Technical Report 2014/01
A Network Abstraction for Control Systems

Ben W. Carabelli
Frank Diirr
Boris Koldehofe
Kurt Rothermel

Institute of Parallel and Distributed Systems
University of Stuttgart

Universitatsstr. 38
705679 Stuttgart
Germany

April 2014

A Network Abstraction for Control Systems

Ben W. Carabelli, Frank Diirr, Boris Koldehofe, and Kurt Rothermel

Institute of Parallel and Distributed Systems
University of Stuttgart, Germany

Abstract

Networked control systems (NCS), such as the smart power grid, implement
feedback control loops by connecting distributed sensors and actuators to a remote
controller over a communication network. In order to avoid the costly and time-
consuming installation of dedicated networks, NCS can benefit from utilizing
readily available IP networks such as the Internet. However, as control systems
are typically sensitive to delay and loss, the integration of such systems over
best-effort networks becomes a challenge, which we address in this paper with
two main contributions. First, we propose an end-to-end transport abstraction
for NCS based on a novel probabilistic quality of service specification which (1)
is compatible with existing control models and (2) provides the network with
application-specific knowledge about the relation between system performance
and network-relevant metrics. Second, we realize this abstraction at the network
layer with an optimal routing algorithm, which fulfils the required QoS while
minimizing the usage of network resources. We show that our approach lends
itself to the implementation with state-of-the-art software-defined networking
(SDN) technologies, and demonstrate its effectiveness in our evaluation.

Index terms —cyber-physical systems; networked control systems; optimization;
routing; software-defined networking

1 Introduction

Networked control systems (NCS) [HNX07], implementing a feedback control loop by
connecting distributed sensors, actuators, and controllers via a communication net-
work, are steadily gaining importance. One prominent example of a widely dispersed
NCS is the smart grid, where smart meters or synchrophasor units measure the power
consumption of electrical appliances and the production by decentralized sources (e.g.,
solar panels). The controller balances power generation and consumption by switch-
ing on and off consumers on demand. Further examples include autonomous traffic
systems, smart factories, smart homes, and several types of so-called cyber-physical
systems.

Many of those NCS involve widely distributed sensors and actuators, which are to
be connected to controllers via a communication network. The areas to be covered by
those networks range from single campuses or production sites to the entire globe.
A crucial factor for the proliferation of such NCS will be to what extent existing
packet-switched network infrastructures can be leveraged by control applications.

Building NCS on top of packet-switched networks is a challenging task as those
systems are particularly vulnerable to unpredictable delays and packet loss. With
regard to their requirements concerning the underlying communication network, we
can distinguish between deterministic control models and probabilistic control models.
While the former require upper bounds on delay and loss, the latter can account for a
certain degree of stochastic delay and loss variability.

Due to their stringent delay and loss requirements, deterministic control models
are typically implemented using fieldbus networks with deterministic real-time guar-
antees at the data link layer, such as the well-known CAN and PROFIBUS and more
recently Ethernet-based variants such as EtherCAT and PROFINET [GH13]. However,
implementing deterministic control models based on a best-effort service as provided
by the current Internet is unfeasible. While communication services with guaranteed
delay bounds, such as IntServ, would be an appropriate base for building deterministic
NCS, we cannot expect them to be widely available.

As a consequence, we focus our work on probabilistic control models, which can
in principle be applied also when the underlying network is expected to provide best-
effort service only. The probabilistic control methods proposed in the literature (e.g.,
[BA11; BA12; Hee+10; QSGO07; Sch+07]) incorporate mathematical network models to
enable the rigorous analysis of the NCS performance depending on network parameters.
However, although these works present a solid theoretic basis for NCS, they typically
do not address the problem of mapping these models to communication services
that can be (efficiently) realized in current network infrastructures. Consequently,
the integration of packet-switched networks and control system to implement NCS
requires cross-cutting research at the intersection of networking and control theory
[SA11; KK12]. To this end, we aim at a communication service enabling engineers
to design and implement an NCS within their established theoretic framework, but
which can also be implemented efficiently on top of IP-based networks.

In this paper, we propose a novel communication service tailored to the specific
needs of probabilistic NCS. This transport-layer service, called NC-service, enables
the sensing devices of an NCS to connect to the NCS controller for transmitting their
measurements. When requesting a connection, the control application specifies an
NCS-specific Quality of Service (QoS), which is based on a control theoretic perfor-
mance metric. According to the underlying probabilistic control model [BA12], this
performance metric is defined as a function of the acceptable delay (given by the
sampling period) and the in-time arrival probability given this sampling period. Since
different combinations of sampling period and arrival probability values may result
in equal performance, there might exist a number of alternative network paths that
(currently) fulfill the performance requirement. This allows the NC-service to select
the path that allows the maximal sampling period, which in turn minimizes the volume
of samples to be transferred. Moreover, the path may be dynamically changed to
avoid violating the required performance, or if an alternative path allows for a larger
sampling period. Consequently, for a given performance requirement the NC-service
determines the optimal sampling period based on the current network conditions. This
value is reported to the NCS, which then adapts its sampling process accordingly.

Selecting the optimal path based on the performance metric mentioned above
requires a customized routing mechanism. However, we can utilize state of the art
software-defined networking (SDN) technologies to implement this mechanism, mak-
ing it applicable to standard networking infrastructures. Moreover, we think that the
presented NC-service is well suited to demonstrate the core benefits of SDN, namely,
the flexibility to add new network control logic, ease of implementing a logically

Control System

actuators IIEE’I Sensors

NCS-Controller —

Figure 1: System model; the sensors are connected to the NCS-controller over a
network.

centralized network service, and integration of the application and network into a
holistic system.

To our knowledge, this is the first proposal of a communication service incorpo-
rating a control-theoretic performance metric, which is in line with the application’s
control model, and which allows the service to satisfy the required performance with
minimal network resources. In detail, we make the following contributions:

+ An end-to-end transport abstraction for connecting components of an NCS.

« The formal specification of a constrained optimal routing problem to optimally
utilize network bandwidth resources subject to QoS constraints.

« An SDN-based architecture and logically centralized implementation of the
network control logic.

« An evaluation of the performance of our approach that shows the feasibility of
implementing a logically centralized routing algorithm for a large number of
concurrent connections.

The remaining paper is organized as follows. We first introduce our system model
in Sec. 2 and propose an SDN-based architecture for the NC-service in Sec. 3. After
deriving the QoS requirements of a canonical control system, we describe the transport
layer functionality in Sec. 4. We then show an efficient implementation of this service
on the network layer by formulating and solving an optimal routing problem in Sec. 5.
After evaluating our approach with a simulation study in Sec. 6, we address related
work in Sec. 7. A discussion of our results and an outlook conclude this work. Further
technical details and proofs can be found in the Appendix.

2 System Model

Our system model, which is shown in Fig. 1, consists of five components: the plant,
sensor, actuator, NCS-controller, and communication network. According to the
common terminology used in control theory, the dynamic physical system to be
controlled is denoted as the plant. The current state of the plant is measured by sensors,
and corrective actions to the plant are performed through actuators. The NCS-controller
receives the input from the sensors, calculates the corrective action required to keep
the plant in the desired state, which it sends to the actuators to be executed. In this
work, we consider systems with one sensor node only, where the measurements of all
sensors are aggregated into a state vector and sent to the controller.

Since the plant is a spatially distributed system in general, we assume that the
sensor node is connected to the NCS-controller over a communication network. We
assume an IP-based packet-switched network with best-effort forwarding semantics.

Apr 7/“[“:1(17 NCS Controller NCS Sensor

routesetup,,,,,,,7777777777777L\’(;.j751\'g
Transport . — route delete signaling | '
| NC Transport Entity | > il | NC Transport Entity |
l |

Layer

R K Northbound
””” NC Routing Service | =~~~ ~ " Interface
Network |:‘:| . |:l:|
Layer IP Entity SDN Network Controller IP Entity

Southbound

Data Link & link monitoring Interface

Phy. Layer OpenFlow
conn. req. conn. ack.
Data Path data

Figure 2: Network Architecture; NC-service components are shown with bold borders.

Therefore, state measurement vectors can get lost with variable loss probability and
experience a variable delay. For the sake of simplicity, we assume that the actuators are
co-located with the NCS-controller. More complex settings where also the actuators
are connected to the NCS-controller over the network are subject of future work.
Therefore, our focus in this paper is on the connection between the sensor node and
the NCS-controller.

For the packet-switched network, we assume the availability of standard multi-layer
switches that can forward flows based on IP addresses and higher layer information.
Moreover, they have to support the OpenFlow standard [McK+08] for configuring
forwarding tables and enabling our SDN-based architecture described next.

3 Network Architecture

The network architecture of our NC-service is depicted in Fig. 2, which shows the
relevant components in the five-layer Internet model. As previously mentioned, our
proposed NC-service provides a transport layer interface to the control application
and utilizes a custom routing mechanism to implement the route of the corresponding
NC-connection at the network layer.

The transport functionality of the NC-service is implemented by protocol entities
on the end-systems hosting the sensor and NCS-controller. We denote the interface
between the application and the NC-service as an NC-socket similar to classic sockets for
datagram and streaming services. The transport layer service is responsible for setting
up an NC-connection between sensor and NCS-controller, tearing down connections,
data transfer, QoS arbitration, and signaling changes in network conditions to the
application as detailed in the following sections.

In order to set up an NC-connection with a given QoS, a network path with certain
loss and delay properties has to be established in the network, which might be adapted
during the life-time of the connection due to changing network conditions. The setup
and maintenance of routes implementing the required QoS with minimum network
resources is the task of the NC routing service. According to the SDN paradigm, we
implement this service using a logically centralized SDN network controller, which
exposes the routing service to the transport layer through its northbound interface. To
calculate a route, the NC routing service obtains necessary QoS information from the
transport layer entity and gathers a global view onto the network through monitoring
of the link properties over the southbound SDN interface, e.g., using counters to detect
lost packets or active probing to determine delays. Based on this global view, the NC

routing service implements the optimal route in the network by installing the necessary
flow table entries in the OpenFlow-enabled switches (based on the IP addresses and
port numbers of NCS-controller process and sensor process and protocol ID of the
NC transport protocol). Whenever the routing service adapts the route or identifies
the need to adjust application parameters in order to maintain QoS, these changes are
signaled back to the transport layer. Note that route adaptations can be performed in a
non-disruptive fashion using techniques for consistent network updates, e.g., [Rei+12].
Data packets follow the usual data path through the protocol stack.

Note that the proposed network architecture does not require changes to the
network switches as long as they implement the OpenFlow standard (and possibly
other standard mechanisms such as hardware timers for precise delay monitoring). To
deploy the service, we only have to modify the protocol stack of the hosts—which are
under the control of the NCS-operator—, and deploy custom network control logic via
the SDN controller. Therefore, we can use a standard SDN infrastructure.

4 NC Transport Service

We now proceed to design a suitable transport abstraction for NCS, which will be
provided by the NC-service. In particular, this abstraction includes the QoS definition
used to set up NC-connections. On the one hand, the QoS definition has to provide
the network with suitable information to efficiently implement NC-connections on
the network layer, i.e., to solve the routing problem. To this end, it must be specified
in network-relevant metrics. On the other hand, the QoS parameters must be in line
with the control model of the NCS application itself. In order to define a suitable QoS
specification for NCS, it is therefore essential to first understand the requirements and
relevant parameters of the control application.

4.1 Control-theoretic Background

In order to design an NCS, the control systems engineer uses a mathematical model
of the plant and the communication network that transmits sensor values from the
sensor to the NCS-controller. In this work, we adapt an NCS model of Blind and
Allgower [BA12], which is described within this subsection. For the communication
between sensor and NCS-controller, this model assumes a constant delay Ts and arrival
probability p,. Furthermore, losses are assumed to be independent and identically
distributed (i.i.d.). The plant is modeled using an ordinary differential equation

x(t) = Ax(t) + Bu(t) + w(t), (1)

where x is the state vector of the plant, which is measured by the sensor, u is the input
vector of the plant, and w is a random disturbance which may capture uncertainties,
noise, or unmodeled dynamics.

As the measurement signal u(t) has to be packetized in order to be transported over
the network, the sensor is sampled periodically at time instants i, where t;,; = t +Ts.
That is, the network delay Ts of the network model is simultaneously the system’s
sampling period. According to the model, at each of these sampling instants, two
actions are performed:

1. The sensor takes a measurement of the state x and sends it to the controller over
the network. The measurement is delivered at the next sampling time t,; with
probability p,.

2. If the controller receives the previous measurement x(tx_;), it uses this value
to calculate a prediction x(tx) of the current state. If the last measurement is
not available at this time, it uses its previous state estimate x(fx_;) instead to
calculate the current state estimate. This value is then used to obtain the control
input

u(t) = —Kx(tx), t € (t,tr+1l,

which is applied by the actuator over the following sampling period.

For the details of the state prediction and calculation of the controller gain matrix
K see [BA12]. However, it is important to note that this controller is designed to
solve the so-called linear-quadratic regulation (LQR) problem, which is among the
most prevalent problems in optimal control theory (cf. [Son98]). The LQR controller
minimizes a cost metric of the control system, denoted in the literature as J, which
measures the deviation of the plant’s state from its setpoint plus the amount of energy
that the controller has to expend to stabilize the system. (For technical details see
Appendix A.1.) As the system is subject to random disturbances and random packet
loss, the cost J is also a random variable. However, the expected value of J under
optimal control can be determined numerically as shown in [BA12] as a function of the
sampling period and the arrival probability. In the following, we denote this function
asE[J] =E; (Ts,pa). (Higher moments of J are usually not considered.)

4.2 QoS Specification

We can now use the previously described models to relate the application performance
to the network parameters. From an application perspective, the control engineer
wishes the NCS to maintain a certain performance. She therefore provides an upper
bound Jin, for the application’s expected cost:

E] (TS,pa) <]max- (2)

Given this constraint, we can specify QoS for NCS as the required minimum arrival
probability given Tg:

Definition 1. (Minimum Arrival Probability for NCS) The minimum arrival probability
function of an NCS with upper cost bound J;,4y is given by

Pmin(TS) = inf{pa | E](Ts’pa) <]max}- (3)

As we have seen in the previous subsection, the delay Ts and arrival probability
pa can be seen as input parameters to the NCS model. The function p,;, now defines
a meaningful relationship between these two parameters from the viewpoint of the
application’s performance.

In order to implement QoS for NC-connections, we must also consider the inter-
dependency of these two parameters at the transport layer. Recall that, in the control
model, the packet delivery time of state measurements from sensor to controller is
assumed to be constant. From the application perspective, this model is perfectly justi-
fied since sensing and actuation only occur at predefined time instants. In the network
we must however account for varying delays. State measurements experiencing a
delay of less than one sampling period Ts can be buffered at the transport layer until
the next sampling instant, but those experiencing a greater delay must be discarded, as

by this time the controller has already applied an input u based on a state prediction.
Effectively, the application parameter p, describes the probability of timely end-to-end
delivery of NCS packets within the delay bound Ts.! We can use this effective arrival
probability to characterize an NC-connection:

Definition 2. (Effective Arrival Probability) Let o denote an end-to-end NC-connection
from sensor to NCS-controller, which imposes a random delay 7 and random packet
loss with probability p . The effective arrival probability p,(t) of this connection is
defined as

po(t) = P(x7< t) - (1-pf,), @
with respect to the delay bound t.

Thus, an NC-connection satisfies the quality of service requirements of the NCS if
we can find a finite positive sampling time Ts such that the effective arrival probability
exceeds the required minimum arrival probability:

3T5>Tm,-,, PU(TS) mein(TS)’ (5)

where we also include a lower bound T},,;, on the allowable sampling period as a design
parameter in order to limit the data rate of the NCS traffic. Note that expressing QoS
as a function of the application-layer parameter Ts has interesting benefits in our
scenario: it allows the network to choose an optimal sampling period based on the
current network delay and loss such that the NCS requirements are fulfilled with
minimal induced network load as we will present in Sec. 5. By using this lightweight
but expressive interface, we retain all the degrees of freedom (Ts and network path),
while providing separation of concerns between the control application and network,
allowing for a clean layered design.

4.3 NC Transport Service Interface

As outlined in Sec. 3, NC-sockets are used by the NCS-controller and sensor to com-
municate via an NC-connection. The API specifies operations for opening and closing
NC-connections including the required QoS, sending and receiving sensor data, and
signaling events between network and NCS, e.g., when the QoS cannot be fulfilled
anymore. In the following, we describe the NC-socket interface based on a slight
modification of standard socket primitives as well as the transport service semantics.

« s = connect(addrgens, Pmin(), *Ts, *ty, *h): the NCS-controller (acting
as client process) requests an NC-connection to the sensor (acting as server
process), providing the IP address and port number of the sensor process as
addrg,s and the required QoS function p,;,(-) as introduced above. During
connection establishment, the sampling period is provided via the pointer *Tg,
and the reference time *t, of the NCS is initialized. Both of these values are
used to determine the subsequent sampling times of the control system. Due to
the sampling semantics of the control application described earlier, we require
physical clock synchronization between the two end-systems to define t;, which
can be achieved using standard technologies like NTP, PTP, or GPS. Furthermore,
the NCS-controller provides a signal handler h, which is called by the NC-service
whenever the sampling time Ts has to be adapted in order to maintain QoS, in

!Notice the dual semantics of the parameter Ts: as a sampling period and as a delay bound. This will be
of interest for the optimal routing problem, as it implies an inter-dependency between delay and data rate.

which case the reference time t, is also reinitialized. The primitive returns the
socket descriptor s or -1 if no feasible route could be found.

« s=accept(*Tg, *ty, *h): the sensor process accepts connections initiated by
the NCS-controller. Again, after the connection has been established, the same
sampling period Ts and reference time t, is provided to the sensor process as well
as to the NCS-controller, and the sensor provides a handler h to receive signals
about sampling period adaptations from the NC-service. The sensor will start
sending measurements to the NCS-controller at sampling times t; =ty + k - Ts.

« status = send(s, x) is the primitive for sending the state vector x measured
by the sensor to the NCS-controller. The transport entity encloses a sample
number k = [T§ 1(t - ty)] corresponding to the current sampling time t; when
the measurement was taken. The status signals success or an error, e.g., a broken
connection. Note that a connection only breaks if no alternative route for the
NC-connection can be found anymore fulfilling the requested QoS. As long as an
alternative route can be found, adaptations are signaled via the signal handler h.

« status = receive(s, *x) is the primitive used by the NCS-controller to
receive a sample from the sensor. This call blocks until the system receives a
packet with valid sample number k = [T (t — to)] of the most recent sampling
time. Older packets must be silently discarded. If no valid packet is received by
the next sampling time t; = to + (k + 1) - Ts, a timeout error is signaled and
the NCS-controller performs a state prediction as shown in Sec. 4.1. This call
also returns an error if the NC-connection breaks.

« close(s) closes an NC-connection.

Due to the time-bound semantics of the send () and receive () primitives, the
transport service does not have to provide sequencing, as only one valid packet can
be in transit within any given sampling period, and invalid packets are discarded.
Furthermore, delivery acknowledgment and packet retransmission functionality are
also unnecessary.

For the sake of completeness, we also briefly describe the northbound interface of
the NC routing service executed by the Network Controller. These primitives are used
by the transport service to pass NC-connection requests down to the network layer, as
shown in Fig. 2:

« setup_route(addreey, addrgens, pPmin(-), *Ts) is used to set up a route
from the sensor to the NCS-controller. This interface provides the means to pass
the QoS function p,in(+) to the routing service, and correspondingly return the
sampling period Ts determined by the routing algorithm.

« delete_route(addr ey, addrs.,s) removes flow table entries of a previously

established NC-connection.

In the following section, we describe in detail how routes are calculated by the NC
routing service.

5 NC Routing Service

Based on the QoS definition of NC-connections, we can now focus on the problem
of finding optimal network paths for forwarding packets of an NC-connection (or
for short NC-flows) such that the requested QoS is fulfilled and the network load
is minimized. To this end, we define a formal routing problem for NC-flows in this

T
7(vy, v3) 4

Figure 3: Network model for NC-flow implementation. Each link e € E obeys a distinct
random packet loss process « with arrival probability P(e), and a distinct random
delay process 7 with latency distribution L(e,-).

section after first introducing the prerequisites for this formulation, namely, a formal
network model and definitions of the latency and loss properties of network paths as
well as network load. Finally, we present an optimal routing algorithm for NC-flows.

5.1 Network Model

We model the communication network as a directed graph G = (V,E, P, E) as depicted
in Fig. 3. It comprises a set V of vertices modeling network nodes (multi-layer switches
or hosts), and a set E € V XV of directed edges modeling network links between nodes.
G contains two special nodes: vg representing the sensor node, and v, representing
the host of the NCS-controller; all other nodes are switches. The map P : E — [0,1]
describes the arrival probability of each link e € E, and £ : EXR* — R* represents the
cumulative distribution function (CDF) of each link’s latency. As notational shorthand
for the corresponding probability density functions (PDF), we write (e, t), i.e.,

L(e,t) = [t(e,7)dr.

The transmission of NCS packets is modeled by a stochastic process {a;, 7/ }ren
for each link e € E. Here, a; € {0,1} is a random binary variable representing packet
arrival, i.e., az = 0 iff the measurement x(#x) is dropped on link e, and Tlf € R* denotes
the random network delay of x(tx) on link e, assuming it was not lost. As stated above,

the stochastic properties of this process are defined by G:

P(a,ﬁ = 1) =P(e), (arrival prob.) (6)
P(r,? < t) =L(e,t), t € R%. (latency dist.) (7)

In accordance with the control model, we assume that the process {al‘:, T

« } is indepen-
dent and identically distributed (i.i.d.) between sampling instants t; and independent
over all links.? Further, let the mean latency of link e € E be denoted by 7(e) = E[z¢].

In order to obtain the properties of NC-flow routes as link sequences, we define

a k-hop path as a tuple of the visited nodes o = (vl,vz,. .. ,vk+1) € VF*1 Fork > 1,

ZNote that loss and delay are also assumed to be mutually independent. However, the delay of lost

packets is neither observable nor does it have any influence on the control application, which renders the

conditional probability P (‘r]f <tlag = 0) irrelevant. Therefore, this assumption is clearly justified.

a path must be connected in G and thus satisfy (vi,v”l) e Eforalli=1,...,k. For
k = 0 the path reduces to a single node, which we refer to a as a degenerate path. We
say that two paths o7 = (vll,vlz,. .. ,vl’") and o, = (vzl,vzz,. .. ,vz”) are adjacent if the
terminal node of the first coincides with the initial node of the second, i.e., v]"* = vzl. The

2 m

concatenation of two adjacent paths is denoted as oy 0 0 = (1/11,\/1 b VILVELL ,vé’).

Finally, we say that two distinct paths are parallel if the initial and terminal nodes of

both paths coincide, i.e., v! = v! and v/* = V2.
1=V, 1 2

5.2 Path Properties

By regarding the stochastic properties of link concatenation with respect to delay and
loss, P and L can also be extended to paths. For the sake of consistency, we consider
any degenerate path o € V as a perfectly reliable and instantaneous link, i.e., P(c) = 1,
L(o,t) =1,and 7(c) = 0.

Proposition 1. Given two adjacent paths o1 and o, the overall arrival probability and
delay probability density of the composite path oy o o, are given by

73(01 o 02) =P(oy) - P(oy) ®)
and ((01 © 03,1) = £(o1,1) * £(02.1),)
where = denotes convolution with respect to t.

(Proof cf. Appendix A.2.) Note that we can express the effective arrival probability of
NCS packets over a path ¢ in G as p,(Ts) = P(c) - L(o,Ts).
Obviously, the above proposition implies:

73(61 o O'z) < min{P(ol),P(ag)}
and L'(crl o crz,t) < min{ﬁ(al,t),/:(az,t)}, vVt e R*,

That is, the effective arrival probability of a composite path cannot be larger than those
of its constituents.

5.3 Load Metric

Next, we introduce the network load metric used in our optimization criterion. Taking
into account the stochastic nature of our link model, we use as a load measure the
expected value L = E [b-r"] of the bandwidth-delay product, where b is the data rate
of the traffic generated by the control application and 7 is the random latency of the
path. We can see, however, that the naive calculation of this load measure as b - 7(o)
is overly pessimistic, as it disregards the possibility of packets being dropped. On the
other hand, if we simply weigh the naive measure with the path arrival probability, i.e.,
b-7(0)-P(0), the result is overly optimistic, as even in the case of a packet loss, this
loss might not occur at the beginning of the path. Thus, a packet lost along the way
may still incur a partial network load. In order to accommodate these considerations,
we use the following path metric to capture the expected delay experienced by any
packet along a given path.

Definition 3. (Expected transit time) The expected time that a packet spends in
transiton patho =e;joe;0e30--- inGis

E,(c) & (f(el) +Pey) (f(ez) +Pe)- (f(eg) b)))

10

®<@\ T o) Pl) E0)

, V2, Vg 2 0.09 1.1
f = ‘? = Vi, V3, Vg 2 0.09 1.9

Figure 4: Expected transit time

This metric is also demonstrated in Fig. 4, which shows a minimal example of two
parallel 2-hop paths with identical end-to-end characteristics. We see that the path via
v, with the less reliable link on the first hop incurs a shorter expected transit time and
thus lower expected network load. Similar metrics have previously been investigated
in the context of energy-efficient routing in wireless sensor networks, cf. [Sau+06].

Note that the expected transit time of any link e € E is simply its mean delay
E;(e) = 7(e) and that of a degenerate path ¢ € V is E; () = 0. Also, given two
adjacent paths o7 and o3, the expected transit time of the composite path ¢y o 03 is

E.(0100,) = Ec(01) + P(01) B (02), (10)

which follows directly from Definition 3.

As the data rate of the traffic generated by the control application is inversely
proportional to the sampling period Ts, the induced network load on path ¢ with
sampling period Ts is given by L(c,Ts) = E;(0)/Ts.

5.4 Routing Objective

Based on the formulation of the network load L(o,Ts), we can now define our con-
strained optimization problem. Recall that NCS-QoS requires that for some Ts > Ty,
the minimum arrival probability function p,;,(Ts) of the NCS be exceeded by p, (Ts),
which defines the probability of receiving a sample in time considering the loss and de-
lay distribution of the path o. In order to minimize the network load, we are interested
in the maximal feasible sampling period given by

sup{ t>Thin
0

po(t) = pmm(t)} if exists

Tiax(0) =
e otherwise.

Informally, the sampling period can be increased (i.e., the sampling rate is decreased)
as long as the QoS requirements are still satisfied. If the loss and/or delay of a path is
too high, the path is unfeasible, i.e., even choosing the maximum sampling rate T}
cannot compensate for the insufficient path quality. In this case we define Ty, = 0,
corresponding to infinite load. Note that the expected transit time only depends on
the choice of path, but not on the sampling period. Therefore, the load on any given
path is minimized by choosing Ts = Tp.x(0), and we denote this minimal per-path
load as L(c).

Now we are ready to formulate an optimization problem for NC-flow routing,
where we determine a path from the sensor node v; to the controller node v, with
minimal network load:

. Edo)
min Loy =7 o)

Note that any path o for which QoS cannot be satisfied has Tinax(c) = 0 and therefore
incurs infinite network load L(c), rendering it unfeasible.

s.t. 01 =Vs, Op = Ve. (11)

11

5.5 Routing Algorithm

Being a constrained shortest path problem, the considered routing problem (11) be-
longs to the class of NP-complete problems (cf. [Zie01]). Moreover, the QoS constraint
(5) is not expressed in terms of a scalar constraint metric; therefore, traditional approx-
imation methods for constrained shortest path problems are not readily applicable.
However, we employ a dynamic programming approach and show that its application
is practicable on a realistic topology in Sec. 6.

Our algorithm is shown in Fig. 5. We maintain for each node v; a set R(v;) of
residual candidate paths to the target node v, which is initialized in lines 2-5 as
empty for all nodes except the NCS-controller node, where it contains the degenerate
path (v.). We then successively generate simple paths from each node towards v, by
relaxation of each node’s incoming edges in lines 6-14. Upon relaxing an edge (v;,v;)
in lines 18-32, we evaluate for each path o € R(v;) the extended path 6 = v;o.

As the set of simple paths to any node in G scales with O(|V]!) in the worst case,
we would want to avoid generating all these paths. Due to the problem structure, we
can unfortunately not select the ‘best’ path at every step as would be possible in an
unconstrained shortest path problem. We can, however, identify non-optimal subpaths
using a necessary optimality condition given in the following proposition.

Proposition 2. Consider two parallel paths o1 and o, from any node v; to the controller
node v.. If these paths satisfy

P(o1)L(01,t) < P(02)L(02,t), Vi (12)
and E;(01) > E;(02) (13)

then the solution o,,; of the optimal routing problem (11) cannot contain oy as a subpath.

(Proof cf. Appendix A.3.) Based on this result, we can safely discard paths which meet
the following condition as route candidates.

Definition 4. (Dominance) If two parallel paths o1 and o, satisfy both (12) and (13),
then we say that o, dominates o;. As notational shorthand for this case, we write

09 > 01.

Specifically, in lines 21-27, we discard the candidate & if it contains a loop, is
unfeasible, or dominated by any existing path in R(v;). Otherwise, we know that it
is eligible as subpath of the optimal solution, and we add it to R(v;). In line 28, we
also purge R(v;) of all paths which are dominated by the newly added &, in order
to further minimize the required number of relaxation steps. After a new candidate
path was added to the set R(v;), we schedule in line 30 the incoming edges of v; to be
relaxed in the main loop. Thus, each R(v;) converges to a set containing all feasible,
non-dominated simple paths from v; to v.. Finally, when no edges are left to be relaxed,
we can choose in line 15 from all candidate paths in R(vs) the one with the minimal
cost L, which constitutes the optimal solution.

If the removal of dominated paths should not prove sufficient to limit the practical
complexity of the algorithm, we would first try to obtain a control-feasible path which
does not necessarily minimize network load. This can be achieved for example by
employing a suboptimal variant of the routing algorithm, which replaces the expected
transit time E; (o) by the unweighted mean path delay 7(c), and relaxes the strict
inequality in (13). This approach leads to a larger number of discardable dominated
paths, as we show briefly in the evaluation.

12

Require: G = (V,E,P,L) — network graph
Pmin(-) — minimum arrival probability
(provided by application)
vs, Ve € V — sensor and controller node

Ensure: o, solves (11)

1: function OPTIMALROUTE(G, pmin(-), Vs, Ve)

2 for all nodes v, € V do

3 R(vp) « @

4 end for

5: R(ve) « {v.} > initialize path set on v,
6 M « {v.} > mark v, for relaxation
7 repeat

8 for all v,, € M do

9 for all v; with (v;,v,) € E do
10: RELAX(V;, Vy)
11: end for
12: M — M\ {v,} > unmark node vy,
13: end for

14: untilM = @
15: Ogpt <— arg minaER(vs) (ET (O')/Tmax(o'))
16: return oy,

17: end function

18: function RELAX(v;,V))
19: for all o € R(v;) do

20: 0 « vio > new candidate path
21: if vi € o or 6 € R(v;) > loop/duplicate
22: continue

23: calculate E,(6), P(6), and L(5,t)

24 if P(6)LG.1) < prn(t) Veo1y,

25: continue

26: if 30 eR(v;): 0> 6

27: continue

28: R(v;) « R(vi)\{o | 6 > o}

29: R(v;) « R(v;) U {5} > add 6 to R(v;)
30: M — MU {v;} > mark v; for relaxation
31: end for

32: end function

> 0 dominated

> purge R(v;)

Figure 5: NC-flow Routing Algorithm

6 Evaluation

In this section, we evaluate the performance of our approach using network simulation.
In detail, we evaluate the effectiveness of our NC-service for networked control, the
efficiency of network optimization using our routing algorithm, and the runtime
performance of this routing algorithm. We begin by introducing our evaluation setup,
before we present the results.

13

Linearized ODE model:

o) o 1][6) 0
[é(t)] ‘[1 0] [é(t) *q| w0
N—— S—— ——

x(t) A x(t) B

Figure 6: Inverted pendulum system with linear differential equation model. The state
comprises angle 6 and angular speed 6. The plant’s input u is the torque applied to
the pendulum.

6.1 Simulation Environment

For the first two studies, we simulated the integrated NCS consisting of the network,
the control system, and the previously described network control logic under different
scenarios. We used the OMNeT++/INET simulation environment [VHO08] for the event-
based simulation of the communication network. The controller synthesis and stepwise
simulation of the control system were implemented using the GNU Octave scientific
computing language [EBH08], which was integrated with the network simulator using
Octave’s C++ API and runtime library.

6.1.1 Simulation of the Control System

For our evaluation of the closed-loop system, we simulated a textbook example of an
unstable physical system, namely, the inverted pendulum system depicted in Fig. 6.
The state of that plant is given by the angle 6 of the pendulum with respect to the
upright position, and its angular speed 0. The pendulum is in equilibrium in the upright
position @ = 6 = 0, but will tip over if disturbed; it is therefore an unstable system.
Our goal is to efficiently apply a torque u at the base of the pendulum depending on
the state such that it is kept in an upright position despite disturbances, which are
modeled as additive Gaussian white noise.

In the context of our investigated NCS setup presented in Fig. 1, one might assume,
e.g., that we measure the angle and speed of the pendulum using a remote camera,
which sends its state measurement to a controller connected to the actuator at the
base of the pendulum. If we use the control scheme from [BA12], we will obtain a
controller minimizing the cost function

_1; 1 ’ 2) 2 2
J_Tlgr;ﬁ/o 0(2)2 + 6(1) +u(t)* d.

The terms under the integral ensure that the angle and speed of the pendulum as well as
the torque applied are kept small on average. The control-theoretic framework allows
us to predict the expected value of J for this system depending on the parameters p,
and Ts. For our simulation study, we assume that a performance bound of Jy,, = 1 was
prescribed by the application. From this we derive the minimum arrival probability
function, which for this system is shown in Fig. 7, as explained earlier in Sec. 4. The
figure shows that the sampling period should be no longer than approximately 57 ms if
the quality requirement is to be satisfied. We also added plots of p,;, for other values
of Jinax for comparison.

14

1 T i
J=0.9 -x- <
J=1.0 —— /!
0.8 | J=11 --*- /. —
J=12 -—@- Pl
0.6 — g
=
g
[s}
04 — —
0.2 _
0 \ | | \ |
0 10 20 30 40 50

Ts [ms]

Figure 7: Numerically obtained minimum arrival probability function p,,i,(Ts) for the
inverted pendulum shown in Fig. 6 at different performance levels of J.

Rp Ry Ry AAA
D G (—()
Clink Clink e Clink Q ¢

Figure 8: Linear topology used to study the validity of our network abstraction.

6.1.2 Simulation of the Network

In order to simulate our NCS, we implemented two applications for OMNeT++: a
PlantApp containing the sensor, and a ControllerApp implementing the NCS-
controller. Both applications are executed on different hosts in the IP network. After
each simulation step of one sampling period, the PlantApp sends a packet containing
the state vector x and sample number k over the network to the ControllerApp. This
vector is used to calculate the control input in the next simulation step or discarded
based on its sample number. The network configuration is performed by a separate
module (Config) which maintains a topology model, as well as loss probabilities and
latency distributions in the form of discrete empirical CDFs with 100 bins each. These
distributions are calculated based on queue time statistics from the network interfaces
of switches, which the Config module receives through the signal mechanism of
OMNeT++.

Each experiment is preceded by a 5 s monitoring period during which the Config
module measures delay and loss. It then executes the optimal routing algorithm,
installs the appropriate routing table entries for the NC-flow, and sends an initialization
message containing the sampling time Ts to the PlantApp, which then begins the
control system simulation.

6.2 Effectiveness of NC Service

In order to evaluate the effectiveness of our NC-service for network control systems
communicating over best-effort IP networks, we simulated the inverted pendulum
NCS introduced above with a 5-hop linear topology shown in Fig. 8. Nodes vs and v,

15

L6 = I

12 /I___/,{—

08 L |
06 ‘
04 ‘
____________________ i
° S — A ﬁ ,,,,,, ‘ | ‘ ‘
0.2 0.3 0.4 0.5 Y - N
Ry /Clink

Figure 9: Sample mean of measured control cost J and load L of the NCS traffic
depending on the data rate of regular cross-traffic sources with 95% confidence interval.

host the PlantApp and ControllerApp, respectively, and nodes v;—v4 are interme-
diate switches. At each switch v;—v3, we inject random UDP traffic with uniformly
distributed inter-arrival times and mean bit rate R, to introduce varying queueing
delays and packet losses due to tail drop queueing. As the routing algorithm cannot
switch to a lightly loaded path in this topology, we can observe the effective application
performance under different levels of network congestion. To this end, we simulated
the NCS for different values of R, and measured the average control performance J
and load L induced by the feedback traffic of the control application.

Figure 9 shows these quantities in dependence on the cross-traffic bit rate as a
fraction of the link capacity Cj;,x. As we can see, the use of the sampling rate determined
by our NCS-QoS model is effective at satisfying the targeted quality constraint J,;5, = 1
for a large range of cross-traffic levels up to R, = 0.5 - Cjink. Moreover, performance
degrades gracefully under increasing congestion beyond this value. (Note that already
a cross-traffic bitrate of R, > 0.5 - Cjinx leads to full utilization of the links from v, to
v4.) We can also observe how the load L of the application traffic rises gradually due
to the adaptation of the sampling period.

As the inference of end-to-end latencies is based on the assumption that the link
latencies are i.i.d., we also investigated the effects of this assumption being violated,
i.e., with strongly correlated traffic. We repeated the above experiment with a mix of
regular and bursty (on-off) cross-traffic in equal parts, with traffic bursts lasting 1's
on average. Figure 10 shows that, also for bursty traffic, we could reach the targeted
NCS performance for cross-traffic levels up to Ry = 0.5 - Cjink. Beyond this value, the
performance degradation of the NCS due to congestion becomes more pronounced.
This is to be expected given the higher sensitivity to varying losses for lower sampling
periods (as can be seen from Fig. 7).

6.3 Effectiveness of NC Routing Service

In order to investigate the effectiveness of NC-flow routing, we simulated the same
NCS with the topology shown in Fig. 11, which offers two possible routes from v;

16

L6 I T

12 /I//” -

08 L :
06 :
04 :
o I e P——
.......................... -
0 L —— e ﬁ} ‘ | | ‘
0.2 0.3 0.4 05 06 - -
Ry /Clink

Figure 10: Sample mean of measured control cost J and load L of the NCS traffic
depending on the data rate of bursty cross-traffic sources with 95% confidence interval.

(D—()—(J

Figure 11: Network topology used to study the effectiveness of NCS-QoS-routing.

to v.. From the beginning of each experiment, we injected at each switch random
UDP traffic with uniformly distributed inter-arrival times inducing approximately 80%
link utilization on all links, except for the link from v; to v4, which is fully utilized on
average. As a consequence, the NC-flow is initially routed over the shorter and less
heavily loaded path (v, v, vz, v3, V).

At t = 20 s after the initial connection setup, an additional traffic source was added
from v, to v, effectively doubling the utilization of this link. As a consequence, the
arrival probability of this link decreases and the NCS-QoS requirement is violated,
which is detected by estimating the effective arrival probability of the established
NC-connection at the transport layer using an exponential moving average of the
inter-loss times (where a loss is equivalent to a receive () -timeout). When p, (Ts)
degrades by more than 10%, the NC-service adapts the NC-connection by calculating a
new optimal NC-flow route ¢ and sampling period Ts. We compared this also with
the more naive strategies of a) performing no adaptation whatsoever, and b) only
performing transport-layer adaptation of the sampling period Ts = Tp.x(0) on the
previous path o according to the current effective arrival probability function, i.e.,
assuming that we must rely on shortest-path routing.

The results of these experiments are shown in Fig. 12. Here, we show the average
application cost J and network load L of the NC-flow for the three approaches described
above. As we can see, the application requirement J,, = 1 can be maintained by
decreasing Ts (and thus also increasing the load) according to the current network
conditions in this experiment. However, by also choosing an optimal route, the load

17

I
14 no adaptation [

adaptonly Ts 3
adapt 0 and Tg

1.2 T]

08 L 2 R i

H

0.2 ; ‘ -

J L [10]
Figure 12: Sample mean of measured control cost J and load L of the NCS traffic depend-

ing on the use of transport-layer and network-layer adaptation with 95% confidence
interval.

incurred by the NC-flow is reduced by 6%.

6.4 Runtime Performance of NC Routing

To show the practicability of our routing algorithm, we evaluated its execution time
on a standard PC server with 4 X 2.7 GHz CPU and 4 GB main memory. We used the
same ppn function of the inverted pendulum example as the QoS specification, and
topology and latency measurements of an autonomous system collected by Rocketfuel
[Mah+02] as the network model G. Specifically, we used the dataset for AS 1239 (Sprint,
US), containing 315 routers and 1944 directed links. As the dataset only contains
propagation delays at millisecond accuracy, we ran 1000 realizations of the topology,
randomizing propagation delays at the sub-millisecond range. In each realization,
we also added a synthetic randomized queueing delay distribution to each link based
on single-hop empirical delay distributions measured on an IP backbone network
[Pap+03], and randomly chose one of the 28 leaf nodes in the topology as the location
of v.. The results in Table 1 show that, with a mean execution time of around 125 ms,
our approach is definitely practicable also for larger topologies. In this time, the routing
algorithm calculates the latency distributions for 15481 (sub)paths on average.

In addition to the nominal experiment described above, we also performed an
experiment for the pathological case, where the delay of each link was given only by
the constant propagation delay and disregarding queueing delays, which leads to a
higher number of generated paths (due to more feasible and fewer dominated paths).
It can be seen that the execution time suffers from this degenerate situation by about
factor 50, but we can improve the performance in the pathological case more than
two-fold by using the suboptimal algorithm outlined earlier, which still finds a route
satisfying QoS requirements.

18

Table 1: Runtime statistics

time [ms] # paths

nominal 1247+ 98.3 15481 + 4228
pathological 6957.4 +2195.7 327585 + 55673
suboptimal 2827.8+ 987.0 189907 + 37192

7 Related Work

In the control literature, there exists a wealth of work on NCS, due to the field’s natural
interest in this application area. Most of these works are concerned with the analysis
of dynamical systems subject to network-induced imperfections and the synthesis of
controllers for such systems. Thereby, control engineers strive to mitigate detrimental
network effects with control-theoretic methods on the application layer. To this end,
several methods for the modeling of generic communication delay and data loss effects
have been developed. An excellent overview is available in [HNX07], of which we
describe below some aspects relevant for our purposes.

A number of hybrid systems approaches (e.g., [Hee+10]) aim to capture network
effects by modeling the communication system as an event-based, discontinuous
protocol, alongside the continuous-time control system. The analysis of such systems
yields deterministic delay bounds under which stability can be guaranteed. This
approach can express manifold assumptions about the channel characteristics, but
the method for controller synthesis is complex. Based on a deterministic model, this
approach requires hard delay guarantees from the network. In contrast, our approach
allows for a lightweight implementation without real-time guarantees by leveraging a
stochastic NCS model.

Another approach [QSG07] employs predictive control to mitigate network effects
on the application layer by generating a set of future control actions, based on a
finite-horizon optimization, which the control system may use to mask packet loss.
Nonetheless, this approach requires a characterization of the packet loss behaviour
for stability analysis, and predictive controllers are more computationally expensive
than the type of controller used in our setup. Developing an abstraction similar to the
one presented in this work also for predictive control system presents an interesting
challenge for future work. However, the use of stochastic discrete-time optimal control
approaches (cf. [BA12; Sch+07; HNX07]) such as the one used in the present work have
the promising property of being amenable to more established methods of control
theory.

In the networking literature, some results are available on networked control
systems. As a notable example, a middleware approach called Etherware [GBK09]
offers a component-based architecture model that supports clock synchronization,
component migration, and several classical QoS mechanisms. However, it is not
immediately evident in how far these traditional network quality metrics are suitable
for rigorous control systems analysis.

Another approach [Lib06] borrows multimedia play-back buffering techniques to
mitigate the end-to-end channel imperfections in a remote control system. It integrates
control and scheduling on the end-systems into one application, and allows dynamic
adaptation of the sampling time to varying network conditions. Evaluations were
carried out for a control system which is already open-loop stable and therefore not

19

control-critical. Hence the suitability of this approach for general control applications
remains an open question, as well as its amenability to mathematical stability or
performance analysis. In contrast, our work provides an abstraction which integrates
seamlessly into the control model and leverages software-defined networking to also
optimize the system on the network layer.

8 Discussion

Finally, we would like to discuss the properties of our approach and possible directions
for extensions.

Incremental Deployment — As the slow adoption of highly anticipated technolo-
gies such as IPv6 shows, it is important to discuss the possibility to deploy our approach
in practice. As our network architecture in Sec. 3 shows, the NC-service requires adap-
tions of the transport protocol implementation at the hosts, which is not problematic
since hosts are managed by the NCS user. Our transport layer service could even be
implemented over UDP on the application layer using a library or middleware, similar
to RTP.

On the network layer, we utilize SDN to directly manipulate forwarding tables—
which is readily supported by the OpenFlow standard. We think this is a good example
how the separation of control plane and data plane enables new protocols and facilitates
the implementation of custom, application-aware control logic.

Multiple NC-flows —So far, our system model is restricted to one NC-flow be-
tween NCS-controller and sensor. Although this is sufficient for many applications,
large-scale NCS like a smart grid control system might require multiple NC-flows
between many sensors and the NCS-controller. Moreover, many concurrent NCS might
coexist in the network, with several flows per NCS.

For network optimization and QoS management, NC-flows from the same NCS
should be treated similarly. In particular, we would like to avoid situations where flows
from two concurrent NCS both suffer from flows that are not receiving the requested
QoS, although the requirements of at least one of them could be satisfied completely.
To this end, a flow bundle concept for bundling together the flows of one NCS together
with admission control mechanisms could be used. In this context, also concepts for
the fair treatment or prioritization of concurrent flows have to be discussed.

Monitoring — Our approach requires information about latencies and loss proba-
bilities, which are dynamic in a best-effort network due to dynamic queue lengths in
switches, congestion due to cross traffic, etc. Monitoring the network is not a trivial
task. However, we can utilize state-of-the-art technologies to this end. For measuring
latencies with high precision, we can use the Precision Time Protocol (PTP) together
with hardware time-stamping capabilities of switches. PTP allows for measuring the
propagation delay and so-called residence time in switches between ingress and egress
port with a precision in the order of tens of nanoseconds, which is certainly sufficient
for our application. For packet loss due to corrupt or dropped packets, we can utilize
counters in switches. What remains to be done is the development of a complete
monitoring system centrally controlled by the SDN Network Controller using active
probing (e.g., [TCN03]) and passive measurements. In this context, also questions
about the overhead and parameters of monitoring (e.g., sampling frequency of latency
measurements) need to be addressed in future work.

TCP Friendliness — The NC-service adapts sampling rates to network conditions
according to the NCS’ requirements. In general, it tries to keep the sampling rate and

20

implied network load minimal such that the application requirements are met. However,
it does not consider the requirements of other flows, in particular, TCP connections
competing for bandwidth along shared links. Therefore, NC-connections might get less
or more than their fair bandwidth share. TCP-friendliness has not been a design goal
of our approach so far. One might argue that real-time critical NC-flows should have
priority over elastic TCP flows. However, congestion control mechanisms limiting the
maximum sampling rate could be incorporated.

9 Summary and Future Work

In this paper, we presented a novel approach for networked control systems where
sensors and controllers are communicating over best-effort IP networks with varying
latency and packet loss characteristics. We proposed a communication service for NCS,
called NC-service, that provides an end-to-end transport abstraction based on a novel
probabilistic quality of service specification. On the one hand, this specification is
tailored to the requirements of the NCS, giving control system engineers the possibility
to readily incorporate it into their familiar analytic frameworks. On the other hand, it
links control system performance to network relevant metrics (packet loss and delay).
In more detail, this QoS specification provides the network with application-specific
knowledge about the relation between application performance and packet loss and
delay, and enables the network to optimize routes of NCS flows such that the required
application performance is met with minimum network bandwidth resources. By
reducing this to a routing problem, we could apply state of the art software-defined
networking concepts to implement our custom network control logic based on a
logically centralized SDN network controller. Our proposed network architecture
lends itself to an easy deployment in SDN-based networks, and is a good example of
how SDN eases the integration of network and application.

In future work we plan to extend our approach along the research directions
already outlined in Sec. 8. We are going to consider extended NCS with multiple flows
and multiple NCS sharing the same network. To this end, concepts for flow bundling,
NCS admission control, and fairness criteria are to be investigated. Moreover, we
will integrate network monitoring mechanisms to provide the required global view
to the centralized network controller, and subsequently investigate how a logically
centralized but physically distributed network controller can be implemented for very
large networks and networked control systems.

21

References

[BA11]

[BA12]

[EBHOS]

[GBK09]

[GH13]

[Hee+10]

[HNX07]

[KK12]

[Lib06]

[Mah+02]

[McK+08]

[Pap+03]

[QSG07]

[Rei+12]

R. Blind and F. Allgéwer. “Analysis of Networked Event-Based Con-
trol with a Shared Communication Medium: Part I - Pure ALOHA.” In:
Proc. 18th IFAC World Congress. 2011, pp. 10092-10097. por: 10 .3182/
20110828-6-IT-1002.01100.

R. Blind and F. Allgéwer. “Is it Worth to Retransmit Lost Packets in Net-
worked Control Systems?” In: Proc. 51st IEEE Conf. Decision and Control
(CDC). 2012, pp. 1368—1373. po1: 10.1109/CDC.2012.6426881.

J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual. 3rd ed.
2008.

S. Graham, G. Baliga, and P. R. Kumar. “Abstractions, Architecture, Mecha-
nisms, and a Middleware for Networked Control.” In: IEEE Tran. Automatic
Control 54.7 (2009), pp. 1490-1503. por: 10. 1109/TAC.2009.2022094.

B. Galloway and G. P. Hancke. “Introduction to Industrial Control Net-
works.” In: IEEE Comm. Surveys Tutorials 15.2 (2013), pp. 860—880. DoTI:
10.1109/SURV.2012.071812.00124.

W. P. M. H. Heemels et al. “Networked Control Systems With Communi-
cation Constraints: Tradeoffs Between Transmission Intervals, Delays and
Performance.” In: IEEE Tran. Automatic Control 55.8 (2010), pp. 1781-1796.
por: 10.1109/TAC.2010.2042352.

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. “A Survey of Recent Results
in Networked Control Systems.” In: Proc. IEEE 95.1 (2007), pp. 138-162.
por: 10.1109/JPROC. 2006 .887288.

K.-D. Kim and P. R. Kumar. “Cyber-Physical Systems: A Perspective at the
Centennial.” In: Proc. IEEE 100 (2012). Special Centennial Issue, pp. 1287-
1308. por: 10.1109/JPROC.2012.2189792.

V. Liberatore. “Integrated Play-Back, Sensing, and Networked Control.” In:
Proc. 25th IEEE Conf. Comput. Comm. (INFOCOM). 2006. po1: 10.1109/
INFOCOM.2006. 327.

R. Mahajan et al. “Inferring Link Weights using End-to-End Measure-
ments.” In: Proc. 2nd ACM SIGCOMM Workshop on Internet Measurment.
2002, pp. 231-236. por: 10.1145/637201.637237.

N. McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks.”
In: ACM SIGCOMM Comput. Comm. Rev. 38.2 (2008), pp. 69—-74. po1: 10.
1145/1355734.1355746.

K. Papagiannaki et al. “Measurement and Analysis of Single-hop Delay on
an IP Backbone Network.” In: IEEE 7. Selected Areas in Comm. 21.6 (2003),
pp- 908-921. po1: 10.1109/JSAC.2003.814410.

D. E. Quevedo, E. L Silva, and G. C. Goodwin. “Packetized Predictive
Control over Erasure Channels.” In: Proc. Am. Control Conf. (ACC). 2007,
pp- 1003-1008. por: 10.1109/ACC.2007 . 4282630.

M. Reitblatt et al. “Abstractions for Network Update.” In: Proc. ACM SIG-
COMM. Helsinki, Finland, 2012, pp. 323-334. por: 10.1145/2342356 .
2342427.

22

http://dx.doi.org/10.3182/20110828-6-IT-1002.01100
http://dx.doi.org/10.3182/20110828-6-IT-1002.01100
http://dx.doi.org/10.1109/CDC.2012.6426881
http://dx.doi.org/10.1109/TAC.2009.2022094
http://dx.doi.org/10.1109/SURV.2012.071812.00124
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/JPROC.2006.887288
http://dx.doi.org/10.1109/JPROC.2012.2189792
http://dx.doi.org/10.1109/INFOCOM.2006.327
http://dx.doi.org/10.1109/INFOCOM.2006.327
http://dx.doi.org/10.1145/637201.637237
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/JSAC.2003.814410
http://dx.doi.org/10.1109/ACC.2007.4282630
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1145/2342356.2342427

[SA11]

[Sau+06]

[Sch+07]

[Son98]

[TCN03]

[VHO08]

[Zie01]

T. Samad and A. Annaswamy, eds. The Impact of Control Technology. IEEE
Control Systems Society, Tech. Rep., 2011. URL: www.ieeecss.org.

O. Saukh et al. “Generic Routing Metric and Policies for WSNs.” In: Proc.
3rd Euro. Workshop for WSNs (EWSN). Vol. 3868. LNCS. 2006, pp. 99-114.
por: 10.1007/11669463_10.

L. Schenato et al. “Foundations of Control and Estimation Over Lossy
Networks.” In: Proceedings of the IEEE 95.1 (2007), pp. 163-187. po1: 10.
1109/JPROC.2006.887306.

E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems. Second. Vol. 6. Texts in Appl. Math. Springer, 1998.

Y. Tsang, M. Coates, and R. D. Nowak. “Network delay tomography.” In:
IEEE Tran. Signal Processing 51.8 (2003), pp. 2125-2136. por: 10.1109/
TSP.2003.814520.

A. Varga and R. Hornig. “An overview of the OMNeT++ simulation envi-
ronment.” In: Proc. 1st Intl. Conf. Simulation Tools and Techniques (SIMU-
Tools). 2008, 60:1-60:10.

M. Ziegelmann. “Constrained shortest paths and related problems.” PhD
thesis. Saarldndische Universitits- und Landesbibliothek, 2001.

23

www.ieeecss.org
http://dx.doi.org/10.1007/11669463_10
http://dx.doi.org/10.1109/JPROC.2006.887306
http://dx.doi.org/10.1109/JPROC.2006.887306
http://dx.doi.org/10.1109/TSP.2003.814520
http://dx.doi.org/10.1109/TSP.2003.814520

A Appendix

A.1 The LQR Optimal Control Problem

The linear-quadratic regulator problem is to find a controller for the plant (1) which
minimizes the cost

1 (T
J=lim = / x"()Ox(t) +u'(t)Ru(t) dt. (14)
Tooo T 0 ——— ———
(e1) (c2)
The LQR cost captures the requirement that the plant state x should be kept close to
the origin (cf. ¢y, this is essentially also a stability requirement) while expending as

little actuation energy as possible through u (cf. ¢;). The matrices Q and R are used to
weigh the mutual importance of these requirements. (cf. also [BA12; Son98])

A.2 Proof of Proposition 1

First, we assume that one of the paths, say o, without loss of generality, is degenerate.
Then o; must remain invariant under concatenation, i.e. o7 © 0y = 07. This is clearly
fulfilled by (8) and (9), noting that P(0;) = 1 and €(o3,t) = &(t) is the Dirac delta
distribution:

P(01002) =P(o1) - 1= P(oy)
t(01 0 02,t) = E(01,7) 8(t) = E(01,1)

Now assume that oy and o, are two adjacent links. The joint arrival probability
’P(cn ° O'z) is then given by

P(a1=1 A agzl) =P(01) - P(02),

thus (8) holds. Moreover, the random latency 7°°? of the composite path is the sum
of the latencies of the constituent paths 77" + 72. Therefore, the probability density
function of the former is given by the convolution of the PDFs of the two latter random
delay variables, and (9) holds. The remaining proof for the case when o7 and o, are
general adjacent paths follows by induction. O

A.3 Proof of Proposition 2

Assume that Proposition 2 is false and oy, does in fact contain o7, that is gy, = 0 © 0y,
and the optimal cost is given by L(a;;). Now we consider the alternative path oy;; =
o o 0,. It follows from (13) that

E;(0) + P(0)-E;(01) > E;(0) + P(0)-E;(02), (15)

E (Gopt) Ez (0uir)

24

i.e. the expected transit time of oy, is greater than that of o;,;. Moreover, we can express
the difference of the effective arrival probability functions of oy and o, as

p%lt(t) _p%pt(t)
= P(0u) L0t t) — P(pe) L (open)
= P(o)P(@)(€(0.1) + £(o20)) = P@)Pa) €60, * L(01.1))

= (PO)tto.0) « (P L(02.1) - Plor) (o),

where we use the fact that convolution is distributive and associative with scalar
multiplication. Due to (12), the above expression is non-negative for all t, whereby

p%pt(t) < pﬂhlr(t)’ Vt3

== Tmax(o-opt) < Tnax(0anr)- (16)
It now follows from (15) and (16) that

E; (Gopt) E; (oan)
Tmax(o'opt) Tmax(o'alt)

and therefore L(oyp:) > L(ou;). However, this contradicts the assumption that oy, is
the optimal path. O

25

	Introduction
	System Model
	Network Architecture
	NC Transport Service
	Control-theoretic Background
	QoS Specification
	NC Transport Service Interface

	NC Routing Service
	Network Model
	Path Properties
	Load Metric
	Routing Objective
	Routing Algorithm

	Evaluation
	Simulation Environment
	Simulation of the Control System
	Simulation of the Network

	Effectiveness of NC Service
	Effectiveness of NC Routing Service
	Runtime Performance of NC Routing

	Related Work
	Discussion
	Summary and Future Work
	Appendix
	The LQR Optimal Control Problem
	Proof of Proposition 1
	Proof of Proposition 2

