Technical Report

Department of Distributed Systems, IPVS, University of Stuttgart

Privacy and Mobility: Optimized Training of Privacy-
preserving Location-sharing Policies for Online Social

Networks

Zohaib Riaz - Frank Dirr - Hasan Mohamed - Kurt Rothermel

Abstract To secure location privacy of social networks
users in a manageable way, a large body of existing
works focuses on automating the location-sharing deci-
sions with online social contacts by defining machine-
learning based location sharing policies. These policies
are learned over actual user-responses to information
sharing requests from their social connections under
varying contextual conditions (e.g., time of day, loca-
tion, etc.) and replicate user behavior autonomously for
subsequent requests.

However, training high-performance location shar-
ing policies, e.g., those with high accuracies, typically
impose high computational demands. Hence training
high-performance policies on mobile devices, which are
computationally resource-constrained, is very challeng-
ing. In this regard, we propose a novel policy learning
methodology whereby high-performance policies can be
trained with low computational investment. This com-
putational gain of our methodology is based on the
selection of high quality training data. We also show
that the high quality training data is composed of those
training examples that are associated with strong mo-
bility routine of the users. Thus we also propose an algo-
rithm for efficient estimation of the dynamic strength of
movement routine on mobile devices. Our evaluations
on real world data demonstrate the usefulness of our
approach.

Keywords Location privacy - Online social networks -
Information sharing policies - Dynamic routine
strength - Machine learning

Institute of Parallel and Distributed Systems, University of
Stuttgart

Tel.: +49-711-685 88431

Fax: +49-711-685 88424

E-mail: {zohaib.riaz,frank.duerr,kurt.rothermel }@ipvs.uni-
stuttgart.de, hasan.ibhasan@gmail.com

1 Introduction

With globally increased penetration of the internet
and mobile phones, user-bases of online social network-
ing platforms (OSNs), such as Facebook or Twitter,
have seen tremendous rise. Sharing personal informa-
tion with social connections on these platforms is, how-
ever, not without risk, in particular when it comes to
personal privacy. It is well known that careless sharing
of personal content in OSNs can lead to unintended rev-
elations to others regarding ones current location, their
health issues, personal views and inclinations, etc.

One way to minimize these privacy concerns is to
avoid the publication of privacy-threatening personal
content. Especially for scenarios where personal infor-
mation such as location data may be shared frequently
with others, a popular approach is to define information
sharing-policies that mimic user sharing behavior [4, 10,
21,24,16,17]. In the ideal case, a perfectly defined shar-
ing policy relieves the user of performing manual shar-
ing decisions while autonomously sharing their informa-
tion with others in a privacy-preserving manner, based
on the values of context variables such as time-of-day,
location, etc. Specifically, no or little privacy-sensitive
data is shared by such a sharing policy.

However, particularly for sharing location informa-
tion, several studies show that the manual definition
of such accurate privacy-preserving sharing policies is
hard for OSN users [24,17,1]. Consequentially, a num-
ber of research works have tried to ease the process
of defining sharing-policies, for example, by providing
users with initial policy templates [21] or by employing
machine-learning techniques for policy definition [24,
4] and its refinement [16,10]. While these machine-
learning (ML) based sharing policies show practical po-
tential, their usability is severely limited by the high

Zohaib Riaz et al.

computational demands of ML, especially on resource-
constrained mobile devices.

A major reason for the high computational require-
ments of ML based policies is the need to perform model
selection. Precisely speaking, many ML algorithms in
their various possible parameter configurations, where
each is termed a model, must be trained and validated
to pick the one with the best estimated performance
results for the learned policy. Naturally, this proce-
dure can consume significant time and computational
resources. However, a crucial property of the finally se-
lected model is that it avoids over-fitting, i.e., it gen-
eralizes well to unseen data that may appear in actual
policy usage after the end of the training phase.

To achieve good generalization of the learned mod-
els without the expensive model selection procedure,
we take the option of improving training data quality.
More specifically, we conjecture in this article that if
high-quality training examples are selected for training,
then computationally simple models that are prone to
over-fitting can also yield policy performance compa-
rable to that of the best model given by the model
selection procedure. We define these high-quality train-
ing examples as the ones which, with high likelihood,
represent the contextual situations for location sharing
in actual policy usage. To concretely identify these ex-
amples, we use mobility analysis and define each exam-
ple’s quality as its strength of association with the daily
user routine. In other words, training examples that are
sampled along stronger routine movements, e.g., home
to work, are deemed higher quality. The underlying in-
tuition is simple: stronger daily routines typically do
not change frequently and thus represent those contex-
tual situations that will likely occur in actual usage
of the trained sharing policies. Hence, learning users’
sharing behavior regarding these important contextual
situations by over-fitting them, using computationally
simple machine-learning models, may still yield high
policy performance.

To efficiently select the high quality examples on
mobile devices, we also present a novel algorithm for
real-time estimation of the dynamic strength of move-
ment routine (DSR). We also evaluate the run-time per-
formance of our DSR estimation algorithm as well as
the privacy-utility performance of the correspondingly
trained location sharing policies on a real-world dataset.
Our results show that computationally simple policies
can indeed perform well when training examples asso-
ciated with strong user routine are used to learn them.

Overall, our contributions highlight the role of the
DSR signal as a non-disruptive mobility-driven signal
that can be practically sensed on resource-constrained
mobile devices and can be exploited for efficient learn-

ing of effective location sharing policies on mobile de-
vices.

We organize the remaining discussions in the article
as follows. At first, we describe the related work in Sec-
tion 2. In Section 3, we provide the problem statement
followed by the detailed description of our DSR estima-
tion algorithm in Section 4. In Section 5, we describe a
computationally light-weight policy learning algorithm.
Finally, we present the details of our implementations
as well as the results in Section 6 before concluding in
Section 7.

2 Related Work

In the following, we discuss two categories of exist-
ing works that relate to our contributions in this pa-
per, namely, routine behavior detection and privacy-
preserving sharing decisions.

2.1 Human routine behavior and predictability

Initial works attempted to extract routine patterns from
mobility data [11,7]. At a course level, patterns in daily
routine behavior, such as leaving for work in the morn-
ing, were identified by Katayoun and Gatica-Perez [11]
using latent topic models (LDA) from collective mo-
bility data of users in the Reality Mining dataset [6].
Eagle and Pentland [7] used principal component analy-
sis for identifying the eigen routine movement patterns
for individual users in the same dataset. Although, the
routine patterns discovered by these approaches can be
used to infer typical storlyines underlying user move-
ments as well as for mobility prediction, they do not
directly capture deviations of users from their routine
behavior or the level of their predictability.

A more direct study in this regard was reported by
Song et al. [25] in which they formulate the upper and
lower bounds on the overall predictability of an individ-
ual’s movements based on Shannon’s entropy in their
historical movements. Since this overall measure lacked
detail, McInerney et al. [18] proposed a fine-grained
measure to estimate the momentary value of entropy or
unpredictability given the current user location, and so
termed it as the Instantaneous entropy. This measure is
based on Lempel-Ziv entropy estimators for time-series
data and functions by computing the novelty in the re-
cent sequence of visited locations with respect to the
historical movement sequences. By ignoring temporal
information associated with the movement sequences
however, instantaneous entropy is unable to capture
deviations in routine represented by temporal shifts in
events, such as late arrival at work location, which may

Title Suppressed Due to Excessive Length

affect information sharing behavior of users. Similarly,
the effect of discontinuities in data (e.g., due to the un-
availability of location information) on this measure is
not explored. Nevertheless, the authors also propose a
Dynamic Bayesian Networks (DBNs) approach, similar
to [8], that additionally considers time and weekday in-
formation to estimate the strength of routine. The dis-
advantage of using DBNs, as stated by Mclnerney et
al. [18], is the high computational cost of training user
models (in their case using the Expectation Maximiza-
tion algorithm) on resource-constrained mobile devices.
We address this limitation by proposing a computation-
ally efficient routine estimation algorithm that consid-
ers both, the spatial and the temporal aspects of user
movements.

2.2 Privacy-preserving Information Sharing Decisions

In an effort to understand the reasoning behind location
sharing decisions of users, various user studies have con-
cluded that the person, social group, or the application
that generates the location request represents the most
important attribute affecting the sharing decision [19,
5]. The study by Toch et al. [26] suggests that users feel
varying levels of comfort while sharing different types of
locations. In particular, they found that privacy sensi-
tive locations (e.g., home) are typically those that have
low entropy in terms of the unique visitors and their
corresponding visiting frequencies.

Significant research has also been invested into
learning of sharing policies as a set of rules [24,21,
2]. These rules allow users to express their willingness
to share against intuitive contextual conditions defined
over attributes such as the time-of-day. Sadeh et al. [24]
and Bigwood et al. [3] additionally show that various
machine-learning based models can be used to learn
detailed sharing policies leading to higher policy accu-
racies. Fang and Lefevre [10] have proposed a privacy
wizard that uses active-learning to incrementally learn
users’ sharing preferences by querying for their shar-
ing behavior with the most “informative” friends. User
behavior with these informative friends is then gener-
alized to other social connections based on a detailed
friendship graph, thus minimizing the user burden of
manually elaborating privacy preferences with all of the
social connections. A different approach that does not
rely on the availability of a friendship graph was pro-
posed by Bilogrevic et al. [4]. They use active-learning
for refining sharing policies that are trained over a small
number of training examples. Specifically, they ask the
user to make those decisions where the model’s pre-
diction has high uncertainty. Moreover, they use cost-
sensitive classifiers that can be tuned to be more sen-

sitive to incorrect sharing privacy-sensitive information
than incorrect suppression of non-privacy threatening
information.

Our work fundamentally differs from the above
machine-learning based approaches in the additional
use of user-mobility based DSR signal. We contribute
orthogonally to these approaches by helping simplify
the otherwise compute-intensive model selection pro-
cedure which makes these approaches more viable on
resource-constrained mobile devices.

3 Preliminary Definitions and Problem
Statement

3.1 System Model

We consider the scenario of OSN usage where location
information is shared by users with their social connec-
tions in either a pull- or a push-based fashion. In the
pull-based version, users respond to location requests
from their social connections in a reactive manner as
opposed to the push-based version where they actively
share their location.

We assume that the OSN users interact with the on-
line platform using the OSN app-instances running on
their location-enabled mobile devices. Whenever a user
intends to share his location, voluntarily or as per re-
quest from a social connection, the OSN-app generates
a location-request and forwards it to a trusted software
agent (TSA), which also runs on the user’s device. As
similarly adopted in other works [4], we assume that
the TSA has exclusive access to the devices’ position-
ing technologies (e.g,. GPS) and acts as a gateway to
location information for other on-device apps by servic-
ing their location-requests.

3.2 Threat Model

We assume that privacy threats arise from unintended
sharing of privacy-sensitive location events with social
connections, which is known to cause various forms of
social repercussions [20]. Moreover, we assume that the
users may not fully trust the OSN platform-provider.
Hence any given location-sharing decision made by
the users includes privacy-threat considerations regard-
ing both, the involved social connection and the OSN
provider.

3.3 Protection Model

To protect against privacy threats from the social con-
nections, the TSA implements a privacy protection

Zohaib Riaz et al.

mechanism. For this article, we assume that this mech-
anism is a location sharing policy which represents lo-
cation sharing preferences of the user towards his so-
cial connections (or any other location-based apps they
use). The TSA initially learns the users’ sharing pref-
erences from their manual sharing choices and later en-
forces these choices autonomously by granting or deny-
ing incoming location requests.

To learn the sharing policy, the TSA acquires train-
ing samples over a limited period of time by asking users
in-situ questions. Specifically, each question queries the
user’s willingness to share or deny their location infor-
mation to various social contacts (typically as groups,
e.g., friends or family) under the running situational
context. Here, context is defined as a tuple including
variables such as the time-of-day, day-type (weekday
or weekend), as well as the geographic region. By ag-
gregating user responses under different contexts, the
TSA acquires the basic information for learning a shar-
ing policy.

Recall that we assume that user-responses to the in-
situ questions also take into account their privacy con-
siderations regarding the OSN provider. Hence, learn-
ing sharing policies from these responses appropriately
addresses the threat model described in Section 3.2.

3.4 Policy Learning Methodology

Technically seen, the process of learning the sharing
policy from the limited training examples of a user
presents a binary classification problem where shar-
ing approvals should be discriminated from the denials
based on the context variables. Inspired by visualiza-
tions from Hasti et al. [13], we depict this problem
in Fig. 1. Here, several training examples represent-
ing the two classes, approvals as circles and denials as
crosses, are shown in a 2D context space. In part (a)
of the figure, we show the non-linear decision-boundary
curve that, we assume, perfectly represents the actual
user sharing preferences and dominantly separates the
two classes. The few training examples that fall on the
wrong side of this actual decision-boundary represent
noisy training data.

In order to learn the actual decision-boundary from
these training examples, choosing a suitable machine-
learning (ML) algorithm is non-trivial. The best prac-
tices from the ML community suggest that different
learning algorithms in various parameter configurations
should be tried out, e.g., Decision-trees, Support Vec-
tor Machines (SVMs), etc., to choose the best among
them for the given data (the model selection prob-
lem). If these steps are not followed properly, a fitted
model may form a decision-boundary which is overly

(b)

Fig. 1: (a) Actual Model. (b) Top row: Over-fitted
model along with its misclassification space (shaded).
(b) Bottom row: same for an under-fitted model.

flexible such that it fits even the noisiest training ex-
amples (over-fitting). At the other extreme, the fitted
model may be too rigid (e.g., linear) to capture the ac-
tual (e.g., non-linear) decision-boundary. For the actual
model shown in part (a) of Fig. 1, part (b) of the figure
depicts the cases of over-fitting (top) and under-fitting
(bottom). Based on the difference between the actual
and the learned decision boundaries in these two cases,
the figure also shows the corresponding shaded regions
of the context space that can lead to misclassification
(incorrect sharing decisions) as a result of over- and
under-fitting.

To address the model selection problem, a popu-
larly adopted methodology, for policy learning as well
as other problems, is k-fold cross-validation. Here, the
training data is split up into k equally sized parts or
folds. For testing a particular ML algorithm with a par-
ticular parameter setting, i.e., a model, it is trained on
the combined data of k£ — 1 folds and then validated
on the single remaining, left-out fold to simulate pre-
viously unseen data. This process is repeated k times
for the same model where a different fold is left-out for
validation in each run. By combining the validation re-
sults of the k runs, the performance of the model on
the complete training data is determined. If m differ-
ent models are tested in this manner to pick the best
one, a total of at least m x k train-validate cycles are re-
quired. Since a variety of ML algorithms exist and each
possesses its own parameters, the number of different
models m that need to be tried out, for approximating
the best possible one, can grow large. For example, the
Gaussian kernel-based SVMs used for policy learning
by Bilogrevic et al. [4] have two parameters (C and 7),
thus requiring a grid-search in a 2D parameter space.

Title Suppressed Due to Excessive Length

3.5 Problem Statement

In this article, we study the potential value of a
mobility-based signal, namely, the dynamic strength of
movement routine (DSR), in enabling efficient learning
of ML based location sharing policies on users’ mobile
devices.

To understand the main challenge of our work, con-
sider the scenario where a user, say Alice, wishes to
automate her location sharing decisions. To this end,
she provides the initial set of training examples by an-
swering various in-situ questions regarding her shar-
ing preferences as posed by the TSA. At the end of
this data collection phase, Alice triggers the TSA to
initiate the training process and waits for its comple-
tion before activating the trained policy. For the TSA,
the training process involves executing the expensive
cross-validation (CV) procedure for model selection, as
discussed above in Section 3.4, and then training the
best model over Alice’s complete training data. Given
the limited computational resources of the mobile de-
vice, the training process could take a prohibitively long
time, thus hurting Alice’s interest and the usability of
the automated sharing policy. A possible way of reduc-
ing the policy training time is to offload the expensive
CV operation to a cloud based service. Doing so how-
ever requires Alice to trust the service provider with her
contextual data as well as her detailed location sharing
preferences, which may be undesirable.

As part of the solution to this problem, we conjec-
ture that the computationally expensive CV procedure
may not be required if we can improve training data
quality. We explain this in reference to the top row
of Fig. 1(b). Here, the flexible model chaises the noisy
training data to form a fluctuating decision boundary.
Although this model perfectly fits the training data, it
may perform poorly in actual usage due to the signif-
icant size of the misclassification space. If however the
noisy training examples are removed, the magnitude of
the fluctuation of this model’s decision boundary will
decrease. This in turn will conform the model more to
the actual one shown in Fig. 1(a), thus reducing the size
of the misclassification space. Simply stated, we make
the following claim:

If noisy training examples, that are less likely to re-
peat in actual usage and thus are mis-representative of
the distribution of training data in the context space,
are excluded from the training data, then, an over-fitted
model may still perform comparably to a model that is
selected by using the C'V procedure.!

The implication of this claim is that the computa-
tional load of training an accurate sharing policy by the
TSA can be brought down to training a single model
using less noisy training data in contrast to the time-
consuming training of a plethora of models using CV.

More formally, let the set E = {e1,...,eq} repre-
sent the set of all training examples collected by the
TSA. Let N = {n1, ..., g} be the “noise-confidence set”
where 1; € N represents the confidence with which the
training example e; € E can be deemed noisy, with
n; = 1 implying full confidence. Then, a subset of high
quality training examples Fy C FE may be obtained
such that for each e; € Ey, n; < 6. Here, 0 represents
the confidence associated with the most noisy sample
that is included in Ejy. Using Ejy, a location sharing
policy My can be learned by employing an over-fitting-
prone algorithm, in compliance with our above claim.
In contrast, a CV based model Mgy may be trained
over the full dataset E. Let the performance difference
between the two models be Asqqy.

Atest - (btest (MG) - (btest (MCV) (1)

where @est(M) represents the performance of model
M in actual usage.

We hypothesize that if 0 is decreased to a safe-value,
where most noisy training examples are left out of Fj,
then Ay.s¢ will approach zero. Note that it is impor-
tant to precisely determine this safe-value as decreas-
ing 6 further will leave out too many training examples
from FEy, which may also adversely affect the perfor-
mance of My by lowering its coverage of the context
space. Thus we require that the noise-confidence values
n; € N should vary over a well-defined interval with a
meaningful interpretation. Moreover, n; € N should be
efficiently computable on today’s mobile devices.

To meet these challenging requirements, we use the
mobility-based DSR signal as a proxy to approximate
n; € N associated with e; € E. As also motivated in
Section 1, we deem those training examples as more
noisy that are associated with rare user behavior, i.e.,
a high deviation from users’ mobility routines, and are
less likely to repeat in actual usage. In contrast, train-
ing examples that are sampled when the users are in
their stronger mobility routines are deemed less noisy
and more representative of the actual contextual situa-
tions. Since the existing DSR estimation algorithms are
not suitable for mobile devices (cf. Section 2), we first
present our novel, efficient DSR estimation algorithm
in the next section.

1 Note that this claim is not valid for under-fitted mod-
els as, in their case, the size of their misclassification space

is mainly contributed by their inflexibility compared to the
actual model.

Zohaib Riaz et al.

4 The Routine-strength Estimation Algorithm

In this section, we describe our metric for the mobil-
ity based DSR signal and present a detailed algorithm
for its computation. Initially however, we briefly discuss
the concept of conditional trajectory entropy as intro-
duced in previous works [9,14] and explain why it is not
applicable as a direct metric for DSR. Note that for the
rest of the paper, we use the terms trajectory or path
interchangeably to refer to the same concept.

4.1 Conditional Trajectory Entropy

For a given user, we assume that there exists a finite set
V' of geographical locations, e.g., home region, work re-
gion, etc., where they spend time as part of their daily
movements. We further assume that user mobility be-
tween these states can be modeled as a Markov chain
whereby the the probabilities of transition between any
two states Py,z,,, is given by a single transition matrix
A. Using A, the probability of a particular movement
trajectory zsq = {1 = s,...,2, = d} between a start
location s and destination location d is given by:

t=k—1

p(xb'd) = _1_[P’£t$t+1 (2)

t=1

In [14], Kafsi et al. also consider the case of an aperiodic
and irreducible finite-state Markov chain. They further
define the set X4 of trajectories (of all possible lengths)
from s to d where the sum of the probabilities of all
Tsqg € Xsq is 1. The entropy of the random variable
representing the possible user trajectories X4 between
s and d is then defined as follows.

Hoa=H(Xu) == Y plasa)log(p(zea)) 3)

Tsd€Xsd

Intuitively seen, H,4 represents the uncertainty associ-
ated with the actual trajectory taken by the user. Kafsi
et al. [14] consider the advanced case where it is addi-
tionally known that the user traversed a set of interme-
diate states u between s and d. Thus they define the
conditional trajectory entropy Hggj, to determine the
remaining uncertainty in user trajectory by only con-
sidering those trajectories that pass through the states
u, i.e., Xy In Fig. 2 (a), we provide an example il-
lustration of the path links that lead from s to d. Here,
the links that form the conditional trajectories passing
through the node w are shown in bold (solid) lines.

In an extended work, Kafsi et al. [15] show that by
comparing the trajectory entropy Hgsq with the condi-
tional trajectory entropy Hgj,, one can determine the
affect of revealing the intermediate locations u on the

path A

path B
Morning eesssss—)p- Evening

(a) (b)

Fig. 2: (a) All Markov paths between states s and d.
Links that form part of the paths conditioned on state
u are shown in bold. (b) Example of two paths between
morning and evening locations of a user.

predictability of the remaining user trajectory. To per-
form this comparison, they determine the entropy ratio
a = Hygju/Hsq. If a < 1, it indicates a decrease in
uncertainty (increased predictability) regarding the ac-
tual trajectory taken by the user as a result of publish-
ing u, whereas a > 1 indicates the drop in trajectory
predictability.

4.2 A novel DSR Metric

It is not difficult to imagine that the rise and drop in
the predictability of user movements can be associated
to their routine and out-of-routine behavior. Hence, the
entropy ratio a seems a feasible metric for determining
DSR. However, using « for this purpose presents sev-
eral drawbacks. For instance, computing Hgp,, based
on the algorithm proposed by Kafsi et al. [14] is com-
putationally expensive (complexity O(|u|N?3) where N
is the number of states of the Markov chain). This is
because they allow cyclic paths between s and d, lead-
ing to (possibly) an infinite total number of paths |Xsq|
or |Xygpu| between s and d. Moreover, use of a as a
DSR metric presents further drawbacks which we high-
light with the help of the following examples. We also
use these examples to motivate our novel DSR metric
called the relative path strength.

Example 1: Consider a user Bob who, among other
paths, follows a strong home— work—home— other
routine during the day. If we assume his start location
s as his home in the morning and the destination loca-
tion d as his home location in the evening, then being at
work location during the middle of the day represents
being on a popular path between s and d, thus indicat-
ing in-routine behavior. Conversely, if Bob is found at
another location during the day, out-of-routine behav-
ior should be indicated.

The above example highlights the drawbacks of
some of the assumptions made by Kafsi et al. [14] in
defining the o metric. At first, human movement pref-
erences may not be the same for different times of the

Title Suppressed Due to Excessive Length

day (e.g., transitions to work-place are more probable
in the morning). Secondly, the movement trajectory of
Bob over a day consists of a relatively small number of
hops between different states unlike the possibly large
number of hops introduced by infinite cyclic paths as
considered in Kafsi’s approach. In general, instead of
considering only spatial information, we also wish to
consider the temporal dimension in our calculation of
DSR, which makes Kafsi’s algorithm unsuitable in our
case.

Example 2: As illustrated in Fig. 2 (b), consider an-
other user Alice who traverses two main paths, A and
B, between her morning and evening locations (s = z
and d = x4 respectively). Let path A represent Alice’s
strong daily work routine and path B her relatively
weak monthly routine of day-time short business visits.
Assuming that both these paths are strictly followed if
taken (no branching to other possible states), then com-

puting a anywhere along the two paths (states x4, x4,

xP, or xB) results in the same 0 value. This occurs be-
cause conditioning on any of these intermediate states
only leaves a single path to d (perfect predictability).
However, the same high predictability value for being
on paths A and B contradicts Alice’s different strength
of routine associated with path A (high strength) and

path B (low strength).

For our purpose of differentiating movements based
on their strength, we require a metric that also takes
into account the likelihood of the traversed path. More
precisely, we require a comparison of the probabilities
of the conditional paths X,qj,, that pass through u with
those of the remaining paths X,g|q.

To this end, we take into account both, the spa-
tial and the temporal information associated with user
movements, by defining a mobility model based on dis-
crete time non-homogeneous Markov chains. Hence, we
divide the time of day into D equal-length slots, e.g.,
hourly, and compute a distinct transition matrix A; for
each time-slot ¢ from a user’s location information over
a learning period. Doing so implies that the paths Xy
leading from a particular start location s;, € V at time-
slot ¢ to particular destination d;, € V at time-slot ¢4
are all of equal length, i.e., t; — t;. Also, the sum of
the probabilities of paths leading from all possible start
locations in t4 to all possible destination locations in
tq (where each is computed using Eq. 2) sum to 1. No-
tably, for a given single start and destination pair, the
sum of the probabilities of all paths between them may
not sum to 1.

We now define our novel DSR metric below while
ignoring time subscripts, i.e., ts or t,, for readability
reasons.

Definition 1 Relative Path Strength (RPS): Let
Psqju denote the set of probabilities of all conditional
paths X,qj,, that pass through w, and let P,q 4 denote
the set of probabilities for all remaining non-conditional
paths X,q/q between s and d. Moreover, let 75‘9d|u and
758d|ﬁ denote the corresponding normalized probabili-
ties for the sets Pyqj, and Pyqq, respectively, which
sum to 1. Then Relative Path Strength is defined as
follows:

‘Psd|ﬂ| ‘Psd|u‘

RPS(Pagja Poaju) = Y, Di-pj-(pi—pj) (4)
i=1 j=1

where p; € Pyga, Pi € ﬁsdm, Pj € Psdju, and p; €
Psd|u~

Hence RPS computes the expected difference in
probabilities of the paths belonging to the sets Xygq
and Xygj,- The RPS metric varies in the range —1 <
RPS < 1 considering the two extremes of very high
probability conditional paths (RPS = —1 or high rou-
tine behavior) or very low probability conditional paths
(RPS = 1 or out-of-routine behavior) . With refer-
ence to Example 2 and Fig. 2 (b), let path A and
path B have probabilities py = 0.9 and pp = 0.1 re-
spectively. Then conditioning on any state on path A
yields RPS = —0.8 whereas the same on path B gives
RPS = 0.8 which conforms with Alice’s movement be-
havior on these paths. For ease of interpretation, we
define DSR as a scaled version of RPS as follows:

DSR = (RPS +1)/2 (5)

Hence 0 < DSR < 1 where strong routine is indicated
by DSR = 0 and vice versa. Note that as DSR ap-
proaches a value of 0.5, it indicates equally likely con-
ditional and non-conditional paths and thus the lack of
evidence to call the current user movement as out-of-
routine. Note also that since the number of paths in
Xsdqja and Xgq),, can vary, the conditional path prob-
abilities by themselves, without looking at them in a
relative manner as RP.S does, cannot be directly used
to compute DSR.

4.3 DSR Estimation Algorithm

To estimate DSR for any given location u; of a user,
we now present our detailed methodology regarding the
following: (1) selection of appropriate start and desti-
nation locations and (2) efficient computation of the
probability sets P,qj, and P,q)4- Based on these prob-
abilities, we can compute DSR according to Eq. 5.

Zohaib Riaz et al.

4.8.1 Selecting start and destination locations

To understand the significance of choosing the right
start and destination locations, consider again the sce-
nario sketched in Example 2 and Fig. 2 (b). Assume
that we want to compute DSR at path node u; = z%.
To compute DSR(u; = z%), we can set destination d
as x4 and could choose between sz or rj as the start
location s. If s = x& then path {z¥ z8 z,} represents
the strongest path between the chosen (s, d) pair, con-
veying the wrong impression that Alice is in her strong
routine (although she is on path B, i.e., her monthly
business trip). Considering s = x; avoids this local view
of Alice’s mobility by bringing path A into considera-
tion, thus, yielding the correct estimation of routine
strength due to her being on path B.

The principle we derive out of the above example
is that the start and destination should represent the
major sources and sinks, respectively, of the user’s daily
movements. By anchoring the computation of DSR on
these sources and sinks, we intend to compare the user’s
current movement between his regularly visited loca-
tions. To find such locations, we collect per-time-slot
probabilities m; regarding the occurrences of different
locations from the set V' for each of the D time-slots
of the day from the user’s data. Using 7, we compute
the entropy H(x:) of the random variable represent-
ing user location x; in time-slot ¢ (defined similarly as
Eq. 3). A low value of entropy indicates a high non-
uniformity of the probability distribution over possible
locations in a time-slot ¢, thus indicating source/sink
locations. Given that we wish to compute DSR at time
tu, we search within |k,,q.| time-slots on both sides of
t, for the ones that minimizes H(z;), in order to get
the start location’s time-slot ts and the destination lo-
cation’s time-slot t;. Formally, we determine ¢; and tq4
as follows.

ts=t,+ argmin H(zir) = f(mgn) (6)
VEE[—kmaz,—1]
tqg=1t,+ argmin H(xiyk) = f(miqk) (7)

Vk€([1L,kmaz]

Having determined t¢; and t4, the set of possible
start and destination locations, V;, and V;,, along with
their probabilities are given by m;_ and 7, respectively.
Knowing ¢4 and t4 also allows us to determine the set of
intermediate states u = {u¢, 41, ..., us} that are already
traversed by the user.

4.83.2 Optimal Population of Path-probability sets
Psd|u and Psd\ﬁ

To simplify the following discussion, we select the single
most probable start location s € V;, and similarly a

03
Ok
i‘n

(b)

Fig. 3: (a) Exponentially expanding path tree. (b) Trel-
lis diagram of Markov paths growing backwards from

d.

single destination location d € V;,. For the same reason,
we also ignore the cyclic nature of time-slots, such as
their overflow to 0 as a result of increments, in our use
of the formal notation.

Using the transition matrices A;, we can compute
the total probability of moving from any state x;, at
time-slot ¢, to any state x;, at time-slot ¢4 through all
possible paths as follows.

P(-Ttd|xt5) = afl’tsyltd S Atstd where Atstd =

However, computing individual probabilities of all of
the paths that make up P(z,|x:,) is non-trivial. As
shown in Fig. 3 (a), these paths grow exponentially as
a tree with each hop from s towards d. Precisely speak-
ing, the total number of paths between s and d are N9
where N = |V| is the number of Markov chain states
and 0t = tq—t, is the length of each path between s and
d. Based on the well-established regularity of human
movements [25], one could argue that the tree of possi-
ble paths may not grow exponentially due to sparsness
of the transition matrices A;. However, practical con-
siderations in computation of A;, such as deliberate in-
frequent sampling of location for energy-efficiency on
mobile devices or unavailability of position fixes, forces
the adoption of parameter smoothing techniques (e.g.,
additive smoothing). Hence, typically all entries of ma-
trices A; are non-zero, leading to exponential growth
(with 0t) of the number of paths and, therefore, the
size of the probability sets Pygj,, and Pygiq as well as
their corresponding normalized probability sets ﬁsd‘u
and ﬁsd|ﬁ~

To efficiently compute these probability sets, we
take the following steps. We note that if the expan-
sion of possible paths is limited to those that make up
the major probability mass of 758(1|u and 753(1‘71, we can
still approximate RPS, and hence DSR, with good ac-
curacy. This is because RPS computes the expected

Title Suppressed Due to Excessive Length

probability
o
)
o
)

o
o

00 123456738910 00

path no.

65748321910
path no.

(a) Set Psq (b) Sorted set Psq

Fig. 4: Probabilities in the set Psqg = Psgju U Psqja-
The blue and red colors denote the conditional and the
non-conditional paths respectively.

difference between the two probability sets where con-
tribution of small probabilities in both sets is quadrati-
cally minimized due to their multiplication (see Eq. 4).

To elaborate our solution further with an example,
Fig. 4 (a) shows the probability distribution over the
conditional (blue) and non-conditional (red) paths be-
tween a given s and d. Part (b) of Fig. 4 also shows the
sorted version of this distribution. Accordingly, to opti-
mally populate the probability sets Py, and Pygjqa, we
explore these paths in descending order of their prob-
abilities. We stop path exploration when the difference
in probabilities of the latest explored path and its pre-
decessor is consistently low, i.e., for a threshold number
of explored paths which define the stopping condition.
Thus we do not consider these equal (and typically
low) probability paths, for instance paths {2,1,9,10}
onwards in Fig. 4 (b), which may only exist due to pa-
rameter smoothing, without significantly harming our

estimate of RPS and, thus, DSR.
4.8.8 Path Exploration Algorithm

For optimal expansion of the path-tree, we perform A*
strategy based node expansion beginning at the start
location at time t, i.e, s¢,. On expansion of a path-
node at time-slot ¢,_1, each of its child node n;, is
put into a priority queue along with its weight as given
by a function f(n:,). For a subsequent expansion, the
node with the highest weight among those present in
the priority queue is chosen.

To ensure that the highest probability paths are ex-
plored first, the weight function, f(n:,) = g(s¢,,nt,) +
h(ny, ,dy,), sums the two-way path probabilities around
ne, . Precisely speaking, g(s;,,n,) represents the asso-
ciated path’s probability of traversing from node s;_ to
node n;, which is trivially computed using Eq. 2. In
contrast, the heuristic h(ny,,d:,) represents the high-
est path probability of reaching the destination node
dy, from n, . If we guarantee that h(ng, ,di,) is never
under-estimated (or is admissible), then node expan-
sion prioritized by f(n.,) effectively leads to the explo-
ration of the highest probability path to d;, first. In

other words, if for the weights of two nodes a1 and as,
f(a1) > f(az), then it is not possible for a child node of
node ag, say as, that f(a1) < f(as). Hence prioritizing
a1’s expansion between the two nodes is optimal.

To compute h(ng,,d:,) while avoiding its under-
estimation, we perform a backward-expansion begin-
ning from the destination d;, (see Fig. 3 (b)). More
specifically, for each backward hop from time-slot ¢ 4 1
to t, we record for each node n; at time-slot ¢ the prob-
ability of only the best path reaching it from time-slot
t + 1 based on the Viterbi Algorithm [12]. Thus effec-
tively, we store for each node n; the value of h(n,, ,d;,),
i.e., the highest probability path leading to d;,. For k
backward hops where k& <= D (a day has D time-slots),
the complexity of computing h(ny,_,ds,) is O(kN?).
Since this computation is not specific to a particular
start location s or the intermediate path states u, it
can be pre-computed once for all possible destinations
for each of the D time-slots of a day. In our evaluations
(cf. Section 6), we will also report the time taken by this
pre-computation as well as by our optimized A*-based
path exploration on typical mobile devices.

For a single (s,d) pair, we run the above path-
exploration algorithm twice, once for each probability
set Pygia and Pygjy,. For Pggjq, we populate the set Pyq
and then remove any paths passing through all of the
intermediate states u;, € u. Note that we make a sep-
arate second run of the path-exploration algorithm for
Psaju as it is possible that the conditional paths have
relatively lower probabilities and are not sufficiently ex-
plored during the population of set Pyy. Thus, in the
second run, we enforce the tree expansion only to the
node u¢, € u for expansions from time-slot ¢, — 1 to
t,,- Such enforcement in turn requires careful use of the
pre-computed heuristic h(ny, ,d:,) for correct computa-
tion of the weight function f(n.,). In general, we guide
the path expansion for a node n;, in the path-tree till
the next known node. For instance, if u = {u;, }, then
the next node can be w;, if t, > t,, or dy, if t, > t,.
Hence, for these two cases, we compute the correct value
of the heuristic as either (h(nq,,us,) + h(u,,dy,)) or
h(ny,dy,) respectively.

4.3.4 Expected DSR value

Until now, we have explained the computation of DSR
for a single pair of start and destination locations. As
discussed in Section 4.3.1, we determine not one but a
set of possible start and destination locations, d € V;,
and d € Vi, respectively. Thus the overall DSR(u;)
for the current location u; is an expectation as defined

10

Zohaib Riaz et al.

below.

DSR(u) = > P(s) > P(dy,|s:,)DSR(u(s,d,)

sEV:, devy,
)

Here P(s) represents the probability of the start lo-
cation as per time-slot probabilities m;_, and P(d,|s:,)
is computed using Eq. 8. Both of these probabilities are
also part of the pre-computations that need to be per-
formed only once. Since the source and sink locations
that form the start and destination locations may vary
on weekday and weekends, we determine two versions
of m, i.e., m*¢ and 7*®. Hence, our algorithm can cap-
ture the variation of user-routines between weekdays
and weekends by appropriately using 7*¢ or ¢ in de-
termination of P(s).

5 A Light-weight Policy-learning Algorithm

As discussed in detail in Section 3.5, we want to validate
our hypothesis that high-performance location sharing
policies can be trained using a simple over-fitting-prone
learning algorithm over a subset of less noisy training
examples Fy C E. Each example e; € Ey is a tuple
(predictors, target class) representing a location request
from a social connection. In this article, we limit the
predictors to the tuple (t,w,l), where t is the hour-
of-day, w is the day-type (weekday or weekend), [is
the location-ID. Correspondingly, the target class repre-
sents the user-response, i.e., positive (request granted)
or negative (denied). We now briefly describe a com-
putationally simple approach to learn a basic policy
called the Location-sharing Rules (LR) which is prone
to over-fitting the training data.

The training process of LR, as discussed by Benisch
et al. [2], involves a straight-forward aggregation of the
positive (q) and the negative responses (r) of the user
against each unique combination of context-predictors
(t,w,l). These aggregates can be maintained inside a
look-up table LT,,4:n for each social group.

To make a sharing decision using LT}, 4 for a loca-
tion request from a certain social group, the associated
context tuple is used to look-up the aggregates, i.e.,
(lgl,17]) = LTmain(t,w,1), and the request is granted
if score(main) > 0. Here, score(main) is defined as
(lg| — ¢ * |r]), where ¢ represents the user-defined rela-
tive cost of revealing a private event in contrast to the
suppression of a non-private event.

Note that each row of the look-up table in conjunc-
tion with the score function is seen as a rule. More-
over, presence of even a single positive event for a given
context-tuple in the training data, i.e., |¢ = 1 and

|r| = 0, leads to the formation of an additional rule,
thus making the LR policy over-fitting prone.

Obviously, the limited number of training examples
in the set Fyp may not contain user-responses regarding
each (¢, w,!) combination. Thus the LR policy is unable
to answer those unseen requests which were not part of
the training data. To overcome this limitation, we addi-
tionally build marginalized lookup-tables, L'T;, L'T,,, and
LT, of aggregates for the individual context-predictors
t, w, and [, respectively, during the training phase. Then
a request which is unseen in LT}, is granted if the
following condition is satisfied.

min(score(t), score(w), score(l)) >0 (10)

If the request is also not found in one of these three
marginalized tables, then the score of that table is left
out of the above equation. Hence if a request is also
marginally unseen, it is denied.

6 Implementation and Evaluations

In this section, we first describe the dataset for our
evaluations as well as its necessary pre-processing steps.
Then we present two kinds of results regarding: (1) The
run-time performance of the DSR estimation algorithm
on mobile devices and its intuitive interpretability. (2)
Performance comparison between the LR policy (cf.
Section 5), that is trained using DSR-based selection of
training examples, and existing machine-learning based
policy-learning approaches.

6.1 The Dataset and its Pre-processing

For our evaluations, we needed a long duration real-
world dataset that not only captures fine-grained lo-
cation information for a number of subjects but also
the information regarding their location-sharing pref-
erences towards their social connections. In partic-
ular, we require the concrete events that represent
the in-situ ground-truth about their sharing behav-
ior (share/deny) for several location requests. While
several location datasets are openly available, unfor-
tunately none of them contains the detailed location
sharing behavior of subjects to the best of our knowl-
edge. To overcome this shortcoming, we instead opt for
the 9 month long Reality Mining dataset from MIT [6],
which, apart from location information, also provides
the call logs of its 94 subjects. Thus we use call-log
information as a proxy for the subjects’ sharing behav-
iors, which is well-substantiated by existing research.

Title Suppressed Due to Excessive Length

11

For instance, several user-studies affirm that the fre-
quency of communication between people (especially
phone call based) positively correlates with their mu-
tual emotional closeness [27,23,28]. In turn emotional
closeness has been found to be the best indicator of
willingness to share personal information, including lo-
cation data, in online social networks [28]. Based on
these results, we process the call-logs of the dataset sub-
jects to determine their willingness to share information
with their contacts, in order to represent their ground-
truth sharing behavior. Apart from the frequency of
communication, we also take into account other factors
to determine users’ sharing behaviors such as the time
of calls and their direction (incoming/outgoing), as dis-
cussed in [28], as well as call-duration.

Before describing the pre-processing of call-logs in
more detail, we emphasize that the inferred location-
sharing ground-truth behavior does not affect our re-
sults as we provide a comparison between different al-
gorithms on this same data to demonstrate our contri-
bution.

6.1.1 Inferring Sharing-behavior from Call-logs

For each «call in the subjects’ call-logs, the
dataset provides its time, duration, direction
(missed/incoming/outgoing), and the hash of the
other person’s number. We classify each call event as
either a positive (share) or a negative (deny) sharing
event with the other calling person, or their social
connection (SC). To this end, we first infer the relative
willingness, denoted w(sc;|SC') with value range [0, 1],
of the subject to share his location with a particular
connection sc¢; out of all his social connections SC
as being proportional to the following features: (1)
mutual calling frequency, (2) proportion of outgoing
to incoming calls with sc;, (3) mean call-duration with
s¢;, (4) total number of mutual calls.

Furthermore, we also decide a per-call positivity
score, denoted ((cj|Csc;) with value range [0,1], for
each call ¢; € Cs; associated with the social connec-
tion s¢; based on proportionality with: (1) the relative
duration, and (2) the hour-of-day based probability, of
call ¢; compared to the other calls in Cg;.

The overall positivity score associated with a call
¢; from sc; is then given by the product p(c;) =
((cj|Cse;) - w(sc;|SC). Finally, we set the top v per-
cent of each subject’s calls, according to the positivity
score p(c;), as his positive sharing events. Here v de-
notes the openness of the subject towards others and is
estimated as the proportion of his overall outgoing calls
irrespective of the SCs. The remaining calls are set as

negative events. On average, we identified 70 % calls as
positive sharing events.

6.1.2 Inferring Social Groups

For each subject, we identify a limited set, typically
2 — 3, of their social groups to simplify the complexity
of policy definition. We achieve this by first cluster-
ing each subject’s calls into &k groups (we try different
values of k for each subject). Specifically, we use k-
means clustering to group the calls based on their tem-
poral features (time-of-day and weekday-or-weekend)
and the subject’s willingness to share information with
the other participant w(sc;|SC), as determined above.
Then, each social connection sc; is assigned to that par-
ticular call group-ID, or social group-ID, to which most
of his calls belong.

6.1.3 Location-data Pre-processing

Location information is represented by the frequent
time-stamped transitions between cell-towers, each
with unique ID, that are sensed by the mobile devices.
Using this data, we identify various high level locations
visited by the subjects. We also filter out subjects who,
on average for a single day, have less than 3 location vis-
its or less than a single call event, or they have a data
recording duration of less than 1 month. For the re-
maining 68 subjects, we map their location visits to the
underlying hourly time-slots of the day (D = 24). Vi-
sualizing plots of time-slotted days, as shown in Fig. 5,
hinted one or more re-locations for a number of sub-
jects.

For a fair evaluation of sharing policy performance,
we keep the largest contiguous portion of each subject’s
data that belonged to a single region involving no re-
location. This operation leaves us with, on average for
a single subject, 21 unique locations and 651 calls (22
hours of calling time) over 66 days of data. Figure 5
also highlights the fact that our dataset exhibited sig-
nificant amounts of missing location data, thus necessi-
tating the use of parameter smoothing techniques, e.g.,
for estimating transition matrices A;. For computing A;
from the time-slotted location data, we use maximum
likelihood estimation as described in detail in [22].

6.1.4 Training and Test Dataset

In both types of evaluations that follow, namely, regard-
ing DSR estimation and sharing policy learning, we use
the initial 40 % of the total call data for each subject,
and its associated time-slotted location information, as
the training set. The remaining data is set apart for

12

Zohaib Riaz et al.

Hour of day

0 1 2 3 4 5 6 7 85 910 1 1213 14 15 16 17 18 19 20 21 2 23

78 R |

020 1918 19 10

Day number
1
% £ 318

Fig. 5: Time-slotted days of a subject. Each time-slot
shows a uniquely colored location-ID. A sharp overall
change of colors after day 80 marks a relocation.

testing the trained algorithms. For DSR computation,
we fix the vector of intermediate states to the current
location, i.e., u = {u;}. Doing so allows us to judge
the DSR value at u; independently of the DSR. values
at previous trajectory locations. Note that this setting
does not represent an advantage for our algorithm in
terms of performance as it actually has to explore more
paths (is less constrained) in computing Pygs, -

6.2 Results for DSR

We first present the performance and the quality-
related results for the estimated DSR signal.

6.2.1 Performance on Mobile Devices

To test the performance of our algorithm, we use a
Samsung Galaxy S5 smartphone (Quadcore 2.5 GHz
CPU, 2GB RAM). We divide the overall computation
of the DSR signal into a pre-computation and an online
phase. In the former, a one-time computation of the fol-
lowing is performed at the end of the training period:
(1) Ay and ¢, (2) Py, |z,) from Eq. 8 for all possible
(x¢,, 2¢,) pairs, and (3) the heuristic for A* path-search
h(n¢,—g,dy,) for all possible d;, and k < D. In the later
online stage, we compute the expected DSR value (see
Eq. 9) for all (s,d) pairs for a given current location
ut, the one with maximum temporal-influence in the
current time-slot, using our optimized path-tree explo-
ration. Figure 7 in part (a) shows the run-time results of
a single-threaded implementation on the mobile device
for the selected subjects in our dataset. Even for the rel-
atively expensive pre-computations, the median value of
the run-time is below 1.5 seconds as shown on the left
in this figure. Moreover, the average time for the online
computation of DSR has a median value of around 100
milli-seconds. The variations in the run-time for pre-
computations depend on the size of the training data
(time-slotted days) and the number of unique locations
(states) whereas the online computations are mainly
affected by the number of possible (s,d) pairs for the
location u;. In a more detailed implementation, these

times can be further improved by caching and re-using
computed values of DSR for the unique (s, d, u) tuples.
In general however, we can reasonably say that our al-
gorithm estimates DSR in real-time.

We also emphasize here that, apart from the selec-
tion of high quality training examples Fy for policy
learning (cf. Section 3), the above computations can
also be reused for to serve other applications. For ex-
ample, the estimated DSR values can also enable dif-
ferent context-aware services such as movement-novelty
based automatic location updates for family safety ap-
plications. Similarly, the computed Markov transition
matrices A; are also useful for location prediction and
its derived services such as active reminders.

6.2.2 Quality of Routine Signal

To access the quality of the estimated DSR signal, we
first provide, in Fig. 7 (b) and (c) respectively, the den-
sity plots of DSR values for different locations against
the visit counts of the subjects to these locations and
their staying-durations. In general, it is evident that
the locations with higher visit counts or higher staying
durations, which should typically represent routine lo-
cations, are indeed associable with lower values of DSR
(representing higher routine-strength).

To further evaluate the intuitive value of the es-
timated DSR signal, Fig. 6 (a) visualizes a part of
the complete time-slotted location data (on the left)
of a single subject alongside the corresponding color-
gradient plot of the estimated DSR values (on the
right). For further ease in analyzing the variation in
routine behavior, we separately plot the data for week-
days of this subject in the upper part of the figure and
the weekend-days in the lower part. Moreover, for the
DSR values, the colors vary between dark green, for
strong routine behavior (or DSR = 0), and bright red,
for strong out-of-routine behavior (or DSR = 1).

From the complete data of this particular subject,
we could infer that location ID 18 was his home loca-
tion and location ID 21 was his dominant work loca-
tion. Looking closely at the DSR estimates in Fig. 6
(a), we can deduce that our algorithm can detect the
out-of-routine behavior of the subject being at home
during weekdays, as marked by o Notably for this
case, the DSR values gradually indicate a stronger de-
viation from routine behavior near the middle of the
day (brighter red color) due to the otherwise strong
work routine during this time. On weekends however,
staying at home (ID 18) is intuitively considered rou-
tine behavior for this subject indicated by dark green
color. Naturally, our algorithm also detects visits to pre-
viously unseen locations as strong out-of-routine behav-

Title Suppressed Due to Excessive Length

13

Hour of day Hour of day
67891\11112“141515171!\9I 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1
1
1
1
g 1
1
K i
1 1
D | o = - - - - - —
(s 5 16 18 18 16 18 18 18 18 18 18 18 ul 1
= J1e_15 16 18 18 16 16 15 18 1 H
13

w b
1
1
@ ST s s s et 1 ts 1o L
"g 13 13 18 18 19 19 I
5} 9 18 18 15 18 8 14 14 145 |
4 1
[} 18 18 18 18 18 18 1

§ 18 18 18 18 18 18 19 18 18 18 : -

Location Data Estimated DSR

Hour of day

6 7 8 9 10 11 12 13 14 15 16 17 18 19| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (6 7 8 9 10 11 12 13 14 15 16 17 18 19

(home-ID: 12, work-ID: 0)

Hour of day Hour of day

6 7 8 9 10 11 12 13 14 15 16 17 18 19| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (6 7 8 9 10 11 12 13 14 15 16 17 18 19

(home-ID: 3, work-ID: 1) (home-ID: 1, work-ID: 0)

(a)

(b)

Fig. 6: (a) Side-by-side comparison of time-slotted location data and the estimated DSR values for a single subject.
The DSR values vary between strong routine (dark green color) and strong out-of-routine movements (bright red
color) (b) Plots of estimated DSR values for three different subjects, labeled with their corresponding home and

work location-IDs.

5,000- - 500~ 1.00

- 4.000- 400- 075
E 3,000 300- o
° 2 0.50
£ 2,000~ 200 0.25
= 1,000 100- ’ .
0.00
o 0 100 200 123 4567 8
Pre-comp Online visit count stay duration (hours)
(a) (b) (c)

Fig. 7: (a) Run-time performance results for our DLR
estimation algorithm. (b) DSR, vs. number of visits to
different locations. (¢) DSR vs. duration of visit to dif-
ferent locations.

ior, e.g., location ID 25 as marked by 9 on the figure.
This is realized by adding a pseudo state in the Markov
chain of the subjects which has a non-zero probabil-
ity of being visited due to the application of additive
smoothing.

Similarly, part (b) of Fig. 7 plots the estimated DSR
values for three other subjects in the dataset, while
also providing their inferred home and work location-
IDs. Here again, it is easy to see the intuitive trends
in variation of routine strength within individual days
(e.g., strong day-time work routine) and across week-
days and weekends (e.g., dominantly home-staying rou-
tine on weekends).

6.3 DSR and Information Sharing Policies

Before presenting the policy performance results, we
first discuss the considered performance metrics and
then describe the details regarding the compared
machine-learning algorithms.

6.3.1 Utility and Privacy Metrics

For any trained sharing policy, its performance is typi-
cally evaluated in actual usage by means of three well-
known metrics, namely, under-sharing, over-sharing,
and accuracy.

Under-sharing captures the proportion of unduly
suppressed events that the user actually wanted to
share, i.e., false negatives. Thus under-sharing mea-
sures the utility-loss of a sharing policy. In contrast, the
over-sharing metric represents the privacy-loss, which
is defined as the proportion of privacy-sensitive events
that are erroneously shared, i.e., false positives. Natu-
rally, an optimal sharing policy should minimize both
of these metrics. For readability, we refer to the under-
and over-sharing metrics as wtility- and privacy-losses,
respectively, for the rest of the article.

Finally, the accuracy of a sharing policy evaluates
all of its decisions into a single measure and is defined
as follows:

|TP|+ |TN|

11
|TP|+ |TN|+ |FP|+ |FN]| (11)

Accuracy =

where TP and FP represent true and false positives,
and TN and FN represent true and false negatives, re-
spectively.

6.3.2 Compared Policy Learning Algorithms

To enable performance comparison, we train three dif-
ferent algorithms that have been employed for policy
learning in existing literature [4,3,2], namely, Support
Vector Machines with RBF kernel (SVMs), Naive-Bayes
classifier (NB), and Location-sharing Rules (LR). For

14

Zohaib Riaz et al.

Policy Algorithm

| I SVM [J LR [NB |
Training Performance E Test Performance E Perfor(r_Peasrt\c_eTrDalifrfsrence
1.00 - ¢« 4 U 1.00 - ¢ , U 0.80 -
@ 0.80 - 0.80 - + 0.60 -
< 0.60 - 0.60 - 0.40 -
£040 - L, 0.40 - 0.20 -
S 020 - 0.20 - 0.00 -
0.00 - 1 1 1 1 1 1 0.00 - 1 1 1 1 1 0.20 1 1 1]
------ 1 0.7 05 03 02 0.1 1 0.7 0.5 03 02 0.1 1 0.7 05 03 0.2 0.1
0.50 - v § 050- ;" e ! 040
8o40- | , P Y ! ¢ 030
1030 - ¢! 030 - 0.20
§ 0.20 - ; &I 0.20 - EI 0.10
£0.10 - 0.10 - 0.00
0.00 - 0.00 - -0.10 :
]]]]]]]]]]]]]]]]]
...... 1 0.7 05 03 02 0.1 1 0.7 05 03 02 0.1 1 0.7 0.5 03 0.2 0.1
1.00 - 1.00 - 0.25
. 080 - é’? % é 0.80 - 0.00
8 0.60 - . 0.60 - 025 -
S 040 - 040 - ,L| 1 ! 050 -
Yo020- |) 0.20 - + 0.75 -
0'00 =t] $]]]]] 0'00 -]]]]]] -1'00 -]]]]]]
1 07 0.56 030201 ! 1 07 0.56 030201 ! 1 07 0.59 0.3 0.2 0.1
1 1

Fig. 8: Policy Performance results for ¢ = 1. Column 1: training data, column 2: the test data, column 3: perfor-
mance difference. Each row accounts for different performance metrics.

SVMs and NB classifiers, we use 5-fold cross valida-
tion to select the best parameters. In contrast, the
LR classifier, as elaborated in Section 5, is a simplis-
tic, parameter-free algorithm and thus does not require
model selection.

Particularly, for RBF the kernel SVMs, we try 10
different values for both of its parameters (C' and 7)
in the interval [10e — 3,10e3], resulting in a total of
100 possible models. For NB classifier, we try out 10
different values of the smoothing parameter in the in-
terval [0, 2] for learning the conditional distributions of
the features given the classes. Considering the affect
of 5-fold cross-validation (cf. Section 3.4), the policy-
learning phase involves a total of 550 model-training op-
erations per subject (m*k = (100 x SVM+10xNB)*5).
In general, this number could grow further if other al-
gorithms such as various types of decision trees are also
considered for model selection or if a more fine-grained
search of the best parameters is performed, thus caus-

ing an infeasible increase in the computational require-
ments for model selection on mobile devices.

In order to avoid bias in learning due to class im-
balance (70 % positive and 30 % negative sharing events
in our case), we setup the three learning algorithms to
be cost-sensitive, i.e., the positive and negative events
can be weighted differently. This also allows us to con-
duct different experiments with varying values of ¢, i.e.,
the relative cost/sensitivity of the private event. For
SVMs, the cost-sensitivity is implemented by appropri-
ately setting the class-weight parameter. For NB, the
prior class probabilities are appropriately adjusted. Fi-
nally, for LR, the ¢ value is directly used as part of the
score function as discussed in Section 5. During model
selection, we pick those SVM and NB models which
yield the best accuracy, where the definition of accu-
racy is modified to include the affect of ¢ by replacing
|F'P| in denominator of Eq. 11 by (¢ |F'P|).

We will present results for two values of c.

Title Suppressed Due to Excessive Length

15

1. ¢ = 1: the privacy loss per FP decision is considered
equal to the utility loss per FN decision.

2. ¢ =1000: privacy loss per FP decision is considered
1000 times more costly.

6.4 Policy-performance Results

Recall that in order to select the set of high qual-
ity training examples Ey (cf. Section 3.5) for policy
learning, the noise-confidence 7; associated with each
e; € Fy must satisfy 7; < 0. Also recall that we assume
n; = DSR(e;), thus implying that the training exam-
ples with higher DSR values (stronger out-of-routine
behavior) are deemed more noisy.

For the case with ¢ = 1, Fig. 8 presents the pol-
icy performance results for all subjects. Here, the three
rows of plots correspond to results related to the utility-
loss, the privacy-loss, and the accuracy metrics, respec-
tively. As labeled on the figure, the first and the sec-
ond columns of these plots show the training and the
test performances of the three classifiers. The third col-
umn summarizes the difference in performance between
the test and the training data. Ideally, if over-fitting is
avoided, this difference for all three metrics should be
zero, implying that the learned policy generalizes well in
actual usage. For each of these plots, we vary the value
of 6 on the z-axis from 1 down to 0.1 thus selecting in-
creasingly in-routine training examples in Ejy. Also, we
compare the performance of the LR classifier trained
for the different values of 6 with the performance of the
best SVM and NB models for § = 1, i.e., over the full
training set (Ey = E).

Beginning with the test-performance (middle col-
umn), we observe that for the full training data (6 = 1),
the three classifiers have varying performance. Consid-
ering utility-loss first, the SVM classifier performs the
best with a median value of 23 % whereas the NB classi-
fier performs the worst with a median of 38 %. Regard-
ing privacy-loss, the SVM and NB classifiers achieve
median values of 11 % and 6 % respectively. The rela-
tively higher value of privacy-loss for the SVM classifier
is explained by its significantly lower values of utility-
loss. In contrast, the LR classifier, while causing higher
utility-loss (median of 31 %) than the SVM classifier,
also yields the worst results for privacy-loss (median
value of 16 %).

This poor performance for the LR classifier for § = 1
is caused due to over-fitting, which is evident by the
correspondingly high test-to-train median performance
differences of 20 %, 10 %, and 17 % for the utility-loss,
the privacy-loss, and the accuracy metrics, respectively,
as shown in third column of Fig. 8. However, as 6 is
gradually decreased from 1 to 0.3, the median value of

privacy-loss for LR in the test-set reduces from 16 %
to 9%, without increasing utility-loss. Moreover, the
third column also shows that at 6 = 0.3, the test
and train median performance for all the three met-
rics differ minimally, thus indicating better generaliza-
tion. Reducing 6 beyond 0.3 causes further decrease
of the median privacy-loss percentage for the LR pol-
icy, though this advantages comes at the cost of in-
creased utility-loss. However, in general, these results
strongly substantiate our hypothesis that training ex-
amples sampled from strong routine behavior lead to
better generalization of the over-fitting prone LR policy
and to a performance comparable to that of the cross-
validation-enabled, complex machine learning models.
For instance, at 8 = 0.3, the performance of the LR
classifier is comparable to that of the SVM classifier at
0 = 1 for all the three metrics, where as at § = 0.2,
its performance similarly compares to that of the NB
classifier.

Policy Algorithm

[o SYM_ [J LR 1 NB__|
. Performance Difference
Test Performance , (Test - Train)
1.00 -
o 0‘80 - T
5 060 - -
2040 - |
= ‘
S 0.20 . . ' {
0.00 -

1 1 1
0 7 0 5 O 3 0 2 0 1 . 1 07 05 03 02 01
6 6

Fig. 9: Policy Performance results for ¢ = 1000. Col-
umn 1: test performance, column 2: test-to-train per-
formance difference.

In Fig. 9, we present the test performance (left)
and the test-train performance-difference (right) for the
three classifiers when ¢ = 1000. Doing so biases the
three policy learning algorithms to minimize privacy-
loss at the expense of increased utility-loss. Accord-
ingly, the SVM and the NB classifiers cause almost no
privacy-loss in the test-set (see § = 1), though the NB

16

Zohaib Riaz et al.

classifier achieves this at a significantly higher utility-
loss values with a median of 95 %.

As for the LR classifier, the same trend of decrease
in privacy-loss with lowering values of 6 is observed. For
instance, at § = 0.3, the median value of privacy-loss
for the classifier reaches 4 %, with a median utility-loss
of 47 % compared to that of 50 % for the SVM classifier
at 8 = 1. Further lowering 6 to 0.1 also enables a me-
dian privacy-loss of 0% for the LR classifier, although
at higher median utility-loss of 71 %. We will shortly
present further results regarding this increased utility
loss.

Note that in Fig. 9, we also plot the performance of
SVM and NB classifiers for 8 < 1 alongside the values
for the LR classifier. It is noticeable that for low val-
ues of 6, e.g., < 0.2, the SVM classifier causes higher
utility-loss than LR for approximately the same amount
of privacy-loss. This also reflects in the median accuracy
values of the LR classifier, which are the highest in this
range of § values. We take this result as a confirmation
that highly in-routine training examples contain reli-
able information regarding the actual sharing behavior
of users and hence over-fitting them actually improves
policy performance. Since the LR classifier is prone to
over-fitting in contrast to the cross-validation enabled
SVM classifier, it yields a lower utility loss with com-
parable privacy-loss for 6 < 0.2.

6.4.1 Results for Variable Selection of 6 per Subject

In both of the above experiments (with ¢ = 1 and ¢ =
1000), we noted the consistent result that privacy-loss
for the LR classifier decreased with lowering values of
0 from 1 to 0.3, without causing any visible increase in
the utility-loss. Beyond # = 0.3 however, the decrease
in privacy-loss came with significant increase in utility-
loss. The main reason for this outcome was found to
be the lack of enough training examples for some of
the subjects. For a clearer analysis of LR classifier’s
performance for strongly in-routine training examples,
we performed another experiment by selecting different
values of 0 for each subject such that at least a decent
proportion of the training examples was included in Fjy.

Particularly, for any given subject, we initially de-
termine the value of 6, denoted 6, which allowed the
inclusion of the 10 percent most in-routine training ex-
amples in Fy. Next, we set 6 = 09 if 619 € [0.1,0.3].
Otherwise, 6 is snapped to the nearest of boundary of
this interval. In contrast to a fixed value of § = 0.1
for all subjects, this methodology attempts to include
more in-routine training examples in Ey (bounded by
6 < 0.3) for those subjects who have 615 > 0.1.

[Train [Test

1
5 o N
o 9 ¢
0 R

. ¢
e & ") ¢
& S . (\4’0 ¥

Fig. 10: LR policy performance results with flexible se-
lection of @ for data subjects.

In Fig. 10, we present the performance of the LR
policy for ¢ = 1000 when 6 is selected according to the
above defined methodology. Note that apart from the
utility-loss, privacy-loss, and the accuracy metrics, the
figure also plots the distribution of the proportion of
training examples in Fy for the subjects. As expected,
the median number of examples is 10%. If we com-
pare these results with the ones at 8 = 0.1 in Fig. 9,
we observe a significant improvement in the LR policy’s
performance with slight increase in the median privacy-
loss (from 0% to 2 %). Particularly, the median utility-
loss decreases remarkably by approximately 21 % (from
71 % to 50 %). This in turn shows a significant increase
in the median accuracy of the LR policy by approxi-
mately 13 % (from 49 % to 62 %), making it compara-
ble to the SVM classifiers accuracy of 656% at 6 = 1.
Thus flexible selection of 6, that ensures the inclusion
of a small percentage of strongly in-routine samples in
FEy, does offer a simple and effective way of learning
high-performance location sharing policies.

6.5 Pros and Cons of the DSR-aware LR Policy
Learning

Based on the above evaluation results, we now discuss
the drawbacks and advantages of using the LR classifier
in conjunction with the DSR information for learning
location-sharing policies.

From the policy-performance perspective, we have
seen that the LR classifier can indeed perform compa-
rably to complex classifiers such as the SVMs, when it
is trained using increasingly in-routine examples. The
only drawback visible from the above results is the
slightly higher privacy-loss (by 2%) for the LR clas-
sifier, when it is highly undesired, i.e., ¢ = 1000. This
drawback can be attributed to the algorithmic simplic-
ity underlying the LR classifier (look-up tables), which
in turn represents reduced computational complexity of

Title Suppressed Due to Excessive Length

17

training the sharing policies. In contrast, recall that we
trained 500 SVM and 50 NB models for each subject
for model selection.

It is also noticeable from our results that, even for
the SVM or the NB classifiers, a 0% privacy-loss may
be achieved at different values of ¢ for different subjects.
Moreover, unnecessarily high values of ¢ may cause un-
wanted utility-loss such as that for the NB classifier
when ¢ = 1000. Thus in a real training scenario, a user
may have to try a few values of ¢ before being satis-
fied with the estimated policy performance. Such in-
teractive training imposes an even stricter requirement
on the response-time of the training process for prac-
tical usability. Note that trying out different values of
¢ for typical machine-learning classification algorithms,
e.g., SVMs using their class-weight parameter, requires
their complete retraining, which translates to complete
re-executions of the costly model selection procedure.
In contrast, the LR classifier can efficiently adjust to
changes in ¢ since the underlying look-up tables remain
unchanged. The value of ¢ is only used to compute the
score function during decision making (cf. Section 5).
Hence the performance of the LR classifier for different
values of ¢ may be efficiently estimated on the training
data.

Finally, by selecting more in-routine training exam-
ples for policy training, we define a systematic method-
ology for collecting training data. As shown in Fig. 10,
the actual number of training examples in Ejy for learn-
ing the LR-based high-performance policies can be as
low as 10% of that in the full training-set E. Thus
if a-priori estimation of policy-performance, which re-
quires training examples over the full spectrum of user-
movements (routine or non-routine), is not deemed im-
portant, then an LR-based policy may be learned over
a relatively small number of strongly in-routine train-
ing examples. As is demonstrated by our evaluation re-
sults, such strongly in-routine training examples likely
lead to high-performance location sharing policies. In
other words, the number of in-situ questions posed to
the users for collecting their policy-training data can be
significantly lowered, thus reducing the amount of the
required, manual user-input.

We also note that the set of in-routine training ex-
amples can also be used to bootstrap active-learning
based policy-learning approaches [4]. While these ap-
proaches incrementally improve their performance over
time by asking for user-input for “difficult” location re-
quests, they initially need a basic dataset to become
functional, which could be provided based on DSR-
aware sampling.

7 Conclusion

In this article, we have proposed a novel algorithm
for efficiently determining a user-mobility-based sig-
nal, namely, the dynamic strength of movement rou-
tine (DSR), on resource-constrained mobile devices. We
not only demonstrated its efficient performance, we also
showed that the estimated DSR signal can be used to
improve the learning of location-sharing policies for so-
cial network users who want to automate the process
of privacy-preserving information sharing with their
online contacts. In particular, we showed that high-
performance location-sharing policies, that exhibit low
privacy and utility losses, can be learned efficiently us-
ing computationally simple algorithms on mobile de-
vices. To achieve this, we improve training data qual-
ity by filtering out noisy training examples using the
DSR signal. Overall, our results increase the usability
of location-sharing policies on mobile devices.

Acknowledgements We will like to thank Mr. Murat Unal
for useful early discussions on the concepts in this article. This
research is a part of project PriLoc (Privacy-aware Location
Management) of the University of Stuttgart funded by the
German Research Foundation (DFG) grant RO 1086/15-2.

References

1. Acquisti, A., Grossklags, J.: Privacy and rationality in
individual decision making. IEEE Security and Privacy
3(1), 26-33 (2005)

2. Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Cap-
turing location-privacy preferences: quantifying accuracy
and user-burden tradeoffs. Personal and Ubiquitous
Computing 15(7), 679-694 (2010)

3. Bigwood, G., Ben Abdesslem, F., Henderson, T.: Pre-
dicting location-sharing privacy preferences in social net-
work applications. In: Proceedings of the First Workshop
on recent advances in behavior prediction and pro-active
pervasive computing (AwareCast) (2012)

4. Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M.,
Gazaki, M., Hubaux, J.P.: A machine-learning based ap-
proach to privacy-aware information-sharing in mobile
social networks. Pervasive Mob. Comput. 25(C), 125-
142 (2016)

5. Consolvo, S., Smith, I.LE., Matthews, T., LaMarca, A.,
Tabert, J., Powledge, P.: Location disclosure to social re-
lations: Why, when, & what people want to share. In:
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’05, pp. 81-90. ACM,
New York, NY, USA (2005)

6. Eagle, N., Pentland, A.S.: Reality mining: sensing com-
plex social systems. Personal and ubiquitous computing
10(4), 255-268 (2006)

7. Eagle, N., Pentland, A.S.: Eigenbehaviors: identifying
structure in routine. Behavioral Ecology and Sociobi-
ology 63(7), 1057-1066 (2009)

8. Eagle, N., Quinn, J.A., Clauset, A.: Methodologies for
continuous cellular tower data analysis. In: Interna-
tional Conference on Pervasive Computing, pp. 342-353.
Springer (2009)

18

Zohaib Riaz et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ekroot, L., Cover, T.M.: The entropy of markov trajec-
tories. IEEE Transactions on Information Theory 39(4),
14181421 (1993)

Fang, L., Lefevre, K.: Privacy wizards for social network-
ing sites. In: Proceedings of the 19th International Con-
ference on World Wide Web, WWW ’10, pp. 351-360.
ACM, New York, NY, USA (2010)

Farrahi, K., Gatica-Perez, D.: What did you do today?:
discovering daily routines from large-scale mobile data.
In: Proceedings of the 16th ACM international conference
on Multimedia, pp. 849-852. ACM (2008)

Forney, G.D.: The viterbi algorithm. Proceedings of the
IEEE 61(3), 268-278 (1973)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer (2003)

Kafsi, M., Grossglauser, M., Thiran, P.: The entropy of
conditional markov trajectories. IEEE Trans. Informa-
tion Theory 59(9), 5577-5583 (2013)

Kafsi, M., Grossglauser, M., Thiran, P.: Traveling sales-
man in reverse: Conditional markov entropy for trajec-
tory segmentation. In: Data Mining (ICDM), 2015 IEEE
International Conference on, pp. 201-210. IEEE (2015)
Kelley, P.G., Hankes Drielsma, P., Sadeh, N., Cranor,
L.F.: User-controllable learning of security and privacy
policies. In: Proceedings of the 1st ACM Workshop on
Workshop on AlSec, AlSec 08, pp. 11-18. ACM, New
York, NY, USA (2008)

Lipford, H.R., Besmer, A., Watson, J.: Understanding
privacy settings in facebook with an audience view. In:
Proceedings of the 1st Conference on Usability, Psychol-
ogy, and Security, UPSEC’08, pp. 2:1-2:8. USENIX As-
sociation, Berkeley, CA, USA (2008)

Mcinerney, J., Stein, S., Rogers, A., Jennings, N.R.:
Breaking the habit: Measuring and predicting departures
from routine in individual human mobility. Pervasive
Mob. Comput. 9(6), 808-822 (2013)

Patil, S., Lai, J.: Who gets to know what when: Configur-
ing privacy permissions in an awareness application. In:
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’05, pp. 101-110. ACM,
New York, NY, USA (2005)

Patil, S., Norcie, G., Kapadia, A., Lee, A.J.: Reasons, re-
wards, regrets: Privacy considerations in location sharing
as an interactive practice. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security (SOUPS
’12), pp. 5:1-5:15. ACM, New York, NY, USA (2012)
Ravichandran, R., Benisch, M., Kelley, P.G., Sadeh,
N.M.: Capturing social networking privacy preferences.
In: Proceedings of the 9th International Symposium on
Privacy Enhancing Technologies, PETS ’09, pp. 1-18.
Springer-Verlag, Berlin, Heidelberg (2009)

Riaz, Z., Diirr, F., Rothermel, K.: Understanding vulner-
abilities of location privacy mechanisms against mobility
prediction attacks. In: Proceedings of the 14th EAI Inter-
national Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, Melbourne, Aus-
tralia, November 7-10, 2017., pp. 252-261 (2017)
Roberts, S.G., Dunbar, R.I.: Communication in social
networks: Effects of kinship, network size, and emotional
closeness. Personal Relationships 18(3), 439-452 (2011)
Sadeh, N., Hong, J., Cranor, L., Fette, 1., Kelley, P.,
Prabaker, M., Rao, J.: Understanding and capturing peo-
ple’s privacy policies in a mobile social networking ap-
plication. Personal Ubiquitous Comput. 13(6), 401-412
(2009)

25.

26.

27.

28.

Song, C., Qu, Z., Blumm, N., Barabdasi, A.L.: Limits
of predictability in human mobility. Science 327(5968),
1018-1021 (2010)

Toch, E., Cranshaw, J., Drielsma, P.H., Tsai, J.Y., Kel-
ley, P.G., Springfield, J., Cranor, L., Hong, J., Sadeh,
N.: Empirical models of privacy in location sharing. In:
Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, UbiComp ’10, pp. 129-138.
ACM, New York, NY, USA (2010)

Wellman, B., Wortley, S.: Different strokes from differ-
ent folks: Community ties and social support. American
journal of Sociology 96(3), 558—588 (1990)

Wiese, J., Kelley, P.G., Cranor, L.F., Dabbish, L., Hong,
J.I.,, Zimmerman, J.: Are you close with me? are you
nearby?: Investigating social groups, closeness, and will-
ingness to share. In: Proceedings of the 13th International
Conference on Ubiquitous Computing, UbiComp 11, pp.
197-206. ACM, New York, NY, USA (2011)

