
Real-Time Batch Scheduling in
Data-Parallel Complex Event Processing

Ruben Mayer, Muhammad Adnan Tariq, Kurt Rothermel
IPVS, University of Stuttgart

Stuttgart, Germany
first.last@ipvs.uni-stuttgart.de

ABSTRACT
Distributed Complex Event Processing has emerged as a
well-established paradigm to detect situations of interest to
an application from basic sensor streams, building an opera-
tor graph between sensors and applications. To enable oper-
ators to cope with high workload, the incoming data streams
are split into—possibly overlapping—partitions which are
processed in parallel by a set of operator instances. However,
with increasing parallelization degree the network becomes
a bottleneck, because events that are part of multiple differ-
ent partitions are duplicated to multiple operator instances.
In this paper, we address this problem and propose batch
scheduling of overlapping partitions, i.e., assigning them to
the same operator instance. Albeit reducing communication
overhead, batch scheduling increases the processing latency
of events – and thus inhibits the timely detection of situ-
ations – by inducing higher computational load on the op-
erator instance. Controlling the trade-off between commu-
nication overhead and latency is challenging and cannot be
solved with traditional reactive approaches. To this end, we
propose an analytical batch scheduling controller building
on prediction. Evaluations show that our approach is able
to significantly save bandwidth and keep a latency bound in
the operator instances.

1. INTRODUCTION
Modern applications need to be able to react to situa-

tions occurring in the surrounding world. Thus, a growing
number of sensor streams need to be processed in order to
detect situations which the application or user is interested
in, e.g., the traffic situation in a smart city or the detection
of a person in a video surveillance application. To detect
situations from sensor streams, Distributed Complex Event
Processing (DCEP) [16, 20, 4, 28] has been developed as a
well-established paradigm building the bridge between sen-
sors and consumers, i.e., applications or users that are inter-
ested in situations. A DCEP middleware deploys an opera-
tor graph in the network that incrementally detects patterns

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

corresponding to situations in the sensor streams. In doing
so, timeliness of pattern detection is of critical importance,
as consumers need to react to occurring situations. This
typically poses a soft latency bound on each operator of the
DCEP system, because delayed situation detection leads to
severe degradation of consumer benefits. For instance, late
detection of a traffic jam leads to wrong routing decisions,
and late detection of a person in a video surveillance appli-
cation can mean that the relevant person has already left
the scene when it is finally detected.

When running a DCEP system, high workload on the op-
erators can lead to overload and long buffering delays when
they process incoming streams only sequentially. To still
keep a latency bound, the operator throughput must be in-
creased by parallelization of event pattern detection. In this
regard, data parallelization [19, 26] has been proposed as a
powerful parallelization method. In a data parallelization
framework, incoming event streams of an operator are split
into partitions that can be processed in parallel by an arbi-
trary number of operator instances, e.g., deployed in a cloud
data center. To ensure consistency, each partition comprises
all events needed in order to detect a pattern. This means
that different partitions can overlap, i.e., events are part of
multiple partitions [26, 22].

When splitting incoming event streams, the data paral-
lelization framework assigns a partition to an operator in-
stance when the start of the partition is detected. In doing
so, assigning overlapping partitions to different operator in-
stances results in increasing network load, as events that
are part of multiple different partitions are duplicated to
multiple operator instances. In the worst case, an event
may be transmitted to all operator instances. With increas-
ing parallelization degree, the network can become the new
bottleneck in the middleware that is limiting the scalability.
Especially, network-intensive applications have been identi-
fied as a major cause of network congestions in cloud data
centers [23, 7, 18]. To cope with the ever-increasing work-
load, this bottleneck must be overcome.

A way to tackle the network bottleneck is batch scheduling
of subsequent overlapping partitions, i.e., assigning them to
the same operator instance [17]. That way, events from the
overlap only need to be transferred once. However, at the
same time, the operator instance must process more parti-
tions in a shorter time. This can lead to temporary overload,
so that events get buffered and queuing latency is accumulat-
ing. Nevertheless, latency between arrival of an event and
its successful processing must not exceed a given latency
bound. We address the following challenges in batching the



s3 

ω1 ω2 

ω3 

Sources 

Operators 

Consumers 

s2 s1 

c2 c1 

Figure 1: DCEP
operator graph.

op. inst. 1 

incoming 
events 

... 

Sp
lit

te
r 

M
er

ge
r 

op. inst. n 
schedule 
partitions 

outgoing 
events 

Figure 2: Data parallelization
framework.

optimal amount of partitions, which cannot be solved with
state-of-the-art scheduling algorithms from stream process-
ing [10, 25, 6].
• Per-event latency: Each incoming event at an oper-

ator can potentially trigger the detection of a pattern
leading to a situation detection. Therefore, a latency
bound should be kept for each single event.
• Partition overlap: The overlap between partitions

of a batch influences the processing load induced by
each event, because each event has to be processed in
the context of each partition it is part of. Moreover,
the scheduling decision is made on open partitions, i.e.,
the events and the overlap of a partition are not known
at scheduling time.
• Automatic adaptation: A batch scheduling con-

troller should be able to automatically adapt to chang-
ing workload conditions without being manually trained
for those conditions beforehand.

Toward this end, we make the following contributions in
this paper. (1) Based on evaluations from different DCEP
operators, we identify key factors that influence the latency
in operator instances. In particular, we identify factors that
have not been regarded in related work before. (2) Tak-
ing into account the identified key factors, we propose a
model-based batch scheduling controller. The model allows
to predict the latency induced in operator instances when as-
signing partitions. (3) We provide extensive evaluations of
the system behavior in two different scenarios, showing that
our approach minimizes communication overhead while op-
erator instances keep a required latency bound even when
the system faces heavily fluctuating workloads.

2. DATA-PARALLEL DCEP SYSTEMS
Before introducing the methods for bandwidth-efficient

batch scheduling, we introduce a model of a data-parallel
DCEP system, as proposed in recent work [19, 26]. We aim
to develop a batch scheduling method that is suitable for a
large number of such systems.

A DCEP system builds an operator graph interconnecting
event sources, operators and consumers by event streams.
For example, Figure 1 depicts a DCEP deployment with 3
sources, 3 operators and 2 consumers. An event e consists of
its payload and a header containing its event type. Events
from all streams inherently have a well-defined total order1.
When receiving events from different incoming streams, op-
erators assign sequence numbers to the events according to
the global order, process the events in-order and emit outgo-
ing events to their successors in the operator graph. In doing

1This order can, for instance, be established on time-stamps
assigned by event sources with synchronized clocks, so that it
reflects the ordering of physical occurrence of source events.

so, operators detect event patterns in finite, non-empty sub-
sets of their incoming event streams—called partitions and
denoted by π [22].

To cope with high workload, each operator is executed in a
data parallelization framework (cf. Figure 2). It consists of a
split–process–merge architecture [19, 26]. A splitter divides
the incoming event streams of the operator into partitions.
To ensure consistency, each partition comprises all events
needed in order to detect a pattern. Such patterns can be
defined in event specification languages like Snoop [12] or
Tesla [15], and comprise, e.g., sequence patterns, window-
based patterns, aperiodic patterns, and others. Those par-
titions are then scheduled (i.e., assigned) to an elastic set
of operator instances which simultaneously process their as-
signed partitions. Finally, a merger orders the events emit-
ted by the operator instances into a deterministic sequence.

To allow for a virtually unlimited parallelization degree,
all components are deployed on (possibly virtual) distinct
shared-nothing hosts, and each of them can access a ded-
icated set of resources in terms of CPU and memory, i.e.,
we do not require shared memory between different opera-
tor instances or between the splitter and the operator in-
stances. The hosts of the components are inter-connected
by unicast communication channels that guarantee eventual
in-order delivery of streamed events. Focusing on the main
technical challenges in this paper, we constrain ourselves to
homogeneous hosts to deploy operator instances.

According to the pattern specification and the occurring
events, partitions can have different sizes and a different
number of events can occur between two start events of sub-
sequent partitions. We denote the period of time that a
partition spans, i.e., the time between the first event and
the last event of a partition, as the partition scope, ps. Fur-
ther, we denote the period of time between two start events
of subsequent partitions as the partition shift, ∆. Splitting
the incoming event streams consistently can, for instance,
be achieved by evaluating user-specified logical predicates
[26] that signal which events are needed in order to detect
a queried pattern. When the start of a new partition has
been detected, this partition is assigned to an operator in-
stance according to a scheduling algorithm. In an operator
instance, incoming events are processed sequentially. Within
the scope of each partition, an event has a different context
with respect to its processing. Therefore, when processing
an event e, the operator instance sequentially processes e in
the scope of each partition that e is part of.

Example: In the scenario in Figure 3, the pattern to be
detected is “within one minute after occurrence of an event
of type A, a sequence of events of type B and C occurs”—
i.e., Aperiodic[A; Sequence(B ; C ); A.timestamp +1min] in
Snoop syntax[12]. The splitter opens a partition whenever
an event of type A occurs, and closes the partition after one
minute. The operator instances check whether in a parti-
tion, events of type B and C occur in the right order. Two
overlapping partitions πx and πy have been assigned to the
same operator instance i. When i processes an event, e.g.,
C1, this event has a different context in πx than in πy: In
πx, the sequence (B;C) is detected, while in πy, the sequence
is not detected. In checking the occurrences of the sequence
pattern in different partitions, operator instance i processes
C1 sequentially first in πx and then in πy.

From the event consumer’s point of view, the situation de-
tection latency is the period from the occurrence of a source



A2 

event  
stream 

... A3 C1 A2 B1 A1  

op. instance i ... A3 C1 A2  

 ...  A3     start of new partition πnew 
Sp

lit
te

r 

... 

C1 A3 ... ... 

already assigned partitions 

batch ? 

known events unknown  
events 

πx 

πy 

Figure 3: Batch scheduling decision.

event that signals a situation of interest until the situation
is actually detected and signaled to the consumer. As the
delayed detection of a situation degrades the benefits for the
application, it poses a soft latency bound on the overall sit-
uation detection. That means, that violations of the latency
bound shall, if possible, be avoided. The situation detec-
tion latency spans the whole operator graph of the DCEP
middleware and is sub-divided into latency budgets for each
operator in the operator graph. In each operator, the split-
ter and the merger induce latency for splitting the streams
into partitions and merging the results. Because schedul-
ing partitions to operator instances significantly influences
the latency induced in each operator instance, in this paper,
we focus on batch scheduling suitable amounts of partitions
to operator instances such that a latency bound in those
operator instances is kept.

We define the operational latency of e, λo(e), as the period
between the point in time when e arrives at an operator in-
stance and the point in time when e is completely processed
in all assigned partitions in this operator instance. When,
at the time of arrival of e, the operator instance is still busy
with processing earlier events, e waits in a queue until its
processing can start. This is called queuing latency of e,
λq(e). Then, e is processed, which induces the processing
latency of e, λp(e), the time from starting to process e until
e is processed in all assigned partitions. Overall, the oper-
ational latency of an event is a combination of its queuing
latency and processing latency, i.e., λo(e) = λq(e) + λp(e).

To explain the trade-off between operational latency and
communication overhead in batch scheduling, refer again to
the example in Figure 3. An event A3 arrives at the split-
ter and the splitter detects that A3 starts a new partition
πnew which now has to be scheduled to one of the avail-
able operator instances. Suppose a set of previous parti-
tions Πold =(..., πx, πy) had already been scheduled to a
specific operator instance i. Events before A3 in Πold have
been transferred to operator instance i. However, further
events arriving after A3 can as well be part of some of the
partitions in Πold ; hence, they are transferred to operator
instance i, too. When scheduling πnew to operator instance
i, communication overhead can be reduced, because events
overlapping between πnew and Πold do not need to be trans-
ferred to multiple different operator instances. On the other
hand, they need to be processed additionally in the scope of
πnew , inducing higher processing latency. The splitter has
to decide whether πnew can be assigned to operator instance
i such that the operational latency does not increase beyond
a given latency bound.

Next, we analyze batch scheduling in more detail.

3. BATCH SCHEDULING
The batch scheduling controller has to batch as many par-

titions as possible to the same operator instance such that
the operational latency of events in that instance will not
exceed a latency bound LB . This is noted as the batch
scheduling problem in data-parallel DCEP operators. To
solve the problem, in this section, we make the following
contributions. First, in Section 3.1, we identify and thor-
oughly analyze key factors that influence the operational
latency in an operator instance. We conclude that the im-
pact of key factors on operational latency in an operator
instance is complex and depends on the workload as well as
on the operator. Further, in Section 3.2, we show the dif-
ficulties we encountered when developing a reactive batch
scheduling controller that works without a latency model.

3.1 Key Factors
In the following, we first identify and analyze key factors

that influence the processing latency of events in the scope
of a single partition. Based on that, we identify and ana-
lyze key factors that influence operational latency in a whole
batch of partitions. To this end, we evaluate two different
DCEP operators: a traffic monitoring and a face recognition
operator. We ran all experiments on the computer cluster
described in Section 5 with a parallelization degree of 8.

Traffic monitoring operator. A traffic monitoring appli-
cation is interested in violations of an overtaking ban, so
that the transgressor can be warned or punished. To this
end, two cameras at two different locations (L1 and L2) on a
highway capture video streams of vehicles passing by. To de-
tect overtaking maneuvers, a traffic monitoring operator ω is
deployed between the cameras and the application. When a
vehicle passes a camera, an event is emitted to ω, containing
a time-stamp, the type (location L1 or L2), and the number
plate. To detect the violations, ω uses an aperiodic partition
window: Whenever a vehicle a passes L1, a partition π is
opened, and when the same vehicle passes L2, π is closed.
Another vehicle b that appears in the L1 stream within π
has passed L1 after a. When b appears again in π in the L2
stream, it has passed L2 before a. If this is the case, b has
overtaken a and thus violated the traffic rules. The query in
ω can be expressed in CEP query languages, e.g., in Snoop
[12] language as an aperiodic operator: Aperiodic(A; B; C)
with A → 〈plate=a, type=L1〉, B → Sequence(〈plate=b,
type=L1〉;〈plate=b, type=L2〉), C → 〈plate=a; type=L2〉2.

Face recognition operator. A face recognition application
wants to know whether a person of interest is currently lo-
cated in a specific area. To this end, pictures of detected
faces from a camera are transferred to a face recognition op-
erator ω. Further, query events from users querying whether
a certain person is in the current video stream are sent to
ω, containing a set of pictures of the person and a time
frame within which the person shall be detected. ω uses a
face recognition algorithm in order to detect whether the
queried person is in the stream. This query can be resem-
bled by an aperiodic operator Aperiodic(A; B; C) with A→
〈type=query, time=t〉, B → 〈type=face, “face_match(A)”〉,
C → time ≥ t+ time frame.

3.1.1 Processing Latency of Events in a Partition
When processing a single partition in an operator in-

stance, each event imposes a specific processing latency. This
is different from stream processing operators where the pro-

2Aperiodic(A; B; C): Between the occurrence of two (com-
plex) events A and C, the (complex) event B occurs.



(a) Traffic monitoring operator: Processing
latency of events in different positions in a
partition. L1 events: black, L2 events: red.

(b) Face recognition operator: Processing
latency of events in different positions in a
partition. Face events: black, query events:
red.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 ms 1 s 100 s

C
u

m
u

la
te

d
 p

ro
b

ab
ili

ty

Operational latency (log scale)

partition scope = 500 s

partition scope = 600 s

partition scope = 700 s

(c) Traffic monitoring operator: Op-
erational latency at LB = 1s and dif-
ferent partition scopes with current-
reactive batch scheduling at TH =
10%.Figure 4: Evaluations.

cessing latency of an event in a partition is considered fixed
[6, 32]. We identified two key factors that influence the pro-
cessing latency of an event in a partition: its position and
its type.

Position of Event. When processing events of a partition,
internal state is gathered in an operator [11, 5], which can in-
fluence the processing latency of events. For instance, in the
traffic monitoring operator, an L2 event eL2 can potentially
complete a pattern Sequence(〈plate=b, type=L1〉;〈plate=b,
type=L2〉) or close the partition. Therefore, eL2 is com-
pared to all L1 events that have been seen in the partition
before. Thus, with a higher position of eL2 , its processing
latency increases, as evaluated in Figure 4a. However, the
processing latency of events does not necessarily increase
with position. In the face recognition operator, each face
event is compared to the first query event of the partition;
the face_match function imposes the same processing la-
tency in each event position (cf. Figure 4b).

Event type. Event types are a fundamental concept in
DCEP. To the best of our knowledge, all complex event
query languages, for example Snoop [12], Amit [1], SASE
[30] and Tesla [15], allow for the definition of event patterns
based on event types—e.g. SEQ(A;B), a sequence of events
of type A and B. In the traffic monitoring operator, different
event types are processed in a different way. L1 events are
simply added to a list of seen events, while L2 events are
compared to the seen events (cf. Figure 4a). In the face
recognition operator, query events are processed by build-
ing a face model of the queried person, while face events are
processed by comparing them to the established face model
of the partition (cf. Figure 4b). In both operators, we see
different processing latencies depending on the event types.

3.1.2 Operational Latency in a Batch of Partitions
In a batch of partitions, different partitions may over-

lap. When the batch scheduling controller assigns a par-
tition to an operator instance that overlaps with already as-
signed partitions, the processing latency of all events in the
overlap is influenced, as events are processed sequentially
in the scope of their partitions. Recall that a partition has
to comprise all events needed in order to detect a queried
pattern. Therefore, the overlap of different partitions can-
not be changed by the batch scheduling controller. That is
different from batch scheduling problems handled in stream
processing, where batches are considered to be arbitrarily
large, non-overlapping sets of events, and batch scheduling
decides how many events shall be batched to a processing
node [17, 25].

In the following, we identify key factors influencing the
overlap of partitions and analyze their impact on opera-

tional latency in operator instances. To this end, we run
experiments with the traffic monitoring operator and the
face recognition operator. In each experiment, simulating
different traffic densities and different numbers of persons in
a video frame, one key factor value is changed while all other
key factors are kept constant, and the differences in opera-
tional latency peaks are analyzed (cf. Figure 5). For each
experiment, more than 370,000 operational latency measure-
ments have been taken.

Batch size. The batch size, i.e., the number of partitions
assigned to one operator instance in a batch, influences the
overlap of the partitions, and hence, the operational latency
of events. This seems to be a trivial insight. However, the
relation between batch size and operational latency peak is
not trivial. In the traffic monitoring operator, increasing
the batch size by 50 % and then by further 33 % induces
an increase in operational latency peak by 317 % and 15 %,
respectively (cf. Figure 5a, experiments #3, #4 and #5).
In the face recognition operator, the relation between batch
size and operational latency seems to be proportional (cf.
Figure 5b).

Inter-arrival time (iat). Given a fixed batch size, the
inter-arrival time iat of events influences the queuing latency
of events. Further, it can influence the number of events in
the partitions, e.g., in time-based partitions. The number of
events in partitions influences their overlap, which, in turn,
influences the processing latency of the events. Thus, there
is a complex relation between iat and operational latency.
In the traffic monitoring operator, we decreased the average
iat of events first by 17 %, and then by further 20 %. This
induced an increase in operational latency peak by 54 % and
551 %, respectively (cf. Figure 5a, experiments #1, #2 and
#3). Similarly, in the face recognition operator, decreasing
the average iat of events first by 40 % and then by further
28.5 %, led to an increase in operational latency peak by 81
% and 45 %, respectively (cf. Figure 5b).

Partition scope (ps). The partition scope ps—i.e., the
time between the start and end event of a partition—depends
on the queried patterns to be detected by the DCEP oper-
ator. It can be fixed to a specific time, e.g., when the query
depends on a time-based window [2], but it can also de-
pend on the occurrence of specific events, e.g., in aperiodic
queries or queries that define a sequence of specific events
[15, 12]. For instance, in the traffic monitoring operator,
the start and end of a partition depend on the speed of the
vehicles, as a partition starts when a vehicle passes L1 and
ends when the same vehicle passes L2 . When the speed of
a vehicle is lower, the time spanned by the partition opened
from this vehicle is larger. Therefore, the size and overlap of



scenario parameters measurements

#
batch
size

avg.
iat (s)

ps (s)
max. op.
lat. (s)

feedback
delay (s)

max. q.
length

feedback
delay (s)

1 500 0.15 900 2.4 725.5 15 773.6
2 500 0.125 900 3.7 757.7 27 724.8
3 500 0.1 900 24.1 699.0 248 810.2
4 750 0.1 900 100.6 800.8 1029 844.0
5 1,000 0.1 900 116.1 824.3 1194 795.6
6 1,000 0.1 1000 197.8 1,041.8 1699 999.0
7 1,000 0.1 1100 199.2 1,179.2 1898 1,100.0

(a) Traffic monitoring operator.

scenario parameters measurements

#
batch
size

avg.
iat (s)

ps (s)
max. op.
lat. (s)

feedback
delay (s)

max. q.
length

feedback
delay (s)

1 10 0.667 10 37.9 46.3 43 10.1
2 10 0.4 10 68.7 77.1 84 9.4
3 10 0.286 10 99.7 108.0 115 10.6
4 15 0.286 10 145.1 153.2 164 8.3
5 20 0.286 10 195.1 200.7 191 10.2
6 20 0.286 15 289.4 301.8 234 14.4
7 20 0.286 20 392.1 410.1 258 19.6

(b) Face recognition operator.

Figure 5: Max. operational latency, queue length and feedback delays.

partitions can change even when the batch size and iat stay
the same. This is different from stream processing, where
only partitions of fixed size and fixed slide— time- or count-
based—are analyzed [6]. In the traffic monitoring operator,
we increased ps in the traffic monitoring operator by 11 %,
and then by further 10 %. This induced an increase in oper-
ational latency peak by 70 % and 1 %, respectively (Figure
5a, experiments #5, #6 and #7). In the face recognition op-
erator, however, increasing ps led to a proportional increase
in operational latency peaks.

From the observations on key factors that influence oper-
ational latency when processing a batch of partitions, we see
that building a direct mapping from batch size, inter-arrival
time and partition scope to operational latency peaks in op-
erator instances is hard. The relation between key factors
and operational latency peaks that occur in operator in-
stances is complex, and different in different operators. An
off-line trained model, hence, does not suffice; due to the
complex relations between key factors, it is hard to train
a model that can make reliable predictions outside of the
learned parameter value ranges. Further, domain knowl-
edge alone is not enough in order to hand-craft a latency
model: Knowledge about the operator implementation does
not necessarily help in understanding the relations between
the identified key factors and the operational latency peak.

In the following, we discuss whether the need for a latency
model predicting the operational latency can be completely
avoided by employing a reactive batch scheduling controller.

3.2 Reactive Controllers
Here, we discuss the difficulties involved in devising a re-

active batch scheduling controller. Reactive controllers are
widely used in scheduling algorithms in the related field of
parallel stream processing systems [17, 25]. The basic idea
of a reactive controller is that it schedules partitions accord-
ing to feedback parameters (like operational latency or queue
length) from the operator instances that indicate how many
partitions can be batched. In the following, we point out the
differences in batch scheduling in data-parallel DCEP oper-
ators to scheduling problems that have been solved with re-
active controllers. Then, we analyze operational latency and
queue length of operator instances in the scope of the sce-
narios described in Section 3.1 in detail and show that none
of these parameters provides reliable feedback to implement
a reactive controller.

In data-parallel DCEP operators, in order to maintain
the latency bound for each event, the batch scheduling con-
troller decides at the start of a partition to which instance
this partition is scheduled. Then, it directs all events that
arrive in the scope of that partition to the corresponding
instance. It is infeasible for the controller to wait until all

events of the partition are present and then schedule the
partition; it would take too much time in view of per-event
latency bounds. After assigning a partition to an operator
instance at the occurrence of its start event, many other
events of that partition arrive until the partition is finally
closed. Thus, over the whole time span of the partition, feed-
back parameters in the operator instance are influenced by
the scheduling decision, i.e., a long time after the schedul-
ing decision has been made. That poses a completely dif-
ferent problem from other batch scheduling problems that
are tackled with reactive batch scheduling, e.g., the problem
of scheduling batches of events in streamed batch process-
ing [17], where a controller first builds a batch of available
events and then assigns it to an operator instance.

Therefore, in data-parallel DCEP operators, there can be
a high delay between assigning a partition to an operator
instance and the occurrence of the peak value of the feedback
parameters in that operator instance. In the following, we
denote this delay as the feedback delay. In Figure 5a, we have
measured the feedback delay of operational latency and of
queue length in the different runs of the traffic monitoring
operator under different conditions; a feedback delay of 699
to 1,179 seconds occurred for both parameters. In that time,
many subsequent batch scheduling decisions have to be made
by the controller. At the same time, key factors like inter-
arrival time, partition scope, event types, etc. continuously
change. An additional complication is that the feedback
delay is not constant, so that the controller cannot rely on
it; it is not clear whether the parameter measured in an
operator instance is already the peak value or how much
further it will grow.

To mitigate high feedback delays, we tried to measure
the current operational latency in operator instances to de-
duce some early trend and then decide whether to batch
more partitions to an operator instance based on that trend.
This resulted in a current-reactive controller: Partitions are
batched to the same operator instance until at the instance,
a percentage threshold TH of the operational latency bound
LB is reached; subsequent partitions are scheduled to the
next operator instance. This, however, poses the question
how to set TH . An experiment shows that a static TH is
not enough to keep the latency bound. We run evaluations
using the traffic monitoring operator at an average inter-
arrival time of cars of 200 ms, aiming to keep LB = 1s. With
TH = 10%, reactive batch scheduling more or less was able
to keep LB when ps was not higher than 500 s and the aver-
age iat was not lower than 200 ms (cf. Figure 4c). However,
at a ps of 600 s and 700 s, TH = 10% led to systemati-
cally wrong batch scheduling decisions; LB was violated by
a factor of almost 100. Obviously, TH has to be adapted
to the changing key factor values. In doing so, the feedback



D 

γ 

events 

0 

3 

A A B 
C C 

-3 
B 

(a) Latency gains.

9 

0 A A B B C C 

3 
6 

10 λq 

time 
D 

(b) W-C: Latency peak.
A D A C B C 0 

3 
6 
9 

5 

λq 

B 
time 

(c) B-C: Latency peak.

time 
A D A C B C 0 

3 
6 
9 

6 

B 

λq 

(d) M-C: Latency peak.

Figure 6: Different sequences of negative and positive gains.

to change TH is available only after LB already has been
violated, i.e., after a long feedback delay. The same prob-
lems apply when using the queue length peaks as a feedback
parameter in the traffic monitoring operator: The feedback
delay is high. Same as with operational latency, using the
current queue length needs a suitable threshold, which in
turn has to be adapted to changing key factor values.

In the face recognition operator, partition scopes are much
smaller. While the feedback delay of operational latency
peaks is still high (46 to 410 seconds), the feedback delay
of the queue length peaks is smaller (8 to 20 seconds; cf.
Figure 5b). However, this does not automatically make the
queue length peaks a good parameter for reactive controllers.
First of all, 20 seconds is still a long time; in the real-world
workloads analyzed in Section 5, sudden bursts demand for
an even faster reaction. Second, the relation between queue
length peak and operational latency peak is not trivial; the
operational latency peak does not necessarily occur when
the most events are in the queue, but rather when the most
expensive events are in the queue. This demands for a more
thorough analysis. We conclude that neither operational
latency nor queue length are a reliable feedback parameter
for a purely reactive batch scheduling controller.

Instead of pure feedback mechanisms, which are too sim-
plistic to solve the problem, our approach uses a simple,
yet powerful latency model. It takes into account feedback
from operator instances, but also includes a prediction and
analysis step.

4. MODEL-BASED CONTROLLER
To solve the batch scheduling problem, the controller has

to predict whether the operational latency peak will be higher
than LB when batching a new partition πnew . To make this
prediction, in this chapter, we introduce a latency model.
We aim to find the right balance between the complexity
needed in order to make good predictions of the operational
latency peak, the reasonable consideration of feedback from
operator instances and of domain expert knowledge, and the
accuracy and precision of the model.

4.1 Basic Approach
Recall that the operational latency of an event e is built up

of its queuing and processing latency: λo(e) = λq(e)+λp(e).
If the processing latency λp(e) of an event is higher than
the inter-arrival time iat to its successor event, this imposes
additional queuing latency to the successor event. On the
other hand, if λp(e) is smaller than iat , the queuing latency
of the successor event becomes smaller or even zero, i.e., e
does not induce queuing latency for the successor event. In
the following, we refer to the difference between λp and iat
as the gain γ of an event: γ(e) = λp(e)− iat . If λp(e) > iat ,
we speak of a negative gain; else, we speak of a positive
gain3. In Figure 6a, we provide an example. Suppose that

3Negative gains are positive numbers and positive gains are

the iat between events is 5 time units (TU), and the partition
contains 7 events: 2 events of type A impose λp = 8 TU,
2 events of type B impose λp = 7 TU, 2 events of type C
impose λp = 4 TU, and 1 event of type D imposes λp = 2
TU. Then, the gains of the single events are, accordingly,
between +3 and -3 TU (+3 for type A, +2 for B, -1 for C,
-3 for D).

Now, for the overall partition πnew , the aggregated gains
of the set of events with λp(e) > iat are termed as the total
negative gain: Γ− =

∑
γ(e) : e ∈ πnew ∧ λp(e) > iat . In the

given example (Figure 6a), those are the events of type A
and B; hence, Γ− = 3 + 3 + 2 + 2 = 10 TU. The aggregated
gains of the set of events with λp(e) < iat are termed as the
total positive gain4: Γ+ =

∑
γ(e) : e ∈ πnew ∧ λp(e) < iat .

In the given example (Figure 6a), those are the events of
type C and D; hence, Γ+ = (−1) + (−1) + (−3) = −5 TU.

After defining the total negative and positive gains, in
the following, we analyze possible sequences of negative and
positive gains and the impact on the queuing latency peak
λmax
q . In Figure 6b, first all negative gains occur, followed

by all positive gains. This is the worst case with respect
to λmax

q ; in the example sequence, λmax
q = 10 TU. Note,

that also any other sequence of events of types A and B
would lead to the same λmax

q . In the worst case, hence,
λmax
q = Γ−. However, an interleaving between negative and

positive gains is possible as well. Take a look at Figures
6c and 6d: In the examples, the events with negative and
positive gains interleave to a different extent. This leads
to different values of λmax

q , because although the queuing
latency is increased by events with negative gains, events
with positive gains compensate for that; a successor event
of an event with positive gain faces a lower queuing latency.

The actual sequence of events with negative and positive
gains in πnew is very difficult to predict. It would essen-
tially correspond to predicting each single event in πnew and
its iat . To account for the discussed interleaving of events
with negative and positive gains, therefore, we introduce a
compensation factor α. α allows for modeling the extent of
interleaving of negative and positive gains without the need
to explicitly define the sequence of events in πnew in the pre-
diction: λmax

q = Γ−+α ∗Γ+. Taking a look at the best-case
example in Figure 6c, we see that the negative and positive
gains are maximally interleaving, hence, α = 1. Accord-
ingly, λmax

q = 10 + 1 ∗ (−5) = 5. Figure 6d exemplifies an
event sequence in between the worst- and best-case: Parts
of the positive gains are interleaving with the negative gains,
hence, α = 0.8. Accordingly, λmax

q = 10 + 0.8 ∗ (−5) = 6.
Please notice, that the first event of πnew might already

face a queuing latency λinit
q at its arrival. This can be due

to previous partitions that had been scheduled to the same
operator instance. Hence, the final formula to calculate the

negative numbers. The terminology refers to the impact of
an event on the feasibility to schedule a partition in a batch.
4If λp(e) = iat , neither negative nor positive gains occur.



IAT 
0 

# measurements 

bin 1 bin n bin 2 ... 
10 % 40 % 10 % 

Figure 7: IAT Bins.

Δ 

ps 

θ/2  θ 

   θ 

πoldest 

πnew 

Figure 8: Overlap.

queuing latency peak is:5

λmax
q = λinit

q + Γ− + α ∗ Γ+, α ∈ [0, 1].
From the queuing latency peak λmax

q , the operational la-
tency peak λmax

o is calculated using the maximal processing
latency λmax

p of any event in πnew . This bases on the pes-
simistic assumption that the most expensive event occurs
right at the queuing latency peak; as we do not know the
event sequence, this assumption is justified by the goal to
avoid underestimations of λmax

o . Hence,
λmax
o = λmax

q + λmax
p .

Using this latency model, the operational latency peak
can be predicted, and the scheduling decision—to batch or
not to batch—can be made accordingly. In the following
sub-section, we describe how the parameters of the model
are predicted.

4.2 Prediction of Model Parameters
The proposed latency model builds on predicting the total

sum of negative and positive gains of all events in πnew ; i.e.,
it does not regard individual events, but it regards events in
πnew as sets of events imposing negative or positive gains.
Hence, it builds on the prediction of the set of events in
πnew , including their processing latency λp and their inter-
arrival time iat . Further, a prediction of the initial queu-
ing latency λinit

q and the compensation factor α is needed.
Based on those values, the model predicts the operational
latency peak. In this section, we discuss appropriate predic-
tion methods and algorithms.

Inter-arrival time. To model the inter-arrival time iat
of events, we propose four possible methods with different
accuracy and complexity:

1. Using the mean value iat
′

measured in the splitter in
the past mtime time units.

2. Using iat
′

minus a negative bias. This way, the model
can account for changes in the average iat between the
monitored value iat

′
and the value that will occur in

πnew . The negative bias is modeled based on a factor
δiat of standard deviations σ of the monitored iats, e.g.,
1 standard deviation or 2 standard deviations. Then,
iat = iat

′ − δiat ∗ σ.
3. To increase the precision of the model, instead of the

overall mean iat , the splitter monitors the current dis-
tribution of inter-arrival times in a discrete model (cf.
Figure 7). In the model, the range of measured iat
values is divided into a number of equally-sized bins.
The measured iats are sorted into the corresponding

bin; for each bin Bi, the mean value iat(Bi)
′

and the
weight of the bin weight(Bi)—i.e. ratio of number of

5For the sake of readability, we did not mention in the text
that λmax

q = λinit
q , if Γ− + α ∗ Γ+ < 0.

entries in the bin to total number of measurements in
all bins—is computed. The number of bins manages
the accuracy of the model.

4. A combination of bins and negative bias. In each bin

Bi, we predict iat(Bi) = iat(Bi)
′
− δiat ∗ σ.

In our evaluation section, we discuss the pros and cons of
the different methods and also give hints on how to set-up
the parameters.

Processing Latency. In our model, λp depends on the
overlap Θ and the processing latency in a single partition
λπp : λp = Θ ∗ λπp . As discussed in Section 3, λπp depends on
the event type and the position in a partition. Hence, first
of all, our model differentiates between different event types.
This design decision has two consequences: First, the pre-
diction model of λπp takes into account the type, i.e., predict
λπp (type), the in-partition processing latency of events of a
specific type. Second, the set of events in πnew is predicted
with respect to the number of events of different types.

For predicting λπp (type), we propose the same methods

as for predicting iat : Using the mean value λ
π′
p (type) mea-

sured in a monitoring window, using the mean plus a neg-
ative bias of δλp standard deviations, using latency bins to
resemble the cdf of processing latencies, or using a combi-
nation of bins and negative bias. Same as in iat bins, in

each latency bin Bl, we predict λπp (Bl) = λπp (Bi)
′
+ δλp ∗ σ,

i.e., the measured mean in-partition processing latency in
the latency bin plus a factor δλp of standard deviations. In
our evaluation section, we discuss the pros and cons of the
modeling strategies and also give hints on how to set the pa-
rameters. The advantage of monitoring the current (distri-
bution of) λπp (type) in the operator instances over building a
position-dependent latency model is that we can implicitly
incorporate the position-dependency : When the (distribu-
tion of) positions of events in partitions change, e.g., due
to changing workload or changing partition scopes, this is
reflected in the monitored current (distribution of) λπp (type)
values. We do not need to explicitly model the positions of
individual events.

The overlap Θ for all events of πnew is modeled as the av-
erage overlap of events of πnew in the current batch, denoted
by Θ. Predicting Θ is performed according to the following
model (cf. Figure 8). When πnew is scheduled in a batch
of already opened partitions, a number of events in πnew

has the current overlap Θ̂, until the oldest open partition
πoldest in the batch closes. From closing πoldest until closing
πnew , the overlap decreases step-wise in regular intervals,
each time a partition between πoldest and πnew is closed. In
that phase, the average overlap is Θ̂/2. In order to compute

Θ, we weigh the ratio of events with overlap Θ̂ to the events
with overlap Θ̂/2. In doing so, we assume in our model that
all partitions in the batch have the same partition scope ps,
and between the start of two partitions, there is the same
shift ∆; ps and ∆ are measured in the splitter at regular in-
tervals to keep them up to date at each scheduling decision.

At the start of πnew , πoldest is already open since (Θ̂−1)∗∆
time units, as Θ̂ − 1 is the number of partitions between
πoldest and πnew that were opened in intervals of ∆ time
units. Therefore, πoldest stays open for ps − (Θ̂ − 1) ∗ ∆
more time units. When πoldest closes, the phase of closing
partitions starts, spanning (Θ̂ − 1) ∗ ∆ time units. Hence,
the weighed average overlap is computed as follows:

Θ = (ps−(Θ̂−1)∗∆)∗Θ̂+(Θ̂−1)∗∆∗Θ̂/2
ps

.



Set of Events. For predicting the set of events in πnew ,
there are three significant factors in the model: (1) The
partition scope ps, (2) the (average) iat , and (3) the ratio
of different event types, denoted as ratio(type), that mod-
els which percentage of events in πnew is of a specific type.
These factors are gained from monitoring them in the in-
coming event stream in the splitter in the past mtime time
units. As discussed earlier, a negative bias of δiat standard
deviations σ(iat) of the monitored iat can be considered in

the prediction, such that iat = iat
′− δiat ∗σ(iat). Then, the

total number of events n is predicted as n = ps
iat

, and the
number of events of a specific type, denoted by #(type), is
predicted as ratio(type) ∗ n.

Initial Queuing Latency. The initial queuing latency is
predicted for each operator instance separately, depending
on the content of the incoming event queue. To this end, op-
erator instances report the number of events of each type and
their average overlap Θ in the assigned partitions in regular
intervals to the splitter. Whenever making a batch schedul-
ing decision, the splitter calculates λinit

q of an operator in-
stance as the sum of the processing latencies of all reported
events in its queue: λinit

q =
∑

types #events ∗Θ ∗ λπp (type).
Compensation Factor. For modeling the compensation

factor α, there are two possibilities.
First, we propose a heuristic, denoted as T-COUNT, for

adapting α based on the current extent of interleaving be-
tween events with different processing latency in the incom-
ing stream. To this end, events are divided into two groups,
based on their in-partition processing latency λπp : the group
of events with higher λπp is denoted by T− and the group
of events with lower λπp is denoted by T+. The distinction
between the groups is made based on the average λπp (type)
of the event types; there is one half of event types that has
higher λπp (type) than the other half of event types. Events
of any of the types that pose higher processing latencies are
grouped into T−, other events are grouped into T+. The
splitter continuously counts in a monitoring window of tem-
poral size mtime, how many events in T−, denoted by c−,
and how many events in T+, denoted by c+, occur. Fur-
ther, the splitter counts how often events in T− and T+ fol-
low each other, i.e., the number of transitions, denoted by
ct. The maximal number of transitions is 2 ∗ min{c+, c−}.
Trivially, the minimum number of transitions is 1. Then, α
is predicted as the proportion of ct to the maximal number

of transitions: α = ct−1
2∗min{c+,c−} .

Second, a domain expert can also set a fixed or dynamic
value of α based on off-line training, if the characteristics of
the expected workloads are known beforehand.

4.3 Scheduling Algorithm
Having a prediction of the set of events in πnew , process-

ing latencies and inter-arrival times, the batch scheduling
controller predicts the total negative and positive gains and
the operational latency peak in order to schedule πnew . In
this section, we introduce the algorithms.

Total Negative and Positive Gains Prediction. To
predict Γ− and Γ+, the predicted processing latencies and
inter-arrival times have to be combined. Each processing
latency bin represents a number of events in πnew having
a specific λp; each iat bin represents a number of events
having a specific iat . In order to calculate the total neg-
ative and positive gain of all events, the number of events
having a specific combination of λp and iat is predicted.

1: 〈long, long〉 predictGains ( ) begin . returns Γ− and Γ+

2: predict #events for each latency bin Bl: #(Bl)
3: sort latency bins by mean latency (highest first)
4: predict #events for each iat bin Bi: #(Bi)
5: sort iat bins by mean iat (lowest first)
6: while true do
7: #combination ← min{#(Bl),#(Bi)}
8: gain ← #combination ∗ (Θ ∗ λπp (Bl)− iat(Bi ))
9: if gain > 0 then

10: Γ− ← Γ− + gain
11: else
12: Γ+ ← Γ+ + gain
13: end if
14: #(Bl)← #(Bl)−#combination
15: #(Bi)← #(Bi)−#combination
16: if #(Bi) = 0 then
17: i← i + 1 . next iat bin
18: end if
19: if #(Bl) = 0 then
20: l← l + 1 . next latency bin
21: end if
22: if no more bins then
23: return 〈Γ−,Γ+〉
24: end if
25: end while
26: end function

Figure 9: Predict Negative and Positive Gains.
1: OperatorInstance ωx . current operator instance
2: void schedule ( ) begin
3: λmax

o ← LatencyModel.newPrediction()
4: if λmax

o ≤ LB then
5: assign σ to ωx
6: else
7: x← (x + 1) MOD #op instances . Round-Robin
8: assign σ to ωx
9: end if

10: end function

Figure 10: Scheduling algorithm.

To this end, events from the bin with highest λp are com-
bined with the lowest iat , etc., and events with lowest λp
are combined with the highest iat . The concrete algorithm
is presented in the following (cf. algorithm in Figure 9).
First, for each type, the total number of events, #(type),
is divided into latency bins according to the weights of the
bins: The number of events #(Bl) in a latency bin Bl is:
#(Bl) = #(type) ∗ weight(Bl). Then, all latency bins of all
event types are globally sorted by their mean processing la-
tency (highest first). The iat bins are sorted by the mean
iat (lowest iat first); the number of events #(Bi) in an iat
bin Bi is computed based on the total number of events, n,
and the weight of the bin, #(Bi) = n ∗ weight(Bi). Then,
the numbers of events in the processing latency bins and
iat bins are combined such that the highest processing la-
tencies are combined with the lowest iats. The algorithm
iterates through the bins (lines 6 – 25): For the combination
of current latency and iat bin, the gain of the events in this
combination is calculated based on the processing latency
and the iat of the bins. If the predicted gain is greater than
0, it is added to the total negative gains, else it is added to
the total positive gains. Then, the next combination of bins
is processed. When the iteration went through all bins, the
resulting total negative and positive gains are returned.

Operational Latency Peak. The operational latency
peak λmax

o is predicted with the formulas introduced in Sec-
tion 4.1, taking into account the predicted parameters as
described in Section 4.2: λmax

o = λmax
q + λmax

p , with λmax
q =

λinit
q + Γ− + α ∗ Γ+. In doing so, λmax

p is predicted as
the in-partition processing latency λπp of the most expen-
sive event type, in the most expensive latency bin, denoted
as max (λπp ), combined with the average overlap: λmax

p =

Θ ∗max (λπp ).



Scheduling. When scheduling a new partition, the con-
troller checks whether batching it to the same operator in-
stance where the last partition was assigned to would lead
to a violation of LB . The scheduling algorithm is listed in
Figure 10. The latency model is queried for a prediction of
the operational latency peak λmax

o (line 3). The predicted
λmax
o is compared to LB and a batch scheduling decision is

made accordingly: If λmax
o ≤ LB , the partition is assigned

to the same instance as the last partition (lines 4–5); else, it
is scheduled to the next operator instance according to the
Round-Robin algorithm (lines 6–8).

Symbol Parameter Description

iat average inter-arrival time of events
b batch size, i.e., number of subsequent

partitions scheduled to same op. instance
ps partition scope, i.e., temporal scope

of a partition
Γ−,Γ+ total negative and positive gains
α compensation factor

λo, λq, λp operational latency, queuing latency and
processing latency of an event in an
operator instance; λo = λq + λp

λmax
q queuing latency peak:

λmax
q = λinit

q + Γ− + α ∗ Γ+

λinit
q initial queuing latency before processing

the first event of a partition
LB latency bound, i.e., the peak operational

latency that shall not be exceeded
RR Round-Robin scheduling, a non-batching

scheduling algorithm that circularly assigns
one partition to each operator instance

δiat , δλp negative bias of measured iat or λp in the
monitoring window, in std. deviations:
e.g., iat − δiat ∗ σ

mtime size of the workload monitoring window

Figure 11: Symbols used.

5. EVALUATION
In our evaluations, we analyze the proposed methods in

two steps. In a first step, we perform a distinct evaluation of
the proposed latency model. We show the accuracy and pre-
cision of the latency model in predicting the negative gains,
positive gains and latency peaks in different situations un-
der synthetic workloads. In the second step, we measure
the performance of the overall event processing system un-
der different realistic conditions—such as inter-arrival times,
partition scopes, and latency bounds.

Experimental Setup and Notation. To evaluate the
batch scheduling controller, we have integrated it into an ex-
isting data parallelization framework [26]. All experiments
were performed on a computing cluster consisting of 16 ho-
mogeneous hosts with each 8 CPU cores (Intel(r) Xeon(R)
CPU E5620 @ 2.40 GHz) and 24 GB memory, connected by
10-GB Ethernet links. The components of the paralleliza-
tion framework were distributed among the available hosts.

Symbols used in the evaluations are listed in Figure 11.

5.1 Latency Model
In the following, we evaluate the accuracy and precision

of the proposed latency model. We present the evaluation
in two parts: First, we evaluate the predictions of the total
negative and positive gains. In particular, we investigate
how the proposed concepts of model refinements, i.e., using

bins and standard deviations, influence the quality of predic-
tions. Based on that, we then analyze the prediction of the
queuing latency peak, which depends on the prediction of
negative and positive gains as well as on the compensation
factor α.

Interpretation of the figures in this section. We
measured both the predicted values as well as the values
that actually occurred in the operator instances. In all ex-
periment results, on the y-axis, we depict the predicted val-
ues normalized to the measured values. For example, a value
of 1.0 means that the prediction exactly met the actually oc-
curred value, a value smaller than 1.0 means that the predic-
tion was too low (i.e., underestimation), and a value higher
than 1.0 means that the prediction was too high (i.e., over-
estimation). All figures depict the 10th, 25th, 50th, 75th,
and 90th quantiles in a “candlesticks” representation.

5.1.1 Negative and Positive Gains
In analyzing the prediction of Γ− and Γ+, we run eval-

uations on synthetic workloads. Using synthetic workloads
allows us to perform measurements in controlled situations
where all of the parameters are well-known and completely
under our control. This is not the case in real-world work-
loads, as we use them in the analysis of the overall event
processing system in Section 5.2. For the face recognition op-
erator, we created a synthetic stream of face events (i.e. im-
ages containing a person’s face). Each 2 seconds, a burst of
4 face events with an inter-arrival time of 10 ms was created,
which resembles a moderate workload (4 persons in front of
a camera that captures a picture each 2 seconds). The query
events were generated with a fixed rate of 1 query per sec-
ond, so that each second, one new partition was started. For
the traffic monitoring operator, we created a workload trace
with an average inter-arrival time of events of 100 ms fol-
lowing an exponential distribution, which resembles a high
workload (5 cars per second pass each road checkpoint).

Figure 12a shows evaluations of the face recognition op-
erator at b = 1 using a different number of iat bins. If
only 1 bin is used—i.e., the total mean iat is used in the
latency model (cf. first strategy in Section 4.2)—the pre-
dictions of Γ− and Γ+ are poor. With a growing number
of iat bins, the latency model becomes more accurate (cf.
third strategy in Section 4.2): As can be seen, with 2, 4 or
8 bins, the predictions of both Γ− and Γ+ are very accurate
and precise. 2 bins are sufficient, as the workload is also
divided into two phases: face events arrive in bursts, and in
between the bursts, no face events arrive. In contrast to the
effect of iat bins, using a negative bias of δiat standard devi-
ations (cf. second strategy in Section 4.2) does not make the
predictions more accurate and precise, but more pessimistic
(cf. 12b): The higher δiat is, the higher is the predicted
Γ−, but the lower is the predicted Γ+. Further, we evaluate
the impact of using bins and pessimistic bias for processing
latency. As shown in Figures 12c and 12d, neither of the
two strategies had positive impact on the accuracy of the
latency model. This is because processing latency of single
events in single partitions does not fluctuate very much in
the face recognition operator.

We evaluated the latency model as well with the traffic
monitoring operator. Same as in the face recognition oper-
ator, employing iat bins quickly improves the prediction ac-
curacy (cf. Figure 13a). Further, using a negative bias of δiat
standard deviations makes the prediction more pessimistic



0

0.5

1

1.5

2

1 2 4 8P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of IAT Bins

Negative Gains
Positive Gains

(a)

0

0.5

1

1.5

2

0 0.2 0.4 0.8

IAT - # of Standard Deviations

10

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t Negative Gains
Positive Gains

10

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t Negative Gains
Positive Gains

(b)

0

0.5

1

1.5

2

1 2 4 8

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of Latency Bins

Negative Gains
Positive Gains

(c)

0

0.5

1

1.5

2

0 0.2 0.4 0.8

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of Latency Standard Deviations

Negative Gains
Positive Gains

(d)

Figure 12: Face recognition operator at ps = 10s: prediction of negative and positive gains. b = 1.

0

0.5

1

1.5

2

1 2 4 8 16 32P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of IAT Bins

Negative Gains
Positive Gains

(a)

0
0.5

1
1.5

2

0 0.2 0.4 0.8

iat standard deviations

10
P

re
d

ic
ti

o
n

 /
 M

ea
su

re
m

en
t Negative Gains

Positive Gains
10

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t Negative Gains
Positive Gains

(b)

0

0.5

1

1.5

2

1 2 4 8 16 32

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of Latency Bins

Negative Gains
Positive Gains

(c)

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.8P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Latency standard deviations

Negative Gains
Positive Gains

(d)

Figure 13: Traffic monitoring operator at ps = 900s: prediction of negative and positive gains. b = 1000.

(cf. 13b). Concerning processing latency, employing latency
bins improves the accuracy of the latency model slightly (cf.
Figure 13c). However, even though the processing latency
in the traffic monitoring operator is position-dependent, the
occurrence of negative and positive gains is still dominated
by the iat ; hence, the usage of latency bins alone does not
lead to satisfactory results. In scenarios that show rather
static iat and more heavily fluctuating latency, e.g., due to a
position-dependency with super-linear impact, latency bins
would have a stronger effect on the model quality. Employ-
ing a negative bias of δλp standard deviations on processing
latency makes the latency model more pessimistic (cf. Fig-
ure 13d).

We also tested both scenarios with a higher batch size.
In the face recognition operator at b = 4, employing iat
bins leads to the same improvements of the model accuracy
(cf. Figure 14a). In the traffic monitoring operator at b =
2000, even at only one iat bin, the accuracy is already high
and adding more bins does not improve the model. This
is because at a high batch size, the overlap of partitions is
high, and hence, the processing latency of events—especially
those of type L2 (cf. Section 3.1)—is high as well. Basically,
that means that most of the events of type L2 will generate
a negative gain, no matter if the specific iat of an event is
high or low. The fluctuations of iat do not dominate the
total negative and positive gains any longer; therefore, more
iat bins do not improve the model.

We conclude, that in the tested scenarios, the accuracy of
the latency model can be improved significantly by using iat
bins when the occurrence of negative and positive gains is
dominated by the iat—which is often the case. The strate-
gies that employ negative bias on iat and processing latency
can be used to make the model more pessimistic, which can
be helpful in order to account for rapidly changing work-
loads.

5.1.2 Queuing Latency Peak
Recall that the queuing latency peak is predicted based

on the total negative and positive gains and the compen-
sation factor α: λmax

q = λinit
q + Γ− + α ∗ Γ+. We show

0

0.5

1

1.5

2

1 2 4 8P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of IAT Bins

Negative Gains
Positive Gains

0

0.5

1

1.5

2

1 2 4 8P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of IAT Bins

Negative Gains
Positive Gains

(a)

0
0.5

1
1.5

2
2.5

1 2 4 8 16 32P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Number of IAT Bins

Negative Gains
Positive Gains

(b)

Figure 14: Higher batch sizes. (a) Face recognition,
b = 4. (b) Traffic monitoring, b = 2000.

on the face recognition operator and the traffic monitoring
operator that our proposed T-COUNT heuristic provides
a suitable, slightly pessimistic estimation of α, such that
no under-estimation of queuing latency peak occurs. Ad-
ditionally, we evaluate the prediction of the initial queuing
latency λinit

q . Following our observations from Section 5.1.1,
we employ the latency model with 2 iat bins for the face
recognition operator, so that the predictions of Γ− and Γ+

are accurate.

 0

 0.5

 1

 1.5

 2

α  =  T-COUNT 0.0 0.25 0.5 0.75 1.0

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

Γ-  + α * Γ+
λqinit
λqmax

Figure 15: Predictions of queuing latency peak.
Face recognition operator, b = 4, ps = 10s.

For the face recognition operator, we see in Figure 15 that
the T-COUNT heuristics leads to a good overall estimation
of λmax

q . In predicting λinit
q , there are some fluctuations, be-

cause events that are in the network and not yet arrived in
the queue of an operator instance are not considered in the
feedback to the splitter. However, the impact of this behav-



 0

 1

 2

 3

 4

 5

T-COUNT 0.0 0.25 0.5 0.75 1.0

P
re

d
ic

ti
o

n
 /

 M
ea

su
re

m
en

t

α

λqmax

Figure 16: Predictions of queuing latency peak.
Traffic monitoring operator, b = 2000, ps = 900s.

ior on the prediction of λmax
q is small, as λmax

q is dominated
by the negative and positive gains. In the traffic monitoring
operator, T-COUNT also guarantees that λmax

q is not under-
estimated (cf. Figure 16). It is interesting that the measured
λinit
q was at 0 all the time. That means, when scheduling the

2000th partition in the batch, the incoming queue of an op-
erator instance was still empty; hence, we omit the (trivial)
prediction of λinit

q in the figure. Queuing only happens when
the events with high positions in the partitions of the batch
are processed. This effect supports our argumentation from
Section 3.2 that pure feedback-based scheduling is not ap-
plicable to the batch scheduling problem.

Besides the T-COUNT heuristic, we also systematically
evaluated the impact of fixed values of α on the prediction
of λmax

q (cf. Figures 15 and 16). Using different fixed val-
ues leads to different degrees of over- or underestimations of
λmax
q . Off-line profiling can be used in order to develop op-

timally pessimistic or optimistic models to set α, when the
characteristics of the workload are well-known before system
deployment.

5.2 Overall Event Processing System
Batch scheduling imposes a temporary high load by as-

signing multiple subsequent partitions to the same opera-
tor instance, resulting in higher operational latency peaks,
but reduced communication cost. To quantify the impact of
batch scheduling on the performance of the overall event pro-
cessing system, we compare batch scheduling to a scheduling
algorithm that aims for good load balancing but disregards
communication overhead: Round-Robin scheduling leads to
minimal operational latency peaks in the operator instances,
as the load and, hence, the operational latency, is evenly
distributed among the operator instances. We evaluate the
additional operational latency imposed by batching and the
gains in terms of communication savings. Recall that our al-
gorithm claims to be able to limit the additional operational
latency imposed by the imbalanced scheduling to not exceed
a latency bound LB . We also evaluate whether LB is kept
even under challenging synthetic and real-world workloads.

Traffic Monitoring Scenario. In our dynamic traffic
monitoring scenario, we modeled the inter-arrival time of
vehicles as an exponential distribution with an average value
following a sinusoidal curve between 2000 ms and 200 ms.
According to the insights we gained from the evaluation of
the latency model in Section 5.1, we set-up the controller to
use 8 iat bins and mtime = 60s. To account for the position-
dependency of the operator, we add a pessimistic bias of
δλp = 2 standard deviations on the monitored processing

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 ms 100 ms 1 s

C
u

m
u

la
te

d
 p

ro
b

ab
.

Operational latency

RR
LB = 500ms

LB = 1s
LB = 2s

(a) 0

200,000

400,000

600,000

800,000

# 
Tr

an
sm

it
te

d
 E

ve
n

ts RR
LB = 500ms

LB = 1s
LB = 2s

(b)

Figure 17: Traffic monitoring operator at ps = 500s.
(a) Operational latency. (b) Communication cost.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 ms 100 ms 1 s 10 s

C
u

m
u

la
te

d
 p

ro
b

ab
ili

ty

Operational latency

RR
LB = 4 s
LB = 8 s

LB = 16 s

(a) 0

200,000

400,000

600,000

800,000

# 
Tr

an
sm

it
te

d
 E

ve
n

ts

RR
LB = 4s
LB = 8s

LB = 16s

(b)

Figure 18: Traffic monitoring operator at ps = 900s.
(a) Operational latency. (b) Communication cost.

latency. Further, we account for the rapidly changing iat by
adding a pessimistic bias of δiat = 0.75 standard deviations
on the monitored iat . In all experiments, the parallelization
degree, i.e., number of operator instances, was fixed at 8.
Each experiment was running for 5 hours.

At a partition scope of 500 seconds, Round-Robin schedul-
ing resulted in a maximal operational latency of 200 ms (cf.
Figure 17a) and 724,464 events have been transmitted be-
tween the splitter and the operator instances (cf. Figure
17b). We ran the same experiment using our batch schedul-
ing controller allowing for, 2.5, 5 and 10 times higher opera-
tional latency peaks than yielded in Round-Robin: 500 ms,
1 s and 2 s. As shown in Figure 17a, LB was kept. The
communication overhead was reduced by 53 %, 59 %
and 64 %, respectively (cf. Figure 17b).

At a partition scope of 900 seconds, Round-Robin schedul-
ing resulted in a maximal operational latency of 1.6 s (cf.
Figure 18a) and 724,272 events have been transmitted be-
tween the splitter and the operator instances (cf. Figure
18b). We ran the same experiment using our batch schedul-
ing controller allowing for, 2.5, 5 and 10 times higher oper-
ational latency peaks than yielded in Round-Robin: 4 s, 8 s
and 16 s. As shown in Figure 17a, LB was kept. The com-
munication overhead was not reduced at LB = 4s. Due to
the higher partition sizes, the achieved batching sizes were
too small to avoid the problem of redundant event transmis-
sion to all operator instances. When LB is relaxed to 8 s
and 16 s, communication overhead was reduced by 31
% and 34 %, respectively (cf. Figure 18b).

In summary, the batch scheduling controller kept the re-
quested latency bounds throughout all experiments. We
can significantly save communication cost by using batch
scheduling if we allow for higher operational latency peaks
than the optimal ones achieved with Round-Robin schedul-
ing. Hence, we can trade operational latency for communi-
cation cost, and limit that trade-off by setting LB .

Face Recognition Scenario. With the dynamic face
recognition scenario, we evaluate the behavior of batch schedul-
ing in a highly bursty real-world workload. A real video
stream from a camera installed on campus—capturing 1



 0

 0.2

 0.4

 0.6

 0.8

 1

100ms 1s 10s 60s

C
u

m
u

la
te

d
 p

ro
b

ab
ili

ty

Operational latency

RR
LB = 15 s, TC
LB = 30 s, TC
LB = 60 s, TC

(a)

0

20,000

40,000

60,000

80,000

# 
Tr

an
sm

it
te

d
 E

ve
n

ts RR
LB = 15s
LB = 30s
LB = 60s

(b) (c)

Figure 19: Face recognition operator. (a) Operational latency. (b) Communication cost. (c) Adaptation.

frame each 2 seconds—is processed by a face detection oper-
ator and the detected faces are streamed to the face recogni-
tion operator. Simulating users of a face recognition applica-
tion, the arrival of new queries is modeled as an exponential
distribution with an average inter-arrival time of 2 seconds.
The face recognition operator detects whether the queried
person is in the face event stream, using a partition scope of
ps = 10s. Each experiment ran for 150 minutes. According
to the insights we gained from the evaluation of the latency
model in Section 5.1, we set-up the controller to use 2 iat
bins. Further, we set mtime = 10s and δiat = 1.0 standard
deviations to account for the rapidly changing iat .

For Round-Robin scheduling, we measured an operational
latency peak of 6 seconds (cf. Figure 19a) and 68,412 events
have been transmitted between the splitter and the opera-
tor instances (cf. Figure 19b). We ran the same experiment
using our batch scheduling controller allowing for 2.5, 5 and
10 times higher operational latency peaks than yielded in
Round-Robin: 15 s, 30 s and 60 s. The latency bounds are
kept in all tested settings (cf. Figure 19a). The commu-
nication overhead was reduced by 14 %, 31 % and 76
%, respectively (cf. Figure 19b).

In Figure 19c, we visualize the workload; in contrast to
many synthetic workloads, it is very bursty and unpredictable.
We see how the batch size is continuously adapted to the
highly bursty workload, without any prior training. We
conclude, that even in very bursty workloads, we can trade
operational latency against communication cost using the
proposed batch scheduling controller.

0.01

0.02

0.03

0.04

1 2 4 8 16 32

Sc
h

ed
u

lin
g 

La
t.

 (
m

s)

Number of iat bins(a)

0.01

0.1

1

10

100

100 1k 10k 100k 1M

M
o

n
it

o
ri

n
g 

La
t.

 (
m

s)

Number of events(b)

Figure 20: Latency of (a) scheduling (traffic opera-
tor), (b) updating statistics.

Scalability. We evaluate the scalability of our approach
in two aspects. First, the scheduling latency, i.e., the time
between the detection of the start of a new partition and
the decision which operator instance the partition should
be assigned to (cf. Algorithm in Figure 10). It includes
predicting the negative and positive gains (cf. Algorithm in
Figure 9), whose complexity is determined by the granularity
of the latency model, i.e., the number of bins used in the
model. We measured a very low scheduling latency of in

average 0.02 ms for up to 32 bins used (cf. Figure 20a),
which is the maximal number of bins needed in any of the
scenarios that we have tested (cf. Section 5.1.1).

Second, we evaluate the time needed to update the la-
tency model with new statistics from the monitoring win-
dow, i.e., the monitoring latency. This includes recomput-
ing the weights, average values and standard deviations of
the bins. Using 32 bins, we measured that the monitor-
ing latency grows linearly with the number of events in the
monitoring window (cf. Figure 20b). At 1,000,000 events in
a monitoring window, updating the statistics took between
100 and 200 ms, allowing the statistics still to be updated 5
times a second even when using such large monitoring win-
dows.

6. RELATED WORK
Over the last two decades, Complex Event Processing

(CEP) has evolved as the paradigm of choice to detect and
integrate events in situation-aware applications [15, 1, 12,
30]. Recently, the research focus has been shifted from
centralized CEP systems [9, 14] towards Distributed CEP
(DCEP) middleware [20, 4, 28], pushing the operators close
to the sources. However, individual operators can be a bot-
tleneck and operator parallelization is needed [19, 11, 26].
Besides data parallelization, intra-operator parallelization—
also known as pipelining [5, 11]—has been proposed, which
depends on the functional parallelism of an operator and,
hence, is limited in its scalability.

In existing DCEP data parallelization frameworks, schedul-
ing has not been in the focus of attention. In the related field
of stream processing systems, there have been addressed dif-
ferent problems of assigning batches of data to instances
of stream processing operators. Das et al. [17] propose a
reactive controller in order to batch a minimal number of
events to an operator such that the throughput is sufficiently
high to process the current workload. In their processing
model, operators can aggregate larger chunks of data more
efficiently, so that the throughput of operators grows with
the batch size. A similar problem had been studied before
by Carney et al. [10]. Unlike in this paper, in all of these
systems, partitions scheduled to operator instances are not
overlapping and all events of a batch are known when the
batch is scheduled. Balkesen and Tatbul [6] recognize the
trade-off of communication overhead to latency in opera-
tor instances when scheduling overlapping partitions. They
introduce an analytical cost model which assumes fixed pro-
cessing latency of an event in a partition and fixed count-
based or time-based partition size and slide. Further, their
cost model does not consider inter-arrival times. Hence, the
model is not suitable for solving the batch scheduling prob-
lem in data-parallel DCEP operators. In the work of Li



et al. [25], the cost of evaluation sliding-window aggrega-
tion queries is reduced by sub-aggregating the events in non-
overlapping subsets and sharing computation steps. This is
not applicable to pattern detection in data-parallel DCEP
operators, where each operator instance needs to receive the
complete set of events in order to detect a queried pattern.

Existing work about scheduling in non-parallel DCEP mid-
dleware and similar systems does not take into account the
network utilization, but tries to optimize the usage of other
resources like CPU [21] and memory [3]. Classical single-
and multiprocessor scheduling algorithms, like Round-Robin,
FIFO, SPN, Deadline-Monotonic Scheduling, etc., have dif-
ferent optimization goals and do not regard batching of over-
lapping data sets.

Other latency models for DCEP operators have been pro-
posed. The Mace metrics from Chandramouli et al. [13] for
latency estimation in a DCEP middleware proposes an an-
alytical model. However, it assumes the usage of their pro-
posed scheduling algorithm—which is not a batch scheduling
algorithm. In the latency model of Zeitler and Risch, a fixed
processing latency of each event is assumed [32]; our latency
model differentiates between different event types and takes
into account the overlap of partitions.

Batching has also drawn attention in many other fields,
like graph processing [29, 31] and column data-stores [24,
8]. In such problems, it is often preferable to process or
store data in batches instead of handling each single tuple
separately. However, typically, optimal batch sizes are pre-
defined, e.g., by cache sizes, so that fixed batch sizes are em-
ployed. In publish/subscribe middleware, the minimization
of the communication cost for aggregation in event brokers
has been studied [27]. However, this is constrained to aggre-
gation in sliding windows; a DCEP middleware allows for
more expressive operations.

7. CONCLUSION
In this paper, we have pointed out the trade-off between

communication overhead and latency when batch schedul-
ing subsequent partitions in data-parallel DCEP operators.
We have evaluated key factors determining the operational
latency in operator instances. As the batch scheduling de-
cisions are made on open partitions, a long feedback delay
between the decisions and their impact on feedback parame-
ters is induced, making reactive scheduling approaches infea-
sible. Instead, we have proposed a model-based controller.
We have evaluated the latency model and shown that the
controller batches an optimal amount of partitions even at
bursty workloads. This way, the problem of high communi-
cation overhead can be mitigated.

8. REFERENCES
[1] A. Adi and O. Etzion. Amit - the situation manager.

The VLDB Journal, 13(2):177–203, May 2004.
[2] A. Arasu, S. Babu, and J. Widom. The CQL

continuous query language: Semantic foundations and
query execution. The VLDB Journal, 15(2):121–142,
June 2006.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
D. Thomas. Operator scheduling in data stream
systems. The VLDB Journal, 13(4):333–353, Dec.
2004.

[4] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis

distributed stream processing system. SIGMOD ’05,
pages 13–24. ACM, 2005.

[5] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul.
RIP: Run-based intra-query parallelism for scalable
complex event processing. DEBS ’13, pages 3–14.
ACM, 2013.

[6] C. Balkesen and N. Tatbul. Scalable data partitioning
techniques for parallel sliding window processing over
data streams. International Workshop on Data
Management for Sensor Networks (DMSN), 2011.

[7] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. SIGCOMM ’11, pages 242–253. ACM, 2011.

[8] P. A. Boncz, M. Zukowski, and N. Nes.
Monetdb/x100: Hyper-pipelining query execution. In
CIDR, volume 5, pages 225–237, 2005.

[9] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams: A new class of data
management applications. VLDB ’02, pages 215–226.
VLDB Endowment, 2002.

[10] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator
scheduling in a data stream manager. VLDB ’03,
pages 838–849. VLDB Endowment, 2003.

[11] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki,
and P. Pietzuch. Integrating scale out and fault
tolerance in stream processing using operator state
management. SIGMOD ’13, pages 725–736. ACM,
2013.

[12] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
Knowl. Eng., 14(1):1–26, 1994.

[13] B. Chandramouli, J. Goldstein, R. Barga,
M. Riedewald, and I. Santos. Accurate latency
estimation in a distributed event processing system.
ICDE ’11, pages 255–266. IEEE, 2011.

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. TelegraphCQ: Continuous dataflow processing.
SIGMOD ’03, pages 668–668. ACM, 2003.

[15] G. Cugola and A. Margara. Tesla: a formally defined
event specification language. DEBS ’10, pages 50–61.
ACM, 2010.

[16] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Comput. Surv., 44(3):15:1–15:62,
June 2012.

[17] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive
stream processing using dynamic batch sizing. SOCC
’14, pages 16:1–16:13. ACM, 2014.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Vl2: A scalable and flexible data center
network. SIGCOMM ’09, pages 51–62. ACM, 2009.

[19] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and
R. Grimm. A catalog of stream processing
optimizations. ACM Comput. Surv., 46(4):46:1–46:34,
Mar. 2014.

[20] N. Jain, L. Amini, H. Andrade, R. King, Y. Park,
P. Selo, and C. Venkatramani. Design,
implementation, and evaluation of the linear road
benchmark on the stream processing core. SIGMOD
’06, pages 431–442. ACM, 2006.

[21] L. Kencl and J.-Y. Le Boudec. Adaptive load sharing
for network processors. IEEE/ACM Trans. Netw.,
16(2):293–306, Apr. 2008.

[22] B. Koldehofe, R. Mayer, U. Ramachandran,
K. Rothermel, and M. Völz. Rollback-recovery
without checkpoints in distributed event processing



systems. DEBS ’13, pages 27–38. ACM, 2013.
[23] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan.

Choreo: Network-aware task placement for cloud
applications. In Proceedings of the 2013 Internet
Measurement Conference, IMC ’13, pages 191–204,
New York, NY, USA, 2013. ACM.

[24] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The vertica
analytic database: C-store 7 years later. Proc. VLDB
Endow., 5(12):1790–1801, Aug. 2012.

[25] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A.
Tucker. No pane, no gain: Efficient evaluation of
sliding-window aggregates over data streams.
SIGMOD Rec., 34(1):39–44, Mar. 2005.

[26] R. Mayer, B. Koldehofe, and K. Rothermel.
Predictable low-latency event detection with parallel
complex event processing. Internet of Things Journal,
IEEE, 2(4):274–286, Aug 2015.

[27] N. K. Pandey, K. Zhang, S. Weiss, H.-A. Jacobsen,
and R. Vitenberg. Minimizing the Communication
Cost of Aggregation in Publish/Subscribe Systems. In
35th IEEE International Conference on Distributed
Computing Systems (ICDCS), 2015.

[28] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch.
Distributed complex event processing with query
rewriting. DEBS ’09, pages 4:1–4:12. ACM, 2009.

[29] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From ”think like a vertex” to ”think like
a graph”. Proc. VLDB Endow., 7(3):193–204, Nov.
2013.

[30] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. SIGMOD ’06,
pages 407–418. ACM, 2006.

[31] W. Xie, G. Wang, D. Bindel, A. Demers, and
J. Gehrke. Fast iterative graph computation with
block updates. Proc. VLDB Endow., 6(14):2014–2025,
Sept. 2013.

[32] E. Zeitler and T. Risch. Massive scale-out of expensive
continuous queries. VLDB Endowment, 4(11), 2011.


