
Technical Report
Department of Distributed Systems, IPVS, University of Stuttgart

Privacy and Mobility: Optimized Training of Privacy-
preserving Location-sharing Policies for Online Social
Networks

Zohaib Riaz · Frank Dürr · Hasan Mohamed · Kurt Rothermel

Abstract To secure location privacy of social networks

users in a manageable way, a large body of existing

works focuses on automating the location-sharing deci-

sions with online social contacts by defining machine-

learning based location sharing policies. These policies

are learned over actual user-responses to information

sharing requests from their social connections under

varying contextual conditions (e.g., time of day, loca-

tion, etc.) and replicate user behavior autonomously for

subsequent requests.

However, training high-performance location shar-

ing policies, e.g., those with high accuracies, typically

impose high computational demands. Hence training

high-performance policies on mobile devices, which are

computationally resource-constrained, is very challeng-

ing. In this regard, we propose a novel policy learning

methodology whereby high-performance policies can be

trained with low computational investment. This com-

putational gain of our methodology is based on the

selection of high quality training data. We also show

that the high quality training data is composed of those

training examples that are associated with strong mo-

bility routine of the users. Thus we also propose an algo-

rithm for efficient estimation of the dynamic strength of

movement routine on mobile devices. Our evaluations

on real world data demonstrate the usefulness of our

approach.

Keywords Location privacy · Online social networks ·
Information sharing policies · Dynamic routine

strength · Machine learning

Institute of Parallel and Distributed Systems, University of
Stuttgart
Tel.: +49-711-685 88431
Fax: +49-711-685 88424
E-mail: {zohaib.riaz,frank.duerr,kurt.rothermel}@ipvs.uni-
stuttgart.de, hasan.ibhasan@gmail.com

1 Introduction

With globally increased penetration of the internet

and mobile phones, user-bases of online social network-

ing platforms (OSNs), such as Facebook or Twitter,

have seen tremendous rise. Sharing personal informa-

tion with social connections on these platforms is, how-

ever, not without risk, in particular when it comes to

personal privacy. It is well known that careless sharing

of personal content in OSNs can lead to unintended rev-

elations to others regarding ones current location, their

health issues, personal views and inclinations, etc.

One way to minimize these privacy concerns is to

avoid the publication of privacy-threatening personal

content. Especially for scenarios where personal infor-

mation such as location data may be shared frequently

with others, a popular approach is to define information

sharing-policies that mimic user sharing behavior [4,10,

21,24,16,17]. In the ideal case, a perfectly defined shar-

ing policy relieves the user of performing manual shar-

ing decisions while autonomously sharing their informa-

tion with others in a privacy-preserving manner, based

on the values of context variables such as time-of-day,

location, etc. Specifically, no or little privacy-sensitive

data is shared by such a sharing policy.

However, particularly for sharing location informa-

tion, several studies show that the manual definition

of such accurate privacy-preserving sharing policies is

hard for OSN users [24,17,1]. Consequentially, a num-

ber of research works have tried to ease the process

of defining sharing-policies, for example, by providing

users with initial policy templates [21] or by employing

machine-learning techniques for policy definition [24,

4] and its refinement [16,10]. While these machine-

learning (ML) based sharing policies show practical po-

tential, their usability is severely limited by the high

2 Zohaib Riaz et al.

computational demands of ML, especially on resource-

constrained mobile devices.

A major reason for the high computational require-

ments of ML based policies is the need to perform model

selection. Precisely speaking, many ML algorithms in

their various possible parameter configurations, where

each is termed a model, must be trained and validated

to pick the one with the best estimated performance

results for the learned policy. Naturally, this proce-

dure can consume significant time and computational

resources. However, a crucial property of the finally se-

lected model is that it avoids over-fitting, i.e., it gen-

eralizes well to unseen data that may appear in actual

policy usage after the end of the training phase.

To achieve good generalization of the learned mod-

els without the expensive model selection procedure,

we take the option of improving training data quality.

More specifically, we conjecture in this article that if

high-quality training examples are selected for training,

then computationally simple models that are prone to

over-fitting can also yield policy performance compa-

rable to that of the best model given by the model

selection procedure. We define these high-quality train-

ing examples as the ones which, with high likelihood,

represent the contextual situations for location sharing

in actual policy usage. To concretely identify these ex-

amples, we use mobility analysis and define each exam-

ple’s quality as its strength of association with the daily

user routine. In other words, training examples that are

sampled along stronger routine movements, e.g., home

to work, are deemed higher quality. The underlying in-

tuition is simple: stronger daily routines typically do

not change frequently and thus represent those contex-

tual situations that will likely occur in actual usage

of the trained sharing policies. Hence, learning users’

sharing behavior regarding these important contextual

situations by over-fitting them, using computationally

simple machine-learning models, may still yield high

policy performance.

To efficiently select the high quality examples on

mobile devices, we also present a novel algorithm for

real-time estimation of the dynamic strength of move-

ment routine (DSR). We also evaluate the run-time per-

formance of our DSR estimation algorithm as well as

the privacy-utility performance of the correspondingly

trained location sharing policies on a real-world dataset.

Our results show that computationally simple policies

can indeed perform well when training examples asso-

ciated with strong user routine are used to learn them.

Overall, our contributions highlight the role of the

DSR signal as a non-disruptive mobility-driven signal

that can be practically sensed on resource-constrained

mobile devices and can be exploited for efficient learn-

ing of effective location sharing policies on mobile de-

vices.

We organize the remaining discussions in the article

as follows. At first, we describe the related work in Sec-

tion 2. In Section 3, we provide the problem statement

followed by the detailed description of our DSR estima-

tion algorithm in Section 4. In Section 5, we describe a

computationally light-weight policy learning algorithm.

Finally, we present the details of our implementations

as well as the results in Section 6 before concluding in

Section 7.

2 Related Work

In the following, we discuss two categories of exist-

ing works that relate to our contributions in this pa-

per, namely, routine behavior detection and privacy-

preserving sharing decisions.

2.1 Human routine behavior and predictability

Initial works attempted to extract routine patterns from

mobility data [11,7]. At a course level, patterns in daily

routine behavior, such as leaving for work in the morn-

ing, were identified by Katayoun and Gatica-Perez [11]

using latent topic models (LDA) from collective mo-

bility data of users in the Reality Mining dataset [6].

Eagle and Pentland [7] used principal component analy-

sis for identifying the eigen routine movement patterns

for individual users in the same dataset. Although, the

routine patterns discovered by these approaches can be

used to infer typical storlyines underlying user move-
ments as well as for mobility prediction, they do not

directly capture deviations of users from their routine

behavior or the level of their predictability.

A more direct study in this regard was reported by

Song et al. [25] in which they formulate the upper and

lower bounds on the overall predictability of an individ-

ual’s movements based on Shannon’s entropy in their

historical movements. Since this overall measure lacked

detail, McInerney et al. [18] proposed a fine-grained

measure to estimate the momentary value of entropy or

unpredictability given the current user location, and so

termed it as the Instantaneous entropy. This measure is

based on Lempel-Ziv entropy estimators for time-series

data and functions by computing the novelty in the re-

cent sequence of visited locations with respect to the

historical movement sequences. By ignoring temporal

information associated with the movement sequences

however, instantaneous entropy is unable to capture

deviations in routine represented by temporal shifts in

events, such as late arrival at work location, which may

Title Suppressed Due to Excessive Length 3

affect information sharing behavior of users. Similarly,

the effect of discontinuities in data (e.g., due to the un-

availability of location information) on this measure is

not explored. Nevertheless, the authors also propose a

Dynamic Bayesian Networks (DBNs) approach, similar

to [8], that additionally considers time and weekday in-

formation to estimate the strength of routine. The dis-

advantage of using DBNs, as stated by McInerney et

al. [18], is the high computational cost of training user

models (in their case using the Expectation Maximiza-

tion algorithm) on resource-constrained mobile devices.

We address this limitation by proposing a computation-

ally efficient routine estimation algorithm that consid-

ers both, the spatial and the temporal aspects of user

movements.

2.2 Privacy-preserving Information Sharing Decisions

In an effort to understand the reasoning behind location

sharing decisions of users, various user studies have con-

cluded that the person, social group, or the application

that generates the location request represents the most

important attribute affecting the sharing decision [19,

5]. The study by Toch et al. [26] suggests that users feel

varying levels of comfort while sharing different types of

locations. In particular, they found that privacy sensi-

tive locations (e.g., home) are typically those that have

low entropy in terms of the unique visitors and their

corresponding visiting frequencies.

Significant research has also been invested into

learning of sharing policies as a set of rules [24,21,

2]. These rules allow users to express their willingness

to share against intuitive contextual conditions defined

over attributes such as the time-of-day. Sadeh et al. [24]

and Bigwood et al. [3] additionally show that various

machine-learning based models can be used to learn

detailed sharing policies leading to higher policy accu-

racies. Fang and Lefevre [10] have proposed a privacy

wizard that uses active-learning to incrementally learn

users’ sharing preferences by querying for their shar-

ing behavior with the most “informative” friends. User

behavior with these informative friends is then gener-

alized to other social connections based on a detailed

friendship graph, thus minimizing the user burden of

manually elaborating privacy preferences with all of the

social connections. A different approach that does not

rely on the availability of a friendship graph was pro-

posed by Bilogrevic et al. [4]. They use active-learning

for refining sharing policies that are trained over a small

number of training examples. Specifically, they ask the

user to make those decisions where the model’s pre-

diction has high uncertainty. Moreover, they use cost-

sensitive classifiers that can be tuned to be more sen-

sitive to incorrect sharing privacy-sensitive information

than incorrect suppression of non-privacy threatening

information.

Our work fundamentally differs from the above

machine-learning based approaches in the additional

use of user-mobility based DSR signal. We contribute

orthogonally to these approaches by helping simplify

the otherwise compute-intensive model selection pro-

cedure which makes these approaches more viable on

resource-constrained mobile devices.

3 Preliminary Definitions and Problem

Statement

3.1 System Model

We consider the scenario of OSN usage where location

information is shared by users with their social connec-

tions in either a pull- or a push-based fashion. In the

pull-based version, users respond to location requests

from their social connections in a reactive manner as

opposed to the push-based version where they actively

share their location.

We assume that the OSN users interact with the on-

line platform using the OSN app-instances running on

their location-enabled mobile devices. Whenever a user

intends to share his location, voluntarily or as per re-

quest from a social connection, the OSN-app generates

a location-request and forwards it to a trusted software

agent (TSA), which also runs on the user’s device. As

similarly adopted in other works [4], we assume that

the TSA has exclusive access to the devices’ position-

ing technologies (e.g,. GPS) and acts as a gateway to

location information for other on-device apps by servic-

ing their location-requests.

3.2 Threat Model

We assume that privacy threats arise from unintended

sharing of privacy-sensitive location events with social

connections, which is known to cause various forms of

social repercussions [20]. Moreover, we assume that the

users may not fully trust the OSN platform-provider.

Hence any given location-sharing decision made by

the users includes privacy-threat considerations regard-

ing both, the involved social connection and the OSN

provider.

3.3 Protection Model

To protect against privacy threats from the social con-

nections, the TSA implements a privacy protection

4 Zohaib Riaz et al.

mechanism. For this article, we assume that this mech-

anism is a location sharing policy which represents lo-

cation sharing preferences of the user towards his so-

cial connections (or any other location-based apps they

use). The TSA initially learns the users’ sharing pref-

erences from their manual sharing choices and later en-

forces these choices autonomously by granting or deny-

ing incoming location requests.

To learn the sharing policy, the TSA acquires train-

ing samples over a limited period of time by asking users

in-situ questions. Specifically, each question queries the

user’s willingness to share or deny their location infor-

mation to various social contacts (typically as groups,

e.g., friends or family) under the running situational

context. Here, context is defined as a tuple including

variables such as the time-of-day, day-type (weekday

or weekend), as well as the geographic region. By ag-

gregating user responses under different contexts, the

TSA acquires the basic information for learning a shar-

ing policy.

Recall that we assume that user-responses to the in-

situ questions also take into account their privacy con-

siderations regarding the OSN provider. Hence, learn-

ing sharing policies from these responses appropriately

addresses the threat model described in Section 3.2.

3.4 Policy Learning Methodology

Technically seen, the process of learning the sharing

policy from the limited training examples of a user

presents a binary classification problem where shar-

ing approvals should be discriminated from the denials

based on the context variables. Inspired by visualiza-

tions from Hasti et al. [13], we depict this problem

in Fig. 1. Here, several training examples represent-

ing the two classes, approvals as circles and denials as

crosses, are shown in a 2D context space. In part (a)

of the figure, we show the non-linear decision-boundary

curve that, we assume, perfectly represents the actual

user sharing preferences and dominantly separates the

two classes. The few training examples that fall on the

wrong side of this actual decision-boundary represent

noisy training data.

In order to learn the actual decision-boundary from

these training examples, choosing a suitable machine-

learning (ML) algorithm is non-trivial. The best prac-

tices from the ML community suggest that different

learning algorithms in various parameter configurations

should be tried out, e.g., Decision-trees, Support Vec-

tor Machines (SVMs), etc., to choose the best among

them for the given data (the model selection prob-

lem). If these steps are not followed properly, a fitted

model may form a decision-boundary which is overly

(a)

(b)

Fig. 1: (a) Actual Model. (b) Top row: Over-fitted

model along with its misclassification space (shaded).

(b) Bottom row: same for an under-fitted model.

flexible such that it fits even the noisiest training ex-

amples (over-fitting). At the other extreme, the fitted

model may be too rigid (e.g., linear) to capture the ac-

tual (e.g., non-linear) decision-boundary. For the actual

model shown in part (a) of Fig. 1, part (b) of the figure

depicts the cases of over-fitting (top) and under-fitting

(bottom). Based on the difference between the actual

and the learned decision boundaries in these two cases,

the figure also shows the corresponding shaded regions

of the context space that can lead to misclassification

(incorrect sharing decisions) as a result of over- and

under-fitting.

To address the model selection problem, a popu-

larly adopted methodology, for policy learning as well

as other problems, is k-fold cross-validation. Here, the

training data is split up into k equally sized parts or

folds. For testing a particular ML algorithm with a par-

ticular parameter setting, i.e., a model, it is trained on

the combined data of k − 1 folds and then validated

on the single remaining, left-out fold to simulate pre-

viously unseen data. This process is repeated k times

for the same model where a different fold is left-out for

validation in each run. By combining the validation re-

sults of the k runs, the performance of the model on

the complete training data is determined. If m differ-

ent models are tested in this manner to pick the best

one, a total of at least m∗k train-validate cycles are re-

quired. Since a variety of ML algorithms exist and each

possesses its own parameters, the number of different

models m that need to be tried out, for approximating

the best possible one, can grow large. For example, the

Gaussian kernel-based SVMs used for policy learning

by Bilogrevic et al. [4] have two parameters (C and γ),

thus requiring a grid-search in a 2D parameter space.

Title Suppressed Due to Excessive Length 5

3.5 Problem Statement

In this article, we study the potential value of a

mobility-based signal, namely, the dynamic strength of

movement routine (DSR), in enabling efficient learning

of ML based location sharing policies on users’ mobile

devices.

To understand the main challenge of our work, con-

sider the scenario where a user, say Alice, wishes to

automate her location sharing decisions. To this end,

she provides the initial set of training examples by an-

swering various in-situ questions regarding her shar-

ing preferences as posed by the TSA. At the end of

this data collection phase, Alice triggers the TSA to

initiate the training process and waits for its comple-

tion before activating the trained policy. For the TSA,

the training process involves executing the expensive

cross-validation (CV) procedure for model selection, as

discussed above in Section 3.4, and then training the

best model over Alice’s complete training data. Given

the limited computational resources of the mobile de-

vice, the training process could take a prohibitively long

time, thus hurting Alice’s interest and the usability of

the automated sharing policy. A possible way of reduc-

ing the policy training time is to offload the expensive

CV operation to a cloud based service. Doing so how-

ever requires Alice to trust the service provider with her

contextual data as well as her detailed location sharing

preferences, which may be undesirable.

As part of the solution to this problem, we conjec-

ture that the computationally expensive CV procedure

may not be required if we can improve training data

quality. We explain this in reference to the top row

of Fig. 1(b). Here, the flexible model chaises the noisy

training data to form a fluctuating decision boundary.

Although this model perfectly fits the training data, it

may perform poorly in actual usage due to the signif-

icant size of the misclassification space. If however the

noisy training examples are removed, the magnitude of

the fluctuation of this model’s decision boundary will

decrease. This in turn will conform the model more to

the actual one shown in Fig. 1(a), thus reducing the size

of the misclassification space. Simply stated, we make

the following claim:

If noisy training examples, that are less likely to re-

peat in actual usage and thus are mis-representative of

the distribution of training data in the context space,

are excluded from the training data, then, an over-fitted

model may still perform comparably to a model that is

selected by using the CV procedure.1

1 Note that this claim is not valid for under-fitted mod-
els as, in their case, the size of their misclassification space

The implication of this claim is that the computa-

tional load of training an accurate sharing policy by the

TSA can be brought down to training a single model

using less noisy training data in contrast to the time-

consuming training of a plethora of models using CV.

More formally, let the set E = {e1, ..., eq} repre-

sent the set of all training examples collected by the

TSA. Let N = {η1, ..., ηq} be the “noise-confidence set”

where ηi ∈ N represents the confidence with which the

training example ei ∈ E can be deemed noisy, with

ηi = 1 implying full confidence. Then, a subset of high

quality training examples Eθ ⊆ E may be obtained

such that for each ei ∈ Eθ, ηi < θ. Here, θ represents

the confidence associated with the most noisy sample

that is included in Eθ. Using Eθ, a location sharing

policyMθ can be learned by employing an over-fitting-

prone algorithm, in compliance with our above claim.

In contrast, a CV based model MCV may be trained

over the full dataset E. Let the performance difference

between the two models be ∆test.

∆test = φtest(Mθ)− φtest(MCV) (1)

where φtest(M) represents the performance of model

M in actual usage.

We hypothesize that if θ is decreased to a safe-value,

where most noisy training examples are left out of Eθ,

then ∆test will approach zero. Note that it is impor-

tant to precisely determine this safe-value as decreas-

ing θ further will leave out too many training examples

from Eθ, which may also adversely affect the perfor-

mance of Mθ by lowering its coverage of the context

space. Thus we require that the noise-confidence values

ηi ∈ N should vary over a well-defined interval with a

meaningful interpretation. Moreover, ηi ∈ N should be

efficiently computable on today’s mobile devices.

To meet these challenging requirements, we use the

mobility-based DSR signal as a proxy to approximate

ηi ∈ N associated with ei ∈ E. As also motivated in

Section 1, we deem those training examples as more

noisy that are associated with rare user behavior, i.e.,

a high deviation from users’ mobility routines, and are

less likely to repeat in actual usage. In contrast, train-

ing examples that are sampled when the users are in

their stronger mobility routines are deemed less noisy

and more representative of the actual contextual situa-

tions. Since the existing DSR estimation algorithms are

not suitable for mobile devices (cf. Section 2), we first

present our novel, efficient DSR estimation algorithm

in the next section.

is mainly contributed by their inflexibility compared to the
actual model.

6 Zohaib Riaz et al.

4 The Routine-strength Estimation Algorithm

In this section, we describe our metric for the mobil-

ity based DSR signal and present a detailed algorithm

for its computation. Initially however, we briefly discuss

the concept of conditional trajectory entropy as intro-

duced in previous works [9,14] and explain why it is not

applicable as a direct metric for DSR. Note that for the

rest of the paper, we use the terms trajectory or path

interchangeably to refer to the same concept.

4.1 Conditional Trajectory Entropy

For a given user, we assume that there exists a finite set

V of geographical locations, e.g., home region, work re-

gion, etc., where they spend time as part of their daily

movements. We further assume that user mobility be-

tween these states can be modeled as a Markov chain

whereby the the probabilities of transition between any

two states Pxtxt+1
is given by a single transition matrix

A. Using A, the probability of a particular movement

trajectory xsd = {x1 = s, ..., xk = d} between a start

location s and destination location d is given by:

p(xsd) =

t=k−1∏
t=1

Pxtxt+1 (2)

In [14], Kafsi et al. also consider the case of an aperiodic

and irreducible finite-state Markov chain. They further

define the set Xsd of trajectories (of all possible lengths)

from s to d where the sum of the probabilities of all

xsd ∈ Xsd is 1. The entropy of the random variable

representing the possible user trajectories Xsd between

s and d is then defined as follows.

Hsd = H(Xsd) = −
∑

xsd∈Xsd

p(xsd)log(p(xsd)) (3)

Intuitively seen, Hsd represents the uncertainty associ-

ated with the actual trajectory taken by the user. Kafsi

et al. [14] consider the advanced case where it is addi-

tionally known that the user traversed a set of interme-

diate states u between s and d. Thus they define the

conditional trajectory entropy Hsd|u to determine the

remaining uncertainty in user trajectory by only con-

sidering those trajectories that pass through the states

u, i.e., Xsd|u. In Fig. 2 (a), we provide an example il-

lustration of the path links that lead from s to d. Here,

the links that form the conditional trajectories passing

through the node u are shown in bold (solid) lines.

In an extended work, Kafsi et al. [15] show that by

comparing the trajectory entropy Hsd with the condi-

tional trajectory entropy Hsd|u, one can determine the

affect of revealing the intermediate locations u on the

s d

u

(a) (b)

Fig. 2: (a) All Markov paths between states s and d.

Links that form part of the paths conditioned on state

u are shown in bold. (b) Example of two paths between

morning and evening locations of a user.

predictability of the remaining user trajectory. To per-

form this comparison, they determine the entropy ratio

α = Hsd|u/Hsd. If α < 1, it indicates a decrease in

uncertainty (increased predictability) regarding the ac-

tual trajectory taken by the user as a result of publish-

ing u, whereas α > 1 indicates the drop in trajectory

predictability.

4.2 A novel DSR Metric

It is not difficult to imagine that the rise and drop in

the predictability of user movements can be associated

to their routine and out-of-routine behavior. Hence, the

entropy ratio α seems a feasible metric for determining

DSR. However, using α for this purpose presents sev-

eral drawbacks. For instance, computing Hsd|u based

on the algorithm proposed by Kafsi et al. [14] is com-

putationally expensive (complexity O(|u|N3) where N

is the number of states of the Markov chain). This is

because they allow cyclic paths between s and d, lead-
ing to (possibly) an infinite total number of paths |Xsd|
or |Xsd|u| between s and d. Moreover, use of α as a

DSR metric presents further drawbacks which we high-

light with the help of the following examples. We also

use these examples to motivate our novel DSR metric

called the relative path strength.

Example 1: Consider a user Bob who, among other

paths, follows a strong home→ work→home→other

routine during the day. If we assume his start location

s as his home in the morning and the destination loca-

tion d as his home location in the evening, then being at

work location during the middle of the day represents

being on a popular path between s and d, thus indicat-

ing in-routine behavior. Conversely, if Bob is found at

another location during the day, out-of-routine behav-

ior should be indicated.

The above example highlights the drawbacks of

some of the assumptions made by Kafsi et al. [14] in

defining the α metric. At first, human movement pref-

erences may not be the same for different times of the

Title Suppressed Due to Excessive Length 7

day (e.g., transitions to work-place are more probable

in the morning). Secondly, the movement trajectory of

Bob over a day consists of a relatively small number of

hops between different states unlike the possibly large

number of hops introduced by infinite cyclic paths as

considered in Kafsi’s approach. In general, instead of

considering only spatial information, we also wish to

consider the temporal dimension in our calculation of

DSR, which makes Kafsi’s algorithm unsuitable in our

case.

Example 2: As illustrated in Fig. 2 (b), consider an-

other user Alice who traverses two main paths, A and

B, between her morning and evening locations (s = x1

and d = x4 respectively). Let path A represent Alice’s

strong daily work routine and path B her relatively

weak monthly routine of day-time short business visits.

Assuming that both these paths are strictly followed if

taken (no branching to other possible states), then com-

puting α anywhere along the two paths (states xA2 , xA3 ,

xB2 , or xB3) results in the same 0 value. This occurs be-

cause conditioning on any of these intermediate states

only leaves a single path to d (perfect predictability).

However, the same high predictability value for being

on paths A and B contradicts Alice’s different strength

of routine associated with path A (high strength) and

path B (low strength).

For our purpose of differentiating movements based

on their strength, we require a metric that also takes

into account the likelihood of the traversed path. More

precisely, we require a comparison of the probabilities

of the conditional paths Xsd|u that pass through u with

those of the remaining paths Xsd|ū.

To this end, we take into account both, the spa-

tial and the temporal information associated with user

movements, by defining a mobility model based on dis-

crete time non-homogeneous Markov chains. Hence, we

divide the time of day into D equal-length slots, e.g.,

hourly, and compute a distinct transition matrix At for

each time-slot t from a user’s location information over

a learning period. Doing so implies that the paths Xsd
leading from a particular start location sts ∈ V at time-

slot ts to particular destination dtd ∈ V at time-slot td
are all of equal length, i.e., td − ts. Also, the sum of

the probabilities of paths leading from all possible start

locations in ts to all possible destination locations in

td (where each is computed using Eq. 2) sum to 1. No-

tably, for a given single start and destination pair, the

sum of the probabilities of all paths between them may

not sum to 1.

We now define our novel DSR metric below while

ignoring time subscripts, i.e., ts or tu, for readability

reasons.

Definition 1 Relative Path Strength (RPS): Let

Psd|u denote the set of probabilities of all conditional

paths Xsd|u that pass through u, and let Psd|ū denote

the set of probabilities for all remaining non-conditional

paths Xsd|ū between s and d. Moreover, let P̂sd|u and

P̂sd|ū denote the corresponding normalized probabili-

ties for the sets Psd|u and Psd|ū, respectively, which

sum to 1. Then Relative Path Strength is defined as

follows:

RPS(Psd|ū,Psd|u) =

|Psd|ū|∑
i=1

|Psd|u|∑
j=1

p̂i · p̂j · (pi − pj) (4)

where pi ∈ Psd|ū, p̂i ∈ P̂sd|ū, pj ∈ Psd|u, and p̂j ∈
P̂sd|u.

Hence RPS computes the expected difference in

probabilities of the paths belonging to the sets Xsd|ū
and Xsd|u. The RPS metric varies in the range −1 ≤
RPS ≤ 1 considering the two extremes of very high

probability conditional paths (RPS = −1 or high rou-

tine behavior) or very low probability conditional paths

(RPS = 1 or out-of-routine behavior) . With refer-

ence to Example 2 and Fig. 2 (b), let path A and

path B have probabilities pA = 0.9 and pB = 0.1 re-

spectively. Then conditioning on any state on path A

yields RPS = −0.8 whereas the same on path B gives

RPS = 0.8 which conforms with Alice’s movement be-

havior on these paths. For ease of interpretation, we

define DSR as a scaled version of RPS as follows:

DSR = (RPS + 1)/2 (5)

Hence 0 ≤ DSR ≤ 1 where strong routine is indicated

by DSR = 0 and vice versa. Note that as DSR ap-

proaches a value of 0.5, it indicates equally likely con-

ditional and non-conditional paths and thus the lack of

evidence to call the current user movement as out-of-

routine. Note also that since the number of paths in

Xsd|ū and Xsd|u can vary, the conditional path prob-

abilities by themselves, without looking at them in a

relative manner as RPS does, cannot be directly used

to compute DSR.

4.3 DSR Estimation Algorithm

To estimate DSR for any given location ut of a user,

we now present our detailed methodology regarding the

following: (1) selection of appropriate start and desti-

nation locations and (2) efficient computation of the

probability sets Psd|u and Psd|ū. Based on these prob-

abilities, we can compute DSR according to Eq. 5.

8 Zohaib Riaz et al.

4.3.1 Selecting start and destination locations

To understand the significance of choosing the right

start and destination locations, consider again the sce-

nario sketched in Example 2 and Fig. 2 (b). Assume

that we want to compute DSR at path node ut = xB3 .

To compute DSR(ut = xB3), we can set destination d

as x4 and could choose between xB2 or x1 as the start

location s. If s = xB2 , then path {xB2 , xB3 , x4} represents

the strongest path between the chosen (s, d) pair, con-

veying the wrong impression that Alice is in her strong

routine (although she is on path B, i.e., her monthly

business trip). Considering s = x1 avoids this local view

of Alice’s mobility by bringing path A into considera-

tion, thus, yielding the correct estimation of routine

strength due to her being on path B.

The principle we derive out of the above example

is that the start and destination should represent the

major sources and sinks, respectively, of the user’s daily

movements. By anchoring the computation of DSR on

these sources and sinks, we intend to compare the user’s

current movement between his regularly visited loca-

tions. To find such locations, we collect per-time-slot

probabilities πt regarding the occurrences of different

locations from the set V for each of the D time-slots

of the day from the user’s data. Using πt, we compute

the entropy H(xt) of the random variable represent-

ing user location xt in time-slot t (defined similarly as

Eq. 3). A low value of entropy indicates a high non-

uniformity of the probability distribution over possible

locations in a time-slot t, thus indicating source/sink

locations. Given that we wish to compute DSR at time

tu, we search within |kmax| time-slots on both sides of

tu for the ones that minimizes H(xt), in order to get

the start location’s time-slot ts and the destination lo-

cation’s time-slot td. Formally, we determine ts and td
as follows.

ts = tu + argmin
∀k∈[−kmax,−1]

H(xt+k) = f(πt+k) (6)

td = tu + argmin
∀k∈[1,kmax]

H(xt+k) = f(πt+k) (7)

Having determined ts and td, the set of possible

start and destination locations, Vts and Vtd , along with

their probabilities are given by πts and πtd respectively.

Knowing ts and td also allows us to determine the set of

intermediate states u = {uts+1, ..., ut} that are already

traversed by the user.

4.3.2 Optimal Population of Path-probability sets

Psd|u and Psd|ū

To simplify the following discussion, we select the single

most probable start location s ∈ Vts and similarly a

s

ts ts+2ts+1

(a)

d

n

tn td

(b)

Fig. 3: (a) Exponentially expanding path tree. (b) Trel-

lis diagram of Markov paths growing backwards from

d.

single destination location d ∈ Vtd . For the same reason,

we also ignore the cyclic nature of time-slots, such as

their overflow to 0 as a result of increments, in our use

of the formal notation.

Using the transition matrices At, we can compute

the total probability of moving from any state xts at

time-slot ts to any state xtd at time-slot td through all

possible paths as follows.

P (xtd |xts) = axts ,xtd
∈ Atstd where Atstd =

td−1∏
t=ts

At

(8)

However, computing individual probabilities of all of

the paths that make up P (xtd |xts) is non-trivial. As

shown in Fig. 3 (a), these paths grow exponentially as

a tree with each hop from s towards d. Precisely speak-

ing, the total number of paths between s and d are Nδt

where N = |V | is the number of Markov chain states

and δt = td−ts is the length of each path between s and

d. Based on the well-established regularity of human

movements [25], one could argue that the tree of possi-

ble paths may not grow exponentially due to sparsness

of the transition matrices At. However, practical con-

siderations in computation of At, such as deliberate in-

frequent sampling of location for energy-efficiency on

mobile devices or unavailability of position fixes, forces

the adoption of parameter smoothing techniques (e.g.,

additive smoothing). Hence, typically all entries of ma-

trices At are non-zero, leading to exponential growth

(with δt) of the number of paths and, therefore, the

size of the probability sets Psd|u and Psd|ū as well as

their corresponding normalized probability sets P̂sd|u
and P̂sd|ū.

To efficiently compute these probability sets, we

take the following steps. We note that if the expan-

sion of possible paths is limited to those that make up

the major probability mass of P̂sd|u and P̂sd|ū, we can

still approximate RPS, and hence DSR, with good ac-

curacy. This is because RPS computes the expected

Title Suppressed Due to Excessive Length 9

1 2 3 4 5 6 7 8 9 10
path no.

0.0

0.1

0.2

pr
ob

ab
ili

ty

(a) Set Psd

6 5 7 4 8 3 2 1 9 10
path no.

0.0

0.1

0.2

(b) Sorted set Psd

Fig. 4: Probabilities in the set Psd = Psd|u ∪ Psd|ū.

The blue and red colors denote the conditional and the

non-conditional paths respectively.

difference between the two probability sets where con-

tribution of small probabilities in both sets is quadrati-

cally minimized due to their multiplication (see Eq. 4).

To elaborate our solution further with an example,

Fig. 4 (a) shows the probability distribution over the

conditional (blue) and non-conditional (red) paths be-

tween a given s and d. Part (b) of Fig. 4 also shows the

sorted version of this distribution. Accordingly, to opti-

mally populate the probability sets Psd|u and Psd|ū, we

explore these paths in descending order of their prob-

abilities. We stop path exploration when the difference

in probabilities of the latest explored path and its pre-

decessor is consistently low, i.e., for a threshold number

of explored paths which define the stopping condition.

Thus we do not consider these equal (and typically

low) probability paths, for instance paths {2, 1, 9, 10}
onwards in Fig. 4 (b), which may only exist due to pa-

rameter smoothing, without significantly harming our

estimate of RPS and, thus, DSR.

4.3.3 Path Exploration Algorithm

For optimal expansion of the path-tree, we perform A*

strategy based node expansion beginning at the start

location at time ts, i.e, sts . On expansion of a path-

node at time-slot tn−1, each of its child node ntn is

put into a priority queue along with its weight as given

by a function f(ntn). For a subsequent expansion, the

node with the highest weight among those present in

the priority queue is chosen.

To ensure that the highest probability paths are ex-

plored first, the weight function, f(ntn) = g(sts , ntn) +

h(ntn , dtd), sums the two-way path probabilities around

ntn . Precisely speaking, g(sts , ntn) represents the asso-

ciated path’s probability of traversing from node sts to

node ntn which is trivially computed using Eq. 2. In

contrast, the heuristic h(ntn , dtd) represents the high-

est path probability of reaching the destination node

dtd from ntn . If we guarantee that h(ntn , dtd) is never

under-estimated (or is admissible), then node expan-

sion prioritized by f(ntn) effectively leads to the explo-

ration of the highest probability path to dtd first. In

other words, if for the weights of two nodes a1 and a2,

f(a1) > f(a2), then it is not possible for a child node of

node a2, say a3, that f(a1) < f(a3). Hence prioritizing

a1’s expansion between the two nodes is optimal.

To compute h(ntn , dtd) while avoiding its under-

estimation, we perform a backward-expansion begin-

ning from the destination dtd (see Fig. 3 (b)). More

specifically, for each backward hop from time-slot t+ 1

to t, we record for each node nt at time-slot t the prob-

ability of only the best path reaching it from time-slot

t + 1 based on the Viterbi Algorithm [12]. Thus effec-

tively, we store for each node nt the value of h(ntn , dtd),

i.e., the highest probability path leading to dtd . For k

backward hops where k <= D (a day has D time-slots),

the complexity of computing h(ntd−k, dtd) is O(kN2).

Since this computation is not specific to a particular

start location s or the intermediate path states u, it

can be pre-computed once for all possible destinations

for each of the D time-slots of a day. In our evaluations

(cf. Section 6), we will also report the time taken by this

pre-computation as well as by our optimized A*-based

path exploration on typical mobile devices.

For a single (s, d) pair, we run the above path-

exploration algorithm twice, once for each probability

set Psd|ū and Psd|u. For Psd|ū, we populate the set Psd
and then remove any paths passing through all of the

intermediate states utu ∈ u. Note that we make a sep-

arate second run of the path-exploration algorithm for

Psd|u as it is possible that the conditional paths have

relatively lower probabilities and are not sufficiently ex-

plored during the population of set Psd. Thus, in the

second run, we enforce the tree expansion only to the

node utu ∈ u for expansions from time-slot tu − 1 to

tu. Such enforcement in turn requires careful use of the

pre-computed heuristic h(ntn , dtd) for correct computa-

tion of the weight function f(ntn). In general, we guide

the path expansion for a node ntn in the path-tree till

the next known node. For instance, if u = {utu}, then

the next node can be utu if tu > tn, or dtd if tn ≥ tu.

Hence, for these two cases, we compute the correct value

of the heuristic as either
(
h(ntn , utu) + h(utu , dtd)

)
or

h(nt, dtd) respectively.

4.3.4 Expected DSR value

Until now, we have explained the computation of DSR

for a single pair of start and destination locations. As

discussed in Section 4.3.1, we determine not one but a

set of possible start and destination locations, d ∈ Vts
and d ∈ Vtd , respectively. Thus the overall DSR(ut)

for the current location ut is an expectation as defined

10 Zohaib Riaz et al.

below.

DSR(ut) =
∑
s∈Vts

P (s)
∑
d∈Vtd

P (dtd |sts)DSR(ut|(s, d,u))

(9)

Here P (s) represents the probability of the start lo-

cation as per time-slot probabilities πts , and P (dtd |sts)

is computed using Eq. 8. Both of these probabilities are

also part of the pre-computations that need to be per-

formed only once. Since the source and sink locations

that form the start and destination locations may vary

on weekday and weekends, we determine two versions

of πt, i.e., πwdt and πwet . Hence, our algorithm can cap-

ture the variation of user-routines between weekdays

and weekends by appropriately using πwdt or πwet in de-

termination of P (s).

5 A Light-weight Policy-learning Algorithm

As discussed in detail in Section 3.5, we want to validate

our hypothesis that high-performance location sharing

policies can be trained using a simple over-fitting-prone

learning algorithm over a subset of less noisy training

examples Eθ ⊆ E. Each example ei ∈ Eθ is a tuple

(predictors, target class) representing a location request

from a social connection. In this article, we limit the

predictors to the tuple (t, w, l), where t is the hour-

of-day, w is the day-type (weekday or weekend), l is

the location-ID. Correspondingly, the target class repre-

sents the user-response, i.e., positive (request granted)

or negative (denied). We now briefly describe a com-

putationally simple approach to learn a basic policy

called the Location-sharing Rules (LR) which is prone

to over-fitting the training data.

The training process of LR, as discussed by Benisch

et al. [2], involves a straight-forward aggregation of the

positive (q) and the negative responses (r) of the user

against each unique combination of context-predictors

(t, w, l). These aggregates can be maintained inside a

look-up table LTmain for each social group.

To make a sharing decision using LTmain for a loca-

tion request from a certain social group, the associated

context tuple is used to look-up the aggregates, i.e.,

(|q|, |r|) = LTmain(t, w, l), and the request is granted

if score(main) > 0. Here, score(main) is defined as

(|q| − c ∗ |r|), where c represents the user-defined rela-

tive cost of revealing a private event in contrast to the

suppression of a non-private event.

Note that each row of the look-up table in conjunc-

tion with the score function is seen as a rule. More-

over, presence of even a single positive event for a given

context-tuple in the training data, i.e., |q| = 1 and

|r| = 0, leads to the formation of an additional rule,

thus making the LR policy over-fitting prone.

Obviously, the limited number of training examples

in the set Eθ may not contain user-responses regarding

each (t, w, l) combination. Thus the LR policy is unable

to answer those unseen requests which were not part of

the training data. To overcome this limitation, we addi-

tionally build marginalized lookup-tables, LTt, LTw, and

LTl, of aggregates for the individual context-predictors

t, w, and l, respectively, during the training phase. Then

a request which is unseen in LTmain is granted if the

following condition is satisfied.

min
(
score(t), score(w), score(l)

)
> 0 (10)

If the request is also not found in one of these three

marginalized tables, then the score of that table is left

out of the above equation. Hence if a request is also

marginally unseen, it is denied.

6 Implementation and Evaluations

In this section, we first describe the dataset for our

evaluations as well as its necessary pre-processing steps.

Then we present two kinds of results regarding: (1) The

run-time performance of the DSR estimation algorithm

on mobile devices and its intuitive interpretability. (2)

Performance comparison between the LR policy (cf.

Section 5), that is trained using DSR-based selection of

training examples, and existing machine-learning based

policy-learning approaches.

6.1 The Dataset and its Pre-processing

For our evaluations, we needed a long duration real-

world dataset that not only captures fine-grained lo-

cation information for a number of subjects but also

the information regarding their location-sharing pref-

erences towards their social connections. In partic-

ular, we require the concrete events that represent

the in-situ ground-truth about their sharing behav-

ior (share/deny) for several location requests. While

several location datasets are openly available, unfor-

tunately none of them contains the detailed location

sharing behavior of subjects to the best of our knowl-

edge. To overcome this shortcoming, we instead opt for

the 9 month long Reality Mining dataset from MIT [6],

which, apart from location information, also provides

the call logs of its 94 subjects. Thus we use call-log

information as a proxy for the subjects’ sharing behav-

iors, which is well-substantiated by existing research.

Title Suppressed Due to Excessive Length 11

For instance, several user-studies affirm that the fre-

quency of communication between people (especially

phone call based) positively correlates with their mu-

tual emotional closeness [27,23,28]. In turn emotional

closeness has been found to be the best indicator of

willingness to share personal information, including lo-

cation data, in online social networks [28]. Based on

these results, we process the call-logs of the dataset sub-

jects to determine their willingness to share information

with their contacts, in order to represent their ground-

truth sharing behavior. Apart from the frequency of

communication, we also take into account other factors

to determine users’ sharing behaviors such as the time

of calls and their direction (incoming/outgoing), as dis-

cussed in [28], as well as call-duration.

Before describing the pre-processing of call-logs in

more detail, we emphasize that the inferred location-

sharing ground-truth behavior does not affect our re-

sults as we provide a comparison between different al-

gorithms on this same data to demonstrate our contri-

bution.

6.1.1 Inferring Sharing-behavior from Call-logs

For each call in the subjects’ call-logs, the

dataset provides its time, duration, direction

(missed/incoming/outgoing), and the hash of the

other person’s number. We classify each call event as

either a positive (share) or a negative (deny) sharing

event with the other calling person, or their social

connection (SC). To this end, we first infer the relative

willingness, denoted ω(sci|SC) with value range [0, 1],

of the subject to share his location with a particular

connection sci out of all his social connections SC

as being proportional to the following features: (1)

mutual calling frequency, (2) proportion of outgoing

to incoming calls with sci, (3) mean call-duration with

sci, (4) total number of mutual calls.

Furthermore, we also decide a per-call positivity

score, denoted ζ(cj |Csci) with value range [0, 1], for

each call cj ∈ Csci associated with the social connec-

tion sci based on proportionality with: (1) the relative

duration, and (2) the hour-of-day based probability, of

call ci compared to the other calls in Csci .

The overall positivity score associated with a call

cj from sci is then given by the product ρ(cj) =

ζ(cj |Csci) · ω(sci|SC). Finally, we set the top γ per-

cent of each subject’s calls, according to the positivity

score ρ(cj), as his positive sharing events. Here γ de-

notes the openness of the subject towards others and is

estimated as the proportion of his overall outgoing calls

irrespective of the SCs. The remaining calls are set as

negative events. On average, we identified 70 % calls as

positive sharing events.

6.1.2 Inferring Social Groups

For each subject, we identify a limited set, typically

2− 3, of their social groups to simplify the complexity

of policy definition. We achieve this by first cluster-

ing each subject’s calls into k groups (we try different

values of k for each subject). Specifically, we use k-

means clustering to group the calls based on their tem-

poral features (time-of-day and weekday-or-weekend)

and the subject’s willingness to share information with

the other participant ω(sci|SC), as determined above.

Then, each social connection sci is assigned to that par-

ticular call group-ID, or social group-ID, to which most

of his calls belong.

6.1.3 Location-data Pre-processing

Location information is represented by the frequent

time-stamped transitions between cell-towers, each

with unique ID, that are sensed by the mobile devices.

Using this data, we identify various high level locations

visited by the subjects. We also filter out subjects who,

on average for a single day, have less than 3 location vis-

its or less than a single call event, or they have a data

recording duration of less than 1 month. For the re-

maining 68 subjects, we map their location visits to the

underlying hourly time-slots of the day (D = 24). Vi-

sualizing plots of time-slotted days, as shown in Fig. 5,

hinted one or more re-locations for a number of sub-

jects.

For a fair evaluation of sharing policy performance,

we keep the largest contiguous portion of each subject’s

data that belonged to a single region involving no re-

location. This operation leaves us with, on average for

a single subject, 21 unique locations and 651 calls (22

hours of calling time) over 66 days of data. Figure 5

also highlights the fact that our dataset exhibited sig-

nificant amounts of missing location data, thus necessi-

tating the use of parameter smoothing techniques, e.g.,

for estimating transition matrices At. For computing At
from the time-slotted location data, we use maximum

likelihood estimation as described in detail in [22].

6.1.4 Training and Test Dataset

In both types of evaluations that follow, namely, regard-

ing DSR estimation and sharing policy learning, we use

the initial 40 % of the total call data for each subject,

and its associated time-slotted location information, as

the training set. The remaining data is set apart for

12 Zohaib Riaz et al.

Hour of day
D

ay
 n

u
m

b
e

r

Fig. 5: Time-slotted days of a subject. Each time-slot

shows a uniquely colored location-ID. A sharp overall

change of colors after day 80 marks a relocation.

testing the trained algorithms. For DSR computation,

we fix the vector of intermediate states to the current

location, i.e., u = {ut}. Doing so allows us to judge

the DSR value at ut independently of the DSR values

at previous trajectory locations. Note that this setting

does not represent an advantage for our algorithm in

terms of performance as it actually has to explore more

paths (is less constrained) in computing Psd|u.

6.2 Results for DSR

We first present the performance and the quality-

related results for the estimated DSR signal.

6.2.1 Performance on Mobile Devices

To test the performance of our algorithm, we use a

Samsung Galaxy S5 smartphone (Quadcore 2.5 GHz

CPU, 2GB RAM). We divide the overall computation

of the DSR signal into a pre-computation and an online

phase. In the former, a one-time computation of the fol-

lowing is performed at the end of the training period:
(1) At and πt, (2) P (xtd |xts) from Eq. 8 for all possible

(xts , xtd) pairs, and (3) the heuristic for A* path-search

h(ntd−k, dtd) for all possible dtd and k ≤ D. In the later

online stage, we compute the expected DSR value (see

Eq. 9) for all (s, d) pairs for a given current location

ut, the one with maximum temporal-influence in the

current time-slot, using our optimized path-tree explo-

ration. Figure 7 in part (a) shows the run-time results of

a single-threaded implementation on the mobile device

for the selected subjects in our dataset. Even for the rel-

atively expensive pre-computations, the median value of

the run-time is below 1.5 seconds as shown on the left

in this figure. Moreover, the average time for the online

computation of DSR has a median value of around 100

milli -seconds. The variations in the run-time for pre-

computations depend on the size of the training data

(time-slotted days) and the number of unique locations

(states) whereas the online computations are mainly

affected by the number of possible (s, d) pairs for the

location ut. In a more detailed implementation, these

times can be further improved by caching and re-using

computed values of DSR for the unique (s, d,u) tuples.

In general however, we can reasonably say that our al-

gorithm estimates DSR in real-time.

We also emphasize here that, apart from the selec-

tion of high quality training examples Eθ for policy

learning (cf. Section 3), the above computations can

also be reused for to serve other applications. For ex-

ample, the estimated DSR values can also enable dif-

ferent context-aware services such as movement-novelty

based automatic location updates for family safety ap-

plications. Similarly, the computed Markov transition

matrices At are also useful for location prediction and

its derived services such as active reminders.

6.2.2 Quality of Routine Signal

To access the quality of the estimated DSR signal, we

first provide, in Fig. 7 (b) and (c) respectively, the den-

sity plots of DSR values for different locations against

the visit counts of the subjects to these locations and

their staying-durations. In general, it is evident that

the locations with higher visit counts or higher staying

durations, which should typically represent routine lo-

cations, are indeed associable with lower values of DSR

(representing higher routine-strength).

To further evaluate the intuitive value of the es-

timated DSR signal, Fig. 6 (a) visualizes a part of

the complete time-slotted location data (on the left)

of a single subject alongside the corresponding color-

gradient plot of the estimated DSR values (on the

right). For further ease in analyzing the variation in

routine behavior, we separately plot the data for week-

days of this subject in the upper part of the figure and

the weekend-days in the lower part. Moreover, for the

DSR values, the colors vary between dark green, for

strong routine behavior (or DSR = 0), and bright red,

for strong out-of-routine behavior (or DSR = 1).

From the complete data of this particular subject,

we could infer that location ID 18 was his home loca-

tion and location ID 21 was his dominant work loca-

tion. Looking closely at the DSR estimates in Fig. 6

(a), we can deduce that our algorithm can detect the

out-of-routine behavior of the subject being at home

during weekdays, as marked by 1 . Notably for this

case, the DSR values gradually indicate a stronger de-

viation from routine behavior near the middle of the

day (brighter red color) due to the otherwise strong

work routine during this time. On weekends however,

staying at home (ID 18) is intuitively considered rou-

tine behavior for this subject indicated by dark green

color. Naturally, our algorithm also detects visits to pre-

viously unseen locations as strong out-of-routine behav-

Title Suppressed Due to Excessive Length 13

Hour of day

Location Data Estimated DSR

W
e
e
k

d
a
y
s

W
e
e
k

e
n

d
s

Hour of day

1

2 ? ? ?2

(a)

Hour of day Hour of day

(home-ID: 12, work-ID: 0) (home-ID: 3, work-ID: 1) (home-ID: 1, work-ID: 0)

Hour of day

(b)

Fig. 6: (a) Side-by-side comparison of time-slotted location data and the estimated DSR values for a single subject.

The DSR values vary between strong routine (dark green color) and strong out-of-routine movements (bright red

color) (b) Plots of estimated DSR values for three different subjects, labeled with their corresponding home and

work location-IDs.

Pre-comp
0

1,000
2,000
3,000
4,000
5,000

Ti
m

e
(m

s)

Online
0

100
200
300
400
500

(a)

0 100 200
visit count

0.00
0.25
0.50
0.75
1.00

D
S

R

Pears. Corr.= -0.31

(b)

1 2 3 4 5 6 7 8
stay duration (hours)

0.00

0.25

0.50

0.75

1.00

Pears. Corr.= -0.26

(c)

Fig. 7: (a) Run-time performance results for our DLR

estimation algorithm. (b) DSR vs. number of visits to

different locations. (c) DSR vs. duration of visit to dif-

ferent locations.

ior, e.g., location ID 25 as marked by 2 on the figure.

This is realized by adding a pseudo state in the Markov

chain of the subjects which has a non-zero probabil-

ity of being visited due to the application of additive

smoothing.

Similarly, part (b) of Fig. 7 plots the estimated DSR

values for three other subjects in the dataset, while

also providing their inferred home and work location-

IDs. Here again, it is easy to see the intuitive trends

in variation of routine strength within individual days

(e.g., strong day-time work routine) and across week-

days and weekends (e.g., dominantly home-staying rou-

tine on weekends).

6.3 DSR and Information Sharing Policies

Before presenting the policy performance results, we

first discuss the considered performance metrics and

then describe the details regarding the compared

machine-learning algorithms.

6.3.1 Utility and Privacy Metrics

For any trained sharing policy, its performance is typi-

cally evaluated in actual usage by means of three well-

known metrics, namely, under-sharing, over-sharing,

and accuracy.

Under-sharing captures the proportion of unduly

suppressed events that the user actually wanted to

share, i.e., false negatives. Thus under-sharing mea-

sures the utility-loss of a sharing policy. In contrast, the

over-sharing metric represents the privacy-loss, which

is defined as the proportion of privacy-sensitive events

that are erroneously shared, i.e., false positives. Natu-

rally, an optimal sharing policy should minimize both

of these metrics. For readability, we refer to the under-

and over-sharing metrics as utility- and privacy-losses,

respectively, for the rest of the article.

Finally, the accuracy of a sharing policy evaluates

all of its decisions into a single measure and is defined

as follows:

Accuracy =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
(11)

where TP and FP represent true and false positives,

and TN and FN represent true and false negatives, re-

spectively.

6.3.2 Compared Policy Learning Algorithms

To enable performance comparison, we train three dif-

ferent algorithms that have been employed for policy

learning in existing literature [4,3,2], namely, Support

Vector Machines with RBF kernel (SVMs), Naive-Bayes

classifier (NB), and Location-sharing Rules (LR). For

14 Zohaib Riaz et al.

1 0.7 0.5 0.3 0.2 0.1

0.00

0.20

0.40

0.60

0.80

1.00

U
ti
lit
y−
lo
ss

1 0.7 0.5 0.3 0.2 0.1

0.00

0.20

0.40

0.60

0.80

1.00

Policy Algorithm

SVM LR NB

1 0.7 0.5 0.3 0.2 0.1

-0.20

0.00

0.20

0.40

0.60

0.80

1 0.7 0.5 0.3 0.2 0.1

0.00

0.10

0.20

0.30

0.40

0.50

Pr
iv
a
cy
−
lo
ss

1 0.7 0.5 0.3 0.2 0.1

0.00

0.10

0.20

0.30

0.40

0.50

1 0.7 0.5 0.3 0.2 0.1

-0.10

0.00

0.10

0.20

0.30

0.40

1 0.7 0.5 0.3 0.2 0.1
θ

0.00

0.20

0.40

0.60

0.80

1.00

A
cc
u
ra
cy

1 0.7 0.5 0.3 0.2 0.1
θ

0.00

0.20

0.40

0.60

0.80

1.00

1 0.7 0.5 0.3 0.2 0.1
θ

-1.00

-0.75

-0.50

-0.25

0.00

0.25

Training Performance Test Performance
Performance Difference

(Test - Train)

Fig. 8: Policy Performance results for c = 1. Column 1: training data, column 2: the test data, column 3: perfor-

mance difference. Each row accounts for different performance metrics.

SVMs and NB classifiers, we use 5-fold cross valida-

tion to select the best parameters. In contrast, the

LR classifier, as elaborated in Section 5, is a simplis-

tic, parameter-free algorithm and thus does not require

model selection.

Particularly, for RBF the kernel SVMs, we try 10

different values for both of its parameters (C and γ)

in the interval [10e − 3, 10e3], resulting in a total of

100 possible models. For NB classifier, we try out 10

different values of the smoothing parameter in the in-

terval [0, 2] for learning the conditional distributions of

the features given the classes. Considering the affect

of 5-fold cross-validation (cf. Section 3.4), the policy-

learning phase involves a total of 550 model-training op-

erations per subject (m∗k = (100×SVM+10×NB)∗5).

In general, this number could grow further if other al-

gorithms such as various types of decision trees are also

considered for model selection or if a more fine-grained

search of the best parameters is performed, thus caus-

ing an infeasible increase in the computational require-

ments for model selection on mobile devices.

In order to avoid bias in learning due to class im-

balance (70 % positive and 30 % negative sharing events

in our case), we setup the three learning algorithms to

be cost-sensitive, i.e., the positive and negative events

can be weighted differently. This also allows us to con-

duct different experiments with varying values of c, i.e.,

the relative cost/sensitivity of the private event. For

SVMs, the cost-sensitivity is implemented by appropri-

ately setting the class-weight parameter. For NB, the

prior class probabilities are appropriately adjusted. Fi-

nally, for LR, the c value is directly used as part of the

score function as discussed in Section 5. During model

selection, we pick those SVM and NB models which

yield the best accuracy, where the definition of accu-

racy is modified to include the affect of c by replacing

|FP | in denominator of Eq. 11 by (c ∗ |FP |).
We will present results for two values of c.

Title Suppressed Due to Excessive Length 15

1. c = 1: the privacy loss per FP decision is considered

equal to the utility loss per FN decision.

2. c = 1000: privacy loss per FP decision is considered

1000 times more costly.

6.4 Policy-performance Results

Recall that in order to select the set of high qual-

ity training examples Eθ (cf. Section 3.5) for policy

learning, the noise-confidence ηi associated with each

ei ∈ Eθ must satisfy ηi < θ. Also recall that we assume

ηi = DSR(ei), thus implying that the training exam-

ples with higher DSR values (stronger out-of-routine

behavior) are deemed more noisy.

For the case with c = 1, Fig. 8 presents the pol-

icy performance results for all subjects. Here, the three

rows of plots correspond to results related to the utility-

loss, the privacy-loss, and the accuracy metrics, respec-

tively. As labeled on the figure, the first and the sec-

ond columns of these plots show the training and the

test performances of the three classifiers. The third col-

umn summarizes the difference in performance between

the test and the training data. Ideally, if over-fitting is

avoided, this difference for all three metrics should be

zero, implying that the learned policy generalizes well in

actual usage. For each of these plots, we vary the value

of θ on the x-axis from 1 down to 0.1 thus selecting in-

creasingly in-routine training examples in Eθ. Also, we

compare the performance of the LR classifier trained

for the different values of θ with the performance of the

best SVM and NB models for θ = 1, i.e., over the full

training set (Eθ = E).

Beginning with the test-performance (middle col-

umn), we observe that for the full training data (θ = 1),

the three classifiers have varying performance. Consid-

ering utility-loss first, the SVM classifier performs the

best with a median value of 23 % whereas the NB classi-

fier performs the worst with a median of 38 %. Regard-

ing privacy-loss, the SVM and NB classifiers achieve

median values of 11 % and 6 % respectively. The rela-

tively higher value of privacy-loss for the SVM classifier

is explained by its significantly lower values of utility-

loss. In contrast, the LR classifier, while causing higher

utility-loss (median of 31 %) than the SVM classifier,

also yields the worst results for privacy-loss (median

value of 16 %).

This poor performance for the LR classifier for θ = 1

is caused due to over-fitting, which is evident by the

correspondingly high test-to-train median performance

differences of 20 %, 10 %, and 17 % for the utility-loss,

the privacy-loss, and the accuracy metrics, respectively,

as shown in third column of Fig. 8. However, as θ is

gradually decreased from 1 to 0.3, the median value of

privacy-loss for LR in the test-set reduces from 16 %

to 9 %, without increasing utility-loss. Moreover, the

third column also shows that at θ = 0.3, the test

and train median performance for all the three met-

rics differ minimally, thus indicating better generaliza-

tion. Reducing θ beyond 0.3 causes further decrease

of the median privacy-loss percentage for the LR pol-

icy, though this advantages comes at the cost of in-

creased utility-loss. However, in general, these results

strongly substantiate our hypothesis that training ex-

amples sampled from strong routine behavior lead to

better generalization of the over-fitting prone LR policy

and to a performance comparable to that of the cross-

validation-enabled, complex machine learning models.

For instance, at θ = 0.3, the performance of the LR

classifier is comparable to that of the SVM classifier at

θ = 1 for all the three metrics, where as at θ = 0.2,

its performance similarly compares to that of the NB

classifier.

1 0.7 0.5 0.3 0.2 0.1

0.00

0.20

0.40

0.60

0.80

1.00

U
ti
lit
y−
lo
ss

1 0.7 0.5 0.3 0.2 0.1

-0.20

0.00

0.20

0.40

0.60

0.80

Policy Algorithm

SVM LR NB

1 0.7 0.5 0.3 0.2 0.1

0.00

0.10

0.20

0.30

0.40

0.50

Pr
iv
a
cy
−
lo
ss

1 0.7 0.5 0.3 0.2 0.1

-0.10

0.00

0.10

0.20

0.30

0.40

1 0.7 0.5 0.3 0.2 0.1
θ

0.00

0.20

0.40

0.60

0.80

1.00

A
cc
u
ra
cy

1 0.7 0.5 0.3 0.2 0.1
θ

-1.00

-0.75

-0.50

-0.25

0.00

0.25

Test Performance
Performance Difference

(Test - Train)

Fig. 9: Policy Performance results for c = 1000. Col-

umn 1: test performance, column 2: test-to-train per-

formance difference.

In Fig. 9, we present the test performance (left)

and the test-train performance-difference (right) for the

three classifiers when c = 1000. Doing so biases the

three policy learning algorithms to minimize privacy-

loss at the expense of increased utility-loss. Accord-

ingly, the SVM and the NB classifiers cause almost no

privacy-loss in the test-set (see θ = 1), though the NB

16 Zohaib Riaz et al.

classifier achieves this at a significantly higher utility-

loss values with a median of 95 %.

As for the LR classifier, the same trend of decrease

in privacy-loss with lowering values of θ is observed. For

instance, at θ = 0.3, the median value of privacy-loss

for the classifier reaches 4 %, with a median utility-loss

of 47 % compared to that of 50 % for the SVM classifier

at θ = 1. Further lowering θ to 0.1 also enables a me-

dian privacy-loss of 0 % for the LR classifier, although

at higher median utility-loss of 71 %. We will shortly

present further results regarding this increased utility

loss.

Note that in Fig. 9, we also plot the performance of

SVM and NB classifiers for θ < 1 alongside the values

for the LR classifier. It is noticeable that for low val-

ues of θ, e.g., ≤ 0.2, the SVM classifier causes higher

utility-loss than LR for approximately the same amount

of privacy-loss. This also reflects in the median accuracy

values of the LR classifier, which are the highest in this

range of θ values. We take this result as a confirmation

that highly in-routine training examples contain reli-

able information regarding the actual sharing behavior

of users and hence over-fitting them actually improves

policy performance. Since the LR classifier is prone to

over-fitting in contrast to the cross-validation enabled

SVM classifier, it yields a lower utility loss with com-

parable privacy-loss for θ < 0.2.

6.4.1 Results for Variable Selection of θ per Subject

In both of the above experiments (with c = 1 and c =

1000), we noted the consistent result that privacy-loss

for the LR classifier decreased with lowering values of

θ from 1 to 0.3, without causing any visible increase in

the utility-loss. Beyond θ = 0.3 however, the decrease

in privacy-loss came with significant increase in utility-

loss. The main reason for this outcome was found to

be the lack of enough training examples for some of

the subjects. For a clearer analysis of LR classifier’s

performance for strongly in-routine training examples,

we performed another experiment by selecting different

values of θ for each subject such that at least a decent

proportion of the training examples was included in Eθ.

Particularly, for any given subject, we initially de-

termine the value of θ, denoted θ10, which allowed the

inclusion of the 10 percent most in-routine training ex-

amples in Eθ. Next, we set θ = θ10 if θ10 ∈ [0.1, 0.3].

Otherwise, θ is snapped to the nearest of boundary of

this interval. In contrast to a fixed value of θ = 0.1

for all subjects, this methodology attempts to include

more in-routine training examples in Eθ (bounded by

θ ≤ 0.3) for those subjects who have θ10 > 0.1.

No
. ex

am
ple
s

Ut
ilit
y−
los
s

Pr
iva
cy
−lo

ss

Ac
cu
ra
cy

0.00

0.20

0.40

0.60

0.80

1.00

Va
lu
e

Train Test

Fig. 10: LR policy performance results with flexible se-

lection of θ for data subjects.

In Fig. 10, we present the performance of the LR

policy for c = 1000 when θ is selected according to the

above defined methodology. Note that apart from the

utility-loss, privacy-loss, and the accuracy metrics, the

figure also plots the distribution of the proportion of

training examples in Eθ for the subjects. As expected,

the median number of examples is 10 %. If we com-

pare these results with the ones at θ = 0.1 in Fig. 9,

we observe a significant improvement in the LR policy’s

performance with slight increase in the median privacy-

loss (from 0 % to 2 %). Particularly, the median utility-

loss decreases remarkably by approximately 21 % (from

71 % to 50 %). This in turn shows a significant increase

in the median accuracy of the LR policy by approxi-

mately 13 % (from 49 % to 62 %), making it compara-

ble to the SVM classifiers accuracy of 65 % at θ = 1.

Thus flexible selection of θ, that ensures the inclusion

of a small percentage of strongly in-routine samples in

Eθ, does offer a simple and effective way of learning

high-performance location sharing policies.

6.5 Pros and Cons of the DSR-aware LR Policy

Learning

Based on the above evaluation results, we now discuss

the drawbacks and advantages of using the LR classifier

in conjunction with the DSR information for learning

location-sharing policies.

From the policy-performance perspective, we have

seen that the LR classifier can indeed perform compa-

rably to complex classifiers such as the SVMs, when it

is trained using increasingly in-routine examples. The

only drawback visible from the above results is the

slightly higher privacy-loss (by 2 %) for the LR clas-

sifier, when it is highly undesired, i.e., c = 1000. This

drawback can be attributed to the algorithmic simplic-

ity underlying the LR classifier (look-up tables), which

in turn represents reduced computational complexity of

Title Suppressed Due to Excessive Length 17

training the sharing policies. In contrast, recall that we

trained 500 SVM and 50 NB models for each subject

for model selection.

It is also noticeable from our results that, even for

the SVM or the NB classifiers, a 0 % privacy-loss may

be achieved at different values of c for different subjects.

Moreover, unnecessarily high values of c may cause un-

wanted utility-loss such as that for the NB classifier

when c = 1000. Thus in a real training scenario, a user

may have to try a few values of c before being satis-

fied with the estimated policy performance. Such in-

teractive training imposes an even stricter requirement

on the response-time of the training process for prac-

tical usability. Note that trying out different values of

c for typical machine-learning classification algorithms,

e.g., SVMs using their class-weight parameter, requires

their complete retraining, which translates to complete

re-executions of the costly model selection procedure.

In contrast, the LR classifier can efficiently adjust to

changes in c since the underlying look-up tables remain

unchanged. The value of c is only used to compute the

score function during decision making (cf. Section 5).

Hence the performance of the LR classifier for different

values of c may be efficiently estimated on the training

data.

Finally, by selecting more in-routine training exam-

ples for policy training, we define a systematic method-

ology for collecting training data. As shown in Fig. 10,

the actual number of training examples in Eθ for learn-

ing the LR-based high-performance policies can be as

low as 10 % of that in the full training-set E. Thus

if a-priori estimation of policy-performance, which re-

quires training examples over the full spectrum of user-

movements (routine or non-routine), is not deemed im-

portant, then an LR-based policy may be learned over

a relatively small number of strongly in-routine train-

ing examples. As is demonstrated by our evaluation re-

sults, such strongly in-routine training examples likely

lead to high-performance location sharing policies. In

other words, the number of in-situ questions posed to

the users for collecting their policy-training data can be

significantly lowered, thus reducing the amount of the

required, manual user-input.

We also note that the set of in-routine training ex-

amples can also be used to bootstrap active-learning

based policy-learning approaches [4]. While these ap-

proaches incrementally improve their performance over

time by asking for user-input for “difficult” location re-

quests, they initially need a basic dataset to become

functional, which could be provided based on DSR-

aware sampling.

7 Conclusion

In this article, we have proposed a novel algorithm

for efficiently determining a user-mobility-based sig-

nal, namely, the dynamic strength of movement rou-

tine (DSR), on resource-constrained mobile devices. We

not only demonstrated its efficient performance, we also

showed that the estimated DSR signal can be used to

improve the learning of location-sharing policies for so-

cial network users who want to automate the process

of privacy-preserving information sharing with their

online contacts. In particular, we showed that high-

performance location-sharing policies, that exhibit low

privacy and utility losses, can be learned efficiently us-

ing computationally simple algorithms on mobile de-

vices. To achieve this, we improve training data qual-

ity by filtering out noisy training examples using the

DSR signal. Overall, our results increase the usability

of location-sharing policies on mobile devices.

Acknowledgements We will like to thank Mr. Murat Ünal
for useful early discussions on the concepts in this article. This
research is a part of project PriLoc (Privacy-aware Location
Management) of the University of Stuttgart funded by the
German Research Foundation (DFG) grant RO 1086/15-2.

References

1. Acquisti, A., Grossklags, J.: Privacy and rationality in
individual decision making. IEEE Security and Privacy
3(1), 26–33 (2005)

2. Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Cap-
turing location-privacy preferences: quantifying accuracy
and user-burden tradeoffs. Personal and Ubiquitous
Computing 15(7), 679–694 (2010)

3. Bigwood, G., Ben Abdesslem, F., Henderson, T.: Pre-
dicting location-sharing privacy preferences in social net-
work applications. In: Proceedings of the First Workshop
on recent advances in behavior prediction and pro-active
pervasive computing (AwareCast) (2012)

4. Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M.,
Gazaki, M., Hubaux, J.P.: A machine-learning based ap-
proach to privacy-aware information-sharing in mobile
social networks. Pervasive Mob. Comput. 25(C), 125–
142 (2016)

5. Consolvo, S., Smith, I.E., Matthews, T., LaMarca, A.,
Tabert, J., Powledge, P.: Location disclosure to social re-
lations: Why, when, & what people want to share. In:
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’05, pp. 81–90. ACM,
New York, NY, USA (2005)

6. Eagle, N., Pentland, A.S.: Reality mining: sensing com-
plex social systems. Personal and ubiquitous computing
10(4), 255–268 (2006)

7. Eagle, N., Pentland, A.S.: Eigenbehaviors: identifying
structure in routine. Behavioral Ecology and Sociobi-
ology 63(7), 1057–1066 (2009)

8. Eagle, N., Quinn, J.A., Clauset, A.: Methodologies for
continuous cellular tower data analysis. In: Interna-
tional Conference on Pervasive Computing, pp. 342–353.
Springer (2009)

18 Zohaib Riaz et al.

9. Ekroot, L., Cover, T.M.: The entropy of markov trajec-
tories. IEEE Transactions on Information Theory 39(4),
1418–1421 (1993)

10. Fang, L., Lefevre, K.: Privacy wizards for social network-
ing sites. In: Proceedings of the 19th International Con-
ference on World Wide Web, WWW ’10, pp. 351–360.
ACM, New York, NY, USA (2010)

11. Farrahi, K., Gatica-Perez, D.: What did you do today?:
discovering daily routines from large-scale mobile data.
In: Proceedings of the 16th ACM international conference
on Multimedia, pp. 849–852. ACM (2008)

12. Forney, G.D.: The viterbi algorithm. Proceedings of the
IEEE 61(3), 268–278 (1973)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer (2003)

14. Kafsi, M., Grossglauser, M., Thiran, P.: The entropy of
conditional markov trajectories. IEEE Trans. Informa-
tion Theory 59(9), 5577–5583 (2013)

15. Kafsi, M., Grossglauser, M., Thiran, P.: Traveling sales-
man in reverse: Conditional markov entropy for trajec-
tory segmentation. In: Data Mining (ICDM), 2015 IEEE
International Conference on, pp. 201–210. IEEE (2015)

16. Kelley, P.G., Hankes Drielsma, P., Sadeh, N., Cranor,
L.F.: User-controllable learning of security and privacy
policies. In: Proceedings of the 1st ACM Workshop on
Workshop on AISec, AISec ’08, pp. 11–18. ACM, New
York, NY, USA (2008)

17. Lipford, H.R., Besmer, A., Watson, J.: Understanding
privacy settings in facebook with an audience view. In:
Proceedings of the 1st Conference on Usability, Psychol-
ogy, and Security, UPSEC’08, pp. 2:1–2:8. USENIX As-
sociation, Berkeley, CA, USA (2008)

18. Mcinerney, J., Stein, S., Rogers, A., Jennings, N.R.:
Breaking the habit: Measuring and predicting departures
from routine in individual human mobility. Pervasive
Mob. Comput. 9(6), 808–822 (2013)

19. Patil, S., Lai, J.: Who gets to know what when: Configur-
ing privacy permissions in an awareness application. In:
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’05, pp. 101–110. ACM,
New York, NY, USA (2005)

20. Patil, S., Norcie, G., Kapadia, A., Lee, A.J.: Reasons, re-
wards, regrets: Privacy considerations in location sharing
as an interactive practice. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security (SOUPS
’12), pp. 5:1–5:15. ACM, New York, NY, USA (2012)

21. Ravichandran, R., Benisch, M., Kelley, P.G., Sadeh,
N.M.: Capturing social networking privacy preferences.
In: Proceedings of the 9th International Symposium on
Privacy Enhancing Technologies, PETS ’09, pp. 1–18.
Springer-Verlag, Berlin, Heidelberg (2009)

22. Riaz, Z., Dürr, F., Rothermel, K.: Understanding vulner-
abilities of location privacy mechanisms against mobility
prediction attacks. In: Proceedings of the 14th EAI Inter-
national Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, Melbourne, Aus-
tralia, November 7-10, 2017., pp. 252–261 (2017)

23. Roberts, S.G., Dunbar, R.I.: Communication in social
networks: Effects of kinship, network size, and emotional
closeness. Personal Relationships 18(3), 439–452 (2011)

24. Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P.,
Prabaker, M., Rao, J.: Understanding and capturing peo-
ple’s privacy policies in a mobile social networking ap-
plication. Personal Ubiquitous Comput. 13(6), 401–412
(2009)

25. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits
of predictability in human mobility. Science 327(5968),
1018–1021 (2010)

26. Toch, E., Cranshaw, J., Drielsma, P.H., Tsai, J.Y., Kel-
ley, P.G., Springfield, J., Cranor, L., Hong, J., Sadeh,
N.: Empirical models of privacy in location sharing. In:
Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, UbiComp ’10, pp. 129–138.
ACM, New York, NY, USA (2010)

27. Wellman, B., Wortley, S.: Different strokes from differ-
ent folks: Community ties and social support. American
journal of Sociology 96(3), 558–588 (1990)

28. Wiese, J., Kelley, P.G., Cranor, L.F., Dabbish, L., Hong,
J.I., Zimmerman, J.: Are you close with me? are you
nearby?: Investigating social groups, closeness, and will-
ingness to share. In: Proceedings of the 13th International
Conference on Ubiquitous Computing, UbiComp ’11, pp.
197–206. ACM, New York, NY, USA (2011)

