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Abstract

In this report, we compare the forwarding latency of an OpenFlow hard-
ware switch and software switch, namely, the hardware switch NEC
PF5240 and the software switch Open vSwitch. We consider different
parameters influencing the forwarding latency such as the definition of
match tuples (combination of header fields to be matched), different
packet sizes, or varying sizes of flow tables. Our evaluations show that
hardware switches reduce the forwarding latency by up to 97% and also
reduce the variance of latency significantly.

1 Introduction

Using hardware switches in a software-defined network (SDN) is very attractive
since it promises high forwarding performance, namely, low latency and line-
rate throughput, without sacrificing the benefits of SDN, in particular, the flex-
ible control of the network through an SDN network controller, which is pro-
gramming the forwarding tables of switches. Therefore, hardware acceleration
is one prerequisite to enable applications relying on high throughput and low la-
tency such as high-frequency trading and systems supporting such applications
like the low-latency message-oriented middleware developed at University of
Stuttgart [2].

The goal of this report is to evaluate and compare the performance in
terms of forwarding latency of state-of-the art hardware and software switches.
For our experiments, we have chosen two typical representatives of both
classes, namely, the hardware switch NEC PF5240 and the software switch
Open vSwitch. Due to the support of dedicated hardware like ternary content-
addressable memory (TCAM) for flow table lookups, we expect a significant per-
formance improvement of the hardware switch over the software switch.
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In our evaluations, we consider different influencing parameters like the def-
inition of match tuples of flow table entries, different packet sizes, or different
sizes of flow tables.

The rest of this report is structured as follows. First, we introduce the
methodology used for our experiments in Section 2. Then, we introduce the
systems under test in Section 3. In Section 4, we present the results of our eval-
uations, before we conclude this report in Section 5.

2 Methodology

Before we present our measurements, we first introduce basic definitions, state
our assumptions, and describe the methodology and technologies used for mea-
suring the forwarding latency.

2.1 Calculation of Processing Delay

First of all, it is important to define the different kinds of delays that occur in the
network between sending and receiving a packet:

• Propagation delay (∆tprop): The propagation delay denotes the delay of
the signal in the physical medium (twisted pair copper wires in our exper-
iments). We assume a signal speed of two third of the speed of light, i.e.,
2
3 ×3×108 m

s .

• Transmission1 delay (∆ttrans): The transmission delay is the time to “put
the data on the wire”. This delay depends on the frame size s and the data
rate r of the link (1Gbps in our experiments): ∆ttrans = s

r

• Queuing delay (∆tqueue): The queuing delay denotes the time a packet
spends in a queue of the switch, e.g., if there are multiple packets wait-
ing to be transmitted over the same outgoing port.

• Processing delay (∆tproc): The processing delay defines the time it takes
the switch to make a forwarding decision to decide over which outgoing
port to forward a packet.

We are mainly interested in the processing delay ∆tproc since we expect the
biggest influence of hardware acceleration there. However, we also have to con-
sider the other delays to calculate the processing delay.

In our experiments, we measure the round-trip time ∆trtt of packets that
are looped back by the switch to the sending host. Figure 1 depicts the delays
involved in a single measurement as performed in our setup.

We send packets at time intervals of 500ms, which even for the maximum
frame size (MTU 1500byte) results in a data rate much below line rate (1Gbps in

1Also called “serialization delay”.
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Figure 1: Delays of one round-trip time measurement. ∆tqueue is assumed to be
0 and, therefore, not depicted.
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our system). Therefore, packets should not queue up in the switch, and, conse-
quently, we assume a queuing delay of ∆tqueue = 0s.

Depending on the setup (cf. Section 3), we use 1m and 3m copper (twisted-
pair) cables to connect the NIC to the switch. Therefore, the propagation delay is
calculated as ∆tprop = 1m

2
3×3×108 m

s

= 5ns and ∆tprop = 3m
2
3×3×108 m

s

= 15ns. Since we

perform round trip measurements, the propagation delay has to be considered
twice in one round-trip measure (cf. Figure 1).

We assume that packets are timestamped at the latest point in time when
they leave the NIC and the earliest point in time when they enter the NIC (cf.
Figure 1). To this end, we use a NIC with hardware timestamping support (see
Section 2.2). Actually, timestamps are generated by the NIC after the pream-
ble and start of frame delimiter of a MAC frame [1]. However, since the NIC
generates timestamps at exactly the same positions within a frame, this will not
change our calculations, but only shifts the time interval ∆trtt by a constant off-
set along the time axis.

We assume a “store-and-forward” behavior of the switches rather than “cut-
through” forwarding. Therefore, before making a forwarding decision, the
switch first receives the complete frame. As can be seen from Figure 1, this leads
to the following equation defining the relations between the measured round
trip time and the various delays:

∆trtt =∆tproc +∆tqueue +2∆tprop +∆ttrans (1)

According to our assumptions, ∆tqueue = 0s. Under this assumption, the
processing delay can be calculated as

∆tproc =∆trtt −2∆tprop −∆ttrans (2)

2.2 Measuring the Round Trip Time with Hardware Timestamping

Measuring the round trip time ∆trtt accurately and precisely is challenging for
time intervals in the order of microseconds. In order to be able to measure such
short delays, we use hardware timestamping with support of the network inter-
face controller (NIC) of the host rather than software timestamping performed
by the driver in kernel space or even the application in user space. The main ad-
vantage of hardware timestamps compared to software timestamps is that pack-
ets are timestamped by the NIC hardware at precisely defined points in time (af-
ter the preamble and start of frame delimiter) when they leave or enter the NIC.
Thus, delays introduced by packet processing in the kernel space or user space
of the host are excluded from the measurements.

Note that timestamping a packet does not mean that a timestamp is in-
cluded in the packet sent over the wire. The sending process receives the times-
tamp when the packet was sent via the sender socket (in Linux via the socket’s
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error queue). Similarly, the receiving process receives the timestamp of the re-
ceived packet via the receiver socket.

Moreover, we use the same clock of the same NIC to create timestamps to
avoid difficulties of clock synchronization. Since packets to destinations on the
same host (local IP address; 10.0.0.1 in our experiments) are directly delivered
to the receiver process via the kernel rather than sending it out over the NIC2,
we send packets to other IP addresses (different from the local address 10.0.0.1).
Such packets with non-local addresses are forwarded to the switch, which loops
them back to the host using the OpenFlow LOOPBACK action. The NIC of the
host is configured in promiscous mode such that looped-back packets will be
accepted and timestamped although they are targeted at another address. We
set static ARP table entries on the host for each destination IP address. Thus, no
ARP requests are performed and only the UDP datagrams (probe packets) of the
measurements are sent over the wire.

3 Systems under Test

We use the following hardware and software in our tests:

• Hardware switch: NEC PF5240 (48 port Gigabit switch implementing
OpenFlow 1.0 and 1.3)

• Software switch: Open vSwitch 1.10.0

• Host 1 running sender/receiver process and Open vSwitch

– CPU: Intel i7-2600, 3.40GHz

– RAM: 8GB

– NIC: Intel I350 (four port Gigabit Ethernet) with hardware times-
tamping support

– Operating system: Fedora 3.10.6-100.fc18.x86_64

• Host 2 running sender/receiver process; connected to hardware switch

– CPU: Intel Xeon E3-1245 V2, 3.40GHz

– RAM: 16GB

– NIC: Intel I350 (four port Gigabit Ethernet) with hardware times-
tamping support

– Operating system: Fedora 3.13.9-200.fc20.x86_64

• OpenFlow controller: OpenDaylight (Hydrogen release)

2Using forwarding rules, this behaviour could be changed under Linux.
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Figure 2 depicts the setup for the hardware switch. The switch is connected
to the host via a 1m twisted pair cable using one port of the 4-port NIC. The
OpenFlow controller runs on a dedicated host using a dedicated control network
(not shown in the figure).

Sender and receiver are two processes implemented in C++ collecting times-
tamps for each UDP datagram sent and received. A Python script controls the
experiment.

Figure 3 depicts the setup for the software switch (Open vSwitch). The soft-
ware switch is running on the same host as the sender and receiver and is as-
signed one port of the 4-port NIC. This port is connected to another port of the
4-port NIC used by the sender and receiver processes with a 3m twisted pair
cable.
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4 Results

In this section, we present the results of our performance evaluation. In each
experiment, we measure the round trip time and calculate the processing time
while varying different parameters. The complete data sets are available on re-
quest from the authors.

4.1 Varying Packet Size

In the first experiment, we vary the packet size. The packet size directly in-
fluences the transmission delay while the propagation delay should stay con-
stant. Since the time for making a forwarding decision is also independent of the
packet size, we also expect the processing delay to be nearly constant. Since we
only perform black box tests, we cannot say if there are size-dependent opera-
tions like copy operations of frames between buffers. Therefore, this experiment
will uncover whether the processing delay is also size-dependent.

We measured the round trip times for eight different packet sizes leading
to the following eight frame sizes ranging from the minimum allowed Ether-
net framesize up to the maximum frame size for an MTU of 1500byte: 72byte,
254byte, 454byte, 654byte, 854byte, 1054byte, 1254byte, and 1526byte. These
sizes includes the layer 2-4 headers and payload of the UDP datagram (8byte
UDP header, 20byte IPv4 header, 26byte Ethernet header, UDP payload)

We program the switch with 200 flow table entries. Each entry includes a
match on a different destination MAC address. We send UDP datagrams to ran-
dom IP addresses each one associated with one of the 200 MAC addresses of
the installed flows. We send 10000 datagrams and calculate the average round
trip time and standard deviation as well as the minimum round trip time and
average processing delay.

Table 1 and Table 2 show the results for the hardware switch and software
switch, respectively. Figure 4 depicts the processing delay of the hardware and
software switch.

For the hardware switch, we measure almost the same average processing
delays for the maximum framesize of 1526bytes and a framesize of 254bytes.
Therefore, we conclude that the processing delay is independent of the frame-
size, and the measured differences for different frame sizes (max. 1.0µs) is be
due to measurement imprecisions.

For the software switch, the processing delay increases from 123055.9ns
to 125329.3ns. However, the difference in processing the smallest and largest
frames is only 2273.4ns. Thus, also for the software switch, the framesize has
little impact on the processing delay considering the overall processing delay.

On average, the processing delay of the hardware switch is only 3.1% of the
processing delay of the software switch for 72byte frames showing that the hard-
ware switch is significantly faster than the software switch.

Moreover, the standard deviation of the round trip times for the hardware
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Figure 4: Processing delay for varying frame sizes.

switch is very small (less than 161.8ns) compared to the software switch, which
has a significantly larger standard deviation up to 45327.23ns.

4.2 Varying Match Tuples

In the next experiment, we are interested whether different matching criteria in
flow table entries lead to different processing delays. We consider three different
match tuples:

1. Layer 2 matching: ingress port, data link layer destination address

2. Layer 3 exact match: ingress port, ether type, network layer destination
address (IPv4; exact match)

3. Layer 3 prefix match: ingress port, ether type, network layer destination
address (IPv4; prefix/subnet match)

4. Layer 2-4 matching (9 tuple): ingress port, ether type, data link layer
source and destination addresses, network layer source and destination
addresses, source and destination port, layer 4 protocol id

5. Mix: A random mixture of the cases Layer 2, Layer 3 (exact match), Layer 2-
4 described above.
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We send 10000 minimum size frames of 72byte. The flow table contains 200
entries.

Table 3 and Table 4 show the average round trip times and processing de-
lays for the hardware and software switch, respectively. For both hardware and
software switch, the tuple combination has almost no influence on the process-
ing delay. Only the prefix match takes slightly longer (444.0ns longer) than the
other match tuples on the hardware switch. For the software switch, the maxi-
mum difference is 1432.8ns, which again is very small compared to the absolute
processing delay of the software switch.

4.3 Varying Flow Table Size

Finally, we analyze the latency of forwarding for a varying number of flow table
entries.

We send frames of the minimum size of 72byte and vary the flow table size
from 200 to 100000 entries for the software switch. The hardware switch is re-
stricted in the maximum size of the forwarding table. Therefore, the maximum
flow table size tested for the hardware switch in our experiments is 45000 entries.

Flow table entries use the network destination (IPv4) address (exact match),
ether type, and ingress port as match criteria. For each flow table size, we send
10000 UDP datagrams and calculate the average round trip time, minimum
round trip time, standard deviation, and processing delay as shown in Table 5
and Table 6 for the hardware and software switch, respectively. Figure 5 and Fig-
ure 6 depict the processing delays for different flow table sizes for both switches.

As can be seen from Figure 5, the processing delay of the hardware switch
is independent of the size of the forwarding table. Moreover, in contrast to the
software-switch, the standard deviation of the processing delay stays constant
over the whole range of flow table sizes.

For the software switch, the processing delay increases very slowly as can be
seen from Figure 6: the minimum and maximum average processing delay only
differ by about 10%. However, the standard deviation increases significantly
from 42644.22ns (200 entries) to 659207.8ns (100000 entries).

Therefore, we conclude that both types of switches scale well with the num-
ber of forwarding table entries. Again, hardware support leads to much smaller
forwarding latencies. Additionally, the variance of processing latency is reduced
significantly for large forwarding tables using hardware switches.

5 Conclusion

Low latency is an essential requirement for many networked applications. In
our evaluations we compared the processing delay of the hardware switch NEC
PF5240 and the software switch Open vSwitch. Our evaluations showed that
the hardware switch leads to significantly lower processing delay. In our exper-
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iments, the hardware switch reached processing delays of about 3.8µs on av-
erage, whereas the average processing delay of the software switch was higher
than 120µs. Thus, hardware support reduced processing time by about 97%.

Moreover, the hardware switch showed very constant performance with low
delay variance, whereas the delay variance for the software switch is much
higher, in particular, for larger flow tables.

We also found out that the matching criteria (tuples) has almost no influ-
ence on the forwarding performance (for the tested tuples, including the most
relevant matches on MAC addresses and IP addresses).

Finally, we showed that both hardware and software switches scale well with
the number of forwarding table entries. Obviously, the maximum number of
forwarding table entries is limited for the hardware switch (about 50000 IPv4 en-
tries in our case), whereas a software switch can support hundreds of thousands
of entries. However, in the range supported by the hardware switch, the forward-
ing latency and variance of latency is much lower using hardware switches than
for software switches.

Several other interesting properties of OpenFlow switches remain open for
further evaluations. For instance, it might be interesting to evaluate the through-
put and latency of forwarding table updates of software and hardware switches.
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