
On the Privacy of Frequently Visited User Locations
Zohaib Riaz, Kurt Rothermel

Institute of Parallel and Distributed Systems
University of Stuttgart, Germany

Email: {zohaib.riaz, kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—With the fast adoption of location-enabled devices,
Location-based Applications (LBAs) are becoming increasingly
popular. While LBAs enable highly useful concepts such as
geo-social networking, their use raises privacy concerns as it
involves sharing of location data with non-trusted third parties.
In this respect, we propose to protect frequently visited semantic
locations of users, e.g., a bar or a church, against inference
from long-term monitoring of user location data. Such inference
equates a privacy leak as it reveals users’ personal interests to
possibly malicious third parties.

To this end, we first present a study of a dataset of location
check-ins to show the existence of this threat among users of
LBAs. We then propose a method to protect visit-frequency of
users to different locations by distributing their location data
among multiple third-party Location Servers. This distribution
not only serves to avoid a single point of failure in our system,
it also allows the user to control which LBA accesses what
information about them. We also describe a number of possible
attacks against our frequency-protection approach and evaluate
them on real-data from the check-ins dataset. Our results
show that our approach can effectively avoid inference while
supporting good quality-of-service for the LBAs.

I. INTRODUCTION

With growing use of smart-phones, Location Based Applica-
tions (LBAs) have also thrived in the past decade. Not only do
LBAs benefit end-users by providing them valuable function-
ality as in location sharing with friends (e.g. Foursquare), they
also enable the application providers to generate revenue by
translating the collected location data into high-end services,
such as real-time traffic information (e.g. Waze).

However, sharing location data with third-party LBAs is
known to raise personal privacy concerns among users. Ob-
viously, a pair of geo-location coordinates may represent
significant private information when analyzed along with
contextual information, such as the publishing time and the
visited place type. Moreover, this context is not hard to acquire
given rapid increase in popularity of geo-social networks,
such as Foursquare (over 55 million users), where publishing
location equates to announcing presence at semantically well-
categorized, real-world venues. Since users may frequently
share their location, explicitly or along with geo-tagged con-
tent such as tweets and photos, an adversary could collect and
analyze contextually rich movement trails over time, and thus,
can make undesired inferences about users’ habits, interests,
and inclinations etc.

While many works have offered to defend location privacy
in use of LBAs, protecting visits to sensitive semantic lo-

cations1, e.g., hospitals, has only been a recent focus [1]–
[3]. However, these approaches focus on avoiding privacy
breaches associated with individual visits only. We argue that
frequent visits to seemingly non-sensitive locations, e.g., a bar,
may also represent special personal behavior/interests, and if
unprotected, amount to a privacy leak. The underlying privacy
threat is well-described by the following observation made in
a United States court-case where a suspect was tracked using
a GPS device for a month by the police. The court ruled: “A
person who knows all of another’s travels can deduce whether
he is a weekly church goer, a heavy drinker, ...” and continuing
to finish with “... and not just one such fact about a person,
but all such facts.” [4].

Against the above motivated threat, we propose to protect
against the uncontrolled release of users’ frequent semantic
locations to LBAs. We leverage the finding from [5] that
users share their location differently with various classes of
audiences, e.g., friends, employers, etc. Therefore, our ap-
proach allows users to define a set of representative personas,
i.e., portrayals of their personality, e.g., professional, social,
family, etc., which they wish to present to the various LBAs.
It then ensures that an LBA may only make those inferences by
analyzing a user’s location data stream which match the traits
represented by the shared persona. A naive way to achieve
this would be to fully deny an LBA the access to any location
context that does not match its persona. However, doing so
reasonably leaks information to the LBA that the user is
hiding certain information. Instead, our approach chooses to
selectively share location updates with LBAs for non-matching
context such that they do not convey strong user interest.
Consequently, our approach allows a users to, for example,
appear “normal” to their employer albeit their drinking habits,
or avoid annoying ads even though they shop frequently.

In designing our approach, we also account for another
important privacy threat that arises particularly in the use of
location sharing LBAs. These LBAs typically build upon a
back-end Location Server (LS), which manages user-reported
locations and implements access-control mechanisms to en-
force strictly authorized access to reported locations by LBAs.
However, we believe that trusting a third-party LS for location-
data security is naive since data-breach events at popular
data-houses where sensitive customer information is hacked,
leaked, or stolen are frequent [6]. Therefore, in our proposal,
we store privacy-sensitive information on non-trusted server

1semantic place-categories associated with venues, e.g., home, work etc.

infrastructures. To this end, we distribute a user’s location data
among multiple non-trusted LSs from different providers. This
distribution is done such that any LS stores only a portion of
the privacy-sensitive information to limit the data revealed to
an attacker if the server is compromised (no single-point-of-
failure with respect to privacy). Thus, it is impossible for a
single LS to build a precise profile of a user.

With many available back-end LS providers (cloud-based
as well as self-hosted), e.g., [7]–[11], we believe that our
proposal is highly practical. Moreover, as our approach does
not modify location data but rather only distributes it among
LSs, it can act as a lower layer for other privacy preserving
approaches such as obfuscation [1]–[3] for the protection of
individual visits.

Overall, our contributions are as follows. First, we establish
the relevance of protecting frequent locations to our daily
lives by studying a real-world dataset of location check-ins.
Second, we propose the first approach for protecting frequent
user-locations. Finally, we evaluate our approach on the users
in the check-in dataset for the attained privacy for the users
and quality-of-service (QoS) for the LBAs. Our results show
that our approach not only disables powerful attacks against
protected frequent locations of the user, it also supports good
QoS for LBAs.

Discussions in the rest of the paper are organized as
follows. First, we introduce and study a dataset of location
check-ins to show the privacy threat of frequent locations. In
Sections III and IV, we present the system model and the
problem statement for our approach respectively. In Section V,
we explain our frequency-protection algorithm. Finally, before
our conclusion, we evaluate our algorithm for the attained
privacy and QoS in Sections VI and VII respectively.

II. EXPLORING THE DATASET

In order to study the relevance of the threat posed by
frequent locations in our daily lives, we analyzed a dataset
of check-ins, based on geo-tagged posts from Twitter’s public
feed, collected by Cheng et. al. [12] during a period of
5 months from late September 2010 till Jan 2011. In this
section, we will discuss our pre-processing of the data as well
as provide the evidence of prevalence of frequent locations
among a large number of users in the dataset.

A. The Dataset and its Pre-processing

Overall, the dataset consists of 22, 506, 721 check-in en-
tries from 225, 098 users. Apart from user IDs and latitude-
longitude pairs, each entry also contains tweet text and a
venue-ID. A high percentage of check-ins (53%) were from
users who had linked their Foursquare accounts to Twitter.
From these, we selected a subset of 10, 306 users who had
a minimum of 1 check-in per day and a total reporting time
spanning at least 30 days. These users were selected from
across the United States, to where 36% of all Foursquare users
in the dataset belong, to increase our chances of finding a
semantically-labeled venue for their check-ins at Foursquare.

To acquire semantic labels for the check-ins, we used
Foursquare’s free API [13]. However, we simplified their
elaborate hierarchy of semantic labels to obtain a high level set
of semantic locations, as shown in Figure 1. These high-level
semantic locations (referred as locations for the rest of paper)
were intended to be intuitively linkable to users’ personality
traits. Moreover, we ignore check-ins at user residences as
this information does not represent user’s interests. Similarly,
check-ins at Professional Places and Education institutions are
also ignored unless they represent special user-behavior, e.g.,
check-ins at work-place after 6 pm.

After the above filtering of uninteresting check-ins, we were
left with an average of 141 check-ins and a reporting period
of 114 days per user. For the rest of the document, we will
refer to these users as the population.

B. Evidence of threat

In order to identify frequent user locations, we want to
determine whether a user’s visit-frequency to a location is
abnormally high compared to other users in the population.
To this end, we rely on the notion of Percentile Rank (PR).
Given a dataset of single attribute values X = {x1, ..., xn},
the percentile rank of a particular value xi in the dataset
determines the percentage of dataset values which are less
than or equal to xi.

For each user uj in the population U , we summarize all
of their check-ins to the set of semantic locations, S =
{s1, ..., s14}, from Fig. 1, into a set of visit-frequencies as:

fuj = {fuj
s1 , ..., f

uj
s14} (1)

Next, we determine their frequency-rank profile as:

ruj = PR(fuj) = {ruj
s1 , ..., r

uj
s14} (2)

where each entry ruj
si represents percentile rank of fuj

si among
non-zero frequencies of other users in U to the semantic
location si. Given the frequency-rank profile of uj , we can
now determine the set of locations, C ⊂ S, which the user
visits more frequently than a certain proportion, thcrtl, of the
population, i.e.:

C = {c1, ..., cn} s.t. ci ∈ S ∧ ruj
ci > thcrtl (3)

For the rest of the paper, we term all frequent locations in set
C as user’s critical locations. Similarly, the threshold thcrtl
is called the criticality threshold and represents a user-tunable
parameter in our protection algorithm.

Fig. 1. The high-level semantic locations S from our check-ins dataset.

Fig. 2. Distributions of number of critical locations among the users in the
dataset for criticality threshold of 90 and 80.

Fig. 3. Monthly visit-frequencies for semantic locations at various percentiles.

Following the above described steps, we determine the
critical locations of all users in U . Figure 2 shows the
histogram of number of critical locations found per user when
criticality threshold is set to 90 and 80. Note that even with
thcrtl as high as 90, approximately 4000 users have one,
and around 1500 users have two critical locations. The plot
of cumulative percentage, on the other hand, shows that at
thcrtl = 90, only 40%, and at thcrtl = 80, only 16% of
the population do not have any critical location. Also note
that the mass of the frequency-distributions shifts to the right
when thcrtl is changed from 90 to 80 because more users have
visit-frequencies ranking higher than 80% of the population.
In short, Fig. 2 shows that the population exhibits significant
prevalence of critical locations, even with values of criticality
threshold as high as 80 and 90.

Figure 3 also shows actual visit frequencies at various
percentiles in our population for all locations in S. Note, for
example, that while 10 trips per month equate 70th percentile
in “Shop & Service” category, only 7 trips are enough to reach
the 95th percentile for “Medical Center”. Therefore, it can be
said that high-visit frequencies expose users to easy inference
about their interests by placing them in top ranks among the
population. Consequentially, we next describe our proposal
against such inference by protecting the critical user locations.

III. SYSTEM MODEL

For our approach, the system comprises three components,
namely: the mobile device, the Location Servers (LSs), and
the Location-Based Applications (LBAs).

The mobile device is capable of determining its location
using positioning technologies such as GPS. It runs our trusted
Location-Privacy (LP) system service which has exclusive

access to the captured location data. The LP-service performs
location updates to the LSs as governed by our visit-frequency
protection algorithm. Note that in our system location updates
are user-triggered only, i.e., the LP-service does not update
the user location autonomously. Moreover, the LP-service
requires to know the underlying location semantics for each
update. To this end, we assume that the LP-service can access
an (offline) map of places which extends to, at least, the
regions of the user’s daily movement. We also assume that
the communication channel between the mobile device and
the LSs is secure.

In our system, Location Servers (LSs) are provided by dif-
ferent non-trusted providers and are responsible for managing
the user location updates. For instance, LSs could be provided
by different self-hosted [11] or cloud-based providers [7]–
[10]. Using multiple such non-trusted LSs, we implement
a distributed location service. For each user, the LP-service
distributes their location updates among (n + 1) LSs where
n is a user-defined parameter. Moreover, the LSs implement
access-control mechanisms for enabling authorized access to a
user’s location data by the LBAs. While the LBAs query about
a user’s latest location update only, we assume that the LSs
may store the past location updates received from all users,
e.g., for data-mining purposes. Therefore, data-breaches at the
LSs pose a privacy threat. Furthermore, since the LS providers
are not trusted, we assume that they may collude with each
other to undermine user privacy.

Finally, the LP-service allows the user to define personas,
e.g., work, family, social, etc., and assign them to different Lo-
cation Based Applications (LBAs). Based on these personas,
our LP-service specifies, for each LS, those LBAs which are
allowed to access the user’s data. Therefore, LBAs acquire the
user’s last updated location by querying their accessible LSs.

IV. PROBLEM STATEMENT

We now formally define the requirements from our (visit-)
frequency protection algorithm for ensuring privacy of critical
user locations.

The goal of our algorithm is to ensure that location data
shared with any LBA matches its user-assigned persona. If a
user’s critical locations are not part of the assigned-persona,
then the LBA in question should not be able to infer from the
location data, shared over long period of time, that the user
visits these locations with high frequency.

More precisely, a persona Pi ∈ P comprises a subset of
those semantic locations from S (see Fig.1) for which the user
feels comfortable to share location data in full with the LBAs
irrespective of whether these locations are critical or not. The
complement set P ′i , however, represents those locations from
S which should be protected if critical, i.e., if the user’s visit-
frequency for these locations is higher than the user-defined
criticality threshold thcrtl (see Eq. 3).
Functional Requirement: Formally, an LBA with persona Pi

may build an observed frequency-profile fobs of the user by
aggregating their accessible location updates. From fobs, the
LBA determines the set of observed critical locations Cobs.

Given the set of the user’s actual critical locations Cu, the
functional requirement from our algorithm is:

Cobs

⋂
(P ′i ∩Cu) = ∅ (4)

In words, the observed critical locations should not contain any
critical location of the user which was left out in the persona
Pi. As an example, to hide critical health condition from an
employer, the user would assign to their professional-network
LBA a persona that excludes the Medical Center location.
Adversary Model: A “weak” adversary in our system may
take the role of an LBA that combines location informa-
tion from their authorized LSs (access-rights granted by LP-
service) as well as from any compromised/colluding LSs. We
also assume that the weak adversary knows our algorithm,
the number of total critical locations of the user n, and the
set value of criticality threshold thcrtl. Moreover, “strong”
adversaries may possess additional auxiliary attack knowledge
which we will gradually introduce in the next two sections
for ease of readability. In general, the adversary may use their
knowledge to perform probabilistic attacks for determining the
still unknown critical locations of the user against which we
define the following requirement.
Privacy Requirement: Assume a user u who visits a total of
m ≤ |S| different semantic locations out of which n ≤ m are
critical, i.e., |Cu| = n. If an adversary knows k < n critical
locations, then their attack probability Pattack of finding the
remaining (n − k) critical locations should not exceed the
probability of random selection αrand:

Pattack(k) ≤ αrand(k) where αrand(k) =
(n− k)

(m− k)
(5)

In other words, the prior knowledge of k critical locations
should not help the adversary to distinguish the still unknown
critical among the remaining (m− k) user locations.

In order to protect the critical locations, our algorithm hides
a portion of location updates from the LBAs. However, this
might reduce their Quality of Service (QoS). Therefore, our
design objective is to maximize the QoS for the LBAs, i.e.,
hiding minimal number of location updates from the LBAs
while still ensuring privacy for critical locations. Accordingly,
we quantify QoS as the average proportion of the all location
updates of the user that are shared with the LBAs.

V. THE FREQUENCY PROTECTION ALGORITHM

In this section, we present two versions of our visit-
frequency protection approach, namely, a basic and an ad-
vanced version, which differ in the considered adversary
knowledge. As the name implies, the basic version is designed
against the “weak” adversary mentioned in Section IV.

A. Overview of the Basic Algorithm

The fundamental idea of our privacy approach is that each of
the n LSs, denoted as, LSi ∈ LS1..n, only stores a limited set
of location visits that, if aggregated into a frequency profile,
can only reveal a small number of (without loss of generality
in our case exactly one) critical locations. Thus, compromising

Fig. 4. Left half: the actual frequency (top) and rank profiles (bottom) of
the user. From the rank-profile, Food and Nightlife are critical locations given
thcrtl = 70. Right half: the rank-profiles after distribution of location data
on 3 LSs by our algorithm.

one LS out of LS1..n will only reveal a user profile with ex-
actly one critical location instead of the complete and precise
user profile with all critical locations. Consequently, no LS is
a single point of failure in terms of privacy. Moreover, one LS,
denoted as LS0, stores a completely safe profile that does not
reveal any critical information. This safe profile can be refined
selectively by adding information from other LSs from LS1..n.
Therefore, in our system, all LBAs are allowed to access LS0.
By additionally granting the LBAs access rights to certain
LSs from LS1..n, the LP-service can give individual LBAs
access to certain critical locations which are permitted by their
persona without revealing other critical profile information.
Hence, our basic algorithm can meet the requirement in Eq. 4.
For an adversary, getting access to the complete profile is
very hard since this would require to compromise all LSs.
Moreover, the approach implements “graceful degradation of
privacy”: the number of critical locations revealed increases
linearly with the number of compromised LS.

More precisely, for a user’s critical location ci ∈ Cu, our
algorithm protects the actual visit-frequency by distributing
its visits among LS0 and LSi, such that the visits at LS0

alone do not reveal ci as critical. As an example, Fig. 4
shows on the left the actual frequency-profile of a hypothetical
user. Having set thcrtl = 70, their actual rank-profile, given
underneath the frequency-profile, shows that the user has two
critical locations, namely Food and Nightlife. When using our
algorithm, the resulting inferred rank-profiles of the user at
the LSs are shown on the right half of the figure. While LS0

sees all user locations, it cannot determine anyone of them
as critical, i.e., the user profile is safe. As for LS1 and LS2,
they can at most determine one critical location from its rank.
Generally, it can be seen, as shown by this example, that by
accessing at least LS0, all LBAs can acquire a significant
proportion of user’s location data thus promising high average
QoS. Moreover, since a high number of users in our dataset
have few critical locations (upto three for almost 90% of users
for thcrtl = 80 in Fig. 2), we believe that two to four LSs
suffice for most users (one LS per critical location and LS0

for safe user profile).
Next, we first discuss how our algorithm performs a one-

time determination of user’s set of critical locations Cu, and
later, the steps taken to ensure their protection.

B. Learning Phase

For determining Cu, our algorithm involves an initial
learning phase. During this phase, continuous background
monitoring of user locations is performed for a short period
of time, e.g. a week or two (during which no location updates
are published). Note that such prior background monitor-
ing is a popular requirement for all state-of-the-art privacy-
preserving approaches that model user mobility with, for
example, Markov chains, prior location distributions, etc. such
as [3], [14], [15]. At the end of the monitoring period, our
algorithm first approximates the actual visit-frequency profile
fa of the user (see Eq. 1). The corresponding rank-profile ra
for this frequency-profile (see Eq. 2) then helps decide the set
of critical locations Cu of the user as per the user-specified
value of criticality-threshold thcrtl.

C. The Basic Algorithm

With the critical locations set Cu of the user known to our
algorithm, we now explain its basic execution.

Since LS0 is meant to hold a completely safe user profile
(not revealing any critical locations), our algorithm needs to
publish the user trips to each critical location ci ∈ Cu at a
reduced frequency to LS0. The remaining trips for each ci are
then published to its corresponding LSi.

To this end, our algorithm modifies the user’s actual rank-
profile ra into a desired rank-profile rd where the ranks
of critical locations are reduced to lie below the criticality
threshold thcrtl. Note here that the method used to compute
rd can pose a privacy risk. Considering Fig. 4 again for
an example, let us first assume the case that our algorithm
decides for both critical locations (Food and Nightlife), a
desired rank of 70. Although, this value of desired rank is
safe (≤ thcrtl = 70), it invites attack from the adversary who
can infer critical locations as the ones closest in rank to thcrtl.
More generally, if the method used to determine the desired
ranks is deterministic, the adversary can, by knowledge of our
algorithm, find out all critical locations of the user.

Therefore, our algorithm selects for each ci ∈ Cu the
desired ranks rd in a non-deterministic, random fashion. To

Algorithm 1 Perform user-triggered location update
1: procedure PERFORM LOCATION UPDATE
2: (lt, st)← Get Location And Its Semantics()
3: if st ∈ Cu AND Rand()> fdst/f

a
st then

4: Update: lt → LSi . since st = ci
5: else
6: Update: lt → LS0

7: end if
8: Schedule Fake Events() . for Advanced Algorithm
9: end procedure

be more precise, it sorts the frequency-ranks of non-critical
locations to form the set rnc. Then, it randomly selects a
consecutive pair of ranks from the union {0 ∪ rnc ∪ thcrtl},
as the range over which to randomly select the rank for
ci. Against the determined set rd, we also calculate the
corresponding set of desired frequencies fd using the notion
of inverse percentile.

For performing user-triggered location updates during exe-
cution, our algorithm (see Algorithm 1) always publishes non-
critical visits to LS0. As for the visits to critical locations ci,
LS0 is updated with a probability of fdci/f

a
ci , i.e., with the

ratio of desired to actual visit frequency of user to ci. The
remaining visits for ci are published to LSi.

From the perspective of the LBAs, they may acquire user’s
last updated location from their authorized LSs in two ways,
i.e., by subscribing at these LSs for location notifications,
or, by querying them explicitly. In the later case, each LS
replies with its last received location update. The LBA can
then determine the latest among the received location updates
by comparing their time stamps.

D. The Advanced Algorithm

The advanced algorithm extends the basic algorithm against
“strong” adversaries. Particularly, these adversaries, in the role
of a malicious LBA running on user’s device, can also sniff
the communication channel used by our LP-service. While
the communication content, i.e., the location data, is protected
by encryption, such an adversary is, nevertheless, able to
determine the time and the destination LS for all location
updates. Note that this capability is realistic since LBAs that
monitor network traffic of other on-device LBAs already exist,
e.g., the “Network Connections” app for Android.

For finding the critical locations, the adversary is most in-
terested in the critical location updates that are sent to LS1...n.
To limit attack possibilities however, our algorithm hides the
destination LS for critical updates by performing a uniform
update, i.e., by sending syntactically similar messages with
fake data to the rest of LSs among LS1...n. Note that while
these fake messages do not corrupt actual location data at the
LSs (get identified and discarded), they disable the adversary
from knowing which inaccessible LS actually received the
location update since a message is sent to all of them.

As our protection algorithm runs, the adversary aggregates
the location update history of the user as a stream, H =
{ot1 , ot2 , et3 , ot4 , et5 , ot6 , ...}, comprising observable events
otj ∈ O and unobservable events etj ∈ E. For an adversary
Advk that can access k LSs and LS0, observable events
otj are those which are published at these LSs. Similarly,
unobservable events etj are location updates for those (n−k)
critical locations which are published to the rest of the LSs.
However, since Advk knows the update times for all ei ∈ E,
they may attempt to identify user’s critical locations. We
analyze this attack and then discuss the corresponding defense
offered by our algorithm.
Attack: At first, Advk builds a mobility model Ω from
observable events O. Using Ω, Advk may attempt to identify

the actual visited semantic location si represented by an
unobservable event et at time t by maximizing the conditional
probability P (si|et,Ω) over si ∈ S. By Bayes’ rule:

P (si|et,Ω) =
P (et|si,Ω)P (si|Ω)

P (et|Ω)
(6)

Ignoring the denominator, which is same for all locations,
Advk’s goal is to maximize the numerator, i.e., the product
of the likelihood P (et|si,Ω) and prior P (si|Ω) over S.

Considering first the prior P (si|Ω), it represents the total
probability of visiting si compared to all locations in S
according to Ω. Since Advk computes Ω from events in O
only, the computation of prior is erroneous as the number of
events in O for critical locations are artificially reduced by our
algorithm. In Fig. 4 for example, from LS0, the approximated
prior for Nightlife would turn out to be small relative to all
other locations due to severe clipping of its frequency.

As for the likelihood term P (et|si,Ω), it represents the
probability of visiting si at time t (e.g., particular hour of
day) compared to all other times as per Ω. Unlike the prior,
whose computation depends heavily on information about
other locations in S, the likelihood is a relatively intrinsic
probability distribution for each location si. Therefore, it
can be approximated correctly by the adversary, even for
critical locations, by accessing LS0 only. For example, if a
user shops more frequently on Saturdays, then this trend is
kept intact even after a proportion of all shopping trips are
probabilistically suppressed by our algorithm.

Although the prior P (si|Ω) is erroneous, the likelihood term
may still be informative to the adversary Advk. For instance,
with Ω representing visit-time distributions over S, events
eday,hour may be correctly identified as trips to a particular
location sj since no other location is visited by user at
t = {day, hour}, e.g., only church visits every Sunday noon.
For Ω modeling correlated location updates with a Markov
chain, the same scenario may occur if sj is uniquely visited
after another location, e.g., only visiting shopping centers
after visiting an ATM. As a general conclusion, the mobility
model Ω can increase adversary’s knowledge of user’s critical
locations by narrowing down their search space to only a
subset of locations S′ ⊂ S for which likelihoods are non-
zero for event et. This attack can, therefore, increase attack
probability Pattack(k) for the adversary to a value more than
the probability of random selection αrand(k) (see Eq. 5).
Defense: To prevent the above attack, our algorithm must
ensure that the nature of a location si being critical or not
is independent of the set of events E seen by the adversary.
Enforcing this independence implies that all locations of the
user, apart from the already known critical ones, are equally
likely candidates for the unknown critical locations, thus,
conforming to the probability αrand(k) in Eq. 5.

To implemet the above requirement, our algorithm generates
an additional fake set of unobservable events E′ for each
visited location si such that si appears critical to the adversary,
even if it is non-critical. More precisely, the sum of actual
and fake events for each location amount to a frequency-rank

Algorithm 2 Schedule fake update events
1: procedure SCHEDULE FAKE EVENTS
2: Update Ω, fa, ra, ffake

3: f∆ ← Get Fake Frequency Profile(fa, ra)
4: ∀si∈S : tnext ←SampleP (t,Ω|si) for t ∈ (tnow, 2T]
5: ∀si∈S : Enqueue Fake Event (si, tnext)
6: end procedure

Algorithm 3 Generate fake update events
1: procedure GENERATE FAKE EVENT
2: {si, tnext} ← Get Current Event()
3: Uniform Update “fake” → LS1...n

4: Schedule Fake Events()
5: end procedure

which is equivalent to the maximum rank rmax in user’s rank-
profile. Like events in E, all e′t ∈ E′ are uniform updates,
although fake. This means that none of the messages sent to
the LSs for each event e′t contain any real location update.
Note that the adversaries cannot syntactically differentiate
between a real or fake unobserved events.

To generate E′, the function “Schedule Fake Events” (see
Algorithm 2) is called after every user-triggered update (see
Algorithm 1) or previously scheduled fake update (see Al-
gorithm 3). This function first determines the delta frequency
f∆ representing the number of fake uniform update events for
each location si that still need to be published in order to make
si appear critical. This is achieved by subtracting the user’s
actual frequency fa and current fake event frequency ffake

from the required fake frequency freq . Here freq represents
frequency to each location si corresponding to the maximum
rank rmax in user’s rank profile.

Next, the “Schedule Fake Events” function schedules the
next fake event e′next for si with frequency f∆

si ∈ f∆.
With time-period T = 1/f∆

si , it schedules e′next at a time
tnext, with respect to current time tnow, in the time range
(tnow, tnow + 2T]. More specifically, tnext is sampled in the
range t ∈ (tnow, tnow + 2T] using normalized likelihood
P (t,Ω|si) as the sampling probability. Consequentially, the
timings of fake unobservable events in E′ comply with ad-
versary’s mobility model of the user Ω, thus making them
indistinguishable from actual unobservable events E.

Note that, for our algorithm, computing the likelihood
P (t,Ω|si) is straightforward. For instance, with Ω being
temporal distribution of visits to si, the likelihood can be
computed by normalizing visit counts over hours in a week.
Moreover, for modeling all adversaries Advk, with k ∈ [1, n],
it suffices for our algorithm to compute these likelihoods (and
Ω) from observable events at LS0 only since Advk∈[1,n] also
learn likelihoods for unknown critical locations from LS0.

VI. SECURITY ANALYSIS

In our system, the adversary Advk attacks user’s location
data in two fundamental forms: (1) as the user’s update history

H , (2) as observed frequency profile fobs in comparison with
frequency profiles of other users in the population.

As for the H , we have shown in the previous section that
our algorithm guarantees privacy against the attacks based
on H . In this regard, our algorithm limits the number of
observable events O ∈H for the adversary (cf. Section V-C)
as well as corrupts the unobservable events E ∈ H by
addition of fake ones (cf. Section V-D). However, this privacy
guarantee incurs additional communication overhead, due to
generation of fake events, as evaluated in Section VII-A.

Considering now the second form of attack, we wish to
answer the following question: Can Advk identify the critical
locations in the user’s observed profile fobs by their general
knowledge of the frequency-profiles from other users? Note
that for this attack, we are assuming that the “strong” adversary
additionally possesses a large dataset of location check-ins
like ours. Based on this auxiliary knowledge, Advk may for
example know that, in general, people that often visit shopping
centers also visit food places frequently. Then if a user’s
observed profile fobs satisfies only the first part of this trend,
then Advk has reason to believe that food places are this user’s
critical location. Analyzing the strength of this attack requires
its formulation as a machine-learning problem where a learner
can educate itself about the correlations in the visit-frequencies
of different locations by analyzing frequency-profiles from
many users. Then, it can possibly predict critical locations
for an unseen user from their observed profile fobs. Next, we
show the detailed formulation of this attack and evaluate its
strength on our check-in dataset.

A. Machine-learning based attacks

To simplify the following explanation, we first assume a
target user with observed frequency-profile, fobs,n=1, where
only one visited location sj ∈ S is critical. The goal of
the adversary is to identify the unknown critical location sj
from fobs,n=1. In this regard, the adversary may pursue two
representative methodologies from machine learning, namely,
Classification and Regression.
Classification Based Attack: To perform this attack, the
adversary attempts to learn a classifier which identifies the
correct critical location given an observed frequency profile.
Such a classifier needs to be trained on example observed-
profiles from many other users where exactly one critical
location is protected by our algorithm (supervised-learning).
More specifically, each observed profile fobs,n=1 and its
corresponding critical location si form a training example.
During training, the classification algorithm learns to distin-
guish between observed profiles for different critical locations
in S. Thus, after training, the classifier can be used to predict
the critical location for a given, previously unseen, observed
profile.

However, as described in Section V-C, our algorithm modi-
fies the observed frequencies for critical location in a random
fashion. By this, it obfuscates correlations in frequencies of
different locations, which obviously degrades the predictability
of these frequencies. Our evaluations below show that existing

Fig. 5. Confusion Matrix for the Random Forest Classifier. Note the high
prediction accuracy of classification (87%) for the non-critical frequency-
profiles in the left-bottom corner of the matrix.

machine learning techniques cannot predict frequencies with
a sufficiently high accuracy due to this obfuscation.

For our experiments, we applied our frequency-protection
algorithm (c.f. Section V) to protect the frequency profiles
of 3539 users in our check-in dataset who had exactly one
critical location (n = 1). From these users, we created a
training-dataset where their protected frequency-profiles and
the corresponding actual critical location formed the training
examples. We trained and tested two popular classification
algorithms on this dataset, a multi-class Random Forest clas-
sifier (RF) and a Support-Vector Machine (SVM). While RF
classifier performs prediction based on an ensemble of learned
decision-trees, the SVM attempts to project the input data into
a higher dimensional space where different classes in the data
are easily separable. Both the algorithms are known for their
good classification performance [16]. However, our best tuned
versions of both classifiers (RF: 5000 decision-trees with 5
variables tried per tree-splits, SVM: radial kernel, cost= 50,
gamma= 0.005, 10-fold cross-validation, class imbalance
taken into account for both RF and SVM) resulted in a similar,
but low overall classification accuracy of 25%. A possible
reason for this low identification rate of critical locations
from observed profiles could be the wrong choice of RF and
SVM classifiers for our frequency-profile data. To examine
this possibility, we performed another experiment where the
above created dataset was appended with frequency profiles
of those users who did not have any critical locations. For
these users, the corresponding output label of “non-critical”
was used. After re-training the RF and SVM classifiers on the
modified dataset, the classification accuracy of both classifiers
turned out to be similarly high for the “non-critical” class

(∼ 87%) whereas the classification accuracy for identifying
critical locations was again low, i.e., 22%. This result asserts
that while the RF and SVM classifiers are actually well-suited
to identify the frequency relationships in our data, the random
modification of visit-frequencies for critical locations by our
algorithm results in their poor classification accuracy by the
adversary. Moreover, this result represents the best case for the
adversary when only one of the frequencies in the observed
frequency-profile of the user is modified by our algorithm.
For n > 1, i.e., more critical locations, adversary’s accuracy
should fall even lower due to the presence of more randomly
modified frequencies in the observed profiles of the users.

The detailed confusion matrix for evaluation with n = 1 is
shown in Fig. 5. Here, the diagonal entries give the classifica-
tion accuracy of each class. Apart from the “non-critical” class,
all classes have at most 39% accurate predictions. Therefore,
an adversary cannot use a classification attack to detect critical
locations from observed user profiles.
Regression Based Attack: As a second attack methodology,
the adversary learns a regression model over the actual,
unprotected frequency-profiles of the users in the population.
Using such a model, the adversary can determine, for a par-
ticular user, the expected visit-frequency of a certain semantic
location given visit-frequencies of other locations from the
same user.

Given a clipped observed profile fobs, Advk uses the
regression model to predicts a new profile fpred where each
element f ipred ∈ fpred is calculated by considering user’s
observed frequencies to rest of the semantic locations:

f ipred = regression model(i, fobs\ f iobs) (7)

From fpred, the adversary Advk calculates the predicted rank
profile rpred using the notion of inverse percentile. Then
they predict a location c with the maximum rank in rpred
as a critical location of the user. By replacing the observed
frequency of c in the observed profile fobs with its predicted
value f cpred, the adversary can repeat this attack for n > 1 in
order to predict all of the (n−k) unknown critical locations of
the user. However, as mentioned earlier for the Classification
based attack, our algorithm (cf. Section V-C) obfuscates the
correlations in frequencies of different locations, thus, degrad-
ing their predictability. Our following evaluations assert this
argument by showing that regression attacks also yield low
accuracy for the adversary.

For this evaluation, we trained two supervised machine-
learning algorithms, namely, Random Forest (RF) and Support
Vector Machine (SVM) (as also used above for classification
attack), as well as an unsupervised learning method: the Gaus-
sian Mixture Model (GMM). A GMM can be used to model
the probability density function of values in a multivariate
dataset as a mixture of a number of Gaussian probability
density functions or components. Such a model is well-suited
to identify clusters of users with similar frequency profiles, and
thus, represents a suitable attack against our algorithm. Next,
we explain the details on our training of the three regression
models.

Fig. 6. Results for RF-based Regression Attack. Top Row: Attack Success
probability Pattack(k) v. k for varying values of total critical locations n.
Bottom Row: The difference Pattack(k)− αrand(k) v. k for varying n.

1) Training the Regression Models: The dataset for train-
ing in our scenario is the set of 10, 306 unprotected visit-
frequency profiles from all users in our population. For RF
and SVM, we basically needed to train 14 regression models,
i.e., RF1 ...RF14 and SVM1...SVM14, one for each semantic
location in Fig. 1. In this setting, the predicted location’s
visit-frequency forms the output value in the training dataset
whereas the rest of the 13 visit-frequencies form the input
predictors. As for the GMM, it learns a single model of the
joint probability density of visit-frequencies of all 14 semantic
locations. Coupled with Gaussian Mixture Regression (GMR)
(refer to [17] for details), a trained GMM can then be used
to predict the expected visit-frequency (and its variance) of
a particular semantic location given the visit-frequencies of
other locations.

Moreover, for the purpose of cross-validation, we divide
our data into d parts for training each basic model. Next, we
train the regression models on (d − 1) parts of data and test
the trained model on the left-out dth part. For the GMM and
SVM models, we set d = 10 where as d was set to 3 for the
RF model. For our best tuned models, we measured the cross-
validated percentage error in the predicted values. It turned
out that all three models, RF, SVM and GMM, were able
to accurately predict the frequencies of any single semantic
location given others with an average percentage error of less
than 5% for all semantic locations.

2) Results of the Attack: With the three trained regression
models, we conducted the attack on the protected frequency
profiles of users. Again, we considered all classes of adver-
saries with access to varying number of accessible critical

locations k.
We first present the results of RF model in Fig. 6. The figure

shows (from the top row) that when n increases, Pattack(k)
also increases for same values of k. For example, with k = 0,
i.e., zero known critical locations, the adversary can still
predict a critical location with the median probability of 0.4
for n = 5 compared to the median probability of 0 for
n = 1. However, when we subtract the probability of random
selection αrand(k) from Pattack(k) in the bottom row of the
figure, the overall difference lies close to zero for most of
the population. This means that the increase in the Pattack(k)
in the top row for same values of k was only because of an
increase in the αrand = (n−k)

(m−k) with the increase of n. In other
words, this attack does not help to increase the adversary’s
probability of finding a critical location anymore than his prior
knowledge that the user is not sharing (n−k) critical locations
out of the (m−k) of their locations. Pattack(k)−αrand(k) As
for the SVM and GMM models, we only present the results
for GMM (see Fig. 7) since both results were almost identical.
While this result is also similar to that of the RF model in
Fig. 6, there is even further degradation in the adversary’s
knowledge gain Pattack(k)−αrand(k) shown by all negative
medians for n = 4 and 5.

To summarize our results for machine-learning based at-
tacks, we have shown that state-of-the-art machine-learning
algorithms, which can predict well on unmodified frequency-
profile data, perform poorly to predict actual critical locations
of the users once their frequency-profiles are protected by our
algorithm. Hence, these attacks do not increase adversary’s
knowledge of user’s unknown critical locations.

VII. EVALUATION OF COMMUNICATION COST AND QOS

For evaluations of communication cost and QoS, we chose
a select set of 1228 long-history users from 10306 users in our
check-in dataset who had more than 250 check-ins. We now
present the results of application of our frequency-protection
algorithm on the location histories of these users while setting
the criticality threshold thcrtl to 80 and allowing a maximum
of 5 critical locations.

A. Communication Cost

As discussed in Section V-D, our algorithm generates fake
unobservable events e′t ∈ E′ for avoiding mobility modeling
attacks. For each user, we quantify the communication cost
as the fake-event rate, i.e., number of fake events that were
generated per day by our algorithm. In our evaluations, we use
visit-time distributions as users’ mobility model since check-
ins from users were, on-average, infrequent (less than 2 a day).
Figure 8 shows the results. The left half of the figure shows
the boxplot of fake-event rate for users with varying number
of total critical locations n. As n increases from 1 to 5, the
fake-event rate increases almost linearly from a median of 2 to
4 events per day. This increase is explained by the distribution
of maximum rank rmax values in user-rank profiles (see right
half of Fig. 8). With more critical locations (increasing n), the
chances of having a higher value of maximum rank rmax also

Fig. 7. Results for GMM-based Regression Attack. Top Row: Attack Success
probability Pattack(k) v. k for varying values of total critical locations n.
Bottom Row: The difference Pattack(k)− αrand(k) v. k for varying n.

Fig. 8. Number of fake update events per day (left) and maximum frequency
ranks (right) vs. n (number of user’s critical locations)

rise. Therefore, correspondingly greater number of fake events
are generated for each location to appear at the rank rmax.
However, the overall low fake event rate of 2 − 4 events per
day appears to be a reasonably affordable price for the privacy
guarantee against mobility modeling attacks (cf. Section V-D).

B. Quality of Service (QoS) for LBAs

For quantifying QoS, we evaluate what proportion of lo-
cation updates are still accessible to LBAs when access to k
out of (n+ 1) LSs is denied. Note that k = n, i.e., only one
accessible LS out of n, always implies access to LS0 in our
scenario since any LBA can be given access to LS0 without
revealing any critical location.

For each user, we computed the average proportion of
accessible updates over all combinations of n − k accessible
LSs for k ∈ [1, (n − 1)]. Figure 9 shows the achieved QoS
for all users grouped by n, i.e., the total number of critical

Fig. 9. QoS (proportion of accessible location updates) vs. k (number of LSs
out of n to which access is denied).

locations. For all values of n in general, it can be seen that
for lower values of k (1 and 2), LBAs are still informed about
∼ 80% and ∼ 70% of the location updates, respectively, for
the majority of the population. With increasing values of k,
however, the LBAs get to access less and less of all location
updates thus highlighting the tradeoff between achievable QoS
and the privacy of critical locations. However, since a high
proportion of the population users had 2 or less total critical
locations (see Fig. 2), we believe that the QoS for LBAs used
by most of the population would be high.

VIII. RELATED WORK

Uptil today, location privacy has received a lot of attention
from the research community as surveyed in [18]. However,
we limit our discussion to those approaches which take loca-
tion semantics into account for privacy preservation.

Most schemes offering semantic location privacy build upon
the idea of location obfuscation [19]. In its basic form,
obfuscation replaces the actual location to be shared with an
LBA by a region whose size determines the tradeoff between
privacy and quality of service. Building on top of the region-
size privacy metric, later works also include a number of
semantically heterogeneous locations, e.g., school, shopping
center, etc., inside the obfuscation region to hide the actual
semantic context from the adversary [2], [20]. To incorporate
personalization, Damiani et al. [1] propose a probabilistic
model of space for the generation of obfuscation regions which
respect user preferences regarding their sensitive semantic
locations. Their approach ensures that the probability of the
actual user location lying inside a sensitive place is limited
to under a desired level relative to the total probability of
being located inside the whole obfuscation region. Yigitoglu
et al. [21] extend this model to an urban setting with road-
network and represent location probabilities inside a region
by relative popularities of actual venues.

While still protecting individual visits only, other works
also consider adversary’s knowledge of user’s location update
history [14], [15]. These approaches model user mobility as
Markov chains, and for protecting privacy, either obfuscate
the sensitive locations [14] or replace them with dummy
locations [15]. Recent attempts also extend these works to
the case of movement trajectories where protecting a sensitive

visit is also linked to the protection of the nearby past as well
as future locations [3].

However, the above privacy mechanisms are unsuitable for
the protection of visit-frequency information. For instance,
obfuscating frequent trips may still allow an adversary to
estimate the user’s visit-frequency to different regions on the
map. Consequentially, if highly frequented regions are not
sufficiently heterogeneous in terms of location semantics, e.g.,
a shopping district, the adversary may be able to identify
user’s critical locations. In general, obfuscation approaches can
also be attacked by techniques related to automatic semantic
labeling of user visits [22], [23]. Using machine-learning,
these techniques exploit the contextual information, such as
visit timings, nearby businesses etc., to identify the actual
visited semantic location. The promise that these visit-labeling
techniques show questions the privacy guarantees provided by
the above discussed mechanisms.

In contrast, our approach blocks out any contextual infor-
mation about critical visits by publishing them to those LSs
for which the adversary does not have access authorization.
Moreover, by explicit inclusion of multiple non-trusted LSs in
our system model, our approach mitigates the threat of a single
point of failure for privacy under data-breaches. In this regard,
our work is similar to that of [24]. However, their work also
protects single location updates only while not considering
location semantics or visit-frequency information.

IX. CONCLUSION

In this paper, we have presented a new attack to user privacy
based on the analysis of visiting frequencies of location traces.
By analyzing real data, we have shown that an attacker could
derive user profiles including private information like user
interests from such traces. To counter such attacks, we have
proposed an approach that tries to hide critical information
from attackers including malicious location servers and mali-
cious location-based applications. Our evaluations show that
our approach successfully hides critical information while
preserving sufficient quality of information for location-based
applications.

As future work, we will explore methods to optimize
the communication cost of fake events while maintaining
the privacy guarantees. For instance, instead of generating
fake events to make every location appear critical, another
approach could be make all locations seem equally ranked,
i.e., not necessarily critical. We believe that doing so should
significantly reduce the overall communication cost.

ACKNOWLEDGMENT

This work is a part of the PriLoc project (Privacy-Aware
Location Management) of the University of Stuttgart funded
by German Research Foundation (DFG) grant RO 1086/15-1.

REFERENCES

[1] M. L. Damiani, E. Bertino, and C. Silvestri, “The probe framework for
the personalized cloaking of private locations,” Trans. Data Privacy,
vol. 3, no. 2, pp. 123–148, 2010.

[2] B. Lee, J. Oh, H. Yu, and J. Kim, “Protecting location privacy using
location semantics,” in Proc. of KDD. ACM, 2011, pp. 1289–1297.

[3] G. Theodorakopoulos, R. Shokri, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Prolonging the hide-and-seek game: Optimal trajectory
privacy for location-based services,” in Proc. of WPES. ACM, 2014,
pp. 73–82.

[4] “United States of America v. Antoine Jones,” http://tinyurl.com/q5rxpkf.
[5] H. Cramer, M. Rost, and L. E. Holmquist, “Performing a check-in:

Emerging practices, norms and ’conflicts’ in location-sharing using
foursquare,” in Proc. of MobileHCI. ACM, 2011, pp. 57–66.

[6] “World’s biggest data breaches & hacks — information is beautiful,”
http://tinyurl.com/lgyx9lc.

[7] “App42 Cloud APIs: Backend as a Service,” http://api.shephertz.com/.
[8] “Backendless: Backend as a Service Platform,” https://backendless.com/.
[9] “Heroku: Building Location Based Apps with Heroku PostGIS,”

https://blog.heroku.com/archives/2013/4/30/building location based
apps with postgis/.

[10] “GaiaSup: We help you develop LBS Apps,” http://portal.gaiasup.com/.
[11] “Geocoda: Geocoding and Spatial Database,” https://geocoda.com/.
[12] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring Millions of

Footprints in Location Sharing Services,” in Proc. of ICWSM. Menlo
Park, CA, USA: AAAI, 2011.

[13] “foursquare for Developers,” https://developer.foursquare.com/.
[14] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-

Y. Le Boudec, “Protecting location privacy: optimal strategy against
localization attacks,” in Proc. of the CCS. ACM, 2012, pp. 617–627.

[15] C. Ardagna, G. Livraga, and P. Samarati, “Protecting privacy of user
information in continuous location-based services,” in Proc. of CSE,
2012, pp. 162–169.

[16] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of ICML. ACM, 2006,
pp. 161–168.

[17] S. Calinon, Robot Programming by Demonstration - a Probabilistic
Approach. EPFL Press, 2009.

[18] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification
of location privacy attacks and approaches,” Personal Ubiquitous Com-
puting, vol. 18, pp. 163–175, 2014.

[19] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” in Pervasive Computing, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2005, vol.
3468, pp. 152–170.

[20] M. Xue, P. Kalnis, and H. Pung, “Location diversity: Enhanced pri-
vacy protection in location based services,” in Location and Context
Awareness, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5561, pp. 70–87.

[21] E. Yigitoglu, M. L. Damiani, O. Abul, and C. Silvestri, “Privacy-
preserving sharing of sensitive semantic locations under road-network
constraints,” in Proc. of MDM. IEEE Computer Society, 2012, pp.
186–195.

[22] M. Ye, D. Shou, W.-C. Lee, P. Yin, and K. Janowicz, “On the semantic
annotation of places in location-based social networks,” in Proc. of KDD.
ACM, 2011, pp. 520–528.

[23] J. Krumm, D. Rouhana, and M.-W. Chang, “Placer ++: Semantic place
labels beyond the visit,” in Proc. of PerCom, 2015, pp. 11–19.

[24] F. Dürr, P. Skvortsov, and K. Rothermel, “Position sharing for location
privacy in non-trusted systems,” in Proc. of PerCom, 2011, pp. 189–196.

