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Abstract

is paper presents an approach to serializing objects, which is tailored for
usability, performance and portability. Unlike other general serialization mecha-
nisms, we provide explicit support for extension points in the serialized data, in
order to provide a maximum of upward compatibility and extensibility.
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1 Motivation
Many industrial and scientific projects suffer from platform or language dependent
representation of their core data structures. ese problems oen cause soware
engineers to stick with outdated tools or even programming languages, thus causing
a lot of frustration. is does not only increase the burden of hiring new project
members, but can ultimately cause a project to die unnecessarily.

e approach presented in this paper provides means of platform and language
independent specification of serializable data structures and therefore a safe way to
let old tools of a tool suite talk to the new ones, without even the need of recompiling
the old ones. We set out to design a new and easy to use way of making core data
structures of a tool platform language independent, because we believe that the best
language a programmer can use to write a new tool, is the language that he likes
the most. We also had the strict requirement to provide a solution that can describe
an intermediate representation with stable parts that can be used for decades and
unstable parts that may change on a daily basis.

In order to achieve this goal, we introduce two new concepts:
e first one is an easy to use specification language for data structures providing

simple data types like integers and strings, container types like sets and maps, type
safe pointers, extension points and single inheritance. e specification language is
modular in order to make large specifications more readable.

e second one is a formalized mapping of specified types to a bitwise represen-
tation of stored objects. e mapping is very compact and therefore scalable, easy to
understand and therefore easy to bind to a new language. It does encode the type sys-
tem and can therefore provide a maximum of upward and downward compatibility,
while maintaining type safety at the same time. It allows for a maximum of safety
when it comes to manipulating data unknown to the generated interface, while main-
taining high decoding and encoding speeds¹.

An improvement over the Extensible Markup Language (XML), our main competi-
tor, is that the reflective usage of stored data is expected to be quite rare, because the
binding generator is able to generate an interface that ensures type safety of modifica-
tions and provides a nice integration into the target language. is leads to a situation,
where it is possible to use files containing data of arbitrary types. If the data stored
in the file is not used by a client, he does not have to pay for it with execution time
or memory. Furthermore a client does not have to know the whole intermediate rep-
resentation of a tool suite, but only the parts he is going to use in order to achieve
his goals. e expected file sizes range from a megabyte to several gigabytes, while
having virtually no relevant numerical limits in the file format². Please note, that
the SKilL file format is a lot more compact then equivalent XML files would be. It is
expected, that files contain objects of hundreds of types with thousands of instances
each. If a type in such a file would contain three pointers on average, the file size
would still be around a mega byte, which is due to a very compact representation of
stored data. is will also lead to high load and store performance, because the raw
disk speed is expected to be the limiting factor.

¹e serialization and deserialization operations are linear in the size of the input/output file.
²ere are practical limits, such as Java having array lengths limited to 231 or current file systems

having a maximum file size limit that is roughly equivalent to the size of a file completely occupied by
objects with a single field of a single byte. ere will also be problems with raw I/O-Performance for very
large files and an implementation of a binding generator, which can handle files not storable in the main
memory is a tricky thing to do.
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1.1 Scientific Contributions

is section is a very concise representation of contributions that in part have already
been mentioned above and in parts will be mentioned much later.

e suggested serialization format and serialization language offer all of the fol-
lowing features in a single product:

• a small footprint and therefore high decoding speeds

• a fully reflective type encoding

• type safe storage of references both to known and unknown types³

• a rich type system providing amongst others references, containers, single in-
heritance and extension points

• the specification language is modular⁴ and easy to use

• no tool using a common intermediate representation has to know the complete
specification. It is even possible to strip away or add individual fields of com-
monly used types.

• the coding is platform and language independent

• the coding offers a maximum of downward and upward compatibility

• a programmer is communicating through a generated interface, which allows
programmers, knowing nothing about the Serialization Killer Language (SKilL),
to interact with it, and ensures type safety. It also allows programmers to write
tools in the language they know best⁵.

• stored data, that is never needed by a tool, will never be touched.

• new objects can be added to a file by appending data to the existing file.

Any of the arguments above have already been made in various contexts (e.g.
[TDB+06] §13.13, [LA13], [xml06], [Lam87]), but there is, to the best of our knowl-
edge, no solution bringing all these demands together into a single product that does
the job automatically.

1.2 Related Work

ere are many approaches similar to ours, but most of them have a different focus.
is section shall provide a concise list of related approaches. For potential users of
SKilL, this might also present alternatives superior for individual use cases.

XML

XML is a file format (defined in [xml06]). e main differences are:

+ XML can be manipulated with a text editor⁶.

+ It is easier to write a libXML for a new language than to write a SKilL back-end⁷.

³I.e. regular references and annotations.
⁴I.e. it can be distributed over many files.
⁵is is a problem especially in the scientific community, where many researchers work on similar

problems but with completely different tools.
⁶Whereas SKilL files are binary and require a special editor, which will be provided by us eventually.
⁷is is only a relevant point if no bindings exist for the language you want to use.
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- XML is not an efficient encoding in terms of (disk-)space usage. is can be
overcome by the Efficient XML Interchange Format (EXI) (see [SK11]).

- XML is not type safe. is can be overcome partially by the XML Schema Def-
inition Language (XSD).

- XML does not provide references to other objects out of the box.

- XML stores basically a tree, whereas a SKilL file contains an arbitrary amount
of graphs of objects.

- XML is usually accessed through a libXML, whereas SKilL provides an API for
each file format, thus a SKilL user does not require any SKilL skills, i.e. no
knowledge about SKilL types or the representation of serialized objects is re-
quired in general. To be honest, there are some language bindings, mainly for
Java, which offer this benefit for XML as well.

XML Sema definitions

SKilLs description language itself is more or less equivalent to XML schema definition
languages such as XSD (as described in [GSMT+08, PGM+08]). e most significant
difference is caused by the fact that XML operates on trees and SKilL operates on
arbitrary graphs.

e type systems offered by SKilL and XSD are quite different, thus it might be
worth a look which one beer fits ones needs.

JAXP and xmlbeansxx

For Java and C++, there are code generators that turn an XML schema file into code,
which is able to deal with an XML in a similar way as proposed by this work. In case
of Java the mechanism is even part of the standard library. e downside is that, to
the best of our knowledge, this is only possible for Java and C++, thus it leaves us
with portability issues. A minor problem of this approach is the lack of support for
comment generation and the inefficient storage of serialized data.

ASN.1

Is not powerful enough to fit our purpose.

IDL

e published format is stated to be ASCII ([Lam87] §2.4), which will cause similar
efficiency problems as raw XML does, if large amounts of data are stored.

Apaeri & Protocol Buffers

ri states that there is no sub-typing (see [Apa13]⁸). Protocol Buffers (see [Goo13])
seem not to support sub-typing either. Both seem to be a pragmatic approach to
generalization of efficient network protocols. e type system of Protocol Buffers
is also a rather pragmatic solution offering types such as unsigned 32 bit integers,

⁸In section ”structs”, first sentence: ”ri structs define a common object – they are essentially equiv-
alent to classes in OOP languages, but without inheritance.”, as of 29.Aug.2013
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which can not be represented in an efficient and safe way by e.g. Java. Both do not
have storage pools, which are the foundation of our serialization approach and an
absolute requirement for some of our optimizations, such as hints (see section 5.2).

Protocol Buffers provide a variable length integer type, namely int64, which
seems to be binary compatible⁹ with the variable length integer type used in SKilL
(see section A).

Java Bytecode, LLVM/IR and others

Although Java Bytecode (see [LYBB13]) and the LLVM Intermediate Representation
(see [LA13]) are hand craed formats, they served as a guiding example inmanyways.

Language Specific Serialization

Language specific serialization is language specific and can therefore not be used to
interface between subsystems wrien in different programming languages, without a
lot of effort. Our aim is clearly a language independent and easy to use serialization
format.

⁹ e Protocol Buffer implementation seems not to optimize away the ninth flag, thus it might use an
additional byte for very large numbers.
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2 Syntax
is section discusses the syntax of the description language in brevity. e semantics
is discussed in section 3, the file format is discussed in section 6.

We use the tokens <id>, <string>, <int>, <float> and <comment>. ey equal
C-style identifiers, strings, integer literals, float literals and comments respectively.
Identifiers, strings and comments are explicitly enriched by printable Unicode char-
acters above \u007f, although this feature should be used with care. We use a com-
ment token, because we want to emit the comments in the generated code, in order
to integrate nicely into the target language’s documentation system.

2.1 Reserved Words

e language itself has only the reserved words annotation, auto, const, include,
with, bool, map, list and set.

However, it is strongly advised against using any identifiers which form reserved
words in a potential target language, such as Ada, C++, C#, Java, JavaScript or Python.

2.2 e Grammar

e grammar of a SKilL definition file is defined as:

UNIT :=
INCLUDE*
DECLARATION*

INCLUDE :=
("include"|"with") <string>+

DECLARATION :=
DESCRIPTION
<id>
((":"|"with"|"extends") <id>)?
"{" FIELD* "}"

FIELD :=
DESCRIPTION
(CONSTANT|DATA) ";"

DESCRIPTION :=
<comment>?
(RESTRICTION|HINT)*

RESTRICTION :=
"@" <id> ("(" (R_ARG ("," R_ARG)*)? ")")?

R_ARG := (<float>|<int>|<string>)

HINT := "!" <id>
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CONSTANT :=
"const" TYPE <id> "=" <int>

DATA :=
"auto"? TYPE <id>

TYPE :=
("map" MAPTYPE
|"set" SETTYPE
|"list" LISTTYPE
|ARRAYTYPE)

MAPTYPE :=
"<" GROUNDTYPE ("," GROUNDTYPE)+ ">"

SETTYPE :=
"<" GROUNDTYPE ">"

LISTTYPE :=
"<" GROUNDTYPE ">"

ARRAYTYPE :=
GROUNDTYPE
("[" (<int>)? "]")?

GROUNDTYPE :=
(<id>|"annotation")

Note: e Grammar is LL(1).¹⁰

2.3 Examples

Listing 1: Running Example

/ * * A l o c a t i o n i n a f i l e p o i n t i n g t o a c h a r a c t e r i n t h a t
f i l e . Assumes o r d i n a r y t e x t f i l e s . * /

Loca t i on {
/ * * t h e l i n e o f t h e c h a r a c t e r s t a r t i n g from 0 * /
i 1 6 l i n e ;
/ * * t h e column o f t h e c h a r a c t e r s t a r t i n g from 0 * /
i 1 6 column ;
/ * * t h e f i l e c o n t a i n i n g t h e l o c a t i o n * /
F i l e path ;

}

/ * * A range o f c h a r a c t e r s i n a f i l e . * /
Range {

¹⁰In fact it can be expressed as a single regular expression.

8



/ * * f i r s t c h a r a c t e r ; i n c l u s i v e * /
Loca t i on beg in ;
/ * * l a s t c h a r a c t e r ; e x c l u s i v e * /
Loc t a i on end ;

}

/ * * A h i e r a r c h y o f f i l e / d i r e c t o r y names . * /
F i l e {

/ * * Name o f t h i s f i l e / d i r e c t o r y . * /
s t r i n g name ;
/ * * NULL i f f r o o t d i r e c t o r y . * /
@nul l ab l e F i l e d i r e c t o r y ;

}

Includes, self references

Listing 2: Example 2a

with ” example2b . s k i l l ”

A {
A a ;
B b ;

}

Listing 3: Example 2b

with ” example2a . s k i l l ”

B {
A a ;

}

which is equivalent to the file:

Listing 4: Example 2

A {
A a ;
B b ;

}

B {
A a ;

}

Subtypes

Types can be extended using subtyping:

9



Listing 5: Subtyping Example

with ” runningExample . s k i l l ”

/ * * a mes sage i s j u s t a s t r i n g * /
Message {

s t r i n g message ;
}

/ * * l o c a t e d me s s ag e s c o n t a i n a l o c a t i o n as w e l l * /
LocatedMessage extends Message {

Lo c a t i on l o c a t i o n ;
}

Containers

Container types can be used to store more elaborate data structures, then just plain
values or references. In the current version, there is support for sets, maps, lists and
arrays:

Listing 6: Containers

/ * * E . g . a u s e r i n a s o c i a l ne twork . * /
User {

s t r i n g name ;

/ * * f r i e n d s o f t h i s u s e r * /
L i s t <User > f r i e n d s ;

/ * * d e f a u l t v a l u e s o f p e rm i s s i o n s can be o v e r r i d e n on
a per−u s e r b a s i s . The v a l u e i s s t o r e d e x p l i c i t l y t o
e n s u r e t h a t t h e o v e r r i d e s u r v i v e s change s o f t h e
p e rm i s s i o n s d e f a u l t v a l u e . * /

Map<User , Pe rmi s s ion , Bool > pe rm i s s i o nOve r r i d e s ;
}

P e rm i s s i on {
s t r i n g name ;
bool d e f a u l t ;

}

Unicode

e usage of non ASCII characters is completely legal, but discouraged.

Listing 7: Unicode Support

Ä {
Ä ∀ ;
Ä € ;

}
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3 Semantics
is section will describe the meaning of specifications by explaining the effect of
declarations.

3.1 A Specification File

UNIT :=
INCLUDE*
DECLARATION*

Specification files are fed into binding generators, which generate code that pro-
vides means to deal with instances of the declared types.

SKilL specifications consist of a set of declarations which themselves consist of
fields. A declaration is roughly equivalent to a type declaration in an object oriented
programming language. e main difference is, that declarations are pure data, be-
cause we do not offer a real execution model. e only operations from the perspec-
tive of SKilL are loading and storing of data.

A declaration will instruct the language binding generator to create a type which
has the declarations name that consist of the fields specified in the body of the decla-
ration. Fields behave just like fields in object oriented programming. Both form the
structure of serialized data and are identified using human readable names.

Types are discussed in section 4. Restrictions and Hints are discussed in section
5.1 and 5.2.

3.2 Includes

INCLUDE :=
("include"|"with") <string>+

Includes are used to structure a specification into smaller models, e.g. by moving
data that is only used by some tools to its own file.

e files referenced by the include statement are processed as well. e declara-
tions of all files transitively reachable over with statements are collected, before any
declaration in any file is evaluated. e order of inclusion is irrelevant. e same file
may even be included multiple times by the same include statement.

erefore evaluation of declarations happens as if all declarations were defined in
a single file.

3.3 Type Declarations

DECLARATION :=
DESCRIPTION
<id>
((":"|"with"|"extends") <id>)?
"{" FIELD* "}"

e SKilL specification language is all about type declarations. A type decalartion
consists at least of a name and a body, containing field decalartions.
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Descriptions

DESCRIPTION :=
<comment>?
(RESTRICTION|HINT)*

Type (and field) declarations can be enriched with descriptions.
Comments provided in the SKilL specification will be emied into the generated

code¹¹ to serve as a natural language description of the respective entity. is ap-
proach enables users to get tool-tips in an IDE showing him this documentation. Fu-
ture revisions are expected to expand the notion of a comment by introducing tags as
used by most documentation generation systems, such as doxygen [vH13] or javadoc
[jav13].

Restrictions and hints will be explained below.

Subtypes

A subtype of a user type can be declared by appending the keyword with (or : or
extends) and the supertypes name to a declaration. A subtype behaves like a subtype
in object oriented programming. Subtypes inherit all fields of their super types. Only
user defined types can be sub-typed. In order to be well-formed, the subtype relation
must remain acyclic and must not contain unknown types.

3.4 Field Declarations

FIELD :=
DESCRIPTION
(CONSTANT|DATA) ";"

CONSTANT :=
"const" TYPE <id> "=" <int>

DATA :=
"auto"? TYPE <id>

Types are sets of named fields. Fields are either constants or real data.
A usual field declaration consists of a type and a field name. In this case, the

field declaration behaves like a field declaration in any object oriented programming
language, except that the field data will be serialized.

Constants

A const field can be used in order to create guards or version numbers. e dese-
rialization mechanism has to report an error if a constant field has an unexpected
value. is mechanism is intended to be used basically for preventing from reading
arbitrary files and interpreting them as the expected input. e mechanism can be
used defensively, because storing constant fields creates a constant overhead and is
not influenced by the number of instances of a type.

Only integer types can be used as constants.

¹¹ If the target language does not allow for C-Style comments, the comments will be transformed in an
appropriate way.
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Transient Fields

Transient fields, i.e. fields which are used for computation only, can be declared by
adding the keyword auto in front of the type name. e language binding will create
a field with the given type, but the content is transparent to the serialization mech-
anism. is mechanism can be used to add fields to a data structure, which simplify
algorithms computing the interesting data, if these helper fields are not of interest
aer computation. is is especially useful in combination with the possibility to add
or drop some fields while generating the binding for a specific tool. e mechanism
can also be used for a field with content that can likely be computed very fast.

e keyword auto is used, because the content of the field is computed automat-
ically. Besides the name, it has nothing todo with the auto type declaration of C++.

3.5 Field Types

TYPE :=
("map" MAPTYPE
|"set" SETTYPE
|"list" LISTTYPE
|ARRAYTYPE)

MAPTYPE :=
"<" GROUNDTYPE ("," GROUNDTYPE)+ ">"

SETTYPE :=
"<" GROUNDTYPE ">"

LISTTYPE :=
"<" GROUNDTYPE ">"

ARRAYTYPE :=
GROUNDTYPE
("[" (<int>)? "]")?

GROUNDTYPE :=
(<id>|"annotation")

Basic types are just an identifier with the type name. For compatibility reasons¹²,
type names are case insensitive.

Types are explained in-depth in section 4.

Container Types

e type system has a built-in notion of arrays, maps, lists and sets. Note that all of
them are, from the view of serialization, equivalent to length encoded arrays. eir
main purpose is to increase the usability of the generated Application Programming
Interface (API).

¹² Some programming languages, e.g. Ada, do distinguish types by casing of identifiers. Using types
which differ only in case in such languages would be very nasty, because type name would have to be
escaped in some way.
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ese containers showed to increase the usability and understandability of the
resulting code and file format.

Annotations

e annotation type is basically a typed pointer to an arbitrary user type. Its main
purpose is to provide extension points in the form of references to objects, who’s type
could not be known at the time of the specification of the annotation field.

3.6 Type Annotations

RESTRICTION := "@" <id> ("(" (R_ARG ("," R_ARG)*)? ")")?

R_ARG := (<float>|<int>|<string>)

HINT := "!" <id>

SKilL offers two kinds of type annotations: restrictions and hints. Restrictions
can be used to restrict a type, e.g. by reducing the range of possible values of an
integer fields to those above 23. Hints can be used to optimize the generated language
binding.

Both are explained in-depth in section 5.1 and 5.2.

3.7 Name Resolution

Because SKilL is designed to be downward and upward compatible and offers subtyp-
ing, it is possible that a future revision of a file format specification will add a field
with a name that already exists in a subtype. In general, it is assumed that the main-
tainer of the super class does not know about all subclasses. us, it is desirable to
have a mechanism which ensures client code to work correct aer such a change.

erefore, identical field names are legal in SKilL and refer to different fields, as
long as they belong to different type declarations.

A generated language binding has to provide means of accessing a field shadowed
by a field of the same name in a subtype. In most languages there are built-in mech-
anisms for this task. Language binding generators shall take care that they do not
override field access methods in a way that will actually make the field of the super
type inaccessible.

4 e Type System
e description language and the file format are both intended to be type safe. e
notion of type safety is usually connected to a state transition system. In our context,
the only observable state transitions are from the on-disk representation to the in-
memory representation and vice versa. us, with type safe we want to state that
deserialization and serialization of data will not change the type of the data. It is
further guaranteed that deserialized references will point to objects of the static type
of the reference. Further, if one were to deserialize an object of an incompatible type,
an error will be raised.
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ese properties require some form of platform independent type system¹³, which
is described briefly in this section. e general layout of the type system is visualized
in Fig. 1.

..All Types. User Types.

Compound
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bool
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Figure 1: Layout of the Type System

Common Abbreviations

We will use some common abbreviations for sets of types in the rest of the manual:
Let …

… T be the set of all types.

… U be the set of all user types.

… I be the set of all integer types, i.e. {i8, i16, i32, i64, v64}.

… B be the set of all built-in types.

4.1 Built-In Types

e type system provides built-in types, which are the building blocks of type decla-
rations.

¹³In contrast to e.g. C, objects of certain type have a known length and endianness.
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Integers

Integers come in two flavors, fixed length and variable length. ere is currently only
a single variable length integer type, namely Variable length 64-bit signed integer
(v64). e variable length integer type can store small values in a single byte (see ap-
pendix A for details). Large values (≥ 255) and negative values require one additional
byte, i.e. nine bytes.

Booleans

Booleans can store the values true(⊤) and false(⊥). Unlike most C programmers, we
do not perceive booleans as integers.

Annotations

Annotations are designed to be the main extension points in a file format. Annota-
tions are basically typed pointers to arbitrary types. is is achieved by adding the
type of the pointer to a regular reference. A language binding is expected to provide
something like an annotation proxy, which is used to represent annotation objects. If
an application tries to get the object behind the proxy for an object of an unknown
type, this will usually result in an error or exception¹⁴. erefore language bindings
shall provide means of inspecting whether or not the type of the object behind an
annotation is known.

Strings

Strings are conceptually a variable length sequence of utf8-encoded unicode charac-
ters. e in-memory representation will try to make use of language features such as
java.lang.String or std::u16string. e serialization is described in section 6. If a lan-
guage demands NULL-termination in strings, the language binding will ensure this
property.

Strings should not contain NULL characters, because this may cause problems
with languages such as C.

e API shall behave as if strings were defined with the hint pure and unique
(see section 5.2).

NULL Pointer

Fields of type strings, annotations or a user type can store a NULL pointer. Anno-
tations are by default nullable, other references are by default non-NULL. Ordinary
references can be made nullable, using the nullable restriction as explained in section
5.1.

Floating Point Numbers

For convenience, it is possible to store 32 bit and 64 bit IEEE-754 floating point num-
bers. For a description, see [iee08] especially §3.4.

¹⁴e reflection mechanism allows for other solutions, but raising an exception is the most obvious
reaction.
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4.2 Compound Types

e language offers several compound types. Sets, Lists and variable length Arrays¹⁵
are basically views onto the same kind of serialized data, i.e. they are a length en-
coded sequence of instances of the supplied base type. Arrays are expected to have
a constant size, i.e. they are not guaranteed to be resizable. Sets are not allowed to
contain the same object twice. All compound types will be mapped to their closest
representation in the target language, while preserving these properties. Maps are
viewed as a representation of serializable partial functions. erefore they have two
or more type arguments.

4.3 User Types

User types can be interpreted as sets of type-name-pairs. Built-in types can be wrap-
ped in order to give them special semantics. For example an appointment can be
represented as:

Listing 8: Example User Type

Appointment {
/ * * s e c o n d s s i n c e 1 . 1 . 1 9 7 0 0 : 0 0 UTC . * /
i 6 4 t ime ;

/ * * A t o p i c , su ch as ” team mee t i ng ” . * /
s t r i n g t o p i c ;

/ * * t h e name o f t h e room . * /
s t r i n g room ;

}

4.3.1 Legal Types

e given grammar of SKilL already ensures that intuitive usage of the language will
result in legal type declarations. e remaining aspects of illegal type declarations
boil down to ill-formed usage of type and field names and can be summarized as:

• Field names inside a type declaration must be unique. Field names of super
types are not relevant.

• e subtype relation is a partial order¹⁶ and does not contain unknown types.

• Any base type has to be known, i.e. it is a user type defined in any document
transitively reachable over include commands.

• e type names must be unique in the context of all¹⁷ types.

¹⁵I.e. arrays, which do not have constant size. Constant length arrays exist as well.
¹⁶In fact it forms a forest.
¹⁷From the perspective of a client, i.e. all types that were declared at the time of the generation of its

interfaces plus all types that are ever observed in the form of unknown types encoded in SKilL files.
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4.3.2 Equivalence of Type and Field Names

Type and field names, i.e. any strings referenced from reflection data stored in a SKilL
file, shall be treated as equivalent, if they were equal aer converting all characters
to lower case.

We recommend using CamelCase in SKilL definition files in order to provide a
hint to the language binding generator on how to separate parts of identifier names.
For example an Ada generator may decide to add underscores to the names in the
generated interface leading to a more natural feeling for Ada programmers.

4.4 Examples

is section will present some examples of ill-formed type declarations and brief ex-
planations.

Listing 9: Legal Super Types

EncodedS t r i ng extends s t r i n g {
s t r i n g encod ing ;

}

Error: e built-in type “string” can not be subclassed.

Listing 10: Legal Type Names

/ * *
The german word f o r ” c a r ” .

* /
Auto {

. . .
}

Error: “Auto” is a reserved word and can not be used as type name.

Listing 11: Usage of Unknown Types

A {
map<A, B> f

}

Error: e field “A.” refers to a missing type B. Did you forget to include ”B.skill”?

5 Type Annotations
SKilL provides two concepts of extending the basic type system used in the serializa-
tion process.

e first concept is called restriction and is inspired by the concept of (type or
class) invariants. is concept can be used to restrict the set of legal objects storable
in a field or the set of legal instances of a class.

e second concept is called hint. Hints are used to improve the generated lan-
guage binding and do not influence types per se.
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5.1 Restrictions

Restrictions can be added to declarations and fields. ey can occur in any number at
the same places as comments. Restrictions start with an @ followed by a name and
optional arguments. If multiple restrictions are used, the conjunction of them forms
the invariant, i.e. all of them have to apply. e set of legal restrictions is explained
below.

If Restrictions are used on compound types, they expand to the components of the
respective compound type. Restrictions can not be combined with map-typed fields.

Restrictions are checked by the generated binding at least before serialization and
aer deserialization. If checking restrictions involves fields, which are not present
in a deserialized file, the respective restriction is ruled to hold. is is important to
guarantee compatibility with older or newer versions of a file format used in a tool
chain. is behavior puts the burden of fulfilling restrictions to the creator of data.

Restrictions are serialized to ensure the asserted properties.

Range

Range restrictions are used to restrict ranges of integers and floats. ey can restrict
the minimum or maximum value or both. Restrictions can be inclusive or exclusive –
the default is inclusive.

Note that this will change the default value of the argument field to min iff 0 /∈
[min,max].

Applies to fields: Integer, Float.
Signatures: range(min, max, boundaries): α× α× string?

min(min, boundaries): α× string?

max(max, boundaries): α× string?

Listing 12: Examples

R ang eR e s t r i c t e d {
@min ( 0 )
v64 n a t u r a l ;

@min ( 1 )
v64 p o s i t i v e ;
/ * o r * /
@min ( 0 , ” e x c u l s i v e ” )
v64 p o s i t i v e A l t ;

@range ( 0 . 0 , 3 6 0 . 0 , ” i n c l u s i v e , e x c l u s i v e ” )
f32 ang l e ;

}

Nullable

Declares that the argument field can be NULL.
Note that fields, which have not been initialized, always contain NULL values.
Applies to Field: string or any user types.

19



Listing 13: Examples

Node {
@nu l l ab l e Node [ ] edges ;

}

Unique

Objects stored in a storage pool have to be distinct in their serialized form, i.e. for each
pair of objects, there has to be at least one field with a different value. Because the
combination of unique with sub-typing has counter-intuitive properties, we decided
that using the unique restriction together with a type that has sub- or super-types is
considered an error, which has to be detected at runtime.

Furthermore, be warned that adding or removing fields from unique types can
cause serious compatibility issues.

Applies to Declarations.

Listing 14: Examples

@unique Opera to r {
s t r i n g name ;

}
@unique Term {

Opera to r op e r a t o r ;
Term [ ] arguments ;

}

Singleton

ere is at most one instance of the declaration.
Applies to Declarations.

Listing 15: Examples

/ * * S t o r e s p r o p e r t i e s o f t h e t a r g e t sy s t em . * /
@sing le ton System {

s t r i n g name ;
. . .

}

Monotone

Instances of this type can not be deleted. is restriction is basically a type system
way of ensuring properties required by fast append operations. It should be used,
where ever it is not necessary to delete instances of a type. e monotone restriction
can only be added to base types and expands to all sub types of the base type¹⁸.

Monotone types can be treated by a language binding in a very optimized way.

¹⁸ is behavior is caused by the fact, that for A <: B, all B instances are As as well. If B would not be
monotone, deleting a B would directly delete an A. If A would not be monotone, deleting an A might delete
a B.
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e monotone restrictions implies the monotone hint (see section 5.2).
Applies to Base Type Declarations.

Listing 16: Examples

/ * * j u s t k i d d i n g * /
@Monotone Soc i a lNe tworkPo s t {

s t r i n g message ;
}

/ * * t h i s i s monotone as w e l l * /
P r i v a t e P o s t extends Soc i a lNe tworkPo s t {

s t r i n g r e c i p i e n t ;
}

Constant Length Pointer

eargument pointer is serialized using i64 instead of v64. is can be used on regular
references and annotations. e restriction makes only sense if the generated binding
supports lazy reading of partial storage pools and if the files that have to be dealt with,
would not fit into the main memory of the target machine. Using this restriction will
most certainly increase the file size and does not restrict any pointer targets.

is restriction is serializable and, thus, does not affect compatibility in any way.
Applies to fields.

Listing 17: Examples

/ * s t o r e d p o i n t s t o i n f o rma t i o n may e x c e e d t h e a v a i l a b l e
main memory , t hu s we have t o a c c e s s i t d i r e c t l y from
d i s k * /

Po i n t sToTa r g e t s {
@cons t an tLeng thPo in t e r
Contex t c on t e x t ;
@cons t an tLeng thPo in t e r
HeapObject o b j e c t ;
@cons t an tLeng thPo in t e r
Po i n t sToS e t t a r g e t s ;

}

5.2 Hints

Hints are annotations that start with a single ! and are followed by a hint name.
Hints are used to optimize the behavior of the generated language binding. ey do
not impact the semantics of type declarations or stored data. erefore they will not
be serialized.

Language bindings shall provide the same public interface as if no hints were used.
Language binding generators shall provide an option that adds a hint to all appli-

cable declarations.

21



Access

Can be used on: Container-typed field declarations.
Try to use a data structure that provides fast (random) access, e.g. an array list.

Modification

Can be used on: Container-typed field declarations.
Try to use a data structure that provides fast (random) modification, e.g. a linked

list¹⁹.

Unique

Can be used on: Type declarations.
Serialization shall unify objects with exactly the same serialized form. In combi-

nation with the @unique restriction, no error shall be reported on serialization.
Note that this will increase the runtime complexity of the serialization phase from

O(n) to O(nlog(n)).

Pure

Can be used on: Type declarations.
Deserialized objects of the annotated type shall not be modifiable. e generated

interface will provide a copy operation, which will create a modifiable copy of the
object. An example of this behavior is the string pool. An equivalent, in terms of API
observable behavior, would look as follows:

Listing 18: User Strings

! pure
! unique
U s e r S t r i n g {

i 8 [ ] u t f 8Cha r s ;
}

Distributed

Can be used on: Field declarations.
A static map will be used instead of fields to represent fields of definitions in mem-

ory. is is usually an optimization if a definition has a lot of fields, but most use cases
require only a small subset of them. Because hints do not modify the binary compat-
ibility, some clients are likely to define the fields to be distributed or even lazy.

Note that this will increase both the memory footprint²⁰ and the access time for
the given field and will only be a benefit for memory-cache locality reasons, because
single objects can be significantly smaller²¹. e internal representation will change

¹⁹ Which has faster insert/delete operations than an array list.
²⁰ Because additional data structures, such as trees, are required in order to provide acceptable access

times.
²¹ Note this does not apply to operations on distributed fields, but to operations on objects having dis-

tributed fields.
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from o.f, i.e. a regular field, to pool.f[o], i.e. a map in the storage pool which holds
the field data for each instance.

Note that the presence of distributed, lazy or ignored fields will require objects
to carry a pointer to their storage pool, which may eliminate the cache savings com-
pletely.

Lazy

Can be used on: Field declarations.
Deserialize the respective field only if it is actually used. Lazy implies distributed.

is hint should be used, if fields are usually not accessed, e.g. in the context of error
reporting.

Monotone

Can be used on: Base Type declarations.
Instances of the argument type will not be deleted. New instances can be added

to the state. is allows an optimized treatment of data, because assumptions about
object IDs can be made.

Accessing lazy fields of instances of monotone types is about as efficient as ac-
cessing ordinary fields. Note that usage of v64 and references requires deserialization
of all fields in a type block. us, it might be worth considering usage of constant
length integers or the constantLengthPointer restriction, if this case is encountered
on a regular basis.

In contrast to the monotone restriction, the hinted monotone property applies
only to the generated binding.

ReadOnly

Can be used on: Base Type declarations.
e generated code is unable to modify instances of the respective type. is hint

can be used to provide a consistent API while preventing from logical errors, such as
modifying data from a previous stage of computation. e ReadOnly hint expands to
all subtypes of the base type, because this is the only safe way²².

ReadOnly implies Monotone.

Ignore

Can be used on: Type and Field declarations.
e generated code is unable to access the respective field or any field of the type

of the target declaration. A language binding shall raise an error (or exception), if the
field is accessed nonetheless. is hint can be used to provide a consistent API for a
combined file format, but restrict usage of certain fields, which should be transparent
to the current stage of computation. is is actually more restrictive than deleting
fields from declarations, because the generated reflective API will respect this hint.

²²is behavior is caused by the fact, that for A <: B, all B instances are As as well. If A would not be
ReadOnly, modifying an A would directly modify a B. If B would not be ReadOnly, modifying a B might
modifying an A.
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6 Serialization
is section is about representing objects as a sequence of bytes. We will call this
sequence stream, its formal type will be called S, the current stream will be called s.
We will assume that there is an implicit conversion between fixed sized integers²³ and
streams. We also make use of a stream concatenation operator ◦ : S × S→S.

We will use upper case leers for types (e.g. A) and lower case for instances of
the respective type (e.g. a). e type T denotes the set of types and τ a type. We will
use τi for arbitrary type names and fi for arbitrary fields, i.e. τi.fj is the j’th field of
the i’th type.

is section assumes that all objects about to be serialized are already known. It
further assumes that their types and thus the values of the functions (i.e. baseType-
Name, typeName, index, [[_]]) explained below can be easily computed.

e serialization function [[_]]τ : τ × T →S maps an object _ of a type τ to a
stream. Usually the type of the object can be inferred from context, thus we can
simply write [[_]]. During the process of (de-)serialization, the type of an object can
always be inferred from context.

6.1 Steps of the Serialization Process

In general it is assumed that the serialization process is split into the following steps:

1. All objects to be serialized are collected. is is usually done using the transitive
closure of an initial set.

2. Objects are organized into their storage pools, i.e. the index function is calcu-
lated.

• If the state was created by deserialization and indices have changed²⁴,
fields using these indices have to be updated.

• All known restrictions have to be checked.

3. e output stream is created as described below.

6.2 General File Layout

e file layout is optimized for fast appending of new objects. It is further optimized
for lazy and partial loading of existing objects. It does also support type-safe and
consistent treatment of unknown data structures. In order to achieve these goals, we
have to store the type system used by the file together with the stored data. e type
system itself is using strings for its representation. We want to be able to diagnose
file corruption as early as possible, therefore most information stored in a file relies
only on information that has already been processed. e only exception to this rule
are field types referring to user types which are declared later in the same block.

erefore the file is structured as an altering sequence of string blocks and type
blocks, starting with a string block. e layout of string blocks (S) and type blocks (T)
is visualized in figure 2, details will be explained in the following sub-sections.

²³As well as between fixed sized floating point numbers, because we define them to be IEEE-754 encoded
32-/64-bit sequences.

²⁴Indices can change by inserting objects before an existing object or by deleting objects. is is caused
by the base pool index concept explained in section 6.3
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Figure 2: Visualization of the layout of string(S) and type(T) blocks. Type descriptors
(τ ) and their fields can drop fields in some contexts (?i). Fields prefixed with a gray L
contain information only relevant for the local block. e data chunks of blocks start
at the respective 0 and reach until the respective end. Arrows indicate end-offsets –
type blocks have one per field declaration.

6.2.1 Layout of a String Blo

A string block starts with a v64 count, which stores the number of strings stored in
the block. It is followed by count many i32 values, which store the offset of the end
of the respective string. e stored offsets split the data following aer the last offset
into utf-8 encoded strings.

e individual strings can be decoded using their index and the previous index
(or 0, if there is no previous index). e strings stored in the string block are used by
the following type blocks. For efficiency²⁵ reasons, strings used as type or field names
shall be stored in lower case only. If a string containing user data equals a type/field
name with different casing, a copy has to be made.

6.2.2 Layout of a Type Blo

Instances of types are organized into storage pools (see section 6.3), which are stored
in type blocks.

A type block starts with a v64 count, which stores the number of instantiated types
stored in the block. e count is followed by the respective amount of type declara-
tions.

Type declarations themselves contain field declarations, which contain end-offsets
into a data chunk located at the end of the type block, i.e. the field data is stored
between the end-offset (or the start of the data chunk) of the previous field and the
end-offset of this field. e Local Base Pool Start Index (LBPSI) field (marked with
?3 in Fig. 2) is only present if there is a super type. e LBPSI is used to indicate
which fields in a supertype declaration belong to instances of the current type. e
local version of the Base Pool Start Index (BPSI) works in the same way as the BPSI
in storage pools (see arrows in Fig. 5). e LBPSI field is only present if there is a

²⁵e lower case conversion during deserialization is optimized away.
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supertype and the type has not yet been defined in a previous type block, because the
data is not needed otherwise.

A type is instantiated, if the block adds new instances, fields or both. For example,
the first block may add a type node, with an ID field. e second block, which is the
result of a graph coloring tool, adds a color field to the node. We will come back to
this example in section 6.2.3.

Effects of Lazy Evaluation

In this context, lazy evaluation means ”the ability to skip data”.
Inside of string blocks, most indices and string payload can be skipped. e offset

type is i32, which allows for random access deserialization of individual strings, if
the ID is known. is feature is very valuable, if there are many user data strings and
few type names. e decision has also the consequence, that strings can only have
232 bytes of data. We consider this limit irrelevant, because a user can still use a byte
array to represents string-like objects exceeding this limit.

Inside of type blocks, all type information has to be processed in any case. e
field data can be skipped completely.

us the laziest processing of a SKilL file will read the count fields of blocks, the
last index of string blocks and all type information, including strings storing type and
field names. Even in case of large files with many types, the amount of processed data
is expected to be below a megabyte.

Effects of Appending

e desire to append new data of an arbitrary kind to an existing file, without hav-
ing to rewrite existing data, affects mostly the hidden part of the generated language
binding. From the perspective of the file format, appending adds altering sequence
of blocks, instead of a single string block followed by a single type block. Means to
add fields or instances to existing storage pools (see section 6.3) are made necessary
by this feature as well. e omied data is marked with ?1 and ?2 in Fig. 2: Fields
marked with ?1 do only appear in the first block and are le away in all other blocks
adding data of the respective type. Fields marked with ?2 are only present if the field
is added to a type.

If appending is not used at all, the overhead, compared with a similar format that
does not allow for appending, is about two bytes. If appending is used in a way, that
only adds new fields or new storage pools, the overhead is still in the range of several
bytes. Adding instances to existing storage pools is expected to create an overhead of
about forty bytes, mostly caused by end-offsets of added field data.

If additional instances are added, the order of already instantiated fields is the
order of their occurrence in previous blocks. If additional instances are added in com-
bination with adding new fields, the new fields are located aer the existing fields.
e already existing fields contain data for the new instances, whereas new fields
contain data for all existing instances.
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6.2.3 Node Example

Let us assume two tools with two SKilL specification files:

Listing 19: Specification of the Node Producer Tool

Node {
i 8 ID ;

}

Listing 20: Specification of the Node Color Tool

Node {
i 8 ID ;
/ * * f o r t h e s ak e o f s i m p l i c i t y a s t r i n g l i k e ” r e d ” * /
s t r i n g c o l o r ;

}

Let us assume, the first tool produces two nodes (”23” and ”42”) and the second
appends color fields to these nodes (”red” and ”black”). e layout of the resulting file,
aer the second tool is done, is given in figure 3. Actual field data is kept abstract,
because serialization of field data will be explained below. e data produced by the
first tool is S and T, the second tool produces S’ and T’.
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Figure 3: Illustration of the file obtained aer running the example tool chain. Gray
parts are the interpretations of the respective value and will be explained below. Light
gray annotations shall serve as a reminder of the meaning of the contents of the re-
spective field. In section 6.6 there is a more complete example.

We will see in the next section, that fields referring to other objects are stored by
reference. Strings are somewhat a special case of this. Strings are used both, as a first
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class type and to represent type information itself. is has the consequence, that
string pools contain user data and data, which might not be directly observed by a
user.

Adding instances

Now let us assume, that the first tool is ran twice, adding (”23” and ”42”) in the first
run and (”-1” and ”2”) in the second; we wont run the coloring tool, thus S/T are the
result of the first run and S*/T* are the result of the second run.

..

2

.

4

.

6

.

1: ”node”

.

2: ”id”

.

count

.

end1

.

end2

.

string1

.

string2

.

1

.

1 → ”node”

.

0

.

2

.

0 → ∅

.

1

.

0 → ∅

.

7 → i8

.

2 → ”id”

..

node#1.id = 23

.

node#2.id = 42

.

•

.

count

.

name

.

super

.

count

.

restrictions

.

fieldCount

.

restrictions

.

type

.

name

.

end

.

0

.

count

.

1

.

1 → ”node”

.

2

.

1

..

node#3.id = -1

.

node#4.id =2

.

•

.

count

.

name

.

count

.

fieldCount

.

end

.

output file:

.

S

.

T

.

S*

.

T*

Figure 4: Illustration of the file obtained aer running the example tool chain. Gray
parts are the interpretations of the respective value and will be explained below. Light
gray annotations provide contents descriptions. Note that string blocks (and type
blocks) can be empty, but must not be omied.

6.3 Storage Pools

is section contains the serialization function for an individual storage pool. A stor-
age pool stores the instances of a type, i.e. all field data of the type of the pool. We
assume that storage pools are not empty. e serialization of an empty storage pool
is the empty stream, i.e. it is simply skipped.²⁶

Writing objects of a pool requires the following functions: baseTypeName :
U→S, typeName : U→S and index : U ∪ {string}→S.

e baseTypeName is either the index of the string used as type name of the base
type or 0x00. e typeName is the index of the string used as type name of the
argument type. e index is the unique index of the argument object. Indices are
assigned ascending from 1 for instances of a base type, for each base type. For example
the index 23 can be given to a Node object and a string ”hello”, because they do not

²⁶is has the side effect, that only type information of instantiated types are present.
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have a common base type. Indices do not have holes. Although indices are serialized
using the v64 type, they are treated as if they were unsigned integers²⁷

A basic concept of the serialization format is to store the data grouped by type
into storage pools. is concept enables us to obtain type information of objects from
their position in a file, instead of storing a type descriptor with each object.

If objects are referred to from other objects, those references are given as an inte-
ger, which is interpreted as index into the respective storage pool. e NULL pointer
is represented by the index 0.

Each pool knows how many instances it holds. Storage pools with a supertype
store the name of the supertype and a BPSI. Further, we assume that objects, which
are wrien to a file, have indices such that for any type, all instances of that type have
adjecent indices.

A short example (Fig. 5) illustrates the concept. It contains five types A, B, C, D,
and N. For the sake of simplicity, each type has a single field of an arbitrary type τx
(serialization of field data will be explained in the next section). A and N are base
types. A has 6 instances. B, C are subtypes of A; D is a subtype of B. B/C/D have
4/1/1 instances and BPSIs of 2/6/5, respectively. e arrows represent the end-offsets
stored in the field descriptions, which are used to separate the data part of the type
block into field data. e index-row displays the index of the object that belongs to
the serialized field.

For the sake of readability, the header of the type pool is omied in the stream
part of the picture.

..S: .

index:

.

header:

.

A { τa a }

.

B : A { τb b }

.

D : B { τd d }

.

C : A { τc c }

.

N { τn n }

.· · · . a. a. a. a. a. a. b. b. b. b. d. c. n. n. · · ·.

1

.

2

.

3

.

4

.

5

.

6

.

2

.

3

.

4

.

5

.

5

.

6

.

1

.

2

.

· · ·

Figure 5: Field data of several pools stored in a type block. Arrows indicate the values
of data fields of the respective field description in the header of the type block. S
shows a part of the data chunk of a type block.

Although illustrations above might suggest an order of field data, this is in fact
not the case. is allows for optimization during serialization, such as multi-threaded
encoding of different fields at the same time.

6.3.1 Appending Fields to existing Pools

Appending a field to an existing pool is rather easy, because existing objects are not
directly modified. e respective type block will have a type declaration with a field
declaration of the added field. e added field data is stored in the data part of the
type block.

²⁷at is the index -1 refers to object number 264 − 1.

29



6.3.2 Appending Objects to existing Pools

If objects are added to existing pools, all type pools (i.e. the pools of the type and
all its supertypes) have to be updated. If a supertype exists, the local base pool start
index will give the start index of the added objects in the local pool. With the types
as in figure 5 we can for example add several object in three blocks.

Let T1 contain 6 objects of types aabbbc, T2 contain 4 objects of types bbdd and
T3 another 3 objects acd.

T1 contains the full type information of types A,B and C. ere are 6 A instances,
3 B instances (with LBPSI=3) and 1 C instance (with LBPSI=6).

T2 contains only the type name of A and B (LBPSI=1) and field data for 4 instances
each. Additinally, there is a new type D (with LBPSI=3) and D-field data for two
instances.

T3 contains field data for A, B (LBPSI=2), C (LBPSI=2) and D (LBPSI=4) objects.
e in-memory representation aer loading these objects is expected²⁸ to be either

aabbbbcbbddacd or aaabbbbbbdddcc, depending on used hints and restrictions .

6.4 Serialization of Field Data

In this section, we want to describe the serialization of individual fields using the
function [[_]]τ . e serialization of an object is done by serializing all its fields into the
stream. In this section, we assume that the three functions defined in the last section
are implicitly converted to streams using the v64 encoding. We assume further, that
compound types provide a function size : T →I , which returns the number of ele-
ments stored in a given field. Let f be a non-constant²⁹ non-auto field of type t, then
[[f ]] is defined as³⁰

• ∀t ∈ U ∪ {string}.[[f ]]t =
{

0x00, f = NULL
index(f) else

• [[f ]]annotation =

{
0x00 0x00, f = NULL
baseTypeName(f) ◦ index(t) else

³¹

• [[⊤]]bool = 0xFF

• [[⊥]]bool = 0x00

• ∀t ∈ I \ {v64}.[[f ]]t = f

• [[f ]]v64 = encode(f)³²

• [[f ]]f32 = [[f ]]f64 = f ³³

• ∀g ∈ B, n ∈ N+.t = g[n] =⇒ [[f ]] = [[f0]]g ◦ · · · ◦ [[fn−1]]g

²⁸ e in-memory representation is intentionally le unspecified. e expected behavior will be the
result of a straightforward implementation.

²⁹Constant fields are not serialized, because their value is already stored in the type declaration.
³⁰We will use C-Style hexadecimal integer literals for integers in streams.
³¹We do not want to use type IDs here, because we do not want to touch all annotation fields if we

modify the type Pool.
³²With encode as defined in listing 22.
³³Assuming the float to be IEEE-754 encoded (see [iee08] §3.4), which allows for an implicit bit-wise

conversion to fixed sized integer.
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• ∀g ∈ B, n = size(f), t ∈ {g[], set<g>, list<g>}.[[f ]] = [[n]]v64 ◦ [[f0]]g ◦ · · · ◦
[[fn−1]]g

• Maps are serialized from le to right by serializing the keyset and amending
each key with the map structure which it points to³⁴. In case of Maps with two
types, this is equal to a list of key value pairs. A field f of type map<T,U,V> is
serialized using a schema:

[[f ]] = [[size(f)]]
size(f)

⃝
i=1

[[f.ti]] ◦ [[size(f [ti])]]
size(f [ti])

⃝
j=1

[[f [ti].uj ]] ◦ [[f [ti][uj ]]]

Note that we treat maps like map<T, map<U,V> >.

• [[r]]restriction = [[r.id]]v64[[r.arg1]]string ◦ · · · ◦ [[r.argn]]string
Note that restrictions store the image of their arguments as a string.

• [[t]]type =



[[id]]i8 ◦ [[val]]t id ∈ [0, 4]
[[id]]i8 id ∈ [5, 14]
0x0F ◦ [[i]]v64 ◦ [[T ]] t = T [i]
0x11 ◦ [[T ]] t = T []
0x12 ◦ [[T ]] t = list < T >
0x13 ◦ [[T ]] t = set < T >
0x14 ◦ [[n]]v64 ◦ [[T1]] ◦ · · · ◦ [[Tn]] t = map < Ti, . . . , Tn >
[[32 + storagePoolIndex(t)]]v64 t ∈ U

ids of restrictions and types are listed in appendix E. e holes are intentional and
enable future built-in types without breaking the file format.

Note that the function storagePoolIndex is implicitly given by the order of stor-
age pools appearing in a file and has therefore to be computed both upon serialization
and deserialization. e first storagePoolIndex is 0.

6.5 Endianness

Files are stored in network byte order, as described in RFC1700, Page 2 [RP94].
If a client is running on a lile endian machine, the endianness has to be cor-

rected, both when reading and writing files. is can be done by changing the imple-
mentation of [[_]]i∗- and [[_]]f∗-translations. Note that some standard libraries provide
functions to read and write binary data in network byte order.

6.6 Date Example

is section will provide a concise example of how serialization takes place. For the
sake of simplicity and brevity, we will serialize two objects of a single (simple) type
into a stream. We will use the following file format:

Listing 21: Date File Format

Date {
v64 da t e ;

}

³⁴Maps are expected to be sparse, i.e. with less then half their fields being non default values.
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Further, we want to store two objects with date values 1 and -1.
e first thing we have to do is to collect the objects to be stored. In a set-theory

inspired notation with square brackets indicating records we would get something
like:

Date = {[date : 1], [date : −1]}
Now we have to create storage pools. We start with the creation of type informa-

tion. e date pool looks something like this:

[name : ”date”, super : 0, count : 2, restr. : ∅, fields[

1 : [restr. : ∅, t : v64, n : ”date”, [1,−1]]]

Now we can see, that we have a string, which has to be serialized, but is not yet in
the string pool (which was empty up until now), so we create a string pool³⁵ as well:

[1 : ”date”]

Now we can start to encode the pools:

1. write the string block:

[[[1 : ”date”]]] = [[1]]v64 ◦ offset(”date”) ◦ [[”date”]]
= [[1]]v64 ◦ [[4]]i32 ◦ 64 61 74 65
= 01 00 00 00 04 64 61 74 65

2. write the type block:

To keep things readable, we will first encode everything but the field data:

[[[name : ”date”, super : 0, count : 2, restr. : ∅, · · · ]]
= [[1]]v64 ◦ [[”date”]] ◦ 0 ◦ [[2]]v64 ◦ [[∅]]R[]

= 1 ◦ index(”date”) ◦ 0 ◦ 2 ◦ [[size(∅)]]v64
= 1 ◦ 1 ◦ 0 ◦ 2 ◦ 0 = 01 01 00 02 00
Now we can continue with the field:

[[[· · · fields[1 : [restr. : ∅, t : v64, n : ”date”, [1,−1]]]]]
= [[size(fields[· · · ])]] ◦ [[[restr. : ∅, t : v64, n : ”date”, offset([1,−1])]]] ◦
[[[1,−1]]]
= 1 ◦ [[∅]]rest[] ◦ [[v64]]type ◦ [[”date”]] ◦ offset(”date.date”) ◦ [[[1,−1]]]
= 1 ◦ 0 ◦ 0B ◦ index(”date”) ◦ offset(”date.date”) ◦ [[1]]v64 ◦ [[−1]]v64
= 1◦0◦0B◦1◦offset(”date.date”)◦01◦FF FF FF FF FF FF FF FF FF
= 1 ◦ 0 ◦ 0B ◦ 1 ◦ [[10]] ◦ 01 ◦ FF FF FF FF FF FF FF FF FF
= 01 00 0B 01 ◦ 0A ◦ 01 FF FF FF FF FF FF FF FF FF
= 01 00 0B 01 0A 01 FF FF FF FF FF FF FF FF FF
e type block is now serialized to the stream:

01 01 00 02 00 01 00 0B 01 0A 01 FF FF FF FF FF FF FF FF FF

3. writing the output:

e remaining work is just to write the string block and the type block to a file,
starting with the string block, so we get:

01 00 00 00 04 64 61 74 65 01 01 00 02 00 01 00
0B 01 0A 01 FF FF FF FF FF FF FF FF FF

Deserialization of this stream is explained in section 7.1.

³⁵e string pool, unlike regular storage pools is just a length encoded array of strings.
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7 Deserialization
Deserialization is mostly straightforward.

e only notable property is that a binding has to ensure that no objects can be
allocated that have more fields in the deserialized file than in the specification. is is
important because it prevents from violating invariants of other tools in a tool chain
by allocating objects through a partial view onto a type.

e general strategy is:

1. the string block is processed

2. the header of the type block is processed

3. required fields are parsed using the type and position information obtained from
the respective block

4. until the end of file has been reached, goto step 1

7.1 Date Example

Let d be the deserialization function – basically the inverse function of [[_]]. We want
to read the sequence we created during the serialization example in section 6.6:

01 00 00 00 04 64 61 74 65 01 01 00 02 00 01 00
0B 01 0A 01 FF FF FF FF FF FF FF FF FF

1. deserialzation of a string block:

d(010000000464617465010100 · · · )
→a string block starts with a v64 indicating the number of strings stored inside

d(01)d(0000000464617465010100 · · · )
→we got one string

d(01)d(00000004)d(64617465010100 · · · )
→the next string has 4 bytes, the block ends in 4 bytes

string[1 : d(64617465)]d(0101 · · · )
→build the string pool with the first string block

string[1 : ”date”]d(0101 · · · )
→we processed the string directly, because lazy evaluation makes the example
rather confusing

2. deserialzation of a type block (reading the header):

d(01)d(0100020001000B010A01 · · · )
→there is one type definition in this block; read its name

d(01)d(00020001000B010A01 · · · )
= ”date”d(00)020001000B010A01 · · · )
→we do not know the type ”date” yet (in terms of processing the file), so we
expect super type information, count, restrictions and field declarations

[name : ”date”, super : 0]d(02)d(00)d(01)d(000B010A01FF · · · )
→Date has no super type, thus the next field is not a local BPSI and we can
read until the number of fields.
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[name : ”date”, super : 0, count : 2, restr. : ∅, fields[1 : _]]
d(00)d(0B)d(01)d(0A)01FF · · · )
→We did not know date yet, thus we do not know the type of the first field.
erefore the next information are the fields restrictions, type, name and offset.

[name : ”date”, super : 0, count : 2, restr. : ∅, fields[1 : [restr. : ∅, t :
v64, n : ”date”, offset : 10]]]d(01FF · · · )
→We read all data belonging to the header of this type block, thus we know
that the next 10 bytes are field data. e file ends aer the next 10 Bytes, so we
can continue constructing objects.

3. construction of date objects:

Date = {[date : _], [date : _]}d(01FF · · · )
→using the data from the header, we created two date objects; the only thing
le is parsing field data for the date fields and seing the data accordingly

Date = {[date : 1], [date : _]}d(FF · · · )
→the first field is a 1

Date = {[date : 1], [date : −1]}
→the second field is a -1; we reached the end of the field data on the last object,
so everything is fine – no additional or missing data

Unsurprisingly, the restored objects are exactly the objects we serialized in sec-
tion 6.6.

8 In Memory Representation
is section is about the generated API provided to the programmer and the represen-
tation of objects inside memory. It is meant as a concise guideline for implementers
of language binding generators.

e behaviour in case of a mismatch between the expected type of a field and the
type stored in a file is le unspecified. is will be changed in a future version. For
now only matching types can be assumed to be compatible and portable.

8.1 API

e generated API has to be designed in a way that integrates nicely with the lan-
guage’s programming paradigms. For example in Java it would be most useful to
create a state object, which holds state of a bunch of serializable data and provides
iterators over existing objects, as well as factory methods and methods to remove
objects from the state object. e serialized types can be represented by interfaces
providing geers and seers, using hidden implementations only visible for the state
object.

8.2 Representation of Objects

e combination of laziness and consistency has the effect that representation of ob-
jects inside memory is rather difficult. is section describes data structures and algo-
rithms which can do the job in a sufficiently efficient way. In this section, we assume
that all fields are present as arrays of bytes. We will describe the effects of parsing
fields in an unmodified state, in a modified state, how to modify a state and finally
how to write a state back to disk.
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8.2.1 Proposed Data Structures

A state has to contain at least

• an array of strings

• type information obtained from a file

• storage pools

A storage pool has to hold the images of (or references to) fields, which are not
yet parsed.

Objects are required to have an ID field, which corresponds to the ID of the de-
serialized(!) state. is field is required in order to map the lazy fields to the correct
objects. It can also be reused in the serialization phase to assign unique IDs, which
will be used instead of pointers.

Objects of types with eager fields should have the respective fields. For example,
the declaration T {t a; !lazy t b;} should be represented by an object

InternalTObject {
long ID;
t a;
/* getA, setA... */

StoragePool tPool;
/* getB, setB... */

}

Note that the pointer to the enclosing storage pool is required for the correct treat-
ment of lazy and distributed fields. is is the case, because the pool holds the field
data.

Now that we have a representation of objects, we still have to organize storage
of objects across storage pools. e possibility of inheritance requires a view onto
stored objects, which looks as if they were stored in multiple pools at the same time.
We propose to store supertype and subtype information inside pools as references to
the respective pools. e objects should be stored as a “double linked array list”³⁶,
which is basically a linked list containing array lists:

Each pool stores the objects, with the static type of the pool in an array list. e
pools of subtypes are stored in a linked list. Now an iterator over all instances of a
type uses an iterator over all instances of a pool in combination with iterators over
the pool and all its subpools. erefore creating and deleting objects is an amortized
O(1) operation³⁷ and it is guaranteed to maintain the semantic structure of the file, if
IDs are not updated in phases other than reading and writing a file.

Note that the mere presence of distributed fields will change the worst case run-
time complexity of these operations from (amortized) O(1) to O(log(n)), where n is
the largest number of objects with a common distributed field in a state.

³⁶ In Java this would be a LinkedList<ArrayList< ? extends B > >, where B is the provided interface of
the base type of a pool. Note however, that the LinkedList-part is expected to be realized using references
between storage pools.

³⁷ is can be achieved by appending new objects to the end of the pool and deleting existing objects
by creating holes inside the pool. e compaction of the storage pool is done while writing the output and
can be amortized into the writing costs.
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8.2.2 Reading Unmodified Data

Reading unmodified data is basically done by creating objects with ascending IDs
while processing all eagerly processed fields. Pointer resolution in an unmodified
state is an O(t) operation, where t is the number of subtypes of the static type of the
pointer³⁸.

During the reconstruction of the initial dataset, an array in the base pool may be
used to reduce the cost to O(1)³⁹. However, this helper array has to be dropped, as
soon as the base pool is modified.

8.2.3 Modifying Data

e only legal way of modifying data is to access it through the generated API, which
provides iterators, a type safe facade, factories and means of removing objects from
states for each known type. A modification is any operation that might invalidate any
existing object ID, i.e. deleting objects or inserting objects into non-empty storage
pools. Adding objects to empty storage pools does not count as a modification in the
sense of a modified state, because it is not possible that a pointer to such an object
lurks in an yet untreated field.

8.2.4 Reading Data in a Modified State

Reading Data from disk in a modified state, is very similar to reading data in the
unmodified state. Except that resolution of stored pointers can no longer rely on the
invariant that the ID of an object is also the index into the base type pool. ere is
a solution for this problem using O(t + log(n)), where n is the number of instances
with the same static type. However, the straightforward implementation is O(t+n).

With this difference in mind, we strongly recommend adding a dirty flag to each
storage pool which traces modifications. is is expected to eliminate the additional
cost, because transformation of stored state is oen the subject of monotonic growth,
because each step of a computation usually adds instances of a type, which had no
instances in a previous step.

8.2.5 Writing Data

Data which is lazy and modified can not directly be wrien to disk, because any data
which can potentially refer to modified data has to be evaluated. Aer evaluating the
respective data, serialization is straightforward. e evaluation of lazy data referring
to potentially modified data can be done inO(out), where out is the size of the output
file. Writing the output is also in O(out), thus writing is not per se a performance
issue.

8.2.6 Final oughts on Runtime Complexity

Although the last sections read a lot like accessing serializable data is unnecessary
expensive, this is in fact not the case.

³⁸is is usually a very small constant.
³⁹e creation time for the array can be paid for during the creation of the base pool.
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Reading data without modifying is in O(in), even if only a part of the data is
read⁴⁰. is is mainly caused by the requirement of being able to process unknown
data correctly. e actual cost should be limited by the cost of sequentially reading
(or seeking through) the input file from disk.

Reading data, modifying it and writing it back is O(in + m + out), which is
not surprising at all, because one has to pay for reading the initial file, writing the
complete output file and for performing the modifications.

Only the usage of a lot of non-monotonic lazy or distributed data is expensive. It
is generally advised against using the lazy aribute if a field is read for sure during
the lifetime of a serializable state. On the other hand, lazy fields can be very valuable,
if their data is used for error reporting or debugging.

9 Future Work
Further research has to be done in the area of restrictions.

Treatment of incompatible types and the notion of incompatible itself is under-
specified. It is currently unknown whether or not an automated upcast shall take
place if possible.

A general purpose viewer and editor for SKilL files should be implemented.
A future version of the specification language will add interfaces. e resulting

types will be binary compatible with existing types. Interfaces will allow grouping of
common properties of subtypes. Interface declarations will mostly behave as if they
were hints, although they will change the generated API in a straight forward way.

We will look into ways of implementing type-safe unions and enumeration types.
It has to be evaluated, whether they should be first class citizens of the SKilL type
system, or if they can be represented with hints or restrictions. We will also evaluate
possible ways to support type casts, in order to allow for using language specific types,
such as bit-fields.

We will introduce a general assertion restriction, which can be used to assert per
instance invariants with sufficiently powerful expressions.

We will evaluate the need and impact of true comments inside of SKilL definition
files. Forcing users of the definition language to write their comments in a way that
is emied to the generated source code, might be very beneficial aer all.

We will evaluate a template import statement, which can be used to import files
together with a substitution. at way, one can create more complex data struc-
tures such as B-Trees. is feature is not a priority and only useful for large files and
projects and requires some kind of type casts to yield the desired effect automatically.

We might add add and subtract declarations to the file format, starting with ++
or --, which allow taking away or adding fields to types. is feature can be used to
create a lean interface for individual tools.

We will further evaluate means of supporting common high level specification
tasks, such as creating effective views for individual tools of a tool chain. is can
either be in the form of a skill specification editor or an extended specification lan-
guage.

⁴⁰Note that a file can contain lile payload compared to the type information stored in the file, therefore
O(in) is a sharp complexity estimate.
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Part II

Appendix
A Variable Length Coding
Size and Length information is stored as v64, i.e. variable length coded 64 bit unsigned
integers (aka C’s uint64_t). e basic idea is to use up to 9 bytes, where any byte
starts with a 1 iff there is a consecutive byte. is leaves a payload of 7 bit for the
first 8 bytes and 8 bits of payload for the ninth byte. is is very similar to the famous
utf8 encoding and is motivated, as it is the case with utf8, by the assumption, that
smaller numbers are a lot more likely. It has the nice property, that there are virtually
no numerical size limitations. e following small C++ functions will illustrate the
algorithm:

Listing 22: Variable Length Encoding

u i n t 8 _ t * encode ( u i n t 6 4 _ t va l u e ) {
/ / c a l c u l a t e e f f e c t i v e s i z e
i n t s i z e = 0 ;
{

u i n t 6 4 _ t bucke t s = va lue ;
while ( bu cke t s ) {

bu cke t s >>= 7 ;
s i z e ++ ;

}
}
i f ( ! s i z e ) {

u i n t 8 _ t [ ] r e s u l t = new u i n t 8 _ t [ 1 ] ;
r e s u l t [ 0 ] = 0 ;
re turn r e s u l t ;

} e l s e i f (10== s i z e )
s i z e = 9 ;

/ / s p l i t
u i n t 8 _ t [ ] r e s u l t = new u i n t 8 _ t [ s i z e ] ;
i n t count =0 ;
f o r ( ; count < 8 && count < s i z e −1; count ++) {

r e s u l t [ count ] = va lue >> ( 7 * count ) ;
r e s u l t [ count ] | = 0 x80 ;

}
r e s u l t [ count ] = va lue >> ( 7 * count ) ;
re turn r e s u l t ;

}

Listing 23: Variable Length Decoding

u i n t 6 4 _ t decode ( u i n t 8 _ t * v64 ) {
i n t count = 0 ;
u i n t 6 4 _ t r e s u l t = 0 ;
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r e g i s t e r u i n t 6 4 _ t bucke t ;
f o r ( ; count < 8 && ( * pV64 )&0 x80 ; count ++ , v64 ++) {

bucke t = v64 [ 0 ] ;
r e s u l t | = ( bucke t&0x7 f ) << ( 7 * count ) ;

}
bucke t = v64 [ 0 ] ;
r e s u l t | = (8== count ? bucke t : ( bucke t&0x7 f ) ) << ( 7 * count ) ;
re turn r e s u l t ;

}

B Error Reporting
is section describes some errors regarding ill-formaed files, which must be de-
tected and reported. e order is based on the expected order of checking for the
described error. e described errors are expected to be the result of file corruption,
format change or bugs in a language binding.

Serialization

• If new instances of a type would be appended to a file, which contains more
field definitions than the generator, an error has to be reported. e new in-
stances lack fields, which is very likely to violate an invariant. If this problem
is encountered in a project, it is likely that either the unknown data forms a
subtype or has to be considered by the tool producing the error.

Deserialization

• If EOF is encountered unexpectedly, an error must be reported before producing
any observable result.

• If an index into a pool is invalid⁴¹, an error must be reported.

• If the deserialization of a storage pool does not consume exactly the sizeBytes
specified in its header, an error must be reported. is is a strong indicator for
a format change.

• If the serialized type information contains cycles, an error has to be reported,
which contains at least all type names in the detected cycle and the base type,
if one can be determined.

• If a storage pool contains instances which, based on their location⁴² in the base
pool, should be subtypes of some kind, but have no respective subtype storage
pool, an error must be reported with at least, the base type name, the most exact
known type name and the adjacent base type names. is is a strong indicator
for either file corruption or a bug in the previously used back-end.

• All known constant fields of a type have to be checked before producing any
observable objects of the respective type. If some constant value differs from

⁴¹because it is larger then the last index/size of the pool
⁴²I.e. aer a subtype but not inside another subtype
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the expected value, an error must be reported, which contains at least the type,
the field type and name, the type block index, the total number of type blocks,
the expected value and the actual value.

• If a serialized value violates a restriction or the invariant of a type,⁴³ an error
must be reported as soon as this fact can be observed.

C Core Language
e core language is a subset of the full language which must be supported by any
generator, which is called a SKilL core language generator. Features included in the
core language are:

• Integer types i8 to i64 and v64

• string, bool and annotation

• Compound types

• User Types with sub-typing

• const and auto fields

• Reflection

us the remaining parts required for full SKilL support are:

• Floats

• Restrictions

• Hints

• Language dependent treatment of comments, e.g. integration into doxygen or
javadoc.⁴⁴

• Name mangling to allow for usage of language keywords or illegal characters
(unicode) in specification files, without making a language binding impossible.

• A public reflective interface allowing reading of instances and type information
of unknown types.

D Numerical Limits
In order to keep serialized data platform independent, one has to respect the numerical
limits of the various target platforms. For instance, the Java Virtual Machine can not
deal with arrayswith a size larger then about 231. ereforewe establish the following
rule:

(De-)serialization of a file with an array of more then 230 elements or a type with
more then 230 instances may fail because of numerical limits of the target platform.
Although, strings can have at most 232 bytes of data, strings are usually represented
as array of characters, therefore their length is expected to not exceed 230 characters
as well.

⁴³Including sets containing multiple similar objects.
⁴⁴is may even require a language extension providing tags inside comments which are translated into

tags of the respective documentation framework.
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E Numerical Constants
is section will list the translation of type IDs (as required in section 6.4) and restric-
tion IDs (see section 5.1 and 6.4).

Type Name Value
const i8 0
const i16 1
const i32 2
const i64 3
const v64 4
annotation 5
bool 6
i8 7
i16 8
i32 9
i64 10
v64 11
f32 12
f64 13
string 14
T[i] 15
T[] 17
list<T> 18
set<T> 19
map<T1, …, Tn> 20
T 32 + indexT

(a) Type IDs

Restriction Name Value
range 0
nullable 1
unique 2
singleton 3
constantLengthPointer 4
monotone 5

(b) Restriction IDs
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Glossary
base type e root of a type tree, i.e. the farthest type reach able over the super type

relation. 28

built-in type Any predefined type, that is not a compound type, i.e. annotations,
booleans, integers, floats and strings. 16, 18

subtype If a user type A extends a type B, A is called the sub type (of B). 13, 35, 36,
40

supertype If a user type A extends a type B, B is called the super type (of A). 13, 29,
35

unknown type We will call a type unknown, if there is no visible declaration of the
type. Such types must not occur in a declaration file, but they can be encoun-
tered in the serialization or deserialization process. 13

user type Any type, that is defined by the user using a type declaration. 13, 16, 18

visible declaration We will call a type declaration visible, if it is defined in the local
file, or in any file transitively reachable over include directives. 42

Acronyms
API Application Programming Interface. 15, 24, 34, 37

BPSI Base Pool Start Index. 29, 33

EXI Efficient XML Interchange Format. 6

LBPSI Local Base Pool Start Index. 26, 30

SKilL Serialization Killer Language. 5–8, 12, 13, 15, 18, 19, 27, 37, 40

v64 Variable length 64-bit signed integer. 17, 24–26, 28, 38

XML Extensible Markup Language. 4–6

XSD XML Schema Definition Language. 6
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