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Abstract—Modern businesses operate globally with business
locations and partners scattered across the globe. To handle
the complexity arising with this distribution, automated business
processes help managing the data and interactions between
locations and partners. This migrates the execution of business
processes, which previously ran in reliable back-end systems, to
massively distributed environments. Due to heterogeneity and
high dynamics, a key challenge in such environments is to
ensure availability for these process executions in the presence
of frequent communication and device failures.

In this paper, we propose a protocol that provides high
availability by replicating process executions. To ensure that
a replicated execution produces the same outcome as a non-
replicated execution, we formally define one-copy consistency for
replicated process executions. Subsequently, we define rules that
ensure one-copy consistency and present a replication protocol
adhering to these rules even in the presence of failures. Our
evaluations on Amazon EC2 and PlanetLab show that our pro-
posed protocol significantly increases the availability of processes
executing in a distributed environment while incurring very low
overhead in terms of bandwidth utilization and execution time.

I. INTRODUCTION

Today’s technology allows to easily bridge long distances
and transmit information to virtually any location on this planet
within milliseconds. Nowadays, even small businesses have
several locations and partners all over the world. As a conse-
quence, the business’s data and business processes operating on
that data are geo-distributed. These business processes consist
of interrelated actions, where each action is an atomic unit
of work, e.g., for exchanging, analyzing, or managing data.
Today, business processes play a key role for automating and
optimizing the management and operation of business locations.
To keep locations operable, the processes frequently interact
with processes of other locations and partners, e.g., to enable
just-in-time production [1]. Consequently, businesses depend
on highly available process executions meaning that the process
executions should be able to start and progress at any point
in time. Executions that are hindered or even stopped imply
loss of money. When, for example, production breaks down
because parts were not ordered in time or data analysis was not
finished in time to provision enough cloud resources making a
business’s service unresponsive. Thus, availability is essential
for staying competitive. Only one hour of unavailability implies
a typical cost of up to $6.48million [2].

Ensuring high availability in heterogeneous environments
is, however, not trivial because of the frequent occurrences of
device, network and communication failures. Even though fixed
networks are usually known to be reliable, they are prone to
frequent failures. A study of the IP Backbone network shows

that connectivity failures in wide area networks occur at a
median rate of 3000s with a median duration of 2−1000s [3],
[4]. Failures are even common in datacenters, which are
widely known to provide high availability. Microsoft datacenters
experience 40.8 network failures with end-user impact per day
(on average), where each failure implies a median loss of
59,000packets [3], [5]. Large-scale operators like Google and
Amazon confirm that network partitioning is an important
design consideration to ensure high availability [3], [6].

Redundancy is a common approach for increasing the
availability by replicating the same functionality on multiple
machines [7]. With passive replication techniques only one
replica executes the process at any time and the produced
state is transferred to the other replicas [8]. This, however,
implies the bandwidth overhead of transferring the state after
the execution of each action to ensure a consistent state
across all replicas. Active replication mechanisms, such as
state machine replication [9]–[12], overcome this limitation
by executing the processes in parallel on multiple replicas.
State machine replication, however, assumes all actions of the
process to be deterministic. Thus, after ensuring that the actions
are executed in the same order on all replicas, the produced
state is guaranteed to be identical. Processes in general,
however, also comprise non-deterministic actions, rendering
state machine replication unusable. Moreover, state machine
replication assumes that all actions run in isolation on each
replica. Actions accessing external functionality or interacting
with other processes – which is very typical of business
processes [13] – cannot be handled. Other approaches combine
active and passive replication [14], [15]. The approaches,
however, are also limited to deterministic actions.

Thus, the problem addressed in this paper has a broader
scope. We target achieving high availability by the repli-
cated execution of processes containing interactive and non-
deterministic actions, which can access external functionality.
In particular, our main contributions are: 1) We formally define
consistency for replicated process executions, where a process
is consistent if the outcome of a replicated execution is the
same as for a non-replicated execution. 2) We specify rules
for executing a process in a replicated manner such that the
defined consistency is achieved. 3) We present a protocol that
complies with the defined consistency rules while providing
high availability. 4) Finally, we thoroughly evaluate the protocol
on Amazon EC2 and PlanetLab with respect to scalability and
performance in the presence of failures.1

1http://aws.amazon.com, https://www.planet-lab.eu



II. SYSTEM MODEL

We consider a distributed system consisting of a network of
computing nodes and services. Each computing node runs
an Execution Engine which is able to execute processes.
The services provide operations that the process uses during
execution. Any component of the distributed system, i.e.,
computing node, service, or communication link of the network,
might experience crash failures at any point in time. We,
however, assume that any failed component eventually recovers.

We provide availability by replicating the execution such
that multiple nodes execute a replica of the process (cf. Fig. 1).
For understanding the challenges arising with the replicated
execution, we define the process and the execution model.
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Fig. 1. Replicated process execution depicting two replicas and one service.

A. Process Model

The process model describes the logic of a process. It is
defined by a directed acyclic graph P = (V,E,Σ) consisting of
process vertices V defining atomic blocks of the process logic
called actions, directed edges E : V ×V defining the execution
order of the actions, and the internal state Σ containing the
variables needed during process execution. A predominant
number of process description languages is using graphs as the
basis of modeling processes [13], [16]. This allows to transfer
our concepts to most of the process description languages used
today. Our graph model allows conditional branching (XOR),
where only one of multiple branches is executed. Our model
also supports concurrency (AND), where multiple branches
are executed in parallel on disjoint subsets of the internal state
Σ (which is a common assumption [13]). Therefore, the set
of vertices V consists of two subsets V = VC ∪VA. The first
subset is the set of control vertices VC, where each control
vertex vc ∈ VC has a specific branching implementation, i.e.,
vc ∈{AND-Split, AND-Join, XOR-Split, XOR-Join}. The second
subset is the set of actions VA, where each action va ∈VA might
specify an operation sva to execute. The action, however, does
not implement the operation. Instead, it interacts with a service
providing the operation sva as defined in the execution model.

B. Execution Model

The Execution Engine running on each computing node is
able to interpret the above defined process model. Any device
or client can issue the execution of a process model P. Then, the
Execution Engine of the respective computing node instantiates
the model resulting in a process instance p. This also sets the
initial state σi ∈ Σ, which is identical for all instances p ∈ P.
Now, the Execution Engine can start executing the vertices
according to their execution order and the specified branching.

During execution, the process might interact with services
to use the operations provided at the service’s interface. The
execution of an operation is triggered by sending a request
message to the respective service. During the operation’s
execution the service might change its state or perform a write
(e.g., on database entries). This state is not in direct control
of the Execution Engine and we will summarize such state as
the external state. After execution, the service sends a reply
containing the result of the operation’s execution.

Operations that possibly write to external state are called
write operations. All other operations might only read external
state. The requests to the operations are called write requests
or read request, respectively. This allows to interact with any
service being compatible with the request-reply interaction
pattern, e.g., a database service for issuing read and write
operations. For simplifying presentation, we delay discussing
the support of arbitrary interaction patterns (cf. Sec. V-C).

Any execution of an action might transfer the internal state
σ into a new state σ ′, which we denote by σ →va σ ′|σ ,σ ′ ∈
Σ∧ va ∈VA. Each action execution is atomic and, thus, either
commits or aborts. For now, we additionally assume that each
action has a compensation handler. The execution of this
handler reverses a committed execution including the effects on
the external state. An action’s execution σ→va σ ′ can, however,
only be compensated if all executions of causally succeeding
actions (i.e., action executions using σ ′) are either aborted
or compensated. For simplicity, we refer to a write operation
issued by a process as an effective write iff it is performed
successfully and is not compensated. We treat actions without
compensation handlers in Sec. V-C.

Each replica also maintains a log on stable storage. The
atomic execution of an action writes the respective compensa-
tion handler with all necessary information (e.g., variable values
of σ ) to the log. This model of atomic actions and compensation
handlers conforms to open nested transactions [17], Sagas [18],
and business processes [16]. In general, actions can be grouped
into an atomic block, where all or none of the actions are
executed [16], [18]. Although we support this by treating the
block as a single action, we will not further discuss this concept.

III. CORRECTNESS OF REPLICATED EXECUTIONS

In the following, we will define a property called one-
copy consistency that ensures the correctness of the replicated
execution of process models. This property is independent of
the type of consistency achieved by the underlying process
model. It ensures that the replicated execution of a process
model has the same effects on the external state as some
non-replicated execution of that model.

Axiom 1: The non-replicated execution of a process model
P is correct.

That is, we assume that any non-replicated execution
maintains the consistency of the external state, which it accesses
and changes through using services. There are many approaches
for verifying that a process model is correct, e.g., [13], [19],
and any of these can be applied on the process model.



The effects of a process execution on the external state are
solely determined by the interactions of this execution with the
services. In particular, we distinguish between input and output
events of a process execution. For each request (read or write)
sent by the process, a reply message is returned to the requestor.
Clearly, received replies typically influence the future behavior
of the process and, thus, need to be considered as input. On
the other hand, the effective write requests of a process modify
the external state and, thus, need to be considered as output.

Informally, the replicated execution of a process model P
is considered to be one-copy consistent if there exists some
non-replicated execution of P that takes the same input and
generates the same output. Before we can define one-copy
consistency more precisely, we have to take a closer look at
the input dependencies of write requests. Fig. 2 shows a process
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Fig. 2. Execution of an exemplary process.

execution consisting of actions va1 to va5, where actions va3
and va4 are concurrent to action va2 due to an AND-split vertex.
The dotted arrows originating from va1 indicate that the internal
process state produced by va1 is made available to activities
va2 and va3, while the dotted arrows originating from va2 and
va4 indicate that the internal state produced by va2 and va4 is
merged and made available to activity va5. Obviously, a write
operation may be impacted only by input events in its causal
history. For example, write request w4 may be influenced by
reply events r3 and r1, while w5 depends on r4, r3, r2, and r1.
We will use the term Causal Reply History (or CRH for short)
to denote the reply events a given write request depends upon.

Definition 1: Causal Reply History
Let w be a write request issued by an execution of process
model P. CRH(w) = (I,→) comprises the set of reply events
I that causally precede w in the execution of P. The events in
I are partially ordered according to their causal relationship
→ in the execution of P.

That is, CRH(w) defines the input events on which w depends
and their causal dependencies. A pair of concurrent events (i.e.,
with no defined ordering) can be consumed in any order without
affecting w (because concurrent branches operate on disjoint
subsets of the internal state, cf. Sec. II). In our example above,
set I of CRH(w5) is {r1,r2,r3,r4} with the partial ordering
r1→ r2 and r1→ r3→ r4. For instance, r2 and r3 are concurrent
and, thus, the order of their consumption does not affect w5.

Definition 2: One-copy consistency
Let ER(P) be the replicated execution of process model
P. ER(P) is one-copy consistent iff there exists some non-
replicated execution EN(P) fulfilling the following conditions:

1) OR = ON , where OR and ON denote the sequence of
effective write requests of ER(P) and EN(P), respectively.

2) ∀wN ∈ ON ,wR ∈ OR : wN = wR ⇒ IN = IR∧ →N⊆→R,
where CRH(wN) = (IN ,→N)∧CRH(wR) = (IR,→R)

The first condition requires that ER(P) generates the same
sequence of effective writes as some non-replicated execution
EN(P), i.e., the two executions are consistent in terms of their
output. The second condition requires ER(P) and EN(P) to be
also consistent in terms of their input dependencies. Assume
a simple process that reads price information from a product
server, computes a sales discount and requests the sales server
to add the new offer. Without the second condition, a replicated
execution generating any offer would be considered consistent.

Theorem 1: A replicated execution of a process model P
that is one-copy consistent is correct.

The proof of the theorem follows directly from the one-copy
consistency property and the assumption that any non-replicated
execution of a process is correct.

IV. RULES FOR REPLICATED EXECUTIONS

In the following, we define rules that ensure one-copy
consistency for the replicated execution of processes. In general,
we can use two replication mechanisms: passive and active
replication (cf. Fig. 3). Passive replication means that each
action is only executed by one replica, while the other replicas
wait for the newly produced state to be replicated. When using
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Fig. 3. a) Passive replication b) Active replication

active replication, all replicas actively execute the actions of a
process rendering a state transfer unnecessary. However, which
replication mechanism should be used depends on the class of
action that is executed. Therefore, we will provide the criteria
for classifying actions before specifying the execution rules.

In specific, the actions are classified according to the effect on
the external and internal state. The first criteria specifies whether
an action writes to external state. An action writes to external
state if it calls a write operation of a service. When actively
replicating a write action, all but one execution of the action
need to be compensated to ensure the same effective writes as a
non-replicated execution. We can avoid the high compensation
overhead by using passive replication in the first place. For
all the actions that do not call write operations, there is no
effect on the external state. According to one-copy consistency
(cf. Def. 2) actively replicating non-write actions does not
require any execution to be compensated. If, however, a causally
preceding write action has to be compensated, the non-write
action still needs to be compensated before (cf. Sec. II). Even
if that is the case, compensating a non-write actions is cheap
because we only need to rollback the internal state.

The second criteria specifies whether the action execution
changes the internal state deterministically. Consider an opera-
tion for booking a flight ticket. Even when sending multiple
identical requests, the replies might vary because the plane has
a limited number of seats. From the process’s view, the action
is non-deterministic. If we want to ensure that the replicas



have the same internal state, we need to use passive replication.
In contrast, consider an operation offering a function, where
the request includes all input parameters. Here, the operation’s
reply will always be the same when sending identical requests.
The behavior appears deterministic to the process execution.
Hence, actively replicating a deterministic action results in the
same internal state on all replicas.

In conclusion, both passive and active replication are used
depending on the class of the respective action. Thus, we will
define rules ensuring one-copy consistency for passive and
active replication. To define these rules, we first need to take
a closer look on how a replicated execution takes place. In
Fig. 4b, a process is executed using passive replication. Here,
only one replica is executing the process at any point in time.
The replica executing va2 fails and another replica restarts the
execution of va2 to provide availability. Thus, the first execution
of va2 needs to be compensated later if va2 is a write action.
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Fig. 4. a) Non-replicated execution, b) passive replication, c) passive replication
exploiting concurrency, and d) active replication. Here, the execution of an
action σ →va σ ′ is abbreviated by va.

In Fig. 4b, the chain of action executions and state transfers
define a causal execution order. An action va is directly causally
preceded by the action that produced the internal state that va
is using as input. We capture this causal order as a directed
acyclic graph G = (N,L) called execution graph. The set of
nodes N represent the executed vertices, where the graph is
connected through an additional anchor node. The set of edges
L : N×N captures the execution order and defines the executed
before <G relation. As depicted in Fig. 4c, AND vertices might
also split and join branches of the execution graph.

Informally, a replicated execution is one-copy consistent if
the execution graph contains a subgraph that conforms to the
process model and all actions not contained in the subgraph
are compensated. We will now define this more formally.

Definition 3: Execution Rules
Let G = (N,L) be an execution graph of a replicated execution
of process P = (V,E,Σ). There is exactly one subgraph Gs ⊆G,
where Gs = (Ns,Ls), such that:

1) The causal order of the actions in G adheres to the
specified execution order and branching of P.

2) The subgraph Gs is a completed process execution of P.
3) None of the actions in Gs are compensated.
4) All write actions va in the execution graph G, which

are not in the subgraph Gs (i.e., va ∈ N ∧ va 6∈ Ns), are
compensated. However, an action va is only compensated
after all succeeding actions in the execution graph G (i.e.,
∀vx ∈N : va <G vx) were already compensated (cf. Sec. II).

Now, consider an actively replicated execution as depicted
in Fig. 4d. All replicas execute independently and, thus, the
execution graph contains one branch for each replica. Even
though active replication saves the need of transferring state,
it implies the overhead of compensating all but one execution
(if the process comprises write actions). Then, the execution
that is not compensated is the subgraph Gs. Consequently, the
defined execution rules apply to active replication as well.

Theorem 2: A replicated execution that adheres to the
Execution Rules (cf. Def. 3) is one-copy consistent (cf. Def 2).

Proof sketch: Since only the write actions of Gs are not
compensated (Def. 3.3 & 3.4), only Gs issues effective writes.
Def. 3.1 & 3.2 require Gs to be a valid execution of P, which
implies the action execution order is the same as some non-
replicated execution. Thereby, the same sequence of effective
writes is already ensured. The process produces the content of
the writes from the input. Thus, the content of the write request
is the same as some non-replicated execution if the CRHs of
the writes is also same. For showing the latter, consider the
execution graph. When replicating state, the state receivers
overwrite their own internal state by which they inherit the CRH
that produced this internal state. Concurrent AND-branches
execute on disjoint subsets of the internal state (cf. Sec. II)
and only replicate this subset. Thus, any AND-branch has its
own CRH and these CRHs are only merged by AND-joins.
Through the CRH inheritance, the CRHs of the writes in Gs
have to be the same as in some non-replicated execution.

V. REPLICATION PROTOCOL

So far, we defined consistency of replicated process ex-
ecutions but did not discuss availability. For providing high
availability in the presence of f concurrent failures, the protocol
has to fulfill two complementary properties, called decidability
and progress, and a third property called compensation indepen-
dence. Decidability requires that the protocol is able to decide
which execution to keep and which to compensate if multiple
replicas executed the same part of a process. Regarding the
execution rules (cf. Def. 3), decidability correlates to deciding
whether an execution is part of the subgraph Gs. In other words,
decidability ensures the safety of our protocol.

Liveness is ensured by the progress property, which requires
the ability to always progress the process execution. This
includes that the state produced by an execution which is
decided to be part of Gs has to be available when f failures
occur because the state is needed for continuing the execution.

Now, assume a part of the process was executed twice,
e.g., due to network partitioning. Thus, the protocol decides
that one execution is not part of Gs meaning this execution
has to be compensated. The compensation independence
property requires that the replica can compensate its execution
independent of all other replicas. A dependency arises if an
execution, e.g., of replica r1, has to be compensated but the
produced state is used for proceeding the execution on another
replica. Replica r1 can only compensate after all executions
building on the produced state are aborted or compensated
because compensation has to be performed in the reverse



causal execution order (cf. Def. 3.4). If a single replica might
have used the produced state and is failed, r1 is blocked
from compensating its execution. Allowing compensation
dependencies might lead to cascades of blocked compensations,
which is obviously undesirable. In other words, compensation
independence requires that a replicated state is only used for
continuing the execution after the protocol decided that the
execution that produced this state is part of Gs (because then
the execution will never be compensated).

Additional to the availability properties, we have perfor-
mance goals, which are to minimize failover time, compensa-
tion cost, and bandwidth overhead. However, for simplifying
the presentation of our protocol, we will first describe a
passive replication protocol without supporting AND- and
XOR-branching, where we focus on fulfilling the execution
rules (cf. Def. 3) and the availability properties. Subsequently,
we present a hybrid protocol combining active and passive
replication, where we discuss the performance goals in depth.
Finally, we extend the protocol to support non-compensable
operations, complex interactions, and AND/XOR-branching.

A. Passive Replication

The goal of passive replication is that the actions of a process
are executed only once if no failures occur (cf. Sec. IV).
In terms of the execution rules (cf. Def. 3) that means in
the failure free case the execution graph G only consists
of Gs. For ensuring decidablity and progress, the protocol
frequently replicates the state on at least f +1 replicas. When
these replicas acknowledge the reception, the corresponding
execution is decided to be in Gs manifesting the progress of
the process execution. Using 2 f +1 replicas, we request f +1
replicas for their state to recover the most recent replicated
state after a failure. Then, there is always at least one replica
knowing about the latest progress. In the following, we will
discuss the protocol in further detail.

The protocol is started when a client requests the execution
of a process P. The computing node receiving the request,
selects 2 f + 1 nodes (including itself) that become replicas
for the execution of P. The replica that received the client’s
request is the initial planner, which decides the first master. In
general a planner is responsible for deciding the next master.
The master is in turn responsible for executing the actions of
the process and replicating the produced state to the followers.
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The decided master executes the first action, where the
atomic execution of the action writes the respective com-
pensation handler including all necessary information (e.g.,
variable values of the internal state) to the log on stable storage.

This ensures the replica loses neither the knowledge that it
executed the action nor the information for a potentially needed
compensation. However, we do not require the internal state
to be kept on stable storage. Instead, the master replicates the
produced state by sending it to all replicas. The state replication
message includes the identifier of the last executed action to
inform the followers about the execution progress, as depicted
in Fig. 5(I). A follower can either reject or acknowledge the
received state (II). A state might be rejected if there is already
another execution of the same action that is decided to be in Gs,
which might happen in case of failures. The master waits for
a majority of ACKs before continuing the execution for three
reasons. Firstly, the state might be rejected as mentioned above.
This means the respective execution is not in Gs and needs to
be compensated. Continuing this execution with a rejected state
means that this continued execution also has to be compensated
– increasing the compensation overhead. Secondly, when not
enforcing the replication on f +1 replicas before continuing,
the state might reach less than f + 1 replicas. In case of a
failure, a majority might restart the execution without this
state, losing the execution progress. This not only increases
the compensation overhead but also contradicts the progress
property. Finally, the master switches to the planner role after
executing the action, deciding either itself or another replica
to be the next master by sending a message (III).2 When not
waiting for the majority of ACKs, the execution can continue on
another replica building on an execution, which might need to
be compensated later. This creates compensation dependencies,
which contradict the compensation independence property. In
conclusion, the availability properties require waiting for a
majority of ACKs before continuing the execution.

However, replicating the state after each action execution
implies a high overhead. It might, therefore, be beneficial to
group consecutive actions. Then, the state is only replicated
after the whole group has been executed, which reduces the
overhead. On the other hand, we might lose more execution
progress when a master fails. However, before we discuss the
impact of grouping in further detail, we will first present the
complete protocol. For now, assume that the grouping of the
process is predefined and coupled to the process model.

1) Handling Failures: To provide availability, we need to
handle master, follower, and abort failures. In case a master
fails, we elect a planner that determines a new master. To
invalidate the old master and the respective execution, we use
the concept of views [10], where the initial view of all replicas
is 0. The master annotates the logged compensation handlers
with the view number in which the respective action was
executed. The master also annotates the replicated state with
this view number. The followers only accept a state if their local
view is smaller or equal, i.e., outdated master executions are
rejected (ensuring decidability). When accepting, the followers
log the view for which they received a state together with an
identifier of the action which produced the state.

2There are many methods for deciding the next master. For example, the
master could be chosen based on the load or based on the latency to the
service operation needed by the next action. We support any arbitrary method.



For electing a planner, we can use any arbitrary election
protocol. The one we describe in the following is based on the
election protocol of Raft [11]. The master continuously sends
heartbeats and if a follower does not receive a heartbeat within
time th (plus a random back-off time tb to prevent concurrent
time outs), the follower increments its view and broadcasts a
view change request as depicted in Fig. 6(I). Receivers change
to this view and vote for the sender if the proposed view is
higher than their local view (II). The view change initiator
becomes planner when it receives f + 1 votes ensuring that
there is only one planner for the view change. Additionally,
the votes include the most recent group that was completely
executed, the view in which it was executed, and the respective
internal state of the voter. The planner can determine the most
recent group execution from the vote messages (III), i.e., the
most recent group executed in the highest view. The according
internal state has to be replicated on a majority of replicas
before the state can be used for continuing the execution for
the same reasons as during normal operation. Thus, the planner
replicates the state and then decides a new master (IV-VI).

𝑟2

𝑟1

𝑡ℎ + 𝑡𝑏

𝜎max, 𝑣𝑚𝑎𝑥,
𝑣𝑖𝑒𝑤𝑚𝑎𝑥

𝜎max, 𝑣𝑚𝑎𝑥, 𝑣𝑖𝑒𝑤𝑚𝑎𝑥

Fig. 6. Interaction pattern for a successful view change.

When the outdated master recovers, it requests the process
and the grouping from the other replicas. It also reads its log
by which it knows which actions it already executed. The
master needs to verify if the state it produced before failing
survived the failure, i.e., if the state was used for continuing the
execution after the view change. Therefore, it requests if at least
a majority of replicas has the according execution in their logs
(identified by action identifier and view). If this is not the case,
the respective group is already re-executed in a higher view
and the outdated master compensates its execution. Here, the
compensations are also logged for knowing the compensation
progress in case of another failure. Afterwards, the recovery is
finished. In case a follower fails, the recovery is exactly the
same except that no compensation is necessary.

Finally, to handle abort failures, a master, which for example
receives an abort from a called service operation, first will
restart executing the respective action. In case of another failure,
it compensates the whole group and triggers a view change
after which a new master will re-execute the group.

B. Hybrid Approach
When using passive replication, a master failure implies

changing the view and re-executing the respective group. In the
worst case, the failure occurs right before the state is replicated
leading to a high failover time. Moreover, the concept of
grouping, which is used to reduce the state replication overhead,
increases failover time further when increasing the number of
actions that are encapsulated within a group.

Active replication overcomes this problem. Here, all replicas
are actively executing the process. On the one hand, we do not
need to re-execute in case of a failure because all replicas are
executing already – proactively providing re-executions. On
the other hand, this implies high compensation cost because
after the whole process was executed, the replicas agree on one
of the executions, while all other executions are compensated.

In conclusion, active replication is the mechanism of choice
for parts of the process, where the compensation cost is low
or non-existent. Other parts of the process are executed using
passive replication. To enable this combination of active and
passive replication in one process execution, we extend the
previously defined passive replication protocol. The protocol
now can switch the replication mechanism per group, i.e.,
any group uses either active or passive replication. We also
determine a master for actively replicated groups, making a
replica’s execution of a group uniquely identifiable by the
view number (as in the case of passive replication). The
executions of the other replicas are proactive backup executions,
where the compensation handlers are logged without a view
number (identifying these as backup executions). In the case
of a master failure, the new master uses its backup execution
for the new view, where the view number is added to the
corresponding log entry. Now, we can exploit the benefits
of both replication mechanisms when grouping the process
accordingly. The process designer, as a domain expert, could
specify the grouping at design time. We, however, cannot
assume that grouping is provided for every process. Thus, we
present a method for automatic grouping.

We aim to keep compensation cost and state replication
overhead low, while ensuring that the failover time is below a
threshold tt , which is specified by process designer or user. Let
c : V →N be the function specifying the compensation cost of
a vertex and t : V → N specifying the execution time in ms,
where these values are either provided by the process designer
or monitored and learned from past executions.

A group g has to fulfill the following rules: 1) if g is actively
replicated: ∑v∈g c(v) = 0 and 2) if g is passively replicated:
tv +∑v∈g t(v) ≤ tt , where tv is the time needed for a view
change. The first rule ensures that groups are only actively
replicated if the compensation cost of the group is zero. This is
especially the case for deterministic, non-write actions, which
do not require compensation or state replication because they
produce the same internal state on all replicas (cf. Sec. IV).
In case of passive replication, the second rule ensures that the
sum of the time needed for changing the view and re-executing
the group is below tt . Thus, when a master fails, the failover
time is below tt . Note that the provided method of grouping is
simplistic and can, for example, be improved by considering
the failure rates of the replicas. Providing optimal grouping is,
however, not the scope of this paper and left for future work.

C. Extending the Protocol

The above described protocol can only handle a sequence of
actions calling compensable operations. In the following, we



extend the protocol to incorporate non-compensable operations,
more complex interaction patterns, and all control vertices.

1) Incorporating Non-compensable Operations: So far, we
assumed all write operations to be compensable. This, however,
might not be the case. For example, some cheap air lines
do not allow to cancel bookings. Thus, we subdivide write
actions further into compensable and non-compensable. Non-
compensable actions need to execute the called operation
exactly once. Therefore, the preceding group ends directly
before the non-compensable action. This enforces that the state
used as input for the non-compensable action was produced by
an execution of Gs and is never lost. To make the requests to
the service operation repeatable, the master announces the used
service and an unique interaction ID (IID). Only after a majority
agreed, the master starts the execution. In case of f failures
both the specific service and the IID are available for repeating
the request. We then require the service to filter duplicates using
the IID and simply repeat the reply. Alternatively, we could
integrate a middleware layer that is responsible for filtering.

2) Incorporating All Interaction Patterns: Until now, we
only considered interactions realized by a request-reply pattern
within a single action. However, there might be interaction
partners (e.g., a service, an application, or a user) requiring
more complex interaction patterns. Therefore, we allow actions
that only receive or only send a message and construct the
required pattern with these actions. The replicas again agree
on an IID that is used to identify the complex interaction
allowing any replica to resume the interaction. For not losing
messages that an interaction partner sends to a failed replica,
the interaction partner broadcasts messages to all replicas.

3) Incorporating Control Vertices: To support XOR-
branching, we require the XOR-split logic to be deterministic.
If a non-deterministic decision is desired, this has to be
realized by an preceding action. This allows to handle XOR-
splits like deterministic, non-write actions. Otherwise, XOR-
branching is congruent to a sequential execution requiring no
additional mechanisms. For AND-branching, we require that
all concurrent branches are executed on the same replica at
any point in time. Then, a group spans across all branches and
specifies which actions of which branch shall be executed. It
is also possible to execute the branches on different replicas.
We, however, omit the description due to space constraints.

D. Correctness

To show that the hybrid approach fulfills one-copy consis-
tency, we show that it adheres to the execution rules (cf. Def. 3).
Any execution builds an execution graph G, where G is
constructed through executing the groups g1,g2, ...,gn into
which we divided the process P. Def. 3.1 is trivially fulfilled
because the group and action execution order is based on P.
After the execution of a group g, the replicas decide which
execution of g is in Gs. This is always the execution of g being
executed in the highest view. The state of the execution that was
decided to be in Gs is the one that is used for executing the next
group. By induction, this constructs an execution path defining
Gs of which no action is compensated, satisfying Def. 3.3. Since

our protocol only terminates once gn is executed, Def. 3.2 is
also fulfilled. Additionally, the highest view of execution of any
group g is written to the log of at least f +1 replicas because
a majority of replicas have to agree (ACK) for making the
decision that an execution is part of Gs. Because all executions
are logged with the corresponding view number (or no view
number in case of backup executions), a faulty replica will,
upon recovery, always be able to identify an execution it needs
to compensate by having executed in a lower view than the
one that was decided (or no view), which satisfies Def. 3.4.

VI. EVALUATIONS

In this section, we evaluate our replication protocol in terms
of replication overhead, scalability, and performance in the
presence of failures. Therefore, we implemented a prototypical
Execution Engine including our replication protocol, where we
used Apache MINA3 for realizing the communication between
the replicas. To show the protocol’s benefits, we deploy the
prototype in two setups. First, we evaluate the protocol in a
cloud environment (Amazon EC2), where we have dedicated
resources and low latencies. Then, we evaluate the protocol in
a heterogeneous environment (PlanetLab Europe), where we
have shared resources and varying latency and bandwidth.

A. Amazon EC2

In Amazon EC2, we evaluate up to a replication degree of 17
using 17 t2.micro instances (1vCPU, 1GB RAM) each running
our prototype. We generate random processes consisting of
100 actions, which is in the range of typical process lengths [20].
The actions’ execution time is set using a Gaussian distribution
with a standard deviation of 500ms.4 The compensation cost
is set based on the class of action. Any non-write action has
a compensation cost of 0 and occurs with a probability of 1

4 .
All other actions’ compensation cost is set by using a uniform
distribution between 0 and 100. We evaluate our protocol
including our cost model, where we set the time threshold tt to
500ms and 10000ms. For comparison, we also evaluate active
and passive replication as well as a non-replicated execution.
Overall, we measured over 13,000 process executions.

First, we evaluate the bandwidth overhead during normal
operation, which is incurred by replicating the state. Thus,

 0

 10

 20

 30

 40

 50

 0  2  4  6  8  10  12  14  16  18

M
e
ss

a
g

e
s/

1
0

0

Replication Degree

Active
Passive
CM500

CM10000

Fig. 8. State replication message count of the replication approaches

we measure the needed state replication messages against

3https://mina.apache.org
4For circumventing monitoring service execution times including latencies

to all replicas, we simulate service calls. In PlanetLab, we actually call
prototypical services but, in turn, do not evaluate different cost model settings.
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the replication degree. Fig. 8 shows that all approaches are
scalable because the message count increases linearly with the
replication degree. However, passive replication imposes a big
overhead compared to active replication. Grouping actions with
our cost model (abbreviated by CM) reduces this overhead.
With tt = 500ms (i.e., CM500), we save around 1

3 of the
bandwidth compared to passive replication. When increasing
tt (and, thus, the groups size) to 10000ms, we even save
more than half of the bandwidth. However, solely considering
bandwidth, active replication seems to be the best approach.

In Fig. 7, we evaluate execution time and compensation
overhead in the presence of failures, where we randomly inject
failures during execution. With a mean time to recovery of
10s, failures are short compared to typical failures, which
even last up to multiple days [21]. However, replication is
obviously advantageous for long lived failures. In contrast,
we show that our protocol is still worth its overhead when
failures are short lived. To make different processes comparable,
we normalize the measured execution time by the minimum
time for executing the whole process (i.e., by the sum of all
action execution times). An execution time above 100% in
the failure free case is due to replicating the state and waiting
for a majority of ACKs. The increase of the execution time
with an increasing number of failures shows the failover time
of the different approaches. Respectively, we normalized the
compensation cost, where a compensation cost of 100% is
equal to compensating all actions of the process once.

When using active replication, the execution time with up
to f failures is almost as low as a non-replicated execution
(cf. Fig. 7a-c). The sudden increase of execution time with f +1
failures is due to the implementation of active replication. A
replica always finishes its process execution before participating
in the decision which execution to use and which to compensate.
This decision requires f +1 replicas. Thus, when f +1 failures
occur on different replicas, the decision is delayed by the mean
time to recovery (i.e., 10s). Although this could be improved
implementation-wise, the compensation cost anyways renders
active replication infeasible. Even in the absence of failures
the compensation cost of active replication is tremendous, i.e.,

200% for replication degree 3, 800% for replication degree 9,
and 1600% for replication degree 17 (cf. Fig. 7e-f).

Passive replication does not imply compensation cost in the
failure free case. However, the execution time overhead implied
by the replicating the state and waiting for a majority of ACKs
is noticeable. For replication degree 3, the execution time is
delayed by 5% compared to a non-replicated execution. For
17 replicas, the delay even increases to 10%. Our cost model,
reduces the overhead considerably, i.e., tt = 500ms saves 1

3 and
tt = 10000ms saves more than a half in the failure free case.
However, this means that groups contain more actions, which
– in the case of a failure – need to be re-executed. Thus, the
failover-time increases when increasing tt , which can especially
be observed for the replication degree 9. Here, the execution
time advantage of the failure-free case gets smaller or even
vanishes with an increasing amount of failures. Surprisingly,
the execution times of the cost model executions rarely increase
beyond passive replication – even for tt = 10000ms. This means
that even though the failover time increases (because more
actions need to be re-executed), it is mostly more efficient than
replicating the state more often. This, however, is also due to
our method of grouping, where all actions that do not imply
compensation cost are grouped (independent of tt ). At the end
of any group the state is replicated on f +1 replicas, which
means the progress is never lost. With these groups already
given (before additionally grouping using tt), it is then more
efficient (in terms of the execution time) to chose a high value
for tt , i.e., to re-execute more actions than replicate more often.
When, however, considering the compensation cost, the group
size has a big impact. Here, passive replication implies the
smallest compensation cost because the fewest actions need
to be re-executed and, hence, compensated. When increasing
the group size (i.e., tt), the compensation cost – especially
with an increasing number of failures – increases significantly.
However, with an increasing replication degree, the average
compensation cost for the same number of failures decreases.
The reason is that a higher replication degree makes it less
probable that the same number of failures will effect the current
group master. Instead, the failures mostly effect followers.



In conclusion, any replication method is worth its overhead
in the presence of a single failure when striving for high
availability. We showed that our protocol is scalable and implies
low overhead. Additionally, setting tt in the cost model allows
to minimize the compensation overhead or the bandwidth and
execution time overhead, or to achieve any trade-off in between.

B. PlanetLab

For evaluating our protocol in a geo-distributed setting, we
perform measurements on PlanetLab Europe. In PlanetLab,
resources are shared, which means performance, latency, and
bandwidth vary. The goal is to show that the protocol is also
beneficial in such a challenging environment.

First, we evaluate the time overhead the state replication
implies for a replication degree up to 33. Fig. 9 depicts the
time from sending the state replication message until receiving
a majority of ACKs and continuing the execution. In PlanetLab,
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one state replication with replication degree 3 on median
takes around 80ms. From replication degree 5 to 33 the time
increases linearly, staying below 120ms, which shows the
scalability with respect to the replication degree. The time
needed for a view change starts at around 140ms for replication
degree 3 and increases linearly to 220ms for a replication
degree of 33. In Amazon EC2, both the overhead for replicating
state (below 10ms for replicaiton degree 17) and view changes
(around 50ms for replication degree 17) are significantly lower.
However, when considering the distances between the geo-
distributed replicas in PlanetLab compared to the Amazon EC2
set-up, where all replicas are placed in one data center, the
overhead seems suprisingly low.

For evaluating the protocol in the presence of failures in
PlanetLab, we generate a process containing 100 actions. The
actions call prototypical services also placed in PlanetLab. We
only evaluate the worst-case scenario in terms of execution
time overhead, where the cost model threshold (tt) is set so
low that each group contains a single action. Fig. 10 depicts
the number of failures plotted against the execution time for
different replication degrees. For a non-replicated execution, the
execution time increases linearly with the number of failures.
Intuitively, each failure stops the execution until recovery.
Because the non-replicated execution does not need to replicate
state, it performs better in the failure-free case. However, even
with a single failure, the replicated executions perform better.
A replication degree of 3 can already tolerate one failure. For
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more failures, the execution time linearly increases. However,
more slowly than in the non-replicated case. The behavior of an
increasing failure tolerance for increasing numbers of replicas
can be observed across all replication degrees. However, higher
replication degrees also imply a higher execution time overhead
becoming obvious for 33 replicas. On the other hand, the high
replication degrees of 17 and 33 remain completely unaffected
even in the presence of 10 failures.

In conclusion, the failure measurements show that the
replication protocol allows the process execution to mask
f + 1 failures. Additionally, we showed that the execution
time overhead implied by the protocol is negligible when only
a single failure occurs even with worst-case grouping (in terms
of execution time overhead) and a geo-distributed setup like
PlanetLab with varying latency and bandwidth.

VII. RELATED WORK

Providing availability is an important requirement for any
network related system. Replication is a widely used mecha-
nism increasing availability by redundancy [7]. Data replication
ensures availability, for example, by using eventual consistency.
Here, working on a single replicas is possible, while consistency
across all replicas is ensured eventually [22]. However, data
replication targets one level below process executions because
processes operate on that data. Thus, we developed a new
consistency definition and concepts for process replication.

Another approach is passive replication, where one master
replica executes the process and transfers the execution state
to the backup replicas [8]. This, however, implies overhead in
terms of bandwidth for transferring the state, as well as a delay
until the transfer is complete. Active replication approaches
overcome these limitations by actively execution all actions
on all replicas. One such active replication approach is state
machine replication [9]–[12]. Here, a set of 2 f + 1 replicas
resemble a service, where the idea for making the service f
resilient is to keep the internal state of all replicas consistent.
In this respect, state machine replication is similar to our
protocol. There, however, are two fundamental differences.
Firstly, state machine replication assumes all replicas to be
state machines (i.e., actions are assumed to be deterministic).
State machine replication ensures that the client requests (i.e.,
the actions) are serialized, leading to the same execution order
and, thus, to the same state across all replicas. In contrast,
we consider a process, which might include calling non-
deterministic actions, invalidating the state machine replication



assumption. Additionally, state machine replication assumes
that the actions are executed in isolation on all replicas. This,
for example, means that state can be recovered by replaying the
requests. Process executions, however, trigger write operations
of services. We, therefore, need to ensure that such operations
are executed only once (or compensated otherwise). Thus, we
solve a completely different problem, where we re-use some
concepts which help solving our problem, such as views [10]
and time-out based election [11].

There are also techniques combining active and passive
replication to minimize the computation overhead of active
replication and still achieve high availability [14], [15]. Heinze
et al., for example, estimate recovery time to decide whether
active or passive replication is needed to ensure a user specified
latency in case of a failure [14]. This is related to our cost
model used for grouping, where we, however, use grouping
for reducing the state replication overhead and also take into
account compensation cost. Moreover, all these approaches
again assume deterministic actions for active replication.

Transaction management techniques consider also clients
sending requests (transactions) to the system [23]–[26]. How-
ever, the changes that a transaction performs on the system’s
state are only made permanent once the transaction commits
and a reply is send to the requestor. In contrast, our process
model is based open-nested transactions [16]–[18], where
executing an write action of the process directly changes the
external state. Thus, we have to consider the consistency of
the external state when replicating. Additionally, systems like
transaction management systems consider any message to ex-
ternal state (i.e., replies to clients) to be non-compensable [23]–
[27]. Assuming all communication to be non-compensable is,
however, too restrictive for processes, where compensation
handlers are usually available [16]–[18].

Business processes usually provide fault-tolerance by in-
tegrating fault handlers and recovery mechanisms in the
process model [28]. This, however, means that faults of the
infrastructure (e.g., computing node failures) are not handled.
Other approaches specifically tailored to business processes are
only targeting service failures [29] or require a special kind
of language for process modeling [30] (e.g., Declare [31]). In
contrast, the protocol presented in this work incorporates all
kinds of infrastructure failures and is applicable to any graph
based process description language, which is the predominant
method for modeling processes [13], [16].

VIII. CONCLUSION

We presented a novel replication protocol to ensure high
availability for process executions in a heterogeneous and
distributed environment. The key idea is to manage several
replicas of a process such that the outcome is identical to
a non-replicated execution. We formally defined this one-
copy consistency and presented a protocol adhering to this
definition while ensuring high availability. In our evaluations
on Amazon EC2 and PlanetLab, we showed that our protocol
significantly increases availability in the presence of failures,
while introducing low overhead. Moreover, the protocol proves

to be scalable because the bandwidth overhead as well as the
time overhead grow linearly with higher replication degrees.
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