The SKilL Language V1.0

Timm Felden

TR 2017/01

Abstract

This paper presents an approach to serializing objects which is tailored for
usability, performance and portability. Unlike other general serialization mech-
anisms, we provide explicit support for extension points in the serialized data, in
order to provide a maximum of upward compatibility and extensibility.

This is an updated version of SKilL TR13[Fel13].

Acknowledgements

Main critics: Erhard Plodereder and Martin Wittiger.
Additional critics: Dominik Bruhn’, Dennis Przytarski’, Martin Kaistra’.

Contents

[Specification Language

1 Introduction
1.1 Scientific Contributions
1.2 Outline e
1.3 Related Work
1.4 Notation

2 Syntax
2.1 ReservedWords
22 The Grammar v vt e
23 Examples
24 StyleGuide

3 Semantics

3.1 ASpecificationFile
32 Includes
3.3 TypeDeclarations
3.4 Field Declarations
3.5 Field Types o e
3.6 Name Resolution.

'Discussion on SKilL and related work
*Discussion on API and proposal of reordering type information; Pragmas
*Initial proposal of custom fields

N G R W w

o o0 &

10
12

13
13
14
14
15
16
17

4 The Type System

41 Built-InTypes
42 Compound Types
43 UserTypes
44 FancyTypes
45 DefaultValues
46 Examples

5 Type Annotations

5.1 Restrictions.
52 Hints

[Binary File Format
6 Impact of changing Specifications

7 Serialization

7.1 Steps of the Serialization Process
7.2 General File Layout
73 StoragePools.
7.4 Serialization of FieldData
75 Endianness
7.6 AgeExample
7.7 MapExample

8 Deserialization

81 AgeExample

[II Future Work

[V Appendix

A Full Grammar of the Specification Language

B Full Grammar of the Binary File Format

C Variable-Length Coding

D Error Reporting

E Levels of Language Support
F Numerical Limits

G Numerical Constants
Glossary

Acronyms

17
18
20
20
21
24
25

25
25
32

38
38

39
39
39
44
47
48
48
50

50
51

53

54
54
56
56
58
59
60
61
62

62

Panta rhei (everything flows)

Heraclitus of Ephesus

Part I
Specification Language

1 Introduction

Many industrial and scientific projects suffer from platform or language-dependent
representation of their core data structures. These problems often cause software
engineers to stick with outdated tools or even programming languages, thus causing
a lot of frustration. This does not only increase the burden of hiring new project
members but can ultimately cause a project to come to an end.

The approach presented in this paper provides a means of platform and language-
independent specification of serializable data structures and, therefore, a safe way of
interaction between old and new tools in a toolchain, without even the need of re-
compiling the old ones. We set out to design a new and easy-to-use way of making
core data structures of a toolchain language-independent because we believe that the
best language a programmer can use to write a new tool is the language that he likes
best. We also had the strict requirement to provide a solution that can describe an in-
termediate representation with stable parts that can be used for decades and unstable
parts that may change on a daily basis.

Firstly, this goal is achieved by an easy-to-use specification language for data
structures providing simple data types like integers and strings, container types like
sets and maps, type-safe pointers, extension points and single inheritance. The spec-
ification language is modular in order to make large specifications more readable.

Furthermore, a formalized mapping of specified types to a bitwise representation
of stored objects. The mapping is very compact and therefore scalable, of simple struc-
ture and therefore easily bound to a new language. The type system is serialized to
provide a maximum of upward and downward compatibility while maintaining type-
safety at the same time. It allows for a maximum of safety when it comes to manip-
ulating data unknown to the generated interface, while maintaining high decoding
and encoding speeds’.

An improvement over the Extensible Markup Language (XML), our main competi-
tor, is that the reflective usage of stored data is expected to be quite rare, because the
Serialization Killer Language (SKilL) binding generator is able to generate an inter-
face that ensures type-safety of modifications and provides a nice integration into the
target language. This allows files containing data of arbitrary types to be processed.
If the data stored in the file is not used by a tool, it does not have to pay for it with
execution time or memory. Furthermore, a tool does not have to know the whole in-
termediate representation of a toolchain but only the parts it is going to use in order
to achieve its goals. The expected file sizes range from one megabyte to several giga-
bytes while having virtually no relevant numerical limits in the file format’. Please
note that the SKilL file format is a lot more compact than equivalent XML files would
be. It is expected that files contain objects of hundreds of types with thousands of in-
stances each. If a type in such a file contained three pointers on average, the file size

“The serialization and deserialization operations are linear in the size of the input/output file.

sThere are practical limits, such as Java having array lengths limited to 23! or current file systems
having a maximum file size limit that is roughly equivalent to the size of a file completely occupied by
objects with a single field of a single byte. There will also be problems with raw I/O-Performance for very
large files and an implementation of a binding generator which can handle files not storable in the main
memory is a tricky thing to do.

would still be around one mega byte, which is due to a very compact representation
of stored data. This will also lead to high load and store performance because the raw
disk speed is expected to be the limiting factor.

1.1 Scientific Contributions

This section is a very concise representation of contributions. The suggested serial-
ization format and serialization language offer all the following features in a single
product:

- a small footprint and, therefore, high decoding speeds
« a fully reflective type encoding
« type-safe’ storage of references both to known and unknown types’

« arich type system providing, among others, references, containers, single in-
heritance and extension points

« the specification language is modular® and easy to use

« no tool using a common intermediate representation has to know the complete
specification. It is even possible to strip away or add individual fields of com-
monly used types — independent of temporal, physical or lexical order

« the coding is platform and language-independent

the coding offers a maximum of downward and upward compatibility

« a programmer is communicating through a generated interface, which allows
programmers knowing nothing about SKilL to interact with it. Also, it allows
programmers to write tools in the language they know best’

stored data that is never needed by a tool will never be touched
« new objects can be added to a file by appending data to the existing file

All points have been addressed already in various contexts (e.g. [TDB706] §13.13,
[LA13], [xml06], [Lam87]), but, to the best of our knowledge, there is no solution
bringing all these demands together into a single product that does the job automati-
cally.

1.2 Outline

The specification has been split into three parts. Part | describes the specification lan-
guage of SKillL. It is written mostly from the perspective of a user of SKilL with little
detail on technical foundations. Part [I will describe the binary file format used by
SKilL. The text is written with implementers in mind and may be of little interest to
most users. The remainder contains an outlook on future developments as well as
rather technical lists and tables that mainly provide a concise overview and clarifica-
tion.

¢ In the sense that one cannot get a number if one expected an array.

"Le. regular references and annotations.

®Le. it can be distributed over many files.

°This is a problem especially in the scientific community, where many researchers work on similar
problems but with completely different tools.

1.3 Related Work

There are many approaches similar to ours, but most of them have a different focus.
This section shall provide a concise list of related approaches. For potential users of
SKilL, this might also present alternatives superior for individual use cases.

XML
XML is a file format (defined in [xml06]). The main differences are:
+ XML can be manipulated with a text editor*.
+ Itis easier to write a libXML for a new language than to write a SKilL back-end"'.

- XML is not an efficient encoding in terms of (disk-)space usage. This can be
overcome by the Efficient XML Interchange Format (EXI) (see [SK11]).

- XML is not type-safe. This can be overcome partially by the XML Schema Def-
inition Language (XSD).

- XML does not provide references to other objects out of the box.

- XML stores a tree, whereas a SKilL file contains any number of unrestricted
graphs.

- XML is usually accessed through a libXML, whereas SKilL provides an API for
each file format, thus a SKilL user does not require any SKilL skills, i.e. no
knowledge about SKilL types or the representation of serialized objects is re-
quired in general. To be honest, there are some language bindings, mainly for
Java, which offer this benefit for XML as well.

- XML-files cannot be appended with new data.

On XML efficiency

There are some very efficient XML implementations, e.g. http://tibleiz.net/
asm-xml/index.html. Interestingly, they warn you "Remember: if you really need
speed, do not use XML (as of 21.7.16). Their speed is comparable to current SKilL
implementations in terms of MB/sec. However, the interesting rate is Objects/sec. In
this category, SKilL outperforms XML, in the toolchain intermediate representation
scenario due to smaller file sizes. Furthermore, XML can never be parsed partially.

XML Schema definitions

The SKilL description language itself is more or less equivalent to XML schema defi-
nition languages such as XSD (as described in [GSMT ™08, PGM™08]). The most sig-
nificant difference is caused by the fact that XML operates on trees and SKilL operates
on arbitrary graphs.

The type systems offered by SKilL and XSD are quite different, thus it might be
worth taking a look which one better fits one’s needs.

*Whereas SKill files are binary and require a special editor which will be provided by us eventually.
**This is only a relevant point if no bindings exist for the language you want to use.

http://tibleiz.net/asm-xml/index.html
http://tibleiz.net/asm-xml/index.html

JAXP and xmlbeansxx

For Java and C++, there are code generators that turn an XML schema file into code
which is able to deal with an XML similarly to the API used by SKilL implementations.
In case of Java, the mechanism is even part of the standard library. The downside is
that, to the best of our knowledge, this has been implemented only for Java and C++,
thus it leaves us with portability issues. A minor problem of this approach is the lack
of support for comment generation and the inefficient storage of serialized data.

XML-based Approaches

There are various XML-based formats. All XML-based formats share the basic per-
formance overhead of XML. A close competitor in terms of goals is GXL[WKR02].
Publications on GXL seem to stop in mid-2002. An examination of example GXL
coded graphs imply that the format is wasting too much space to be scalable for larger
graphs as they appear in the process of analysing medium size programs. The TGraphs
library[ERWO08] claims to use GXL for communication with other toolchains. Note
that the GXL Graph Model could be expressed as a SKilL specification, replacing XML
with binary SKill as data representation.

YAML

Shares some characteristics with XML, except that it is significantly less widespread
and seems to have died years ago[BKEAN][SSV13].

ASN.1

Is not powerful enough to fit our purpose.

IDL

The published format is stated to be ASCII ([Lam87] §2.4), which will cause similar
efficiency problems as raw XML does, if large amounts of data are stored. Note that
the changes in architecture of computer systems over the last two decades makes the
solution less appealing than it was at the time of its creation. Tools like memory
mapped files or IEEE-754 floats simply did not exist at that time.

Apache Thrift, Protocol Buffers and others

Thrift states that there is no sub-typing (see [Apa13]**). Protocol Buffers (see [Goo13])
do not seem to support sub-typing either. Both seem to be a pragmatic approach to
generalization of efficient network protocols. The type system of Protocol Buffers is
also a rather pragmatic solution offering types such as unsigned 32-bit integers which
can not be represented in an efficient and safe way by e.g. Java. Both do not have
storage pools, which are the foundation of our serialization approach and an absolute
requirement for some of our optimizations, such as hints (see section 5.2).

*’In section “structs”, first sentence: “Thrift structs define a common object — they are essentially equiv-
alent to classes in OOP languages, but without inheritance.”, as of 29.Aug.2013

Protocol Buffers provide a variable-length integer type, namely int64, which
seems to be binary compatible" with the variable-length integer type used in SKilL
(see section C).

Lately some people seem to realize that the in-memory representation can be
moved over the network without modification, if it is the same at both ends. Solutions
of that kind include CapNProto[Var14] and SBE[TM13].

Solutions mentioned in this section have an advantage in terms of performance
but offer little or no change-tolerance at all. Therefore, they are best used in an en-
vironment with a lot of communication and total control over protocol changes. If
protocol changes are frequent, the change tolerance provided by the SKilL method
may save a significant amount of development costs.

Java Bytecode, LLVM/IR and others

Although Java Bytecode (see [LYBB13]) and the LLVM Intermediate Representation
(see [LA13]) are handcrafted formats, they serve as a guiding example in many ways.

Language-Specific Serialization

Language-specific serialization is language specific and, therefore, cannot be used to
interface between subsystems written in different programming languages, without a
lot of effort. Our aim is clearly a language-independent and easy-to-use serialization
format.

Interestingly, items 74 and 75 in Effective Java 2[Blo0§] warn you not to use native
serialization recommending the use of handwritten serialization mechanism where
possible instead. The reason for both points is the lack of change tolerance in Java’s
built-in serialization mechanism. Those reasons do not apply to SKilL-based serial-
ization in most settings.

SKilL Implementations of past Revisions

This revision is based on experience with the previous version of SKilL [Fel13]. Imple-
mentations can be found at https://github.com/skill-lang/skill. Descrip-
tions of implementations can be found in [Prz14, Rot15, Ung14, Har14].

1.4 Notation

Code and references to code will be written in a typewriter font. Full pieces of code
are grouped into listings. All examples are part of the SKilL test suite. The heading of
the block is the respective file name. Most files are used as front-end tests.

Listing 1: ’Example Listing”

Some Code {
<- anything not important at this point

}

Semantics and types will be written in italics. Sets of types like the set of all types
are written in calligraphy, e.g. 7.

** The Protocol Buffer implementation seems not to optimize away the ninth flag, thus it might use an
additional byte for very large numbers.

https://github.com/skill-lang/skill

2 Syntax

This section discusses the syntax of the description language in brevity. The semantics
is discussed in section 3, the file format is discussed in section 7.

We use the tokens <id>, <string>, <int>, <float> and <comment>. They equal
C11-style* identifiers, strings, integer literals, float literals and comments, respec-
tively. Identifiers, strings, and comments are explicitly enriched by printable Unicode
characters above \u007£, although this feature should be used with care. For the sake
of portability, Unicode characters are restricted to 16-bit code points only. Usage of
code points above \uffff has no defined behaviour*”. Usage of $ and _ characters is
generally discouraged. We use a comment token because we want to emit the com-
ments in the generated code in order to integrate the generated code nicely into the
target language’s documentation system.

2.1 Reserved Words

The language itself has only the reserved words annotation, auto, const, include,
with, bool, namespace, map, list and set.

However, it is strongly advised against using any identifiers which form reserved
words in a potential target language, such as Ada, C++, C#, Java, JavaScript or Scala,
as well as the identifiers skillid, internal and api.

2.2 The Grammar

A simplified overview of the grammar of a SKilL definition file is given below. For
the sake of readability, fancy types, change modifiers and comments have been sim-
plified or removed. The complete grammar can be found in appendix A. The detailed
explanation of individual syntactic constructs will make use of the complete grammar.

UNIT :=
TrueComment *
INCLUDEx*
DECLARATION*

TrueComment := ("#" ~[\nl* \n)x*

INCLUDE :=
("include" |"with") <string>+

DECLARATION :=
DESCRIPTION
<id>
((":"|"with" |"extends") <id>)?
ll{ll FIELD* Il}ll

FIELD :=
DESCRIPTION

1 [ISO11] Annex D
> A code generator is expected to reject specifications containing these characters, whereas implemen-
tations are expected to treat user strings containing 32-bit code points correctly.

(CONSTANT |DATA) ";"

DESCRIPTION :=
<comment>?7
(RESTRICTION|HINT) *

RESTRICTION :=
ll@ll <id> ("(Il (R_ARG (Il,ll R_ARG)*)? Il)ll)?

R_ARG := (<float>|<int>|<string>)
HINT := "I" <id>
CONSTANT :=

"const" TYPE <id> "=" <int>
DATA :=

"auto"? TYPE <id>

TYPE :=
("map" MAPTYPE
["set" SETTYPE
["1ist" LISTTYPE
| ARRAYTYPE)

MAPTYPE :=
"<" GROUNDTYPE ("," GROUNDTYPE)+ ">"

SETTYPE :=
"<" GROUNDTYPE ">"

LISTTYPE :=
"<" GROUNDTYPE ">"

ARRAYTYPE :=
GROUNDTYPE
(ll [" (<int>)? ll]")?

GROUNDTYPE :=
(<id>|"annotation")

Note: The Grammar is LL(1).*

*SIn fact it can be expressed as a single regular expression.

2.3 Examples

Listing 2: Running Example

/** A location in a file pointing to a character in that

file. Assumes ordinary text files. */

Location {

}

/** the line of the character starting from 0 */

i16 line;

/** the column of the character starting from 0 x/

i1l6 column;

/** the file containing the location */

File path;

/** A range of characters in a file. */
Range {

}

/*% A hierarchy of file/directory names.

/**x first character; inclusive */
Location begin;

/*% last character; exclusive x*/
Location end;

File {

/** Name of this file/directory. */
string name;

/**% NULL iff root directory. */
File directory;

*/

Includes, self references

Listing 3: Example 2a

with “example2b. skill”

A

o = A
o P

o e

10

Listing 4: Example 2b

with “example2a. skill”

oo

{
A

aj;

(-

which is equivalent to the file:

Listing 5: Example 2
A A

A a;

B b;

[S)

B {
A a;

(-

Subtypes
Types can be extended using subtyping:

Listing 6: Subtyping and Includes

with “runningExample. skill”

/** a message is just a string */
Message {
string message;

(-

/**% located messages contain a location as well x/
LocatedMessage extends Message {
Location location;

(-

Containers

Container types can be used to store more elaborate data structures, than just plain
values or references. In the current version, there is support for sets, maps, lists and
arrays:

Listing 7: Container Example

/** E.g. a user in a social network. */
User {
string name;

/**x friends of this user */

11

list<User> friends;

/** default values of permissions can be overriden on
a per-user basis. The value is stored explicitly to
ensure that the override survives changes of the
permissions default value. */

map<User, Permission, Bool> permissionOverrides;

}

Permission {
string name;
bool default;

}

Unicode

The usage of non-ASCII characters is legal, but discouraged.

Listing 8: Unicode Support

+ {

T
€

’

2.4 Style Guide

This section provides some general hints on how to write readable specifications. A
uniform appearance of specifications will improve readability and, therefore, reduce
development time.

Use speaking names Although type and field names are serialized, the overhead
is a small constant. Furthermore, speaking names tend to prevent name clashes and
decrease development time.

Use camelCase identifiers consisting of letters a-z only This rule enables code
generators to create readable names for target languages. Letters a-z can be repre-
sented in most encodings, are used by the English language and can therefore be as-
sumed to be safe. Usage of other characters may require unreadable escape sequences.

If acronyms have to be used followed by a word, then the last capitalized character
is interpreted as the first character of the subsequent word.

Use Capitalized user type names This convention is used by most programmers.
If it contradicts the style guide or rules of a language, the language-specific binding
generator is expected to change casing according to the respective style guide.

12

Use lowercase field type names Field Types should consist of a single word only.
This convention is used by most programmers. If it contradicts the style guide or rules
of a language, the language-specific binding generator is expected to change casing
according to the respective style guide.

Indent Units with two spaces Specifications are likely to be processed with reg-
ular text editors. The lack of control flow allows for a small indentation level.

Comments, Restrictions and Hints should reside in their own lines Using sep-
arate lines for type or field modifications causes the amount of modifications to be
reflected in the visual appearance of the entity.

Separate field declarations with comments, restrictions or hints by one blank
line from other field declarations This rule turned out to be very useful. If neither
comments, hints nor restrictions are used, the specification may choose to skip blank
lines. Not using comments is discouraged. Separating subsequent type definitions by
two blank lines turned out to be useful as well.

Declare super types first The SKilL specification language itself enforces no or-
der on type declarations. Human readers, however, may not be able to read specifica-
tions where super types are used before they are specified. This rule does not apply
to types used as part of field declarations.

Split the specification into logical units Specifications subdivided into several
files consisting of small logical units are more accessible using just a text editor than
a single large file. Splitting up a specification enables tool builders to omit parts that
are irrelevant for their specific tool.

3 Semantics

This section will describe the meaning of specifications by explaining the effect of
declarations.

3.1 A Specification File

UNIT :=
INCLUDE*
DECLARATIONx*

Specification files are fed into binding generators, which generate code that pro-
vides means to deal with instances of the declared types.

SKilL specifications consist of a set of declarations which in turn consist of fields.
A declaration is roughly equivalent to a type declaration in an object-oriented pro-
gramming language. The main difference is that declarations are pure data, because
we do not offer a real execution model. The only operations from the perspective of
SKilL are loading and storing of data.

13

A declaration will instruct the language binding generator to create a type which
has the declaration’s name and consists of the fields specified in the body of the dec-
laration. Fields behave just like fields in object-oriented programming, both form the
structure of serialized data and are identified using human readable names.

Types are discussed in section 4. Restrictions and Hints are discussed in sections
5.1 and 5.2.

3.2 Includes

INCLUDE :=
("include"|"with") <string>+

Includes are used to structure a specification into smaller models, e.g. by mov-
ing data that is only used by some tools to its own file. The files referenced by the
include-statement are processed as well. The declarations of all files transitively
reachable through include-statements are collected before any declaration in any
file is evaluated. The order of inclusion is irrelevant. The same file may even be
included multiple times by the same include-statement. Therefore, evaluation of
declarations happens as if all declarations were defined in a single file.

3.3 Type Declarations

DECLARATION :=
DESCRIPTION
<id>
((":"|"with" |"extends") <id>)7?
ll{ll FIELD* Il}ll

The SKilL specification language is all about type declarations. A type declaration
consists of at least a name and a body containing field declarations.

3.3.1 Descriptions

DESCRIPTION :=
COMMENT?
(RESTRICTION|HINT)*

Type (and field) declarations can be enriched with descriptions. Comments pro-
vided in the SKilL specification will be emitted into the generated code® to serve as
a natural-language description of the respective entity. This approach enables users
to get tool-tips in an IDE showing them this documentation. Comments will ignore
preceding whitespace and *’ tokens. They end with **/” and they cannot be nested.
Comments start with a text and can be followed by tags. Valid tags are

. @see type/ field
« @deprecated message
« @author name

« @version string

7 If the target language does not allow C-Style comments, an appropriate transformation will be applied.

14

* (@note message
« @todo message

These tags are parsed separately and provided to the back-end as a list, to allow the
back-end to convert them to the format required by the dominating documenting
system. The behaviour in the presence of other tags is unspecified. Ill-formed tags
must not cause a binding generator to fail. Casing of tags is ignored. A double colon
following a tag is discarded. If a valid type or field is used as an argument to see, the
type is translated by the back-end to match the generated type or field. Line breaks
and empty lines are dealt with as known by EIEX: Empty lines separate paragraphs,
while ordinary line breaks will be ignored. The comment system was designed to
integrate nicely into doxygen [vH13] and javadoc [jav13].

3.3.2 Type Annotations
RESTRICTION := "@" <id> ("(" (R_ARG ("," R_ARG)*)? ")")7

R_ARG := (<float>|<int>|<string>)

HINT := "I" <id>

SKilL offers two kinds of type annotations: restrictions and hints. Restrictions can
be used to restrict a type, e.g. by reducing the range of possible values of an integer
field to those above 23. Hints can be used to optimize the generated language binding.
Restrictions and hints are covered by section 5.

3.3.3 Subtypes

A subtype of a user type can be declared by appending the keyword with'® and the su-
pertype’s name to a declaration. A subtype behaves like a subtype in object-oriented
programming. Subtypes inherit all fields of their super types. Only user-defined types
can be sub-typed. In order to be well-formed, the subtype relation must remain acyclic
and must not contain unknown types.

3.4 Field Declarations

FIELD :=
DESCRIPTION
(CONSTANT |DATA) ;"

CONSTANT :=
"const" TYPE <id> "=" <int>

DATA :=
"auto"? TYPE <id>

Types are sets of named fields. Fields are either constants or real data. A usual
field declaration consists of a type and a field name. In this case, the field declaration
behaves like a field declaration in any object-oriented programming language, except
that the field data will be serialized.

% Alternatively, ' : ' or 'extends' can be used.

15

3.4.1 Constants

A const field can be used in order to create guards or version numbers. An API
should provide a hook that is triggered if a constant is encountered that was not ex-
pected, is missing or has an unexpected value. Otherwise, if an unknown non-zero
constant is encountered in a known user type, the file has to be rejected. The deserial-
ization mechanism has to report an error if a constant field has an unexpected value.
This mechanism is intended to be used basically for preventing tools from reading
arbitrary files and interpreting them as the expected input. The mechanism can be
used defensively, because storing constant fields creates a constant overhead and is
not influenced by the number of instances of a type. Only integer types can be used
as constants.

3.4.2 Transient Fields

Transient fields, i.e. fields which are used for computation only, can be declared by
adding the keyword auto in front of the type name. The language binding will create
a field with the given type, but the content is transparent to the serialization mech-
anism. This mechanism can be used to add fields to a data structure, to simplify the
implementation of algorithms computing the interesting data, if these helper fields
are not of interest after computation. This is especially useful in combination with
the possibility to add or drop some fields while generating the binding for a specific
tool. The mechanism can also be used for a field with content that can likely be com-
puted very fast.

The keyword auto is used because the content of the field is computed automati-
cally. Besides the name, it has nothing to do with the auto type declaration of C++.

3.5 Field Types

TYPE :=
("map" MAPTYPE
|"set" SETTYPE
["list" LISTTYPE
| ARRAYTYPE)

MAPTYPE :=
"<" GROUNDTYPE ("," GROUNDTYPE)+ ">"

SETTYPE :=
"<" GROUNDTYPE ">"

LISTTYPE :=
"<" GROUNDTYPE ">"

ARRAYTYPE :=
GROUNDTYPE
(u [u (<int>)? u] u)?

GROUNDTYPE :=
(<id>|"annotation")

16

Basic types are just an identifier with the type name. For compatibility reasons®, type
names are case-insensitive. Types are explained in-depth in section 4.

3.5.1 Container Types

The type system has a built-in notion of arrays, maps, lists and sets. Note that all
of them are, from the perspective of serialization, equivalent to length-encoded ar-
rays. Their main purpose is to increase the usability of the generated Application
Programming Interface (API). These containers have shown to increase the usability
and understandability of the resulting code and file format.

3.5.2 Annotations

The annotation type is basically a typed pointer to an arbitrary user type. Its main
purpose is to provide extension points in the form of references to objects whose type
could not be known at the time the annotation field is specified.

3.6 Name Resolution

Because SKilL is designed to be downward and upward compatible and offers subtyp-
ing, it is possible that a future revision of a file format specification will add a field
with a name that already exists in a subtype. In general, it is assumed that the current
maintainer of the super class does not know about all subclasses. Thus, it is desir-
able to have a mechanism which ensures client code to work correctly after such a
change. Therefore, identical field names are legal in SKilL and refer to different fields,
as long as they belong to different type declarations and do not appear in the same
specification.

A generated language binding has to provide means* of accessing a field shad-
owed by a field of the same name in a subtype. In most languages there are built-in
mechanisms for this task. Language binding generators shall take care that they do
not override field access methods in a way that will actually make the field of the
super type inaccessible.

4 The Type System

Both the description language and the file format are intended to be type safe. The
notion of type safety is usually connected to a state transition system. In our context,
the only observable state transitions are from the on-disk representation to the in-
memory representation and vice versa. Thus, with type safe we want to state that
deserialization and serialization of data will not change the type of the data. It is
further guaranteed that deserialized references will point to objects of the static type
of the reference. Further, if one were to deserialize an object of an incompatible type,
an error will be raised before an observable result is created.

These properties require some form of language-independent type system?’, which
is described briefly in this section. The general layout of the type system is visualized

*» Some programming languages, e.g. Ada, do distinguish types by casing of identifiers. Using types
which differ only in case in such languages would be very nasty because type name would have to be
escaped in some way. Furthermore, clashes with reserved words can usually be solved by capitalization.

** Usually via reflection.

“In contrast to e.g. C, objects of a certain type have a known length and endianness.

17

in Fig. 1.

All Types User Types

map

Built-In
Types

annotation

Compound
Types

string
set

bool

Float fo4

Integer list

array
v64
i16

i64
i32

Figure 1: Layout of the Type System

Common Abbreviations

We will use some common abbreviations for sets of types in the rest of the manual.
Let ...

. T be the set of all types.
.. U be the set of all user types.
.. T be the set of all integer types, i.e. {i8,116,132,164,v64}.

. B be the set of all built-in types.

4.1 Built-In Types

The type system provides built-in types which are the building blocks of type decla-
rations.

Integers

Integers come in two flavours, fixed length and variable length. For now, there is
only a single variable-length integer type, namely Variable length 64-bit signed in-
teger (v64). The variable-length integer type can store small values in a single byte

18

(see appendix C for details). Large values (> 2°°) and negative values require one
additional byte, i.e. nine bytes.

Conversion Implementations may accept smaller integers without checking and
larger integers if all stored values can be represented in the smaller range.

Booleans

Booleans can store the values true(T) and false(_L). Unlike most C programmers, we
do not perceive booleans as integers.

Annotations

Annotations are designed to be the main extension points in a file format. Annota-
tions are basically typed pointers to arbitrary types. This is achieved by adding the
type of the pointer to a regular reference. A language binding is expected to provide
something like an annotation proxy, which is used to represent annotation objects. If
an application tries to get the object behind the proxy for an object of an unknown
type, this will usually result in an error or exception®. Therefore, language bindings
shall provide means of inspecting whether the type of the object behind an annotation
is known.

Conversion If an annotation is encountered but a certain type is expected, the
annotation can be converted if all stored values are either of that type or null.

Strings

Strings are conceptually a variable-length sequence of utf8-encoded Unicode charac-
ters. The in-memory representation will try to make use of language features such
as java.lang.String. The serialization is described in section 7. If a language de-
mands NULL-termination in strings, the language binding will ensure this property.

Strings should not contain NULL characters, because this may cause problems
with languages such as C. However, SKilL is NULL-character agnostic, thus no guar-
antees are made.

The API shall try its best at unifying strings. However, this behaviour is only
guaranteed in case of strings used as type and field names.

NULL Pointer

Fields of type strings, annotations or a user type can store a NULL pointer. These
types are nullable by default as NULL pointers are their default values. Fields of these
types can be declared nonnull using the nonnull restriction (see Section 5.1.2.1).

Floating Point Numbers

For convenience, it is possible to store 32-bit and 64-bit IEEE-754 floating point num-
bers. For a description, see [iee08], particularly §3.4.

**The reflection mechanism enables other solutions, but raising an exception is the most obvious reaction.

19

4.2 Compound Types

The language offers several compound types. Sets, lists and variable-length arrays®
are views onto the same kind of serialized data, i.e. they are a length-encoded se-
quence of instances of the supplied base type. Arrays are expected to have a constant
size, i.e. they are not guaranteed to be resizeable. Sets are not allowed to contain the
same object twice. All compound types will be mapped to their closest representation
in the target language while preserving these properties. Maps can be thought of as
serializable partial functions. Hence, they have two or more type arguments.

Note The serialization format causes containers to have a maximum size of 264 —
1 elements. Thus, index types of a container ought to be 64-bit unsigned integers. Lan-
guage implementers will choose fast over complete, i.e. JVM-based implementations
for instance use 32-bit signed integers, because this type is used for array indexing.
See appendix F for more details.

Note Having compound types as flat field data in contrast to shared data with
reference semantics is clearly a design decision*. Generalization of compound types
to shared data semantics would have been a straightforward generalization. Likewise,
the n-ary maps concept is available in the specification language only* and has been
introduced to ease the modelling of data structures™.

4.3 User Types

User types can be interpreted as sets of type-name pairs. Built-in types can be wrap-
ped in order to give them special semantics. For example, an appointment can be
represented as:

Listing 9: Appointment Example

Appointment {
/** seconds since 1.1.1970 0:00 UTC. x*/
i64 time;

/** A topic, such as "team meeting". */
string topic;

/** the name of the room. */
string room;

4.3.1 Legal Types

The given grammar of SKilL already ensures that intuitive usage of the language will
result in legal type declarations. The remaining aspects of illegal type declarations

»Le. arrays, which do not have constant size. Constant-length arrays exist as well.

**Surprisingly, this seems to be the most common use-case. If a shared container is required, it can
simply be wrapped with a user type.

2 We specified that Va, b, c.map<a, b, ¢> = map(a, map(b,c))

*¢ Having compound type arguments is a bit like free variables in logic, because users might think that
T[] for any T is a Type, like T itself, but that’s not the way SKilL treats types

20

boil down to ill-formed usage of type and field names and can be summarized as:

« Field names inside a type declaration must be unique. Field names of super
types have to be taken into account as well.

« The subtype relation is a partial order and does not contain unknown types.

« Any base type has to be known, i.e. it is a user type defined in any document
transitively reachable through include commands.

« The type names must be unique in the context of all*’ types.

4.3.2 Equivalence of Type and Field Names

Type and field names, i.e. any strings referenced from reflection data stored in a SKilL
file, shall be treated as equivalent if they were equal after converting all characters to
lower case.

We recommend using CamelCase in SKilL definition files in order to provide a
hint to the language binding generator on how to separate parts of identifier names.
For example, an Ada generator will add underscores to the names in the generated
interface leading to a more natural feeling for Ada programmers. In order to influence
this behaviour, any SKilL specification front-end shall provide an option to interpret
a single ' _' as explicit word separation and double underscores as escape for a sin-
gle underscore. In this mode, a single underscore will cause a Java generator to use
CamelCase.

4.4 Fancy Types

This section will explain fancy types that are made visible to the user although they
do not exist in the binary file per se.

All fancy types can be mapped to equivalent user type definitions. Most SKilL
implementations may choose to use the canonical flattening described in the sections
below. If a programming language offers similar language features, they are expected
to be used in the generated APL

4.4.1 Interfaces

Interfaces are intended to enable grouping of properties. In the same way that inter-
faces in Java provide a promise of availability of certain methods, interfaces in SKilL
provide a promise of availability of certain fields.

Unlike interfaces in most modern languages, interfaces in SKill are allowed to
inherit from regular type definitions. This behaviour is possible because they do not
exist in binary files. Integration of this feature into a language-specific API is unde-
fined. Regular type definitions as well as interfaces may inherit an arbitrary amount
of interfaces, as long as the type hierarchy forms a directed acyclic graph. If the same
interface is inherited multiple times, it is treated as if inherited once. Inheritance of
interfaces is transitive. Interface definitions can be empty.

If an interface does not inherit from a regular type definition, its super type be-
comes annotation. If an interface inherits from a regular type T, then all transitively

*” From the perspective of a client, i.e. all types that were declared at the time of the generation of its
interfaces plus all types that are ever observed in the form of unknown types encoded in SKill files.

21

inherited interfaces may inherit only regular types that are either T, a super type of T
or annotation.

Interface definitions in the specification may have a comment but must not have
hints or restrictions. The usage of hints and restrictions is ruled illegal, as there is no
way to ensure that interfaces exist in any way in a generated implementation.

Projection Field declarations using interfaces in binary files are projected onto
the lowest regular type inherited by the interface. Fields of interface declarations are
moved to direct subtypes recursively.

4.4.2 Enums

Enumerations in SKilL start with a list of instances, followed by an optional list of field
declarations. The binary representation of an enum-typed field is a small variable-
length integer, i.e. usage of enums is very efficient.

Enum definitions in the specification may have a comment but must not have hints
or restrictions. The usage of hints and restrictions is ruled illegal, because they may
break the projection and make code generation too complicated.

Projection Enums create an abstract regular type definition containing the field
definitions of the enum. This type definition has a default restriction using the first in-
stance as the default value. Instances are projected onto singleton-restricted subtypes
using the naming convention enuminstance.

Note that projected enum types do not have a OneOf-Restriction, because this
restriction would make adding another instance to the definition very painful.

4.4.3 Typedefs

COMMENT
'typedef' <id> (<restriction>|<hint>)* <type> ';'

Creates a type name as the restricted and hinted version of another name. This feature
is handy in large specifications. Typedefs can be provided with a comment that is
made accessible to the back-end.

Typedefs can be used syntactically to nest containers inside of containers. This
is forbidden for coding reasons and, therefore, will result in an error. For usability
reasons, using containers in typedefs and typedefs in container definitions is ruled
to be legal. In case of nested containers resulting from typedefs, an error message
shall be created at generation time stating that non ground type container argument
resulting from typedef'is illegal. Furthermore, typedefs cannot be used as super types.
This restriction is for readability only.

Typedefs are syntactic sugar which is not exported to the binary file. The front-
end shall provide a mechanism to project away all typedefs by replacing occurrences
with the definition®.

444 Views

'view' (<id> '.')? <id> 'as'
<type> <id> ';'

** This is required in order to keep basic implementations at a sane cost.

22

Example:

Listing 10: View Example

A{Aa;}

B : A {
/* rename and retype */
view A.a as
B b;
/* rename a second time */
view a as
A c;

}

Views can be used to rename and retype fields. Views will forward all access to the
viewed field, thus they will inherit all its properties, except for its comment. This
feature can be used in two scenarios:

Retyping is primarily useful if two companion hierarchies exist which refer to each
other. Take for example objects, and types of objects. Abstract objects may refer to
abstract types as their types. More concrete objects will refer to more concrete types,
e.g. functions to function types. There is no sane way of expressing this property
besides retyping a type field of object types for each sub type to the corresponding
sub type in the type hierarchy.

Renaming is primarily useful to deal with historic errors, i.e. with fields that are
produced using unacceptable names by tools that cannot be modified for whatever
reason. Renaming may also be required if input from multiple independent tools is
merged.

Both renaming and retyping is important to the specification and the generated
API only. Nonetheless, an Error must be reported on deserialization in case of infea-
sible retyping. The related error message shall make clear that the Error is caused by
the view onto the data and not the data per se.

Furthermore, renaming can be used to move fields down the type hierarchy if they
turn out to be ill-placed. For example, a field name may seem to be an obvious choice
to be placed in a base type, but with continuing growth of a toolchain, sub types may
be introduced that do not have obvious names. If this had been known in advance,
the name property would have been represented by an interface below the base type
that is implemented by all types with natural names. In retrospect, this would not
be possible without breaking the file format or implementations of some tools. Thus,
a specification can be built that moves the name property to the right places in the
generated API only”, while keeping the file format and, thereby, old tools.

An additional benefit of the view concept over TR13 is that renaming allows a
complete removal of the rather complicated field name shadowing convention, thus
making correct and full implementations of a code generator easier. From now on,
field names are unique in the API for any given type.

Note that views cannot change restrictions or hints of a field. This feature was
dropped, as it would have required introducing views into the binary file format and,
thereby, it would have increased complexity a lot. Views inherit all restrictions and
hints of the viewed field except !'hide (see §5.2.3).

* Using a 'hide on the actual declaration

23

Views should be used with care because they may confuse people, especially if
they are working with multiple specifications or language bindings. Views should
not be used in enum declarations.

4.4.5 Customizations

'custom' <id>
(1<id> (<string>? | '(' <string>+ ')'))*
<string> <id> ';'

Example:

Listing 11: Language Custom Fields

CustomFields {
custom ada
'with ”“RFG.Node”
"RFG.Node” node;

custom java

!import “my.import”

'modifier ”public_synchronized”
”Object” any;

Language custom fields are an extension on the idea of auto fields. They can be
used to improve the integration of a generated API into a tool’s environment.

The first id behind the custom keyword will be interpreted as the name of a code
generator. After that, a list of options can be given using a hint-like syntax. Options
use string arguments to provide the generator with flexibility. Then, a string will be
used to specify the type of the field in a language-specific way. Finally, the generated
field will have a name, like all other fields, that will be checked for name clashes with
regular fields. Language generators may introduce further arbitrary restrictions of
this feature. Treatment of custom fields is optional in the sense that generators may
ignore them despite being responsible for the target language.

4.5 Default Values

Default values are:

Type Value
integers 0
floats 0.0
enums | first definition
containers]
others null

Note that language bindings may expose other default values in their APIs. For in-
stance, the current Java implementation uses the language default values, i.e. con-
tainers are by default null-pointers.

24

4.6 Examples

This section briefly explains some examples of ill-formed type declarations.

Listing 12: Legal Super Types

EncodedString extends string {
string encoding;

(-

Error: The built-in type “string” cannot be subclassed.

Listing 13: Legal Type Names

"car". */

/** The german word for
Auto {
/* Keyword detection is case sensitive, while type
names are not; use "Auto" instead. */

auto previousCar;

(-

Error: Expected field name in field declaration.

Listing 14: Usage of Unknown Types

A {
map<A,B> f

(-

Error: The field “A.f” refers to a missing type B. Did you forget to include ”B.skill”?

5 Type Annotations

SKilL provides two concepts of extending the basic type system used in the serializa-
tion process. The first concept is called restriction and is inspired by the concept of
(type or class) invariants. This concept can be used to restrict the set of legal objects
storable in a field or the set of legal instances of a class. The second concept is called
hint. Hints are used to improve the generated language binding and do not influence
types per se.

5.1 Restrictions

Restrictions can be added to type declarations and fields. They can occur in any num-
ber at the same places as comments. Restrictions start with an @ followed by a name
and optional arguments. If multiple restrictions are used, the conjunction of them
forms the invariant, i.e. all of them have to apply. If Restrictions are used on com-
pound types, they expand to the components of the respective compound type. Re-
strictions cannot be combined with map-typed fields. The specification of restrictions
is mostly written from a user’s perspective. Nonetheless, specifying serialization of
restrictions is a necessary lookahead to the next chapters.

Restrictions are serialized to assert their properties. The serialization mechanism
and an optional recovery strategy are specified alongside each restriction definition.

Restrictions with even IDs may be ignored by a binding not implementing the restric-
tions. These restrictions must implement the specified recovery strategy. Restrictions
with even IDs are serialized by the function [ID],4°. Field and type restrictions do
not share a common ID range and are explained in their respective subsections. If
checking restrictions involves fields which are not present in a deserialized file, the
respective restriction is ruled to hold. This is important to guarantee compatibility
with older or newer versions of a file format used in a toolchain. Hence, fulfilling
restrictions is the duty of the creator of data. In consequence, the validity of restric-
tions is checked prior to writes. Thus, serialized restrictions can be assumed correct.
Restrictions that may be skipped by incomplete implementations necessarily have no
serialized form besides their ID. Furthermore, they have even IDs. Relying on these
restrictions is nonetheless safe, as a SKillL implementation must treat them as speci-
fied as soon as it treats restrictions of the given type at all. If a SKilL implementation
does not implement a restriction, it has to warn the user about that fact at generation-
time of the binding. A SKilL implementation will always be able to parse binary SKilL
files containing restrictions that are either specified in this document or adhere to the
criteria of skippable restrictions.

Restrictions can be obtained both by reading a file or by adding them to the spec-
ification prior to the generation of a binding. This chapter contains rules to deal with
potential clashes. The usual behaviour is to merge restrictions obtained from both
sources and to add them to the resulting file on a write-operation or to drop them on
an append-operation. Appending in the presence of unknown restrictions is illegal.

Furthermore, the expected API behaviour is to provide means of explicitly check-
ing restrictions at any given time for a given state. Deferring checking to a language’s
type system may not be possible because it may deprive the user of the capability to
create an object graph at all. For example, look at the nonnull restriction and think
about how to instantiate a tree structure. Although there are solutions to the problem,
they usually involve more complicated variants of the type hierarchy and the alloca-
tion style alike. Restrictions will be checked implicitly after read a file and before
revealing the state to the user and, respectively, before creating an output stream in
write/append operations. Thus, it is ensured that restrictions hold for binary files and
states that ought to be serialized but contradict restrictions cannot damage existing
data.

Reading a field that does not comply with the specified or serialized restrictions
renders the field partial (see section 7.2.6).

5.1.1 Type Restrictions

Type restrictions can be applied to either any type definitions or base type definitions.
They extend to their sub-types automatically.

5.1.1.1 Unique Objects stored in a storage pool have to be distinct in their serial-
ized form, i.e. for each pair of objects, there has to be at least one field with a different
value. Because the combination of unique with sub-typing has counter-intuitive prop-
erties, we decided that using the unique restriction together with a type that has sub-
or supertypes is considered an error which has to be detected at runtime.

Unique implies an immutable in-memory representation. If the representation
were allowed to be mutable, the objects might require merging after arbitrary opera-

**The binary file would not be parsable otherwise.

26

tions, which comes at huge runtime costs. Therefore, implementations shall provide
a builder for unique instances, as well as a means of deleting existing instances upon
write operations.

Furthermore, be warned that adding or removing fields from unique types can
cause serious compatibility issues.

ID 0

Applies to any

Serialization ¢

Recovery unify duplicates and add restriction to output

Listing 15: Unique Example

Qunique Operator {
string name;

}

@unique Term {
Operator operator;
Term[] arguments;

}

5.1.1.2 Singleton There is at most one instance of the declaration. Singletons must
not have sub-types. On the other hand, singletons may have super types. In fact,
instances of enums are represented by singleton subtypes of the enum types. This
enables enum instances with fields.

ID 1

Applies to any

Serialization ¢

Recovery report an error if more than one instance exists, other-
wise add to output

Listing 16: Singleton Example

/** Stores properties of the target system. */
@singleton System {

}
Listing 17: Enum like

Q@abstract Weekday {
string name;
i8 index;
}
@singleton Monday : Weekday {}
@singleton Tuesday : Weekday {}

is, besides the generated API, equivalent to

Listing 18: Enum direct

enum Weekday {
Monday, Tuesday, ...;

string name;
i8 index;

}

5.1.1.3 Monotone Instances of this type cannot be deleted. Furthermore, instances
cannot be modified once they have received a SKilL ID, because they might have been
serialized already. This restriction is basically a type system way of ensuring proper-
ties required by fast append operations. It should be used wherever it is not necessary
to delete instances of a type. The monotone restriction can only be added to base types
and expands to all sub types of the base type*'.

Monotone types can be treated by a language binding in a very optimized way.

The monotone restriction implies the monotone hint (see section 5.2.11).

ID 2
Applies to base
Serialization &
Recovery add to file

Listing 19: Monotone Example

@Monotone PublicPost {
string message;

}

/** this is monotone as well */
PrivatePost extends PublicPost {
string recipient;

}

5.1.1.4 Abstract The restricted type must not have static instances. This is similar
to the abstract classes in C++ or Java. Consequently, it does not apply to subtypes.

ID 3

Applies to base

Serialization &

Recovery raise error, if static instances exist, add to file otherwise

5.1.1.5 Default Set the default value for a user type. The argument can refer to a
singleton restricted type, that is a subtype of this type*. The default value is inherited
by sub types, but can be changed explicitly for any of them. It can be overwritten by

3! This behaviour is caused by the fact that for A <: B, all B instances are As as well. If B were not
monotone, deleting a B would directly delete an A. If A were not monotone, deleting an A might delete
aB.

*2 Otherwise, the single instance cannot be a legal default value.

28

field default restrictions.

ID 5

Applies to any

Signatures default(value): U
Serialization [default]ry pg
Recovery replace or add to file

Listing 20: Type Default Example

Q@default (Metric)
Units {
string length;
string time;

}

@singleton
Metric : Units {}

5.1.2 Field Restrictions
Field restrictions use the type « to denote the field’s type.
5.1.2.1 NonNull Declares that the argument field cannot be NULL. Note that fields

which have not been initialized contain NULL values if they have no other default
specified explicitly. Cannot be used on annotation.

ID 0
Applies to String, Usertypes
Signatures nonnull:

Serialization ¢
Recovery add to file

Listing 21: Nonnull Example

Node {
/* null-edges are pointless */
@nonnull Node[] edges;

b

5.1.2.2 Default This restriction can be used to change default values for all ground

types®. Defaults for user types and annotations work in the same way as the default

type restriction (see 5.1.1.5). They are serialized via their type instead of their value.
Implicit default values for types are described in section 4.5.

3% A future revision of the language may allow a more Java style syntactic sugar for default values in the
spirit of string msg = "Hello World!";

29

ID 1
Applies to ground types

Signatures default(value): o

Serialization [value], / [value]ry pE

Recovery add to file; replace serialized default, if one exists; raise
error if default value is invalid because of other serialized
restrictions.

Listing 22: Default Example

/** A multi-graph with a weighted edges and labeled
nodes. */
Graph {
Node [] nodes;
Edge[] edges;
}

Node {
@default(””)
string label;

}

Edge {
Node from;
Node to;

@default (1.0)
£32 weight;
}

5.1.2.3 Range Range restrictions are used to restrict ranges of integers and floats.
They can restrict the minimum or maximum value or both. Restrictions can be inclu-
sive or exclusive — the default is inclusive.

Note that this will change the implicit default value of the argument field to min iff
0 ¢ [min, maz]. If an explicit default value has been specified, it must not contradict
the range. The range must not be empty.

ID 3
Applies to Integer, Float
Signatures range(min, max, boundaries): a X a x string’ x string’

min(min, boundaries): a X string’
max (max, boundaries): a X strz'ng?

Serialization [[minincluswe]]a o [[maxinclusive]]a

Recovery add to file; intersect with serialized range; raise an error, if in-
tersection is empty

Listing 23: Range Example

RangeRestricted {
@min (0)

30

v64 natural;

@min (1)

v64 positive;

/* or */

Omin (0, ”exclusive”)
v64 positiveAlt;

>

@range (0.0, 360.0, “inclusive”, “exclusive”)

£32 angle;

5.1.2.4 Coding The field’s data chunks are encoded using the argument coding.
No codings are specified by SKilL. Potential arguments include “bitvector”, *zip” or
”lzma” or some sort of encrypting container. Usage of codings is discouraged because
of the burden it puts on implementing a binding generator for some combinations of
programming language and platform and the implied loss of portability. Therefore,

coding is designed to allow skipping fields if the coding is unsupported.

ID 5

Applies to any

Signatures coding(name): string

Serialization [name]siring

Recovery add to file on write; if unsupported, treat field as

lignore and the type as @monotone

Listing 24: Coding Examples

ToolDescription {

/** the log is written by a tool, but usually unused
afterwards x/

!'onDemand

Q@coding (7 zip”)

string log;

5.1.2.5 Constant-Length Pointer The argument pointer is serialized using 164 in-
stead of v64. This can be used on regular references and annotations. This can be
combined with the coding restriction. The restriction makes only sense if the gener-
ated binding supports lazy reading of partial storage pools and if the files that have to
be dealt with would not fit into the main memory of the target machine. Using this
restriction will most certainly increase the file size and does not restrict any pointer
targets.

31

ID 7
Applies to String, Annotation, Usertypes

Signatures constantLengthPointer
Serialization ¢
Recovery add to file on write; if unsupported, treat field as

lignore and the type as @monotone; on append, use
whatever the file specified.

Listing 25: Constant Length Pointer Example

/* stored points-to information may exceed the available
main memory, thus we access it directly from disk */
PointsToTargets {

Q@constantlLengthPointer
PointsToSet targets;

¥
typedef PointsToSet set<PointsToTargets>;

5.1.2.6 OneOf OneOf restrictions are used to restrict potential targets of annota-
tions. Restrictions are still nullable. This is the foundation for tagged union types.

ID 9

Applies to Annotation, Usertypes

Signatures oneOf (typel, ..., typeN):U x --- xU

Serialization [type1,--- ,typen]ry pEg

Recovery add to file; intersect with serialized range; raise an error,
if intersection is empty

Listing 26: OneOf Examples

/* this type definition is a union of A and B */
typedef poorMansUnion
Qone0f (A, B)

annotation;
A{}
B{Z}
5.2 Hints

Hints are annotations that start with a single ! and are followed by a case-insensitive
hint name. Hints are used to optimize the behaviour of the generated language bind-
ing. They do not impact the semantics of type declarations or stored data. Therefore,
they will not be serialized.

Language bindings shall provide the same public interface as if no hints were used.
Further, language binding generators shall provide an option that adds a hint to all
applicable declarations.

32

5.2.1 Distributed

Can be used on: Field declarations.

Arguments: none

Semantics: Something along the lines* of a static map will be used instead of fields to
represent fields of definitions in memory. This is usually an optimization if a definition
has many fields, but most use cases require only a small subset of them. Because hints
do not modify the binary compatibility, some clients are likely to define the fields to
be distributed or even on-demand.

Note that this will increase both the memory footprint® and the access time for
the given field and will only be a benefit for memory-cache locality reasons, because
single objects can be significantly smaller*. The internal representation will change
from o.f, i.e. a regular field, to pool.f[o], i.e. a map in the storage pool which
holds the field data for each instance. Hence, the presence of distributed, on-demand
or ignored fields may require objects to carry a pointer to their storage pool, which
may eliminate the cache savings completely”.

5.2.2 OnDemand

Can be used on: Field declarations.

Arguments: none

Semantics: Deserialize the respective field only if it is actually used. OnDemand implies
distributed. This hint should be used, if fields are usually not accessed, e.g. in the
context of error reporting. In prior versions of SKilL, this hint was called lazy.

5.2.3 Hide

Can be used on: Field declarations.

Arguments: none

Semantics: The generated code will not produce a public API for the field declaration.
Hidden fields can be made accessible by views. Further, hide implies onDemand,
because the additional costs in case of reflective access are insignificant.

5.2.4 Owner

Can be used on: Base type declarations.

Arguments: Names of tools that own the type hierarchy, i.e. that can modify instances

of the annotated base type.

Semantics: At generation time, the binding generator needs to know tool names that

are owned by the generated binding in order to hard-link this behaviour. Arguments

are lists of names in order to allow separating types into different areas of concern.
Types without this hint are owned by every binding. If a binding is created without

ownership information, it owns all types implicitly. These two rules are required in

order to keep ownership optional, even if annotations exist.

** The actual implementation depends on the used generator and may in fact be more like a list of arrays.
In fact, the total memory consumption can even be lower compared to the regular implementation, but will
likely result in additional field access cost.

% Because additional data structures, such as trees, are required in order to provide acceptable access
times.

*¢ Note: this does not apply to operations on distributed fields but to operations on objects having
distributed fields.

*"As a matter of fact, this is not true in case of non-object-oriented languages such as C.

33

Implementation shall treat all types that are not owned by the tool as ReadOnly.

Listing 27: Owner Example

lowner (ColorOwner)
Color { i8 r; i8 g; i8 b; }

/* A GraphOwner modifies graphs. ColorOwner modifies
colored graphs. */
!owner (ColorOwner , GraphOwner)
Node {
Color color;
set<Node> edges;
}

5.2.5 Provider

Can be used on: Type or field declarations.

Arguments: Names of the tools that provide the target field.

Semantics: If used on type declarations, it extends to all field declarations inside of
it and all sub-types. If used on a field declaration the provider is changed to the
argument tool for this field. Providers cannot leave their fields partial.

Listing 28: Provider Example

!provider (ColorProvider)
Color { i8 r; i8 g; i8 b; }

/ * %

* A GraphProvider creates graphs.
* A ColorProvider adds color.

*/

!provider (GraphProvider)
Node {

!provider (ColorProvider)
Color color;
set<Node> edges;

3

5.2.6 Remove Restrictions

Can be used on: Any declaration.

Arguments: Optional restriction names. If none is supplied, all restrictions are re-
moved. If unknown” is specified, only unknown restrictions are removed.
Semantics: Removes restrictions obtained from a file instead of keeping them and ad-
hering to them. This Restriction is used to deal with decisions made in the past. If
a restriction kind is to be removed but the same kind is specified, the specified kind
will be present in the output. This behaviour is required in order to replace some re-
strictions with arguments, such as range, because their recovery strategy may have
undesired consequences.

34

Listing 29: Remove Restriction Example

/**% in the past, there was only one display, i.e. we
want to remove the @singleton */

!removeRestrictions

Display { }

/** From now on, we allow to specify a dedicated primary
display */
@Singleton
PrimaryDisplay{
Display current;

}

5.2.7 Constant Mutator

Can be used on: Constants

Arguments: Range of accepted values (inclusive).

Semantics: The restriction can be used to change a constant. This might be required in
order to upgrade the version of a data set. The file reader will accept values between
minand max and write a new file with value new. Obviously, appending is not possible
if a constant has changed. A binding shall silently fallback to write.

Listing 30: Constant Mutator Example

@Singleton ToolInfo {
/** the guard stays the same */
const i16 guard = OxABCD;

/** we accept files adhering to version 1 as well,
because the format is compatible in one direction */

lconstantMutator (1, 1)

const 116 version = 2;

string toolName;

5.2.8 Flat

Can be used on: A type with a single field that has neither sub nor super types.
Arguments: none

Semantics: Indicates that the type definition shall be hidden in the exported API. This
can be used to share containers between multiple entities.

Listing 31: Flat Matrix Example

/ * %

A matrix definition
*/
Matrix {

35

/**%x this field should feel like f32[4][4] x/
innerMatrix[4] innerMatrix;

3

/** only used inside of Matrix */
Iflat
innerMatrix {
£32[4] data;
}

5.2.9 Unique

Can be used on: Type declarations.

Arguments: none

Semantics: Serialization shall unify objects with exactly the same serialized form. In
combination with the @unique-restriction, no error shall be reported if a duplicate is
encountered. This will increase the runtime complexity of the serialization phase.

5.2.10 Pure

Can be used on: Type declarations.

Arguments: none

Semantics: Deserialized objects of the annotated type shall not be modifiable. The
generated interface will provide a copy operation which will create a modifiable copy
of the object. An example is the string pool. An equivalent, in terms of API observable
behaviour, would look as follows:

Listing 32: User Strings

!pure
'unique
UserString {
!OnDemand
i8[] utf8Chars;
}

5.2.11 Monotone

Can be used on: Base type declarations.

Arguments: none

Semantics: New instances can be added to the state while existing ones will not be
modified. Bindings may use this information to optimize the organization of data and
to omit checks. In contrast to the monotone restriction, the hinted monotone property
applies only to the generated binding.

5.2.12 ReadOnly

Can be used on: Base type declarations.
Arguments: none
Semantics: The generated code is unable to modify instances of the respective type.

36

This hint can be used to provide a consistent API while preventing logical errors,
such as modifying data from a previous stage of computation. The hint expands to all
subtypes®. ReadOnly implies Monotone. If a ReadOnly field is partial, an error has
to be thrown while reading the file.

5.2.13 Ignore

Can be used on: Any declaration.

Arguments: none

Semantics: The generated code is unable to access the respective field or any field of
the type of the target declaration. A language binding shall raise an error (or excep-
tion) if the field is accessed nonetheless. This hint can be used to provide a consistent
API for a combined file format but restrict usage of fields that should be transparent
to the current stage of computation. This is actually more restrictive than deleting
fields from declarations, because the generated reflective AP1 will respect this hint.
Further, ignore overrides any other hint and a binding may ignore any restriction
applying to an ignored field.

5.2.14 Pragma

Can be used on: Anything.

Arguments: Implementation-dependent.

Semantics: The pragma is used to pass additional information to the code generator.
This mechanism is intended to be a short-term solution to ease development of the
language.

**This is because for A <: B, all B instances are As as well. If A were not ReadOnly, modifying an A
would directly modify a B. If B were not ReadOnly, modifying a B might modifying an A.

37

Omnia mutantur, nihil interit.
(All things change, nothing perishes.)

Ovid in Metamorphoses, XV. 165

Part II
Binary File Format

6 Impact of changing Specifications

Most people who have to provide the specification of a file format tend to think that

they know the format of that file. This is a fundamental problem and this section will

briefly explain why one cannot know the exact specification of any given file format.
Let us think about a very simple tool description:

Listing 33: ToolDescription.skill

Tool {
string name;

3

This description can be used by a toolchain driver to identify the tools that have been
used to produce the content of a file. In fact, this is useful information in a pre-internet
world. In modern times, tools can be obtained from the internet. Thus, adding e.g.
the location of a repository containing the tool can be used by a toolchain driver to
run tools that have not been installed on the target machine before. Hence, a modern
feature may turn the specification into:

Listing 34: ModernToolDescription.skill
URL {

}

Tool {
string name;
/* not null, if a public repository containing the
tool exists */
URL repository;
b

Please note that changing the specification did not render old files incompatible to
the new format, so no data is lost! After some experiments with the new format, one
might have observed that the driver can execute tools which are not installed. This
can be used to provide a file using a similar format that contains all known tools. The
file can just be called knownTools.sf and can be processed by any tool that is able
to read the tool info as described above.

The means to deal with format changes provided by SKillL are carefully designed.
They are the result of examination of changes in the Bauhaus toolchain [RVP04],
which by now is 20 years old and consists of over 120 tools.

An immediate consequence, besides many rules that deal with change, is that
types and fields have names which are only used to map them to expected types.
For the sake of efficiency, those names are not used to link data together. Linkage is
achieved by indices only.

38

7 Serialization

This section is about representing objects as a sequence of bytes. We will call this
sequence stream, its formal type will be called S. We will assume that there is an
implicit conversion between fixed-sized integers* and streams. We also make use of
a stream concatenation operator o : § x §—S.

We will use upper-case letters for types (e.g. A) and lower-case ones for instances
of the respective type (e.g. a). The type 7 denotes the set of types and 7 a type. We
will use 7; for arbitrary type names and f; for arbitrary fields, i.e. 7;.f; is the j'th
field of the i’th type. The in-memory representation of all instances that ought to be
serialized is called a state, denoted by the letter o. In this section, we will make use
of a set theoretic inspired notation. Thus, ¢ O 7 holds because all types are known
to the state, but it may hold arbitrary additional information. For each instance of a
type, we assume that the instance is an element of the state as well.

This section assumes that all objects about to be serialized are already known. It
further assumes that their types and, thus, the values of the functions (i.e. baseType-
Name, typeName, index, [_]) explained below can be easily computed.

The serialization function [], : 7 X 7—S maps an object _ of a type 7 to a
stream. Usually the type of the object can be inferred from context, thus we can
simply write [_]. During the process of (de-)serialization, the type of an object can
always be inferred from context. Note that the definition is given as a set of equations.
Therefore the specification of serialization and deserialization are identical.

7.1 Steps of the Serialization Process
In general it is assumed that the serialization process is split into the following steps:

1. All objects to be serialized are collected. This can be done using the transitive
closure of an initial set.

2. Objects are organized into their storage pools, i.e. the index function is calcu-
lated.

« If the state was created by deserialization and indices have changed*,
fields using these indices have to be updated.

« All known restrictions have to be checked.

3. The output stream is created as described below.

7.2 General File Layout

The file layout is optimized for fast appending of new objects. It is further optimized
for on-demand and partial loading of existing objects. It also supports type-safe and
consistent treatment of unknown data structures. In order to achieve these goals, we
have to store the type system used by the file together with the stored data. The type
system itself uses strings for its representation. We want to be able to diagnose file
corruption as early as possible, therefore, most information stored in a file relies only
on information that has already been processed.

% As well as between fixed sized floating point numbers, because we define them to be IEEE-754 encoded
32-/64-bit sequences.

“Indices can change if objects are inserted before an existing object or if objects are deleted. This is
caused by the base pool index concept explained in section 7.3

39

Consequently, the file is structured as an altering sequence of string blocks and
type blocks, starting with a string block. The layout of string blocks (S) and type blocks
(T) is visualized in figure 2, details will be explained in the following sub-sections.

T: v64 count
T1 T T T T -
S: v64 count -~ T: |string name
i32 end : N v64 count
i32 end> . f1 . ?1 RT restrictions
. '\ 71 v64 superrp
: A
A
\ 73 v64 LBPO
i32 endcount Teount fn . RN .
B "~ _ | v64 LFieldCount
stringy 0 71.f1.data |0 __ . T
B ﬁelds: v64 fie ID
strings 71. f2.data :
: 7?9 string name
: ?9 TYPE type
- 7i.f;.data
stringcount ifi ?9 RF restrictions
endcount v64 end
Teount- fn-data

Tcount - fn .end

Figure 2: Visualization of the layout of string(S) and type(T) blocks. Type descriptors
(7) and their fields can drop fields in some contexts (7;). Fields prefixed with a gray
L contain information only relevant for the local block. The data chunks of blocks
start at the respective 0 and reach to the respective end. Arrows indicate end-offsets
- type blocks have one per field declaration. Field restrictions have to be placed after
the field’s type, because their translation may depend on the type. LFieldCount many
field descriptions are located after LFieldCount — similar to the serialization of arrays.

7.2.1 Layout of a String Block

A string block starts with a v64 count which stores the number of strings stored in
the block. It is followed by count many i32 values which store the offset*' of the end
of the respective string. The stored offsets split the data following the last offset into
utf-8 encoded strings.

The individual strings can be decoded using their index and the previous index (or
0, if there is no previous index). The strings stored in the string block are used by the
subsequent type blocks. For efficiency* reasons, strings used as type or field names
shall be stored in lower case only. If a string containing user data equals a type/field
name with different casing, a copy has to be made.

If two deserialized strings have the same in memory representation, only one copy
shall be stored, i.e. strings behave as if they were unique without the requirement of
deserializing strings that have not been used. This relaxation still ensures that types
refer to unique strings, as all type and field names have to be parsed, but the interfer-
ence with potentially many user-strings won’t hurt the runtime of store operations.

“in bytes
** The lower-case conversion during deserialization is optimized away.

40

The serialization function of a string block can be summarized as:
S(s1,-..,8n) = [n]usalendi]isz - - - [endy Jisa[s1]utrsp - - - [Snlutss

Further Properties of Type Names Type names may contain ' :’ characters.
They are currently used by enum instances and will eventually be used for name
spaces.

7.2.2 Layout of a Type Block

The instances of all types are organized into storage pools (see section 7.3) which are
stored in type blocks. A type block starts with a v64 count which stores the num-
ber of instantiated types stored in the block. The count is followed by the respective
amount of type declarations. Type declarations form the type hierarchy and contain
references to field declarations.

After all type declarations, referenced field declarations appear in the order of
their declaration. Field declarations contain end-offsets into a data chunk located at
the end of the type block, i.e. the field data is stored between the end-offset (or the
start of the data chunk) of the previous field and the end-offset of this field. The Local
Base Pool Offset (LBPO) field (marked with 7?3 in Fig. 2) is only present if there is
a supertype and count is non-zero. The LBPQ is used to indicate which fields in a
supertype declaration belong to instances of the current type. The local version of
the Base Pool Offset (BPO) works in the same way as the BPO in storage pools (see
arrows in Fig. 5). If the LBPO field is not present it can assumed to be 0.

A type is instantiated if the block adds new instances, fields or both. For example,
the first block may add a type node, with an ID field. The second block, which is the
result of a graph coloring tool, adds a color field to the node. We will come back to
this example in section 7.2.8.

Note Type blocks are designed carefully to ensure that strings referring to type
or field names have to be compared with other strings exactly once in the process of
linking a type definition to expected types. After that, the (implicitly present) ID of
types and fields is used, simplifying and speeding up operations on types and fields.

7.2.3 Type Order

Type order is a partial order that linearizes the type hierarchy. It ensures that all
data required for the interpretation of a type definition inside a type block is al-
ready present. This causes an improvement in both error reporting and deserialization
speed, as well as simplicity of the generated binding.

The partial type order is the guarantee that a super type is smaller than a sub
type. If append operations to a file are performed in ascending partial type order, each
block of the file will necessarily be in partial type order, even if tools using different
specifications added data to a file.

A stable type order is obtained by adding lexical order to the unconstrained cases
of type order. Stable type order provides a faint chance of binary equivalence of two
files with equivalent contents. The stable variant is provided by the front-end and will
increase compatibility of generated code with version control systems as regenerating
code will not change the result if the specification did not change.

41

If the knowledge about the type hierarchy differs between the producers and the
consumer of the type hierarchy, the file will only be partially type ordered in general.
Thus, a file reader can only assume that the input is in partial type order.

7.2.4 Effects of On-Demand Deserialization

In this context, on-demand deserialization means “the ability to skip data”.

Inside string blocks, most indices and string payload can be skipped. The offset
type is 132 which allows for random access deserialization of individual strings if
the ID is known. This feature is very valuable if there are many user data strings
and few type names. The result of this decision is also that strings can only have 232
bytes of data. We consider this limit irrelevant because a user can still use a byte
array to represent string-like objects exceeding this limit. Inside type blocks, all type
information has to be processed in any case. The field data can be skipped completely.

Thus, the laziest processing of a SKilL file will read the count fields of blocks, the
last index of string blocks, and all type information, including strings storing type
and field names. Even in case of large files with many types, the amount of processed
data is expected to be several kilobytes at most.

7.2.5 Effects of Appending

The desire to append new data of an arbitrary kind to an existing file without having
to rewrite existing data, affects mostly the hidden part of the generated language
binding. From the perspective of the file format, appending adds an altering sequence
of blocks instead of a single string block followed by a single type block. Means to
add fields or instances to existing storage pools (see section 7.3) are made necessary
by this feature as well. The omitted data is marked with 7; and 79 in Fig. 2: Fields
marked with 71 only appear in the first block and are left out in all other blocks adding
data of the respective type. Fields marked with 75 are only present if the field is added
to a type. This ensures that later extensions of a type cannot contradict its definition
in an earlier block.

If appending is not used at all, the overhead, compared with a similar format that
does not allow appending, is about two bytes. If appending is used in a way that
only adds new fields or new types, the overhead is still in the range of several bytes.
Adding instances to existing storage pools is expected to create an average overhead
of about forty bytes, mostly caused by end-offsets of added field data.

If additional instances are added, the order of already instantiated fields is the
order of their occurrence in previous blocks. If additional instances are added in com-
bination with adding new fields, the new fields are located after the existing fields. The
already existing fields contain data for the new instances, whereas new fields contain
data for all existing instances.

7.2.6 Partial Fields

A field that lacks instance data or does not comply with its restrictions is called partial.
If ownership is used, only tools owning the partial field, i.e. the surrounding type-
tree, are allowed to access and modify the field. It is the duty of a tool that is either
owner or provider of a field to turn a partial field into a total field. Thus, an error shall
be produced if an owned type contains a partial field on a write-operation. This shall
happen even if the field was partial in the source file.

42

Fields with a default restriction will only be rendered partial if they do not comply
with a restriction. Default values are serialized alongside regular field data. Therefore,
in this case missing field data can be substituted with default values.

7.2.7 Field IDs

The ability to add field data only for some fields requires the serialization format to
treat fields by IDs instead of a positional approach. Field IDs are counted from 1
because 0 is reserved for a runtime representation of SKill IDs and other auto fields*.
Field IDs are dense and fields always appear in an ascending order. Field IDs are only
relevant to the serialization mechanism and do not correspond to a specification in
general. Field IDs are counted for each type individually, i.e. IDs are independent of
fields in super types. Note that it is not possible in general to have continuous field
IDs that take sub types into account, because appending may require inserting fields
to a super type causing at least one of the properties stated above to be violated.

7.2.8 Node Example

Let us assume two tools with two SKilL specification files:

Listing 35: Specification of the Node Producer Tool

Node {
i8 ID;

Listing 36: Specification of the Node Color Tool

Node {
i8 ID;
/** for the sake of simplicity a string like "red" x/
string color;

3

Let us assume the first tool produces two nodes (*23” and ”42”) and the second
appends color fields to these nodes ("red” and "black”). The layout of the resulting file,
after the second tool is done*, is given in figure 3. Actual field data is kept abstract
because serialization of field data will be explained below. The data produced by the
first tool is S and T, the second tool produces S’ and T".

We will see in the next section that fields referring to other objects are stored by
reference. Strings are a special case of this. They are used both as a first class type
and to represent type information itself. In consequence, string pools contain user
data and type information which a user might not be interested in.

Adding instances Now let us assume that the first tool runs twice, adding 23/42
in the first run and -1/2 in the second. We won’t run the coloring tool, thus S/T are
the result of the first run and S*/T* are the result of the second run* (see Fig. 4).

* Note on implementations: We rule semantics of all field IDs smaller than 0 implementation defined,
however, they must never be written into a file This can be used to map auto fields into an array using a
unary minus and non-auto fields into another array using a decrement.

* The file can be found in the test suite as coloredNodes. sf.

* The file can be found in the test suite as twoNodeBlocks. sf.

43

output file: S T S T

1y 4 name 1 — “node” endg 5 name 1 — “node”
endg 6 count 2 endg 8 coun 0*
singy | 1: "node” | restictions 0— 10 13 LFieldCoun 1
strings 2: *id” - 0 sing | 3: “color” ieldD 2
LFieldCount 1 string 4: ’red” name 3 — “color”
fieldD 1 swings | 5: "black” ype 14 — string
2 —7id” estrictions 0— 0
type 7 —i8 wi | o
restrictions 0—10 node#1.color =
wl | e 4 — red”
/node#l.id =23 node#2.color =
node#2.id = 42 5 — “black”

*No new instance is added

Figure 3: Illustration of the file obtained after running the example toolchain. Gray
parts are the interpretations of the respective value and will be explained below. Light
gray annotations shall serve as a reminder of the meaning of the contents of the re-
spective field. In section 7.6 there is an example explaining serialization as a process.

7.3 Storage Pools

This section contains the serialization function for an individual storage pool. A stor-
age pool stores the instances of a type, i.e. all field data of the type of the pool. For
now, we assume that storage pools are not empty. Writing objects of a pool re-
quires the following functions: baseTypeName : U—S, typeName : U—S and
index : U U {string}—S.

The baseTypeName is either the index of the string used as type name of the base
type or 0x00. The typeName is the index of the string used as type name of the argu-
ment type. The index is the unique index of the argument object. Indices are assigned
ascending from 1 for instances of a base type, for each base type. For example, the
index 23 can be given to a Node object and a string “hello” because they do not have a
common base type. Indices do not have holes. Although indices are serialized using
the v64 type, they are treated as if they were unsigned integers.

A basic concept of the serialization format is to store the data grouped by type
into storage pools. This concept enables us to obtain type information of objects from
their position in a file instead of storing a type descriptor with each object.

If objects are referred to from other objects, those references are given as an inte-
ger, which is interpreted as index into the respective storage pool. The NULL-pointer
is represented by the index 0. Each pool knows the number of instances it holds. Stor-
age pools with a supertype store the name of the supertype and a BPO. Further, we
assume that objects to be serialized have indices such that, for any type, all instances
of that type have adjacent indices.

A short example (Fig. 5) illustrates the concept. It contains five types A, B, C, D,

44

output file: S T S* T

cour 1
2 coun 1 ;
II] nam 1 — “node”
ndq 4 name 1 — “node” 2
6 coun 2 LFiel 1
string | 1: "node” | restrictions 0—10) fieldID 1
strings 2: 7id” 0 i
_e
LFieldCour 1 /nOdC#3.id: '1
fieldID 1 node#4.id = 2
2 — 7id”
type 7 — 18
0—0
end //.
node#1.id = 23
node#2.id = 42

Figure 4: Illustration of the file obtained after running the example toolchain. Gray
parts are the interpretations of the respective value and will be explained below. Light
gray annotations provide contents descriptions. Note that string blocks (and type
blocks) can be empty but must not be omitted.

and N. For the sake of simplicity, each type has a single field of an arbitrary type 7,
(serialization of field data will be explained in the next section). A and N are base
types. A has 6 instances. B, C are subtypes of A; D is a subtype of B. B/C/D have
4/1/1 instances and BPOs of 1/5/4, respectively. The arrows represent the end-offsets
stored in the field descriptions which are used to separate the data part of the type
block into field data. The index row displays the index of the object that belongs to the
serialized field. For the sake of readability, the header of the type pool is omitted in
the stream part of the picture. Note that field data appears in the order of declaration.

7.3.1 Subtypes

The presence of subtypes requires storage pools to be laid out such that accessing,
allocation and type checking can be performed efficiently. To do so, there are several
noteworthy invariants of BPOs:

first.index — base. first.index = bpo

first.index — 1 + count = last.index
Furthermore, if there is exactly one subtype, then count = sub.bpo + sub.count
and for each subtype, the following equation holds: count < sub.bpo + sub.count

7.3.2 Appending Fields to existing Pools

Appending a field to a pool does not modify existing instances. The respective type
block will have a type declaration with a field declaration of the added field. Fields
can be appended to a file without further constraints because all required information
can be obtained by an inexpensive lookup.

45

header: A{r,a}
A{m b} C:A {1.c}
D: {Tdd}

8 - |afaafalafa]

index: 1 2 3 4 5 6 5 6

Figure 5: Field data of several pools stored in a type block. Arrows indicate the values
of data fields of the respective field description in the header of the type block. S
shows a part of the data chunk of a type block. LBPOs of B/C/D are 1/5/4.

7.3.3 Appending Objects to Existing Pools

If objects are added to existing pools, all type pools (i.e. the pools of the type and
all its supertypes) have to be updated. If a supertype exists, the local base pool start
index will give the start index of the added objects in the local pool. With the types
as in figure 5 we can, for example, add several object in three blocks.

Let T1 contain 6 objects of types aabbbc, T2 contain 4 objects of types bbdd and
T3 another 3 objects adc. T1 contains the full type information of types A,B and C.
There are 6 A instances, 3 B instances (with LBPO=2) and 1 C instance (with LBPO=5).
T2 contains only the type name of A and B (LBPO=0) and field data for 4 instances
each. Additionally, there is a new type D (with LBPO=2) and D-field data for two
instances. T3 contains field data for A, B (LBPO=1), D (LBPO=1) and C (LBPO=2)
objects. The in-memory representation after loading these objects is expected* to be
either aabbbcbbddadc, aaaccbbbbbddd or aaabbbbbdddcc?.

7.3.4 Omission of Data

Empty storage pools, i.e. pools with count = 0 must not be serialized. Fields that
use only default values must not serialize any field data. This behaviour is required
because fields that contain null-Pointers only may cause files to be inconsistent.
These rules address an issue of a prior version of SKill where significant amounts
of type specification had to be stored in empty files. Simply omitting types without
instances is not enough because other types may refer to them. Furthermore, the
default restriction mechanism is used to further compress files with little entropy.

Note on Implementations Marking default-only fields and empty pools should
happen before collecting strings and after collecting other instances. Otherwise, the
string block will get polluted with non-existent type and field names. Further, files
resulting from disobeying this rule shall be readable and produce correct results.

*¢ The in-memory representation is intentionally left unspecified. The expected behaviour will be the
result of a straightforward implementation.
*” The file can be found in the test suite as localBasePoolOffset.sf.

46

7.4 Serialization of Field Data

In this section, we want to describe the serialization of individual fields using the
function [_] . The serialization of an object is done by serializing all its fields into the
stream. In this section, we assume that the three functions defined in the last section
are implicitly converted into streams using the v64 encoding. We assume further
that compound types provide a function size : 7T—Z, which returns the number of
elements stored in a given field. Let f be a non-constant** non-auto field of type t,
then [f]; is defined as*

0x00, f = NULL

o Vt € U U {string}.[f]: = { [index(f)]vea else

[l = | 000 0x00, f = NULL
annotation =) - [1 + storagePoolIndex(t)]vea © [index(f)]ves else

o [TIboot = [ex.z # 0];8°

. HJ—]]bool = 0x00
«VteZ\{vea}.[fl:=f

+ [fIves = encode(f)”

* [fle2 = [flis2. [flesa = [fTisa™

n—1
«VgeT,neNtt=glnl = [fl.= Ol
i=0

n—1

g € B, = size(f), ¢ € {911, set<g>, 1158<g>} []e = [nloos O Ll
=0

° V’I", 57t S T~[[_]]map<r,s,t> = II_]]map<r,map<s,t>>

e Vv € Ton = size(f), t = map<k, v>.[f] = [n]oss ’_E):[[f.ki]]kﬂf[ki]]]v

o [rs]rr/[rs]rr = see section 5.1.

Note that each restriction has its own serialization function. Common proper-
ties are specified and explained at the very beginning of section 5.1.

[[id]]'uﬁll o [[val]]t id € [O, 4]
[[id]]mﬂ id € [5, 14]
0xOF © []v64 © [T]type t =TI

- [) 0x11o [T]iype t="T]

wpe = 0x12 0 [Tiype t = list(T)

0x13 o [T]¢ype t = set(T)
0x14 o [KTtype © [V]type t =map(K,V)
[32 4 storagePoolIndex(t)]yea t €U

**Constant fields are not serialized because their value is already stored in the type declaration.

“We will use C-Style hexadecimal integer literals for integers in streams.

**The usual solution is either 0x01 or 0xFF.

*'With encode as defined in listing 39.

?Assuming the float to be IEEE-754 encoded (see [iee08] §3.4), which allows an implicit bit-wise con-
version into fixed sized integer.

47

ids of restrictions and types are listed in appendix G. The holes are intentional and
enable future built-in types without breaking the file format.

Note that the function storagePoolIndex is implicitly given by the order of stor-
age pools appearing in a file and, therefore, has to be computed both upon serialization
and deserialization. The first storagePoolIndex is 0.

Note Container types take arbitrary other types as arguments. This is different
from the specification language and enables future relaxations of the type system that
may for instance allow two dimensional arrays, e.g. to represent a matrix in-place.

7.5 Endianness

Files are stored in network byte order, as described in REC1700, Page 2 [RP94].

If a client is running on a little endian machine, the endianness has to be cor-
rected both when reading and writing files. This can be achieved by changing the
implementation of [_];.- and [_] f.-translations. Note that some standard libraries
provide functions to read and write binary data in network byte order.

7.6 Age Example

This section will provide a concise example of how serialization takes place. For the
sake of simplicity and brevity, we will serialize two instances of a rather simple type
into a stream. We will use the following file format:

Listing 37: Age File Format

Age {
/* people have a small positive age, but maybe they
will start to live longer in the future, who knows
*/
@min (0)
v64 age;
b

Now we want to store two objects with age values 1 and 28. So, the first thing we
have to do is to collect the objects to be stored. In a set-theory inspired notation with
square brackets indicating records we would get something like:

Age = {lage : 1], [age : 28]}

Now we have to create storage pools. We start with the creation of type infor-
mation. After the collection of instances, the age storage pool looks something like
this:

[name : “age”, restr. :), count : 2, super : 0, fields|
1: [restr.: "min(0)”,t : v64,n : "age”, [1, 28]]]

Now we have to check all restrictions. The only relevant restriction of field age is
obviously fulfilled.

Now we can see that we have a string which has to be serialized but is not yet in
the string pool (which was empty until now), so we create a string pool™ as well:

[1:7age”]

**The string pool, unlike regular storage pools, is just a length-encoded array of strings.

48

Now we can start to encode the pools:

1. write the string block:
[[1: "age™] = [1vea 0 of fset("age™) o [age’]
== [[1]]1)64 e} [[3]]1‘32 o061 67 65
=01 00 00 00 03 61 67 65

2. write the type block:
To keep things readable, we will first encode everything but the field data:

[[name : "age”, count : 2,restr. :), super : 0,- -]

= [1]ves © ["age”] o [2]vea © [D] rry © [0]ves

= 1oindex("age”) o 2 o [size(D)]v64 © 0
=101020000=01 01 02 00 00

Now we can continue with the non-data part of the field:

I[- -« fields[1 : [restr. : >min(0)”,t : v64,n : "age”,[1, —1]]]]
= [size(fields[---])]o---

=010[l:[n:"age” t: v64, restr.: "min(0)”...]

=01o [[1]]1)64 o [[”age”]] o IIV64]]TYPE o [[”min(O)”]]RFH ce
=01 01 01 OBo [[”min(O)”]]RFH ‘e

=01 01 01 OBo [1]ye4 © ['min(0)]rr ...

=01 01 01 0Bo [1]y64 © [3]uv64 © [0]ues © [2°° w6a - - -
=01 01 01 OB 01 03 00 FF FF FF FF FF FF FF FF 7F...

And, finally, we can serialize data:

=--[of fset([1,28])] o [[1, 28]

=---oof fset("age.age”) o [[1, 28]]

=+ 002[1]v64 © [28]v6a

=---02 01 1C

The type block is now serialized to the stream:

01 01 01 OB 01 03 00 FF FF FF FF FF FF FF FF 7F 02 01 1C

3. writing the output:

The remaining work is just to write the string block and the type block to a file,
starting with the string block, so we get™:

01 00 00 00 03 61 67 65 01 01 02 00 00 01 01 01 OB 01 03 00
FF FF FF FF FF FF FF FF 7F 02 01 1C

Please note that although it may seem that a lot of space is used for the serialization
of type information, this is not the case, as SKill is designed for thousands to millions
of instances of a type. Deserialization of this stream is explained in section 8.1.

>*This is part of the test suite as age . sf.

49

7.7 Map Example

In this short section, we will give an example of how to serialize a single map field.
For the sake of brevity and simplicity, we will encode a map of type map<i8,i8,i8>.
The map’s data will be m = (—1—(—2— — 3, -3— — 3), —2—(—1— — 2)). The
entries are all negative, in order to make the distinction between coded sizes and
values obvious.

The coding of a map is basically a recursion on the remaining map types, consum-
ing types from left to right. This leads to two cases:

1. The remaining map is at least binary:
We have to store the number of keys and for each key, we have to store the key,
followed by the serialization of the referred value. Remember that map<U,Vv,T>
is right associative, i.e. it is treated like map<U, map<V,T>>.

2. There is only one type left:

This means that we have to encode the value of the last map and we are done.

Serialization

[m]

by rule 1:
= [2] o [-1] o [m(=1)] o [-2] o [m(~2)]
=02 FFo [m(=1)] o [-2] o [m(=2)]
1):

1)

by rule 1 on m(-

= 02 FF o [2] o [-2] o [m(-1)(=2)] o [=3] o [m(-1)(=3)] o [-2] o [m(-2)]
(=D (=2)] o [-3] o [m(=1)(=3)] o [-2] o [m(-2)]

by rule 2 on m(-1)(-2&-3):

=02 FF 02 FE()H
=02 FF 02 FEo [-3] o [-3] o [-3] o [-2] o [m(-2)]
=02 FF 02 FE FD FD FD FEo [m(—2)]

by rule 1 on m(-2):
=02 FF 02 FE FD FD FD FEo [1] o [-1] o [m(—2)(—1)]
=02 FF 02 FE FD FD FD FE 01 FFo [m(—2)(=1)]

by rule 2:
=02 FF 02 FE FD FD FD FE 01 FFo [-2]
=02 FF 02 FE FD FD FD FE 01 FF FE

Colored Data

(-1 > (-2—>-3, -3—-3), -2 — (-1—-3))
02 FF 02 FE FD FD FD FE 01 FF FE

8 Deserialization

Deserialization is mostly straightforward. The general strategy is:
1. the string block is processed
2. the header of the type block is processed

3. required fields are parsed using the type and position information obtained from
the respective block

50

4. unless the end of file has been reached, goto step 1

8.1 Age Example

Let d be the deserialization function - basically the inverse function of [_]. We want
to read the sequence we created during the serialization example in section 7.6:

01 00 00 00O 03 61 67 65 01 01 02 00 00 01 01 01 OB 01 03 00
FF FF FF FF FF FF FF FF 7F 02 01 1C

1. deserialzation of a string block:

d(0100000003616765010102 - - -)
—a string block starts with a v64 indicating the number of strings stored inside

d(01)d(00000003616765010102 - - -)
—we got one string

d(01)d(00000003)d(616765010102 - - -)
—the next string has 3 bytes, the block ends in 3 bytes

string[l : d(616765)]d(0101 - --)
—build the string pool with the first string block

string[l : age”)d(0101--)
—we processed the string directly because lazy evaluation makes the example
rather confusing

2. deserialzation of a type block (reading the header):

d(01)d(0102000001010108010300 - - -)
—there is one type definition in this block; read its name

d(01)d(02000001010108010300 - - -)

= "date”d(02)d(00)d(00)01010108010300 - - -)

—we do not know the type “date” yet (in terms of processing the file), so we
expect count, restrictions, super type information and field declarations

[name : “age”, count : 2, restr. : 0, super : 0]d(01)d(010108010300- - -)
—Date has no super type, thus the next field is not a local BPO and we can read
until the number of fields. —We read all types of the block, so we continue with
field declarations — we have one field for type age.

[name : "age”, super : 0, count : 2, restr. : 0, fields[1 : _]]
d(01)d(010B010300 - - -)

—We do not know age.field#1 yet. Therefore, the next pieces of information
are name, type, field restrictions and offset.

[name : age”, super : 0, count : 2, restr. : 0, fields[1 : _]]
d(01)d(0B)d(01)d(0300- -)

—Name is age, type is v64 and there is one restriction.

[name : "age”, super : 0, count : 2, restr. : 0, fields[1 : [name : "age”, type :
v64,restr. . _,of fset : _]]
d(03)d(00OFFFFFFFFFFFFFFFFTF02011C)

—Found range, consume borders
d(03)d(00)d(FFFFFFFFFFFFFFFFTF)d(02011C)

—Range [0; v64.max]

51

[name : "age”, super : 0, count : 2, restr. : 0, fields[1 : [name : age”, type :
v64, restr. : min(0), of fset : _]]

d(02)d(011C)

—offset is 2, so we are done with all field declarations

. construction of date objects:

Age = {[age : _], [age : _]}d(011C)
—using the data from the header, we created two date objects; the only thing
left is parsing field data for the date fields and setting the data accordingly

Age = {[age : 1], [age : _|}d(1C)

—sthe first field is a 1

Age = {Jage : 1], [age : 28]}

—the second field is a 28; we reached the end of the field data on the last object,
so everything is fine — no additional or missing data

Unsurprisingly, the restored objects are exactly the objects we serialized in sec-
tion 7.6.

52

There is a theory which states that if
ever anyone discovers exactly what
the Universe is for and why it is here,
it will instantly disappear and be
replaced by something even more
bizarre and inexplicable. There is
another theory which states that this

Part 111 has already happened.
Douglas Adams in The Restaurant at
Future WOI'k the End of the Universe

We will look into ways of implementing type-safe unions. It has to be evaluated
whether they should be first-class citizens of the SKilL type system or if they can
be represented by interfaces and hints or restrictions. We will also evaluate possible
ways to support type casts in order to allow using language-specific types, such as
bit-fields.

Further research has to be done in the area of restrictions. Their impact on per-
formance and usability remains widely uncertain. Thus, they should be evaluated in
a real toolchain. We will introduce a general assertion restriction which can be used
to assert per instance invariants with sufficiently powerful expressions.

We will further evaluate means of supporting common high-level specification
tasks, such as creating effective views for individual tools of a toolchain. This can
either be in the form of a SKilL specification editor or an extended specification lan-
guage. A general-purpose viewer and editor for SKilL files should be implemented
nonetheless.

Although there have been experiments with name spaces, the mechanism has
been deferred to future versions of SKilL. This is the case because there was no obvi-
ous easy-to-use implementation for existing language bindings. Furthermore, many
questions regarding name spaces remained open, such as

« Can name spaces have comments?

« Can they have hints or restrictions?

« What if multiple uses of the same name space have contradicting modifiers?
« Share name spaces a name space with type definitions?

Numerical limits, as described in appendix F, will be dropped as all widely used
programming languages support 64-bit index types.

The concept of views introduced in this version may be extended in the future.
Likewise, the concept of partial fields and ownership requires thorough evaluation.

53

Part IV
Appendix

A Full Grammar of the Specification Language

(file) = (header) (declaration)*

(header) = (head-comment)* (include)*

(~[\n])* \n’

(head-comment)

(include) z= (include|with) (string)+
(declaration) = (user-type)

| (interface-type)

| (enum-type)

| (typedef)
(user-type) == (description) (ID) ((’|with|extends) (ID))*’{ (field)*’}
(interface-type) 2= (comment)? interface (ID) ((’|[with|extends) (ID))**{

(field)*’y

(enum-type) == (comment)? enum (ID) *{’ (ID) (; (ID))*’; (field)* ’}’
(typedef) z= (comment)? typedef (ID) ({restriction)|(hint))* (type)’;
(field) := (description) ({constant)|{data)|{view)|(custom))’;’
{constant) u= const (type) (ID) ’=’ (int)
(data) := (auto)? (type) (ID)
(view) u= view ((ID) *))? (ID) ’as’ (type) (ID)
(custom) z= custom (ID) (" (ID) ((STRING) ((C (STRING)* ’))?)?)*

(STRING) (ID)

Table 1: SKilL Specification

54

(type) == map (type-multi)
| set (type-single)
| 1list (type-single)
| (array-type)

(type-multi) = "< (ground-type) (, (ground-type))+ >’

>

(type-single) ’<’ (ground-type) >

(array-type) u= (ground-type) C[* (INT)? ’]’)?

annotation | (ID)

(ground-type)

Table 2: SKilL Specification Types

(description) := (comment)? ({restriction)|(hint))*

(comment) u=/* (comment-text) ((comment-TAG) ’:’? (comment-text))*
’*/?

(comment-text) := ((comment-prefix) (~["*/’|(comment-TAG)|'\n’])*)*

(comment-prefix) \n’ (whitespace) (** (whitespace))?

(comment-TAG) w= @ [a-z]+

(restriction) 5= @ (ID) ((((argument) (; {argument)))?’))?
(hint) w= 1" (ID) ((((argument) (7 (argument))")? °))?
(argument) := (FLOAT) | (INT) | (STRING) | ({ID) (([’:") (ID))*)

Table 3: SKilL Specification Descriptions

55

B Full Grammar of the Binary File Format

The notation is explained further in chapter 7. Additionally, we use small gothic letters
for blocks, to avoid collisions. This is a synopsis of chapters 7 and 5.1. Type constants
and restriction parameters are given in appendix G.

S=g10tj0o---5,01,

s = [n]vea o [endi]izz - - - [endy]iz2 © [[Strlﬂgl]]utfs[“[stringn]usrs)
t=[n]usso[tilr---[talro O O [t:-filro O O lz-filt.s; type
tiet fiet; tiG’c fi€t; xEL;

[tlr = [name] string o [t]21 o [t]23 o [count]vea o [#fs]vea
[rs] RT[© [super.typeI D — 31],64 first occurrence of t A Jsuper
[t]21 [[7"5]] rr © [0]vea first occurrence of t A Asuper
else

[t]25

[[f]]IF = HIDH’U64 o ﬂf]]?Q © [[end]]vfjél

[[LBPO]]UM dsuper A count # 0
€ else

[{s = [name]string © [tlry pE © [rs]rpy first occurrence of f in S
2= else
, ~ { 0x00, f = NULL
vt € U U {string}.[f]: = { [index(f)ues else
[[f]] o 0x00 0x00 f = NULL
annotation ™) 1 + storagePoolIndex(ts)]vea © [index(f)]ves else

[[Tﬂbool = ﬂz—:x.m 74— Oﬂig, [[J—]]bool = 0x00

vt € T\ {ve4}.[f]: = f

[[f]]v64 = [[U7 0]]'064

[0, ioes = [ox80|v]is o [>> T,i+ 1]ues v>>T7>0Vi<8
»Plv6d [v]is else

[fles2 = [flis2, [f1gsa = [fTisa B
Vge T,neNtt=glnl = [fl:= O[fil,

=0
n—1
Vg € B,n = size(f),t € {g[],set<g> 1ist<g>}.[f]: = [nvss O [filg
i=0
V'I", S, teT. [[_]]map<r,s,t> = [[_]]map<r,map<s,t>>
n—1
Vk,v € T,n = size(f),t = map<k, v>.[f]: = [n]v64 Q{)[[fkl]]k[[f[kz]]]v

[rs]rr/lrslrr = [1D]ve4 o parameters(rs)

[id] w64 © [val]s id € [0,4]
[[id]]v64 ’Ld € [5, 4]
0xOF o [[7;]]’064 o [[T]]type T[Z]

[eype = 0x11 o [TTsype t = T[]

ype 0x12 0 [T]sype t = list(T)

0x13 o [T type t = set(T)
0x14 o [K]type 0 [V]type t = map(K,V)
[32 + storagePoolIndex(t)],6a t €U

C Variable-Length Coding

Size and Length information is stored as v64, i.e. variable-length coded 64-bit un-
signed integers (aka C’s uint64_t). The basic idea is to use up to 9 bytes, where any

56

byte starts with a 1 iff there is a consecutive byte. This leaves a payload of 7 bits for
the first 8 bytes and 8 bits of payload for the ninth byte. This is very similar to the
famous utf8 encoding and is motivated, as it is the case with utf8, by the assump-
tion, that smaller numbers are a lot more likely. It has the nice property that there
are virtually no numerical size limitations. Note that sign casts have to take place
because some interpretations require signed integers, e.g. fields of type v64, while
others require unsigned integers, e.g. lengths and offsets in the binary encoding. The
following small C++ functions will illustrate the algorithm:

Listing 38: Variable Length Decoding

uint64_t decode(uint8_t* v64) {
int count = 0;
uint64_t result = 0;
register uint64_t bucket;
for(; count < 8 && (*v64)&0x80; count++, v64++) {
bucket = v64[0];

result |= (bucket&0x7f) << (7*count);
}
bucket = v64[0];
result |= (8==count?bucket: (bucket&0x7f)) << (7*count);

return result;

(-

Note The decode function can be improved using manual loop unrolling.

Listing 39: Variable Length Encoding

uint8_t* encode(uint64_t value) {
// calculate effective size
int size = 0;
{
uint64_t buckets = value;
while (buckets) {
buckets >>= 7;
size+t++;

}

}

if(!size) {
uint8_t [] result
result [0] = O;
return result;

} else if (10==size)

new uint8_t[1];

size = 9;
// split
uint8_t[] result = new uint8_t[size];

int count=0;
for(; count < 8 && count < size-1; count++) {
result [count] = value >> (7*count);

57

result[count] |= 0x80;
}
result [count] = value >> (7*count);
return result;

}

Note The encode function can be heavily simplified leading to performance im-
provements in all implemented programming languages. Furthermore, tests showed
that precalculation of the size of results for bulk v64 data that appears, e.g. in refer-
ences, especially in combination with memory mapped files, leads to a further signif-
icant increase in performance.

D Error Reporting

This section describes some errors regarding ill-formatted files which must be detected
and reported. The order is based on the expected order of checking for the described
error. The described errors are expected to be the results of file corruption, format
change or bugs in a language binding.

Serialization

« If a restriction check fails, an error must be reported before creating any ob-
servable output and without performing observable>* modifications to an input
stream or the state itself.

Deserialization

« Type names have to be checked for illegal characters. This is very important in
order to detect future format extensions. Such a file has to be rejected.

« If EOF is encountered unexpectedly, an error must be reported before producing
any observable result’.

« If an index into a pool is invalid*’, an error must be reported.

« If the deserialization of the data chunk of a field does not consume exactly the
sizeBytes specified in its header, an error must be reported. This is a strong
indicator for a format change.

« If the serialized type information contains cycles, an error has to be reported
which contains at least all type names in the detected cycle and the base type,
if one can be determined.

« If a storage pool contains instances which, based on their location’® in the base
pool, should be subtypes of some kind but have no respective subtype storage
pool, an error must be reported with at least the base type name, the most exact

>*The state of on-demand reading is not observable in this context.

*¢ This is less restrictive than claiming that no offset may point after EOF. This way, partially lost data
can still be processed.

’because it is larger than the last index/size of the pool

8 I.e. after a subtype but not inside another subtype

58

known type name and the adjacent base type names. This is a strong indicator
for either file corruption or a bug in the previously used back-end.

All known constant fields of a type have to be checked before producing any
observable objects of the respective type. If some constant value differs from
the expected value, an error must be reported which contains at least the type,
the field type and name, the type block index, the total number of type blocks,
the expected value and the actual value.

If a field differs by an auto modifier, an error must be reported before producing
any observable results.

If a serialized value violates a restriction or the invariant of a type,”* an error
must be reported as soon as this fact can be observed*.

If a restriction cannot be parsed because it has an odd ID but is not known to
the generator, an error has to be reported that contains at least the involved
type or field, location and ID. There shall be an option for the generator which
causes the generated code to raise this exception for even IDs as well.

If a known type has a super type different from the one in the specification,
an error has to be reported including the specified and the actual super type as
well as the type itself.

E Levels of Language Support

The implementation of a fully tested SKilL binding is a time-consuming and error-
prone process. In order to keep things simple, the language has been divided into
two parts. The core level can be implemented quickly and suffices for many SKilL-
related tasks. Further, core level bindings will produce valid files in almost all usage
scenarios. Invalid files can only be produced by type errors that remain undetected
because the type system of a core-level binding is strictly weaker than that of a full
implementation.

Some properties of SKilL are considered features whose implementation is almost
orthogonal.

The full level contains all SKilL features. Creating and testing an efficient full
featured binding is expected to be time-consuming and not relevant for many use
cases. Experience with implementations of the previous standard showed that many
designs for-core level*! bindings cannot be extended to full-featured SKill bindings.

As a consequence, any binding may be called SKilL binding that implements the
core language features. The list below shall also serve as a means of talking about the
features implemented by a specific language binding (generator).

« Core

— treatment of all SKill types
- reading of valid files

— writing of files

*’Including sets containing multiple similar objects.
“This may in fact be never if the field has an onDemand hint and is not used.
“'respective to the old standard

59

- implementation of restrictions: Singleton, Default, NonNull

— means of SKilL state management

— a public reflective interface allowing fully generic file manipulation

« Features

auto:
append:

conversion:

customs:

documented:

enums:

escaped:

hint:
interfaces:
lazy:

limits:
multi-state:
restricted:
safe:
typedefs:

view:

management of auto fields
appending to files

implementation of legal type conversions and prevention of appends if
conversions occurred

treatment of custom fields

language-dependent treatment of comments, e.g. integration into doxy-
gen or javadoc

implementation of enumerations if target language supports them

name mangling to allow usage of language keywords or illegal characters
(unicode) in specification files without making a language binding impos-
sible

implementation of hints

implementation of interfaces, if target language supports them
implementation of on-demand deserialization

support for files exceeding the guaranteed numerical limit range®*
safe behaviour of interleaving states

implementation of all restrictions

implementation of all specified Error reporting

implementation of typedefs if target language supports them

treatment of views

F Numerical Limits

In order to keep serialized data platform independent, one has to respect the numerical
limits of the various target platforms. For instance, the Java Virtual Machine cannot
deal with arrays of a size larger than about 23'. Therefore, we establish the following

rule:

(De-)serialization of a file with an array of more than

230 elements or a type with

more than 239 instances may fail because of numerical limits of the target platform.
Although, strings can have at most 232 bytes of data, strings are usually represented as
an array of characters. Therefore, their length is expected to not exceed 23 characters

as well.

> depending on the target platform, this might not be desirable or might even be a for-free feature

60

G Numerical Constants

This section will list the translation of type IDs (as required in section 7.4) and re-
striction IDs (see sections 5.1 and 5.2). Restrictions with even IDs can be ignored if

unknown.
Type IDs:
Type Name Value Hex Value
const i8 0 0x0
const i16 1 0x1 Restriction IDs for Types:
const i32 2 0x2 Type Restriction | ID | Serialization
const 164 3 0x3 unique 0 £
const vo4 4 0x4 singleton 1 €
annotation 5 0x5 monotone 2 c
bool 6 0x6 abstract 3 15
i8 7 0x7 default 5 [default] T
i16 8 0x8
132 9 0x9
164 10 0xA Restriction IDs for Fields:
v64 11 0xB Field Restriction ID | Serialization
32 12 0xC nonnull 0 |e€
f64 13 0xD default 1 | [default]q
string 14 0xE range 3 | [min]o[maz]a
T[i] 15 0xF coding 5 | [name]string
T[] 17 0x11 constantLengthPointer | 7 | €
list<T> 18 0x12 oneOf 9 | [types]ry
set<T> 19 0x13
map<Ty, ..., Tp,> | 20 0x14
T 32 +idzp | 0x20 + idxp

61

Glossary

base type The root of a type tree, i.e. the farthest type reachable over the super type
relation. 49

built-in type Any predefined type that is not a compound type, i.e. annotations,
booleans, integers, floats and strings. 20, 22

subtype If a user type A extends a type B, A is called the sub type (of B). 17, 41, 50,
64

supertype If a user type A extends a type B, B is called the super type (of A). 17, 41,
46, 50, 51

unknown type We will call a type unknown if there is no visible declaration of the
type. Such types must not occur in a declaration file, but they can be encoun-
tered in the serialization or deserialization process. 17

user type Any type, that is defined by the user using a type declaration. 17, 20, 22

visible declaration We will call a type declaration visible if it is defined in the local
file or in any file transitively reachable over include directives. 67

Acronyms

API Application Programming Interface. 19, 38, 39
BPO Base Pool Offset. 46, 50

EXI Efficient XML Interchange Format. 7

LBPO Local Base Pool Offset. 46, 51

SKilL Serialization Killer Language. 5-10, 15, 16, 19, 20, 23, 26, 28, 32, 43, 47, 48, 55,
59-61, 64

v64 Variable length 64-bit signed integer. 20, 37, 45, 50, 62

XML Extensible Markup Language. 5-8

XSD XML Schema Definition Language. 7, 8

62

References

[Apa13]

[BKEAN]
[Blo08]

[ERWO08]

[Fel13]

[Goo13]

[GSMT08]

[Har14]

[iee08]

[1SO11]

[jav13]
[LA13]
[Lams7]
[LYBB13]

[PGM™08]

[Prz14]

[Rot15]

[RP94]

Apache Software Foundation. Thrift Types. http://thrift.apache.org/
docs/types/, 2013.

Oren Ben-Kiki, Clark Evans, and Ingy dot Net. Yaml ain’t markup language.

Joshua Bloch. Effective Java (2Nd Edition) (The Java Series). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2 edition, 2008.

Jurgen Ebert, Volker Riediger, and Andreas Winter. Graph technology in reverse
engineering, the tgraph approach. In Rainer Gimnich, Uwe Kaiser, Jochen Quante,
and Andreas Winter, editors, 10th Workshop Software Reengineering (WSR 2008),
volume 126 of GI Lecture Notes in Informatics, pages 67-81, Bonn, 2008. GI.

Timm Felden. The SKilL Language. Technical Report 2013/06, University of
Stuttgart, September 2013.

Google. Protocol Buffers Language Guide. https://developers.google.com/
protocol-buffers/docs/proto, 2013.

Shudi Gao, C. Michael Sperberg-McQueen, Henry S. Thompson, Noah Mendel-
sohn, David Beech, and Murray Maloney. W3c xml schema definition language
(xsd) 1.1 part 1: Structures. World Wide Web Consortium, Working Draft WD-
xmlschema11-1-20080620, June 2008.

Fabian Harth. Plattform- und sprachunabhéngige Serialisierung mit SKilL.
Diploma thesis, University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, November 2014.

IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor
Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York,
NY 10016-5997, USA, August 2008.

ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C.
International Organization for Standardization, Geneva, Switzerland, December
2011.

Javadoc Technology. http://docs.oracle.com/javase/7/docs/
technotes/guides/javadoc/index.html, 2013.

Chris Lattner and Vikram Adve. LLVM Language Reference Manual. http://
1lvm.cs.uiuc.edu/docs/LangRef .html|, 2013.

David Alex Lamb. Idl: Sharing intermediate representations. ACM Trans. Program.
Lang. Syst., 9(3):297-318, 1987.

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine Spec-
ification: Java Se, 7 Ed. Always learning. Prentice Hall PTR, 2013.

David Peterson, Shudi Gao, Ashok Malhotra, C. Michael Sperberg-McQueen,
and Henry S. Thompson. W3c xml schema definition language (xsd) 1.1 part 2:
Datatypes. World Wide Web Consortium, Working Draft WD-xmlschema11-2-
20080620, June 2008.

Dennis Przytarski. Performance-Evaluation einer sprach- und plattformunab-
héngigen Serialisierungssprache. Bachelorarbeit: Universitat Stuttgart, Institut
fiir Softwaretechnologie, Programmiersprachen und Ubersetzerbau, Juni 2014.

Jonathan Roth. Reduktion des Speicherverbrauchs generierter SKilL-Zusténde.

Master thesis, University of Stuttgart, Faculty of Computer Science, Electrical En-
gineering, and Information Technology, Germany, May 2015.

J. Reynolds and J. Postel. Assigned Numbers. RFC 1700 (Historic), October 1994.
Obsoleted by RFC 3232.

63

http://thrift.apache.org/docs/types/
http://thrift.apache.org/docs/types/
https://developers.google.com/protocol-buffers/docs/proto
https://developers.google.com/protocol-buffers/docs/proto
http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/index.html
http://llvm.cs.uiuc.edu/docs/LangRef.html
http://llvm.cs.uiuc.edu/docs/LangRef.html

[RVPO6]

[SK11]

[SSV13]

[TDB'06]

[TM13]

[Ung14]

[Var14]
[VvH13]

[WKR02]

[xmlo6]

Aoun Raza, Gunther Vogel, and Erhard Plodereder. Bauhaus — A Tool Suite for
Program Analysis and Reverse Engineering. In Reliable Software Technologies —
Ada-Europe 2006, volume 4006 of Lecture Notes in Computer Science, pages 71-82.
Springer Berlin Heidelberg, 2006.

John Schneider and Takuki Kamiya. Efficient xml interchange (exi) format 1.0.
Technical report, W3C - World Wide Web Consortium, http://www.w3.org/
TR/2011/REC-exi-20110310/, March 2011.

Fabian Schomm, Florian Stahl, and Gottfried Vossen. Marketplaces for data: An
initial survey. SIGMOD Rec., 42(1):15-26, May 2013.

S. Tucker Taft, Robert A. Duff, Randall Brukardt, Erhard Plédereder, and Pascal
Leroy. Ada 2005 Reference Manual. Language and Standard Libraries - International
Standard ISO/IEC 8652/1995 (E) with Technical Corrigendum 1 and Amendment 1,
volume 4348 of Lecture Notes in Computer Science. Springer, 2006.

Martin Thompson and Todd Montgomery. SBE. http://weareadaptive.com/
blog/2013/12/10/sbe-1/, 2013.

Wiladislaw Ungur. Nutzbarkeitsevaluation einer sprach- und plattformunab-
héngigen Serialisierungssprache. Diplomarbeit, Universitit Stuttgart, Fakultat
Informatik, Elektrotechnik und Informationstechnik, Germany, Juli 2014.

Kenton Varda. CapNProto. http://kentonv.github.io/capnproto/index.
html, 2014.

Dimitri van Heesch. Doxygen User Manual. http://www.stack.nl/~dimitri/
doxygen/manual/|, 2013.

Andreas Winter, Bernt Kullbach, and Volker Riediger. An overview of the gxl
graph exchange language. In Revised Lectures on Software Visualization, Interna-
tional Seminar, pages 324-336, London, UK, UK, 2002. Springer-Verlag.

Extensible markup language (xml) 1.1 (second edition). W3c recommenda-
tion, W3C - World Wide Web Consortium, http://www.w3.org/TR/2006/
REC-xm111-20060816/, September 2006.

64

http://www.w3.org/TR/2011/REC-exi-20110310/
http://www.w3.org/TR/2011/REC-exi-20110310/
http://weareadaptive.com/blog/2013/12/10/sbe-1/
http://weareadaptive.com/blog/2013/12/10/sbe-1/
http://kentonv.github.io/capnproto/index.html
http://kentonv.github.io/capnproto/index.html
http://www.stack.nl/~dimitri/doxygen/manual/
http://www.stack.nl/~dimitri/doxygen/manual/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/

	I Specification Language
	Introduction
	Scientific Contributions
	Outline
	Related Work
	Notation

	Syntax
	Reserved Words
	The Grammar
	Examples
	Style Guide

	Semantics
	A Specification File
	Includes
	Type Declarations
	Field Declarations
	Field Types
	Name Resolution

	The Type System
	Built-In Types
	Compound Types
	User Types
	Fancy Types
	Default Values
	Examples

	Type Annotations
	Restrictions
	Hints

	II Binary File Format
	Impact of changing Specifications
	Serialization
	Steps of the Serialization Process
	General File Layout
	Storage Pools
	Serialization of Field Data
	Endianness
	Age Example
	Map Example

	Deserialization
	Age Example

	III Future Work
	IV Appendix
	Full Grammar of the Specification Language
	Full Grammar of the Binary File Format
	Variable-Length Coding
	Error Reporting
	Levels of Language Support
	Numerical Limits
	Numerical Constants
	Glossary
	Acronyms

