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Abstract. We consider the fragment Efn of two-variable first-order logic
FO? [<] over finite words which is defined by restricting the nesting depth of
negations to at most m. Our first result is a combinatorial characterization
of Efn in terms of so-called rankers. This generalizes a result by Weis
and Immerman which we recover as an immediate consequence. Our
second result is an effective algebraic characterization of Efn, i.e., for every
integer m one can decide whether a given regular language is definable by
a two-variable first-order formula with negation nesting depth at most m.
More precisely, for every m we give omega-terms U, and V,, such that
an FO?-definable language is in %2, if and only if its ordered syntactic
monoid satisfies the identity U, < V,,,. The proof of this equivalence relies

on the ranker characterization.

1 Introduction

A famous result by Biichi, Elgot, and Trakhtenbrot states that a language is definable
in monadic second-order logic if and only if it is regular [2] 6] 29]. The algebraic
counterpart of regular languages are finite monoids, and in many cases they are the key
ingredient for solving decidability problems in this area. For example, by combining a
result of Schiitzenberger [2I] with a result of McNaughton and Papert [I7], a language
is definable in first-order logic FO if and only if its syntactic monoid is finite and
aperiodic. The syntactic monoid of a regular language L is the unique minimal monoid
recognizing L. It is effectively computable from any reasonable representation of L.
One can thus decide definability in FO of a given regular language by checking whether
or not its syntactic monoid is aperiodic.

Kamp showed that linear temporal logic is expressively complete for first-order
logic over words [9]. Since every modality in linear temporal logic can be defined
using three variables, first-order logic with only three different names for the variables
(denoted by FO3) defines the same languages as full first-order logic. This result is
often stated as FO = FO?®. Using (and reusing) only two variables defines a proper
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subclass. Thérien and Wilke [27] showed that a language is definable in two-variable
first-order logic FO? if and only if its syntactic monoid belongs to the variety DA
and, since the latter is decidable, one can effectively check whether a given regular
language is FO?-definable. For further information on the numerous characterizations
of FO? we refer to [4, 25]. Besides the number of variables, there are two other
natural restrictions of first-order logic. The first restriction is the quantifier depth
(i.e., the number of nested quantifiers) and the second restriction is the alternation
depth (i.e., the number alternations between existential and universal quantification).
With respect to decidability questions of the above kind, quantifier depth is not very
interesting since for a fixed quantifier depth only finitely many languages are definable,
see e.g. [B]. To date, the situation with alternation depth is totally different: Only
the very first level (i.e., no alternation) is decidable [10, 23]; for all other levels no
decidable characterizations are known. By a result of Thomas [28] the alternation
hierarchy in first-order logic is tightly connected with the dot-depth hierarchy [3] or
the Straubing-Thérien hierarchy [24] 26], depending on the presence or absence of the
successor predicate. Some progress in the study of the dot-depth hierarchy and the
Straubing-Thérien hierarchy was obtained by considering the half-levels. For example,
the levels 1/2 and 3/2 in each of the two hierarchies are decidable [8, 19, 20]. The
half levels also have a counterpart in the FO alternation hierarchy which is obtained
by requiring existential quantifiers in the first block. Another point of view of the
same hierarchy is to disallow universal quantifiers and to restrict the number of nested
negations. Inside two-variable first-order logic, alternation depth is also a natural
restriction. One difference to full first-order logic is that one cannot directly use
prenex normal forms as a simple way of defining the alternation depth. Weil and the
first author gave an effective algebraic characterization of the m™ level FO?W of this
hierarchy. More precisely, they showed that it is possible to ascend the FO?-alternation
hierarchy using so-called Mal’cev products [I5] which in this particular case preserve
decidability. These Mal’cev products lead to the Trotter-Weil hierarchy for which many
characterizations of FO? admit counterparts [12, 14, 16, 30]. An important tool in the
study of the Trotter-Weil hierarchy are rankers. This combinatorial description was
introduced by Schwentick, Thérien, and Vollmer [22] as turtle programs and was later
refined by Weis and Immerman [31] to obtain a structure theorem for FO? . Krebs
and Straubing gave another decidable characterization of FOfn in terms of identities of
omega-terms using completely different techniques [I1]; their proof does not rely on
rankers.



In this paper we consider the half-levels of the FO?-alternation hierarchy. A language
is hence definable in ¥:2, if and only if it is definable in FO? without universal quantifiers
and with at most m nested negations. It is easy to see that one can avoid negations of
atomic predicates. By eliminating negations (using De Morgan’s laws and -3z ¢ =
Vz =), one can think of ¥2, as those FO?-formulae ¢ such that every path of the
parse tree of ¢ has at most m blocks of nested quantifiers and the outermost block is
existential. The main contribution of this paper are omega-terms U,, and V,,, such that
an FO?-definable language is ¥2 _definable if and only if its ordered syntactic monoid
satisfies U, < V,,,. For a given regular language it is therefore decidable whether it is
definable in 32, by first checking whether it is FO?-definable and if so, then verifying
Upn < Vi, for the ordered syntactic monoid. Moreover, for every FO?-definable language
L one can compute the smallest integer m such that L is definable in ¥2,. An important
tool in the proof of our decidability criterion for ¥2, is a combinatorial characterization
in terms of rankers. A corollary of this is the Weis-Immerman characterization of
FO?. On the other hand, there is no immediate connection between the decidability
of FOZ2, and the decidability of ¥2,. A convenient intermediate step in the proofs is
unary temporal logic TL[XF,YP] with strict future and past operators [7]. Table
summarizes the current state of the art (the parameter n denoting either the quantifier
depth in FO or the operator depth in temporal logic).

2 Preliminaries

Languages and words. In this paper A is a finite alphabet, A* is the set of finite
words, and AT = A*\ {€} are the nonempty finite words. A language is a subset of
A*. For a word w = aq - - - a;, with a; € A the length of w is |w| = k, and the alphabet
of w is alph(w) = {a1,...,ax}. A word u = by ---by with b; € A is a subword of w if
w € A*by - - - A*bA*. For integers p, ¢ let wlp; ¢] = ap - - - aq; if p = ¢, then we shorten
this notation to w[p]. We say that p is an a-position if w[p] = a.

Rankers. A ranker is a nonempty word over {X,,Y, | a € A}. The symbol X, means
neXt-a and is interpreted as an instruction of the form “go to the next a-position”;
similarly, Y, is for Yesterday-a and means “go to the previous a-position”. For a word w
and an integer p let

Xo(w,p) = min{q > p | ¢ is an a-position of w},

Y.(w,p) = max{q < p| ¢is an a-position of w}.
The minimum and maximum of the empty set are undefined. Inductively, for a ranker r
and Z € {X,,Y,| a€ A} let Zr(w,p) = r(w,Z(w,p)). In particular, rankers are
processed from left to right. If either Z(w, p) or r(w, Z(w, p)) is undefined, then Zr(w, p)
is undefined. On words we let X,r(w) = X,r(w,0) and Y,r(w) = Yor(w, |w| + 1),
i.e., if the first modality of a ranker r is X,, then r starts its execution in front of
the word; symmetrically, if the first modality of r is Y,, then r starts its execution
after the end of the word. The depth of a ranker is its length as a word over the
alphabet {X,,Y, | a € A}. Let Ry, ,, be the set of rankers with at most m — 1 direction



alternations and depth at most n; i.e., rankers r with |r| < n of the form r =7y -7,
such that 7; € {X, | a € A}  or r; € {Y, | a € A}" for all i. We say that a ranker ends
with an X-modality (respectively a Y-modality) if it is of the form rX, (respectively
rYq) for some a € A. For a set of rankers R and a word w let R(w) consist of all
rankers in R which are defined on w.

First-order logic. We consider first-order logic FO = FOI[<] over finite words. The
syntax of FO-formulae is
TlLlAMe)=al|lz=ylz<y|-¢|eVe|eony |Izy

where a € A is a letter, z and y are variables, and ¢ and @ are formulae in FO. We
consider universal quantifiers Vx ¢ as abbreviations for =3x —¢. The atomic formulae T
and L are true and false, respectively. Variables are interpreted as positions in the
word model, and A(xz) = a is true if  is an a-position. The semantics of the other
constructs is as usual, in particular 3z ¢ means that there exist a position = which
makes @ true, and 2 < y means that position x is (strictly) smaller than position y. We
write ¢(21,...,2¢) for a formula ¢ if at most the variables x; appear freely in ¢; and
we write w,p1,...,pe = @(x, ..., x¢) if ¢ is true over w when z; is interpreted as p;.

The negation nesting hierarchy within first-order logic is defined as follows. Let
Yo consist of disjunctions and conjunctions of atomic first-order formulae; and for
m > 1 let X,, be the smallest class of first-order formulae containing ¢ and —¢ for
all ¢ € 3,,,_1 as well as o V¢, ¢ A, and Iz ¢ for all variables x and all p, ¥ € X,,.
Thus, when not counting negations of atomic formulae, then ¥, for m > 1 contains the
formulae with negation nesting depth is at most m — 1. Also note that, up to logical
equivalence, our definition of 3, coincides with the more common definition in terms
of formulae in prenex normal form with at most m blocks of quantifiers which start
with an existential block. This can be seen by the usual procedure of renaming the
variables and successively moving quantifiers outwards.

The two-variable fragment FO? of first-order logic uses (and reuses) only two distinct
variables, say z and y. Combining FO? and ¥,, yields the fragment an. That is, we
have ¢ € Efn if both ¢ € 3, and ¢ only uses the variables x and y. This also justifies
the notation Efn which inherits the symbol as well as the subscript from ¥, and from
FO? the exponent. The further restriction of an to formulae of quantifier depth at
most n yields the fragments E?n,n. The Boolean closure of X2, (respectively, 2, ) is

m,n

the m™ level of the alternation hierarchy FO?, (respectively, FO?nn) within FO?.

Unary temporal logic. Unary temporal logic TL[XF, YP] consists of formulae built
from atomic formulae T for true, L for false, and a where a € A using Boolean connec-
tives and modalities XF for neXt-Future and YP for Yesterday-Past. The semantics is
given by the following two-variable formulae in one free variable: For a it is given by
Az) = a, and we let (XFo)(z) =y > z: ¢(y) as well as (YPy)(z) = Ty < z: ¢(y); the
remaining connectives are as usual. The formula ¢(y) in FO? is obtained from ¢(x) by
interchanging x and y. On words without an interpreted variable let w |= T, w & L,
and w [~ a and XFp = YPp = 3z ¢(x); Boolean connectives are straightforward. Due



to their identical definition, outermost YP-modalities can be replaced by XF without
changing the semantics.

The negation nesting hierarchy of temporal logic is as follows. Let TLar [XF,YP]
comprise atomic label formulae. For m > 1 let TL} [XF,YP] be the smallest class
of formulae containing both ¢ and = for TL} | [XF,YP] as well as ¢ V ¥, ¢ A1,
XFy, and YPy for ¢, € TL;;[XF, YP]. Restricting the operator depth to at most n
yields TL;’H[XF7 YP], i.e., on every path in the parse tree there are at most n nested
modalities XF and YP.

For a first-order formula without free variables or a temporal logic formula ¢ let the
language defined by ¢ be L(p) = {w € A* | w |= ¢}. Let F be a class of first-order or
temporal formulae. A language L is definable in F if there exists ¢ € F with L(p) = L.
We write u <x v for words u,v € A* if v = ¢ implies u = ¢ for all ¢ € F. For
conciseness we use the notation <% instead <r with F = an,nk], and we write

<m,n

< for <g with G = TL, | [XF, YP).

~m,n

3 Ranker Characterization of 32

The next definition gives the main condition for the combinatorial characterization of
Sm
Definition 1. Let u,v € A* and m,n > 0. Let u <}, v if either m =0 or n =0, or
if v <_1., u and all of the followmg hold:
1. Rm,n( ) g Rm,n(u);
2. r(v) < s(v) = r(u) < s(u) and r(v) < s(v) = r(u)
ending with an X-modality with r € Ry, »(v) and s €
3. r(v) > s(v) = r(u) > s(u) and r(v) > s(v) = r(u) =
ending with a Y-modality with r € Ry, 5,

< s(u) for all rankers r,s
Rm 1,n— 1('0)
s > s(u) for all rankers r,s
(v) and s € Riyy—1 n—1(v),
4. r(v) < s(v) = r(u) < s(u) and r(v) < s(v) = r(u) < s(u) for all rankers
7,8 € Ry n(v) with |r| 4 |s| < 2n such that r ends with an X-modality and s ends
with a Y-modality.

The relation <*' is a preorder on A*; the exponent is for “Weis-Immerman” who

~m,n
introduced a similar condition for the fragment FO?
first main result.

m.ns ¢f [31]. We can now state our

Theorem 1. Let L C A* and m,n > 1. The following conditions are equivalent:
1. L is definable in %2, n

2. L is definable in TL;, , [XF, YP].

3. Lis an <3} ,-order ideal, i.e., u <y, v and v € L implies u € L.

This result implies the characterization of Weis and Immerman [3I]: Two words
u,v € A* model the same formulae of FOZ, ,, if and only if R,, ,,(u) = Rp.n(v) and
ord( (u), s(u)) = ord(r(v), s(v)) for all r,s 6 Ry n(w) such that either s € Ry 1



and r and s end with opposing directions or s € Ry,—1 ,—1. Here, ord(p,q) is the
order-type, i.e., the unique element ~ in the set {<,=, >} such that p ~ q.

In the remainder of this section we prove Theorem |1| The translation from Efn’n to
TL; »XF, YP] is similar to a construction of Etessami, Vardi, and Wilke [7, proof of
Theorem 1]. From temporal logic to rankers, we also have to take free variables into
account. This step is the most technical one. Finally, we show that rankers and their
order can be defined by suitable FO?-sentences.

Lemma 1.1. Let m,n > 0. Every Z n-definable language is TL;’n[XEYP]—deﬁnable.

Proof. The construction is by induction on the structure of the formula; for the inductive
step, we also have to take free variables into account. Let ¢(z,y) € E?n’n. We start
by some normalizations on the structure of . We assume without restriction that on
all paths in the parse tree of ¢ no two successive quantifiers bind the same variable.
Therefore, by starting the construction with a sentence having this property, we can
assume that the first quantifier on every path in the parse tree of ¢ binds the variable
Yy, i.e., when thinking of ¢ as a subformula of some sentence, then on the path to ¢
the previously bound variable is x.

Let 7 € {<,=,>} and a € A. We show that there exists (¢)r,q(x) in TL} [XF,YP]
such that for all u € A* and all positions p and ¢ of u with u[g] = a and ord(p,q) =7
we have u,p, ¢ = ¢ if and only if u,p = (¢)r.q

The construction is by induction on the structure of the formula. Let (T), 4(
(L)7.q(x) = L and for the other atomic formulae we set (A(z) = b), o(z) = b an

T ifa=0»
)\ = b T,a = ,
(Ay) )70 () {J_ otherwise,
{T if 7is <,

1 otherwise.

o) =
b and

(T <Y)ral)

The formula (y < ), 4(z) is defined similarly. For the conjunction and the disjunction
let (¢ A ¥)ra(2) = (@hral@) A (B)ra(@) a0d (9V D)7 a(z) = (D)ra(®) V ©)ra(2),
respectively. For negation we set (—@); o(x) = =(p)r o (z). For existential quantification
we let

Gy hralz) = \ bA (YP@)<p(y) V()= (1) V XF(0)> (1))-
beA
In the construction of the formulae (@), ;(y), the roles of x and y are interchanged.
Note that due to our normalization at the beginning, we do not have to handle
quantification over x.

We now define ¢’ € TL;  [XF,YP] 1nduct1ve1y for sentences ¢ € X2 . Boolean
connectives are straightforward. (eAY) =" AY, (pVY) = ¢’ Vi) and (ﬁgp)’ =y
For quantification we set (Jy: @)’ = XF((p)r,a(y)) where 7 € {< = >} and a € A are
arbitrary. Hence for every sentence ¢ € ¥, there exists ¢’ € TLm »1XF, YP] such
that L(p) = L(¢'). O

We now introduce a relation <y, which resembles <J', for free variables. For

u,v € A* and non-negative integers z,z’ let (u,2’) ', (v,x) if u <!, v and either

~m,n N m,n



x=a' =0 or v[z] = u[z'], and if further either m = 0, or n = 0, or all of the following

hold:
1. s(v) <z’ if s € Ry, n(v) ends with an X-modality or if s € Ry,—1 (),

2. s(v) <z if s € Ry—1,0(v),

3. s(v) >z = s(u) > if s € Ry, n(v) ends with a Y-modality or if s € Ry;,—1,,(v),

4. s(v) zxz = s(u) = 2" if s € Ryy—1.0(v).

The idea is that © = 2’ = 0 encodes the case without free variables. The following

lemma shows that the roles of u and v can be interchanged by investing one negation.

N
&
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Lemma 1.2. Let u,v € A* and m,n > 1. If (u,z’) W (v, ), then (v,z) N

~m,n m—1,n
(u,z').

Proof. We may assume m > 2 and n > 1 since the claim is trivial otherwise. The alpha-
betic condition is clear and v <JJ'_; ,, u is a requirement of u <}, v. Suppose s(u) < 2’
for some s € R,,—1,,(u) which ends with an X-modality or some s € Ry;,—2 ,(u). We
have to show s(v) < x. Suppose s(v) > z for the sake of contradiction. By condition

for (u,z") V', (v, z) we obtain s(u) > ', contradicting the assumption s(u) < /. A

~m,n
similar reasoning applies to each of the remaining three conditions. O
Lemma 1.3. Letu,v € A* andm,n > 1. If (u,2") 3, (v, ), then for all 1 <y < |v|
there exists 1 < y' < |u| with ord(x,y) = ord(2',y") and (u,y") 31 (v, ¥).

Proof. For y = x simply take ¢y’ = z’. By left-right symmetry it suffices to consider the
case y > x. Let a = v[y| and

Ryight = {r" | 7'Yq € Ry n(v) and r'Y,(v) > y},
Riesr = {r" | v'Xq € R—1,n—1(v) and r'X,(v) > y}.

Note that Ryignt Yo U Riept Xoq C Rmm(l}) - Rm,n(u). Let r € Ryight Yo U Riept Xo be
such that r(u) is minimal. We claim that we can choose ¢ = r(u). By r(v) >y >z
and condition (3)) in the definition of 5!, we conclude y' = r(u) > z’.

~Nm,n
Next, we show (u,y’) g (v,9). The alphabetic condition is clear. By RZ, , we

~m,n—1

denote the rankers in R,, , ending with a Z-modality for Z € {X,Y}. “Condition ”:
Let s € R, ,_1(v) U Rpm_1n—1(v) with s(v) < y. In particular, we have s(v) < r(v).
By Definition I u <%, v yields s(u) < r(u) = y'. (If s € RY,,,_, and r € R,

~m,n m,n’

then condition of Definition |1|is applied. If s € Ri(nmfl and r € Réq,nfla then

condition is applied. If s € R717n71 and r € RILn, then condition is applied.
If s € RY L and r € RX then condition for v <M u is applied.)

m—1,n— m—1,n—1> m—1,n
Verifying condition (2) is similar. “Condition (3) Let s € RY, ,_;(v) U Rpp—1,n-1(v)
and s(v) > y. Since s € Ryigni, we see that s(u) > sY,(u) > r(u) =y’ by choice of r.
“Condition ([)™ Let s € Ry—1,,—1(v) and s(v) > y. First suppose s = s'X,. Then
s" € Ryepr and thus s(u) = s'Xq(u) = r(u) =y’ by choice of r. Finally suppose s = s'Y,,.

Then s’ € Ryignt and thus s(u) = s'Y,(u) > r(u) =y’ by choice of r. O

Using Lemmas and E a straightforward induction shows that TL:NL[XF, YP]-
definable languages are <! -order ideals. This is recorded in the following lemma.

Nm,n



Lemma 1.4. Let u,v € A* and m,n > 0. If u <V v, then u <X v.

~m,n ~m,n

Proof. We show that if (u,z’) <3, (v,2), then v,z |= ¢ implies u,z’ |= ¢ for all
formulae ¢ € TL;‘,‘m[XF7 YP]. The proof of this claim is by structural induction. For
atomic formulae this follows by the alphabetic condition in the definition of <77 ,,. In
particular we may assume m,n > 1. For Boolean connectives the claim follows by
induction; in the case of negation this relies on Lemma and ¢ € TL;’;_Ln[XF,YP]
whenever ~¢ € TL}, | [XF,YP]. Suppose v,z |= XFy. Then there exists a position
y > x of v such that v,y E p. By Lemma there exists a position ¢y’ > z’ of u such
that (u,y’) <%, 1 (v,y). Because we have ¢ € TL}, . [XF,YP], induction yields
u,y’ = ¢ and finally u, 2’ = XFp. The remaining case YPy is symmetric to XFp. This
concludes the proof of the claim.

Suppose now v = ¢ for some ¢ € TL;’n[XF, YP]. Replacing outermost YP-modalities
by XF yields a formula which defines the same language. We may therefore assume
without loss of generality that v = ¢ if and only if v,0 &= ¢. If u <¥ v, then

m,n

u,0) W' (v,0) and the claim thus yields u, 0 . This shows u <*'_ v. O
(u,0) : y O0F¢@

~m,n Nm,n

We now give two-variable formulae for order comparisons with ranker positions.
These formulae show that a direction alternation in a ranker can be covered by a
negation in first-order logic.

Lemma 1.5. Letr € R, 5. If r ends with an X-modality, then there exist formulae
(x =) and (x > ) in X2, such that for all words u with r(u) being defined and for

m,n

all positions i of u we have

u, it ={x>=r) if and only if i > r(u),

u,t = {(x>r) if and only if i > r(u).
Symmetrically, if r ends with a Y-modality, then there exist formulae (x <) and
(x <r)in X2 . such that for all words u with r(u) being defined and for all positions i

m,n

of u we have
u, i = (x <r) if and only if @ < r(u),
u, i = (x <) if and only if i <r(u).

Proof. Tt suffices to specify (z > r) and (x > r) for rankers ending on X. The formulae
(x < r) and (z < r) for rankers ending on Y are then left-right symmetric. The proof
is by induction on the depth of r. Let

(x>X,) =3Jy<z:Ay) =a, (x=2X,) =3Jy<z: Ay =a,
(x>rX,) = Fy<z(Ay)=aA{y>r)), (x=rX,) = y<az(ANy)=aA(y>r)).
where r is a ranker. Here, (y > r) is obtained by induction if r ends on an X-modality;

otherwise we let (y > r) = —~(y < r) with (y < r) obtained by induction. As usual, the
formula (y > r) with free variable y is obtained by interchanging z and y. O

Y <
Y <

The formulae in Lemma [I.5] yield suitable two-variable sentences for rankers and for
order comparisons of rankers.



Lemma 1.6. Let u,v € A* and m,n > 0 be integers. If u gf;fn v, then u <}, v.

Proof. The proof is by induction on m with the trivial base case m = 0. Suppose
U <f,?2n v. In particular v <f§i17n u and hence v <3/, ,, u by induction. We show
conditions to of Definition [1| one after another. The proof makes extensive use
of Lemma [L.5]

“Condition ”: Suppose r € Ry, ,, is defined on v but not on w. Let r = r'Zr” with
Z € {X4,Y,} for some a € A such that r' is the longest prefix of r which is defined

on u. Note that alph(v) C alph(u) and thus |r'| > 1. Consider the formula
"t Z =X,
(r'zy = Hx:)\(x):a/\{<x>r> '

(x<r)y HZ=Y,.
In both cases (r'Z) € anm’ and (r'Z) is true on w € A* if and only if 7'Z(w) is defined.
In particular, r’Z is defined on u which contradicts the definition of r’. Therefore, r(u)
is defined. This shows Ry, (V) C Ry p ().
“Condition ”: Consider rankers r, s with r € R,,, ,(v) and s € R,,_1,,—1(v) which

end with an X-modality. Let r = r'X, for a € A and let < € {<, <}. The formula
(r<s) = 3z AMNz)=an{z>r")A{z Ss)

is in an’n. Here we set (z > ') = T whenever ' is empty. Moreover (r < s) is true
on w € A* if and only if r(w) < s(w). Hence r(v) < s(v) implies r(u) < s(u), and
r(v) < s(v) implies r(u) < s(u).

“Condition (3))”: This is symmetric to property .

“Condition ”: Consider rankers r, s € Ry, ,,(v) with |r| 4+ |s| < 2n such that r ends
with an X-modality and s ends with a Y-modality. Let < € {<, <} and 2 be its inverse
relation. Let

(r<s) = 3z A@) =an {(az >y Az < s) %fr =71"X, and s € Ry n—1(v),
(x<sYN(xzr) ifre€Ryp_1(v)and s=s"Y,.

In both cases (r < s) € Eihn and (r < s) is true on w € A* if and only if r(w) < s(w).
Therefore r(v) < s(v) implies 7(u) < s(u), and r(v) < s(v) implies r(u) < s(u). O

Theorem[d “(1) = (2)”: This is Lemma
“@) = (@) Let L be definable in TL; ,[XF,YP]. Suppose u <}, v and v € L.

Nm,n

Lemma yields u <}" v and consequently v € L. This shows that L is a <})'  -order

<m,n Nm,n
ideal.

“B) = (@ Let L be a <hop-order ideal. Suppose u <F® vand v € L. By

~m,n
Lemma [T.6] we see u <}, v and thus u € L. Therefore L is a <[o% -order ideal. For
a word u let L, be the intersection of all Zf,w—deﬁnable languages containing wu; this

intersection is finite since up to equivalence there are only finitely many formulae in
Efnyn. Moreover if u € L, then we have L, C L and thus L = J,c; Ly; this union is
also finite since there are only finitely many languages of the form L,,. O



4 Decidability of X2

In this section we give a decidable algebraic characterization of languages definable in
Efn. We start by introducing the concepts necessary for this result.

An ordered monoid (M, <) is a monoid M equipped with a partial order < which is
compatible with multiplication in M; i.e., z < 2’ and y < 3 implies zy < z'y’. Every
monoid can be considered as an ordered monoid when using the identity relation as
order. An order ideal of < is a subset I C M such that y < z and = € I implies y € I.
A language L C A* is recognized by a homomorphism h: A* — M to an ordered monoid
(M, <) if L =h~Y(I) for some <-order ideal I. A monoid M recognizes a language L
if there exists a homomorphism h: A — M which recognizes L. The syntactic preorder
< on words is defined as follows: We set u <y v for u,v € A* if pvg € L implies
puq € L for all p,q € A*. We write u =g, v if both u <z v and v <p u. The syntactic
monoid of L is A*/=p; it is the unique minimal recognizer of L and it is effectively
computable from any reasonable presentation of given a regular language, see e.g. [18].
The syntactic preorder induces a partial order on =y -classes such that A*/=, becomes
an ordered monoid. The syntactic homomorphism is hy: A* — A*/=y is the natural
quotient map.

Green’s relations are an important tool in the study of finite monoids. For z,y € M
let x <gyif aM CyM, and let © <, y if Max C My. We write R y if both z <g y
and y <r x; and we set © <g y if r <xg y and y 7(73 z. The relations £ and <, are
defined similarly. An element z in a monoid M is idempotent if 22 = x. For every finite
monoid M there exists an integer wy; > 1 such that x“™ is the unique idempotent
power generated by € M. If the reference to M is clear from the context, we simply
write w instead of wps. Classes of finite (ordered) monoids are often described by
identities of omega-terms. We define omega-terms over a set of variables 2 inductively:
Every variable z € Q is an omega-term, and if v and v are omega-terms, then so
are uv and u“. Here, w is considered as a formal symbol instead of a fixed integer.
Every mapping h: Q@ — M to a finite monoid M uniquely extends to omega-terms by
setting h(uv) = h(u)h(v) and h(u®) = h(u)¥. An ordered monoid (M, <) satisfies
the inequality U < V of omega-terms U, V if h(U) < h(V) for all mappings h: Q@ — M.
It satisfies U = V if it satisfies both U < V and V < U.

An important class of monoids is DA which will serve as an upper bound for our
algebraic characterization. Let DA be comprised of all finite monoids M satisfying
(zyz)?y(ayz)* = (xyz)“. Suppose M € DA and let u,v,a € M. If v R u R ua, then
v R va; and symmetrically, if v £ u £ au, then v £ av, see e.g. [12, Lemma 1].

As we shall see in this section, the following sequences of omega-terms U,, and V,,
characterize 272% for monoids within DA. Let U; = z, let V4 =1, and let

Un = (Umflmm)wUmfl(memfl)w
Vm = (U'Tn—13'5m,)w‘/m—1(yrnUrWL—l)LAJ

for m > 2 and variables 2, ¥y2, . . ., Tm, Ym, 2. We can now state the second main result.

Theorem 2. Let L C A* be definable in FO? and let m > 1. Then L is definable in
Efn if and only if the ordered syntactic monoid of L satisfies Uy, < V.
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Thérien and Wilke [27] have shown that a language is definable in FO? if and only if
its syntactic monoid is in DA. Since the syntactic monoid of a regular language (given
for example as a finite automaton or a first-order sentence) is effectively computable,
the above characterization is decidable.

Corollary 2.1. [t is decidable whether a given regular language is definable in Z,Qn. O

Note that the equivalence in Theorem [2| does not hold for arbitrary regular languages;
for example the ordered syntactic monoid of the language A*\ A*aaA* over the alphabet
A = {a, b} satisfies the inequality U,, < V;, for all m > 2 but it is not FO?-definable.
The remainder of this section is devoted to the proof of Theorem [2] It relies on a
combination of algebraic properties of monoids in DA with combinatorial properties of
»?2 | leading to a factorization which enables induction on the parameter m.

We start with the combinatorics. The following two lemmas describe an important
relativization technique inside FO?. The first lemma restricts the interpretation of
formulae to the prefix before (respectively to the suffix after) the first a-position of a
word. Its left-right dual Lemma [2.2] gives restriction with respect to the last a-position.
The second lemma relativizes to the factor between a crossing of the first a-position
and the last b-position. In both situations we pay special attention to the parameter m.

Lemma 2.1. Let ¢ € men form,n >0, and let a € A. Then there exist formulae
(p) <Xa in 272n+1,n+1 and (p)sxa N Z,Qn,n_H such that for all words u = ujaug with
a & alph(uq):

u,p,q |= () <xa if and only if wy,p,q =@ for all1<p,q < |ul,

w,p,q = (@)>xa if and only if uz,p — |uial,q — luial = ¢ for all lural < p,q < [ul.

Proof. The formulae (p)<x, and (¢)sx, relativize the interpretation of the formula
by restricting the evaluation of quantifiers to the factor before (respectively after)
the first occurrence of the letter a (i.e., the position reached by the ranker X,).
We first give the inductive construction for (¢)cxq. Let (@)exa = ¢ if ¢ is an
atomic formula. For conjunction let (o A ¥)cxqa = (©)<xa N (¥) <xa, for disjunction

let {(pVyexa = (P)<xa V (V) <xq, and for negation let (—¢)oxa = —(p)<xq- For
existential quantification let

(Fr )exa = Tz (ﬁ(EIy <z: AMy)=a)A <cp><xﬂ).
As usual, swapping the variables = and y yields the corresponding constructions for .
We now construct (¢)sxq. Let (p)sxa = ¢ if ¢ is an atomic formula. Boolean
combinations are as above and for existential quantification let

3z ©)sxe = ((Ely <z:AMy)=a)A <g0>>x(l).
Again, the constructions for y are dual. O

The following is the left-right symmetric version of Lemma [2.1] and is thus admitted
without proof.

Lemma 2.2. Let p € Efmn form,n >0, and let a € A. Then there exist formulae

(p)<ya in szn,n+1 and (p)svyq in 272n+1,n+1 such that for all words u = ujaus with

a & alph(ug):
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u,p,q ': <§0><Ya Zf and O’I’Lly Zf ui,p,q ': ¥ fOT’ all 1 < b, q < ‘ul‘i

u,p,q = (@©)sva if and only if uz,p — |uial,q —|ural = ¢ for all lural < p,q < |ul.
0

Lemma 2.3. Let p € Z?n)n form,n >0, and let a,b € A. Then there exists a formula
(©) (Ybixa) N Ean’nH such that for all words u = uibusaus with b & alph(usaus) and
a & alph(uibusg), and for all |uib| < p,q < |uibus| we have:

u, D, q = (@) (Ybixa) if and only if uz,p — |uib|,q — |u1b| = .

Proof. We construct () (yp;xq) Which restricts the interpretation of ¢ to the factor of
the model which is between the last b and the first a. Atomic formulae and Boolean
combinations are straightforward. For existential quantification let

(3 ©)(viixa) = Fz (-Fy <z: AMy) =a) A=(Fy = z: A(y) = b) A (@) (vbixa))-
Quantifications over y are dual. O

Let h: A* — M be a homomorphism. For a word u € A* the L-factorization
is the unique factorization u = sgpai ---sp_1apsy with s; € A* and so-called mark-
ers a; € A such that h(sy) £ 1 and h(s;a;41---Se—1aese) >z h(a;s;---aesg) L
h(si—1a;---s¢—1agsg) for all . In particular ¢ < |M|. If M € DA, then a; ¢
alph(s;). Let Dg(u) consist of the positions of the markers, i.e., let Dp(u) =
{|soa1---si—1a;| 21| 1 <i < {£}. The R-factorization is defined left-right symmetri-
cally. The set D (u) consists of all positions p of u such that h(u[l;p—1]) >r h(u[l;p]).
The following lemma combines the R- and the L-factorization for monoids in DA.

Lemma 2.4. Let h: A* — M be a homomorphism with M € DA. Let u,v €
A* with u gg?QjM‘ v. Then there exist factorizations u = Spay - Sg_1a¢Sp and v =
toay - -+ te_qragty with £ < 2|M|, a; € A and s;,t; € A* such that h(sp) R 1 and
h(s¢) L1 and the following properties hold for all 1 < i < £:

1. h(t0a1 ce ti,lai) R h(t0a1 ce ti,laisi),

2. h(a;s;--agse) L h(s;—1a;---agsg).
Moreover, for every 1 < i < £ there exists a ranker r in

{Xoy = Xy Yo - Yo, | by by is a subword of a1 - - - ag for b; € A}

with r(u) = |spay - -~ si—1a;] and r(v) = |toay -+~ ti—1a;.

Proof. Loading the induction hypothesis, we allow for an additional prefix p of wv;
that is, we consider words u and pv but the factorizations are for v and v only. The
only difference is that we require h(ptoay - - - t;—1a;) R h(ptoay - - - ti—1a;s;) instead of
property . Note that the suffix at the end is s; and not ¢;. The assumption is
u <59, v for n = |[Dgr(pv) \ Dr(p)| + [Dz(u)| + 1 and the proof proceeds by induction
on |Dg(pv)\ Dr(p)|. Let u = syc1---spy_qcps)y and v = tyeq - - t),_ cpt) where
the factorization of u is the L-factorization (in particular ¢; ¢ alph(s})) and where
¢; ¢ alph(t}) for all i. This factorization of v exists because by assumption u and v
agree on subwords of length ¢'.

First suppose Dg(p) = Dr(pv). In this case h(p) R h(pv) and thus h(p) R h(pzx) for
all € B* where B = alph(v). In particular h(ptjcy ---t,_qc;) R h(ptoer - - - ti_i¢;s))
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because alph(u) = B. Hence, setting a; = ¢;, $; = s, and ; = ¢} yields a factorization
with the desired properties.

Let now Dg(p) € Dr(pv). Let sa with s € A* and a € A be the shortest prefix of u
such that h(p) R h(ps) >r h(psa). Such a prefix exists since alph(u) = alph(v). We
have |sa| = X,(u) by M € DA. Let ta be the prefix of v satisfying |ta| = X,(v). By
Lemmawe have alph(t) C alph(s). Next, let k¥ be maximal such that sjec; - - - s)_cx
is a prefix of s. By Theorem |l{ and Definition , the index k is also maximal such
that t(ci ---t),_,cp is a prefix of t. Let a; = ¢; for i € {1,...,k}, let s; = s and
t; =t} for i € {0,...,k — 1}, and let s; and t; such that s = spc1 -+ - sp_1¢, S and
t = tgcy -+ tg_1cpty. Let u = sau’ and v = tav’. By construction of s and since
alph(t) C alph(s) we have

h(ptoay ---ti—1a;) R h(ptoay ---ti—1a;s;)

for all i € {0,...,k}. Note that h(a;118i+1---agspu’) L h(s;a;r18i41 - apsgu’).
Moreover, h(p) >r h(pta) and thus Dgr(p) € Dgr(pta). Using the formulae (¢)sxq
from Lemma yields o/ <55, v'. Asn—1 > |Dr(pv) \ Dr(pta)| + |De ()] + 1
holds, we can apply induction to obtain

U = Spp1Ggta - Se-1a050,

v = tppragpo - te—ragts.
Setting agy+1 = a yields the desired factorizations. The ranker property holds since all
markers a; are defined by R- and L-factorizations. O

Lemma 2.5. Let u = sgai1---S¢e—1ap8¢ and v = toay - - - tp_1agty with a; € A, s;,t; €
A*. Moreover, suppose for every 1 < i < £ there exists a ranker r in

Z={Xp, - KXoy, Yo, - Yo, | b1+ by is a subword of ay ---ag for b, € A}

such that r(u) = |spay - - - si—1ai| and r(v) = |toay - - - ti—1ai]. If u gfﬁan v for m > 2
and n >0, then s; <I°° t; for all 0 <@ < /L.

Xm—1,n

Proof. For a ranker r let us say informally that it reaches the occurrence of the marker a;
if r(u) = |spa1 - - - s;—1a;| and r(v) = |toay - - - t;—1a;]. Let X consist of the rankers in
Z starting with an X-modality, and let ) = Z \ X be the rankers starting with a Y-
modality. We perform an induction on the number of markers reachable by some ranker
in X. First, suppose all a; are reached by a ranker in Y. Using the formulae (¢)vq,

from Lemma, we get for every 1 < ¢ < £ that spais;---a;s; gg;’,";ﬁl toaity - - - a;t;
and so <07, to. Hence using the formulae (¢)svq, from Lemma we see ; <f§il,n t;
for all i.

Let now &k be minimal such that the occurrence of ay, is reached by a ranker in X.
The same reasoning as above shows s; <f,?i17n t; for all ¢ < k — 2. Using the formulae
(¢)>Xa, from Lemma [2.1| we have

SKkt1 - 8010050 Spppo—1 th@h1 - te—1asts
and induction yields s; <$7?il,n t; for all 4 > k. It remains to show sp_; gf;;ilyn te—1-
Let &’ be the minimal index with &’ > k such that the occurrence of aj is reached
by a ranker in ). Then spays1 - ag—1Sk—1 <f7f)2n+1 toaity -+ - ag—1tp—1. Using the
formulae (©)(va,_,:xa,) from Lemma finally yields sg_1 gg‘;im te_1- O
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The preceding lemmas enable induction on the parameter m. We start with a
homomorphism onto a monoid satisfying U,,, < V;,, and want to show that preimages of
<-order ideals are unions of <£§n—order ideals for some sufficiently large n. Intuitively,
a string rewriting technique yields the largest quotient which satisfies the inequality
Upm—1 < Vin—1. One rewriting step corresponds to one application of the inequality
Up—1 < V1 of level m—1. We then show that rewriting steps in appropriate contexts

can be simulated by the inequality U,, < V,,.

Proposition 2.1. Let m > 1 be an integer, let h: A* — M be a surjective homomor-
phism onto a finite ordered monoid (M, <) in DA which satisfies Uy, < Vi,. Then there

exists a positive integer n such that u <;§’n v implies h(u) < h(v) for all u,v € A*.

Proof. We perform an induction on m. For the base case m = 1 a result of Pin [19]
shows that for every <-order ideal I of M the set h=1(I) is a finite union of languages
A*aq -+ A*ap A* for some k > 1 and a; € A. Let n be the maximum of all indices k
appearing in those unions when considering all order ideals I C M. If u gi"n v, then
for all languages P = A*aq --- A*apA* with k < n we have that v € P implies u € P.
Moreover, the preimage L of the order ideal generated by h(v) is a finite union of
languages A*aq - -+ A*ai A* with k < n. We have v € L and thus v € L. This shows
h(u) < h(v).

In the following let m > 2 and fix some integer w > 1 such that z is idempotent
for all z € M. We introduce a string rewriting system — on A* by letting ¢t — s if
h(s) = h(t) or if t = pv,,—1q and s = pu,,—1q for p,q € A* and for ¢ > 2 we have

v =1, v = (ui—12:)"vi—1(yiui—1)”,

ur =z, ;= (Ui—12) i1 (Yiui—1)”
for z;,y;,2 € A*. Note that t — s implies p'tq’ — p’sq’ for all p’,q’ € A*. Let = be
the transitive closure of —, i.e., let ¢ = s if there exists a chain ¢t = wy — wy — - -+ —
wy = s for some £ > 1 and w; € A*.

We now claim that, in certain contexts, we can lift the rewriting steps of ¢t = s to M
in an order respecting way.

Claim 1. Let u,v,s,t € A* witht = s. If both h(u) R h(us) and h(v) L h(sv), then
h(usv) < h(utv).

The proof of the claim is by induction on the length of a minimal —-chain from ¢ to s.
The claim is trivial if A(¢) = h(s). Suppose t = t' — s and t' = pv,,_1q and s = pu,,_1q.
Since h(u) R h(us), there exists x € A* such that h(u) = h(usz); and since h(v) £ h(sv)
there exists y € A* such that h(v) = h(ysv). Now h(u) = h(u(pum—1qz)*) and
h(v) = h((yum,lq)“’v). By letting x,, = qzp and y,, = qyp, the inequality U,, < V,,
of M yields

h(usv) = h(up(um,lmm) Up—1 (Y Um—1) qv)
< h(”p(um—lxm) Um—1 ymum 1 qv) Ut U
to see this observe that (pum—1¢2)“p = p(um—1q2p)¥ = p(tUm—_1Zm)*. By induction
h(ut'v) < h(utv) and thus h(usv) < h(utv). Note alph(t’) C alph(s) and thus, h(u) R
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h(us) implies h(u) R h(ut'), and symmetrically h(v) £ h(sv) implies h(v) £ h(t'v).
This completes the proof of the claim.

Let t ~ sif t = s and s = ¢. This is a congruence on A*, and M’ = (A*/~) becomes
a monoid. Let h': A* — M’ be the canonical homomorphism mapping v € A* to its
equivalence class modulo ~. The preorder = on A* induces a partial order on M’
(which is also denoted by < for conciseness) by letting h'(u) < A'(v) if v = u. Now,
(M’, <) forms an ordered monoid. Moreover, M’ is a (non-ordered) quotient of M and,
in particular, M’ is finite and in DA, and z* is idempotent for all z € M’.

By construction (M’ <) satisfies the identity U,,—1 < Vi,—1 and induction yields n
such that u <}0*,,, v implies h'(u) < h'(v). We shall show that u <[’y v implies
h(u) < h(v) for all u,v € A* and N = n + 2|M|. Let u,v € A* with u Si‘;zN .
Consider the factorizations u = sgai - - Sp_1a¢8¢ and v = tgay - --ty_1apty given by
Lemma note that ¢ < 2|M| — 2. Applying Lemma to this yields for all 4:

° s <f§i17n t; and thus t; = s; by choice of n,

[ h(t0a1 ce ti_lai) R h(t0a1 s ti_laisi) and

o h(ait18i41 - apse) L h(8;Qir18i41 " aeSe).
Here for conciseness tgay - - - t;_1a; is the empty word if i = 0, and s0 is @;415;41 - - GgSe
if ¢ = £. To see the first property note that by choice of n, we have h'(s;) < h'(t;)
for all 4, that is, t; = s;. Applying Claim [l| repeatedly to substitute s; with ¢; for
increasing i € {0, ..., ¢} yields the following chain of inequalities:
h(u) = h(spa181 -+ Se—10¢5¢)
< h(toarsy -+ - se—1aes¢)

< h(toarty---si—1apse)
< h(toarts -~ te—1ase)
< h(toarty -« - te—ragty) = h(v).
This concludes the proof. -

The following lemma roughly shows that U,, is <JJ! ,-smaller than V,,, for suitable n.
In combination with Theorem [I] this shows that the inequality U,, < V,, holds for
the ordered syntactic monoid of FO? -definable languages. To formalize this, for
an assignment h: Q@ — A* let hy be the extension of h to omega-terms given by

hn(xy) = hy(z)hn(y) and hy(2¥) = hy(z).

Lemma 2.6. Let m,n > 0. For all mappings h: Q — A*, all p,q € A* and all N > n
we have phy(Un) q <3l AN (Vin) g

Proof. We start by giving a rough sketch of the proof. The idea is that the rankers
involved in <}, reach the difference of Uy, and V;;, in the center only with the very last
direction alternation. Before that the rankers identify the same position of U, and V,,
(in the canonical sense). Moreover, since the center of U, has a larger alphabet than

that of V,,,, a ranker which consists solely of X-modalities cannot pass the center of U,,
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before it passes the center of V,,,. Symmetrically, a ranker which only uses Y-modalities
cannot pass the center in U, before it passes it in V,,.

We now formalize these ideas. Let N > n and let U = phn(Up,)q and V = phn (Vin)q.
We classify positions into environments of the center of increasing size; roughly speaking
this defines a “two-dimensional” distance: the first dimension is how many direction
alternations suffice to get near the center; the second is the depth sufficient for an
one-way free ranker to decrease the direction alternation dimension. More precisely,
for 2< k <mand n < N we let i € By, if both

7> ’p hN((Um—lem)N A (kak+1)N(Uk_1Ik)N7n)|

Ul —i> ’hN((kakq)N_n(kaUk)N e (memq)N) Q|

hold and we let By = B; ,, = By . Slightly abusing notation, we canonically identify
positions of U with positions of V' by removing the positions corresponding to the
innermost occurrence of z in U,,. Specifically, if we let pos(U) and pos(V) be the
set of positions of U and of V, respectively, then we identify pos(V) with the set
pos(U) \ By,n. By this convention, it also makes sense to interpret the set By, of
position of U as a set of positions of V. Note that in this sense pos(V') C pos(U) and
Uli] = V[i] for all ¢ € pos(V).

For £ > 1 and n > 0 we show by induction on k + n that for all 4, j € By, »:

1. Rk,n(‘/a ’L) Q Rk’n(U,Z) and

2. r(Vyi) < s(V,5) = r(U,1) < s(U,j) and r(V,i) < s(V,j) = r(U,i) < s(U,J)

for all rankers r € Ry ,(V,i) not ending with a Y-modality and all rankers
s € Ry n(V,7) not ending with an X-modality.
Here R(w, 1) consists of all rankers r € R such that r(w, ) is defined (for a word w and
a subset of rankers R). Choosing k& = m then implies the claim of the lemma.

The claim is vacuously true if n = 0. Suppose n > 1 in the following and let
i,j & By . First consider K = 1. Condition follows since all subwords of V' of
length at most n appearing to the left (respectively right) of ¢ appear also as subwords
of U to the left (respectively right) of i. (The converse may not be true, however.)
Condition (2): For all i ¢ By and all 7 € {X, | a € A}" we have r(U,i) < r(V,i).
Symmetrically, for all j ¢ By and all s € {Y, | a € A}" we have s(V,j) < s(U, ).

For the inductive step suppose k > 2. As a preparatory step we first consider a
one-way ranker r with |r| < n, i.e., a ranker r € {X, | a € A}T U{Y, | a € A} with
|r| < n. We claim that r(U,i) = r(V,?) € Br—1.n-

To see this first note that by symmetry it suffices to consider ¢ < min(By ). If r
only uses Y-modalities, then the claim is immediate. Let r = X /. Then X, (V,i) <
min(By ,—1) if and only if X, (U, i) < min(By,,—1) and in this case X, (V, 1) = X, (U, ).
Otherwise we already have X, (V, i) > max(By_1,n5) and moreover X, (U, i) = X,(V,1).
Note that the factor Ay (Ug—_12k) is in between ¢ and Bj_1 3 and contains all labels
of U and of V for positions in By_1 n. In both cases, induction yields the claim for r.

Condition : Let r € Ry, (V,i). It suffices to consider ¢ < min(By,). Let
r = rory for a one-way ranker ro such that r1 € Ry_1,, U {e}. The above yields
ro(U, 1) = 19(V, i) & Br_1 n and hence by induction r(U, i) = r (U, ro(U, 1)) is defined.

Condition (2): Let r € Ry, (V,i) not end with a Y-modality and let s € Ry (V. )
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not end with an X-modality. Assume r(V,7) < s(V,j) for < € {<, <}. Suppose r = rory
and s = sps; for one-way rankers o and s and 71,51 € Ri_1,, U {e}. By the above,
we have ro(V,i) = ro(U,4) = 4" and so(V, ) = so(V,j) = 5" and further ¢/, j & Br_1 n.
By assumption r1(V,i’) < s1(V,4’); thus induction shows (U, i) < s1(U,j’). This
implies (U, i) < s(U, j). O

We are now ready to prove our decidable characterization given in Theorem [2]

Theorem[d For the direction from right to left consider the ordered syntactic monoid
(M, <), and let L be recognized by h: A* — M, i.e., there exists a <-order ideal I such
that L = h=1(I). We have M € DA since L is FO? definable [27]. By Proposition
there exists n such that every preimage of a <-order ideal is a <f,?;—order ideal. In
particular L is a <2§;—order ideal and thus definable as the union of all L(y) over
pE E?n’n such that L(¢) C L. This union is finite because there are only finitely many
languages definable in Z?n)n.

For the direction from left to right suppose that L is definable in Efn,n for some n.
Lemma shows phn(Un)q <M., phn(Vin) g for all assignments h: Q — A*, all
p,q € A*and all N > n. Theoremyields phy(Un)q gfgzn phyn(Vin)g. In particular
phn (Vi) q € L implies phyn(U,,) g € L. Choosing N such that all N**-powers are
idempotent in the syntactic monoid, this shows that the ordered syntactic monoid
satisfies the inequality U,, < V. O
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