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Abstract. We consider the fragment Σ2
m of two-variable first-order logic

FO2[<] over finite words which is defined by restricting the nesting depth of
negations to at most m. Our first result is a combinatorial characterization
of Σ2

m in terms of so-called rankers. This generalizes a result by Weis
and Immerman which we recover as an immediate consequence. Our
second result is an effective algebraic characterization of Σ2

m, i.e., for every
integer m one can decide whether a given regular language is definable by
a two-variable first-order formula with negation nesting depth at most m.
More precisely, for every m we give omega-terms Um and Vm such that
an FO2-definable language is in Σ2

m if and only if its ordered syntactic
monoid satisfies the identity Um 6 Vm. The proof of this equivalence relies
on the ranker characterization.

1 Introduction
A famous result by Büchi, Elgot, and Trakhtenbrot states that a language is definable
in monadic second-order logic if and only if it is regular [2, 6, 29]. The algebraic
counterpart of regular languages are finite monoids, and in many cases they are the key
ingredient for solving decidability problems in this area. For example, by combining a
result of Schützenberger [21] with a result of McNaughton and Papert [17], a language
is definable in first-order logic FO if and only if its syntactic monoid is finite and
aperiodic. The syntactic monoid of a regular language L is the unique minimal monoid
recognizing L. It is effectively computable from any reasonable representation of L.
One can thus decide definability in FO of a given regular language by checking whether
or not its syntactic monoid is aperiodic.
Kamp showed that linear temporal logic is expressively complete for first-order

logic over words [9]. Since every modality in linear temporal logic can be defined
using three variables, first-order logic with only three different names for the variables
(denoted by FO3) defines the same languages as full first-order logic. This result is
often stated as FO = FO3. Using (and reusing) only two variables defines a proper
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FO-Logic Temporal Logic Combinatorics Decidable Criterion

FO2[<] TL[XF,YP] rankers DA [7, 22, 27]

FO2
m,n[<] TLm,n[XF,YP] ≡wi

m,n-classes finitely many languages [7, 31]

FO2
m[<] TLm[XF,YP] Mal’cev products, identities [7, 11, 15]

Σ2
m,n[<] TL+

m,n[XF,YP] 6wi
m,n-ideals finitely many languages Thm. 1

Σ2
m[<] TL+

m[XF,YP] identities Um 6 Vm Thm. 2

subclass. Thérien and Wilke [27] showed that a language is definable in two-variable
first-order logic FO2 if and only if its syntactic monoid belongs to the variety DA
and, since the latter is decidable, one can effectively check whether a given regular
language is FO2-definable. For further information on the numerous characterizations
of FO2 we refer to [4, 25]. Besides the number of variables, there are two other
natural restrictions of first-order logic. The first restriction is the quantifier depth
(i.e., the number of nested quantifiers) and the second restriction is the alternation
depth (i.e., the number alternations between existential and universal quantification).
With respect to decidability questions of the above kind, quantifier depth is not very
interesting since for a fixed quantifier depth only finitely many languages are definable,
see e.g. [5]. To date, the situation with alternation depth is totally different: Only
the very first level (i.e., no alternation) is decidable [10, 23]; for all other levels no
decidable characterizations are known. By a result of Thomas [28] the alternation
hierarchy in first-order logic is tightly connected with the dot-depth hierarchy [3] or
the Straubing-Thérien hierarchy [24, 26], depending on the presence or absence of the
successor predicate. Some progress in the study of the dot-depth hierarchy and the
Straubing-Thérien hierarchy was obtained by considering the half-levels. For example,
the levels 1/2 and 3/2 in each of the two hierarchies are decidable [8, 19, 20]. The
half levels also have a counterpart in the FO alternation hierarchy which is obtained
by requiring existential quantifiers in the first block. Another point of view of the
same hierarchy is to disallow universal quantifiers and to restrict the number of nested
negations. Inside two-variable first-order logic, alternation depth is also a natural
restriction. One difference to full first-order logic is that one cannot directly use
prenex normal forms as a simple way of defining the alternation depth. Weil and the
first author gave an effective algebraic characterization of the mth level FO2

m of this
hierarchy. More precisely, they showed that it is possible to ascend the FO2-alternation
hierarchy using so-called Mal’cev products [15] which in this particular case preserve
decidability. These Mal’cev products lead to the Trotter-Weil hierarchy for which many
characterizations of FO2 admit counterparts [12, 14, 16, 30]. An important tool in the
study of the Trotter-Weil hierarchy are rankers. This combinatorial description was
introduced by Schwentick, Thérien, and Vollmer [22] as turtle programs and was later
refined by Weis and Immerman [31] to obtain a structure theorem for FO2

m. Krebs
and Straubing gave another decidable characterization of FO2

m in terms of identities of
omega-terms using completely different techniques [11]; their proof does not rely on
rankers.
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In this paper we consider the half-levels of the FO2-alternation hierarchy. A language
is hence definable in Σ2

m if and only if it is definable in FO2 without universal quantifiers
and with at most m nested negations. It is easy to see that one can avoid negations of
atomic predicates. By eliminating negations (using De Morgan’s laws and ¬∃x ϕ ≡
∀x ¬ϕ), one can think of Σ2

m as those FO2-formulae ϕ such that every path of the
parse tree of ϕ has at most m blocks of nested quantifiers and the outermost block is
existential. The main contribution of this paper are omega-terms Um and Vm such that
an FO2-definable language is Σ2

m-definable if and only if its ordered syntactic monoid
satisfies Um 6 Vm. For a given regular language it is therefore decidable whether it is
definable in Σ2

m by first checking whether it is FO2-definable and if so, then verifying
Um 6 Vm for the ordered syntactic monoid. Moreover, for every FO2-definable language
L one can compute the smallest integer m such that L is definable in Σ2

m. An important
tool in the proof of our decidability criterion for Σ2

m is a combinatorial characterization
in terms of rankers. A corollary of this is the Weis-Immerman characterization of
FO2. On the other hand, there is no immediate connection between the decidability
of FO2

m and the decidability of Σ2
m. A convenient intermediate step in the proofs is

unary temporal logic TL[XF,YP] with strict future and past operators [7]. Table 1
summarizes the current state of the art (the parameter n denoting either the quantifier
depth in FO or the operator depth in temporal logic).

2 Preliminaries
Languages and words. In this paper A is a finite alphabet, A∗ is the set of finite
words, and A+ = A∗ \ {ε} are the nonempty finite words. A language is a subset of
A∗. For a word w = a1 · · · ak with ai ∈ A the length of w is |w| = k, and the alphabet
of w is alph(w) = {a1, . . . , ak}. A word u = b1 · · · b` with bi ∈ A is a subword of w if
w ∈ A∗b1 · · ·A∗b`A∗. For integers p, q let w[p; q] = ap · · · aq; if p = q, then we shorten
this notation to w[p]. We say that p is an a-position if w[p] = a.

Rankers. A ranker is a nonempty word over {Xa,Ya | a ∈ A}. The symbol Xa means
neXt-a and is interpreted as an instruction of the form “go to the next a-position”;
similarly, Ya is for Yesterday-a and means “go to the previous a-position”. For a word w
and an integer p let

Xa(w, p) = min {q > p | q is an a-position of w},
Ya(w, p) = max {q < p | q is an a-position of w}.

The minimum and maximum of the empty set are undefined. Inductively, for a ranker r
and Z ∈ {Xa,Ya | a ∈ A} let Zr(w, p) = r(w,Z(w, p)). In particular, rankers are
processed from left to right. If either Z(w, p) or r(w,Z(w, p)) is undefined, then Zr(w, p)
is undefined. On words we let Xar(w) = Xar(w, 0) and Yar(w) = Yar(w, |w| + 1),
i.e., if the first modality of a ranker r is Xa, then r starts its execution in front of
the word; symmetrically, if the first modality of r is Ya, then r starts its execution
after the end of the word. The depth of a ranker is its length as a word over the
alphabet {Xa,Ya | a ∈ A}. Let Rm,n be the set of rankers with at most m−1 direction
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alternations and depth at most n; i.e., rankers r with |r| 6 n of the form r = r1 · · · rm
such that ri ∈ {Xa | a ∈ A}∗ or ri ∈ {Ya | a ∈ A}∗ for all i. We say that a ranker ends
with an X-modality (respectively a Y-modality) if it is of the form rXa (respectively
rYa) for some a ∈ A. For a set of rankers R and a word w let R(w) consist of all
rankers in R which are defined on w.

First-order logic. We consider first-order logic FO = FO[<] over finite words. The
syntax of FO-formulae is

> | ⊥ | λ(x) = a | x = y | x < y | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃x ϕ
where a ∈ A is a letter, x and y are variables, and ϕ and ψ are formulae in FO. We
consider universal quantifiers ∀xϕ as abbreviations for ¬∃x¬ϕ. The atomic formulae >
and ⊥ are true and false, respectively. Variables are interpreted as positions in the
word model, and λ(x) = a is true if x is an a-position. The semantics of the other
constructs is as usual, in particular ∃x ϕ means that there exist a position x which
makes ϕ true, and x < y means that position x is (strictly) smaller than position y. We
write ϕ(x1, . . . , x`) for a formula ϕ if at most the variables xi appear freely in ϕ; and
we write w, p1, . . . , p` |= ϕ(x, . . . , x`) if ϕ is true over w when xi is interpreted as pi.

The negation nesting hierarchy within first-order logic is defined as follows. Let
Σ0 consist of disjunctions and conjunctions of atomic first-order formulae; and for
m > 1 let Σm be the smallest class of first-order formulae containing ϕ and ¬ϕ for
all ϕ ∈ Σm−1 as well as ϕ ∨ ψ, ϕ ∧ ψ, and ∃x ϕ for all variables x and all ϕ,ψ ∈ Σm.
Thus, when not counting negations of atomic formulae, then Σm for m > 1 contains the
formulae with negation nesting depth is at most m− 1. Also note that, up to logical
equivalence, our definition of Σm coincides with the more common definition in terms
of formulae in prenex normal form with at most m blocks of quantifiers which start
with an existential block. This can be seen by the usual procedure of renaming the
variables and successively moving quantifiers outwards.

The two-variable fragment FO2 of first-order logic uses (and reuses) only two distinct
variables, say x and y. Combining FO2 and Σm yields the fragment Σ2

m. That is, we
have ϕ ∈ Σ2

m if both ϕ ∈ Σm and ϕ only uses the variables x and y. This also justifies
the notation Σ2

m which inherits the symbol as well as the subscript from Σm and from
FO2 the exponent. The further restriction of Σ2

m to formulae of quantifier depth at
most n yields the fragments Σ2

m,n. The Boolean closure of Σ2
m (respectively, Σ2

m,n) is
the mth level of the alternation hierarchy FO2

m (respectively, FO2
m,n) within FO2.

Unary temporal logic. Unary temporal logic TL[XF,YP] consists of formulae built
from atomic formulae > for true, ⊥ for false, and a where a ∈ A using Boolean connec-
tives and modalities XF for neXt-Future and YP for Yesterday-Past. The semantics is
given by the following two-variable formulae in one free variable: For a it is given by
λ(x) = a, and we let (XFϕ)(x) ≡ ∃y > x : ϕ(y) as well as (YPϕ)(x) ≡ ∃y < x : ϕ(y); the
remaining connectives are as usual. The formula ϕ(y) in FO2 is obtained from ϕ(x) by
interchanging x and y. On words without an interpreted variable let w |= >, w 6|= ⊥,
and w 6|= a and XFϕ ≡ YPϕ ≡ ∃x ϕ(x); Boolean connectives are straightforward. Due
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to their identical definition, outermost YP-modalities can be replaced by XF without
changing the semantics.
The negation nesting hierarchy of temporal logic is as follows. Let TL+

0 [XF,YP]
comprise atomic label formulae. For m > 1 let TL+

m[XF,YP] be the smallest class
of formulae containing both ϕ and ¬ϕ for TL+

m−1[XF,YP] as well as ϕ ∨ ψ, ϕ ∧ ψ,
XFϕ, and YPϕ for ϕ,ψ ∈ TL+

m[XF,YP]. Restricting the operator depth to at most n
yields TL+

m,n[XF,YP], i.e., on every path in the parse tree there are at most n nested
modalities XF and YP.

For a first-order formula without free variables or a temporal logic formula ϕ let the
language defined by ϕ be L(ϕ) = {w ∈ A∗ | w |= ϕ}. Let F be a class of first-order or
temporal formulae. A language L is definable in F if there exists ϕ ∈ F with L(ϕ) = L.
We write u 6F v for words u, v ∈ A∗ if v |= ϕ implies u |= ϕ for all ϕ ∈ F . For
conciseness we use the notation 6fo2

m,n instead 6F with F = Σ2
m,n[<], and we write

6tl
m,n for 6G with G = TL+

m,n[XF,YP].

3 Ranker Characterization of Σ2
m

The next definition gives the main condition for the combinatorial characterization of
Σ2
m,n.

Definition 1. Let u, v ∈ A∗ and m,n > 0. Let u 6wi
m,n v if either m = 0 or n = 0, or

if v 6wi
m−1,n u and all of the following hold:

1. Rm,n(v) ⊆ Rm,n(u),
2. r(v) < s(v) ⇒ r(u) < s(u) and r(v) 6 s(v) ⇒ r(u) 6 s(u) for all rankers r, s

ending with an X-modality with r ∈ Rm,n(v) and s ∈ Rm−1,n−1(v),
3. r(v) > s(v) ⇒ r(u) > s(u) and r(v) > s(v) ⇒ r(u) > s(u) for all rankers r, s

ending with a Y-modality with r ∈ Rm,n(v) and s ∈ Rm−1,n−1(v),
4. r(v) < s(v) ⇒ r(u) < s(u) and r(v) 6 s(v) ⇒ r(u) 6 s(u) for all rankers

r, s ∈ Rm,n(v) with |r|+ |s| < 2n such that r ends with an X-modality and s ends
with a Y-modality.

The relation 6wi
m,n is a preorder on A∗; the exponent is for “Weis-Immerman” who

introduced a similar condition for the fragment FO2
m,n; cf. [31]. We can now state our

first main result.

Theorem 1. Let L ⊆ A∗ and m,n > 1. The following conditions are equivalent:
1. L is definable in Σ2

m,n.

2. L is definable in TL+
m,n[XF,YP].

3. L is an 6wi
m,n-order ideal, i.e., u 6wi

m,n v and v ∈ L implies u ∈ L.

This result implies the characterization of Weis and Immerman [31]: Two words
u, v ∈ A∗ model the same formulae of FO2

m,n if and only if Rm,n(u) = Rm,n(v) and
ord(r(u), s(u)) = ord(r(v), s(v)) for all r, s ∈ Rm,n(u) such that either s ∈ Rm,n−1
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and r and s end with opposing directions or s ∈ Rm−1,n−1. Here, ord(p, q) is the
order-type, i.e., the unique element ∼ in the set {<,=, >} such that p ∼ q.

In the remainder of this section we prove Theorem 1. The translation from Σ2
m,n to

TL+
m,n[XF,YP] is similar to a construction of Etessami, Vardi, and Wilke [7, proof of

Theorem 1]. From temporal logic to rankers, we also have to take free variables into
account. This step is the most technical one. Finally, we show that rankers and their
order can be defined by suitable FO2-sentences.

Lemma 1.1. Let m,n > 0. Every Σ2
m,n-definable language is TL+

m,n[XF,YP]-definable.

Proof. The construction is by induction on the structure of the formula; for the inductive
step, we also have to take free variables into account. Let ϕ(x, y) ∈ Σ2

m,n. We start
by some normalizations on the structure of ϕ. We assume without restriction that on
all paths in the parse tree of ϕ no two successive quantifiers bind the same variable.
Therefore, by starting the construction with a sentence having this property, we can
assume that the first quantifier on every path in the parse tree of ϕ binds the variable
y, i.e., when thinking of ϕ as a subformula of some sentence, then on the path to ϕ
the previously bound variable is x.

Let τ ∈ {<,=, >} and a ∈ A. We show that there exists 〈ϕ〉τ,a(x) in TL+
m,n[XF,YP]

such that for all u ∈ A∗ and all positions p and q of u with u[q] = a and ord(p, q) = τ
we have u, p, q |= ϕ if and only if u, p |= 〈ϕ〉τ,a.

The construction is by induction on the structure of the formula. Let 〈>〉τ,a(x) ≡ >,
〈⊥〉τ,a(x) ≡ ⊥ and for the other atomic formulae we set 〈λ(x) = b〉τ,a(x) ≡ b and

〈λ(y) = b〉τ,a(x) ≡

{
> if a = b,
⊥ otherwise,

〈x < y〉τ,a(x) ≡

{
> if τ is <,
⊥ otherwise.

The formula 〈y < x〉τ,a(x) is defined similarly. For the conjunction and the disjunction
let 〈ϕ ∧ ψ〉τ,a(x) ≡ 〈ϕ〉τ,a(x) ∧ 〈ψ〉τ,a(x) and 〈ϕ ∨ ψ〉τ,a(x) ≡ 〈ϕ〉τ,a(x) ∨ 〈ψ〉τ,a(x),
respectively. For negation we set 〈¬ϕ〉τ,a(x) ≡ ¬〈ϕ〉τ,a(x). For existential quantification
we let

〈∃y ϕ〉τ,a(x) ≡
∨
b∈A

b ∧
(
YP〈ϕ〉<,b(y) ∨ 〈ϕ〉=,b(y) ∨ XF〈ϕ〉>,b(y)

)
.

In the construction of the formulae 〈ϕ〉τ ′,b(y), the roles of x and y are interchanged.
Note that due to our normalization at the beginning, we do not have to handle
quantification over x.
We now define ϕ′ ∈ TL+

m,n[XF,YP] inductively for sentences ϕ ∈ Σ2
m,n. Boolean

connectives are straightforward: (ϕ∧ψ)′ ≡ ϕ′ ∧ψ′, (ϕ∨ψ)′ ≡ ϕ′ ∨ψ′ and (¬ϕ)′ ≡ ¬ϕ′.
For quantification we set (∃y : ϕ)′ ≡ XF(〈ϕ〉τ,a(y)) where τ ∈ {<,=, >} and a ∈ A are
arbitrary. Hence for every sentence ϕ ∈ Σ2

m,n there exists ϕ′ ∈ TL+
m,n[XF,YP] such

that L(ϕ) = L(ϕ′).

We now introduce a relation 4wi
m,n which resembles 6wi

m,n for free variables. For
u, v ∈ A∗ and non-negative integers x, x′ let (u, x′) 4wi

m,n (v, x) if u 6wi
m,n v and either
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x = x′ = 0 or v[x] = u[x′], and if further either m = 0, or n = 0, or all of the following
hold:

1. s(v) < x⇒ s(u) < x′ if s ∈ Rm,n(v) ends with an X-modality or if s ∈ Rm−1,n(v),
2. s(v) 6 x⇒ s(u) 6 x′ if s ∈ Rm−1,n(v),
3. s(v) > x⇒ s(u) > x′ if s ∈ Rm,n(v) ends with a Y-modality or if s ∈ Rm−1,n(v),
4. s(v) > x⇒ s(u) > x′ if s ∈ Rm−1,n(v).

The idea is that x = x′ = 0 encodes the case without free variables. The following
lemma shows that the roles of u and v can be interchanged by investing one negation.

Lemma 1.2. Let u, v ∈ A∗ and m,n > 1. If (u, x′) 4wi
m,n (v, x), then (v, x) 4wi

m−1,n
(u, x′).

Proof. We may assume m > 2 and n > 1 since the claim is trivial otherwise. The alpha-
betic condition is clear and v 6wi

m−1,n u is a requirement of u 6wi
m,n v. Suppose s(u) < x′

for some s ∈ Rm−1,n(u) which ends with an X-modality or some s ∈ Rm−2,n(u). We
have to show s(v) < x. Suppose s(v) > x for the sake of contradiction. By condition (4)
for (u, x′) 4wi

m,n (v, x) we obtain s(u) > x′, contradicting the assumption s(u) < x′. A
similar reasoning applies to each of the remaining three conditions.

Lemma 1.3. Let u, v ∈ A∗ and m,n > 1. If (u, x′) 4wi
m,n (v, x), then for all 1 6 y 6 |v|

there exists 1 6 y′ 6 |u| with ord(x, y) = ord(x′, y′) and (u, y′) 4wi
m,n−1 (v, y).

Proof. For y = x simply take y′ = x′. By left-right symmetry it suffices to consider the
case y > x. Let a = v[y] and

Rright = {r′ | r′Ya ∈ Rm,n(v) and r′Ya(v) > y},
Rleft = {r′ | r′Xa ∈ Rm−1,n−1(v) and r′Xa(v) > y}.

Note that Rright Ya ∪ Rleft Xa ⊆ Rm,n(v) ⊆ Rm,n(u). Let r ∈ Rright Ya ∪ Rleft Xa be
such that r(u) is minimal. We claim that we can choose y′ = r(u). By r(v) > y > x
and condition (3) in the definition of 4wi

m,n we conclude y′ = r(u) > x′.
Next, we show (u, y′) 4wi

m,n−1 (v, y). The alphabetic condition is clear. By RZ
m,n we

denote the rankers in Rm,n ending with a Z-modality for Z ∈ {X,Y}. “Condition (1)”:
Let s ∈ RX

m,n−1(v) ∪ Rm−1,n−1(v) with s(v) < y. In particular, we have s(v) < r(v).
By Definition 1, u 6wi

m,n v yields s(u) < r(u) = y′. (If s ∈ RX
m,n−1 and r ∈ RY

m,n,
then condition (4) of Definition 1 is applied. If s ∈ RX

m,n−1 and r ∈ RX
m−1,n−1, then

condition (2) is applied. If s ∈ RY
m−1,n−1 and r ∈ RY

m,n, then condition (3) is applied.
If s ∈ RY

m−1,n−1 and r ∈ RX
m−1,n−1, then condition (4) for v 6wi

m−1,n u is applied.)
Verifying condition (2) is similar. “Condition (3)”: Let s ∈ RY

m,n−1(v) ∪Rm−1,n−1(v)
and s(v) > y. Since s ∈ Rright, we see that s(u) > sYa(u) > r(u) = y′ by choice of r.
“Condition (4)”: Let s ∈ Rm−1,n−1(v) and s(v) > y. First suppose s = s′Xa. Then
s′ ∈ Rleft and thus s(u) = s′Xa(u) > r(u) = y′ by choice of r. Finally suppose s = s′Ya.
Then s′ ∈ Rright and thus s(u) = s′Ya(u) > r(u) = y′ by choice of r.

Using Lemmas 1.2 and 1.3, a straightforward induction shows that TL+
m,n[XF,YP]-

definable languages are 6wi
m,n-order ideals. This is recorded in the following lemma.
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Lemma 1.4. Let u, v ∈ A∗ and m,n > 0. If u 6wi
m,n v, then u 6tl

m,n v.

Proof. We show that if (u, x′) 4wi
m,n (v, x), then v, x |= ϕ implies u, x′ |= ϕ for all

formulae ϕ ∈ TL+
m,n[XF,YP]. The proof of this claim is by structural induction. For

atomic formulae this follows by the alphabetic condition in the definition of 4wi
m,n. In

particular we may assume m,n > 1. For Boolean connectives the claim follows by
induction; in the case of negation this relies on Lemma 1.2 and ϕ ∈ TL+

m−1,n[XF,YP]

whenever ¬ϕ ∈ TL+
m,n[XF,YP]. Suppose v, x |= XFϕ. Then there exists a position

y > x of v such that v, y |= ϕ. By Lemma 1.3 there exists a position y′ > x′ of u such
that (u, y′) 4wi

m,n−1 (v, y). Because we have ϕ ∈ TL+
m,n−1[XF,YP], induction yields

u, y′ |= ϕ and finally u, x′ |= XFϕ. The remaining case YPϕ is symmetric to XFϕ. This
concludes the proof of the claim.

Suppose now v |= ϕ for some ϕ ∈ TL+
m,n[XF,YP]. Replacing outermost YP-modalities

by XF yields a formula which defines the same language. We may therefore assume
without loss of generality that v |= ϕ if and only if v, 0 |= ϕ. If u 6wi

m,n v, then
(u, 0) 4wi

m,n (v, 0) and the claim thus yields u, 0 |= ϕ. This shows u 6tl
m,n v.

We now give two-variable formulae for order comparisons with ranker positions.
These formulae show that a direction alternation in a ranker can be covered by a
negation in first-order logic.

Lemma 1.5. Let r ∈ Rm,n. If r ends with an X-modality, then there exist formulae
〈x > r〉 and 〈x > r〉 in Σ2

m,n such that for all words u with r(u) being defined and for
all positions i of u we have

u, i |= 〈x > r〉 if and only if i > r(u),

u, i |= 〈x > r〉 if and only if i > r(u).

Symmetrically, if r ends with a Y-modality, then there exist formulae 〈x 6 r〉 and
〈x < r〉 in Σ2

m,n such that for all words u with r(u) being defined and for all positions i
of u we have

u, i |= 〈x 6 r〉 if and only if i 6 r(u),

u, i |= 〈x < r〉 if and only if i < r(u).

Proof. It suffices to specify 〈x > r〉 and 〈x > r〉 for rankers ending on X. The formulae
〈x < r〉 and 〈x 6 r〉 for rankers ending on Y are then left-right symmetric. The proof
is by induction on the depth of r. Let
〈x > Xa〉 ≡ ∃y < x : λ(y) = a, 〈x > Xa〉 ≡ ∃y 6 x : λ(y) = a,

〈x > rXa〉 ≡ ∃y < x
(
λ(y) = a ∧ 〈y > r〉

)
, 〈x > rXa〉 ≡ ∃y 6 x

(
λ(y) = a ∧ 〈y > r〉

)
.

where r is a ranker. Here, 〈y > r〉 is obtained by induction if r ends on an X-modality;
otherwise we let 〈y > r〉 ≡ ¬〈y 6 r〉 with 〈y 6 r〉 obtained by induction. As usual, the
formula 〈y > r〉 with free variable y is obtained by interchanging x and y.

The formulae in Lemma 1.5 yield suitable two-variable sentences for rankers and for
order comparisons of rankers.
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Lemma 1.6. Let u, v ∈ A∗ and m,n > 0 be integers. If u 6fo2

m,n v, then u 6wi
m,n v.

Proof. The proof is by induction on m with the trivial base case m = 0. Suppose
u 6fo2

m,n v. In particular v 6fo2

m−1,n u and hence v 6wi
m−1,n u by induction. We show

conditions (1) to (4) of Definition 1 one after another. The proof makes extensive use
of Lemma 1.5.

“Condition (1)”: Suppose r ∈ Rm,n is defined on v but not on u. Let r = r′Zr′′ with
Z ∈ {Xa,Ya} for some a ∈ A such that r′ is the longest prefix of r which is defined
on u. Note that alph(v) ⊆ alph(u) and thus |r′| > 1. Consider the formula

〈r′Z〉 ≡ ∃x : λ(x) = a ∧

{
〈x > r′〉 if Z = Xa,
〈x < r′〉 if Z = Ya.

In both cases 〈r′Z〉 ∈ Σ2
m,n, and 〈r′Z〉 is true on w ∈ A∗ if and only if r′Z(w) is defined.

In particular, r′Z is defined on u which contradicts the definition of r′. Therefore, r(u)
is defined. This shows Rm,n(v) ⊆ Rm,n(u).

“Condition (2)”: Consider rankers r, s with r ∈ Rm,n(v) and s ∈ Rm−1,n−1(v) which
end with an X-modality. Let r = r′Xa for a ∈ A and let . ∈ {<,6}. The formula

〈r . s〉 ≡ ∃x : λ(x) = a ∧ 〈x > r′〉 ∧ 〈x . s〉
is in Σ2

m,n. Here we set 〈x > r′〉 = > whenever r′ is empty. Moreover 〈r . s〉 is true
on w ∈ A∗ if and only if r(w) . s(w). Hence r(v) < s(v) implies r(u) < s(u), and
r(v) 6 s(v) implies r(u) 6 s(u).
“Condition (3)”: This is symmetric to property (2).
“Condition (4)”: Consider rankers r, s ∈ Rm,n(v) with |r|+ |s| < 2n such that r ends

with an X-modality and s ends with a Y-modality. Let . ∈ {<,6} and & be its inverse
relation. Let

〈r . s〉 ≡ ∃x : λ(x) = a ∧

{
〈x > r′〉 ∧ 〈x . s〉 if r = r′Xa and s ∈ Rm,n−1(v),
〈x < s′〉 ∧ 〈x & r〉 if r ∈ Rm,n−1(v) and s = s′Ya.

In both cases 〈r . s〉 ∈ Σ2
m,n and 〈r . s〉 is true on w ∈ A∗ if and only if r(w) . s(w).

Therefore r(v) < s(v) implies r(u) < s(u), and r(v) 6 s(v) implies r(u) 6 s(u).

Theorem 1. “(1)⇒ (2)”: This is Lemma 1.1.
“(2) ⇒ (3)”: Let L be definable in TL+

m,n[XF,YP]. Suppose u 6wi
m,n v and v ∈ L.

Lemma 1.4 yields u 6tl
m,n v and consequently u ∈ L. This shows that L is a 6wi

m,n-order
ideal.
“(3) ⇒ (1)”: Let L be a 6wi

m,n-order ideal. Suppose u 6fo2

m,n v and v ∈ L. By
Lemma 1.6 we see u 6wi

m,n v and thus u ∈ L. Therefore L is a 6fo2

m,n-order ideal. For
a word u let Lu be the intersection of all Σ2

m,n-definable languages containing u; this
intersection is finite since up to equivalence there are only finitely many formulae in
Σ2
m,n. Moreover if u ∈ L, then we have Lu ⊆ L and thus L =

⋃
u∈L Lu; this union is

also finite since there are only finitely many languages of the form Lu.
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4 Decidability of Σ2
m

In this section we give a decidable algebraic characterization of languages definable in
Σ2
m. We start by introducing the concepts necessary for this result.
An ordered monoid (M,6) is a monoid M equipped with a partial order 6 which is

compatible with multiplication in M ; i.e., x 6 x′ and y 6 y′ implies xy 6 x′y′. Every
monoid can be considered as an ordered monoid when using the identity relation as
order. An order ideal of 6 is a subset I ⊆M such that y 6 x and x ∈ I implies y ∈ I.
A language L ⊆ A∗ is recognized by a homomorphism h : A∗ →M to an ordered monoid
(M,6) if L = h−1(I) for some 6-order ideal I. A monoid M recognizes a language L
if there exists a homomorphism h : A→M which recognizes L. The syntactic preorder
6L on words is defined as follows: We set u 6L v for u, v ∈ A∗ if pvq ∈ L implies
puq ∈ L for all p, q ∈ A∗. We write u ≡L v if both u 6L v and v 6L u. The syntactic
monoid of L is A∗/≡L; it is the unique minimal recognizer of L and it is effectively
computable from any reasonable presentation of given a regular language, see e.g. [18].
The syntactic preorder induces a partial order on ≡L-classes such that A∗/≡L becomes
an ordered monoid. The syntactic homomorphism is hL : A∗ → A∗/≡L is the natural
quotient map.
Green’s relations are an important tool in the study of finite monoids. For x, y ∈M

let x 6R y if xM ⊆ yM , and let x 6L y if Mx ⊆My. We write x R y if both x 6R y
and y 6R x; and we set x <R y if x 6R y and y 
R x. The relations L and <L are
defined similarly. An element x in a monoid M is idempotent if x2 = x. For every finite
monoid M there exists an integer ωM > 1 such that xωM is the unique idempotent
power generated by x ∈M . If the reference to M is clear from the context, we simply
write ω instead of ωM . Classes of finite (ordered) monoids are often described by
identities of omega-terms. We define omega-terms over a set of variables Ω inductively:
Every variable x ∈ Ω is an omega-term, and if u and v are omega-terms, then so
are uv and uω. Here, ω is considered as a formal symbol instead of a fixed integer.
Every mapping h : Ω→M to a finite monoid M uniquely extends to omega-terms by
setting h(uv) = h(u)h(v) and h(uω) = h(u)ωM . An ordered monoid (M,6) satisfies
the inequality U 6 V of omega-terms U, V if h(U) 6 h(V ) for all mappings h : Ω→M .
It satisfies U = V if it satisfies both U 6 V and V 6 U .
An important class of monoids is DA which will serve as an upper bound for our

algebraic characterization. Let DA be comprised of all finite monoids M satisfying
(xyz)ωy(xyz)ω = (xyz)ω. Suppose M ∈ DA and let u, v, a ∈M . If v R u R ua, then
v R va; and symmetrically, if v L u L au, then v L av, see e.g. [12, Lemma 1].
As we shall see in this section, the following sequences of omega-terms Um and Vm

characterize Σ2
m for monoids within DA. Let U1 = z, let V1 = 1, and let

Um = (Um−1xm)ωUm−1(ymUm−1)ω

Vm = (Um−1xm)ωVm−1(ymUm−1)ω

for m > 2 and variables x2, y2, . . . , xm, ym, z. We can now state the second main result.

Theorem 2. Let L ⊆ A∗ be definable in FO2 and let m > 1. Then L is definable in
Σ2
m if and only if the ordered syntactic monoid of L satisfies Um 6 Vm.
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Thérien and Wilke [27] have shown that a language is definable in FO2 if and only if
its syntactic monoid is in DA. Since the syntactic monoid of a regular language (given
for example as a finite automaton or a first-order sentence) is effectively computable,
the above characterization is decidable.

Corollary 2.1. It is decidable whether a given regular language is definable in Σ2
m.

Note that the equivalence in Theorem 2 does not hold for arbitrary regular languages;
for example the ordered syntactic monoid of the language A∗\A∗aaA∗ over the alphabet
A = {a, b} satisfies the inequality Um 6 Vm for all m > 2 but it is not FO2-definable.
The remainder of this section is devoted to the proof of Theorem 2. It relies on a
combination of algebraic properties of monoids in DA with combinatorial properties of
Σ2
m, leading to a factorization which enables induction on the parameter m.
We start with the combinatorics. The following two lemmas describe an important

relativization technique inside FO2. The first lemma restricts the interpretation of
formulae to the prefix before (respectively to the suffix after) the first a-position of a
word. Its left-right dual Lemma 2.2 gives restriction with respect to the last a-position.
The second lemma relativizes to the factor between a crossing of the first a-position
and the last b-position. In both situations we pay special attention to the parameter m.

Lemma 2.1. Let ϕ ∈ Σ2
m,n for m,n > 0, and let a ∈ A. Then there exist formulae

〈ϕ〉<Xa in Σ2
m+1,n+1 and 〈ϕ〉>Xa in Σ2

m,n+1 such that for all words u = u1au2 with
a 6∈ alph(u1):
u, p, q |= 〈ϕ〉<Xa if and only if u1, p, q |= ϕ for all 1 6 p, q 6 |u1|,
u, p, q |= 〈ϕ〉>Xa if and only if u2, p− |u1a|, q − |u1a| |= ϕ for all |u1a| < p, q 6 |u|.

Proof. The formulae 〈ϕ〉<Xa and 〈ϕ〉>Xa relativize the interpretation of the formula
by restricting the evaluation of quantifiers to the factor before (respectively after)
the first occurrence of the letter a (i.e., the position reached by the ranker Xa).
We first give the inductive construction for 〈ϕ〉<Xa. Let 〈ϕ〉<Xa ≡ ϕ if ϕ is an
atomic formula. For conjunction let 〈ϕ ∧ ψ〉<Xa ≡ 〈ϕ〉<Xa ∧ 〈ψ〉<Xa, for disjunction
let 〈ϕ ∨ ψ〉<Xa ≡ 〈ϕ〉<Xa ∨ 〈ψ〉<Xa, and for negation let 〈¬ϕ〉<Xa ≡ ¬〈ϕ〉<Xa. For
existential quantification let

〈∃x ϕ〉<Xa ≡ ∃x
(
¬(∃y 6 x : λ(y) = a) ∧ 〈ϕ〉<Xa

)
.

As usual, swapping the variables x and y yields the corresponding constructions for y.
We now construct 〈ϕ〉>Xa. Let 〈ϕ〉>Xa ≡ ϕ if ϕ is an atomic formula. Boolean
combinations are as above and for existential quantification let

〈∃x ϕ〉>Xa ≡ ∃x
(
(∃y < x : λ(y) = a) ∧ 〈ϕ〉>Xa

)
.

Again, the constructions for y are dual.

The following is the left-right symmetric version of Lemma 2.1 and is thus admitted
without proof.

Lemma 2.2. Let ϕ ∈ Σ2
m,n for m,n > 0, and let a ∈ A. Then there exist formulae

〈ϕ〉<Ya in Σ2
m,n+1 and 〈ϕ〉>Ya in Σ2

m+1,n+1 such that for all words u = u1au2 with
a 6∈ alph(u2):
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u, p, q |= 〈ϕ〉<Ya if and only if u1, p, q |= ϕ for all 1 6 p, q 6 |u1|,
u, p, q |= 〈ϕ〉>Ya if and only if u2, p− |u1a|, q − |u1a| |= ϕ for all |u1a| < p, q 6 |u|.

Lemma 2.3. Let ϕ ∈ Σ2
m,n for m,n > 0, and let a, b ∈ A. Then there exists a formula

〈ϕ〉(Yb;Xa) in Σ2
m+1,n+1 such that for all words u = u1bu2au3 with b 6∈ alph(u2au3) and

a 6∈ alph(u1bu2), and for all |u1b| < p, q 6 |u1bu2| we have:
u, p, q |= 〈ϕ〉(Yb;Xa) if and only if u2, p− |u1b|, q − |u1b| |= ϕ.

Proof. We construct 〈ϕ〉(Yb;Xa) which restricts the interpretation of ϕ to the factor of
the model which is between the last b and the first a. Atomic formulae and Boolean
combinations are straightforward. For existential quantification let
〈∃x ϕ〉(Yb;Xa) ≡ ∃x

(
¬(∃y 6 x : λ(y) = a) ∧ ¬(∃y > x : λ(y) = b) ∧ 〈ϕ〉(Yb;Xa)

)
.

Quantifications over y are dual.

Let h : A∗ → M be a homomorphism. For a word u ∈ A∗ the L-factorization
is the unique factorization u = s0a1 · · · s`−1a`s` with si ∈ A∗ and so-called mark-
ers ai ∈ A such that h(s`) L 1 and h(siai+1 · · · s`−1a`s`) >L h(aisi · · · a`s`) L
h(si−1ai · · · s`−1a`s`) for all i. In particular ` < |M |. If M ∈ DA, then ai 6∈
alph(si). Let DL(u) consist of the positions of the markers, i.e., let DL(u) =
{|s0a1 · · · si−1ai| > 1 | 1 6 i 6 `}. The R-factorization is defined left-right symmetri-
cally. The set DR(u) consists of all positions p of u such that h(u[1; p−1]) >R h(u[1; p]).
The following lemma combines the R- and the L-factorization for monoids in DA.

Lemma 2.4. Let h : A∗ → M be a homomorphism with M ∈ DA. Let u, v ∈
A∗ with u 6fo2

2,2|M | v. Then there exist factorizations u = s0a1 · · · s`−1a`s` and v =

t0a1 · · · t`−1a` t` with ` < 2|M |, ai ∈ A and si, ti ∈ A∗ such that h(s0) R 1 and
h(s`) L 1 and the following properties hold for all 1 6 i 6 `:

1. h(t0a1 · · · ti−1ai) R h(t0a1 · · · ti−1aisi),
2. h(aisi · · · a`s`) L h(si−1ai · · · a`s`).

Moreover, for every 1 6 i 6 ` there exists a ranker r in
{Xb1 · · ·Xbk , Ybk · · ·Yb1 | b1 · · · bk is a subword of a1 · · · a` for bi ∈ A}

with r(u) = |s0a1 · · · si−1ai| and r(v) = |t0a1 · · · ti−1ai|.

Proof. Loading the induction hypothesis, we allow for an additional prefix p of v;
that is, we consider words u and pv but the factorizations are for u and v only. The
only difference is that we require h(pt0a1 · · · ti−1ai) R h(pt0a1 · · · ti−1aisi) instead of
property (1). Note that the suffix at the end is si and not ti. The assumption is
u 6fo2

2,n v for n = |DR(pv) \DR(p)|+ |DL(u)|+ 1 and the proof proceeds by induction
on |DR(pv) \DR(p)|. Let u = s′0c1 · · · s′`′−1c`′s′`′ and v = t′0c1 · · · t′`′−1c`′t′`′ where
the factorization of u is the L-factorization (in particular ci 6∈ alph(s′i)) and where
ci 6∈ alph(t′i) for all i. This factorization of v exists because by assumption u and v
agree on subwords of length `′.

First suppose DR(p) = DR(pv). In this case h(p) R h(pv) and thus h(p) R h(px) for
all x ∈ B∗ where B = alph(v). In particular h(pt′0c1 · · · t′i−1ci) R h(pt′0c1 · · · t′i−1cis′i)
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because alph(u) = B. Hence, setting ai = ci, si = s′i, and ti = t′i yields a factorization
with the desired properties.

Let now DR(p) ( DR(pv). Let sa with s ∈ A∗ and a ∈ A be the shortest prefix of u
such that h(p) R h(ps) >R h(psa). Such a prefix exists since alph(u) = alph(v). We
have |sa| = Xa(u) by M ∈ DA. Let ta be the prefix of v satisfying |ta| = Xa(v). By
Lemma 2.1 we have alph(t) ⊆ alph(s). Next, let k be maximal such that s′0c1 · · · s′k−1ck
is a prefix of s. By Theorem 1 and Definition 1 (4), the index k is also maximal such
that t′0c1 · · · t′k−1ck is a prefix of t. Let ai = ci for i ∈ {1, . . . , k}, let si = s′i and
ti = t′i for i ∈ {0, . . . , k − 1}, and let sk and tk such that s = s0c1 · · · sk−1cksk and
t = t0c1 · · · tk−1ck tk. Let u = sau′ and v = tav′. By construction of s and since
alph(t) ⊆ alph(s) we have

h(pt0a1 · · · ti−1ai) R h(pt0a1 · · · ti−1aisi)
for all i ∈ {0, . . . , k}. Note that h(ai+1si+1 · · · aksku′) L h(siai+1si+1 · · · aksku′).
Moreover, h(p) >R h(pta) and thus DR(p) ( DR(pta). Using the formulae 〈ϕ〉>Xa

from Lemma 2.1 yields u′ 6fo2

2,n−1 v
′. As n − 1 > |DR(pv) \DR(pta)| + |DL(u′)| + 1

holds, we can apply induction to obtain
u′ = sk+1ak+2 · · · s`−1a`s`,
v′ = tk+1ak+2 · · · t`−1a` t`.

Setting ak+1 = a yields the desired factorizations. The ranker property holds since all
markers ai are defined by R- and L-factorizations.

Lemma 2.5. Let u = s0a1 · · · s`−1a`s` and v = t0a1 · · · t`−1a`t` with ai ∈ A, si, ti ∈
A∗. Moreover, suppose for every 1 6 i 6 ` there exists a ranker r in

Z = {Xb1 · · ·Xbk , Ybk · · ·Yb1 | b1 · · · bk is a subword of a1 · · · a` for bi ∈ A}
such that r(u) = |s0a1 · · · si−1ai| and r(v) = |t0a1 · · · ti−1ai|. If u 6fo2

m,n+` v for m > 2
and n > 0, then si 6fo2

m−1,n ti for all 0 6 i 6 `.

Proof. For a ranker r let us say informally that it reaches the occurrence of the marker ai
if r(u) = |s0a1 · · · si−1ai| and r(v) = |t0a1 · · · ti−1ai|. Let X consist of the rankers in
Z starting with an X-modality, and let Y = Z \ X be the rankers starting with a Y-
modality. We perform an induction on the number of markers reachable by some ranker
in X . First, suppose all ai are reached by a ranker in Y. Using the formulae 〈ϕ〉<Yai

from Lemma 2.2 we get for every 1 6 i < ` that s0a1s1 · · · aisi 6fo2

m,n+1 t0a1t1 · · · aiti
and s0 6fo2

m,n t0. Hence using the formulae 〈ϕ〉>Yai from Lemma 2.2, we see si 6fo2

m−1,n ti
for all i.
Let now k be minimal such that the occurrence of ak is reached by a ranker in X .

The same reasoning as above shows si 6fo2

m−1,n ti for all i 6 k − 2. Using the formulae
〈ϕ〉>Xak from Lemma 2.1 we have

skak+1 · · · s`−1a`s` 6fo2

m,n+`−1 tkak+1 · · · t`−1a`t`
and induction yields si 6fo2

m−1,n ti for all i > k. It remains to show sk−1 6fo2

m−1,n tk−1.
Let k′ be the minimal index with k′ > k such that the occurrence of ak′ is reached
by a ranker in Y. Then s0a1s1 · · · ak′−1sk′−1 6fo2

m,n+1 t0a1t1 · · · ak′−1tk′−1. Using the
formulae 〈ϕ〉(Yak−1;Xak) from Lemma 2.3 finally yields sk−1 6fo2

m−1,n tk−1.
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The preceding lemmas enable induction on the parameter m. We start with a
homomorphism onto a monoid satisfying Um 6 Vm and want to show that preimages of
6-order ideals are unions of 6fo2

m,n-order ideals for some sufficiently large n. Intuitively,
a string rewriting technique yields the largest quotient which satisfies the inequality
Um−1 6 Vm−1. One rewriting step corresponds to one application of the inequality
Um−1 6 Vm−1 of level m−1. We then show that rewriting steps in appropriate contexts
can be simulated by the inequality Um 6 Vm.

Proposition 2.1. Let m > 1 be an integer, let h : A∗ →M be a surjective homomor-
phism onto a finite ordered monoid (M,6) in DA which satisfies Um 6 Vm. Then there
exists a positive integer n such that u 6fo2

m,n v implies h(u) 6 h(v) for all u, v ∈ A∗.

Proof. We perform an induction on m. For the base case m = 1 a result of Pin [19]
shows that for every 6-order ideal I of M the set h−1(I) is a finite union of languages
A∗a1 · · ·A∗akA∗ for some k > 1 and ai ∈ A. Let n be the maximum of all indices k
appearing in those unions when considering all order ideals I ⊆M . If u 6fo2

1,n v, then
for all languages P = A∗a1 · · ·A∗akA∗ with k 6 n we have that v ∈ P implies u ∈ P .
Moreover, the preimage L of the order ideal generated by h(v) is a finite union of
languages A∗a1 · · ·A∗akA∗ with k 6 n. We have v ∈ L and thus u ∈ L. This shows
h(u) 6 h(v).
In the following let m > 2 and fix some integer ω > 1 such that xω is idempotent

for all x ∈ M . We introduce a string rewriting system → on A∗ by letting t → s if
h(s) = h(t) or if t = pvm−1q and s = pum−1q for p, q ∈ A∗ and for i > 2 we have

v1 = 1, vi = (ui−1xi)
ωvi−1(yiui−1)ω,

u1 = z, ui = (ui−1xi)
ωui−1(yiui−1)ω

for xi, yi, z ∈ A∗. Note that t → s implies p′tq′ → p′sq′ for all p′, q′ ∈ A∗. Let ∗→ be
the transitive closure of →, i.e., let t ∗→ s if there exists a chain t = w1 → w2 → · · · →
w` = s for some ` > 1 and wi ∈ A∗.

We now claim that, in certain contexts, we can lift the rewriting steps of t ∗→ s to M
in an order respecting way.

Claim 1. Let u, v, s, t ∈ A∗ with t ∗→ s. If both h(u) R h(us) and h(v) L h(sv), then
h(usv) 6 h(utv).

The proof of the claim is by induction on the length of a minimal→-chain from t to s.
The claim is trivial if h(t) = h(s). Suppose t ∗→ t′ → s and t′ = pvm−1q and s = pum−1q.
Since h(u) R h(us), there exists x ∈ A∗ such that h(u) = h(usx); and since h(v) L h(sv)
there exists y ∈ A∗ such that h(v) = h(ysv). Now h(u) = h

(
u(pum−1qx)ω

)
and

h(v) = h
(
(yum−1q)

ωv
)
. By letting xm = qxp and ym = qyp, the inequality Um 6 Vm

of M yields
h(usv) = h

(
up(um−1xm)ωum−1(ymum−1)ωqv

)
6 h

(
up(um−1xm)ωvm−1(ymum−1)ωqv

)
= h(ut′v);

to see this observe that (pum−1qx)ωp = p(um−1qxp)
ω = p(um−1xm)ω. By induction

h(ut′v) 6 h(utv) and thus h(usv) 6 h(utv). Note alph(t′) ⊆ alph(s) and thus, h(u) R
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h(us) implies h(u) R h(ut′), and symmetrically h(v) L h(sv) implies h(v) L h(t′v).
This completes the proof of the claim.

Let t ∼ s if t ∗→ s and s ∗→ t. This is a congruence on A∗, and M ′ = (A∗/∼) becomes
a monoid. Let h′ : A∗ →M ′ be the canonical homomorphism mapping u ∈ A∗ to its
equivalence class modulo ∼. The preorder ∗→ on A∗ induces a partial order on M ′

(which is also denoted by 6 for conciseness) by letting h′(u) 6 h′(v) if v ∗→ u. Now,
(M ′,6) forms an ordered monoid. Moreover, M ′ is a (non-ordered) quotient of M and,
in particular, M ′ is finite and in DA, and xω is idempotent for all x ∈M ′.

By construction (M ′,6) satisfies the identity Um−1 6 Vm−1 and induction yields n
such that u 6fo2

m−1,n v implies h′(u) 6 h′(v). We shall show that u 6fo2

m,N v implies
h(u) 6 h(v) for all u, v ∈ A∗ and N = n + 2|M |. Let u, v ∈ A∗ with u 6fo2

m,N v.
Consider the factorizations u = s0a1 · · · s`−1a`s` and v = t0a1 · · · t`−1a`t` given by
Lemma 2.4; note that ` 6 2|M | − 2. Applying Lemma 2.5 to this yields for all i:
• si 6fo2

m−1,n ti and thus ti ∗→ si by choice of n,
• h(t0a1 · · · ti−1ai) R h(t0a1 · · · ti−1aisi) and
• h(ai+1si+1 · · · a`s`) L h(siai+1si+1 · · · a`s`).

Here for conciseness t0a1 · · · ti−1ai is the empty word if i = 0, and so is ai+1si+1 · · · a`s`
if i = `. To see the first property note that by choice of n, we have h′(si) 6 h′(ti)
for all i, that is, ti ∗→ si. Applying Claim 1 repeatedly to substitute si with ti for
increasing i ∈ {0, . . . , `} yields the following chain of inequalities:

h(u) = h(s0a1s1 · · · s`−1a`s`)
6 h(t0a1s1 · · · s`−1a`s`)
...
6 h(t0a1 t1 · · · s`−1a`s`)
6 h(t0a1 t1 · · · t`−1a`s`)
6 h(t0a1 t1 · · · t`−1a` t`) = h(v).

This concludes the proof.

The following lemma roughly shows that Um is 6wi
m,n-smaller than Vm for suitable n.

In combination with Theorem 1 this shows that the inequality Um 6 Vm holds for
the ordered syntactic monoid of FO2

m-definable languages. To formalize this, for
an assignment h : Ω → A∗ let hN be the extension of h to omega-terms given by
hN (xy) = hN (x)hN (y) and hN (xω) = hN (x)N .

Lemma 2.6. Let m,n > 0. For all mappings h : Ω→ A∗, all p, q ∈ A∗ and all N > n
we have p hN (Um) q 6wi

m,n p hN (Vm) q.

Proof. We start by giving a rough sketch of the proof. The idea is that the rankers
involved in 6wi

m,n reach the difference of Um and Vm in the center only with the very last
direction alternation. Before that the rankers identify the same position of Um and Vm
(in the canonical sense). Moreover, since the center of Um has a larger alphabet than
that of Vm, a ranker which consists solely of X-modalities cannot pass the center of Um
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before it passes the center of Vm. Symmetrically, a ranker which only uses Y-modalities
cannot pass the center in Um before it passes it in Vm.

We now formalize these ideas. Let N > n and let U = phN (Um)q and V = phN (Vm)q.
We classify positions into environments of the center of increasing size; roughly speaking
this defines a “two-dimensional” distance: the first dimension is how many direction
alternations suffice to get near the center; the second is the depth sufficient for an
one-way free ranker to decrease the direction alternation dimension. More precisely,
for 2 6 k 6 m and n 6 N we let i ∈ Bk,n if both

i >
∣∣p hN((Um−1xm)N · · · (Ukxk+1)N (Uk−1xk)N−n

)∣∣
|U | − i >

∣∣hN((ykUk−1)N−n(yk+1Uk)N · · · (ymUm−1)N
)
q
∣∣

hold and we let B1 = B1,n = B2,0. Slightly abusing notation, we canonically identify
positions of U with positions of V by removing the positions corresponding to the
innermost occurrence of z in Um. Specifically, if we let pos(U) and pos(V ) be the
set of positions of U and of V , respectively, then we identify pos(V ) with the set
pos(U) \ B1,N . By this convention, it also makes sense to interpret the set Bk,n of
position of U as a set of positions of V . Note that in this sense pos(V ) ⊆ pos(U) and
U [i] = V [i] for all i ∈ pos(V ).
For k > 1 and n > 0 we show by induction on k + n that for all i, j 6∈ Bk,n:
1. Rk,n(V, i) ⊆ Rk,n(U, i) and
2. r(V, i) < s(V, j) ⇒ r(U, i) < s(U, j) and r(V, i) 6 s(V, j) ⇒ r(U, i) 6 s(U, j)

for all rankers r ∈ Rk,n(V, i) not ending with a Y-modality and all rankers
s ∈ Rk,n(V, j) not ending with an X-modality.

Here R(w, i) consists of all rankers r ∈ R such that r(w, i) is defined (for a word w and
a subset of rankers R). Choosing k = m then implies the claim of the lemma.
The claim is vacuously true if n = 0. Suppose n > 1 in the following and let

i, j 6∈ Bk,n. First consider k = 1. Condition (1) follows since all subwords of V of
length at most n appearing to the left (respectively right) of i appear also as subwords
of U to the left (respectively right) of i. (The converse may not be true, however.)
Condition (2): For all i 6∈ B1 and all r ∈ {Xa | a ∈ A}+ we have r(U, i) 6 r(V, i).
Symmetrically, for all j 6∈ B1 and all s ∈ {Ya | a ∈ A}+ we have s(V, j) 6 s(U, j).
For the inductive step suppose k > 2. As a preparatory step we first consider a

one-way ranker r with |r| 6 n, i.e., a ranker r ∈ {Xa | a ∈ A}+ ∪ {Ya | a ∈ A}+ with
|r| 6 n. We claim that r(U, i) = r(V, i) 6∈ Bk−1,N .
To see this first note that by symmetry it suffices to consider i < min(Bk,n). If r

only uses Y-modalities, then the claim is immediate. Let r = Xar
′. Then Xa(V, i) <

min(Bk,n−1) if and only if Xa(U, i) < min(Bk,n−1) and in this case Xa(V, i) = Xa(U, i).
Otherwise we already have Xa(V, i) > max(Bk−1,N ) and moreover Xa(U, i) = Xa(V, i).
Note that the factor hN (Uk−1xk) is in between i and Bk−1,M and contains all labels
of U and of V for positions in Bk−1,N . In both cases, induction yields the claim for r.
Condition (1): Let r ∈ Rk,n(V, i). It suffices to consider i < min(Bk,n). Let

r = r0r1 for a one-way ranker r0 such that r1 ∈ Rk−1,n ∪ {ε}. The above yields
r0(U, i) = r0(V, i) 6∈ Bk−1,N and hence by induction r(U, i) = r1(U, r0(U, i)) is defined.
Condition (2): Let r ∈ Rk,n(V, i) not end with a Y-modality and let s ∈ Rk,n(V, j)
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not end with an X-modality. Assume r(V, i) . s(V, j) for . ∈ {6, <}. Suppose r = r0r1
and s = s0s1 for one-way rankers r0 and s0 and r1, s1 ∈ Rk−1,n ∪ {ε}. By the above,
we have r0(V, i) = r0(U, i) = i′ and s0(V, j) = s0(V, j) = j′ and further i′, j′ 6∈ Bk−1,N .
By assumption r1(V, i′) . s1(V, j′); thus induction shows r1(U, i′) . s1(U, j′). This
implies r(U, i) . s(U, j).

We are now ready to prove our decidable characterization given in Theorem 2.

Theorem 2. For the direction from right to left consider the ordered syntactic monoid
(M,6), and let L be recognized by h : A∗ →M , i.e., there exists a 6-order ideal I such
that L = h−1(I). We have M ∈ DA since L is FO2 definable [27]. By Proposition 2.1
there exists n such that every preimage of a 6-order ideal is a 6fo2

m,n-order ideal. In
particular L is a 6fo2

m,n-order ideal and thus definable as the union of all L(ϕ) over
ϕ ∈ Σ2

m,n such that L(ϕ) ⊆ L. This union is finite because there are only finitely many
languages definable in Σ2

m,n.
For the direction from left to right suppose that L is definable in Σ2

m,n for some n.
Lemma 2.6 shows p hN (Um) q 6wi

m,n p hN (Vm) q for all assignments h : Ω → A∗, all
p, q ∈ A∗ and all N > n. Theorem 1 yields p hN (Um) q 6fo2

m,n p hN (Vm) q. In particular
p hN (Vm) q ∈ L implies p hN (Um) q ∈ L. Choosing N such that all N th-powers are
idempotent in the syntactic monoid, this shows that the ordered syntactic monoid
satisfies the inequality Um 6 Vm.
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