process class in the PBD Model, thus,
a connection between both models is established. Further elements of the meta-model
are the Topology Model and the Grounding Model. The Topology Model contains the
participants, the types, and the message links. The Grounding Model describes the
technical information that are captured for a choreography.

4.1 Modeling With the BPEL4Chor Designer
The following subsection discusses the two case studies used to evaluate the BPEL4Chor
Designer in this Technical Report: the Taxi Application scenario and the FlexiBus
Scenario.

4.1.1 Taxi Application Scenario

In Figure 4 a simplified representation of the Taxi Scenario is shown. The BPMN
diagram has three lanes depicting three participants: Customer, Taxi Company, and
Taxi Service Provider of the Taxi Application choreography [Hag11]. If a Customer
wishes to book a Taxi, he sends an initial request to the Taxi Company call center,
which forwards it to the Taxi Service Provider. The Taxi Service Provider process
determines the nearby available taxis and the contact information of the taxi drivers
using Context Integration Processes (CIPs) [WKNL07]. The CIPs are not shown in the
BPMN diagramm for brevity. Subsequently, a transport request is sent to each available
taxi driver and the responses of the taxi drivers are collected for a specified duration.
The gathered transport information is sent back to the Customer.

Figure 5 shows the Taxi Application as a choreography modeled with our BPEL4Chor
Designer. Each process lane from Figure 4 is represented as participant in the chore-
ography diagram of Figure 5. Figure 6 shows the complete Taxi Application scenario
including the Context Integration Processes. The taxi drivers are represented by the
Taxi Transmitters, devices carried by the drivers. The rectangular shapes in the editor
view in Figure 5 stand for the choreography participants whereas the message links
and their directions are depicted by labeled arrows. The editor also incorporates the
a-priori unknown number of taxi drivers involved in the choreography, i.e. the Taxi
Transmitter devices of the taxi drivers form a set of participants. This is reflected by
the dashed boundary of that particular shape. Inside the participants the control flow
regarding the communication behavior, represented by activities such as <receive> or
<send>, is visible. After modeling a choreography like the Taxi Application scenario
the editor offers the functionality to transform the choreography instance of the editor’s
meta-model into BPEL4Chor.

Modeling Choreographies using the BPEL4Chor Designer 9

Figure 4: The BPMN diagram of the Taxi Application. Adapted from: [Hag11]

Figure 5: Excerpt of the Taxi Application choreography modeled with the BPEL4Chor
Designer

Modeling Choreographies using the BPEL4Chor Designer 10

Fi
gu

re
6:

C
om

pl
et
e
Ta

xi
A
pp

lic
at
io
n
ch
or
eo
gr
ap

hy
m
od

el
ed

w
ith

th
e
B
PE

L4
C
ho

r
D
es
ig
ne
r

Modeling Choreographies using the BPEL4Chor Designer 11

4.1.2 FlexiBus Scenario

The second scenario used as case study for the evaluation of the BPEL4Chor Designer
is the FlexiBus scenario from the Allow Ensembles project8. In this scenario, the
description of the participants was available as plain text and non-standardized process
diagrams. Figure 7 shows an excerpt of the FlexiBus scenario considering trip booking
is modeled with the BPEL4Chor Designer as a choreography. Whereas buses in public
transport have fixed routes and schedules, the FlexiBus is oriented by passenger needs
and heads for pre-booked pick-up locations. The participants of the choreography are
the Passenger, the Passenger Management System (PMS), the Route Planer, and the
Payment Manager. A Passenger requests a trip from the PMS, which forwards the
request to the Route Planer in order to obtain information about the particular route.

Figure 7: Trip Booking in the FlexiBus scenario modeled with the BPEL4Chor Designer

The Passenger Management System sends the information where the Passenger can
be picked up for this particular route to the latter one. The Passenger can then decide
about the trip and send the decision to the Passenger Management System. In case of
acceptance of the trip by the Passenger the PMS requests and receives the payment
details from the Passenger and contacts the participant Payment Manager to conduct
the Payment. Finally, the Passenger receives a payment confirmation message.

8http://www.allow-ensembles.eu/

Modeling Choreographies using the BPEL4Chor Designer 12

4.2 State Of The Implementation
The current implementation of the choreography editor offers the following base activities
for modeling the communication behavior of choreography participants:

• <receive>

• <reply>

• <invoke>

• <opaqueActivity>

The variables of these activities can only be set to opaque.
The following structured activities needed to model choreographies are implemented

in the editor:

• <sequence>

• <scope>

• <pick>

• <flow>

Furthermore, the editor allows to set <correlationSet> and <messageExange> ele-
ments in the root element <process> of the abstract BPEL processes, which represent the
PDB of a choreography. The non-parallel and parallel versions of the <forEach>activity
are also part of the editor’s functionality. Activities can be connected with <link>
elements inside a <flow> activity.

The following activities are not implemented in the BPEL4Chor Designer:

• <while>

• <repeatUntil>

• <if>

• <assign>

However, the editor’s EMF meta-model already incorporates all activities allowed by
the BPEL4Chor language and the feature completion will be straightforward.

Modeling Choreographies using the BPEL4Chor Designer 13

4.3 BPEL4Chor Designer: Evaluation Findings
Although choreographies can be modeled, there are still some issues that must be resolved.
Most of them are not necessarily implementation errors but rather inconvenient for the
users of the BPEL4Chor Designer. In the following the issues and possible workarounds
are documented.

• It is not possible to put new activities between already modeled activities. Instead,
the activities after the new activity to be inserted have to be deleted manually
before another activity can be inserted there. Subsequently, the previously deleted
activities have to be inserted anew.

• It is not possible to arrange <onMessage> branch in a <pick> activity next to each
other as it is known from the Eclipse BPEL Designer. Instead, all <onMessage>
branches are arranged beneath each other.

• The <onAlarm> branch of a <pick> activity is not specifiable in the editor. The
duration or point in time of the alarm has to be specified in the manual refinement
step after the transformation to BPEL.

• Deleting a participant shape that is connected to another participant via a message
link causes the choreography editor to crash. The editor’s data-model and the
visualization are desynchronized by this action. To avoid this behavior the message
links attached to the participant shape to be deleted have to be removed first.

• It is not possible to delete already inserted configuration in the BPEL4Chor
groundings section. Two overcome this situation the relevant message link has to
be deleted. However, this leads to another problem, which is stated below.

• If any shape in the editor’s drawing area is altered, the grounding data-model is
desynchronized with the shapes. Thus, the export to BPEL does not work any
more with regard to this particular grounding. Only a newly created grounding
can solve this issue.

• The message links contain a unnecessary name: label on the drawing area that
cannot be removed.

• It is not possible to model communication behavior such as calling several different
participants in a loop. The loops have to be added later during the manual
refinement phase, although, we would normally only add non-communication
process logic. The same is true for all other not yet implemented activities.

Modeling Choreographies using the BPEL4Chor Designer 14

5 Transformation Steps
The following section discusses the different transformation steps necessary to obtain
executable processes. First, the high-level architecture of transformation components is
shown in Subsection 5.1. Subsection 5.2 discusses the transformation from an instance of
the choreography editor’s meta-model to the choreography language BPEL4Chor. The
transformation from BPEL4Chor to abstract BPEL is shown in Subsection 5.3. Finally,
Subsection 5.4 is concerned with the automatic steps that transform the abstract BPEL
processes into executable ones and Section 5.5 discusses the limitations of the current
implementation.

5.1 High-Level Architecture
Figure 8 shows the transformation from an architectural point of view considering
the flow of documents between the components of the BPEL4Chor Designer and the
dependencies between them.

ChorToBPELTransformer

BPEL4Chor2BPEL

Abstract BPEL (DOM) Executable BPEL (File)WSDL (File)

BasicExecutableCompletionTransformer

BPELDesigner

Topology (DOM)

Grounding (DOM)

PBD (DOM)

Figure 8: Document flow between the editor’s components. Source: [Son13]

The components are represented by blue-colored rectangles whereas the documents
are represented by rectangles with the snapped-off corners. The documents are attached

Modeling Choreographies using the BPEL4Chor Designer 15

to the arrows between two components indicating on the one hand the output of a
particular transformation performed by a particular component and on the other hand
the input for the following component.

The component ChorToBPEL is responsible for the transformation from the editor’s
meta-model to the choreography language BPEL4Chor. The resulting documents
are the Topology, the Participant Behavior Descriptions and the Grounding. All
documents of this transformation are represented as in-memory Document Object
Model (DOM) trees [WLHa00]. The component BPEL4Chor2BPEL is responsible
for the transformation from BPEL4Chor to abstract BPEL processes and WSDL
files. The WSDL files exist as physical files and are input for an editor capable of
handling WSDL files such as our extended Eclipse BPEL Designer [SHK12]. The
abstract BPEL process files represented as DOM trees are input for the component
BasicExecutableCompletionTransformer. This component performs the basic executable
completion described below. The result of this step are executable BPEL process files
which can be opened and enriched in the Eclipse BPEL Designer.

5.2 Transformation From Chor Model to BPEL4Chor
The Chor Designer has its own meta-model described by the Eclipse Modeling Framework
(EMF). Figure 9 shows the high-level architecture of the components responsible for the
transformation from the Chor Designer’s meta-model to BPEL4Chor and the document
flow between them. The depicted components are a detailing of the component Chor-
ToBPELTransformer shown in Figure 8. As in Figure 8 the components are represented
by blue-colored rectangles whereas the documents are represented by rectangles with the
snapped-off corners. The documents are attached to the arrows between two components
indicating on the one hand the output of a particular transformation performed by a
particular component and on the other hand the input for the following component.

The architecture consists of two types of components: so-called Builders and Trans-
formers. Builders create instances of the meta-model in-memory derived the graphical
notation, whereas Transformer components are responsible for transforming these in-
stances into BPEL4Chor artifacts represented by DOM trees. The document shapes are
annotated with "Model" or "DOM" according to their representation in-memory. The
component ChoreographyTransformer is the starting point of the Transformation. It
receives a Chor Model as input, which is instantiated by using the Chor Designer and
without need of a separate Builder component. The ChoreographyTransformer orches-
trates the document flow to the Builder components GroundingBuilder, TopologyBuilder,
and FlowBuilder which use information from the Chor and the PDB Model, respectively,
to build the Grounding Model and the Topology Model. These model instances are
then passed to the corresponding Transformer component to generate the BPEL4Chor
artifacts as DOM trees.

Modeling Choreographies using the BPEL4Chor Designer 16

Chor Editor

ChoreographyTransformer

TopologyBuilderGroundingBuilder

PBDTransformerTopologyTransformerGroundingTransformer

Topology (DOM)Grounding (DOM)

Chor (Model)

Grounding (Model) Topology (Model)

PBD (Model)references

PBD (DOM)

PBD (Model)
Chor (Model)

Topology QName
FlowBuilder

PBD (Model)
with Flow Links

Figure 9: Document flow between Transformer and Builder components. Source: [Son13]

5.3 Transformation From BPEL4Chor To Abstract BPEL
The following subsection discusses the transformation from BPEL4Chor to abstract
BPEL processes. In [Rei07] a formal, conceptual approach is presented to reach this
goal. The current implementation is based on [Li10]. The transformation component
is plugged-in into the Chor Designer. Figure 10 shows the input and the output
the transformation needs and generates, respectively. On the left the input for the
transformation is depicted: a choreography described with BPEL4Chor, and WSDL
definitions. The WSDL files could also be generated during the transformation using
the information modeled by the BPEL4Chor artifacts. However, this was not in the
scope of the work of [Rei07]. Automatic generation of operations, port types and further
WSDL properties, e.g. for correlation is possible but not yet implemented in the current

Modeling Choreographies using the BPEL4Chor Designer 17

system. Message types cannot be determined automatically as there is no information
present in the participant grounding which could represent the structure of messages.
The current implementation generates the WSDL that are enriched with the partnerlink
information during the transformation.

PBDs
Participant
groundings

Participant
topology

BPEL
Abstract

Processes

WSDL
definitions

BPEL4Chor choreography

Transformation

WSDL
definitions

Figure 10: Input and output of the BPEL4Chor to abstract BPEL transformation.
Source: [Rei07]

The output of the transformation, shown on the right side in Figure 10, are abstract
BPEL processes and enriched WSDL files. However, the current implementation only
considers the generation of <partnerLinkType> elements.

5.4 Basic Executable Completion
After the transformation to abstract BPEL processes the editor performs the so-called
basic executable completion [OAS07]. The editor provides a component called BasicEx-
ecutableCompletionTransformer [Son13] that conducts the executable completion in the
following way:

• The abstract namespace 9 is replaced by the executable namespace 10 of BPEL.

• The abstractProcessProfile is removed from the BPEL process.
9http://docs.oasis-open.org/wsbpel/2.0/process/abstract

10http://docs.oasis-open.org/wsbpel/2.0/process/executable

Modeling Choreographies using the BPEL4Chor Designer 18

• <opaqueActivity> activities are replaced by <empty> activities.

• Creation of new variables for every opaque variable located in a <invoke>, <re-
ceive>, and <reply> activity/ element.

• The name of opaque input and output variables in <invoke>, >receive>, <reply>,
and <onMessage> is set to "portType_operation_message".

Furthermore, the BPEL4Chor to abstract BPEL transformer component [Li10]
inserts the following elements:

• New <PartnerLink> elements are generated for <invoke>, >receive>, <reply>,
and <onMessage> activities.

• New variables are generated for every <forEach> iterating over a <Partici-
pantSet>.

5.5 Transformation Steps: Evaluation Findings
The following subsection discusses the issues the transformation steps have in the current
state of implementation. Furthermore, possible workarounds to overcome these issues
are addressed:

• The targetNamespace is not set correctly in the WSDL file that is generated for
each participant in the choreography. The targetNamespace has to be corrected
manually.

• The name attribute of the WSDL file is not set correctly. The attribute has to be
corrected manually.

• The transformation step from BPEL4Chor to abstract BPEL includes all names-
paces that are part of the choreography and not only the necessary ones for a
particular participant. Furthermore, all namespaces are included twice, each time
with a different prefix. The unnecessary namespaces have to be removed manually.

• The targetNamespace is not set correctly in the generated BPEL files of the
choreography participants. The targetNamespace attribute of each BPEL process
has to be corrected manually.

• The prefixes for the <partnerLinks> elements inserted in the basic executable
completion step in are not set correctly. They have to be corrected manually.

• In the BPEL process files the imports for the WSDL files needed by the declared
<partnerLinks> are not generated completely. The missing import statements
have to be added manually.

Modeling Choreographies using the BPEL4Chor Designer 19

• The namespaces of SOAP and XML schema are not declared automatically in the
generated WSDL files. They have to be added manually.

• The BPEL4Chor2BPEL component does not generate <message>, <portType>,
<binding>, and <service> elements in the WSDL file. These elements have to be
created manually.

• The naming scheme of the resulting artifacts, i.e. the WSDL file and the BPEL
process file for every participant of the choreography is not deterministic. If the
transformation is rerun, a different number is assigned to the file names.

• A synchronous sending of a messages between two participants is modeled by
two messages links: one from the <invoke> activity of the sending participant
to the <receive> activity of the receiving participant and a second back from
the <reply> activity of the receiving participant to the <invoke> activity of the
sending participant. The transformation from BPEL4Chor to abstract BPEL
generates the <partnerLinkTypes> elements twice in the resulting WSDL files.
This has to be corrected manually.

Modeling Choreographies using the BPEL4Chor Designer 20

6 Manual Refinement
The following section discusses the manual refinement that is necessary to add process
logic to the already generated, executable BPEL processes. The modeled choreography
in the BPEL4Chor Designer only captures the process logic that is necessary for
the communication behavior of the participants. Therefore, the executable BPEL
processes generated after the transformation steps do not yet contain any process logic
besides the communication logic, e.g. for the manipulation of process variables or other
necessary activities for implementing the internal behavior of the participant. Figure 11
depicts the communication activities of the Participant GetAvailableTaxis of the Taxi
Application scenario. The process is visualized in the graphical notation of the BPEL
Designer [SHK12]. The communication activities are a <receive> activity, an <invoke>
activity, and a <reply> activity.

Figure 11: The executable process GetAvailableTaxis with the communication activities

Figure 12 depicts the same participant GetAvailableTaxis refined with additional
activities that realize the non-communication logic of the process. <assign> activities
are used to copy values between variables using XPath expressions 11. An <if> activity
is used to decide how often the <forEach> activity must iterate over a set of retrieved
taxis. This are examples of process logic that is independent of the communication
behavior of the process. The refinement of the BPEL process with additional activities
in order to reach its desired functionality is a manual step and cannot be automated.

After the manual refinement the BPEL Processes representing the participants in a
choreography can be deployed and executed on any BPEL-Engine.

11http://www.w3.org/TR/xpath/

Modeling Choreographies using the BPEL4Chor Designer 21

Figure 12: The executable process GetAvailableTaxis with the communication activities

7 Conclusion
This Technical Report showed in detail our approach from modeling complex systems
using choreographies to making them executable. Two scenarios, the Taxi Application
scenario and the FlexiBus scenario, are used to evaluate the approach and the state of
the current implementation. We first modeled both scenarios in our choreography editor,
the BPEL4Chor Designer, which provides a meta-model for choreographies, independent
of any choreography language. The modeled choreography is then transformed into an
instance of the choreography language BPEL4Chor. BPEL4Chor itself is not directly
executable, so the model is transformed to abstract BPEL, made executable using
basic executable completion and finally enriched with non-communication process logic.

Modeling Choreographies using the BPEL4Chor Designer 22

Furthermore, we have analyzed the state of implementation of the BPEL4Chor Designer
and the components responsible for the different transformation steps. Although, we
can model choreographies and transform them to an executable representation, our
system still lacks features such as missing communication activities. We have presented
workarounds to cope with these issues. Currently, work is conducted to implement the
missing basic features of the BPEL4Chor Designer and the transformation components.

References
[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL

for Modeling Choreographies. In Proceedings of the IEEE 2007 International
Conference on Web Services (ICWS). 2007.

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: from
specification to execution. Data & Knowledge Engineering, 68(10):946–972,
2009.

[Hag11] R. Hagin. Enabling Integration and Aggregation of Context Information
into WS-BPEL Processes. Diplomarbeit, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany, 2011.

[Li10] C. Li. An Editing Environment for BPEL4Chor Cross-Partner Scopes.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, 2010.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0 –
OASIS Standard, 2007.

[Rei07] P. Reimann. Generating BPEL Processes from a BPEL4Chor Description.
Studienarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, 2007.

[SHK12] M. Sonntag, M. Hahn, D. Karastoyanova. Mayflower - Explorative Modeling
of Scientific Workflows with BPEL. In Proceedings of the Demo Track
of the 10th International Conference on Business Process Management
(BPM 2012), CEUR Workshop Proceedings, 2012, pp. 1–5. CEUR Workshop
Proceedings, 2012. URL http://www2.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-29&engl=0.

[Son13] O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Germany, 2013.

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-29&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-29&engl=0

Modeling Choreographies using the BPEL4Chor Designer 23

[WKNL07] M. Wieland, O. Kopp, D. Nicklas, F. Leymann. Towards Context-aware
Workflows. In CAISE´07 Proceedings. 2007.

[WLHa00] L. Wood, A. Le Hors, et al. Document Object Model (DOM) Level 1
Specification (Second Edition). Technical report, W3C, 2000. URL http:
//www.w3.org/TR/2000/WD-DOM-Level-1-20000929/.

All links were last followed on September 30, 2013.

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/

	Introduction
	Modeling Choreographies with the BPEL4Chor: Overall Approach
	BPEL4Chor
	The BPEL4Chor Designer
	Modeling With the BPEL4Chor Designer
	Taxi Application Scenario
	FlexiBus Scenario

	State Of The Implementation
	BPEL4Chor Designer: Evaluation Findings

	Transformation Steps
	High-Level Architecture
	Transformation From Chor Model to BPEL4Chor
	Transformation From BPEL4Chor To Abstract BPEL
	Basic Executable Completion
	Transformation Steps: Evaluation Findings

	Manual Refinement
	Conclusion

