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ABSTRACT
The availability of maps is one of the major prerequisites
for deploying location-based services. However, only very
few maps are publicly available for indoor environments.
To overcome this problem, first approaches emerged to au-
tomatically derive indoor maps from odometry traces that
pedestrian collected voluntarily. Although these approaches
showed to be effective to automatically create indoor maps
from mobility traces, they require energy-intensive position-
ing based on inertial navigation systems (INS) to collect
traces of high quality, which impacts the users’ willingness
to participate in indoor mapping with his energy-constrained
mobile device.

In this paper, we tackle this problem by providing an ex-
tension to automatic indoor mapping systems that lowers
the energy consumption of the participating devices signif-
icantly. More precisely, we provide a framework enabling
mobile devices to turn off INS while moving in areas that
have been mapped already with high quality. In order to en-
able the dynamic re-start of INS—which requires an initial
position and direction—when entering insufficiently mapped
areas, we combine INS with low-energy WiFi-based position
recovery. WiFi-based position recovery enables a coarse-
grained position tracking while the inertial positioning is off
and allows for bootstrapping INS by providing an initial po-
sition when needed.

Using our approach, we show that indoor models can be
derived saving up to 25% of energy on the mobile devices
without compromising on the quality of the derived maps.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms

Keywords
Mobile Computing, energy-aware systems

1. INTRODUCTION
Location-based services (LBS), such as geo-social networks
and navigation systems are well-established today. Although
first LBS were focused on outdoor scenarios, indoor LBS are
a new trend to offer services like indoor navigation or shop-
ping assistants. However, while outdoor maps are readily
accessible, only few indoor maps are available, which pre-
vents the large-scale deployment of indoor LBS. The major
reason for missing indoor maps is the labor-intensive task of
indoor mapping, which typically requires manual interaction
and, thus, is not scalable. As a result, only very few indoor
LBS have been actually deployed so far.

Recently, first approaches showed the feasibility to auto-
matically infer indoor maps from pedestrian mobility traces
recorded by smartphones [1, 6, 11, 15, 22]. For instance, our
MapGENIE approach [15] shows that it is indeed possible
to derive indoor maps from noisy and drift-based pedestrian
traces using an indoor grammar to support the mapping
process.

All of these indoor mapping systems rely on the availabil-
ity of indoor traces that are voluntarily provided by mobile
users. Typically energy-intensive inertial navigation sys-
tems (INS) are used to provide high-quality traces for ac-
curate mapping, which consume significant amounts of en-
ergy. Since users are sensitive to short battery lifetimes, this
significantly impacts the willingness of users to participate.

In order to tackle this problem, we focus on the energy-
efficient gathering of traces for automatic indoor mapping
in this paper. The basic idea to save energy is to turn off



energy-intensive INS in areas that have been mapped accu-
rately already and only turn on INS in areas that require
further traces to generate accurate maps. For instance, a
very busy area of a building is visited very often and, there-
fore, a lot of trace data is available as input to the mapping
system. If that area is mapped with sufficient quality after
a short time, collecting further trace data from that area
does not improve the quality of the indoor model anymore.
Hence, collecting further traces in that area would waste
rare energy resources without adding benefit to the system.

In more detail, we propose an algorithm that monitors the
mapping process and automatically detects sufficiently mapped
areas according to a proposed quality metric, which is generic
and applicable to existing mapping approaches. The loca-
tions of such accurately mapped areas are communicated to
the devices, which turn off energy intensive INS while mov-
ing in accurately mapped areas and turn on INS again only
when entering areas with low accuracy maps.

However, turning on INS on demand is not straightforward.
INS is based on angular and linear acceleration values, which
are integrated to calculate a motion vector that is added
to an absolute (initial) position (dead reckoning). To turn
on INS, we need to provide a current absolute position to
enable dead reckoning. To tackle this problem, we com-
bine INS with a low-energy WiFi-based position recovery
approach. WiFi-based position recovery provides so-called
anchor points as absolute reference points when turning INS
on again. We show that the ability to disable and enable INS
on demand helps to reduce the overall energy consumption
of the mapping system significantly.

In summary, we make the following contributions: (1) We
propose a quality metric to quantify the accuracy of areas
of an indoor map. (2) We present a scheduling algorithm to
decide when to turn INS on or off. (3) We propose a position
recovery system that allows to resume INS positioning using
WiFi anchor points, which are automatically collected dur-
ing the mapping process with little energy overhead. (4) We
evaluated our system with real-world traces and show that
it helps to save up to 25% of energy while not compromising
on the quality of the generated indoor maps.

The remainder of this paper is structured as follows: In
Sec. 2 we discuss related work to our approach before we
introduce the system model in Sec. 3. Next, Sec. 4 intro-
duces the results of our energy comparison between INS and
WiFi positioning. After giving an overview of our approach
in Sec. 5, we introduce the quality metric in Sec. 6. Sec-
tion 7 presents our WiFi-based position recovery system,
before Sec. 8 explains the scheduler component that decides
whether to turn off INS. Section 9 shows the evaluation re-
sults of our system, before Sec. 10 concludes this work.

2. RELATED WORK
In the literature, several approaches have been published
proposing algorithms to automatically generate indoor floor
plans from mobility traces collected by crowds of users [1,
6, 11, 15, 22]. Although these approaches use different algo-
rithms to generate a floor plan, all of them require mobility
traces as input. However, none of them considers the high
energy consumption for the collection of traces by mobile

devices, which might lower the user acceptance of these ap-
plications.

Although energy efficiency has not been targeted for indoor
mapping so far, it has been a goal in other mobile sensing
applications using different methods. One idea is the use
of specialized hardware for sensor data processing [7,18,20].
Other approaches save energy by limiting spatio-temporal
coverage and thus reducing the amount of sensor readings
taken [3, 10] or by guiding users to most informative places
to take sensor values [5]. In our previous work [16, 17], we
showed how to use models on sensor data correlation to re-
duce the amount of information that has to be collected
by mobile devices. Moreover, we designed algorithms for
selective sensing by subsets of mobile devices for mobile tar-
get tracking [25] and opportunistic sensor data collection
from stationary sensors by mobile devices [24]. Further-
more, in our previous work on outdoor map correction [2],
mobile devices selectively disable their GPS when moving on
roads that need no correction. However, none of these works
deal with the specific challenges of an indoor environment,
namely INS positioning.

In our approach, we combine low-energy WiFi positioning
with high-quality INS positioning to selectively enable INS
sensing using coarse WiFi reference positions (anchors). So
far, there exist different approaches that proposed the com-
bination of WiFi fingerprinting and INS to enhance indoor
positioning. Noh et al. [13] propose an infrastructure-free
positioning system using dead reckoning and WiFi beacons
sent by peer devices for positioning. However, they require
a known map to estimate the visibility of WiFi signals be-
tween devices. Other work [19,21,23] uses WiFi fingerprints
to correct the error of drift-based INS traces. They identi-
fied landmark spots within the building that can be identi-
fied using WiFi and then corrected the direction drift of the
INS traces to match the landmark. In our work, we use a
similar approach but for a different goal. Instead of correct-
ing a drift-based trace, we show how WiFi can be used to
(re-)start INS without any available absolute position.

Other approaches for indoor positioning use predeployed
RFID-Tags [12] or Bluetooth Beacons [4, 14]. However, our
approach does not rely on environments being prepared with
specialized equipment, but instead exploits the already avail-
able deployments of WiFi access points.

3. SYSTEM MODEL
In the following, we introduce our system model. Figure 1
gives an overview of its components.

Our system consists of a server managing the floor plan and
mobile devices providing mobility traces for automatically
generating the floor plan on the server side.

We assume that each mobile device uses an INS to record
odometry traces and sends them to the server using wireless
communication (e.g., using WiFi, 3/4G). The INS calcu-
lates positions from an initial position using dead reckon-
ing by adding motion vectors. These vectors are calculated
from acceleration values sensed by accelerometers and gyro-
scopes. Therefore, recorded INS traces are subject to drift
errors. However, we assume that these traces can be au-
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Figure 1: Components of the system model.

tomatically aligned and corrected as shown in our previous
work [15]. Moreover, each device has a WiFi interface to
scan for signal strength (RSSI) values of nearby WiFi access
points. As shown later, we use these RSSI values to calcu-
late coarse-grained positions called anchor points to provide
initial positions to INS. Due to the method of integrating
acceleration values, INS is susceptible to fast movements,
which might occur when the participant uses the phone while
walking. Making INS robust to such movements superim-
posing accelerations from walking is an active research area
and beyond the scope of this paper. Here, we assume that
we can identify phones which can be used for INS position-
ing. For instance, we will not use phones whose screen is on,
since this typically happens when the participant uses (and
thereby moves) the phone.

The server executes a floor plan generation component that
automatically generates a floor plan from a set of recorded
traces. Our system for energy-efficient trace collection can
work with any concrete mapping algorithm generating floor
plans from traces. To evaluate our system, we used our
MapGENIE algorithm [15].

A floor plan consists of spatial objects, namely hallways
and rooms. Each room is accessible from at least one hall-
way. We assume individual hallway objects to be sections of
the buildings hallway network that are free of intersections.
Hence, intersections of the hallway network are formed when
the ends of two or more hallway objects meet. As every hall-
way network can be projected into this definition, this does
not impact the generality of our approach. Furthermore, we
define an assignment of rooms to hallways based on acces-
sibility, i.e., every room is assigned to exactly one hallway
from which it is accessible in an arbitrary constant fashion.

In order to control the process of energy-efficient trace col-
lection, the floor plan is partitioned into areas by an oper-
ator, depending on the requirements of the trace generator.
Areas are defined such that they only contain whole floor
plan objects, e.g., do not cut a room in half. The generated
floor plan is given as input to a quality model quantifying
the areas of the floor plan according to a quality metric.
For the purpose of energy-efficient trace collection, a binary
classification of areas is sufficient, classifying areas as either
accurately mapped (AM-areas) or inaccurately mapped (IM-
areas). In Sec. 6, we will present a concrete quality model
for our approach. In general, area partitioning as well as the

classification algorithm depend on the concrete mapping al-
gorithm. To evaluate our system, we define an area to be
comprised of a single hallway and all rooms accessible from
that hallway, i.e., every hallway forms its own area. AM-
areas and IM-areas are communicated back to the devices,
which locally store this information to control the energy-
efficient trace collection process.

To provide mobility traces for the floor plan generation,
each mobile device runs the energy-efficient trace generator,
which is the main contribution of this work. The goal of
this component is to provide traces with minimum energy-
overhead for mobile devices. To this end, it should only
record traces in IM-areas with insufficient quality according
to the quality model. These traces have to be recorded using
INS to have sufficient accuracy for mapping. In AM-areas,
which have been accurately mapped already, INS should be
turned off to save energy.

4. ENERGY EFFICIENCY OF INS AND
WIFI POSITIONING

The basic idea of our approach is to turn off energy-intensive
INS positioning when the mobile device enters AM-areas
and to turn it on again before entering IM-areas. In order
to decide when the device enters an IM-area, it still needs a
position while moving in AM-areas. Since INS is turned off
in AM-areas, we need another method to track the device
and provide an initial position to INS when it should be
turned on again. To this end, we use WiFi-based position
recovery through RSSI fingerprinting.

Obviously, in order to increase energy efficiency with this
approach, scanning for WiFi fingerprints must consume less
energy than running the INS. To backup this assumption,
we evaluated the energy consumption of INS and WiFi scan-
ning with an experiment: We implemented both positioning
methods on a Samsung Galaxy Nexus i9250 and attached
a measurement device between the battery and the device
to measure the device’s power drain. Figure 2a shows the
energy consumption with INS implemented according to [8].
Figure 2b shows the results for an algorithm performing a
WiFi scan every 10 seconds.

Having a look at the power over time for INS, we see that
running the INS keeps the device constantly active. This can
be attributed to the fact that the device has to continuously
sample its sensor and analyze the sensor data. Therefore,
the CPU cannot go into IDLE mode.

In contrast, although the peak power consumption at the
times when a WiFi scan is performed (Fig. 2b) is higher
than using INS (Fig. 2a), the device is able to power down
to the energy-saving IDLE mode between two scans using
WiFi. As a result, the WiFi-based positioning is much less
energy consuming than INS when using a sample rate of 10 s
between two scans. On average the INS consumes 0.45 W,
while the WiFi system only consumes 0.16 W.

This study shows that it is worth turning off INS positioning
and using WiFi fingerprinting in areas that are sufficiently
mapped.



(a)

(b)

Figure 2: Energy consumption of the mobile device
over time: (a) Device runs INS. (b) Device performs
WiFi scan every 10 s

5. OVERVIEW
We now present an overview of our approach which is imple-
mented by the trace generator component. Figure 3 shows
the components of the trace generator. As mentioned before,
a device receives the areas that are considered as accurately
mapped (AM-areas) from the server. Using this information,
the Scheduler decides, whether to turn INS on or off. When
the device is going from an IM-area into an AM-area, INS
and trace uploading is turned off, and the device continues
to track its position using WiFi.

INS should be turned on again before entering an AM-area.
For making the decision, whether the device is entering an
IM-area and for resuming INS, current device positions are
required. To this end, WiFi position recovery is used. We
implemented WiFi position recovery based on so-called an-
chor points to provide coarse positions with small energy
overhead. Anchor points are points with known position and
RSSI fingerprint. Devices map their position to the closest
anchor point based on the measured RSSI to get a coarse
position. The data for establishing these anchor points is
learned on-the-fly, as we will see later on. Hence, we do not
need any prior knowledge about WiFi signal strengths to
run the position recovery.

When the scheduler decides to resume INS positioning, the
INS needs to be provided with an absolute starting point.
In our architecture, the INS Initialization component allows
for dynamically resuming INS positioning using WiFi anchor
points. In order to precisely know when a device is actually

Scheduler

INS
Initialization

Trace AM-Areas

WiFi Position
Recovery

INS

Figure 3: Architectural overview of the energy-
efficient trace generator.

at an anchor point, we also utilize acceleration data after
the INS is turned on again to identify sharp turns at corners
(hallway intersections and turns). Since we also strategically
place anchor points at each corner, we can precisely align the
trace when the device reaches a corner making a turn.

The scheduler also uses anchor points to determine whether
the device is going to enter an IM-area. However, the de-
cision when to turn on INS again is more complicated than
the decision whether to turn it off. As described, in order to
turn on INS, we need an initial position, which is only accu-
rate when the device crosses an anchor point. Therefore, we
have to make sure that the device crosses an anchor point
before entering an IM-area, to have a chance to turn INS on
in time. The scheduler uses mobility prediction to predict
whether a device will enter an IM-area in the near future,
to start INS before it actually enters the IM-area.

Recorded trace data is periodically uploaded to the infras-
tructure. The upload period is in the range of several min-
utes to ensure the freshness of the indoor model on the
server. After receiving a trace, the server calculates a floor
plan in the floor plan generation process using all received
traces and updates the quality model with a fresh set of
AM-areas and sends them to the devices.

6. QUALITY MODEL
The goal of our quality model is to label areas of the floor
plan as AM-areas or IM-areas, thus, informing the scheduler
whether additional traces should be recorded for an area.
Intuitively, an area is accurately mapped if no more infor-
mation can be gained from traces. Theoretically, this is the
case when an area is completely filled with floor plan objects
(hallways and rooms) with no empty space left in between.
However, due to inaccessible spaces, e.g., maintenance ac-
cess rooms with practically no visits or furniture blocking
access to walls, this leads to blank spots that cannot be cov-
ered by traces. From traces alone it is in general undecidable
whether there is no information for an area due to missing
traces (no user traveled there although it would have been
possible) or due to an obstacle (no user can physically travel
there). Therefore, it is impossible to define the perfect qual-
ity metric based on traces alone. Hence, such a metric has to
be based on heuristics. In the following, we define a generic
quality metric applicable to all trace-based algorithms.

We define the quality of an area A (AM-/IM-area) based

on a threshold T̂ area of the relative spatial coverage QA

of A by accurately mapped objects (AM-objects). For in-
stance, if the spatial area of all accurately mapped objects



in A is more than 90%, and T̂ area = 0.8, then A is accu-
rately mapped. Whether an object is accurately mapped
(AM) or inaccurately mapped (IM) is defined by the num-
ber of observations, i.e., how many times this object was
observed in the underlying trace data. This metric ensures
that we do not consider A to be an AM-area if there is
a very large number of observations for a small part of A
(e.g., few rooms with many visits) and few observations for
the remainder. It also tolerates a certain amount of inac-
cessible space per area without having to accept a lot of
inaccurately mapped objects (IM-objects). The rationale
behind this metric is based on the following observations
about mapping approaches and real user mobility.

All mapping approaches based on traces require users to
cover the complete space of an object to determine its correct
size. As it is unlikely that any single user will cover a com-
plete object with a single trace—e.g., covering the complete
length and width of a hallway or room—we require multi-
ple observations of each object. However, with an increas-
ing number of observations already available, the chance to
discover a new feature of the object diminishes. We there-
fore define a floor plan object o to be an AM-object when
the number of observations |o| is above a certain threshold:

|o| ≥ T̂ type(o), type(o) ∈ {room, hall}. Note that we use dif-

ferent threshold values for T̂ room and T̂hall, as movement
in hallways is typically less constrained than in rooms and
thus fewer traces are sufficient to cover the full width of a
hallway.

However, only basing the area quality metric on the rela-
tive spatial coverage by AM-objects will often lead to sub-
optimal results due to the fact that large popular objects
will dominate small and/or unpopular objects. In particu-
lar, hallways often cover large parts of an area and are visited
by many users. Therefore, after a large popular hallway has
been accurately mapped—which due to its popularity typi-
cally happens quickly—, no more rooms would be detected
since the area is well-covered by AM-objects. To avoid this
problem, we use a two-phase approach as shown in Fig. 4:
First, we ensure in Phase 1 that all hallways have been de-
tected (l. 1–2). Then in Phase 2 we focus on the mapping
of rooms only (l. 4 ff.).

Note that as mentioned above it is undecidable from traces
alone whether we have detected all objects (including all
hallways). However, for the specific case of hallways, topo-
logical constraints typically apply that make the problem
decidable for hallways. Hallways are typically connected to
other objects (further hallways or rooms) or an outer wall
on both sides. Thus, as long as there is empty space at
either side of the hallway (we say that the hallway is not
terminated), it is not accurately mapped since its coverage
is still unknown, and the hallway is marked as IM-area (l. 1).
If we have detected both ends of a hallway and it received
enough traces, it is considered to be accurately mapped. If
every hallway is accurately mapped, we start Phase 2 and
focus from there on the mapping of rooms based on the rela-
tive coverage of the area by AM-objects (l. 4). Since at this
point we know that hallways have been accurately mapped
already, we subtract their area from the total area under
consideration.

1: if ∃hi ∈ A : |hi| < T̂hall ∨ hi not terminated then
2: return IM-Area . Phase 1
3: else
4: QA ←

∑
{geoArea(ri)||ri|≥T̂room}

geoArea(A)−
∑
{geoArea(hj)}

. Phase 2

5: if QA ≥ T̂ area then return AM-Area
6: else return IM-Area

Figure 4: Algorithm for computing the quality of an
area A. geoArea() defines the area covered by an ob-
ject, |o| the number of observations of o. hi denotes
a hallway, and ri denotes a room.

Note that all threshold values T̂ {room,hall,area} are parame-
ters of the quality model that need to be set by an operator.
T̂hall and T̂ room must be adjusted depending on the floor
plan generation component, e.g., to account for the varying
degree of accuracy of different mapping algorithms. T̂ area

can be adjusted according to the desired level of accuracy
of the indoor model and thus defines an energy/accuracy-

tradeoff. T̂ area = 1.0 would only classify areas as AM-
areas, when every detail about them is known. From our
evaluations, we could conclude that choosing T̂ area ≤ 0.17
allows significant energy savings without compromising on
the quality of the derived floor plan.

7. WIFI POSITION RECOVERY
The goal of WiFi position recovery is to provide the sched-
uler with a coarse device position when the INS is off. Using
this position, the scheduler can detect when a device is about
to leave an AM-area and start the INS initialization.

Our WiFi position recovery approach is based on the concept
of location anchors. The idea of anchor-based positioning
is to supply each device with a list of geographically dis-
tributed anchor points including their geographic position
and RSSI values measured at these anchor points during
anchor point setup. A device can estimate its position by
identifying the closest anchor point by performing a WiFi
scan and selecting the anchor point whose RSSI fingerprint
is closest to the RSSI values measured by the device using
an Euclidean distance metric.

Before we can use anchor points for positioning, we first need
to set up anchor points at known positions. Since we assume
no prior knowledge about the building—in particular, no
knowledge about anchor points—, anchor point setup has
to be performed “on-the-fly” during the mapping process.
For setting up an anchor point, a device needs to measure
the RSSI value at a known location. Since devices know
their location from INS while collecting traces in IM-areas,
we set up anchor points during trace collection.

For setting up suitable anchor points we have to fulfill three
requirements: First, since WiFi scans consume energy as
shown in Sec. 4, we should only setup anchor points at few
locations to minimize the energy overhead. Second, we need
to select locations that make it easy for devices to find their
coarse position from few WiFi scans to track the device po-
sition while moving in AM areas. Third, we need to select
locations, that also allow for precise positioning to resume
INS with an initial position.
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Figure 5: Building the WiFi anchor point database:
The left figure shows the location of the WiFi anchor
points. The right figure shows the points where the
RSSI values where actually recorded.

To solve all three problems, we decided to place anchor
points only at hallway intersections (see Fig. 5a). Since there
are typically only few hallway intersections, the number of
anchor points and necessary WiFi scans is limited. The po-
sition of intersections can be identified easily by looking for
sharp turns of about 90 deg in the INS values during trace
collection. To set up anchor points, devices perform WiFi
scans whenever they make sharp turns and upload the mea-
sured RSSI value together with the current device position
to the server. The server uses the uploaded RSSI values
and associates them with an anchor point according to the
INS position where the RSSI was recorded. RSSI values that
were recorded aside from these anchor points are filtered out
(see Fig. 5b). Note that the position of RSSI values can lie
aside from intersections if the recorded INS trace is inaccu-
rate or the user made a sharp turn to enter a room instead
of turning at an intersection. The result is a list of anchor
points, each one associated with a set of attached WiFi RSSI
values and positions. This list is communicated back to the
devices when the server sends the AM-areas to the devices.

These anchor points at intersections can be used for coarse
positioning while devices move in AM-areas with INS turned
off. For coarse WiFi positioning, a device performs a WiFi
scan every 10 seconds. The device compares the obtained
RSSI values with the anchor point list and uses the Eu-
clidean distance between the RSSI values to identify the
closest anchor point. In general, WiFi-based indoor posi-
tioning has an accuracy of about 4 m [9]. In general, hall-
way intersections in indoor environments are much further
apart than 4 m, since a smaller distance between intersec-
tions would imply that there are rooms in between that are
even smaller than this distance, which is not a realistic as-
sumption. As a result, a device is able to identify the correct
intersection with high accuracy (cf. Sec. 9.2). Using coarse
WiFi positioning, a device is able to identify its closest in-
tersection point and to track its current (topological) path
through the building. This information serves as input for
the scheduler presented in Sec. 8.

Finally, anchor points at intersections can also be used to
obtain a precise position for resuming INS positioning by

WiFi Scan

(a) (b)

Figure 6: Reposition of a relative INS trace to the
center of a intersection that was mapped by WiFi.

the INS Initialization component. A device that resumes
INS positioning on request of the scheduler just has to turn
on INS, wait for a 90 deg turn as indicated by the gyroscope
(angular acceleration) values, and perform a WiFi scan at
this point. By comparing these RSSI values with the finger-
prints of anchor points and selecting the point with the best
matching fingerprint, the device knows its precise location,
namely, the location of the anchor point at the intersection
(see Fig. 6a). Knowing this intersection together with the
knowledge about the last hallway in which the device moved,
the device can position the relative INS trace recorded so
far and map it to the absolute center of the intersection (see
Fig. 6b). At this point, INS initialization is finished and INS
positioning continues.

Note that the trace might not be perfectly accurate if the
device has not turned exactly on the center of the intersec-
tion. We investigate this effect further in the evaluation in
Sec. 9. Furthermore, it is possible that the INS indicates a
90 deg turn even though the device did not pass an intersec-
tion. This can be the case if the device moves into a room,
for instance. Hence, to clearly identify that a device turns
at an intersection, we also require that the trace before and
after the 90 deg turn is straight for a distance that is longer
than the depth of the biggest room. Our evaluations showed
that this is sufficient to separate turns at intersections from
other turns.

8. SCHEDULER
In this section, we introduce the scheduler algorithm, which
decides when to turn INS on and off. As motivated in Sec. 5,
INS has to be turned on ahead of time before entering the
IM-area using a mobility model for predicting, whether the
device will enter an IM-area in the near future. We start by
introducing this mobility model indicating to which area a
device is likely to move. Based on this model, we provide
an algorithm that decides when the INS should be turned
off or resumed.

8.1 Mobility Model
Given the current user trace as an input, the mobility model
outputs the probabilities of possible continuations of the
trace. From these probabilistic trajectories, we then deter-
mine the probability P (a|t) that the device, having traveled
along trace t, will visit a certain area a. Based on P (a|t),
the scheduler can then decide whether to stop or resume INS
positioning.

Note that we make no further assumptions on the capabili-
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Figure 7: Only the upper IM-area can be reached
without a turn from the next intersection that the
device passes.

ties of the indoor mobility model. Designing a sophisticated
indoor mobility model is an open research question beyond
the scope of this paper. For the purpose of this work, we
define a simple mobility model based on the (reasonable)
assumption that users take the shortest path towards their
destination. Obviously, more complex models taking, for
instance, user habits into account, can lead to even more
accurate predictions.

Given the path t that the user has previously traveled, we
first compute the set A of reachable areas. An area a is
reachable from trace t if t is a prefix of a shortest path from
the origin of t to a (note that depending on the building
layout, multiple shortest paths may exist). As in our simple
model there is no information whether for any two destina-
tions ai, aj ∈ A one is more likely than the other.Hence, we
assign a uniform visiting probability P (ai|t) = 1/|A| to each
area ai.

8.2 Turning off INS
To turn INS off, two conditions must be fulfilled: (1) The
device is currently moving in an AM-area. (2) INS position-
ing can be resumed before re-entering an IM-area. If the
device detects that both of these conditions are fulfilled, it
turns off INS.

While the first condition can be easily be checked by compar-
ing the current INS position of the device to the AM-areas,
the second condition is harder to evaluate.

To resume INS positioning, a device must turn at an inter-
section by 90 deg before entering an IM-area. Otherwise the
INS initialization cannot be completed because there is no
anchor point to which the relative trace of the INS can be
mapped to. This can be ensured as follows: When the INS
is on, a device can determine towards which direction it is
currently moving. We denote this intersection as In. In a
next step, we define the set AIn to contains all IM-areas
that are reachable from In without a turn (see Fig. 7). For
any area a ∈ AIn , intersection In is the last turning point if
the device walks directly towards a. Hence, the INS is not
turned off if it is very likely that the device moves to one
area a ∈ AIn .

To estimate the probability that the device moves to AIn , we
use the mobility model. More precisely, for every a ∈ AIn ,
we get P (a|t) from the mobility model and then calculate
the probability that the device will move to at least one of
these areas as:

pLQ = 1−
∏

∀a∈AIn

1− P (a|t) (1)

To decide if the INS stays on or will be turned off, we draw
a random sample sr form the uniform distribution between
[0, 1] and set:

INS =

{
off, if sr > pLQ

on else

Once the INS was turned off, the following algorithm deter-
mines, when INS positioning will be resumed.

Note that this probabilistic decision also ensures that every
now and then INS traces are recorded for areas that are al-
ready sufficiently mapped. This gives our system a chance to
discover features that are observed by only very few traces,
i.e., rooms that are rarely ever entered. Furthermore, it pro-
vides a way to notice changes in the floor plan, i.e., when an
obstacle such as a desk has been moved.

8.3 Resuming INS Positioning
As defined in the last step, the INS can only be turned off
when the device moves in an AM-area. Before the device
leaves that area, INS positioning must be resumed.

Basically, this it the same requirement that is given in con-
dition (2) in the last subsection. Hence, we apply the same
algorithm to decide whether the INS initialization should be
started. However, this algorithm takes the closest intersec-
tion In as input. Since the device switches to WiFi position
recovery once the INS was turned off, the device can keep
track of the hallway in which it is moving. Using the history
of the last visited hallways, it can determine the intersection
In towards which it is moving.

9. EVALUATION
The evaluation of our proposed system consists of three
parts. In the first part, we analyze the accuracy of WiFi
positioning and INS initialization. In the second part, we
take a look at the energy efficiency of our system and com-
pare it with existing solutions. Finally, we show how our
system affects the quality of the generated floor plan. Be-
fore we describe each of these parts in detail, we introduce
our experimental setup.

Note that we do not evaluate the performance of the under-
lying mapping algorithm. For an analysis of its properties
and performance with respect to mapping quality, see the
original publication [15]. However, we compare the perfor-
mance of our optimized approach to that of the underlying
mapping algorithm. Since the (pure) mapping algorithm
performs indoor mapping by continuously running the INS,
it will serve as reference approach for evaluating the quality
of the energy-efficient mapping approach presented in this
paper.



9.1 Experimental Setup
To evaluate our system, we used our MapGENIE dataset
[15]. This publicly available data1 includes 154 odometry
traces, collected from four volunteers with an Android smart-
phone in combination with a foot-mounted inertial measure-
ment unit. The total length of these traces is more than
22 km.

To test WiFi position recovery and INS initialization, we
first collected WiFi RSSI data from intersection points in
the same building in which the MapGENIE dataset was
recorded. From this data, we set up the WiFi anchor point
database. To evaluate our algorithms with the trace data
from [15], we built a trace simulator that iteratively replays
each trace and executes our energy-efficient trace generator.
When a WiFi scan is performed by our algorithms, we as-
sign the RSSI values that were collected at the respective
intersection.

9.2 Positioning Accuracy
To test the WiFi position recovery algorithm, we performed
WiFi scans at 30 arbitrary positions in the building with an
Android phone and identified the closest anchor point from
the database by comparing the RSSI values. We consider the
assignment to be accurate if the closest intersection from the
ground truth position is equal to the intersection associated
with the identified anchor point. Furthermore, we are inter-
ested in how many WiFi scans per anchor point should be
stored in the database in order to reach an accurate anchor
point identification. Hence, we evaluated the accuracy of
identifying the correct intersection when different number
of scans per anchor point are stored in the database.

Figure 8a shows the success rate of this experiment. The y-
axis shows the fraction of correctly identified anchor points
while the x-axis shows the number of WiFi scans from the
database used for comparison. We see that if at least three
WiFi scans are available in the database at each anchor
point, the closest anchor point can always be accurately
identified. Hence, only a small set of reference data is needed
to implement accurate WiFi position recovery. The energy
overhead for building the anchor point database is therefore
negligible.

As mentioned before, the INS initialization cannot perfectly
reestablish a position since it always maps the relative trace
to the center of an intersection. If a user does not turn
directly at the center of the intersection, the reestablished
trace is shifted. Figure 8b shows a CDF of this shift error
in meters. From this plot we see that in 50% of the cases
this error was smaller than 3 meters and in 90% of all cases
the error was smaller than 5 meters. Hence, in most of the
cases INS positioning can be resumed without having a large
positioning error. Moreover, this positioning errors do not
accumulate over time, since at each intersection the position
gets recalibrated. In Sec. 9.4, we will see that this small shift
does not impact the quality of the generated floor plan.

9.3 Energy Efficiency
Figure 9 shows the total energy consumption of all devices
for different number of traces that were replayed. To eval-

1see http://www.comnsense.de/downloads

(a)

(b)

Figure 8: Positioning Accuracy: (a) Accuracy of an-
chor point identification. (b) CDF of shift errors
when resuming INS.

uate the energy consumption we used the energy measure-
ments that we obtained from our study in Sec. 4. More
precisely, we simulated the total energy consumption of a
device by considering the energy for the different operations
it performs, which we got from our measurements. The
basic approach denotes the unoptimized execution of the
mapping algorithm when all devices are running INS all the
time. The effMap approach shows the energy for executing
our approach as presented in this paper. The savings curve
in the figure shows the relative energy consumption of our
approach in comparison to the basic approach. This com-
parison considers the savings from the point in time when
our approach starts to influence the mapping.

We see that up to 100 traces, both approaches consume the
same amount of energy. The reason for this lies in the qual-
ity of the floor plan. When using less then 100 traces, no
area can be marked as AM-area. Hence, there is no chance
to turn off INS and to save energy. However, with more than
100 traces, the energy consumption diverges. At this point,
our approach starts to influence the mapping by temporarily
turning off INS. As a result, each additional trace saves en-
ergy in comparison to the basic approach. Considering the
relative energy savings with respect to this point in time,
our approach saves up to 25% of energy compared to the
basic approach.

9.4 Model Quality
Next, we have a look on how our approach impacts the qual-
ity of the generated floor plan. To evaluate the quality of



Figure 9: Total energy consumption of all devices.

Figure 10: Rooms and corridors that were found.

the floor plan, we compared the plan generated by the basic
approach and the plan generated by our approach against
the ground truth floor plan. Figure 10 shows how many of
the rooms and corridors from the ground truth floor plan
were found in the respective approach. More precisely, we
compare the position of the rooms and corridors in the gen-
erated plan and the ground truth plan and check how many
of them are at the same position. We see that our approach
finds the same number of rooms and corridors as the basic
approach.

Furthermore, we investigated how big the area error for the
derived rooms is, i.e., how different are the derived room
sizes from the ones in the ground truth. The area error for
our approach, averaged over all rooms, is 10.9 m. In compar-
ison, the error for the basic approach is 10.5 m. If we have
a look on how much the door position of rooms is shifted
compared to the ground truth model, we get 3.5 m for our
approach and 2.5 m for the basic approach. Hence, in our
approach the room area error is on average only insignifi-
cantly bigger and the entrance of the rooms are shifted on
average by 1 m. This can be explained by the shifted po-
sition obtained from the INS initialization algorithm (see
Fig. 8b), since a shifted trace also results in a shifted room
detection. However, further improvements of the INS ini-
tialization algorithm could help to reduce this room shifting
error.

10. SUMMARY AND FUTURE WORK
In this paper, we presented an approach to reduce the energy
consumption of automatic indoor mapping algorithms by
collecting mobility traces only in areas where it is necessary
to improve map quality. To this end, we proposed a qual-
ity metric to distinguish already accurately mapped areas
requiring no further traces and so far inaccurately mapped
areas where traces should be collected. This information
is used by a scheduler to adaptively activate and deacti-
vate trace collection by mobile devices. Finally, we showed
how precise but energy-intensive INS can be combined with
coarse but energy-efficient WiFi position recovery, to get a
combined system where INS can be turned on on demand.
Our evaluation showed that using our approach, we can save
up to 25% energy without compromising on the quality of
the generated floor plan.

In future work, we will extend the scope of our work to
3D indoor mapping. To this end, we need to decide which
areas should be captured by camera images and, again, when
positioning can be turned off. However, this requires new
concepts also taking into consideration the energy-intensive
processing of images and 3D data. While the quality model
has to be extended to handle also 3D models, we also plan to
consider the distribution of 3D processing between devices
and/or servers.
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11. REFERENCES
[1] M. Angermann and P. Robertson. Footslam:

Pedestrian simultaneous localization and mapping
without exteroceptive sensors – hitchhiking on human
perception and cognition. Proceedings of the IEEE,
100:1840–1848, 2012.

[2] P. Baier, H. Weinschrott, F. Dürr, and K. Rothermel.
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