Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 146

Eine browserbasierte
Entwicklungsumgebung fir
prozedurale Texturen

Christoph Kleine

Studiengang: Informatik

Prifer/in: Jun.-Prof. Dr.-Ing. Martin Fuchs
Betreuer/in: M.F.A. Lena Gieseke

Beginn am: 15. Mai 2014

Beendet am: 14. November 2014

CR-Nummer: D.1.7,D.2.6

Kurzfassung

Texturen fiir digitale Spiele und Filme werden immer detailreicher und grofier. Prozedurale Texturen
konnen in beliebiger Auflosung hochkomplexe Muster und Strukturen erzeugen. Die Entwicklung
von prozeduralen Texturen mit Kontrollparametern ist kompliziert. Zum einen sollen realistische,
natirlich aussehende Muster erstellt werden, und zum anderen soll es moglich sein, Referenzbilder
durch die passende Einstellung der Kontrollparameter nachzubilden. Um den Herstellungsprozess von
prozeduralen Texturen zu vereinfachen, wird in dieser Arbeit eine plattformunabhangige, browserba-
sierte Entwicklungsumgebung fiir prozedurale Texturen vorgestellt. Diese erlaubt das Programmieren
und Anzeigen von prozeduralen Texturen, die entweder in der Hochsprache Javascript oder in der
Shader-Sprache geschrieben werden. Fiir die Texturen lassen sich Parameter definieren. Fiir diese
werden von der Entwicklungsumgebung dynamisch ,Slider” erzeugt. Auerdem ist in die Entwick-
lungsumgebung ein Fenster, in das ein Referenzbild geladen werden kann, aus dem der Benutzer
zum Beispiel Farben extrahieren kann, und die Funktionalitdt Benutzerinteraktionen aufzuzeichnen,
integriert. Zusatzlich wird in dieser Arbeit ein Programmierbeispiel fiir prozedurale Texturen mit der
Entwicklungsumgebung geboten und die Anforderungen an eine Studie diskutiert, die Riickschliisse
auf eine automatisierte Einstellung von Parametern einer prozeduralen Textur liefern kann.

Inhaltsverzeichnis

1 Einleitung

1.1 Motivation e e
1.2 Zieledieser Arbeit
2 Eine Entwicklungsumgebung
2.1 Verwandte Arbeiten
2.1.1 Entwicklungvon Texturen
2.1.2 Anwendung
22 Grundlagen
2.2.1 Prozedurale Texturen i
222 WebGL e
223 Editor
224 Datenbank
2.3 Implementierung
2.3.1 Technische Anforderungen
232 Webseite
2.3.3 Textur-Shader-Beispiel
3 Transfer von Referenzbild-Eigenschaften
3.1 Verwandte Arbeiten
3.2 Implementierte Interaktionsmoglichkeiteno L.

4 Aufzeichnen von Benutzer-Interaktionen
4.1 Verwandte Arbeiten
4.2 Implementierung
43 Anforderungen an eine Benutzerstudie

5 Zusammenfassung und Ausblick

Literaturverzeichnis

10

13
13
13
17
19
20
21
22
24
25
25
25
30

35
35
36

37
37
38
39

41

43

Abbildungsverzeichnis

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Mit der browserbasierten Entwicklungsumgebung erzeugte Bilder, die mit Hilfe der
prozeduralen Textur ,Improved Perlin Noise“ [Imp] und drei Parametern: Frequenz,
Streckung und Konstrast erstellt wurden. Von links nach rechts ist die Frequenz
niedrig, sehr hoch und mittel; die Streckung niedrig, niedrig, sehr hoch; der Kontrast
mittel, hochund sehrhoch. 14
Mit der browserbasierten Entwicklungsumgebung erzeugte Bilder, die mit Hilfe einer
prozeduralen Textur berechnet wurden, die Turbulence-Funktionen mit Sinusschwin-
gungen kombiniert. Im zweiten und dritten Bild wurde auflerdem die Textur als
Heightmap verwendet, die den Farben unterschiedliche Héhen zuordnet. 15
Beispiel fiir Multi-scale Assemblage for Procedural Texturing: links a) Formen die aus
Polygonen bestehen, b) aus Formen erzeugte einfache Figuren, die durch Interpolation
und Distanzberechnungen entstehen; Mitte, Kombination der einfachen Figuren zu
komplexen Figuren; rechts, zufillige Anordnung der komplexen Figuren ergibt ein
Blumenfeld (Quelle: [GDG12] Figur 3,5,9) 16
Mit Hilfe von ,Cellular Texture® erzeugte Bilder: links ein Teilring mit einer
Pflasterstein-Struktur, rechts kiinstlich erzeugte Wasserwellen (Quelle: [Wor96] Anhang) 16
Beispiel fur ,Bombing Pattern®: links ein zweidimensionaler Raum, in der Mitte die
vier verschiedenen Pattern und rechts die Kombination (Quelle: [Bom] Figure 20-1,
20-6,20-7) . .. e 17
Screenshot der Webseite Shadertoy: links animiertes WebGL-Fenster mit Bewertungs-
und Kommentarfunktion, rechts Code-Editor und Eingabe-Channels (Quelle: [Sha]) . 18
Screenshot der Webseite GLSLSandbox: Im Hintergrund sind ein animierter Sha-
der sowie im oberen Bereich Kontrollelemente zu sehen, im Vordergrund wird ein
transparenter Code-Editor dargestellt. (Quelle: [GLS]) 20
Mit der browserbasierten Entwicklungsumgebung erstellte Bilder: links ist eine Perlin-
Contrast-Textur mit einem Standard Vertex-Shader, der das Objekt nicht verdndert,
zu sehen und rechts ist die selbe Textur mit einem anderem Vertex-Shader zu sehen.
Dieser Vertex-Shader skaliert, rotiert und transformiert die Ecken des Objekts. 22
Grobe Aufteilung der Browserbasierten Entwicklungsumgebung: 1: WebGL-Fenster,
2: Referenzbild, 3: Javascript-Textur-Editor, Shader-Editor oder UI-Elemente, 4: Tab-
Auswahl L 26

2.10 Javascript-Textur-Editor der browserbasierten Entwicklungsumgebung: Oben sind

drei Kontrollelemente: Laden, Downloaden, Speichern in Datenbank, zu sehen und
darunter die Unter-Editoren fiir den Dateinamen, Dateityp, Namespace, die Konstanten
(beliebig erweiterbar: ,Plus Button®), die Parameter, die Haupt-Berechnungsfunktion
sowie fiir die Hilfs-Funktionen. 27

2.11

2.12

2.13

3.1

4.1

Das obere Bild zeigt, wie der Shader-Editor auf einen Eingabe-Fehler bei eingeschal-
tetem erweiterten ,Syntax Checker” reagiert. Analog funktioniert das auch fiir einen
Teil der Javascript-Editoren. Im unteren Bild ist die Definition eines Parameters an-
gezeigt, bei der Name und Default-Wert fehlen: Beim Verlassen des Editors wird ein

Informations-Symbol mit entsprechender Fehlermeldung angezeigt.

UlI-Elemente fir die Javascript-Textur aus der browserbasierten Entwicklungsumge-
bung: Auswahl der Textur-Datei, Laden der Textur-Datei in den Editor, Kontrollpara-
meter, Auflésung der Textur, Farbauswahl fiir Interpolation, Loschen der ausgewahlten

Textur-Datei aus der Datenbank.

UlI-Elemente fiir die Shader-Textur aus der browserbasierten Entwicklungsumgebung:
Auswahl der Textur-Datei, Laden der Textur-Datei in den Editor, Kontrollparameter,

Léschen der ausgewahlten Textur-Datei aus der Datenbank.

Ul-Elemente fiir Referenz- und Ausgabebild aus der browserbasierten Entwick-
lungsumgebung: Laden und Anzeigen des Referenzbildes, Speichern des Textur-

Ausgabebilds, Aktivieren der Color-Picker.

UI-Elemente fiir das Benutzerinteraktions-Tracking aus der browserbasierten Entwick-
lungsumgebung: Log-Datei speichern, Log-Datei zuriicksetzen, Benutzerinteraktions-

Tracking aktivieren/deaktivieren. L L L L.

Tabellenverzeichnis

36

2.1
2.2

Webbrowserunterstiitzung fir WebGL Lo
Vergleich von HTML-Code-Editoren

Verzeichnis der Listings

4.1

Beispiel fiir JSON-Objekt eines Tastatur-Taste-Driicken Events: In ,time“ steht der
Zeitstempel, in ,option® der Ausléser des Events, ,position® beinhaltet, falls relevant,

die Mausposition, und ,message”, welche Taste gedriickt wurde.

39

1 Einleitung

1.1 Motivation

Durch stetig wachsende Auflésungen von digitalen Anzeigegerdten und immer hohere Anforderun-
gen an das finale Aussehen von computergenerierten 3D-Szenen wird das Gestalten von Objekt-
Oberflachen immer wichtiger. Texturen spielen eine essentielle Rolle bei diesem Prozess, sie kénnen
sowohl die Farbgestaltung als auch Reflektionen und Verformungen von 3D-Objekten beeinflussen.
Durch die hoheren Anforderungen wird das Erstellen von Texturen fiir die Medienbranche immer
schwieriger und aufwindiger. Digital erzeugte Oberflichen, deren Texturen zu grob oder zu ungenau
sind, reichen aus, um einen Film oder ein digitales Spiel qualitativ herabzustufen und fiir den Kunden
uninteressant zu machen.

Prozedurale Texturen bieten die Moglichkeit, komplexe Texturen in unbegrenzter Auflésung mit
einer fast unendlichen Variation direkt auf der CPU oder sogar auf der GPU zu berechnen. So
wird der Aufwand zur Speicherung von Texturen stark reduziert, da nicht hochauflgsende Bilder,
sondern Prozeduren gespeichert werden. Prozedurale Texturen sind flexibler als aus Bildern erzeugte
Texturen und koénnen sich beliebigen Strukturen anpassen. Ein Beispiel hierfiir sind prozedural
erzeugte Baumstamm-Texturen, die im Gegensatz zu Bild-Texturen, die nur eine endliche Datenmenge
anbieten, in alle Dimensionen ausreichend berechnet werden kénnen. Der Aufwand zum Anpassen
einer Textur an ein Objekt sinkt deshalb.

Das Entwerfen von Textur-Programmen, die zu einem gewiinschten Aussehen eine prozedurale Textur
erstellen, ist sehr aufwandig. Ein wichtiger Aspekt dabei ist, dass die Texturen moglichst realistisch
aussehen sollen. Eine zu auffallige Wiederholung wirkt unnatiirlich. Ein Teil der prozeduralen Texturen
benutzt deshalb zufillig generiertes Rauschen als Basis. Die Kontrolle des finalen Aussehens ist deshalb
sehr schwierig. Kleine Anderungen im Textur-Code kénnen auflerdem grof3e Anderungen bei der
Textur erzeugen.

Um Texturen in der Grafikkarte zu berechnen, bietet sich WebGL zusammen mit der Programmier-
sprache OpenGL Shading Language an. Die fiir WebGL verfiigbaren Shader kénnen in zwei Arten
unterteilt werden: Den Vertex-Shader, der fiir das Transformieren der Geometrie des Objekts ist,
und den Fragment-Shader, der zum Beispiel fiir die Einfarbung der Pixel zustandig ist. Die beiden
Webseiten Shadertoy [Sha] und GLSLSandbox [GLS] bieten Konzepte, die einen kleinen Teil der
Anforderungen erfiillen, die an eine browserbasierte Entwicklungsumgebung gestellt werden. So
wird die Moglichkeit geboten, Fragment-Shader zu programmieren und anzusehen. Auflerdem wird
eine grofie Datenbank von Shadern zum Testen bereitgestellt. Anderungen der Shader werden jeweils
direkt im eingebetteten Editor vorgenommen. Als Eingabeparameter, um die Texturen zur Laufzeit zu
verandern, werden die aktuelle Zeit oder auch Maus- und Tastatur-Eingaben angeboten.

1 Einleitung

1.2 Ziele dieser Arbeit

In dieser Arbeit wird eine browserbasierte Entwicklungsumgebung fiir prozedurale Texturen imple-
mentiert, die das Erzeugen von prozeduralen Texturen stark vereinfacht, indem sie den Fokus auf das
Generieren von Prozeduren und Parametern setzt, und es dem Benutzer erlaubt, die prozeduralen
Texturen ,on the fly” mit Hilfe der Parameter zu beeinflussen. Die Erzeugung des finalen Vertex-
und des Fragment-Shaders wird von der Entwicklungsumgebung iibernommen Zusétzlich werden
automatisch Slider fiir das Verdndern der Parameter und weitere Elemente bereitgestellt. Der Aufwand
fiir den Benutzer sinkt, da er sich weder um das Kompilieren des Textur-Codes noch um die Erzeugung
der UI-Elemente kiimmern muss. Aulerdem wird eine Interaktionsméglichkeit mit einem Eingabebild
geboten, die es erlaubt, Farben zu extrahieren und dadurch die Reproduktion dieses Bildes durch
eine prozedurale Textur zu vereinfachen. Um weitere Features zu finden, wird ein Paper analysiert,
welches das automatische Anpassen von prozeduralen Texturen an ein Referenzbild behandelt. Als
letzter Teil wird eine Technik zum Tracking von Benutzer-Interaktionen implementiert. Die Idee
dabei ist, Riickschliisse auf eine automatische Angleichung einer prozeduralen Textur mit Parametern
an ein Referenzbild zu erméglichen.

10

1.2 Ziele dieser Arbeit

Gliederung

Im ersten Teil dieser Bachelorarbeit wird eine browserbasierte Entwicklungsumgebung fiir prozedurale
Texturen vorgestellt. Dazu werden zum einen analysiert, wie Texturen entwickelt werden und welche
Methoden es dafiir gibt und zum anderen, welche Elemente fiir die Entwicklungsumgebung wichtig
sind. Zusétzlich werden Ablaufschritte aufgezahlt, die zum Programmieren von prozeduralen Texturen
mit der browserbasierten Entwicklungsumgebung notwendig sind.

Der zweite Teil der Bachelorarbeit beinhaltet den Transfer von Referenzbild-Eigenschaften auf eine
prozedurale Textur mit Hilfe von Parametern.

Im letzten Teil wird analysiert, wie das Aufzeichnen von Benutzerinteraktionen die Qualitit eines
Programmes oder einer Webseite verbessern kann. Aulerdem wird erklart, welche Funktionen fiir das
Aufzeichnen von Benutzerinteraktionen implementiert sind und wie eine Studie aussehen kann, die
Rickschliisse auf eine automatisierte Einstellung von Parametern einer prozeduralen Textur erlangt,
sodass sich die Textur kaum von einem Referenzbild unterscheidet.

Am Ende folgt eine Zusammenfassung und ein Ausblick auf weitere Features und Moglichkeiten der
browserbasierten Entwicklungsumgebung.

Kapitel 2 — Eine Entwicklungsumgebung: Beschreibung der browserbasierten Entwicklungsum-
gebung: Unter anderem mit der Analyse von verwandten Arbeiten, der Erklarung von not-
wendigen Grundlagen, sowie einem detaillierten Einblick in den Aufbau und die Funktion der
Entwicklungsumgebung.

Kapitel 3 — Transfer von Referenzbild-Eigenschaften: Hier wird beschrieben, wie der Transfer
von Referenzbild-Eigenschaften auf die prozedurale Textur funktioniert. Dazu wird auf ver-
wandte Arbeiten eingegangen sowie kurz erklart, welche Méglichkeiten die browserbasierte
Entwicklungsumgebung dazu bietet.

Kapitel 4 — Aufzeichnen von Benutzer-Interaktionen: Beschrieben wird, wie das Aufzeichnen
von Benutzer-Interaktionen bei Webseiten funktioniert und wie dadurch die Qualitat verbessert
werden kann. Es wird auf3erdem erklart, wie das Aufzeichnen von Benutzerinteraktionen mit der
browserbasierten Entwicklungsumgebung funktioniert und wie eine Studie aussehen kann, die
versucht, Riickschliisse auf die automatisierte Einstellung von Parametern einer prozeduralen
Textur zu erlangen.

Kapitel 5 — Zusammenfassung und Ausblick: Hier wird eine kurze Zusammenfassung der Ba-
chelorarbeit sowie ein Ausblick auf mogliche Features und Verbesserungen der browserbasierten
Entwicklungsumgebung gegeben.

11

2 Eine Entwicklungsumgebung

In dieser Arbeit wurde eine browserbasierte Entwicklungsumgebung fiir prozedurale Texturen entwi-
ckelt, die den Prozess der prozeduralen Texturen-Entwicklung vereinfacht. Im Abschnitt Verwandte
Arbeiten wird analysiert, wie Texturen entwickelt werden und welche browserbasierte Entwicklungs-
umgebungen es fir prozedurale Texturen gibt. Im Abschnitt Grundlagen werden Themen behandelt,
die dem besseren Verstdndnis von prozeduralen Texturen oder Elementen der Entwicklungsumgebung
dienen. Im dritten Abschnitt wird schlieBlich erklart, welche Anforderungen an die Entwicklungsum-
gebung gestellt und wie sie umgesetzt wurden.

2.1 Verwandte Arbeiten

In diesem Abschnitt wird zuerst analysiert, wie Texturen entwickelt werden, um zu verstehen, welche
Anforderungen an die Entwicklungsumgebung gestellt werden miissen. Dafiir werden Methoden
und Verfahren von aktuellen Papern vorgestellt, die sich diesem Thema gewidmet haben. Als zweiter
Teil wird analysiert, welche browserbasierten Anwendungen es gibt, die zumindest einen Teil der
Aufgabe einer Entwicklungsumgebung fiir prozedurale Texturen bereitstellen. Die Auswahl ist sehr
begrenzt, da eine Schnittstelle fiir das Erzeugen von prozeduralen Texturen: WebGL erst seit 2009 in
erster Version verdffentlicht wurde.

2.1.1 Entwicklung von Texturen

Fiir das Erstellen von Texturen gibt es mehrere Moglichkeiten. Einige davon werden im folgenden Teil
vorgestellt und analysiert. Eine einfache Methode, Texturen zu erzeugen, ist das manuelle Zeichnen von
Texturen am Computer. Das Resultat ist eine kaum fotorealistische Bitmap, die auf Objekte gemappt
werden kann. Die Grenzen dieses Verfahrens zeigen sich schnell: Wenn immer feinere und komplexere
Texturen benétigt werden, steigt der Aufwand fiir deren Erstellung enorm. Eine weitere Methode ist
das Erzeugen von Photos von gewiinschten Strukturen. Probleme gibt es allerdings bei Bildrandern,
Beeinflussung durch Licht und Schatten sowie Artefakten, die in den Bildern auftreten kénnen. Eine
Nacharbeitung der Bilder am Computer ist deshalb in vielen Fallen notwendig. Auch hier werden
Bitmaps an die Grafikkarte gesendet, was bei grofien, detailreichen Bildern zu Effizienzproblemen
fithrt. Wahrend zum Beispiel bei neuen GPUs die Berechnungskapazititen immer weiter steigen, bleibt
die Speicherbandweite gleich. Verfahren, die Texturen nicht aus dem Speicher laden, sondern direkt in
der GPU berechnen, werden somit immer effizienter. Prozedurale Texturen, die auf der CPU berechnet
werden, haben auch den Vorteil, dass keine Speicherzugriffe, auler zum Laden des Textur-Codes,
notwendig sind. Allerdings miissen die Textur-Daten anschlieBend an die GPU geschickt werden.

13

2 Eine Entwicklungsumgebung

Abbildung 2.1: Mit der browserbasierten Entwicklungsumgebung erzeugte Bilder, die mit Hilfe der
prozeduralen Textur ,Improved Perlin Noise“ [Imp] und drei Parametern: Frequenz,
Streckung und Konstrast erstellt wurden. Von links nach rechts ist die Frequenz
niedrig, sehr hoch und mittel; die Streckung niedrig, niedrig, sehr hoch; der Kontrast
mittel, hoch und sehr hoch.

Beispiele fiir Texturen die auf der CPU berechnet werden und nicht prozedural sind, werden im
Paper ,State of the Art in Example-based Texture Synthesis“ [WLKT09] vorgestellt. Diese Methoden
basieren darauf, dass der Benutzer ein Sample eingibt und daraus eine Textur erzeugt wird. Die meisten
Algorithmen basieren auf ,Markov Random Fields“ (MRF) Methoden: Viele Texturen werden dabei aus
einer Kombination von lokalen und stationdren Prozessen berechnet. Dabei wird jeder Textur-Pixel
(Texel) durch die gleiche Charakterisierung aus einer kleinen Menge von raumlichen Nachbarpixeln
bestimmt. Die Charakterisierung wird durch die Eingabe eines Samples generiert. Die Pixel-basierte
Synthese ist ein Beispiel fiir einen Basis-Algorithmus, der Example-Based Textur-Synthese, und wird
hier grob vorgestellt:

1. Erstellen der Charakteristika: Zum Beispiel wird fir jeden Pixel aus dem Sample eine kleine
raumliche Menge von Nachbarpixeln betrachtet.

2. Erzeugen der Textur (Pixel fiir Pixel): Fiir jeden Pixel wird die Umgebung mit den Sample-Pixeln
und ihren Nachbarmengen verglichen. Der Sample-Pixel mit den meisten iibereinstimmenden
Nachbarpixeln wird ausgew#hlt und auf den Pixel kopiert.

Mit der Example-Based Textur-Synthese lassen sich begrenzte Variationen von Texturen erstellen, die
eine hohe Qualitit und keine unnatiirlichen Artefakte aufweisen. Der Nachteil ist, dass diese Methode
nicht gut skaliert, da die Erzeugungskomplexitat proportional zur Oberflichen- oder Textur-Grofie
wichst.

Eine weitere Methode, um Texturen zu erstellen, bieten prozedurale Textur-Programme. Die Textur
wird durch ein im Vergleich zur fertigen Textur kleines Programm direkt auf der CPU oder sogar auf
der GPU berechnet und Speicherzugriffe finden nur statt, um den Code zu laden. Die Schwierigkeit bei
prozeduralen Texturen liegt im Finden passender Funktionen, um Muster zu erzeugen, die natiirlich
aussehen und sich nicht wiederholen. Grundlegende Verfahren fiir prozedurale Texturen verwenden
Basis-Funktionen wie Perlin-Noise [Per85] oder Turbulence, die eine Summe von Rauschfunktionen
ist. Perlin-Noise wurde von Ken Perlin entwickelt: Dabei wird zuerst eine Ebene durch ein Gitter mit

14

2.1 Verwandte Arbeiten

——

i

Abbildung 2.2: Mit der browserbasierten Entwicklungsumgebung erzeugte Bilder, die mit Hilfe einer
prozeduralen Textur berechnet wurden, die Turbulence-Funktionen mit Sinusschwin-
gungen kombiniert. Im zweiten und dritten Bild wurde aulerdem die Textur als
Heightmap verwendet, die den Farben unterschiedliche Hoéhen zuordnet.

quadratischen oder rechteckigen Zellen beschrieben. Die Gitterpunkte stellen ganze Zahlen dar und
bekommen jeweils zufillige Gradienten zugewiesen, die reproduzierbar sind und fiir jede Richtung
die gleiche Wahrscheinlichkeit besitzen. Dadurch, dass die Auflésung der Ebene grofer ist als die des
Gitters, miissen die Werte der Pixel interpoliert werden. Das geschieht, indem fiir jeden Punkt der
Abstand zu den umliegenden Gitterpunkten mit den jeweiligen Gradienten gewichtet wird.

Das Gitter kann durch Parameter kontrolliert werden: Die Frequenz kann durch die Gittergrofie,
die Streckung durch die Seitenverhéltnisse des Gitters und der Kontrast durch die Interpolations-
Funktion geregelt werden. In Abbildung 2.1 sieht man drei Beispiele fiir ,Improved Perlin Noise*
mit unterschiedlichen Parametern. Die Basisfunktionen reichen nicht aus, um komplexe Muster zu
erzeugen. Erst in Kombination mit mathematischen Funktionen, wie zum Beispiel Sinus-Wellen, lassen
sich eine grofiere Vielfalt von Mustern erzeugen. Im Paper [Per85] wird durch die Kombination von
Turbulence-Funktionen mit einer Sinus-Schwingung die Textur ,marble veins“ erzeugt. In Abbildung
2.2 ist ein Beispiel hierfiir zu sehen. Um die richtige Kombination von Basistexturen und mathema-
tischen Funktionen auszuwaihlen, sind gutes mathematisches Wissen und meistens weitreichende
Programmierkenntnisse wichtig.

Aus diesem Grund wird im Paper ,Multi-scale Assemblage for Procedural Texturing“ [GDG12] ein Ver-
fahren vorgestellt, das ohne gute mathematische und Programmier-Kenntnisse auskommt. Dabei soll
die Erzeugung von strukturierten prozeduralen Mustern durch ein Prinzip der einfachen Faltung stark
vereinfacht werden. Das heif3t, der Benutzer erstellt einfache Formen: Diese bestehen aus Eckpunkten
und verbindenden Kanten und werden mit Hilfe von Distanzberechnungen und Interpolationen zu
Figuren kombiniert. Um noch komplexere Muster zu erhalten, wird nicht die Komplexitit der einzel-
nen Figuren erhoht, sondern diese werden miteinander hierarchisch kombiniert. Eine Vereinigung
besteht somit aus einer hierarchischen Kombination von vielfiltigen Figuren, Positionen und Figu-
ren, die durch eine lineare Kombination von zufillig gewichteten Hauptmethoden entstehen. Diese
Hauptmethoden werden statistisch durch eine Menge von Basis-Figuren und Primitiven extrahiert.

15

2 Eine Entwicklungsumgebung

Abbildung 2.3: Beispiel fiir Multi-scale Assemblage for Procedural Texturing: links a) Formen die
aus Polygonen bestehen, b) aus Formen erzeugte einfache Figuren, die durch Inter-
polation und Distanzberechnungen entstehen; Mitte, Kombination der einfachen
Figuren zu komplexen Figuren; rechts, zufillige Anordnung der komplexen Figuren
ergibt ein Blumenfeld (Quelle: [GDG12] Figur 3, 5, 9)

Abbildung 2.4: Mit Hilfe von ,Cellular Texture® erzeugte Bilder: links ein Teilring mit einer
Pflasterstein-Struktur, rechts kiinstlich erzeugte Wasserwellen (Quelle: [Wor96]
Anhang)

Durch dieses Verfahren erhélt man eine Vielfalt von Mustern, Strukturen und komplexen Figuren, die
sich auch durch Parameter kontrollieren lassen, die zum Beispiel die Kombination und Positionierung
von Figuren beeinflussen.

Ein weiteres Verfahren zum Erstellen von prozeduralen Texturen wird im Paper , A Cellular Tex-
ture Basis Function® [Wor96] beschrieben. Die Textur wird erzeugt, indem zum Beispiel in einem
zweidimensionalen Raum Punkte zufillig verteilt werden. Fir jeden Pixel in diesen Raum gibt es
entweder einen erzeugten Punkt oder mehrere benachbarte Punkte. Durch verschiedene Abstandbe-
rechnungen, wie sie zum Beispiel euklidisch Abstandsberechnung und Manhatten Distanz, wird jedem
Punkt ein Gebiet zugewiesen. In Abbildung 2.4 ist zu sehen welche Resultate bei einer passenden
Farbinterpolation dieser Gebiete entstehen.

16

2.1 Verwandte Arbeiten

Abbildung 2.5: Beispiel fiir ,Bombing Pattern®: links ein zweidimensionaler Raum, in der Mitte die
vier verschiedenen Pattern und rechts die Kombination (Quelle: [Bom] Figure 20-1,
20-6, 20-7)

Auf der Webseite GPU Gems von Nvidia wird in Kapitel 20 [Bom] der ,Bombing Pattern® Algorithmus
vorgestellt. Dieser dient dazu, zum Beispiel eine Wiese mit einer Vielzahl von Blumen zu erzeugen
oder ein Stadt mit vielen dhnlichen Gebauden, die dennoch unterschiedlich aussehen sollen. Auch
hier wird der Raum in Zellen unterteilt. Fiir jede Zelle wird ein zufélliger Punkt berechnet und diesem
wird ein Pattern zugewiesen wie es zum Beispiel in Abbildung 2.5 zu sehen ist.

Die verwandten Arbeiten zeigen, dass das Erzeugen von prozeduralen Texturen ein aufwindiger
Prozess ist und in vielen Fillen der Aufwand tibertroffen wird, der entsteht, wenn eine Textur zum
Beispiel durch ein Photo erstellt oder am Computer gezeichnet wird. Wenn allerdings eine Prozedur
erstellt ist, die eine bestimmte Aufgabe ibernimmt wie zum Beispiel das Erzeugen von Holz-Mustern,
und diese prozedurale Textur durch Parameter gesteuert werden kann, dann hat man nicht nur
eine Textur, sondern einen Textur-Typ. Dieser Textur-Typ kann durch das passende Einstellen der
Parameter auf viele Holzgegenstande mit unterschiedlichen Strukturen gemappt werden. Der Aufwand
ist deshalb zuerst sehr grof3, die Vorteile aber um so grofier.

2.1.2 Anwendung

Ein Teilziel dieser Bachelorarbeit ist das Erstellen einer Browser-basierten Entwicklungsumgebung fiir
prozedurale Texturen. In diesem Abschnitt werden zwei Web-Anwendungen vorgestellt und analysiert,
die es ermoglichen, Fragment-Shader im Webbrowser zu programmieren und darzustellen.

Shadertoy

Shadertoy [Sha] (Abbildung 2.6) ist eine der ersten Webseiten, die es seit 2009 erlaubt, Shader mit Hilfe
von WebGL darzustellen und zu programmieren. Die Webseite ldsst sich in zwei Teile unterteilen: Links
hat man ein WebGL-Fenster, das den Shader anzeigt und rechts einen Editor fiir den Textur-Shader
oder einen Musik-Shader. Die zwei Editoren sind in verschiedene Tabs getrennt und unterteilen sich
in Shader Eingabewerte, Hauptfunktion sowie 4 Eingabe-Channels.

17

2 Eine Entwicklungsumgebung

Browse New Shader Sign In

e ==
4 Shader Inputs

// Found this on GLSL sandbox. I really liked it, changed a few things and made it tileable.
11 2)

== oo iesiooeciseeossoesiooioos
// water turbulence effect by joltz@r 2013-07-04, improved 2013-07-07

7t Altered

It

#define TAU 6.28318530718
o #define MAX_ITER 5

void main(void)

float time = iGlobalTime * .5;
vec2 sp = gl_FragCoord.xy / iResolution.xy;

vec2 p = sp*TAU - 20.0;
vec2 i - p;
float ¢ - 1.0;

float inten - .05;

for (int n = 85 n < MAX_ITER; n++)

float t = (3.5 / Float(n+

—
K I 3698

1.0 -

isp e iy) + cos(t +i.x));
60.0 fps TEE C ce=1.0/1 cos(i.y+t)/inten)});
¢ /= float (MAX_ITEI
= = @578 928 3 € = 1.55-s5qrt(c);
Tileable Water Caustic < = = Veca zolour - ves3(pou (sbs(c), 6.0));
AT Uploaded by Dave_Hoskins in 2014-Apr-7 gl FragColor = veca(clamp(colour + vec3(0.0, 0.35, 0.5), 0.9, 1.0), 1.0);
Found this on GLSL sandbox. I really liked it, changed a few things and made it tleable.
Comments ?
[] morgan3d, 2014-Apr-7
Fd A very handy tool: » 485 chars ?

Abbildung 2.6: Screenshot der Webseite Shadertoy: links animiertes WebGL-Fenster mit Bewertungs-
und Kommentarfunktion, rechts Code-Editor und Eingabe-Channels (Quelle: [Sha])

Die Eingabe-Channels erlauben das Einbinden von Tastatureingaben, Bitmap-Texturen, Videos, der
WebCam, Cubemaps oder Sounddateien. Auf die Channel-Eingaben kann direkt in der Hauptfunktion
durch einen Sampler zugegriffen werden. Als wichtigste statische Eingaben fiir die Hauptfunktion
dienen die Auflésung, die aktuelle Uhrzeit, das aktuelle Datum sowie die Mausposition.

Es kann somit ziemlich einfach eine Ausgabe im WebGL-Fenster erzeugt werden, die zum Beispiel
abhangig von der Zeit oder der Mausposition und anderen Eingabeparametern ist. Bis auf die vier
Eingabe-Channels hat der Benutzer allerdings keine Moglichkeit, die Shader-Eingabeparameter zu
bestimmen.

Der Editor bietet ein ,Syntax Highlighting®, kein ,on the fly“ ,Syntax Checking®, intelligentes Code-
Formatieren, keine Unterstiitzung bei der korrekten Klammerung und keine automatische Code-
Vervollstandigung. Falls beim Compilieren der Hauptfunktion ein Fehler auftritt, wird eine genaue
Fehlermeldung angezeigt.

Aus dem Aufbau der Webseite Shadertoy ist ersichtlich, dass der Fokus im Verbreiten und Veréffentli-
chen von erzeugten Shadern liegt. Dafiir werden die Shader online in einer Datenbank gespeichert
und auf Wunsch des Benutzers veroffentlicht. Andere Benutzer konnen sich den Shader mit dem Code
ansehen, kommentieren und bewerten. Es ist auBlerdem erkenntlich, wie oft ein Shader angeschaut
wurde. Um einen Shader zu speichern und 6ffentlich zu machen, muss sich der Benutzer anmelden,
notwendig dafiir ist ein Benutzername eine E-Mail Adresse sowie ein Passwort. Auf der Hauptseite
von Shadertoy wird der Shader der Woche sowie eine Anzahl von ,featured “ und empfohlenen
Shader-Resultaten angezeigt.

18

2.2 Grundlagen

Shadertoy bietet eine grofle Anzahl von Funktionen, es treten jedoch auch Probleme auf: Zum einen
werden direkt auf der Hauptseite zuerst 12 Shader ausgefiihrt, was auf vielen PCs zu Performance-
Einbriichen fiihrt, zum anderen kénnen auf kleinen Bildschirmen Webseiten-Elemente abgeschnitten
werden (siehe Abbildung 2.6 Eingabe-Channels unten rechts). Der oben gezeigte Algorithmus ,Impro-
ved Perlin-Noise” braucht fiir die Berechnung ein grofles Array, das allerdings mit der derzeitigen
Shader-Sprachenversion in der Hauptfunktion nicht benutzt werden darf. Mit Shadertoy lassen sich
deshalb nicht alle Shader darstellen, ein weiterer Eingabe-Parameter, durch den Arrays als Texturen im-
portieren werden, ist deshalb notwendig. Auflerdem gibt es keine Moglichkeit, auf den Vertex-Shader
zuzugreifen, 3D Objekte in die Szene zu importieren oder zu erzeugen.

Wichtig bei prozeduralen Texturen ist es, Parameter zu kontrollieren und den Effekt direkt zu sehen.
Ein Slider, der das ermdglichen konnte, ist nicht vorhanden. Fiir prozedurale Texturen ist Shadertoy nur
bedingt geeignet. Die Stiarken der Webseite liegen eher beim Manipulieren, Animieren, Transformieren
und Kombinieren von Bitmaps und anderen Eingabeelementen sowie dem Austauschen, Bewerten
und Kommentieren von Shadern.

GLSLSandbox

GLSLSandbox [GLS] (Abbildung 2.7) ist eine weitere Webseite, die allerdings im Vergleich zu Shadertoy
weniger Funktionalitét bietet. Auf der Startseite werden eine Reihe von Vorschaubildern von Shadern
angezeigt, die der Benutzer anklicken kann. AnschlieBend bekommt er den Shader im Hintergrund
angezeigt, wihrend im Vordergrund ein transparenter Editor angezeigt wird. Dieser unterscheidet
sich nicht wesentlich vom Editor auf der Webseite Shadertoy, er besitzt allerdings einen ,,on the fly”
Syntax-Checker. Fiir GLSLSandbox ist typisch, dass ziemlich einfach zu einem Shader ein Kind-Shader
erzeugt werden kann. Der Benutzer hat dabei immer die Moglichkeit, den urspriinglichen Shader und
den Kind-Shader direkt zu vergleichen.

GLSLSandbox bietet als Eingabeparameter die aktuelle Zeit, die Auflosung sowie die Mausposition.
Zusatzlich dazu kann vom Benutzer bestimmt werden, in welcher Qualitit der Shader angezeigt wird.
Wihrend bei Shadertoy nur die Hauptfunktion editierbar war, kann bei GLSLSandbox der komplette
Fragment-Shader-Code gedndert werden. GLSLSandbox dient dazu, Fragment-Shader zu programmie-
ren, die als Parameter nur die aktuelle Zeit und die Mausposition haben. Als Entwicklungsumgebung
fiir prozedurale Texturen ist die Webseite nicht ausreichend.

2.2 Grundlagen

In diesem Abschnitt werden zum einen die formalen Voraussetzungen von prozedurale Texturen
genauer analysiert und zum anderen erklért, welche Elemente fiir die browserbasierte Entwicklungs-
umgebung wichtig sind und welche Funktionalitdt sie beinhaltet.

19

2 Eine Entwicklungsumgebung

Abbildung 2.7: Screenshot der Webseite GLSLSandbox: Im Hintergrund sind ein animierter Sha-
der sowie im oberen Bereich Kontrollelemente zu sehen, im Vordergrund wird ein
transparenter Code-Editor dargestellt. (Quelle: [GLS])

2.2.1 Prozedurale Texturen

Texturen werden fiir die Gestaltung von Oberflaichen von 3D-Modellen in der Filmbranche oder
bei der Entwicklung von digitalen Spielen eingesetzt. Da der Realismus und der Detaillierungsgrad
von digital erstellten Oberflichen immer weiter steigt, erhoht sich der Aufwand fiir die Erstellung
von Texturen: Eine Textur, die zum Beispiel auf einer Bildschirmauflésung von 800 x 600 gut und
realistisch ausgesehen hat, wirkt auf Bildschirmauflésungen von 1920 x 1080 oder noch hdher pixelig
und ungenau. Die Textur muss deshalb gréfler werden was fiir manuell gezeichnete Texturen einen
hoherer Aufwand bedeutet. Bei Photo-Texturen steigt der Aufwand beim digitalen Nachbearbeiten,
da jedes noch so kleine Artefakt, das beim Wrapping entsteht, bei hoheren Bildschirmauflosungen
sichtbar wird. Aulerdem wird bei beiden Verfahren nur eine begrenzte Datenmenge zur Verfiigung
gestellt.

Prozedurale Texturen ermoglichen es, diesen Aufwand zu verringern. Dabei wird eine Textur nicht
gezeichnet oder durch ein Photo erzeugt, sondern der Designer erstellt eine Berechnungsvorschrift,
durch welche die Textur automatisch erzeugt werden kann. Auch wenn das Erstellen der Berechnungs-
vorschrift in vielen Féllen genauso aufwiandig oder sogar noch aufwandiger ist als die Erstellung der
Textur durch manuelles Zeichnen oder durch ein Photo, bietet eine prozedurale Textur die Moglichkeit,
einfache Variationen zu erstellen. Dadurch wird nicht nur eine Textur erzeugt, sondern es kénnen
viele Texturen vom selben Typ generiert werden.

Es gibt zwei wesentliche Modelle, um Texturen zu berechnen: Entweder kontextsensitiv, das bedeutet,
jeder Pixel kennt den Zustand der ihn umgebenden Pixel oder kontextunabhingig. Im Allgemeinen

20

2.2 Grundlagen

gelten nur kontextunabhéngige Verfahren als prozedural. Die in dieser Arbeit und von der Webseite
erzeugten Texturen sind kontextunabhingig und somit auch prozedural. Das erlaubt einen sehr hohen
Grad an Parallelitat und ist fiir die schnelle Berechnung in der Grafikkarte wichtig.

Ein weiterer Vorteil von prozeduralen Texturen ist der geringe Speicherbedarf. Anstatt Texturen
in Form von Bildern zu speichern und zum Beispiel bei digitalen Spielen durch permanent hohen
Speicherzugriff zu laden, konnen kleine Berechnungsvorschriften in die Grafikkarte geladen werden,
und der schnelle Grafikprozessor iibernimmt die Berechnung von Texturen. Da der Flaschenhals von
CPU- und GPU-Berechnungen meist der Speicherzugriff ist, kann dadurch die Effizienz und Leistung
beim Erzeugen von Filmen oder bei der Ausfithrung von digitalen Spielen gesteigert werden.

Indem Kontrollparameter fiir eine prozedurale Textur erstellt werden, konnen bestimmte Eigenschaf-
ten wie zum Beispiel die Farbe, der Kontrast oder die Frequenz der Muster kontrolliert werden. Das
hilft dem Designer, eine prozedurale Textur nach bestimmten Anforderungen zu erstellen.

Die Ersetzung einer Standard-Bild-Textur durch eine prozedurale Textur wird durch Kontrollparame-
ter vereinfacht. Gibt es eine Metrik, welche die Ahnlichkeit beider Ergebnisse bewertet, so kann die
Anpassung der Parameter auch automatisiert oder zumindest zum groéften Teil automatisiert stattfin-
den. Ein Beispiel hierfiir wird im Paper ,Interactive Parameter Retrieval for Two-Tone Procedural
Textures” [GKHF14] vorgestellt.

2.2.2 WebGL

Um prozedurale Texturen im Browser plattformunabhéngig zu berechnen und darzustellen, braucht
es eine 3D-Graphik-Programmierschnittstelle. Das ist sinnvoll, da die GPU prozedurale Texturen
schneller berechnen kann und einen héheren Grad an Parallelitit erlaubt. Als wichtigster Standard
wird WebGL [KHR] seit 2009 von der Khronos Group und Mozilla lizenzfrei entwickelt und wurde
2011 in erster Version verdffentlicht. WebGL basiert auf OpenGL ES 2.0, eine Sprachen-unabhangige
vereinfachte Version von OpenGL. Allerdings ist die derzeitige Version von WebGL eher vergleichbar
mit der der OpenGL Version 2.0, welche im Gegensatz zur aktuellen OpenGL Version 4.5 viele
Funktionen noch nicht unterstiitzt.

Dadurch entstehen Probleme beim Implementieren von prozeduralen Texturen, die auf bestimmte
Operationen angewiesen sind. Ein Beispiel hierfiir ist die ,Jmproved Perlin Noise® Textur [Imp], die
Bit-Shifting Operationen zur Berechnung benétigt und auf ein grofies Array zugreift. Beides wird
aktuell nicht unterstiitzt, wobei das Array durch eine Textur ersetzt werden kann und Bitshifting
mittels dem Modulo Operator simuliert werden kann. Diese Losung ist sehr ineffizient.

Das Programmieren der prozeduralen Texturen fiir die GPU funktioniert iiber Shader. Die wichtigsten
zwei Shader-Typen sind der Vertex-Shader und der Fragment-Shader. Der Vertex-Shader erlaubt es,
die Geometrie eines 3D-Objektes zu manipulieren (Abbildung 2.8), und der Fragment-Shader ist fiir
die Berechnung und das Mappen der Texturen auf die Oberflaichen zustandig. Ein weiterer Vorteil
ist, dass Shader als Text-Strings an die Programmierschnittstelle gesendet werden und deshalb nicht
vorcompiliert werden miissen.

Fiir die browserbasierte Entwicklungsumgebung wird das Framework Three.js [THR] verwendet, das
eine umfassende und freie, in Javascript implementierte 3D-Umgebung bietet. Somit werden Aufgaben

21

2 Eine Entwicklungsumgebung

Abbildung 2.8: Mit der browserbasierten Entwicklungsumgebung erstellte Bilder: links ist eine
Perlin-Contrast-Textur mit einem Standard Vertex-Shader, der das Objekt nicht
verandert, zu sehen und rechts ist die selbe Textur mit einem anderem Vertex-Shader
zu sehen. Dieser Vertex-Shader skaliert, rotiert und transformiert die Ecken des

Objekts.

Webbrowser unterstiitzt ab Version
Internet Explorer 11

Mozilla Firefox 5

Google Chrome 12

Safari 5.1

Opera 12

Google Chrome fiir Android 37

Tabelle 2.1: Webbrowserunterstiitzung fiir WebGL

wie das Erstellen von 3D-Objekten und das Hinzufiigen von Texturen und Shadern stark vereinfacht.
Es ist zusatzlich moglich, mit einem externen 3D-Programm wie zum Beispiel Blender [Ble14] oder
Maya [may] eine 3D-Szene zu erstellen und diese anschlieffend mit Three.js zu importieren.

Tabelle 2.1 beschreibt, ab welcher Version verschiedene Webbrowser WebGL unterstiitzen.

2.2.3 Editor

Der Code prozeduraler Texturen wird in einer Entwicklungsumgebung geschrieben, die den Benutzer
unterstiitzt. Essentiell dabei ist das Textfenster. Da sich Textur Code an syntaktische und semantische
Regeln halten muss, eignen sich HTML-Source-Code-Editoren sehr gut, die ein solches Highlighting

22

2.2 Grundlagen

umsetzen. Es gibt eine grofie Auswahl an Open-Source-Editoren. Um einen passenden auszuwihlen,
wird hier ein Vergleich der unterstiitzten Features durchgefiihrt. Dabei sind fiir die Webseite eine
schnelle, einfache und tibersichtliche Bedienung des Editors wichtig, um auch ungeschulten Benutzern
ohne lange Einarbeitungszeit das Programmieren von prozeduralen Texturen zu erméglichen. Die
Editoren werden auf Features wie ,Syntax Highlighting“ (SH), ,Syntax Checking® (SC), Intelligentes
Code Formatieren (ICF), Intelligentes Klammern (IK), Automatische Code Vervollstindigung (ACV),
Zeilen-Nummerierung (ZN) und UNDO/REDO Speicherung (U/R) tiberpriift. Im folgenden sind die
Anforderungen an die Features aufgelistet:

SH Der Editor erkennt nach der Einstellung der Programmiersprache automatisch die Syntax und
farbt den eingegebenen Code automatisch ein. Falls ein Editor nur bestimmte Programmier-
sprachen beherrscht, sollte zumindest die Moglichkeit bestehen, weitere Syntax-Definitionen
zu erstellen.

SC Der Editor beherrscht einfache Mechanismen, um grobe Syntaxfehler zu erkennen und zu
markieren.

ICF Der Editor hilft dem Benutzer bei der Code-Eingabe durch automatisches Einriicken und
Erkennen von Programm-Bl6cken. Hierbei wird nicht verlangt, dass der Editor per Klick eine
Formatierung durchfiihrt, sondern dass er das wahrend des Schreibens unterstiitzt.

IK Der Editor erkennt Programmbldcke und hilft bei der richtigen Klammerung.
ACV Der Editor bietet eine automatische Vervollstandigung von Schliisselwortern an.
ZN Der Editor erméglicht die Verwendung von Zeilennummern.

U/R Der Editor speichert Text-Eingabe-Zustdnde und erméglicht dem Benutzer, mit Einschréankun-
gen zwischen diesen Zustanden zu wechseln.

Zusétzlich zu den Editoren ist in der Tabelle fiir den Vergleich eine einfache HTML ,textarea” aufge-
fithrt.

Ace-Editor

Fir die browserbasierte Entwicklungsumgebung fiir prozedurale Texturen wurde der Ace-Editor
ausgewdhlt: Er ist extrem effizient, unterstiitzt iiber 110 verschiedene Programmiersprachen und
eine grofle Auswahl an verschieden Editor-Styles. Auch beim Ace-Editor ist die Syntax-Uberpriifung
fiir Javascript und Shader-Sprache nicht ausreichen, um fehlerfreien Textur-Code zu erzeugen. Fiir
Javascript-Code war die Implementierung eines Parsers notwendig und fir die Shader-Sprache eine
Vorcompilierung, um ausreichend Feedback zu erzeugen. Durch die Erweiterung des Ace-Editors
erfillt er alle Anforderungen, die an einen passenden Editor gestellt werden.

23

2 Eine Entwicklungsumgebung

Editor Features

SH SC ICF IK ACV ZN U/R
Ace Editor ja ja ja ja (ja) ja ja
Code Mirror ja (ja) ja (ja) ja ja ja
Markitup nein nein nein nein nein (nein) ja
Ymacs (ja) nein (ja) (ja) (ja) ja ja
Code Press ja nein (nein) nein (ja) ja ja
Edit Area (ja) nein (nein) nein nein ja ja
TextArea nein nein nein nein nein (nein) (ja)

Tabelle 2.2: Vergleich von HTML-Code-Editoren anhand von Features wie ,,Syntax Highlighting®
(SH), ,Syntax Checking” (SC), Intelligentes Code Formatieren (ICF), Intelligentes Klam-
mern (IK), Automatische Code Vervollstindigung (ACV), Zeilen Nummerierung (ZN)
und UNDO/REDO Speicherung (U/R). Als Bewertungen gibt es ,ja“, ,nein® ,(ja)*. ,(JA)"
bedeutet, dass der Editor ein Feature zum groffen Teil und ,(nein)®, dass der Editor ein
Feature kaum anbietet.

2.2.4 Datenbank

Um Texturen-Code dynamisch und komfortable zu speichern, zu laden und auszufithren, braucht es
eine Datenbank. Im Gegensatz zu Programmen, die nicht auf einen Webbrowser angewiesen sind und
somit auf lokale Dateien dynamisch zugreifen kénnen, wird bei Webseiten aus Sicherheitsgriinden
ein dynamischer Dateizugriff verhindert.

Das Ziel ist es, eine Datenbank fiir HTML zu finden, die ohne zuséitzliche Programme oder Server
auskommt und dennoch zuverldssig und schnell funktioniert. Eine MySql Datenbank, repréasenta-
tiv fiir Serverseitige Datenbanken, ist somit nicht passend. Fiir Clientseitige Datenbanken hat sich
Indexeddb [ind] als Standard etabliert und wird von fast allen aktuellen Webbrowsern unterstiitzt.
Die Speicherung der Daten wird komplett vom Browser ibernommen, ohne dass zusatzliche Scripte
verwendet werden miissen. Indexeddb ist eine asynchrone Datenbank, die geeignet ist, grofle struktu-
rierte Datenmengen zu speichern. Die Asynchronitit der Datenbank fithrt dazu, dass alle Teile, die
von der Datenbank abhingen, Event-basiert programmiert werden miissen. Fiir die Kommunikation
und Speicherung der Daten wird keine SQL-Syntax benutzt, sondern Objekte werden direkt in einem
Objekt-Speicher abgelegt. Da Indexeddb eine lokale Datenbank ist, kann damit kein Textur-Code auf
dem Server gespeichert werden. Fiir einen komfortablen Austausch zwischen den Benutzern ist eine
weitere Datenbank notwendig. <Bild zur Verdeutlichung/ Funktionsweise>

24

2.3 Implementierung

2.3 Implementierung

Dieser Abschnitt beschreibt die Umsetzung der browserbasierte Entwicklungsumgebung, welche
Anforderungen erfillt wurden und wie die fertige Entwicklungsumgebung funktioniert. Zur Verdeut-
lichung werden einige Beispiele gezeigt.

2.3.1 Technische Anforderungen

An die Implementierung der Browser-basierten Entwicklungsumgebung werden Anforderungen
gestellt, welche im Folgenden aufgelistet sind: Als Hauptanforderung sollte prozeduraler Textur-Code
editierbar dargestellt werden. Dafiir kann ein Source-Code-Editor verwendet werden, der den Benutzer
bei der Eingabe unterstiitzt und die Einarbeitung stark erleichtert. Das heif3t, dass der Editor als
wichtigstes Feature einen ,Syntax Checker” braucht, der die Eingabe so weit tiberpriift und Feedback
bei falscher Eingabe gibt, so dass der Code fehlerfrei compiliert werden kann.

Da Shader die grofie Rechenkapazitat der GPU benutzen konnen, sollte ein Shader-Editor implemen-
tiert sein. Um eine Vielzahl von Texturen zu unterstiitzen, ist es nicht ausreichend, nur einen Editor
zum Shader-Programmieren zu implementieren, da sonst Basis-Texturen wie ,Perlin Contrast® nur
schwer realisiert werden konnen. Deshalb sollten zusétzlich Texturen mit einer Hochsprache wie
zum Beispiel Javascript erzeugt werden kénnen.

Als weitere Anforderungen sollte der Textur-Code mit Hilfe von WebGL graphisch gerendert und an-
gezeigt werden konnen. Das Programm muss auflerdem Parameter der Textur automatisiert erkennen
und passende Slider zur Kontrolle dieser Parameter anbieten.

Um die Benutzererfahrung mit der Entwicklungsumgebung zu verbessern, sollte ein System zum
Speichern und Laden von Texturen vorhanden sein. Die Implementierung einer Datenbank bietet
sich dafiir an.

Als zweiter Teil sollte die Implementierung das Laden und Anzeigen eines Referenzbildes erméglichen,
sowie Interaktionen mit diesem, wie zum Beispiel das Extrahieren einer Farbe mit Hilfe eines Color-
Pickers.

Um Rickschliisse auf eine automatisierte Einstellung der Parameter zu bekommen, um ein spezielles
Design umzusetzen, muss eine Technik zum Aufzeichnen der Benutzerinteraktion implementiert sein.
Dafiir ist es ausreichend, die Bewegung und Eingabe der Maus sowie die Eingabe der Tastatur zu
speichern. Fir detailliertere Aufzeichnungsmethoden wie zum Beispiel ,Eye Tracking” wird externe
Software benétigt.

2.3.2 Webseite

Wie man in Abbildung 2.9 sehen kann, ist die Webseite grob in zwei Halften unterteilt. In der linken
Halfte sieht man ein Fenster, in dem die prozedurale Textur gerendert dargestellt wird und ein Fenster
fiir ein Referenzbild. Die rechte Seite zeigt eine Tab-Struktur an. Der erste Tab liefert ein Array von
Editoren, um Texturen in der Hochsprache Javascript zu erzeugen. Der zweite Tab bietet ein Array

25

2 Eine Entwicklungsumgebung

Vicriar

06

019
OREL]

e = oo

Dradaudi
baad

TaderComran LT .o 1

delets

rabsld Asgababi Optiznar
Rcforonchid lados Chdiet Al |ereceomp 2141 ey

Aungabatild apsicharn Lk generiersn Lowniond ProzeduraleTeiurcon
Caler Picker fusr Farbe 1 sktisberen | deaktideren

Coler Picker fusr Farbe 2 sktisberen deaktideren o

+ Banuizar intaraksiars Tracking Optiznen

Abbildung 2.9: Grobe Aufteilung der Browserbasierten Entwicklungsumgebung: 1: WebGL-Fenster,
2: Referenzbild, 3: Javascript-Textur-Editor, Shader-Editor oder UI-Elemente, 4: Tab-
Auswahl

von Editoren fiir die Shader Programmierung. Im dritten und letzten Tab werden dynamisch und
statisch generierte Ui Elemente angezeigt.

Javascript Textur Editor

Das Textur-Editor-Array (siehe Abbildung 2.10 bietet drei Kontrollelemente: Laden einer Textur,
Downloaden einer Textur und Speichern einer Textur in die Datenbank.

Um die Bedienbarkeit des Editors zu verbessern und den Aufwand fiir das Programmieren von
Javascript-Textur-Code zu verringern, ist der Editor in ein Array von Editoren unterteilt. Fir die
ersten Editoren wurden die meisten Funktionen wie zum Beispiel Zeilennummerierung, ,Syntax
Highlighting®, erweitertes ,Syntax Checking® komplett abgeschaltet, da die Funktionen fiir die Eingabe
von Dateiname, Dateityp, Namespace nicht notwendig sind. Des Weiteren gibt es einen Editor, um eine
Konstante zu erzeugen, die bei den meisten anderen Editoren ohne zuséitzliche Referenz verwendet
werden kann. Durch ein Plus-Symbol lassen sich beliebig viele Editoren fiir Konstanten erzeugen.

Fir die Hauptfunktion, die schliellich zum Erzeugen der Textur aufgerufen wird, gibt es einen
weiteren Editor. Durch das Klicken einer ,,Checkbox® wird ein erweitertes ,Syntax Checking” aktiviert,
das allerdings eine striktere Syntax als viele Javascript-Compiler erfordert. So muss jede Variable
ordentlich deklariert sein, unabhangig davon, ob eine Funktion, ein Objekt, ein Array oder ein Wert

26

2.3 Implementierung

Texture

Choose File | No file chosen
Generate Download Link
Save to Database

File Name Default
File Type texture
Namespace DEFLT
Constant Van +
Scalar| + name: contrast,
o min : @.@,
max : 1.8,
step : @.01,
def : 1.8,
scale:
function(value){
return value;
Evaluate 1-|function evaluate(x,y,z){
2 return contrast;
30}
Helper FunctionlJ| + | 1

Abbildung 2.10: Javascript-Textur-Editor der browserbasierten Entwicklungsumgebung: Oben sind
drei Kontrollelemente: Laden, Downloaden, Speichern in Datenbank, zu sehen
und darunter die Unter-Editoren fiir den Dateinamen, Dateityp, Namespace,
die Konstanten (beliebig erweiterbar: ,Plus Button®), die Parameter, die Haupt-
Berechnungsfunktion sowie fiir die Hilfs-Funktionen.

EB1o float value = 1}
28
21 '=' : cannot convert from 'const mediump int' to 'float’
22 tloat coord_y = abs{y).
23
i

name = undefined ,def = undefined

sclé: ‘
function(valus){

Abbildung 2.11: Das obere Bild zeigt, wie der Shader-Editor auf einen Eingabe-Fehler bei einge-
schaltetem erweiterten ,Syntax Checker” reagiert. Analog funktioniert das auch fiir
einen Teil der Javascript-Editoren. Im unteren Bild ist die Definition eines Parame-
ters angezeigt, bei der Name und Default-Wert fehlen: Beim Verlassen des Editors
wird ein Informations-Symbol mit entsprechender Fehlermeldung angezeigt.

27

2 Eine Entwicklungsumgebung

zugewiesen oder gelesen wird. Das hilft, Fehler zur Kompilierzeit zu vermeiden, die zum Beispiel
durch Tippfehler entstehen.

~,Math® ist das einzige vordefinierte Objekt. Es bietet wichtige mathematische Funktionen und Kon-
stanten, die zur Berechnung von prozeduralen Funktionen notwendig sind: Math.sin(x), Math.cos(x),
Math.pow(x,y), Math.E, Math.PI. Eine vollstindige Referenz fiir das Math-Objekt findet sich in:
[wsc]. Der Benutzer muss allerdings bei der Benutzung von Objekten vorsichtig sein: Zugriffe auf
Objekt-Eigenschaften oder -Methoden, die nicht existieren, liefern keinen Fehler. Beim Rendern der
kompilierten Textur kann somit zum Beispiel ein schwarzes Bild erscheinen.

Die Komplexitat der Hauptfunktion wird stark reduziert, indem weitere Editoren, die fiir Hilfsfunktio-
nen zustandig sind, eingefiigt werden. Diese lassen sich beliebig oft duplizieren und bieten dieselbe
Funktionalitat wie der Editor fir die Hauptfunktion.

Der néchste Typ von Editor erméglicht dem Benutzer, Parameter fiir die prozedurale Textur zu
erzeugen. Fur jeden Parameter muss ein Name, ein Minimum- und Maximum-Wert, eine Schrittweite,
ein Standardwert, sowie eine Funktion zum Skalieren des Parameters angegeben werden. Falls bei der
Definition eines Parameters ein Wert vergessen wurde, wird der Editor beim Verlassen mit einem
Informationssymbol versehen. Durch ein ,Maus-Over” bekommt der Benutzer genaue Informationen
iiber fehlende Werte.

Der erweitere ,Syntax Checker” lasst sich optional fir den Hauptfunktons-Editor, der die Funktion
enthilt die zum Berechnen der prozeduralen Textur aufgerufen wird, sowie fir die Hilfsfunktionen
aktivieren. Der vom Editor bereitgestellte ,Syntax Checker” wird durch einen dafiir entwickelten
Parser erweitert. Dieser Parser ist eine Abwandlung des Algorithmus [DCr] von Douglas Crockford,
der die ,Top Down Operator Precedence” Parser Technik, beschrieben im Paper [Pra73] umgesetzt
hat. Diese Technik basiert darauf, dass der Programm-Code in Tokens unterteilt wird. Diese Tokens
werden von vorne nach hinten rekursiv durchgearbeitet. Wenn der ,,Syntax Checker® einen Fehler
gefunden hat, wird dieser mit einer detaillierten Fehlermeldung in der passenden Zeile angezeigt.

Um den Textur-Code zu speichern oder zu laden, wird der Inhalt der Editoren in das JSON-Format
umgewandelt. Bevor die prozedurale Textur berechnet werden kann, wird der JSON-String vorcompi-
liert und in ein Script umgeschrieben. Dies lauft als Hintergrundprozess und funktioniert problemlos,
falls der erweiterte ,,Syntax Checker” keine Fehler anzeigt.

Im Ul-Elemente Tab (sieche Abbildung 2.12) gibt es weitere Interaktions-Moglichkeiten mit dem
Javascript-Textur-Editor: Zum einen kann der Benutzer hier die prozedurale Textur aus der lokalen
Datenbank auswihlen, die gerendert wird. Diese lasst sich per Button auch direkt in den Editor laden
oder komplett aus der Datenbank 16schen. AuBlerdem kann die Gréfe der Textur in 2V Schritten
(zum Beispiel: 64 x 64, 128 x 128, 512 x 64, 1024 x 2) ausgewihlt werden. Die Textur-Grof3e beliebig
grof3 zu wihlen, ist nicht sinnvoll, da das WebGL-Fenster eine Skalierung auf 512 x 512 vornimmt.

Im Javascript Textur Editor wird fiir jeden Pixel ein Wert berechnet. Die Farbe des Pixel wird durch
eine Interpolation von zwei Farben berechnet, die im UI Elemente Tab angegeben werden. Fiir die
Parameter, die der Benutzer fiir eine Textur definiert hat, werden dynamisch Slider erzeugt. Eine
Veranderung der Slider fithrt zum automatischen Neu-Berechnen und Anzeigen der Textur.

28

2.3 Implementierung

¥ Textur Ul Elemente
Textur Datei Auswahl (aus lokaler Datenbank) PerlinContrast *

Ausgewaelte Textur in Editor laden load
Frequency 0 1 1
Kontrollparameter Stretch (1] 1 0
Contrast -3 3 0
Textur Breite (Erlaubte Werte: 2AN)

Textur Hoehe (Erlaubte Werte: 2N)

512
512
Farbe 1 (Interpolation) [
Farbe 2 (Interpolation)]

Ausgewaelte Textur Datei loeschen (aus lokaler Datenbank) delete

Abbildung 2.12: UI-Elemente fiir die Javascript-Textur aus der browserbasierten Entwicklungsum-
gebung: Auswahl der Textur-Datei, Laden der Textur-Datei in den Editor, Kon-
trollparameter, Auflésung der Textur, Farbauswahl fiir Interpolation, Léschen der
ausgewahlten Textur-Datei aus der Datenbank.

¥ Shader Ul Elemente
Shader Datei Auswahl (aus lokaler Datenbank) TextureStar v

Ausgewaelten Shader in Editor laden load
Tips 4.0 10.0 5.0
Kentrellparameter Radius 0.0 1.0 02
Number 3.0 8.0 4.0

Ausgewaelte Shader Datei loeschen (aus lokaler Datenbank) | delete

Abbildung 2.13: UI-Elemente fir die Shader-Textur aus der browserbasierten Entwicklungsumge-
bung: Auswahl der Textur-Datei, Laden der Textur-Datei in den Editor, Kontrollpa-
rameter, Loschen der ausgew#hlten Textur-Datei aus der Datenbank.

Shader-Editor

Die Struktur des Shader-Editor (siehe Abbildung 2.13) unterscheidet sich in einigen Punkten vom
Javascript-Editor. So gibt es keinen eigenen Editor fiir Konstanten oder Hilfsfunktionen oder fiir den
Namespace. Der Editor fiir die Hauptfunktion unterteilt sich hier in einen Editor fiir den Vertex-Shader
und in einen Editor fiir den Fragment-Shader. Im Parameter-Editor bleibt alles gleich, auler dass es
keine Funktion zum Skalieren der Parameter gibt.

Die beiden Shader miissen komplett bis auf die vom Three.js Framework bereitgestellten , Uniforms*
und Attribute angegeben werden. Mit Three.js wird ein Plane erstellt, das 100 x 100 Ecken hat. Der
Vertex-Shader wird fiir jede Ecke einmal aufgerufen und fiihrt die in der Main Methode angege-
bene Berechnung aus. Der Fragment-Shader berechnet fiir jeden Pixel die Farbe. Standardmaflig
ist ein Default-Shader voreingestellt, der die mit Javascript berechnete Textur einliest und direkt
weiterleitet.

Um auf mathematische Operationen zuzugreifen, muss hier nicht wie beim Javascript-Textur-Editor
das ,Math“ Objekt benutzt werden, da diese Operationen direkt firr die Shader-Sprache verfiigbar
sind. Genauere Informationen zu den unterstiitzten mathematische Operationen sind in der ,WebGL
Reference Card“ [Web] zu finden.

29

2 Eine Entwicklungsumgebung

Auch fir den Vertex- und Shader-Editor gibt es einen optional auswahlbaren, erweiterten ,Syntax
Checker®. Dabei wird der Shader-Code probeweise vorcompiliert und die Kompilier-Fehler werden
detailliert an den entsprechenden Zeilen angegeben (siehe Abbildung 2.11). Auch hier muss der
Benutzer aufpassen: Es wird nicht iiberpriift, ob die im Parameter Editor erstellten ,,Uniforms® zu den
im Shader aufgerufenen passen.

Im UI-Elemente-Tab gibt es fiir den Javascript-Texture-Editor mit ein paar Unterschieden dieselben Op-
tionen fiir den Shader-Editor. Weder lasst sich die Aufldsung einstellen noch kann man Farb-Parameter
an den Shader tibergeben. Falls Farbwerte zum Interpolieren benétigt werden, konnen diese mit ein
bisschen Aufwand iiber den Javascript-Textur-Editor bereitgestellt werden. Zum Beispiel kénnten 6
Pixel der Javascript-Textur beide Farbwerte speichern und vom Shader ausgelesen werden.

Zum Ausfithren der Webseite wird Chrome empfohlen. Firefox hat unter anderem Beispiel Probleme
mit den Worker-Clients des Ace Editors. Diese sind fiir das Uberpriifen der Syntax notwendig.
AuBlerdem werden HTML5 Elemente wie ,<details>“ und ,<summary>“ nicht unterstiitzt, die fir das
Layout der browserbasierten Entwicklungsumgebung benutzt werden. Mit anderen Browsern wurde
die Webseite nicht vollstandig getestet, um eine Aussage iiber die Kompatibilitit zu treffen.

Die Implementierung des Referenzbildes wird in Kapitel 3 behandelt und die Implementierung des
Benutzer-Interaktionstracking wird in Kapitel 4 genauer beschrieben.

2.3.3 Textur-Shader-Beispiel

Die Prozessschritte, die zur Erzeugung einer prozeduralen Textur mit der browserbasierten Entwick-
lungsumgebung notwendig sind, werden anhand eines Anwendungsbeispiels gezeigt.

Erstellung einer prozeduralen Javascript-Textur

In den grau unterlegten Feldern sieht man gekiirzte Eingabebeispiele.

1. Schritt: Auswahlen eines Dateinamens. Es sind alle Kombinationen von Zahlen, Buchstaben,
sowie Binde- und Unterstriche erlaubt. Nachdem die Textur in die Datenbank geladen wurde,
kann die Textur im UIl-Elemente-Tab anhand des Dateinamens ausgewahlt werden. Die Datei-
namen miissen eindeutig sein. Falls eine Javascript-Textur denselben Dateinamen wie eine

schon vorhandene Textur hat, wird diese uiberschrieben!
PerlinContrast

2. Schritt: Auswiéhlen des Textur Types: Fur prozedurale Javascript-Texturen ist nur: ,texture®
giltig.

texture

3. Schritt: Auswahlen des Namespaces, der fiir die Javacript-Datei notwendig ist. Es sind nur

Grof3buchstaben erlaubt.
PERCON

30

2.3 Implementierung

4. Schritt: Definieren von globalen Konstanten: Fiir jede Konstante muss der Name mit einem
Doppelpunkt getrennt vom Wert angegeben werden. Giiltige Werte sind Integer, Floats, Arrays,

String und Objekte. Auflerdem ist pro Editor nur eine Konstante erlaubt.
values : [151, 160, 137, 91, 90, 15, ..]

5. Schritt: Definieren der Parameter, die zur Manipulation der fertigen Textur verwendet werden:
Fiir jeden Parameter miissen mehrere Attribute, die durch Komma getrennt angegeben werden,
definiert sein. Die Attribute sind Name, Minimum und Maximum Wert, Schrittweite, Default-
Wert und eine Funktion, die den Parameter skaliert. Fiir jeden neuen Parameter muss tiber das

Plus-Symbol am linken Rand ein neues Eingabefeld erzeugt werden.
name : frequency,

min : 0.0,
max : 1.0,

step : 0.01,
def : 1.0,

scale :

function (value){

return Math.pow(2.0, 2.0 + value * 6.0) ;

}

6. Schritt: Eingeben der Hauptfunktion, die aus den Konstanten und Parametern und der aktuellen
Pixelposition einen Float-Wert berechnet. Deshalb muss die Funktion einen Return-Wert haben.
In diesem Editor konnen Konstanten, Parameter und Hilfsfunktions-Namen direkt verwendet
werden. Neben dem Editor Name ,Evaluate® befindet sich eine ,,Checkbox®. Falls diese aktiviert
ist, wird der erweiterte ,Syntax Checker® verwendet und der Benutzer bekommt Fehler ,on the
fly“ angezeigt. Grundsatzlich gilt die Javascript-Syntax zum Ausformulieren der Funktion. Fiir

mathematische Operationen wird das im Abschnitt 2.3.2 beschriebene ,Math“ Objekt angeboten.
function evalute (x,y,z){
var t = noiseNormalized ((1.0 — stretch) = x =frequency, y * frequency, 0.2);
var value = 0.0;
var alpha = Math.exp(contrast) ;
value = (t > 0.5) ? (1.0 — (Math.pow((1.0 —t) » 2.0, alpha) » 0.5)) : (Math.pow((t
x 2.0), alpha) = 0.5);

return value;

}

7. Schritt: Zur Vereinfachungen der Hauptfunktion konnen im Hilfs-Funktionen-Editor zusitzliche

Funktionen definiert werden. Hier gelten dieselben Regeln wie im Hauptfunktions Editor.
function noiseNormalized(x,y,z){
return (noise(x,y,z) + 1.0) / 2.0;

}

8. Schritt: Uberpriifung, ob alle Eingaben richtig sind und kein Editor eine Warnung ausgibt. Falls
das zutrifft, kann der Benutzer die Textur in der lokalen Datenbank abspeichern oder einen
Link erzeugen und die Textur herunterladen. Sobald die Textur in der Datenbank gespeichert
ist, wird sie im UI-Elemente-Tab (siehe Abbildung 2.12) in der Option ,Textur Datei Auswahl®
angezeigt und kann ausgewahlt werden. Der Default-Shader ist so programmiert, dass er die
Javascript-Textur ausliest und auf das Standard-Plane-Objekt mappt.

31

2 Eine Entwicklungsumgebung

Erstellung einer prozeduralen Shader-Textur

32

1. Schritt: Zuerst muss der Shader-Tab ausgewahlt werden.

2. Schritt: Eingeben des Dateinamens und des Dateityps. Fiir den Dateinamen gelten dieselben

Restriktionen wie fir den Dateinamen der Javascript-Textur. Als Dateityp muss ,shader” ange-
geben werden.

. Schritt: Definition der Parameter. Auch hier gelten dieselben Regeln wie fiir Javascript-Texturen,

mit einer Ausnahme. Es muss keine Skalierungs-Funktion angegeben werden. Die Skalierung
wird, falls gefordert, im Fragment oder Vertex-Shader angegeben.
name: radius,

min : 0.0,
max : 1.0,
step : 0.1,
def : 0.2,

. Schritt: Erstellen des Vertex-Shaders: Im Fragment-Shader wird fiir jeden Pixel anhand seiner

Position ein Wert oder eine Farbe berechnet. Das Attribut ,myPosition“ darf allerdings wie
alle anderen Attribute auch nur im Vertex-Shader gelesen werden. Damit es im Fragment-
Shader verfigbar ist, muss eine Weiterleitung mittels ,varying“ Variable vorgenommen werden.
Deshalb wird zuerst das Attribut ,myPosition“ deklariert, das die Positionen der Ecken auf
einen 3D Wiirfel mit Lange 1 mappt.

Als Objekt steht dem Vertex-Shader ein Plane-Objekt zur Verfiigung, das in Quadrate unter-
teilt ist und somit aus mehr als 4 Ecken besteht. Damit das Plane-Objekt richtig dargestellt
wird, miissen die Vertex-Koordinaten in View-Port-Koordinaten umgewandelt und der Variable
,gl_Position® zugewiesen werden. Dafiir sind vom Framework ,Three.js“die ,projectionMa-
trix", die ,modelViewMatrix" und der 3D-Vektor ,position” bereitgestellt. Mit weiteren Matrix-
Operationen kann das Plane skaliert, rotiert und transformiert werden. Um zum Beispiel eine
Highmap zu erzeugen, muss dem Z-Wert des ,position” Vektors ein Offset hinzugefiigt werden.

Falls zur Berechnung der Vertex-Positionen Parameter definiert wurden, kénnen diese als
Uniforms vom Typ Float deklariert werden. Die im Textur-Tab programmierte Javascript-Textur
kann sowohl im Vertex als auch im Fragment-Shader als uniform vom Typ ,sampler2D“ mit
dem Namen ,texture” verwendet werden. Zugriff auf die Textur-Daten kann durch die Funktion
,sampler2D(Textur Name, Position) erlangt werden. Dabei sind fiir die Position 2D-Vektoren

im Bereich 0.0 bis 1.0 relevant.
0.0 1.0

Um den Shader probeweise zu compilieren und auf Fehler zu testen, kann am linken Rand eine
,Checkbox® aktiviert werden. Falls Fehler im Code vorhanden sind, werden die betreffenden
Zeilen markiert und mit einer Fehlermeldung versehen.

attribute vec3 myPosition;

varying vec3 vPosition ;

void main() {
vPosition = myPosition;
gl Position = projectionMatrix » modelViewMatrix « vec4(position ,1.0) ;

2.3 Implementierung

}

5. Schritt: Erzeugung des Fragment-Shaders: Hier wird zuerst die Schnittstelle zum Vertex-Shader,
die ,varying® Variable, deklariert. Mit dieser Variable, welche die aktuelle Position der Pixel
bestimmt, kann in der Main-Methode die Pixel-Farbe berechnet und der Variablen ,,gl_FragColor"
zugewiesen werden. Wie beim Vertex-Shader kénnen sowohl die Javascript-Textur als auch die
definierten Parameter als ,,Uniforms® eingebunden werden.

Auch kann eine Fehlerkontrolle wie beim Vertex-Shader aktiviert werden.

6. Schritt: Falls weder Kompilierfehler beim Aktivieren der Checkboxen auftreten, noch War-
nungen bei den Parametern angezeigt werden, kann die prozedurale Shader-Textur in der
Datenbank oder per Link heruntergeladen werden. Wenn eine Speicherung in der Datenbank

stattfindet, kann der Shader im UI-Elemente-Tab selektiert werden.
varying vec3 vPosition ;

uniform float tips ;

uniform float radius;

uniform float number;

float evaluate (float x, float y);
float _step (float i, float a);

void main() {

float color = evaluate (vPosition.x, vPosition.y);
gl_FragColor = vec4(color, color, color ,0) ;

}

float evaluate (float x, float y) { .. }

33

3 Transfer von Referenzbild-Eigenschaften

In diesem Kapitel wird analysiert, wie Eigenschaften aus einem gegebenen Eingabebild extrahiert
werden und die Parameter einer prozeduralen Textur so angepasst werden konnen, dass diese dem
Referenzbild so dhnlich wie méglich sind.

3.1 Verwandte Arbeiten

Zuerst muss analysiert werden, welche Eigenschaften aus einem Referenzbild gewonnen werden
konnen, denn durch den Vergleich der Eigenschaften der prozeduralen Textur und der Eigenschaften
des Referenzbildes konnen die Textur-Parameter so angepasst werden, das die Eigenschaften und
damit meistens das Aussehen sehr dhnlich wird. Eigenschaften kénnen mit Hilfe von Bildstatistiken
gemacht extrahiert werden. Im Paper ,,A Survey of Image Statistics Relevant to Computer Graphics®
[PCR11] werden aktuelle Bildstatistiken diskutiert. So wird zwischen Statistiken erster Ordnung,
die nur einzelne Pixel betrachten, Statistiken zweiter Ordnung, die Pixel-Paare betrachten, und
Statistiken hoherer Ordnung unterschieden, die 3 oder mehr Pixel gleichzeitig betrachten. Bild-
Statistiken erster Ordnung werden standardmafig durch Histogramme dargestellt. Ein Histogramm
ist eine graphische Haufigkeitsverteilung von Bildmerkmalen wie zum Beispiel Farben oder Helligkeit.
Bild-Statistiken erster Ordnung sagen nicht viel iiber die rdumliche Verteilung von Pixeln aus, da
zwei komplett verschiedene Bilder dieselben Histogramme erzeugen konnen. Bildstatistiken erster
Ordnung sind ausreichend, um Eigenschaften wie Bildhelligkeit, Kontrast oder Farbzusammensetzung
zu vergleichen.

Zu den Bildstatistiken zweiter Ordnung zdhlen zum Beispiel die spektrale Leistungsdichte oder die
Gradienten-Analyse. Die spektrale Leistungsdichte analysiert die relative Leistung von verschiedenen
rdaumlichen Frequenzen. Mit Hilfe der Fourier-Analyse lassen sich zum Beispiel Kanten und Ubergénge
durch eine gewichtete Summe von Sinusschwingungen, bei der hohe Frequenzen weniger stark
gewichtet werden, darstellen. Auflerdem lassen sich durch eine spektrale Leistungsdichte-Analyse
RegelmaBligkeiten in Bildern erkennen.

Die Gradienten-Analyse betrachtet die Beziehung von jeweils zwei Pixeln zueinander. Dadurch
entsteht ein Gradienten Feld, in dem zum Beispiel homogene Oberflaichen genauso wie scharfe
Ubergénge erkannt werden konnen.

Durch die Erweiterung zu einer Bildstatistik hherer Ordnung kénnen Bildstrukturen noch besser
analysiert werden. Dadurch, dass die Gradienten-Analyse mehr als zwei Pixel gleichzeitig betrachtet,
koénnen zum Beispiel Wellenstrukturen direkt erkannt werden.

35

3 Transfer von Referenzbild-Eigenschaften

¥ Referenzbild/Ausgabebild Opticnen

Referenzhild laden Choose File | No file chosen

Ausgabebild speichern Link generieren Download ProzeduraleTextur.png
Color Picker fuer Farbe 1 aktivieren/deaktivieren

Color Picker fuer Farbe 2 akrivieren/deaktivieren

Abbildung 3.1: Ul-Elemente fiir Referenz- und Ausgabebild aus der browserbasierten Entwick-
lungsumgebung: Laden und Anzeigen des Referenzbildes, Speichern des Textur-
Ausgabebilds, Aktivieren der Color-Picker.

Um die Eigenschaften auf eine prozedurale Textur zu ibertragen, miissen Parameter angepasst werden.
Da Parameter selten direkt eine Struktur erstellen, wird im Paper ,Interactive Parameter Retrieval for
Two-Tone Procedural Textures “ [GKHF14] von L. Gieseke et al. ein Verfahren vorgestellt, in dem
die Parameter automatisiert eingestellt werden und die Eigenschaften von Referenzbild und dem
Bild der prozeduralen Textur verglichen werden. Die Prozess-Pipeline startet damit, dass aus dem
Referenzbild eine ,,Color Blend Map®“ sowie zwei Farben extrahiert werden. Zu der ,Color Blend Map*®
wird nun aus einer Datenbank von bereits generierten prozeduralen Textur-Bildern mit Hilfe einer
Distanz-Metrik, welche die Ahnlichkeit von zwei verschiedenen Bildern beschreibt, eine passende
prozedurale Textur mit Parametern ausgewahlt. Durch Interpolation der Textur-Werte mit den zwei
zuvor extrahierten Farben entsteht ein neues Bild, welches sich im optimalen Fall nur geringfiigig
vom Referenzbild unterscheidet.

An die Distanz-Metrik werden dabei sehr hohe Anforderungen gestellt: Zum einen sollen alle fiir
den Benutzer wichtigen Merkmale im Referenzbild gefunden werden, ohne dass die Metrik Bildtyp
spezifisch ist, zum anderen muss die Berechnung der Metrik in akzeptabler Zeit ablaufen.

3.2 Implementierte Interaktionsmaoglichkeiten

Fir die browserbasierte Entwicklungsumgebung steht kein automatisierter Algorithmus zur Ver-
fugung, der die Parameter anpasst. Der Benutzer kann im UI-Elemente-Tab (Abbildung 3.1) ein
Referenzbild laden und anzeigen lassen und mit Hilfe eines ,Color Pickers” zwei verschiedene Farben
extrahieren, die zur Interpolation der Pixelfarben der prozeduralen Javascript-Textur verwendet
werden. Weitere Interaktionsmoglichkeiten, die in die Browserbasierte Entwicklungsumgebung fiir
prozedurale Texturen beliebig integriert werden kénnen und vom Interaktiven Aufbau der Webseite
stark profitieren, miissen noch implementiert werden. Der Benutzer kann allerdings bereits die Pa-
rameter der Textur beliebig anpassen und das durch die prozedurale Textur erzeugte Bild manuell
speichern. Ein Vergleich von Referenzbild mit Textur-Bild durch ein externes Programm ist deshalb

moglich.

36

4 Aufzeichnen von Benutzer-Interaktionen

Die Menge an Programmen und Webseiten, die bestimmte Aufgaben erfiillen, steigt immer weiter.
Welches Programm oder welche Webseite vom Benutzer ausgewhlt wird, ist von verschiedenen
Faktoren abhingig. Fin wichtiger Faktor ist die Qualitit, da diese bestimmt, wie effizient und einfach
ein Programm oder eine Webseite benutzt werden kann. Um zum Beispiel die Bedienbarkeit von
Webseiten zu verbessern, ist es hilfreich herauszufinden, wie Benutzer mit dieser Webseite interagieren,
um nach einer genauen Analyse Verbesserungen auszuarbeiten. Viele Programme und Webseiten
speichern nur Daten; wie diese Daten eingegeben werden, wird nicht gespeichert.

Fir die browserbasierte Entwicklungsumgebung ist die Frage wichtig: ,Wie werden Daten eingegeben
oder wie werden Parameter verdndert, um die prozedurale Textur an das Referenzbild anzupassen?”.
Denn damit kann die Bedienbarkeit der browserbasierten Entwicklungsumgebung verbessert werden
und es konnen Riickschliisse auf die automatische Anpassung von Parametern erlangt werden.

4.1 Verwandte Arbeiten

Um mehr tiber das Aufzeichnen von Benutzerinteraktionen herauszufinden, wird das Paper “Knowing
the User’s Every Move — User Activity Tracking for Website Usability Evaluation and Implicit
Interaction,, [AWS06] betrachtet, welches analysiert, wie ein genaues Aufzeichnen von Benutzer
Interaktionen funktioniert, ohne dass die Benutzererfahrung negativ beeinflusst wird. Ein wichtiger
Punkt ist, der im Paper beschrieben wird, dass ein Aktivitats-Tracking-Ansatz, der direkt auf dem
Server Daten sammelt, bei vielen Webseiten nicht mehr funktioniert. Das Server-Client-Konzept, bei
dem der Client nur als Eingabe- und Darstellungsgert fungiert und Berechnungen und Speicherungen
auf dem Server ausgefithrt werden, wird immer 6fter durch ein neues Konzept abgelst, bei dem der
Client mittels Javascript die Berechnung und Vorverarbeitung von Eingabedaten und in seltenen
Fallen durch eine lokale Datenbank auch die Speicherung der Daten iibernimmt. Der Server ist in
diesem Fall nur dazu da, die Webseite zu laden und Daten zu laden oder speichern.

Der Ansatz, der im Paper vorgestellt wird, benutzt einen Proxy, der zwischen Server und Client
positioniert wird und die Daten der Webseite modifiziert, bevor sie auf dem Webbrowser des Clients
ausgefiihrt werden. Dabei wird Javascript-Code an die Webseite angehangt, der die Funktionalitét fiir
das Aufzeichnen von Benutzerinteraktionen iibernimmt und eine Log-Datei generiert. Das bietet die
Moglichkeit, vom Server unabhéngig ein Aktivitats-Tracking durchzufiihren.

Es gibt verschiedene Moglichkeiten, die Aktivitat von Benutzern mit Webseiten aufzuzeichnen. Durch
das Speichern von Mausinteraktionen, wie Bewegung, Rechtsklick, Linksklick, Mittelklick, Scrollen
und Tastatureingaben konnen viele Informationen gewonnen werden. Zusatzlich kann durch eine
externe Kamera die Bewegung der Augen und somit der Blickfokus gespeichert werden. Das erfordert

37

4 Aufzeichnen von Benutzer-Interaktionen

externe Programme und Hardware und ist deshalb aufwéndiger. Im Paper ,What can a mouse cursor
tell us more? Correlation of eye/mouse movements on web browsing.“ [CAS01] wird darauf hingewie-
sen, dass ein starker Zusammenhang zwischen Mausbewegung und Blickfokus besteht. Somit kann
in vielen Féllen auf ,Eye-Tracking® verzichtet werden, um Kosten zu sparen und das Aufzeichnen von
Benutzerinteraktionen ohne externe Hardware und Software durchzufiihren. Bei der browserbasierten
Entwicklungsumgebung fiir prozedurale Texturen konnte ,Eye-Tracking® dennoch wichtig sein, um
Riickschliisse auf eine automatisierte Einstellung der Parameter zu bekommen. Dadurch, dass die
Maus mit dem Einstellen der Parameter beschéftigt ist, wihrend die Augen hauptsichlich das Refe-
renzbild und die Bildausgabe der prozeduralen Textur betrachten, kommt es zu groflen Abweichungen
zwischen der Mausposition und dem Blickfokus. Mit Hilfe von ,Eye-Tracking” kénnten auch die fiir
den Benutzer wichtigen Merkmale des Referenzbildes gewonnen werden.

Gespeicherte Informationen iiber Benutzerinteraktionen sind nicht sehr abstrakt. Es ist zum Beispiel
nur bekannt, dass die Maus einen Klick auf Position (x,y) ausgefithrt hat. Um sinnvolle Aussagen
tiber die Benutzerinteraktionen zu erstellen, miissen die gespeicherten Informationen veranschaulicht
werden. Dazu ist Wissen tiber das Webseitenlayout notwendig, da sonst einem Mausklick keine Aktion
wie zum Beispiel Speichern oder Laden zugewiesen werden kann. Bei hoch dynamischen Webseiten,
die eine Tab-Struktur besitzen und dynamische Eingabeelemente, muss der aktuelle Zustand einer
Webseite entweder direkt in der Log-Datei oder bei der Veranschaulichung berechnet werden, um
eindeutige Aussagen iiber die verwendeten Aktionen zu treffen.

Nach der Veranschaulichung kénnen durch die Analyse verschiedene Informationen gewonnen
werden: Zum einen, welche Aktionen in welcher Reihenfolge ein Benutzer vorgenommen hat. Diese
Information ist zum Beispiel relevant fiir die Frage wie ein Benutzer die Parameter einer prozeduralen
Textur einstellt. Durch die Analyse der gesammelten Informationen lassen sich auch Riickschliisse
auf den Benutzer erstellen: Person A liest die Anleitung nicht richtig und fithrt falsche Aktionen aus.
Zum Anderen lassen sich Aussagen tiber die Prézision beim Klicken oder die Geschwindigkeit beim
Tippen feststellen. Durch die Analyse konnen genauso gut kritische Informationen iiber die Webseite
gefunden werden: Ein haufiges Daneben-Klicken der Benutzer schliefit auf zu kleine Buttons oder das
Finden einer Option, die haufig benétigt wird, braucht zu lange und deshalb sollte diese spezifische
Option besser positioniert sein.

4.2 Implementierung

Fiir die browserbasierte Entwicklungsumgebung ist ein detailliertes Tracking von Benutzerinteraktio-
nen implementiert. Um dieses zu aktivieren, kann der Benutzer im Ul-Elemente Tab (Abbildung 4.1)
eine Checkbox aktivieren. Dann werden automatisch die Mausbewegung, Mausklicks, Mausscrollen
und Tasteneingaben in ein Logfile gespeichert, das heruntergeladen werden kann.

Im Gegensatz zum oben genannten Paper wird hier allerdings kein Proxy programmiert, der auch
dann noch Benutzerinteraktionen aufzeichnet, wenn der Benutzer die Webseite verlassen hat, da
fir die browserbasierte Entwicklungsumgebung nur direkte Interaktionen mit der Webseite wichtig
sind. Zum Beispiel ist es interessant herauszufinden, wie ein Benutzer die Parameter einstellt; ob er
hingegen noch weitere Webseiten wihrenddessen, besucht ist nicht relevant.

38

4.3 Anforderungen an eine Benutzerstudie

¥ Benutzer Interaktions Tracking Optionen
Log Datei speichern Link generieren
Log Datei zuruecksetzen refresh

User Tracking aktivieren/deaktivieren

Abbildung 4.1: UI-Elemente fiir das Benutzerinteraktions-Tracking aus der browserbasier-
ten Entwicklungsumgebung: Log-Datei speichern, Log-Datei zuriicksetzen,
Benutzerinteraktions-Tracking aktivieren/deaktivieren.

Listing 4.1 Beispiel fiir JSON-Objekt eines Tastatur-Taste-Driicken Events: In ,time” steht der Zeit-
stempel, in ,option“ der Ausloser des Events, ,position” beinhaltet, falls relevant, die Mausposition,
und ,,message”, welche Taste gedriickt wurde.

{
"time": "2024-10-15 23:59:58.587",
"option": "onkeydown",
"position": "(0,0)",
"message": "U+0053"
I

Die Implementierung der Tracking-Funktion benutzt verschiedene Javascript Events:
« Maustaste driicken und loslassen
« Mausbewegung
« Mausraddrehen
« Tastatur-Taste driicken und loslassen

Die Mausbewegung wird exakt gespeichert. Damit Informationen iiber Klicks und Tastatureingaben
in der Log-Datei direkt erkennbar sind, wird der Datenstrom unterteilt in Events ohne Mausbewegung
und in einen Teil, in dem alle Events vorhanden sind. Die Events werden als JSON Objekte mit den
Attributen ,time, option, position, message” abgespeichert. Ein Programm, das diese Daten auswertet,
kann direkt mit diesen Objekten rechnen. Standardmaflig ist das Benutzerinteraktion-Aufzeichnen
ausgeschaltet, da sonst innerhalb von kurzer Zeit viel Information gespeichert werden muss. Fiir eine
Benutzerstudie kann diese Funktion jederzeit aktiviert werden.

4.3 Anforderungen an eine Benutzerstudie

Um eine aussagekraftige Benutzerstudie durchzufiihren, sind Schritte notwendig, die hier aufgelistet
werden. Nimmt man an, das Ziel einer Studie sei das Finden von Ruckschliissen zu einer automatischen
Anpassung von Parametern einer prozeduralen Textur, um ein Referenzbild nachzubilden, so ist es
sinnvoll, dass die prozedurale Textur und die Referenzbilder vom Studien-Betreuer ausgewahlt werden.
Sonst wire das Ziel nicht die automatische Anpassung von Parametern, sondern auch das Finden einer
passenden prozeduralen Textur. Wenn die Anzahl der Ziele einer Studie steigen, kann die Aussagekraft

39

4 Aufzeichnen von Benutzer-Interaktionen

der Studie fast genauso schnell sinken. Aulerdem ist das Anpassen von Parametern ohne grofles
Fachwissen moglich. Fiir das Auswihlen der passenden Textur ist Vorwissen tiber gegebene Texturen
notwendig.

Wenn ein Referenzbild oder mehrere Referenzbilder und die dazugehérigen prozeduralen Texturen
ausgewahlt sind, miissen die Studienteilnehmer in die Aufgabenstellung eingewiesen werden. Die ist
in diesem Fall das Reproduzieren des Referenzbildes mit der prozeduralen Textur, indem Parameter
verdndert werden. Es ist auflerdem sinnvoll, die Aufgaben zu unterteilen, um bessere Vergleiche
zwischen den Studienteilnehmern ziehen zu kénnen. Zum Beispiel konnte ein Aufgabenteil das
Auswaihlen der Farben sein oder das Einstellen einer Gruppe von Parametern, die fiir einen Teil der
Bild Eigenschaften zustindig sind.

Des weiteren sollten die Teilnehmer iiber die Funktionalitit der ,Color Picker® und anderen Elementen
der Webseite unterrichtet werden.

Ein weiterer Schritt ist entweder das Modifizieren der Entwicklungsumgebung, sodass zum Beispiel
der Studienteilnehmer keine Moglichkeit hat, die Aufzeichnung der Benutzerinteraktion zu deakti-
vieren und die Log-Datei zu 16schen, oder es werden Regeln fiir das Benutzen der browserbasierten
Entwicklungsumgebung aufgestellt, an die sich die Teilnehmer halten miissen.

Sobald die Webseite und die Teilnehmer ausreichend vorbereitet sind, das heif3t unter anderem auch
das Einstellen der prozeduralen Textur und des Referenzbildes, kann die Studie beginnen.

Nachdem die Teilnehmer die Aufgaben abgearbeitet haben, ist es notwendig, die Log-Dateien sowie die
Ausgabebilder abzuspeichern. Auflerdem kann fiir zusatzliches Feedback eine Teilnehmerbefragung
ausgefiithrt werden.

Die Log-Dateien miissen verarbeitet und veranschaulicht werden. Dazu ist es notwendig, Programme
zu schreiben, die diesen Prozess iibernehmen. Zusitzlich zur Log-Datei kann auch die Qualitit des
Ausgabebildes, das der Studienteilnehmer durch Einstellen der Parameter erzeugt hat, analysiert
werden.

40

5 Zusammenfassung und Ausblick

In dieser Arbeit wird analysiert, wie Texturen erstellt werden kénnen und wie der Benutzer beim
Erzeugen von prozeduralen Texturen durch eine Entwicklungsumgebung unterstiitzt werden kann.
Es wird eine browserbasierte Entwicklungsumgebung vorgestellt, die sowohl das Programmieren
von prozeduralen Javascript-Texturen, die auf der CPU berechnet werden, als auch das Programmie-
ren von Shadern ermdéglicht, die auf der GPU berechnet werden. Im Teil wird analysiert, wie aus
einem Referenzbild eine prozedurale Textur erstellt werden kann und welche Schritte und Methoden
dafiir notwendig sind. Im dritten Teil der Arbeit wird analysiert, wieso das Aufzeichnen von Benut-
zerinteraktionen wichtig fiir die Qualitit einer Webseite ist und wie damit Riickschliisse auf eine
automatisierte Erzeugung von Parametern méglich werden. Es wird auflerdem beschrieben, wie das
Aufzeichnen von Benutzerinteraktionen fiir die browserbasierte Entwicklungsumgebung realisiert
wurde und welche Schritte notwendig sind, um eine Benutzerstudie durchzufiihren.

Fiir die browserbasierte Entwicklungsumgebung lassen sich weitere Features entwickeln, die dem
Benutzer mehr und bessere Moglichkeiten bieten, prozedurale Texturen zu erstellen. Ein Teil der
Features kann als Input-Features klassifiziert werden. Das heif3t zum Beispiel, dass es dem Benut-
zer ermoglicht wird, fiir den Vertex- und Fragment-Shader Bilder als Eingabetexturen, oder Film-,
Maus- und Tastatur-Eingaben zu verwenden, wie zum Beispiel auf der Webseite Shadertoy begrenzt
angeboten wird.

Auch die dynamisch erstellten Parameter, die bisher auf Floats begrenzt sind, kann man erweitern,
sodass auch dynamisch definierte Farb-Parameter méglich sind. In der aktuellen Version arbeitet die
browserbasierte Entwicklungsumgebung im WebGL-Fenster nur mit einem einfachen Plane. Hierfiir
wire eine Auswahl an 3D-Objekten sinnvoll oder sogar die Moglichkeit, 3D-Objekte zu importieren,
die in 3D-Entwicklungsumgebungen wie Blender [Ble14] oder Maya [may] entwickelt wurden.

Auch die Editor-Umgebungen kénnen noch ausgebaut werden. Die Moglichkeit, Hilfsfunktionen
getrennt von der Hauptfunktion in die Datenbank zu laden und zu speichern, wire hilfreich oder
generell das Einfithren von Hilfsfunktionen fiir die Shader-Umgebung.

Ein weiteres Feature ist das Erstellen einer Online-Datenbank, in der prozedurale Texturen fiir die
browserbasierte Entwicklungsfunktion verfiigbar gemacht werden.

Bisher sind wenige Interaktions-Moglichkeiten mit dem Referenzbild bereitgestellt. Fiir das Eingabe-
und Ausgabebild konnten Statistiken berechnet und angezeigt werden, sowie eine Metrik, welche die
Ahnlichkeit beider Bilder bestimmt. Ob die Erzeugung einer Datenbank mit gerenderten prozeduralen
Texturen als Browser-Anwendung effizient funktioniert, um die Parameter automatisiert einzustellen,
miusste getestet werden.

41

5 Zusammenfassung und Ausblick

Als wichtigster Ausblick bietet sich die Mdglichkeit, eine Studie durchzufithren, wie sie in Abschnitt
4.3 beschrieben ist. Durch die Studie konnten zum einen weitere Verbesserungen fiir die browser-
basierte Entwicklungsumgebung herausgefunden werden und zum anderen Riickschliisse auf eine
automatisierte Anpassung von Textur-Parametern um ein Referenzbild durch eine prozedurale Textur
nachzubilden.

Programme, welche die Log-Dateien, die von der browserbasierten Entwicklungsumgebung erstellt
werden, auswerten und veranschaulichen, miissen allerdings noch erstellt werden. Dabei ist es
notwendig die einfachen Events der Log-Datei zu interpretieren, das heifit das aus einem Klick an
Position (x,y) eine genauere Aktion wird, wie zum Beispiel das Driicken des Lade-Buttons.

42

Literaturverzeichnis

[AWS06]

[Ble14]

[Bom]

[CASO01]

[DCr]

[GDG12]

[GKHF14]

R. Atterer, M. Wnuk, A. Schmidt. Knowing the User’s Every Move: User Activity Tracking
for Website Usability Evaluation and Implicit Interaction. In Proceedings of the 15th
International Conference on World Wide Web, WWW 06, S. 203-212. ACM, New York, NY,
USA, 2006. doi:10.1145/1135777.1135811. URL http://doi.acm.org/10.1145/1135777.
1135811. (Zitiert auf Seite 37)

Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Blender Institute, Amsterdam, 2014. URL http://www.blender.org. Zugriff:
14-November-2014. (Zitiert auf den Seiten 22 und 41)

GPU Gems - Chapter 20. Texture Bombing. http://http.developer.nvidia.com/
GPUGems/gpugems_ch20.html. Zugriff: 14-November-2014. (Zitiert auf den Seiten 6
und 17)

M. C. Chen, J. R. Anderson, M. H. Sohn. What Can a Mouse Cursor Tell Us More?:
Correlation of Eye/Mouse Movements on Web Browsing. In CHI "01 Extended Abstracts on
Human Factors in Computing Systems, CHI EA °01, S. 281-282. ACM, New York, NY, USA,
2001. doi:10.1145/634067.634234. URL http://doi.acm.org/10.1145/634067.634234.
(Zitiert auf Seite 38)

Top Down Operator Precedence. http://javascript.crockford.com/tdop/tdop.
html. Zugriff: 14-November-2014. (Zitiert auf Seite 28)

G. Gilet, J.-M. Dischler, D. Ghazanfarpour. Multi-scale Assemblage for Procedural Tex-
turing. Computer Graphics Forum, 31(7):2117-2126, 2012. d0i:10.1111/j.1467-8659.2012.
03204.x. URL http://dx.doi.org/10.1111/j.1467-8659.2012.03204.x. (Zitiert auf
den Seiten 6, 15 und 16)

L. Gieseke, S. Koch, J.-U. Hahn, M. Fuchs. Interactive Parameter Retrieval for Two-Tone
Procedural Textures. Computer Graphics Forum, 33(4):71-79, 2014. doi:10.1111/cgf.12414.
URL http://dx.doi.org/10.1111/cgf.12414. (Zitiert auf den Seiten 21 und 36)

GLSL Sandbox Gallery. http://glslsandbox.com/. Zugriff: 14-November-2014. (Zitiert
auf den Seiten 6, 9, 19 und 20)

Improved Noise reference implementation. http://mrl.nyu.edu/~perlin/noise/. Zu-
griff: 14-November-2014. (Zitiert auf den Seiten 6, 14 und 21)

Indexeddb - Web API Interfaces MDN. https://developer.mozilla.org/en-US/docs/
Web/API/IndexedDB_API. Zugriff: 14-November-2014. (Zitiert auf Seite 24)

43

http://doi.acm.org/10.1145/1135777.1135811
http://doi.acm.org/10.1145/1135777.1135811
http://www.blender.org
http://http.developer.nvidia.com/GPUGems/gpugems_ch20.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch20.html
http://doi.acm.org/10.1145/634067.634234
http://javascript.crockford.com/tdop/tdop.html
http://javascript.crockford.com/tdop/tdop.html
http://dx.doi.org/10.1111/j.1467-8659.2012.03204.x
http://dx.doi.org/10.1111/cgf.12414
http://glslsandbox.com/
http://mrl.nyu.edu/~perlin/noise/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Literaturverzeichnis

(KHR]

[may]

[PCR11]

[Per85]

[Pra73]

[Sha]

[THR]

[Web]

[WLKT09]

[Wor96]

[wsc]

KHRONOS GROUP. Webgl specification. editor’s draft. https://www.khronos.org/
registry/webgl/specs/latest/1.0/. Zugriff: 14-November-2014. (Zitiert auf Seite 21)

Maya Autodesk Comprehensive 3D animation software. http://www.autodesk.com/
products/maya/overview. Zugriff: 14-November-2014. (Zitiert auf den Seiten 22 und 41)

T. Pouli, D. W. Cunningham, E. Reinhard. A Survey of Image Statistics Relevant to Com-
puter Graphics. Computer Graphics Forum, 30(6):1761-1788, 2011. doi:10.1111/j.1467-8659.
2011.01900.x. URL http://dx.doi.org/10.1111/j.1467-8659.2011.01900.x. (Zitiert
auf Seite 35)

K. Perlin. An Image Synthesizer. SSIGGRAPH Comput. Graph., 19(3):287-296, 1985. doi:
10.1145/325165.325247. URL http://doi.acm.org/10.1145/325165.325247. (Zitiert
auf den Seiten 14 und 15)

V. R. Pratt. Top Down Operator Precedence. In Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL °73, S. 41-51.
ACM, New York, NY, USA, 1973. d0i:10.1145/512927.512931. URL http://doi.acm.org/
10.1145/512927.512931. (Zitiert auf Seite 28)

Shadertoy BETA. https://www.shadertoy.com/. Zugriff: 14-November-2014. (Zitiert
auf den Seiten 6, 9, 17 und 18)

three.js Javascript 3D library. http://threejs.org/. Zugriff: 14-November-2014. (Zitiert
auf Seite 21)

WebGL Reference Card. https://www.khronos.org/files/webgl/
webgl-reference-card-1_0.pdf. Zugriff: 14-November-2014. (Zitiert auf Sei-
te 29)

L.-Y. Wei, S. Lefebvre, V. Kwatra, G. Turk. State of the Art in Example-based Texture
Synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Associati-
on, 2009. URL http://www-sop.inria.fr/reves/Basilic/2009/WLKTQ9. (Zitiert auf
Seite 14)

S. Worley. A Cellular Texture Basis Function. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, S. 291-294. ACM, New
York, NY, USA, 1996. doi:10.1145/237170.237267. URL http://doi.acm.org/10.1145/
237170.237267. (Zitiert auf den Seiten 6 und 16)

JavaScript Math Reference. http://www.w3schools.com/jsref/jsref_obj_math.asp.
Zugriff: 14-November-2014. (Zitiert auf Seite 28)

Alle URLs wurden zuletzt am 14.11. 2014 gepriift.

44

https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview
http://dx.doi.org/10.1111/j.1467-8659.2011.01900.x
http://doi.acm.org/10.1145/325165.325247
http://doi.acm.org/10.1145/512927.512931
http://doi.acm.org/10.1145/512927.512931
https://www.shadertoy.com/
http://threejs.org/
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf
http://www-sop.inria.fr/reves/Basilic/2009/WLKT09
http://doi.acm.org/10.1145/237170.237267
http://doi.acm.org/10.1145/237170.237267
http://www.w3schools.com/jsref/jsref_obj_math.asp

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziele dieser Arbeit

	2 Eine Entwicklungsumgebung
	2.1 Verwandte Arbeiten
	2.1.1 Entwicklung von Texturen
	2.1.2 Anwendung

	2.2 Grundlagen
	2.2.1 Prozedurale Texturen
	2.2.2 WebGL
	2.2.3 Editor
	2.2.4 Datenbank

	2.3 Implementierung
	2.3.1 Technische Anforderungen
	2.3.2 Webseite
	2.3.3 Textur-Shader-Beispiel

	3 Transfer von Referenzbild-Eigenschaften
	3.1 Verwandte Arbeiten
	3.2 Implementierte Interaktionsmöglichkeiten

	4 Aufzeichnen von Benutzer-Interaktionen
	4.1 Verwandte Arbeiten
	4.2 Implementierung
	4.3 Anforderungen an eine Benutzerstudie

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

