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Abstract

Cyber-physical systems (CPS), like the ones used in industrial au-
tomation systems, are highly time-sensitive applications demanding zero
packet losses along with stringent real-time guarantees like bounded la-
tency and jitter from the underlying network for communication. With
the proliferation of IEEE 802.3 and IP networks, there is a desire to use
these networks instead of the currently used field-buses for time-sensitive
applications. However, these networking technologies, which originally
were designed to provide best effort communication services, lack mecha-
nisms for providing real-time guarantees. In this paper, we present Time-
Sensitive Software-Defined Networks (TSSDN), which provide real-time
guarantees for the time-triggered traffic in time-sensitive systems while
also transporting non-time-sensitive traffic. TSSDN provides these guar-
antees by bounding the non-deterministic queuing delays for time-sensitive
traffic. To this end, TSSDN exploits the logical centralization paradigm of
software-defined networking to compute a transmission schedule for time-
sensitive traffic initiated by the end systems based on a global view. In
particular, we present various Integer Linear Program (ILP) formulations
for computing high-quality transmission schedules. Moreover, we show
that end systems can comply with a given schedule with high precision
using user-space packet processing frameworks. Our evaluations show that
TSSDN has deterministic end-to-end delays (≤ 14 µs on our benchmark
topology) with low and bounded jitter (≤ 7 µs) for packets of size 1500
bytes transmitted with a frequency of 10 kHz.

1 Introduction

Cyber-physical systems (CPS) controlling physical processes through a set of
distributed sensors, actuators, and CPS controllers rely on computer networks to
transport sensor data and actuator commands to and from the CPS controllers,
respectively. Typically, such CPS are time-sensitive systems where the network
delay (including the delay stemming from packet loss) and jitter impacts the
quality of control of the CPS. For instance, machines in automotive shop floors
might fail, when two consecutive packets are lost [3]. Another example from
industrial automation are isochronous motion control systems, which require
extremely bounded jitter in the order of microseconds for stability [30]. Many
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more examples of time-sensitive CPS can be found in the area of Industry 4.0,
tele-robotics, smart grid, etc.

Consequently, in order to ensure a deterministic behaviour of CPS, deter-
ministic real-time networks with bounded delay and delay variance (jitter) are
desirable. Traditionally, such guarantees have been provided by dedicated field-
bus networks. However, with the proliferation and steadily growing performance
along with shrinking costs of IEEE 802.3 and IP networks, there is a strong desire
to also utilize these technologies, initially designed to provide best-effort com-
munication services, also for implementing time-sensitive CPS. Ideally, both,
time-sensitive and non-time-sensitive applications, should be able to communi-
cate over one converged IP-based IEEE 802.3 network.

The requirement to provide deterministic real-time networks is also in the
focus of two major standards bodies in networking, namely IETF and IEEE.
The IEEE 802.1 AVB Task Group, now rechristened as the Time-Sensitive Net-
working (TSN) Task Group (TG) [24][11], which develops standards for time-
synchronized low latency streaming services for 802 networks, and the IETF
DetNets Working Group [4], which targets time-sensitive communication over
Layer 2 bridged and Layer 3 routed networks.

Looking at the initial discussions of these groups, we can identify the elim-
ination of non-deterministic queuing delays in network elements as an essen-
tial requirement to achieve deterministic network delay and jitter for time-
sensitive traffic. This effectively also eliminates packet loss occurring due to
overflowing queues. One basic concept targeting highly time-sensitive periodic
communication—e.g., a constant bit-rate sensor data stream—in local area net-
works (LAN) is to schedule the transmission of packets at the end systems
using time-triggered communication. This concept leverages the possibility to
precisely synchronize clocks of hosts using time synchronization protocols like
the IEEE 1588 [8] Precision Time Protocol (PTP). Packets can then be assigned
to time-slots based on a global transmission schedule such that in-network queu-
ing is avoided. Additionally, time-sensitive traffic is assigned the highest priority
in the network to isolate it from non-time-sensitive traffic.

Although this concept of time-triggered communication is well-known [26][31],
several challenges remain, which we target in this paper. Firstly, we need suit-
able algorithms to compute a global transmission schedule. These algorithms
should assign time-slots to time-sensitive communication flows such that in-
network queuing is avoided (constraint) while maximizing the number of such
flows in the network (optimization objective). Thus, we need to solve a con-
strained optimization problem to compute a transmission schedule. Secondly,
we need to ensure that the end systems comply with the calculated schedules
precisely enough to avoid queues on switches. Adverse effects that need to be
considered are the variable delays of the network stack on the end systems, im-
perfect clock synchronization and timers, and the inevitable varying network
delay of packets following network paths of different length.

To facilitate the calculation of schedules, we utilize software-defined network-
ing (SDN), an emerging networking paradigm that enables deploying network
applications executing centralized algorithms with a global view onto the net-
work. To this end, we introduce a network controller, with a global view onto all
time-sensitive flows (we refer to all packets belonging to a given stream as a flow)
and the network topology, to compute the transmission schedules. This logi-
cally centralized architecture of our Time-sensitive Software-defined Network
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Figure 1: TSSDN. Network controller routing flows F1 & F2 and allocating them
slots T1 & T2, respectively

(TSSDN) is also consistent with the initial architecture of the IETF DetNet
WG, which considers logical centralization as one promising option. Further,
to ensure schedule adherence by the hosts, we use user-space packet processing
frameworks.

In detail, we make the following contributions:

• We introduce the scheduling problem in TSSDN (an NP-hard problem)
and propose various Integer Linear Program (ILP) formulations to com-
pute high-quality transmission schedules. These ILP formulations leverage
the efficiency of modern ILP solvers and lend themselves well to a logically
centralized implementation.

• We present a proof-of-concept implementation showing that the source
hosts of time-sensitive flows can accurately comply with the computed
transmission schedule using user-space packet processing frameworks.

• We show through evaluations that our ILP formulations can generate
transmission schedules for networks of realistic sizes within seconds. More-
over, we show that adherence to these schedules results in deterministic
network delays of ≤ 14 µs on our benchmark topology with ultra-low jitter
(≤ 7 µs) for packets-sizes of 1500 bytes transmitted with a frequency of
10 kHz.

The remaining paper is structured as follows. In Section 2, we present the
system model of TSSDN and the corresponding problem statement. In Sec-
tion 3, we present the ILP formulations to solve the scheduling problem in
TSSDN. We present the usage of packet processing frameworks for schedule
adherence in Section 4. We evaluate our work and present the related work in
Section 5 and 6 respectively. Finally, we conclude in Section 7.

2 System Model & Problem Statement

In this section, we present the system model of TSSDN and the problem state-
ment corresponding to its scheduling.

2.1 System Model

Our TSSDN (cf. Fig. 1) is based on the principles of software-defined network-
ing (SDN). SDN is an emerging networking paradigm based on the principle of
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control plane and data plane separation. The data plane consists of network
elements (switches), which are responsible for packet forwarding. The control
plane is responsible for configuring the data plane, e.g., by calculating routes and
programming the forwarding tables (also called flow tables) of switches. With
SDN, the control plane is moved from the network elements to a network con-
troller (not to be confused with the CPS controller) hosted on standard servers
and communicating with the switches through a so-called southbound interface
like the OpenFlow protocol [27]. The network controller is logically centralized,
i.e., it has a global view onto the network elements, topology, traffic, etc., which
facilitates the implementation of network control logic (routing, schedule con-
figuration). Note that the logically centralized SDN controller can be physically
distributed to several servers to increase scalability and availability. However,
in this paper we do not consider the problem of control plane distribution.

Besides the network controller and switches, our system consists of end sys-
tems (hosts). End systems execute userspace processes, which are the sources
and destinations for time-sensitive traffic. For instance, an end system can be
a sensor transmitting a stream of samples, an actuator acting upon a stream of
commands, or a CPS controller responsible for driving a physical process. We
assume that the sources of time-sensitive traffic unicast packets with a constant
bit-rate to the destination with time-periods that are an integral multiple of
a “base-period”, the minimum transmission period that can be supported. A
time-triggered pattern is well suited for using sensors with fixed sampling pe-
riods or actuators requiring inputs within given time intervals. Time-sensitive
traffic is transmitted in high priority UDP packets. Priority mechanisms like
IEEE 802.1Q (VLAN) or Differentiated Services (DiffServ) can be used for this.
We assume that every application layer data unit (e.g., sensor sample or ac-
tuator command) fits into a single maximum transfer unit (MTU) sized UDP
packet. Further, we assume that all end systems have precisely synchronized
clocks using the Precision Time Protocol (PTP). In this paper, we limit the
maximum network diameter, e.g., to 8 hops between any pair of hosts, which
is consistent with the IEEE 802.1D standard, i.e., we restrict our approach to
local area networks. It may be noted that all time-sensitive traffic has the same
priority, and, thus, an additional scheduling mechanism is required to handle
conflicting time-sensitive traffic, which is the basic focus of this paper.

2.2 Problem Statement

The goal of TSSDN is to achieve deterministic network behavior with bounds on
network delay and jitter for time-sensitive traffic to support real-time commu-
nication. Network delay comprises propagation delay, processing delay, trans-
mission delay, and queuing delay. Propagation delay in a LAN with predefined
maximum diameter is bounded, thus, deterministic, and very small (order of
nanoseconds). Moreover, our measurements with commodity Ethernet switches
have shown that their processing delays are in the range of microseconds or be-
low and almost constant for a given set of matching tuples [19]. Thus, processing
delay can also be considered to be deterministic. The transmission delay is also
bounded and deterministic for constant bit-rate traffic. Therefore, the challenge
for TSSDN is to bound the non-deterministic queuing delay for time-sensitive
traffic.

Generally, queuing occurs in switches when packets from multiple input ports
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attempt to transmit over the same output port simultaneously [21]. Queuing
can be eliminated if no two inputs ports contend for transmitting over the same
output port, i.e., the source host initiates transmission only when the entire
network path over which the flow traverses is exclusively reserved for it. For
instance, in the topology shown in Fig. 2, simultaneous transmissions of packets
belonging to flows Fi : Ai → Bi ; i ∈ [1 . . . 5] will result in queuing at the output
port of switch S1. In such cases, the network delay for these packets would
depend on the length of queues they encounter, i.e., the flows are affected by
jitter.

TSSDN bounds queuing delays by scheduling the transmission of time-sensitive
packets on source hosts in addition to routing them such that they will always
find an empty queue (for high priority traffic) on each switch along their path,
i.e., it isolates time-sensitive flows either spatially or temporally. To this end,
we implement a time-triggered time division multiple access (TDMA) scheme,
where every time-sensitive flow has well-defined time-slots allocated by the net-
work controller during which its source can transmit. The scheduling algorithm
in TSSDN uses its global knowledge of the network topology and the time-
sensitive flows gathered using the southbound interface to define a suitable
transmission schedule and route for all time-sensitive flows. For instance, in
the benchmark topology shown in Fig. 2, each of the flows, Fi , is allocated a
different time-slot to sufficiently skew their transmissions and avoid queuing on
the bottleneck link (from switch S1 to S2).

In the following, we address two pressing problems with respect to schedul-
ing in TSSDN. Firstly, how to compute a transmission schedule that maximizes
the number of scheduled time-sensitive flows? By maximizing the time-sensitive
flows that can be carried over the network, a larger number of real-time appli-
cations can be supported. This maximization problem is similar to the static
light path establishment problem encountered during routing and wavelength
assignment in optical networks [16]. In optical networks, light connections are
established between nodes by allocating wavelengths for communication. How-
ever, light connections traversing over a given optical link cannot share the
same wavelength. Analogously, time-sensitive flows with overlapping paths can-
not share the same time-slot. The decision problems with respect to minimizing

Figure 2: Benchmark topology with 10 hosts (A1–A5, B1–B5) connected to 2
switches (S1 and S2) with 10 Gbps links and 5 time-sensitive flows (Fi : Ai → Bi ;
i ∈ [1 . . . 5])
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the number of wavelengths used in an optical network or maximizing the num-
ber of established light connections are proven to be NP-complete [13]. In this
paper, we present scheduling algorithms in the form of ILP formulations that
compute transmission schedules for a static set of time-sensitive flows known a
priori.

Secondly, how can the source hosts precisely comply with a given transmis-
sion schedule? The communication primitives offered by the operating systems,
for instance the socket API’s, are inadequate for source hosts to comply with
a given transmission schedule with sufficient precision. They introduce non-
deterministic delays in the network stack of the end systems that render the
computed schedule useless. In Section 4, we present the usage of userspace
packet processing frameworks for precisely adhering to a given transmission
schedule.

3 Transmission Scheduling in TSSDN

3.1 Overview

The transmission schedule in TSSDN is modelled as a cyclic schedule of duration
equalling the base-period, as shown in Fig. 3. It is divided into smaller time-
slots, numbered from 0 to tmax , each wide enough for an MTU-sized packet
to travel across the longest network path (restricted to 8 hops). The network
controller can determine tmax based on the base-period and slot length, both
being system parameters. The scheduler disburses time-slots, T ≡ {0,1 . . . ,tmax },
to the sources of time-sensitive flows while also routing them. To avoid queuing,
the scheduler is restrained from allocating the same time-slot to multiple flows
that have overlapping paths. The sources then compute the exact transmission
instants using the base-period, the slot length, its own sending period, and the
allocated time-slot (cf. Section 4). The sources utilize their slots based on their
individual period, for instance, a flow with period twice the base-period will use
its slot in alternate cycles only. If a suitable slot is unavailable, then the source
is prohibited from sending time-sensitive traffic.

In the following, we present three ILP formulations with varying degrees of
constraints on routing for computing transmission schedules for TSSDN. The
first one, Scheduling with Unconstrained Routing (S/UR), allows the ILP solver
to explore all possible paths for routing the time-sensitive flows. The subse-
quent formulations, Scheduling with Pathsets Routing (S/PR) and Scheduling
with Fixed-path Routing (S/FR), restrict the possibilities for routing the flows,
thereby reducing the execution times, while compromising on the quality of the
schedules in terms of number of scheduled flows.

3.2 Scheduling with Unconstrained Routing (S/UR)

In this approach, the scheduler is free to route the time-sensitive flows over
any available path. The network topology and the set of desired time-sensitive
flows are the inputs. Variables are the time-slots and paths for the flows. The
optimization objective is to maximize the number of flows that are allocated a
time-slot.

For the ILP formulations, we denote the network topology as a directed
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Figure 3: Transmission schedules in TSSDN

graph G ≡ (V ,E), where V is the set of nodes and E ≡ {(i, j ) | i, j ∈ V and
i, j are connected by a network link}, is a set of tuples representing the net-
work links. Further, V ≡ (S ∪ H), where S and H are sets of switches and end
systems, respectively. The time-sensitive flows are denoted as a tuple, tsi ≡
(si ,di ), where si ,di ∈ H . Here, si and di is the source and the destination of the
flow, respectively. The set of time-slots available for disbursement is denoted
as T ≡ {0,1 . . . ,tmax }. Additional functions needed to model the topology and
time-sensitive flows are listed in Table 1.

3.2.1 ILP Inputs

The inputs required for the ILP formulation are as follows:

• Network Topology, G ≡ (V ,E).

• Set of time-sensitive flows to be scheduled, TS.
TS ≡ {tsi }; i ∈ [1 . . .NumFlows]
Here NumFlows represent the number of flows to be scheduled.

3.2.2 ILP Variables

The decision variables used for formulating the ILP are as follows:

• Mapping of flows to network links, SL.
SL ≡ { fi,j } ∀i ∈ TS, ∀j ∈ E
fi,j = 1, if the flow i traverses over link j, else 0.

Helper
Func-
tion

Parameters Output

in(n)
n ∈ V

{(u,v ) ∈ E |v = n}
out(n) {(u,v ) ∈ E |u = n}
src(ts) Flow ts,

ts ≡ (s,d)
s

dst(ts) d

Table 1: Helper functions for modeling network topology and time-sensitive
flows
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• Mapping of flows to time-slots, ST.
ST ≡ {ti,k } ∀i ∈ TS, ∀k ∈ T
ti,k = 1, if the flow i is allocated time-slot k, else 0.

• Helper variables, SLT. These enable the formulation of the scheduling
problem as an ILP.
SLT ≡ {mi,j,k } ∀i ∈ TS, ∀j ∈ E, ∀k ∈ T
mi,j,k = 1, if the flow i traverses over link j and is allocated a time-slot k,
else 0.

3.2.3 Objective Function

The objective function is formulated so as to primarily maximize the number
of flows that are allocated time-slots. In some situations different solutions
might exist with the same number of scheduled flows but where some solutions
contain loops in their paths. Obviously, in such cases we would prefer the
solutions without loops. Therefore, we define a secondary objective for weeding
out solutions that route flows over paths with loops. This term in the objective
keeps the path length at a minimum, thus, eliminating paths with loops, and is
factored such that its total contribution to the objective is less than one. This
ensures that the ILP solver gives priority to maximizing the number of flows
that can be scheduled rather than minimizing the length of the individual paths
allocated to them.

Maximize: ∑
∀i ∈ TS

∑
∀k ∈ T

ti,k︸               ︷︷               ︸
Primary Objective

−
1

( |TS | × |E |) + 1
×
∑

∀i ∈ TS

∑
∀j ∈ E

fi,j︸                                          ︷︷                                          ︸
Secondary Objective

3.2.4 Constraints

The constraints for the ILP formulation are as follows:

• Every flow shall be allocated at most one time-slot as they carry only one
MTU-sized packet during their corresponding period.∑

∀k ∈ T

ti,k ≤ 1 ∀i ∈ TS

• The path for a given flow, i, starts at its source host and ends at its
destination host, i.e., the source host has only one outgoing link with no
incoming links while the destination host has one incoming link with no
outgoing links. For all the other network nodes, the number of incoming
links is equal to the number of outgoing links.∑

∀j ∈in (src (i ))

fi,j = 0
∑

∀j ∈out (src (i ))

fi,j = 1∑
∀j ∈in (dst (i ))

fi,j = 1
∑

∀j ∈out (dst (i ))

fi,j = 0

∑
∀j ∈in (n)

fi,j =
∑

∀j ∈out (n)

fi,j ∀n ∈ V \ {src (i ),dst (i )}
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This constraint is valid for all flows, i.e., ∀i ∈ TS.

• Multiple flows cannot be routed over a given link during any of the time-
slots. This constraint ensures that the entire path for each flow is reserved
for the flow exclusively during its allocated time-slot.∑

∀i ∈ TS

mi,j,k ≤ 1 ∀j ∈ E, ∀k ∈ T

• Finally, we need additional constraints to ensure that the ILP solver pro-
vides consistent values for the variables, i.e., for a flow i, edge j and time-
slot k, the variable mi,j,k can be 1, only if variables fi,j and ti,k are both 1.
Hence, the following constraint is required:

mi,j,k = fi,j × ti,k ∀i ∈ TS ,∀j ∈ E,∀k ∈ T

Although this constraint is non-linear, it can be transformed into purely
linear constraints as follows:

mi,j,k ≤ fi,j

mi,j,k ≤ ti,k

mi,j,k ≥ fi,j + ti,k − 1



∀i ∈ TS , ∀j ∈ E, ∀k ∈ T

The ILP solver sets values for the variables SL and ST corresponding to
the computed schedule. The network controller configures the flow-tables in the
switches for routing flows based on SL, and disburses the time-slots based on
ST .

This ILP formulation results in an optimal schedule, i.e., maximum number
of time-sensitive flows are scheduled from a given set of flows, if the sources of all
flows transmit with a period equalling the base-period. Presence of flows with
periods higher than the base-period might result in sub-optimality, the extent
of which depends on the number of such flows and the difference between its
individual periods and the base-period. This is similar to the most field-bus sys-
tems, like Sercos-III [34], TTP [25] etc., catering to the needs of time-triggered
systems in industrial automation. Accounting for the individual periods of the
flows increases the complexity of the scheduling problem manifold. Moreover,
the communication flows in these systems transmit with base-period or periods
very close to the base-period. Thus, it is reasonable for TSSDN to also ignore
the actual transmission periods of the time-sensitive flows for scheduling.

The runtime for computing transmission schedules with this ILP formulation
is quite high because it has two degrees of freedom, viz., the routes for the flows
and the corresponding time-slots. However, with respect to paths it seems
reasonable to prefer short paths as it would result in fewer possibilities of slot
collisions along paths sharing the same links. This leads us to other approaches
that restrict the search space to explore only the shortest paths to reduce the
runtime. This may, however, result in a lower number of flows being scheduled
in comparison to S/UR. With our subsequent approaches—S/PR and S/FR—
we strive to achieve results approximating those generated by S/UR with lower
execution costs.
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3.3 Scheduling with Pathsets Routing (S/PR)

For Scheduling with Pathsets Routing, we extend the model of time-sensitive
flows to additionally include a set of “candidate” paths that it may use. The
ILP formulation is restricted to route the flow through one of the paths in this
set instead of searching the complete solution space for arbitrary paths. We use
the set of all shortest paths between the source and destination of a given flow
as its candidate paths. However, this approach will have a lower runtime only
if the penalty to calculate the set of shortest paths for each flow is amortized
by the savings in the execution time of the ILP solver. This is the case, as as
we show in the evaluations.

3.3.1 ILP Inputs

The inputs for the ILP formulation are the set of flows to be scheduled and the
paths through which each of the flows may be routed.

• Set of flows to be scheduled, TS.
TS ≡ {tsi }; i ∈ [1 . . .NumFlows]
Here, NumFlows represent the number of flows to be scheduled.

• Set of possible paths through which the flows may be routed, P .
P ≡ {pl }; l ∈ [1 . . .NumPaths]
This set contains all the shortest paths from the source to the destination
for each flow ts ∈ TS.

• Mapping between flows and paths, SP.
SP ≡ {spi,l }; ∀i ∈ TS, ∀l ∈ P
spi,l = 1, if flow i can traverse over path l , else 0.
It must be noted that while a flow has multiple candidate paths over which
it may be routed, a given path can be used by only one flow, i.e., the path
identifies the flow.

• Mapping between paths and links, PL.
PL ≡ {pll,j }; ∀l ∈ P , ∀j ∈ E
pll,j = 1, if path l includes link j, else 0.

3.3.2 ILP Variables

In this formulation, we allocate time-slots to paths instead of a flows.
PT ≡ {ptl,k }; ∀l ∈ P , ∀k ∈ T
ptl,k = 1, if path l is allocated time-slot k, else 0.

3.3.3 Objective Function

The objective for this ILP formulation is to maximize the number of paths with
assigned time-slots.

Maximize
∑
∀k ∈ T

∑
∀l ∈ P

ptl,k
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3.3.4 Constraints

The constraints for this ILP formulation are enumerated as below:

• Each path may be allocated at-most one time-slot.∑
∀k ∈ T

ptl,k ≤ 1 ∀l ∈ P

• Each flow can be allocated at-most one time-slot, i.e., for a given flow,
only one of its candidate paths can be allocated a time-slot.∑

∀k ∈ T

∑
∀l ∈ P

ptl,k × spi,l ≤ 1 ∀i ∈ TS

• To avoid collisions, no two paths with overlapping links will be assigned
the same time-slot.∑

∀l ∈ P

ptl,k × pll,j ≤ 1 ∀k ∈ T ,∀j ∈ E

The ILP solver sets values for PT based on which the network controller can
disburse the time-slots for the flows and accordingly route them as well.

3.4 Scheduling with Fixed-path Routing (S/FR)

Another approach further reducing the execution time for computing transmis-
sion schedules is the Scheduling with Fixed-path Routing Approach. This ap-
proach extends the idea of S/PR. Here, we take a radical approach by choosing
the path for a given flow randomly from the set of all shortest paths between its
source and destination similar to Equal Cost Multi Path (ECMP) [12] routing.
Then, the ILP formulation only deals with the time-slot allocation. While this
approach is faster than S/PR, the computed schedule might be of even lower
quality relative to S/UR.

3.4.1 ILP Inputs

The inputs for the ILP formulation is the set of flows to be scheduled and the
path through which each of the flow is routed (selected at random from the set
of all shortest paths between the source and destination of the flow).

• Set of flows to be scheduled, TS.
TS ≡ {tsi }; i ∈ [1 . . .NumFlows]

• Mapping of flows to links, SL, indicating the links that belong to the path
that a flow must traverse.
SL ≡ { fi,j }; ∀i ∈ TS, ∀j ∈ E :
fi,j = 1, if flow i traverses over link j, else 0.

3.4.2 ILP Variables

Decision variables are required only for mapping a flow to time-slots. ST indi-
cates the time-slot that is allocated for a flow.
ST ≡ {ti,k }; ∀i ∈ ST, ∀k ∈ T
ti,k = 1, if flow i is allocated time-slot k, else 0.
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3.4.3 Objective Function

The objective function is formulated so as to maximize the number of flows that
are allocated time-slots.

Maximize
∑

∀i ∈ TS

∑
∀k ∈ T

ti,k

3.4.4 Constraints

The constraints for this ILP formulation are enumerated as below:

• Each flow may be allocated at most one time-slot.∑
∀k ∈ T

ti,k ≤ 1 ∀i ∈ TS

• To avoid collisions, no two flows can be allocated the same time-slot if
they have overlapping paths.∑

∀i ∈ TS

ti,k × fi,j ≤ 1 ∀j ∈ E,∀k ∈ T

The ILP solver allocates time-slots to the flows through T . Based on these
values, the slots can be disbursed by the network controller.

4 Schedule Adherence in TSSDN

To reap the benefits of TSSDN—deterministic network delay and jitter—sources
of time-sensitive flows must adhere to the computed schedule as precisely as pos-
sible. In high-speed networks, with high bandwidth links (exceeding 1 Gbps) and
high performance cut-through switches, the duration of time-slots (time required
for an MTU-sized packet to traverse 8 hops) is in the order of microseconds.
Deviation beyond 1–2 µs will render the entire schedule useless. Further, CPS
are mainly affected by the end-to-end delays (measured between the userspace
applications) which comprise network delay and the delay incurred in the net-
work stacks at the source and destination hosts. This implies that the delays
incurred by the packets in the network stack must also be deterministic.

We evaluated the socket API’s in Linux (CentOS, kernel version 3.10) to
determine if they provide these properties for communication. For our evalua-
tions, we deployed two userspace applications that act as source and destina-
tion of time-sensitive traffic on nodes A1 and B1, respectively, of our benchmark
topology (cf. Fig. 2). We measured the end-to-end latency (between the ap-
plications) for 10,000 packets (each of size 1500 bytes), one packet sent every
10 ms. The results (cf. Fig. 4a) show the latency varying between 37–117 µs,
with an average latency of 63.58 µs and a standard deviation of 4.88 µs, in ab-
sence of any cross traffic. Such high jitter is attributed to the variable delays
(10–100 µs) that packets incur while traversing the network stack of the operat-
ing system [15], i.e., invoking send() on a socket does not place the packet on
the network interface with deterministic delay, nor does receive() return with
bounded delay after the network interface receives a packet. Thus, with socket
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API’s it is impossible to adhere to the transmission schedules with required
precision and provide tight bounds on the delays incurred in the network stack
of the end systems.

Userspace packet processing frameworks, like Intel’s Data Plane Develop-
ment Kit (DPDK) [5] or netmap [33], bypass the network stack by using custom
device drivers and hand the complete control of communications to userspace
applications. These may be used to get around the problem of variable delays
in the network stack of the end systems. On the flip side, they are then unable
to exploit the abstractions for communications, i.e., the userspace application
is now responsible for the creation and interpretation of the data packets. To
evaluate the feasibility of using these frameworks, we developed two DPDK ap-
plications, one as the source and the other as the destination of time-sensitive
traffic and measured the end-to-end latency between them, similar to our eval-
uation of socket applications.

Algorithm 1 Source - Userspace DPDK application

1: function src(basePeriod(bp), slotLength(sl), timeSlot(ts))
2: init NIC and sending queues
3: intervalAlrm ← flowPeriod
4: f irstAlrm ← now () + (bp − now () % bp) + sl × ts
5: f irstAlrm ← f irstAlrm − pktCreationTime
6: timer settime(f irstAlrm, intervalAlrm)
7: while True do
8: if alarm is triggered then
9: Create payload by executing required tasks

10: pkt ← dpdk.createPkt()
11: dpdk.sendPkt(pkt)

The destination application simply receives the packet from the network
interface bypassing the network stack and parses the packet to decode the infor-
mation sent by the source. DPDK provides high performance packet processing
API’s for this purpose. The source application (pseudo-code in Algorithm 1)
plays an important role with respect to TSSDN scheduling. It is responsible
for configuring timers suitably to trigger packet transmissions. For this we used
Linux interval timers (timer settime() [9]) that generate an alarm at fixed in-
tervals based on the base-period, slot length, flow period, and the allocated
time-slot (Lines 3–5). The source can use the generated alarm for transmitting
the time-sensitive packet prepared beforehand, or use it as a trigger to also cre-
ate the packet (generate the payload by executing the sensing or CPS-control
tasks). We use the latter approach (Lines 9–10) and hence advance the inter-
val timer by pktCreationTime (profiled beforehand) to compensate for the time
required to generate the payload and create the corresponding packet.

With DPDK API’s, the end-to-end latency varied between 7–10 µs with an
average latency of 7.94 µs and a standard deviation of 0.4 µs. This implies that
the packets incur almost constant delays in the network stack with the use of
userspace packet processing frameworks. The low end-to-end latency between
the source and destination applications indicate that packets are placed on the
network interface with minimal delay after the corresponding API is invoked.
Hence, we use DPDK for precisely complying with the transmission schedules.
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(a) Comparison of laten-
cies

(b) Impact of packet pri-
oritization

(c) Quality comparison of
the ILPs

(d) Scheduling runtime vs
No. of flows

(e) Scheduling runtime vs
No. of slots

(f) Scheduling runtime vs
Topology size

Figure 4: Evaluations Results

Our evaluations showed similar results for other frameworks also.

5 Evaluations

We evaluated TSSDN on two fronts. Firstly, we measured the end-to-end la-
tency for time-sensitive traffic on the data plane of TSSDN under various sce-
narios to determine if it provides the promised real-time guarantees. Secondly,
we evaluated the ILP formulations, executing on the control plane, to com-
pute transmission schedules for random graphs created using different models
to exhibit its correctness and scalability.

5.1 Data Plane Evaluations for TSSDN

To evaluate the real-time properties provided by TSSDN on the data plane,
we implemented the benchmark topology, shown in Fig. 2, using five commod-
ity machines (Intel Xeon E5-1650) each equipped with an Intel XL710 quad
10 GbE network interface [7] and an Edge-Core cut-through “bare-metal” switch
(AS5712-54X) [6] running PicOS (ver 2.6.1) [10]. The switch was partitioned
into virtual switches to create the topology, while each machine hosted two
end systems, for instance, Host A1 and B1 were placed on the same machine
but used different network interfaces. We used the Precision Time Protocol
(PTP) for synchronizing clocks on all machines. To this end, we used a sep-
arate network infrastructure using a third network interface on each machine
(two interfaces are used by the end systems hosted on the machine) dedicated
to PTP synchronization. This was basically necessary because of two reasons:

14



First, our switch did not support PTP. Thus, high priority time-sensitive pack-
ets could potentially impact the accuracy of PTP latency measurements. With
a switch which can measure the port-to-port residence time of PTP packets,
the precision of clock synchronization would not be affected. Secondly, DPDK
exclusively allocates a network interface to a process, so we cannot easily run
a PTP daemon over the same port. Sharing a port between different processes
is a common problem of current userspace packet processing frameworks and a
separate research problem.

5.1.1 In-network Prioritization

As mentioned in Section 4, the end systems in TSSDN use userspace packet pro-
cessing frameworks to adhere with the computed schedules (cf. Figure 4a). How-
ever, this alone is insufficient as TSSDN is also meant to additionally transport
non-time-sensitive traffic. In this section, we experimentally show the impor-
tance of tagging time-sensitive packets as priority traffic, while also motivating
the need for transmission scheduling in TSSDN.

To determine the impact of non-time-sensitive traffic, we loaded the bottle-
neck link (link from switch S1 to S2) of our benchmark topology with random
traffic (random packet sizes and variable bitrate) initiated by end systems A2–
A5. It may be noted that the link was never subscribed beyond 80 % of its
total capacity. With this cross traffic, we measured the end-to-end latencies for
10,000 packets sent from A1 → B1 with a period of 10 ms. As shown in Fig. 4b,
the end-to-end latency fluctuates drastically between 7–66 µs, if the packets are
not marked as priority packets by the source despite the spare capacity in the
bottleneck link. End systems may tag time-sensitive packets as high priority
packets so that its delivery would be expedited by the data plane. We used the
IEEE 802.1Q priority scheme and marked time-sensitive packets with highest
possible priority class (priority 7). With prioritization of time-sensitive traffic,
the end-to-end latency with cross traffic varies in a narrower band of 7–13 µs.
However, the standard deviation of end-to-end latency has increased from sub-
microsecond range (in absence of any interference from non-time-sensitive traf-
fic) to 1.68 µs. This is because our switch does not support frame preemption
(IEEE 802.1Qbu [1]), and hence time-sensitive packets, though higher in prior-
ity, must queue till the current non-time-sensitive packet is transmitted. With
support for frame preemption, higher priority time-sensitive packets will not be
affected by the lower priority cross-traffic. It may be noted that the upcoming
standards for frame preemption will also soon make its way into commodity
switches.

The impact of prioritizing time-sensitive packets is, however, nullified, if
time-sensitive flows are not temporally or spatially isolated. In absence of
scheduling, no guarantees can be provided with respect to the bounds on end-
to-end delays and jitter, even if the time-sensitive packets are tagged as high
priority packets.

5.1.2 Impact of Scheduling

To show the impact of scheduling, we deployed a varying number of time-
sensitive flows on our benchmark topology. We used a slot-length of 15 µs, con-
sidering the end-to-end delay in traversing the network diameter of our bench-
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# Flows Avg. (µs) Std. (µs) Min (µs) Max (µs)

1 Flow 7.99 0.62 7 13
2 Flows 8.09 0.57 7 14
3 Flows 8.04 0.49 7 14
4 Flows 8.07 0.48 7 14
5 Flows 8.06 0.54 7 14

Table 2: End-to-end latency for time-sensitive flows when scheduled in adjacent
time-slots

mark topology. We assume a base-period of 1 ms and that all flows use their
slots completely, i.e., transmit one packet every 1 ms. The flows are allocated
adjacent slots to demonstrate that schedules can be adhered precisely by the end
systems. It may be noted that we evaluate our system in the toughest scenario
with adjacent slots occupied on a 10 Gbps link as this would amplify any con-
sequence of non-adherence to schedules. We measured end-to-end latencies for
105 packets per flow and summarized the results in Table 2. As can be seen, the
end-to-end delays for the time-sensitive flows vary in a narrow band of ≤ 7 µs,
irrespective of the number of flows in the network. Further, the standard devia-
tion for time-sensitive flows is also in sub-microsecond range indicating minimal
communication jitter. In networks with lower bandwidth links, the performance
would be equally good or even better. Thus, we conclude that suitable trans-
mission schedules impart real-time properties for communication over the data
plane of TSSDN.

Further, to emphasize the importance of transmission scheduling, we mea-
sure the end-to-end latencies for a varying number of time-sensitive flows when
they are assigned the same transmission slot. Our ILP formulations would never
allow time-sensitive flows to interfere, however, in absence of scheduling such
a scenario cannot be ruled out. Hence, we repeated the above experiment but
allotted the same slot to the flows instead of adjacent ones. The results summa-
rized in Table 3 show that end-to-end latency of time-sensitive flows are affected
if more than one flow is assigned the same slot. The average end-to-end delay
and the standard deviation steadily increases with the number of time-sensitive
flows sharing the time-slot. Moreover, the jitter goes beyond 7 µs when more
than 3 time-sensitive flows contend for traversing a network link. This scenario
also shows that in absence of scheduling, the time-sensitive traffic could end up
impeding each other in the network. The reason for this is that TSSDN pri-
oritizes time-sensitive traffic over non-time-sensitive-traffic but does not resolve
priorities between them.

We observed that the jitter depends on the transmission frequency of the
DPDK application and size of the packets being transmitted. For instance,
jitter of ≤ 3 µs was observed at a frequency of 100 Hz for 64-byte sized packets,
while it increased to ≤ 7 µs at a frequency of 10 kHz for 1500-byte sized packet.
We infer that a part of this jitter (1–2 µs) originates from the interval timers in
Linux, while the rest is a result of process preemptions or delayed availability
of computing slice for the userspace applications (despite executing them with
highest priority, i.e., nice level −20 in Linux) at source and destination hosts. In
our future work, we will explore using real time kernel patches to further reduce
the residual jitter.
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# Flows Avg. (µs) Std. (µs) Min (µs) Max (µs)

2 Flows 8.63 0.86 7 14
3 Flows 9.19 1.14 7 14
4 Flows 9.75 1.42 7 15
5 Flows 10.2 1.71 7 17

Table 3: End-to-end latency for time-sensitive flows when scheduled in the same
time-slot

5.2 Control Plane Evaluations for TSSDN

In this section, we evaluate the various ILP formulations, presented in Section 3,
with respect to the quality of schedules they compute and their scalability.

We use the commercial ILP solver CPLEX from IBM [2] to solve our ILP
formulations which are specified using PuLP [28], a Python-based tool-kit to
specify ILPs. Moreover, we created different network topologies (different sizes
and different network models) using NetworkX [22], a Python library for creating
complex networks. In detail, we used the Erdős-Rényi (ER) model [20] (random
graphs where nodes have similar degree), random regular graphs (RRG) (ran-
dom graphs where nodes have same degree), the Barabási-Albert (BA) model
[14] (scale-free networks where few nodes have high degree and many have small
degree), and the Waxman model [37] (geographic model favoring short-distance
links over long links). Together, these models for randomized graphs compre-
hensively test the limits of our ILP formulations. The sizes of these topologies
and the number of time-slots and flows used as input are specified with the
concrete evaluations.

We used two machines for evaluating our ILPs. The first is a high per-
formance multi-processor machine with 2 × 8 cores (Intel Xeon E5-2650) and
128 GB RAM, while the second is a commodity machine with 2 cores and 8 GB
RAM.

5.2.1 Qualitative Evaluations

To evaluate the quality of the schedules generated by the ILP formulations S/PR
and S/FR with respect to S/UR, we computed the transmission schedules in 160
evaluation scenarios using 8 different topologies (3 RRG, 2 ER, and 3 BA), each
with 24 hosts and 6 switches. Note that we had to choose a smaller topology to
be able to compute the schedule using S/UR as reference since it has a very high
runtime. Limiting the number of components in the topology also limited the
number of topologies we could examine. Each scenario consisted of 20–110 flows
with random source and destination hosts to be scheduled with 3–5 available
time-slots in the network. We have deliberately chosen a smaller number of
slots to create challenging scenarios for our ILP formulations even for smaller
numbers of flows. As performance metric, we calculate the relative quality of
the schedules computed by S/PR and S/FR, i.e., the ratio of the number of
flows scheduled by them to the number of flows scheduled by S/UR.

Fig. 4c shows the cumulative distribution of the relative quality achieved
by S/PR and S/FR. This figure shows that the quality of the solutions they
generate closely approximate the quality of the ones computed using S/UR. For
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instance, for S/PR, 80 % of the scenarios have at least a relative quality of 98 %
or better. In detail, S/PR and S/FR generated schedules with 100 % relative
quality in about 67 % and 38 % of the evaluation scenarios, respectively, with
average qualities of 99 % and 97 %.

5.2.2 Scalability Evaluations

Knowing the quality of the different approaches, we next evaluate their scalabil-
ity, i.e., the time to calculate solutions for different scenario sizes. The runtime
for computing the transmission schedule depends mainly on three factors: the
number of flows to schedule, the number of available time-slots, and the size of
the topology. Therefore, we vary these parameters and measure the correspond-
ing runtime for computing the schedule.

First, we vary the number of flows for scheduling using the ILP formulations.
We use a small scenario, an ER topology consisting of 24 hosts and 6 switches
(38 network links) with 5 time-slots for disbursement, to measure the runtime
for computing schedules using our various approaches. We measure the runtime
for computing the schedules with a varying number (20–110) of flows on our
high performance machine. As shown in Fig. 4d, the runtime for computing the
schedules using S/PR and S/FR is at least an order of magnitude lower than
that for computing it using S/UR. As per our evaluations, S/PR and S/FR could
compute schedules for over 100 flows in approximately 7 s and 3 s, respectively,
while computing the schedule using S/UR required over 2 m. This translates to
an average scheduling time of 1.1 s, 61 ms, and 24 ms, per flow for S/UR, S/PR,
S/FR, respectively. We observed similar or worse results with execution times
running into hours for computing schedules using S/UR on other topologies
with similar set-up. An interesting observation with respect to the faster ILP
formulations, S/PR and S/FR, is that its runtime is dominated by the time
required to specify the ILP. The solver takes only a few milliseconds to solve it.
This is an interesting insight for developing ILP formulations for incremental
scheduling in the future.

Next, we vary the number of available time-slots to evaluate its impact on
the runtime of the ILP formulations. For this and subsequent evaluations, we
execute the ILP solver on the commodity machine and do not use the S/UR
approach as the scenarios are too large for computing a schedule with it. Here,
we use a topology with 200 hosts and 10 switches (256 network links) based on
the Waxman model. We scheduled 300 flows on this topology using the ILP
formulations and measured the average time to schedule a flow. The number of
time-slots were varied between 5–50. As shown in Fig. 4e, the runtime increases
rapidly for the S/PR approach with increasing number of available time-slots
in contrast to the S/FR approach, which scales much better (approximately
linearly with number of time-slots). It may be noted that a network with 1 Gbps
links and a network diameter of 8 hops provides only about 50 slots (considering
MTU as 1500 bytes) for a base-period of 1 ms. Moreover, assuming that a CPS
comprise of two flows (one from sensor to the CPS controller and other from the
CPS controller to the actuator), schedules for supporting up to 150 CPS can be
calculated by our ILPs. Thus, we can conclude that our ILP formulations scale
well for realistic scenarios.

Finally, we evaluated the impact of topology size (number of network links)
on the runtime of the ILP formulations. For this evaluation, we used different
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topologies (30–256 network links) and scheduled over 100 flows on them with
50 time-slots for disbursement. Fig. 4f summarizes the measured runtimes for
S/PR and S/FR. We observe that the runtime of S/FR increases linearly with
the size of the topology and takes on an average less than 2 s to schedule a
flow in a topology containing 256 links. For the S/PR approach, the runtime
is not directly related to the topology size. It, rather, depends on the number
of shortest paths between the sources and the destinations of the flows, i.e.,
the path diversity of the network. Nonetheless, the worst case average time to
schedule a flow was just over 12 s for this ILP formulation.

5.3 Evaluation Summary

In summary, our evaluations showed:

1. TSSDN provides virtually constant end-to-end latency (std. dev. < 1 µs)
with worst case jitter ≤ 7 µs for the time-sensitive traffic on our benchmark
topology.

2. The S/PR and S/FR approaches for computing transmission schedules
closely approximate the solution computed by S/UR (which provides op-
timal solutions in most practical cases), despite having runtimes that is
orders of magnitudes lower.

3. Our ILP formulations, S/PR and S/FR, scale well to compute schedules
for networks with over 200 network links with a data-rate of 1 Gbps (≈ 50
time-slots assuming a base-period of 1 ms) with over 300 flows.

6 Related Work

For long, real-time applications have used only field-bus networks for commu-
nications as they provide the required hard real-time guarantees. They avoid
collisions by use of mechanisms like token parsing (in Profibus), in-network ar-
bitration (in CAN bus), and scheduling transmissions (in Sercos III). However,
field-bus networks suffer from scalability issues and can provide real-time guar-
antees only in static scenarios [30].

Therefore, there is a strong trend to make widely adopted IP-based net-
works and IEEE 802 networks ready for real-time traffic. These developments
are driven, in particular, by the IEEE 802.1 Time-Sensitive Networking Task
Group [24], which aims for time-synchronized low latency streaming services
through IEEE 802 networks, and the IETF DetNets Working Group targeting
deterministic data paths with bounds on packet latency, loss, and jitter over
Layer 2 bridged and Layer 3 routed networks [4]. We presented our vision of
TSSDN to the scientific community [29], however, in the initial step we only
spatially isolated time-sensitive flows. With this paper, we make a step forward
by bringing in the temporal aspect. We intentionally base our system on basic
principles conforming with the initial proposals of these standards bodies like
synchronized end systems and logically centralized configuration. This directly
makes our contributions like the scheduling algorithms—which have not been
considered by these groups so far—applicable to upcoming standard networks.
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Scheduling of transmission at the hosts in time-triggered networks to impart
real-time properties is a well-researched problem. Approaches using Satisfia-
bility Modulo Theories (SMT) and Resource Constrained Project Scheduling
(RCPS) has been applied to compute static schedules in multi-hop Ethernet-
like networks [35][23]. Further, approaches to combinedly compute transmission
schedules along with task schedules have been proposed [18][17]. However, all
these approaches assume advance information of routes for the time-triggered
flows ignoring the possibility of influencing them while scheduling. This may
result in accommodation of fewer time-triggered flows in the network, for e.g.,
when several flows are routed over a single bottleneck link instead of distribut-
ing them over redundant links. Moreover, the approach in [35] cannot benefit
from the modern high-speed cut through switches as they compute link sched-
ules necessitating store-and-forward actions. In contrast, we address the com-
bined problem of routing and scheduling of time-sensitive flows in TSSDN in
this work. To the best of our knowledge, we are the first in using commod-
ity hardware with software-defined networking technologies to impart real-time
properties for communication over IEEE 802.3 networks while also transport-
ing non-real-time traffic. Our evaluation shows excellent results with ultra-low
jitter for communication while supporting high transmission rates.

The attempts of the networking community to impart real-time properties
to IEEE 802 networks have been mainly directed at data-center architectures
which are inherently soft real-time. Hedera uses SDN to spatially distribute
the traffic to prevent hotspots in the network [12]. Fastpass [32] and Datacen-
ter TDMA [36] are other attempts at minimizing queuing delays by means of
scheduling. Fastpass uses a centralized controller to allocate time-slots like in
TSSDN, while Datacenter TDMA uses 802.3x flow control mechanism to enforce
schedules. However, these systems strive to provide soft-real-time guarantees
for the unpredictable nature of traffic in data-centers, while TSSDN exploits
the time-triggered nature of time-sensitive traffic to support hard-real-time sys-
tems.

7 Conclusion & Outlook

In this paper, we motivated the need for integrating mechanisms in IEEE 802.3
and IP networks to transport time-sensitive traffic with bounded end-to-end
latency and jitter along with non-time-sensitive traffic. For this, we presented
Time-sensitive Software Defined Networks, which provide real-time guarantees
for communication of time-sensitive traffic by means of transmission scheduling.
As a first step, we presented a set of ILP formulations that compute transmission
schedules given a set of pre-defined time-sensitive flows in a network topology.
Our evaluations showed that the ILPs could calculate high quality schedules
efficiently and that adherence to the schedule results in deterministic network
behaviour.

As a part of future work, we are going to develop lightweight and fast schedul-
ing algorithms that can rapidly schedule time-sensitive flows incrementally. An-
other interesting open question which we also left for future work is, how much
jitter can be reduced with hardware support (specialized NICs or NetFPGAs)
or real-time operating systems.
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