
Dynamic QoS-Aware Traffic Planning for
Time-Triggered Flows with Conflict Graphs

Technical Report TR-2021-01

Jonathan Falk, Heiko Geppert, Frank Dürr, Sukanya Bhowmik, and
Kurt Rothermel

University of Stuttgart
Institute for Parallel and Distributed Systems (IPVS)

Universitätsstraße 38
70569 Stuttgart, Germany

May 5, 2021

Many networked applications, e.g., in the domain of cyber-physical systems, require
strict service guarantees, usually in the form of jitter and latency bounds, for time-
triggered traffic flows. It is a notoriously hard problem to compute a network-wide traffic
plan that satisfies these requirements, and dynamic changes in the flow set add even more
challenges. Existing traffic-planning methods are ill-suited for dynamic scenarios because
they either suffer from high computational cost, can result in low network utilization, or
provide no explicit guarantees when transitioning to a new traffic plan that incorporates
new flows.

Therefore, we present a novel approach for dynamic traffic planning of time-triggered
flows. Our conflict-graph based modeling of the traffic planning problem allows to
reconfigure active flows to increase the network utilization, while also providing per-flow
QoS guarantees during the transition to the new traffic plan. Additionally, we introduce
a novel heuristic for computing the new traffic plans. Evaluations of our prototypical
implementation show that we can efficiently compute new traffic plans in scenarios with
hundreds of active flows for a wide range of scenarios.

1 Introduction

Driven by so-called cyber-physical applications in domains such as the Industrial Internet of Things
(IIoT), automotive systems, or smart grid infrastructures, we observe a strong trend towards
deterministic real-time communication. This trend manifests itself in recent initiatives from major

1

Falk, Geppert et. al. 1 Introduction

standardization bodies: For LANs, the IEEE has standardized several extensions to IEEE Std.
802.3 networks (Ethernet), subsumed under the term Time-Sensitive Networking (TSN). TSN in
particular describes extensions such as the Time-Aware Shaper (TAS) to support time-triggered, i.e.,
scheduled traffic flows [1]. A similar quest for deterministic networking can be observed for routed
networks as standardized by the IETF Working Group for Deterministic Networking (DetNet) [2].
Motivated by these trends, we address the problem of traffic planning, i.e., how to compute

routes and schedules that provide these deterministic guarantees. These schedules could, e.g.,
be implemented by reserved transmission windows using the TAS. It turns out that already the
calculation of transmission schedules alone often is an NP-hard problem, for instance, related to
the well-known Job Shop Scheduling Problem [3], and if the routes are not given, we have to add a
dimension (space) to the scheduling problem. This traffic planning problem is often addressed for
static, a-priori known sets of flows. However, dynamic changes in the flow set often arise naturally,
e.g., when attaching or physically moving a sensor or machine in a smart factory [4], or—in the
future—in the backbone of vehicular communication scenarios [5, 6].

If we consider dynamic scenarios where flows can be added dynamically, the existing approaches
come with serious drawbacks. Early approaches for static traffic planning using Integer Linear
Programming (ILP) or Satisfiability Modulo Theory (SMT) [7, 8], although theoretically finding
exact solutions or a proof of infeasibility, practically are often limited to small scenarios, and exhibit
long runtimes. Therefore, fast(er) heuristics [3, 9] for static planning have been presented which
raises the question whether static planning approaches could be employed in the context of dynamic
traffic planning. Conceptually, there are two straight-forward options:
We could “freeze” every active flow, and run the static traffic planning only for the new flows.

This amounts to defensive planning, and we can find defensive planning approaches in the literature
[10], too. Defensive planning approaches do not change the configuration of active flows in order to
add new flows. In other words, defensive planning takes the configuration of active flows for granted
and uses the remaining network resources for routing and scheduling new flows. While defensive
planning never affects the quality of service (QoS) of active flows, it might utilize network resources
in a suboptimal way.
In contrast, offensive planning allows for reconfigurations of some active flows when adding new

flows. While those approaches guarantee deterministic communication in the long run, they may
cause short-term degradation of QoS, where both the degree and time of degradation is limited.
While offensive planning allows for better utilization of network resources, it requires applications
that can tolerate controlled fluctuations of QoS. A straight-forward way to perform offensive planning
with static planning approaches is executing the static traffic planning again from scratch each time
new flows are to be added. However, this provides no control over QoS degradation experienced by
an individual flow. Worse yet, we might even have to suspend the emission of new packets for some
time to ensure that the new traffic plan is not disturbed by old packets or, if technically possible,
drop these old packets, and usually we cannot guarantee that the new plan still includes all priorly
active flows.

To overcome these issues, we propose a different approach for dynamic traffic planning that allows
reconfiguring active flows (offensive planning) while also providing bounded QoS degradation during
the transition to the new traffic plan. In detail, the contributions of this paper are twofold:

• We present a novel approach for dynamic traffic planning for time-triggered flows using the
zero-queuing principle [3, 11]. Our approach supports offensive traffic planning with seamless
transitions from the old traffic plan to the new traffic plan, i.e., a traffic plan update does not
require artificial pauses of sender nodes or dropping packets. Additionally, our approach can

2

Falk, Geppert et. al. 2 Related Work

guarantee per-flow bounds on the QoS degradation during the transition from the old traffic
plan to the new traffic plan.

• We present a novel heuristic for the underlying optimization problem which we have to solve
to obtain a new traffic plan. In particular, we use a conflict-graph based modeling [12] for the
traffic planning. The conflict-graph based modeling is well-suited for dynamic traffic planning
because the conflict graph embeds a large portion of the knowledge about the solution space
from the previous traffic plan, and thus reduces the effort required to compute the new traffic
plan. Computing a new traffic plan requires to solve a variant of the independent colorful
vertex set problem with weighted colors. Our evaluations show that our novel heuristic can
solve this problem for hundreds of flows in a fraction of the time required by a state-of-the-art
optimizer.

Following the related work discussion in Sec. 2, we introduce our system model, modeling concepts,
and problem statement in Sec. 3-4. We describe the traffic planning approach in Sec. 5–8, evaluate
our approach in Sec. 9 and conclude the paper in Sec. 10.

2 Related Work

Here, we concentrate on related work for traffic planning for deterministic networking.
Existing work on static planning can be roughly sorted in two categories: 1) approaches that rely

at the core on generic constraint programming frameworks at such as Integer Linear Programming
(ILP) [13, 14, 15, 7, 16] or Satisfiability Modulo Theories (SMT) [17, 18, 19, 20, 8] and 2) approaches
that use custom heuristics [3, 9, 21], or a combination of both [12]. Static planning approaches
require adaptions to be used for dynamic traffic planning. Modifications towards defensive planning
operate analog to incremental approaches [10, 22] and ensure that “nothing bad” happens when
new flows are added, because the traffic plan from each previous step remains immutable for the
future. However, defensive traffic planning prohibits to “correct” any past decision that may turn
out to have been sub-optimal when facing new flows. This can result in low network utilization if a
flow that has been added early on obstructs new flows.
This could be overcome by offensive planning that allows to reconfigure active flows. In theory,

one can implement offensive planning by executing a “fast” static planning algorithm each time new
flows are added. The first problem is, how to ensure that this does not oust currently active flows,
because—without additional precautions—each update may remove active flows from the network,
e.g., to maximize the total amount of flows. Even if that was tolerable, we still have to put severe
restrictions on the network topologies and flow-deadlines, or, in general, we need a “guard interval”
between two subsequent traffic plans to protect the new packet from interfering with old packets, if
old packets cannot or must not be dropped in the network. By nature, static planning algorithms
do not account for old packets from a previous traffic plan which results in the mentioned problems
in dynamic scenarios.

Our novel approach fills the gap between defensive planning approaches and the lack of offensive
planning approaches which require no guard interval or packet drops. Additionally, our approach
can incorporate application-specific per-flow bounds on the (temporary) QoS degradation during an
update of the traffic plan. On top of that, our modeling approach allows reusing most of the state
which encodes the solution space from the previous step.

3

Falk, Geppert et. al. 3 System Model

3 System Model

We consider traffic flows in packet-switched data networks. A traffic flow is a directed sequence of
packets that is transmitted from a source node to a destination node through the network. The
network consists of infrastructure nodes (switches, routers), source nodes and destination nodes,
and controller nodes. Infrastructure nodes forward data packets via point-to-point links which
connect nodes. Source node and destination node are the origin and target of the packets of a flow,
respectively. Packets are sent and forwarded according to the global traffic plan. The traffic plan is
computed and disseminated by the planner, which is situated at the logically centralized controller
and has global view onto the network.

3.1 Flow Dynamics

Whenever a set of new flows are to be added to the network, the planner computes a new traffic plan.
Therefore, over time the planner computes a sequence of traffic plans, where a newly computed
traffic plan becomes the current plan, which replaces the old one. A traffic plan, say p, defines for
the set of flows admitted to the network when and along which routes the packets of the active flows
are transmitted.

We will use ActiveF(p) to denote the set of active, i.e., admitted flows of plan p. In the following,
we concentrate on the case that the planner only attempts to add new flows to the network. Removing
active flows is trivial from the perspective of the planner, cf. Sec. 6.2. Let ReqF(p) be the set of
flows the applications request to be added to the network, i.e., ReqF(p) are the requests received by
the planner while p is valid. By processing this request, the planner generates a new traffic plan
p′ with ActiveF(p′) \ActiveF(p) ⊆ ReqF(p), where p is the plan preceding p′. In the following, we
denote the current traffic plan by p (which becomes the old traffic plan after the update), and the
new traffic plan by p′.

3.2 Time-Triggered Traffic Flow

The notion of a traffic flow represents a directed communication channel from one source node to
one destination node. In the following, we focus on time-triggered flows that carry time-sensitive,
important information requiring deterministic QoS and no packet drops under normal operation
conditions, i.e., in absence of external failures such as power-loss, physical disturbances, which are
out of scope. Starting from the time of its activation, the source node of an active flow emits one
packet per transmission cycle. A transmission cycle is an interval of length tcycle. Transmission cycles
start at k · tcycle + t0, k ∈ N where t0 is a common time-reference. Source, destination, packet-size,
and tcycle, and end-to-end delay are flow parameters and do not change during a flow’s lifetime.
When an application requests a flow, it specifies the parameters in the request for the planner.

Conversely, the planner assigns a route, which connects source node and destination node, and
the phase φ to each active flow when computing the traffic plan. The value of φ is used by the
source node to schedules its packet transmissions at k · tcycle + φ+ t0, k ∈ N. The valid range of φ

is restricted to [0, tcycle − ttrans] with ttrans =
packet size
bandwidth being the transmission delay. Thereby, the

transmission of a packet on the outgoing link at a source nodes is confined within the transmission
cycle boundaries. Once the source node has sent a packet, the packet is forwarded by infrastructure
nodes to the destination node. Unless ambiguous, we omit the flow indices of flow properties, i.e.,
we use tcycle instead of tcycle(f).

4

Falk, Geppert et. al. 3 System Model

3.2.1 Flow Configuration

A flow configuration is one assignment of values to the phase and route of a flow. Since a continuous
time variable φ yields infinitely many flow configurations, we make some practical assumptions:
As proposed in [12], we use discrete time with appropriately mapped granularity, e.g., with 1 µs
resolution. Secondly, we also restrict the routing options to a set of candidate paths. Each candidate
path must not only be loop-free, but is also restricted in length by the end-to-end delay constraint
for each flow. We explain in Sec. 3.4 that zero-queuing provides a simple relation between path
length and end-to-end delay te2e. Depending on the scenario, e.g., highly meshed network and “large”
end-to-end delay bounds, we might still end up with impractical many candidate paths. Therefore,
we also upper-bound the number of candidate paths. Upon receiving a request to add a flow, the
planner then once computes a set of candidate paths for that flow, and assigns a path identifier π to
each candidate path of the flow. In our case, the planner uses Yen’s k-shortest path algorithm [23]
to compute the candidate paths. Hence, we can define a flow configuration with a tuple of integers
from a finite set.

Definition 1 (Flow Configuration). The tuple (f, φ, π) represents a flow configuration.

Remember, offensive planning allows reconfiguring active flows while a new plan is established.
Consequently, a flow may have different configurations over time. The notion config(f, p) identifies
the configuration of flow f while p is valid. If the planner decides to reconfigure f in a succeeding
plan p′, then config(f, p) 6= config(f, p′). We say that each reconfiguration of a flow generates a new
version of this flow, where each version exists as long as the corresponding plan is valid. To be able
to distinguish the various flow versions, we will use the notion 〈f, p〉, where flow f is associated with
plan p, i.e., config(f, p) is the configuration of 〈f, p〉.

3.3 Node Capabilities

We consider infrastructure nodes with store-and-forward behavior and FIFO queuing semantics per
output port. Infrastructure nodes provide facilities to forward packets along explicitly defined routes,
e.g., via SDN flow tables, VLAN tagging, explicit path control in IEEE Ethernet networks [24],
etc. Source nodes support time-triggered packet scheduling, i.e., it is possible to explicitly specify
the time of a packet transmission. Such functionality can be implemented in hardware, e.g., the
“LaunchTime”-feature in commodity NICs, or in software, e.g., TAPRIO or ETF queuing discipline
in Linux. Consequently, all nodes need synchronized clocks, e.g., using protocols such as Precision
Time Protocol (PTP). Support for multiple traffic classes, and time-triggered packet scheduling (e.g.
TAS, TTEthernet, etc.) in the infrastructure nodes is beneficial and can be used to protect the
scheduled transmission windows from cross-traffic due to unscheduled flows. (Note that schedules
and reserved transmission windows for mechanisms such as the TAS can effectively be derived from
the phase φ of the corresponding configuration [12]).
Before a node sends or forwards packets of a particular flow f , the controller propagates the

necessary flow information corresponding to config(f, p) to the respective nodes in the network. What
this entails is technology-specific, but includes routing entries and packet transmission schedules.
The flow information in the nodes, in particular routes and schedules, can be updated at runtime
by the controller. Flow information updates shall not affect in-flight packets to prevent network
update issues such as black-holing. This means, infrastructure nodes temporarily may have multiple
sets of flow information for each version of a reconfigured flow and deliver each packet according
to the flow configuration that was used by the source node when sending the packet. This can be

5

Falk, Geppert et. al. 4 Concepts and Problem Statement

φ

...

φ

time

tcycle

0 time

tcycle

0

accum.

network delay

tcycle tcycle

tcycle

Figure 1: Zero-queuing: Packets accumulate deterministic delay on the route to the destination.

achieved, e.g., by tagging packets with additional metadata, address schemes, etc. The controller
lazily purges obsolete flow information sets from the nodes once all old packets have been received
by the destination nodes.

We consider a network where all links operate with the same transmission speed. We denote the
processing delay of an infrastructure node by tproc, and the propagation delay on a link by tprop.
These values relate to hardware properties (switching fabric, cable length, etc.) and are therefore
considered constants. While it is not necessary for our approach that all nodes and links induce
the same processing delay and propagation delay, respectively, we omit node and link identifiers for
tproc and tprop in the following, i.e., assume they have same value network-wide.

3.4 Zero-Queuing

Our approach uses the zero-queuing principle [3, 11] where packets must not be buffered in the
network. Instead, packets always enter empty queues at each network element and are immediately
forwarded to the next hop. Zero-queuing can be achieved by a global coordination (here: in the
form of the traffic plan) of packet transmissions. If two flows violate the zero-queuing constraint, we
say they interfere.
Fig. 1 depicts a packet sequence of a time-triggered flow at different points in the network

with zero-queuing. The source node sends one packet per cycle on its outgoing link starting at
t0 + φ+ k · tcycle, k ∈ N. At each hop, packets accumulate only the (inevitable) delay which consists
of the time between receiving a packet and completing the forwarding of the packet on the next
link. The per-hop delay tperhop = ttrans + tprop + tproc can be computed from ttrans and the network
properties tprop and tproc. Thus, zero-queuing enables transmissions with bounded end-to-end delay
te2e = ttrans + tprop + l · tperhop + tsrc + tdst that depends on the number of hops l in-between source
and destination (i.e., l is the number of infrastructure nodes on the route), and processing delays of
source and destination node (denoted by tsrc and tdst), respectively.

4 Concepts and Problem Statement

We use a conflict-graph based approach to compute the new traffic plan. Conflict-graph based
modeling for static traffic planning was introduced in [12]. From a birds-eye view, the conflict-graph
based modeling represents flow configurations and their relations by vertices and edges in a so-called
conflict graph. A traffic plan can then be obtained from the conflict graph by searching for a set of
conflict-free configurations.

6

Falk, Geppert et. al. 4 Concepts and Problem Statement

fb

tt
ra

n
s

tp
ro

c
+

 t
p

ro
p

time

fa

a1

b1

b2

conflict

graph

processing

(a) Configurations and conflict: Flows must tra-
verse all links without buffering.

time0

<k,p'>

<f,p>

p is valid

p' is valid

start of hyper-cycle:

tact: p' becomes valid

cycle n

source node of <f,p>

emits last packet

old packets of <f,p>

still in transit

cycle 0 cycle 1

source node of <k,p'>

emits first packet

transition interval

(b) Old packets from p may interfere with new pack-
ets from p′ during the transition interval.

Figure 2: Flow interference can be caused by conflicting configurations and traffic plan updates.

Before we formally state our problem, we explain how these conflict-graph concepts relate to our
planning problem and extend these concepts for dynamic scenarios.

4.1 Configuration Conflict

Intuitively, we have a conflict between two configurations if packets would have to be transmitted
simultaneously on the same link to arrive at their respective destination without queuing. Since
packet transmission are serialized at each output port, we define configuration conflicts as a violation
of the zero-queuing constraint.

Definition 2 (Conflict). Let c1 and c2 be two different configurations. The two configurations are
in conflict, if any packet sent with c1 would be buffered due to a packet sent with c2, or vice versa.

This is illustrated in Fig. 2a. There is a conflict between configuration a1 for flow fa and
configuration b2 for flow fb, since the transmission at the source of fb is scheduled too early, and
packets sent with b2 would have to be buffered until the transmission of packets from fa is finished—
which violates the zero-queuing principle. In contrast, configuration a1 und b1 are conflict-free due
to the increased phase for packets of fb.

The zero-queueing constraint allows us to conflict-check pairs of configurations independently in
parallel. To compute whether two configurations conflict we have to check if the scheduled packet
transmissions are always temporally isolated on common edges. Due to the cyclic property of the
packet transmissions, we only check an interval of the length of a hyper-cycle of the two flows,
i.e., the least common multiple of their tcycle-values. However, packets may take longer than the
hyper-cycle to reach the destination. Therefore, we use modulo arithmetics to “fold” transmissions
crossing the hyper-cycle bounds back to the start of the interval.

4.2 Conflict Graph

We encode the relations and constraints between the configurations in a conflict graph. A flow
configuration is represented by a vertex in the conflict graph, and conflicts between configurations
of different flows are represented by edges in the conflict graph. For example, in Fig. 2a there is an
edge between configuration a1 and configuration b2.

A new version of the conflict graph is generated by modifying the old one whenever a new traffic
plan is to be computed. As will be seen below, a new version of the conflict-graph is generated by

7

Falk, Geppert et. al. 4 Concepts and Problem Statement

adding/removing configurations to the previous version and/or locking/unlocking configurations. In
the following, G(p) identifies the version of the conflict graph that is associated with plan p, i.e.,
G(p) has been used to compute p.
The conflict graph includes for each flow a set of potential configurations, which we will call

the flow’s candidate configurations, or candidates for short. We will use cand(f, p) to denote the
candidate set of flow f in G(p). We can interpret G(p) as a colored graph.

Definition 3 (Conflict Graph). The conflict graph G(p) is an undirected, vertex-colored graph
where all configuration vertices in cand(f, p) are colored by f . Two configuration vertices in G(p)
are connected by an undirected edge if and only if they belong to different flows and there is a conflict
between the two corresponding configurations.

To insert a configuration to G(p), we add it to the vertex set of G(p) and add an edge to every
other configuration in G(p) which conflicts with it. To remove a single configuration from G(p),
we remove the configuration from the vertex set of G(p), and delete all edges that exist to the
remaining configurations in G(p).

4.3 Global Traffic Plan

From the perspective of the planning problem, a traffic plan p provides a phase and route for each
flow f in ActiveF(p) such that all packet transmissions are isolated temporally and/or spatially, and
thus satisfy the zero-queuing principle. In other words:

Definition 4 (Traffic Plan). A traffic plan p is a set of conflict-free configurations for ActiveF(p)
in G(p) which contains exactly one configuration for each flow in ActiveF(p).

We say that traffic plan p admits flow f if p contains a configuration for f , i.e.,

admits(f, p) =

{

1 : if ∃ configuration for f ∈ p

0 : if ∄ configuration for f ∈ p
. (1)

Definition 5 (Independent Set). Denote by V the vertices in G(p), and denote by E the edges.
C ⊆ V is an independent subset of vertices in the conflict graph G iff ∀u, v ∈ C : (u, v) /∈ E.

With the correspondence vertex ↔ configuration and edge ↔ conflict, it is easy to see that a
traffic plan corresponds to a set of independent vertices in the conflict graph [12].
Note that G(p) possibly contains many different sets of conflict-free configurations. While it is

intuitively clear that we prefer to find a set of conflict-free configurations that admits all flows,
this may not always be possible. Therefore, we specify the objective that guides the search for the
configuration in Sec. 4.5.

4.4 Transition Interference

Assume that we have a new traffic plan p′ and want to replace the traffic plan p with p′. We call the
time a new traffic plan p′ becomes valid its activation time tact. To ensure that no source node is in
the middle of a packet transmission at the activation time of p′, and since the flows in Active(p) may
have different cycle times, we choose the start of a fresh hyper-cycle of all active flows in ActiveF(p)
as activation time, i.e., tact = t0 + k · lcmf (tcycle(f)).

8

Falk, Geppert et. al. 5 Constructing the Conflict Graph

However, at the time when the new traffic plan p′ becomes valid, the remaining yet-to-be-delivered
packets from 〈f, p〉, f ∈ ActiveF(p) are still in the network. If we do not take this into consideration,
this can result in transition interference, i.e., flow interference between the remaining old packets
from 〈f, p〉, f ∈ ActiveF(p) and the first packets from 〈k, p′〉, k ∈ ActiveF(p′).

Definition 6 (Transition Interference). Let p denote the traffic plan valid before tact and let p′

denote the new traffic plan with activation time tact. Transition interference is defined to be between
〈f, p〉, f ∈ ActiveF (p) and 〈k, p′〉, k ∈ ActiveF (p′) if any packet sent by the source node of 〈f, p〉
prior to tact is buffered due to a packet sent by the source node of 〈k, p′〉 from tact on, or vice versa.

We can algorithmically check whether transition interference occurs between 〈f, p〉 and 〈k, p′〉:
If the route of 〈f, p〉 and the route of 〈k, p′〉 have common links, and any packet from 〈f, p〉 sent
before tact is scheduled for transmission at any point in time when any packet sent by 〈k, p′〉 from
tact on is scheduled on a common link, transition interference occurs.

Transition interference is restricted to a possible zero-length time interval, the transition interval,
which starts at tact and is upper-bounded by the end-to-end delay of 〈f, p〉, cf. Fig 2b. In the
following, we only consider the case where transition intervals of different traffic plan updates are
mutually exclusive, i.e., we only consider a traffic plan p and its immediate successor p′.

4.5 Problem Statement

Let p be the traffic plan for the flows in ActiveF(p) computed from G(p), i.e., the packets of flows
in ActiveF(p) are transmitted according to p. Now applications request that a set of flows ReqF(p)
is added to the network. Our goal is to compute a new traffic plan p′.

To compute p′, we have to construct the new conflict-graph G(p′) and search for a set of conflict-
free configurations (i.e., independent vertices). In our case, we want to ensure that once the planner
added a flow to ActiveF(p), this flow remains active until the application itself indicates the flow
can be removed. This means, the planner shall not unsolicitedly evict any flow from ActiveF(p).
Consequently, the new traffic plan shall include a configuration for every flow in ActiveF(p) and as
many new flows as possible from ReqF(p). The different importance of active flows and new flows
results in the following objective.

Definition 7 (Traffic Plan Objective). Let G(p′) be a conflict graph which contains candidates for
all flows in ActiveF(p) ∪ ReqF(p) and ActiveF(p) ∩ ReqF(p) = ∅. We want to find a new traffic
plan p′ ⊆

⋃

f cand(f, p
′) that maximizes the objective

max
p′

∑

f∈ActiveF(p)

admits(f, p′) +
∑

f∈ReqF(p)

1

|ActiveF(p) ∪ ReqF(p)|
· admits(f, p′). (2)

The factor 1
|ActiveF(p)∪ReqF(p)| in Eq. 2 discounts the relative importance of flows in ReqF(p).

This means, any flow in ActiveF(p) is more “valuable” than all flows ReqF(p) combined. From a
graph-theoretic perspective, this is a specific colorful independent vertex set problem where we want
to find a set of independent vertices and each color has either unit weight or a weight inversely
proportional to the total amount of colors.

5 Constructing the Conflict Graph

Next, we explain how the planner constructs the new conflict graph G(p′) when processing ReqF(p).
With offensive planning, the planner has to consider both flow versions 〈f, p〉 and 〈f, p′〉 for each

9

Falk, Geppert et. al. 5 Constructing the Conflict Graph

active flow f , where p′ indicates the new plan replacing p. Remember that after installing p′, packets
from both 〈f, p〉 and 〈f, p′〉 may be in the network for some time. Therefore, it is not sufficient
to only avoid conflicts between any new flow versions 〈f, p′〉 which would suffice in the static case.
Instead, the planner additionally has to ensure that any 〈f, p〉 does not interfere with any other flow
〈k, p′〉. This leads to the following requirements:

R1 For all k, f ∈ ActiveF(p′), 〈k, p′〉 does not interfere with 〈f, p′〉 for k 6= f , i.e., active flows of
the new plan do not interfere.

R2 For all k ∈ ActiveF(p) and f ∈ ActiveF(p′) \ ActiveF(p), 〈k, p〉 does not interfere with 〈f, p′〉.
That is, the active flows of the old plan do not interfere with the flows added to the new plan.

R3 For all k, f ∈ ActiveF(p), 〈k, p〉 does not interfere with 〈f, p′〉. That is, the active flows of the old
plan do not interfere with their versions in the new plan. Note, if f = k, then we consider the
old and new version of the same flow, 〈f, p〉 and 〈f, p′〉. Since packets from 〈k, p〉 and 〈f, p′〉
may populate the network at the same time, we have to ensure that no transition interference
occurs.

R1 is a basic requirement, which is sufficient for defensive planning. Allowing for reconfigurations of
active flows, however, we must add R2 and R3 to ensure the zero-queuing constraint. In order to
fulfill R1 the planner has to make sure that the configurations associated with flows in ActiveF(p′)
are not in conflict. This can be achieved by adding candidate configurations for each flow in ReqF(p).
The expanded conflict graph is the basis for solving the planning problem as stated above.

Now let us see, how additionally R2 and R3 can be guaranteed. Note that the interference
of two flows/flow versions implies that their configurations are conflicting, while the opposite is
not true. For example, if we ensure that the packets of one flow or flow version only enter the
network after all packets of another flow already left the network, these two flows do not interfere
even if their configurations are conflicting. Therefore, R2 can simply be fulfilled by postponing the
transmission of the added flows until all packets that belong to flow versions of p have died out.
Assume the transmission of packets of each flow 〈k, p〉 with k ∈ ActiveF(p) is stopped at time t.
All packets sent by these flows have left the network by t+ τ , where τ ≥ maxf (te2e(f)− tcycle(f))
is greater or equal to the largest transition interval of any flow f . If transmission of each 〈f, p′〉
with f ∈ ActiveF(p′) \ ActiveF(p) starts not before t + τ , then no flow 〈f, p〉 interferes with any
flow added to p′, even if their configurations conflict. Therefore, fulfilling R2 requires no special
treatment when constructing the conflict graph.

Fulfilling R3 the same way as R2 is definitely not desirable. While postponing the start of added
flows for a short time (usually a few µs) does not affect QoS, delaying data packets of an active
flow might degrade QoS substantially. Therefore, we have to make sure that the planner cannot
select configurations for active flows, which conflict with the old configurations of these flows. We
achieve this by locking those configurations the planner must not select for the new plan. Note
that the configurations to be locked depend on the old configuration of the active flows. Since the
configuration of an active flow may change from plan to plan, configurations are unlocked after the
new plan has been computed.

5.1 Adding Candidate Configurations

Since G(p) only contains candidates for flows in ActiveF(p), the planner has to generate and
inserts new candidate configurations for all flows in ReqF(p) to the G(p′). In principle, the planner

10

Falk, Geppert et. al. 5 Constructing the Conflict Graph

0

1

2

3

4

.
3210

...

...

π

φ

Δφ

(a) New candidates are generated by
traversing the φ-π-space.

a5

a2

a1

a3

b1

b3

b2a4

c1

 flows in ActiveF(p)

flow in ReqF(p)

locked config.

 (old) config(f,p)

(new) config(f,p')

(b) Example: 1-hop neighbors a1, b1 of active configs. are locked
in G(p′), a2, a3, b2 remain for the active flows.

Figure 3: The planner obtains new candidate configurations to add to the conflict graph by invoking
the configuration generators (a) and locks configurations causing transition interference
(b).

could add all candidates for each flow to G(p′). However, we know from the static flow planning
problem [12] that we can find a traffic plan for all flows even if the conflict graph contains just
a subset of all possible candidates of each flow. We exploit this and add only a limited number
(upper-bounded by a parameter nub) of candidate configurations for each flow in ReqF(p) to the
conflict graph.
Due to the nature of the traffic planning problem, it is often inherently difficult to identify

promising candidate configurations a-priori. In this paper, we therefore use the following heuristic:
For each flow, the planner has a stateful configuration generator that walks through the φ-π-space
and returns a new configuration each time it is invoked. Starting at φ = 0,π = 0, π is incremented
until all configurations for a particular value of φ have been covered, before increasing φ by ∆φ. If
φ +∆φ exceeds the allowed range for φ, φ is reset to the next, lowest uncovered phase-value, cf.
Fig 3a. In our case, the planner sets ∆φ to the 75-th percentile of the transmission duration of
all flows in G(p′), hence we expect that one to two phase increments suffice to resolve a possible
interference on a single link.

While it is obvious that we have to add candidates for flows in ReqF(p), we can also increase the
set of candidates for flows in ActiveF(p) in G(p′). Here, we add more configurations for each flow in
ActiveF(p) when processing ReqF(p) until the configuration generator has traversed the φ-range of
a flow for the first time. After that point, new configurations for active flows are only added if the
planner could not admit all flows from the previous request, i.e., a simple feedback loop controls the
growth of the conflict-graph. The larger cand(f, p′) the more of the solution space is covered, and
the more alternatives for an active flow “to make way” for flow in ReqF(p) exist. The planner could
also add the additional configurations for flows in ActiveF(p) when idle, i.e., while no ReqF(p) has
to be processed. Since the lifetime of active flows may differ, the planner should aim for balanced
number of candidates per flow in the long-term.

5.2 Locking Configurations

G(p′), generated as describe above, may include configurations that cause interference between
the old and new versions of active flows, violating R3. We yet have to make sure that the planner
cannot select configurations for active flows that violate R3. In detail, the following two conditions

11

Falk, Geppert et. al. 6 Computing the New Traffic Plan

have to hold:

1. For each f ∈ ActiveF(p), there exists no configuration c ∈ cand(f, p′) that results in a new
version 〈f, p′〉 that interferes with 〈f, p〉, i.e., the planner cannot assign a new configuration to
f , such that the old and new version of f interfere.

2. For each f, k ∈ ActiveF(p), k 6= f there exists no configuration c ∈
⋃

k cand(k, p
′) that results

in a new version 〈k, p′〉 which interferes with 〈f, p〉. That is, the planner cannot assign a new
configuration to f , which results in interference with an old version of any other active flow k.

We achieve both conditions by locking all those configurations in G(p′), which would violate one of
the conditions if selected by the planner.

To fulfill the first condition, for each f ∈ ActiveF(p) we have to visit each c ∈ cand(f, p′) in G(p′)
to check whether or not a new version of f that uses the visited candidate c results in transition
interference with the old version that uses config(f, p). If transition interference would occur, we
have to lock the candidate. Obviously, this ensures that the planner cannot select a candidate c for
config(f, p′) which could cause interference with 〈f, p〉. Note that the configuration graph includes
only edges for conflicting configurations of different flows. Therefore, we maintain an additional
data structure that allows efficient access to the candidates of a particular flow.
To fulfill the second condition, for each f ∈ ActiveF(p) we have to visit all 1-hop neighbors of

config(f, p) in the conflict graph, i.e., all candidate configurations of any flow other than f that
conflict with config(f, p). If a visited neighbor c is configuration of another flow k in ActiveF(p),
the planner checks for transition interference between a new version of k with configuration c and
〈f, p〉. If there would be interference, this configuration c is locked. Obviously, this prevents the
planner from selecting for any other k ∈ ActiveF(p) a candidate configuration c for config(k, p′)
which would cause interference. Note, here we just have to follow the edges of config(f, p) to access
the candidates potentially to be locked, cf. Fig. 3b.

5.3 (Permanently) Pinning Flows

To prevent the planner from ever reconfiguring an active flow f , we can permanently remove all
configurations of f other than config(f, p) from G(p), i.e., this pins an active flow to its configuration
for its whole lifetime. Obviously, this ensures config(f, p)=config(f, p′) for future updates. In
contrast, locking only temporarily excludes some candidates from p′.

6 Computing the New Traffic Plan

Once the new conflict-graph has been constructed by adding additional configurations and locking
currently “forbidden” candidate configurations, we have to compute the traffic plan. From a graph-
theoretic perspective, we can reduce the maximum (colorful) independent vertex set problem to the
problem of finding a traffic plan which maximizes Eq. 2. This means, unsurprisingly, that computing
a new traffic plan remains a NP-hard problem [25]. Therefore, we present a novel heuristic, namely,
the Greedy Flow Heap Heuristic (GFH). The name draws from the fact that the objective Eq. 2
improves with every additional flow included in the new traffic plan. Next, we describe the GFH in
detail, and explain our strategy to compute the new traffic plan.

12

Falk, Geppert et. al. 6 Computing the New Traffic Plan

6.1 Greedy Flow Heap Heuristic

From a birds-eye view, GFH is an iterative greedy approach that in each iteration computes ratings
for the configurations in G(p′) and adds the configurations with the best ratings to an intermediary
set of conflict-free configurations C. During the GFH execution C is always an independent vertex
set in G(p′). For the same flow f there may be multiple configurations in the final C returned by
the GFH, but we can only include one of these (we need only one route and phase) in a traffic plan.
In this case, we arbitrarily select one configuration for every flow with multiple configurations in C
since all configurations in C are conflict-free.
Before explaining the greedy strategy and how configurations are rated, we introduce some

terminology: C admits flow f , if it contains at least one candidate configuration for f . A configuration
c ∈ G(p′) is shadowed if at least one of its neighbors is included in C. Adding a configuration to
C shadows all its neighbors. Shadowed configurations are excluded from adding to C since they
conflict, i.e., are connected by an edge, with at least one of the configurations in C. A configuration
is solitary if it has no neighbors in c ∈ G(p′) and thus cannot conflict with any other configuration.
A configuration c is eligible for selection by the GFH algorithm if and only if c is neither shadowed,
nor c ∈ C.
The GFH algorithm initializes C with the set of all solitary configurations. Thereby, C already

admits all flows with solitary configurations without reducing the solution space. Then, configurations
for the remaining flows are iteratively added to C. If C does not admit all flows, GFH can be
executed repeatedly, i.e., we say re-run, with different starting conditions in an attempt to improve
the result. The number of re-runs (default nre-runs = 3) can be parameterized.

6.1.1 Configuration Selection Strategy

GFH being a greedy algorithm, the quality of the solution, i.e., how many flows can ultimately
be admitted, relies on the strategy we use to add configurations to C. GFH uses a hierarchical,
iterative strategy, first deciding on the next flow to process, and then selecting a configuration for
that flow. Remember that any active flow contributes more to the objective than all new flows taken
together. To prevent, that any configuration of a new flow shadows any active flow’s configuration
such that an active flow may not be admitted in C, we thus first process all flows in ActiveF(p),
before searching a configuration for new flows from ReqF(p).

The pseudo code to process a particular (sub-)set of flows, say searchF(p′) ⊆ ActiveF(p)∪ReqF(p)
is given in Alg. 2. We start by creating a min-heap that contains all flows from searchF(p′) not
already admitted by C (cf. Alg. 2, line 2). The flows in the min-heap are sorted according to the
number of remaining eligible configurations, i.e., flows with less eligible configurations are on top of
the heap. Ties are broken with the higher total degree of the configurations in cand(f, p′), because
a high total degree suggests a high chance that all configurations of the flow will soon become
ineligible. The unique flow identifier is used as final tie-breaker to get a deterministic algorithm.
Next, the heap is iteratively processed: The flow on top of the heap—the flow with the least

remaining eligible configurations—is removed from the heap, and we add the flow’s best-rated
configuration to C. Thus, flows with few eligible configurations are processed first. When a
configuration is added to C, the heap is updated and may be re-ordered.

6.1.2 Rating Configurations

The shadowRating value of a configuration is intended to capture the “cost” of selecting that
configuration in terms of the remaining solution space. For example, adding a configuration to C

13

Falk, Geppert et. al. 6 Computing the New Traffic Plan

Algorithm 1: shadowRating

input : configuration c

1 shadowRating = 0 ;
2 Fneig ← flows of all neighbors of c;
3 foreach fneig ∈ Fneig do

4 shadowCount ← number of eligible configurations of fneig in neighborhood of v ;
5 eligibleCount ← total number of eligible configurations in fneig;
6 δ ← shadowCount / eligibleCount ;
7 if δ = 1 then shadowRating=shadowRating+α ;
8 else shadowRating=shadowRating+δ ;

9 return shadowRating of c;

that shadows huge portions of the conflict graph is “expensive”. Conversely, the cost is lower the
less neighbors are shadowed. If neighbors are shadowed it is preferable to shadow configurations of
those flows with lots of remaining eligible configurations.

Algorithm 2: addConfigPerFlow

input : flows set searchF(p′), conflict-free configurations C
1 initialize empty heap;
2 ∀f ∈ searchF(p′) : if not admits(f, p′) then insert f into heap;
3 while heap 6= ∅ do
4 fmin ← pop fmin with least eligible configurations from heap;
5 csel ← eligible c of color fmin with smallest shadowRating(c);
6 add csel to C, update heap and shadowRating values;

7 return updated C;

This intuition is encoded in the pseudo code given in Alg. 1: We compute for each flow fneig in
the 1-hop neighborhood of c the share δ of this flow’s remaining eligible configurations that would
be shadowed by picking c. Configurations which are already shadowed are not taken into account.
The shadowRating ordinarily amounts to the sum over the δ values of c’s neighborhood—except if
adding c to C shadows all remaining eligible configurations of a flow (δ = 1). To disincentive the
selection of a configuration c which eclipses the remaining configuration of another flow, we add a
very large constant α (default α = 1000) instead of 1 to the shadowRating value of c. Note that the
shadowRatings can be computed in parallel, since we only have to read the neighbors of c.

To give a brief example how GFH works, we revisit the conflict graph given in Fig. 3b. As there
are no solitary configurations GFH starts with C = ∅. The active flows fa and fb are handled by the
first addConfigPerFlow call. Hence, the heap consists of these two flows where fa has five and fb
has three eligible configurations, respectively. First, the best configuration of flow fb is calculated
since fb has less eligible configurations. Since b1 shadows all configurations of fc, b1 gets a very high
shadowRating whereas b2 gets the best rating and is added to C, since it only shadows a2. Second,
flow fa is processed. Here, a3 has the lowest shadowRating (a4 and a5 are locked) and is added to
C. Finally, addConfigPerFlow is called the second time with searchF(p′) = {fc} since fc is the only
new flow to add. Thereby, c1, which the only configuration of fc, is added to C.

6.1.3 Re-run Mechanism

The re-run mechanism can be used to improve the number of flows admitted by C. Remember that
the order of the flow sub-sets for which we execute addConfigPerFlow implicitly assigns priorities to

14

Falk, Geppert et. al. 7 Installing the Plan

those subsets. Therefore, for each re-run we split both ActiveF(p) and ReqF(p) into two sub-sets
each: one subset contains all flows which were previously admitted by C, and another subset contains
those flows which could not be admitted previously.
Flows which are not admitted by the previous C seemed to be particularly “problematic” in the

previous run. Hence, this time, we invoke addConfigPerFlow for those flows first. As a result, we call
addConfigPerFlow on the four flow sub-sets in the following order: 1) previously not by C admitted
flows from ActiveF(p), 2) previously by C admitted flows from ActiveF(p), and 3), 4) equivalently
for flows in ReqF(p). This can improve the objective value, but it is not guaranteed. Re-runs are
performed either until C admits all flows, or we run out of re-runs. In the latter case, the GFH
algorithm returns the C with the highest objective value seen so far.

6.2 Rejecting and Removing Flows

If ReqF(p) contains flows that are not admitted by C, the planner rejects the corresponding flows.
All candidate configurations for a rejected flow are consequently purged from G(p′). Similarly,
applications could indicate to the planner that active flows shall be removed from the network, in
which case the planner also purges the corresponding candidate configurations from the conflict
graph.

6.3 Optimization: Progressive Strategy for Offensive Planning

The planner employs locking and GFH in a two-phase meta-strategy for offensive planning:
In the first, defensive phase, for each flow in ActiveF(p) every configuration in cand(f, p′) \

config(f, p) is locked in G(p′), i.e., we conserve the configuration of all active flows. Then G(p′)
exposes only one configuration per active flow and all candidates for new flows to the GFH. If we
already find a traffic plan p′ for ActiveF(p) ∪ ReqF(p) we are done, and usually saved computation
time since the GFH considers fewer configurations.

Only if we cannot admit all new flows, we lift the conservative locks (configurations which cause
transition interference, cf. Sec. 5.2 remain locked) and expose the “full” conflict-graph to the GFH.
This second phase widens the search space for the GFH at the expense of longer runtime, and active
flows now may be reconfigured. If the GFH rejects any active flows in the second phase, we revert
to the result from the first phase which is guaranteed to include all active flows in the new traffic
plan p′.

7 Installing the Plan

After having computed the new plan, the controller must propagate sub-plans to the nodes in the
network. The sub-plan sent to a particular infrastructure node defines how the nodes are supposed
to route incoming packets, when to reserve transmissions windows for these packets, and when the
new plan becomes active, i.e., the traffic plan’s activation time tact.
Obviously, to make the nodes to agree on the new traffic plan and its activation time amounts

to a consensus problem. For the sake of simplicity, we will assume here that neither controller nor
nodes fail. Otherwise, a consensus protocol is needed taking into account those failures, and which
takes special action if consensus cannot be achieved before the new plan’s activation time. Those
protocols are beyond the scope of this paper.

15

Falk, Geppert et. al. 8 QoS Considerations

Here, we assume that the controller has a real-time control channel to each network node. These
channels are established when the network is initialized, and they are not subject to reconfigurations.
Since the configurations of control channels are fixed, e.g., implemented with pinning, their associated
QoS is not subject to degradation. With real-time channels and an upper-bound on the time between
receiving a new sub-plan and the time it takes the node to enact it, i.e., how long it takes the node
to update routing entries and transmission schedules, the controller can set the activation time to
a hyper-cycle boundary in the future. Pushing the activation time farther into the future allows
alternative control channel implementations with higher worst-case delay bounds than time-triggered
flows. For instance, in networks with TAS, we could use a separate traffic class with bandwidth
guarantees.

As discussed in Sec. 5, the controller has to postpone the activation time for sources of new flows
after the transition interval whereas this is not necessary (and it would also be impractical) for
infrastructure nodes that forward packets of new flows. Postponing the activation of a new source
practically means to add an offset of ⌈ ttransit

tcycle
⌉ · tcycle for each new flow to the activation time, where

ttransit is the duration of the longest transition interval.

8 QoS Considerations

The reconfiguration of active flows can degrade the QoS by introducing jitter. Since we aim
for deterministic real-time communication, we must also quantify and possibly contain the QoS
degradation caused by reconfigurations to a level acceptable by the applications. Next, we study
how the reconfiguration of an active flow can degrade QoS. The level of degradation depends on
the “distance” of the flow’s old and new configuration, i.e., the phase shift and the difference in the
lengths of the routes. After showing how these properties affect QoS degradation, we present a way
how applications can control the degree of degradation.

8.1 Computing QoS Degradation

Without reconfiguration, the destination node of an active flow receives the next packet every tcycle
seconds after the reception of the previous packet, and packets are received in the order they were
sent from the source node. Now assume, a new traffic plan p′ supersedes p, and an active flow
f ∈ ActiveF(p) is reconfigured, i.e., config(f, p) 6=config(f, p′). W.lo.g., the activation time of the
new traffic plan p′ is the start of the n + 1-th cycle of f . Consequently, the point in time t′rx
when the destination node receives the n+ 1-th packet, which is sent with config(f, p′), may differ
from the point in time trx when the destination would have received the n+ 1-th packet without
reconfiguration, i.e., if the n+ 1-th packet would have been sent with the old config(f, p), cf. Fig 4.
We call the magnitude of this deviation ∆t = t′rx − trx the (reconfiguration) jitter. ∆t can be
computed with the following theorem.

Theorem 1 (∆t). After a reconfiguration of flow f from (f, φ, π) = config(f, p) to (f, φ′, π′) =
config(f, p′), the arrival of the new packets at the destination node deviates by ∆t = (φ′ − φ) +
(l(π′)− l(π)) · tperhop from their respective scheduled arrival according to previous config(f, p) with
l(∗) denoting the number of infrastructure nodes on the candidate path with index ∗.

Proof. W.lo.g. we use the start n-th cycle as reference time tref. In the n-th cycle, the source node
starts transmitting the n-th packet at tref + φ. The reception of this packet by the destination node
starts at tref + φ+ tsrc + ttrans + tprop + l(π) · tperhop + tdst (cf. Sec. 3.4). If p remained valid, the

16

Falk, Geppert et. al. 9 Evaluation

p is valid p' is valid

trx scheduled start of reception n+1-th

packet without reconfiguration

at source node

at destination node

time

time
tact, p' becomes valid

...

...cycle n

trx' start of reception of

actual n+1-th packet
Δt

tcycle

tref=t0+(n-1)·tcycle

n+1n n+k

n+k nn-1n+1

ntransition packets

tref=t0+(n-1)·tcycle

Figure 4: Reconfiguration of an active flow can temporarily cause jitter and packets re-ordering.

reception of the n+ 1-th packet then would start tcycle later at trx = tref + φ+ tsrc + ttrans + tprop +
l(π) · tperhop + tdst + tcycle.

However, the new plan p′ and thus config(f, p′) becomes valid at tref + tcycle, which is the start of
the n+ 1-th cycle. The reception of the n+ 1-th packet sent by the source node with config(f, p′)
start at t′rx = tref + tcycle + φ′ + tsrc + ttrans + tprop + l(π′) · tperhop + tdst at the destination node. By
inserting these values, we get ∆t = t′rx − trx = (φ′ − φ) + (l(π′)− l(π)) · tperhop.

If ∆t > 0, there is an additional delay between the last packet of 〈f, p〉 and the first packet of
〈f, p′〉. If ∆t < 0, the new packets from 〈f, p′〉 arrive “too early”. Potentially, this can lead to
a situation, where packets from 〈f, p′〉 overtake the last packets from 〈f, p〉 in the network if the
relative end-to-end deadline is allowed to be greater than the cycle time. We can upper bound the
number of packets which possibly arrive in a different order than the order in which they were sent,

and do not have an inter-arrival time tcycle by ntransition ≤ 2 ·
⌈

|∆t|
tcycle

⌉

.

8.2 Restricting QoS Degradation

Applications can provide the planner with QoS degradation constraints in the form of thresholds
on |∆t| and the number affected packets. If the destination node has no facilities to handle packet
reorderings, e.g., has no buffer, then such constraints can be used to ensure that all packets are
received in the send order. The QoS degradation constraint results in the following condition for
G(p′):

QoS condition For each f ∈ ActiveF(p), there exists no configuration c ∈ cand(f, p′), where the
reconfiguration from config(f, p) to c exceeds the threshold on |∆t|.

Analog to Condition 1 from Sec. 5.2, we can prevent reconfigurations that violate the QoS condition
via locking. This can be achieved with minimal overhead since the planner anyway traverses
c ∈ cand(f, p′), and only needs to check the QoS condition for each candidate c of f that is not
locked already due to transition interference.

9 Evaluation

We evaluated a prototypical C++-implementation of the planner with pre-generated flow-request
sequences. Starting with the previous traffic plan p and ActiveF(p), the planner processes ReqF(p)

17

Falk, Geppert et. al. 9 Evaluation

Table 1: Overview of evaluation scenario parameters.

Fig. |ActiveF(p)| |ReqF(p)| flows to remove nub tcycle [µs] npath network

5a 500 25 (poiss.) 25 (poiss.) ≤ {50,100} {250,500,1000,2000} 3 ring(64,3)
5b,5c 800 50 (poiss.) 50 (poiss.) ≤ {50,100} {250,500,1000,2000} 3 ring(64,3)

6 250 25 (det.) 25 (det.) ≤ 100 {200,250,500} 3 ring(64,3)

7a, 7b 500 50 (det.) 50 (det.) ≤ 100 {250,500} 5 var., 49 nodes
7a, 7c 500 50 (det.) 50 (det.) ≤ 100 {250,500} 5 var., 81 nodes

ttrans (packet size) ∈ {1 µs,3 µs,5 µs,12 µs}, i.e., packets sizes: 125B – 1500B on links with 1Gbit s−1

flow clusters ∈ {1, 2, 4, 8, 16, 32} (constrained by |ReqF(p)| and amount of flows to remove)

network parameters processing delay tproc = 2µs, propagation delay tprop = 1µs

and requests for removal of active flows from ActiveF(p) in one step and validates the absence of
configuration-conflicts in the new traffic plan. By default, we used a desktop-grade computer with
Intel i7-10700K (8 cores) and 16GB RAM for the evaluations.

Tab. 1 gives an overview over the evaluation parameters which are derived from typical industrial
use cases. For each flow, we draw the values for ttrans and tcycle uniformly at random from the
respective set. The number of new flows to add, i.e., |ReqF(p)| and the number of flows to remove is
either drawn from a truncated Poisson distribution (poiss.) with averages as stated in Tab. 1, or is
deterministic (det.) for each processing step. We place/remove the flows in clusters in the network
to simulate control units connected to multiple sensors and actuators, i.e., all flows in a cluster start
or target one common “cluster” node. For example, to add 25 new flows the request may contain
three clusters off size 1, 8 and 16 flows, respectively, or any other combination that adds up to 25
flows. By default, 20% of the new flows are pinned permanently, and we limit ∆t for each remaining
active flow to tcycle − ttrans such that packets arrive in order at the destination node.
In Tab. 1, column nub denotes the limit of the number of candidate configurations the planner

may add for each flow to G(p′), and npath is the upper bound of candidate paths per flow. In
column network, ring(n, k) denotes a circular network with n nodes where each node is connected to
the next k nodes in both directions (resulting in equal node-degrees and equal number of alternative
paths between any pair of nodes).

9.1 Runtime

We evaluated 60 scenarios wrt. runtime for each combination of average active flows (500, 800) and
per-flow candidate set increment limit (50, 100). Fig. 5 shows the results for 35 processing steps,
and we measured up to 9.072GB RAM usage by the planner. We plot the total runtime for each
processing step in Fig 5a and 5b which includes the time to compute the candidate paths for new
flows, all the operations on the conflict-graph (adding, locking, pinning and removing candidate
configurations) and the GFH runtime. We use the first 10 (16) processing steps to initialize the
conflict graph from scratch by requesting only new flows to be added until ActiveF(p) contains 500
(800) flows. During these initialization steps, we observe an increasing total runtime. In Fig. 5a
the runtime per step plateaus (mean: 8.24 s, nub=50; 9.2 s, nub=100) after the initialization steps.
Here, the conflict graph size remains “stable”, i.e., the planner effectively exchanges 25 active flows
(and their configurations) against 25 new flows (and the respective new configurations).

In Fig. 5b, the runtime continues to grow after the initial 16 steps (max: 146.83 s for nub=50;

18

Falk, Geppert et. al. 9 Evaluation

0 10 20 30
req. no.

0

10

20

30

40
to

ta
l p

ro
ce

ss
. [

s]

nub
 50.0
 100.0

(a) Total runtime per processing
step (±500 active flows).

0 10 20 30
req. no.

0

100

200

300

to
ta

l p
ro

ce
ss

. [
s]

nub
 50.0
 100.0

(b) Total runtime per processing
step (±800 active flows).

0 10 20 30
req. no.

0

5

10

15

re

je
ct

ed
 fl

ow
s

nub
 50.0
 100.0

(c) Rejected new flows per step
(±800 active flows).

Figure 5: Runtimes and number of rejected flows per processing step (500 and 800 active flows).

307.72 s for nub=100). This behavior can be explained with Fig. 5c. Fig. 5c is a scatter plot of
the number of “rejected” new flows for the scenarios with 800 flows, i.e., we plot for each scenario
how many new flows the planner did not admit in new traffic plan. As discussed in Sec. 5.1, the
planner adds more candidates for active flows after the first pass over the φ-π-space if flows from
the previous request had to be rejected. This feedback loop causes the planner to grow the conflict
graph more aggressively. The effects of varying how many additional candidates the planner can
add at most to the conflict graph for each can also be observed: if the planner may add up to 100
additional candidates per flow it can admit more new flows, but in turn we observe generally longer
runtimes. In the scenarios with 800 flows the planner rejected on average 0.84 (0.23) flows per
request after the initialization steps for nub = 50 (nub = 100) per step.

9.2 Comparison

Next, we compare defensive and offensive traffic planning wrt. the network utilization, and show
that new algorithms such as the GFH are required to make offensive traffic planning feasible. The
evaluation scenarios vary with respect to how many flows are permanently pinned (abbr. perm. pin)
on average to their (initial) configuration. We increase the ratio of pinned flows from 0% to 100% in
20%-increments and evaluated 40 scenarios for each step. Here, there is no QoS restriction on ∆t
for each active flow that can be reconfigured.

In Fig. 6b, we plot the cumulative number of flows rejected by the planner over the 14 processing
steps. By pinning every active flow (cf. w/o reconfiguration, permanently pinning 100% of flows in
Fig. 6), our approach performs defensive traffic planning, which results in a total of 62.5 rejected
new flows on average. In comparison, if the planner performs offensive traffic planning less than half
as many flows —30.4 flows on average—are rejected (cf. w/ reconfiguration, permanently pinning
0% of flows in Fig. 6).
Next, we show that the GFH algorithm pushes the boundary of scenarios that can be tackled

with offensive traffic planning far beyond what is possible with state-of-the-art methods. To also
answer, how “optimal” the GFH results are, we compare GFH against an ILP solver since Eq. 2 and
the required conflict-freeness for candidates in G(p′) can be expressed with linear expressions. We
saved the conflict graph instances from the last four processing steps from Fig. 6b—presumably the
largest conflict graphs in each scenario—to disk, and solved the corresponding ILP instances with a
tool-chain using Julia [26], JuMP [27] and Gurobi v9.1.1 [28]. The ILP solver had a runtime limit of
5min (GFH max=8.3 s), and GFH and ILP solver were limited to using 16 threads. Due to the higher

19

Falk, Geppert et. al. 9 Evaluation

0 5 10
req. no.

0

20

40

60

80

 re
j.

re
qs

.

w/o reconf.

0 5 10
req. no.

w/ reconf.

(a) Cumulative rejected flows (thin lines: per
scenario, thick line: average).

0 20000 40000 60000 80000 100000120000
total candidates in G(p′)

1.0

0.5

0.0

0.5

1.0

 re
je

ct
s

p.pin
0%
20%
40%
60%
80%
100%
ILP
timeout
compl.

(b) Frequent timeouts of the ILP solver for larger
conflict graphs result in worse results than
GFH.

Figure 6: Flow reconfiguration can improve the number of admitted new flows, but results in large
conflict graphs which can only be processed with novel algorithms such as GFH.

memory requirements (up to 56.694GB) of the ILP tool chain, we used a server-grade computer with
two AMD EPYC 7401 processors (each 24 cores) and 256GB RAM. Fig. 6a plots for each processing
step the relative difference in the number of rejected new flows ∆rejects = rejects GFH−rejects ILP

new flows (total)

over the number of candidate configurations in the conflict graph. If the ILP solver rejected fewer
flows, i.e., computed a better result we have ∆rejects > 0, and vice-versa. In Fig. 6a, the ILP solver
could provide better solutions for small conflict graphs, and, except for a few outliers where GFH
reverted to the result from the first phase, the advantage of the ILP over GFH is small. Yet, once
conflict graphs contain 30’000 or more candidate configurations, the ILP solver frequently hits the
time-limit (for 0% pinned flows: GFH avg=4.9 s±1.8 s; ILP avg=290.7 s±71.4 s) and cannot produce
a traffic plan which admits many new flows. This means, that offensive traffic planning is limited to
either small scenarios or a small fraction of the flows (cf. pinning 80% of all flows) without the GFH
algorithm.

9.3 Network Topology

To investigate the effects of network topology and network size, we generated scenarios for networks
with 49 nodes and 81 nodes for different graph models, namely, Waxman, Price, ring(n, k), and
Erdős-Rényi, using graph generators from [29, 30] We evaluated 60 scenarios for each size-topology
combination with active 500 flows on average. After the initialization the planner tries adding 50
new flows and removing 50 active flows in each step.
The average total runtimes after initialization and warm-up steps are plotted in Fig. 7a. We

observe that a larger network does not per-se result in higher runtimes or bigger conflict graphs, cf.
Fig 7b, 7c. Waxman networks with 49 nodes result in the largest conflict graph sizes overall and
highest average (60.5 s) and maximal (283.72 s) total runtime per step. In Price networks with only
one path between every two nodes, the planner cannot resolve conflicts via routing. Compared to
the other topologies, on average in more than ten times as many new flows were rejected per step
(49n. avg=10.4 rej./step; 81n. avg=11.6 rej./step) in scenarios with Price network topologies. In
scenarios with Price networks, GFH often required all re-runs, and we measured the third-highest
total runtimes.

20

Falk, Geppert et. al. 10 Conclusion and Outlook

waxman
price ring

erdos
0

20

40

60

to
ta

l p
ro

ce
ss

. [
s]

nodes
49
81

(a) Per-step total runtime.

0 1 2
total candidates in G(p′)1e5

0

1

2

3

4

co
nf

lic
ts

 in
 G

(p
′)

1e8
topology
waxman
price
ring
erdos

(b) Conflict graph (49 nodes).

0.0 0.5 1.0 1.5 2.0
total candidates in G(p′)1e5

0.0

0.5

1.0

1.5

co
nf

lic
ts

 in
 G

(p
′)

1e8
topology
waxman
price
ring
erdos

(c) Conflict graph (81 nodes).

Figure 7: Impact of different network topologies on total runtime and conflict graph size.

10 Conclusion and Outlook

In this paper, we presented a novel approach for offensive dynamic traffic planning, which allows to
reconfigure active flows to achieve better network utilization, and a novel algorithm for computing
these traffic plans. We are able to quantify and control the QoS degradation a flow may suffer
during such reconfigurations. Our evaluations show that we can efficiently compute updated traffic
plans for scenarios with hundreds of active flows.

Interesting directions for future work include investigating memory-access optimized conflict graph
data-structures and the relaxation of the zero-queuing constraint, as well as protocols and concepts
for error-handling during the traffic plan deployment.

References

[1] IEEE Computer Society, “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), pp.
1–1993, 2018.

[2] N. Finn and P. Thubert, “Deterministic Networking Problem Statement,” RFC 8557, May
2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8557.txt

[3] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for IEEE Time-sensitive
Networks (TSN),” in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, ser. RTNS ’16. ACM, 2016, pp. 203–212. [Online]. Available:
http://doi.acm.org/10.1145/2997465.2997494

[4] P. Danielis, H. Puttnies, E. Schweissguth, and D. Timmermann, “Real- Time Capable Internet
Technologies for Wired Communication in the Industrial IoT-a Survey,” in 2018 IEEE 23rd
International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1,
2018, pp. 266–273.

[5] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, “Vehicular
Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards
and Solutions,” IEEE Communications Surveys Tutorials, vol. 13, no. 4, pp. 584–616, 2011.

21

https://rfc-editor.org/rfc/rfc8557.txt
http://doi.acm.org/10.1145/2997465.2997494

Falk, Geppert et. al. References

[6] O. Sadio, I. Ngom, and C. Lishou, “Design and Prototyping of a Software Defined Vehicular
Networking,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 842–850, 2020.

[7] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl, “ILP-based Joint
Routing and Scheduling for Time-triggered Networks,” in Proceedings of the 25th International
Conference on Real-Time Networks and Systems, ser. RTNS ’17, 2017, pp. 8–17. [Online].
Available: http://doi.acm.org/10.1145/3139258.3139289

[8] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic Planning for Time-Sensitive Communica-
tion,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 42–47, 2018.

[9] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler for time triggered
traffic in time sensitive networks,” ACM SIGBED Review, vol. 16, no. 1, pp. 15–20, 2019.
[Online]. Available: https://dl.acm.org/doi/10.1145/3314206.3314208

[10] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental Flow Scheduling and Routing in
Time-Sensitive Software-Defined Networks,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 5, pp. 2066–2075, 2018.

[11] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass: A
Centralized ”Zero-queue” Datacenter Network,” in Proceedings of the 2014 ACM Conference
on SIGCOMM, ser. SIGCOMM ’14. ACM, 2014, pp. 307–318. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626309

[12] J. Falk, F. Dürr, and K. Rothermel, “Time-Triggered Traffic Planning for Data Networks
with Conflict Graphs,” in 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020, pp. 124–136.

[13] A. Atallah, G. Bany Hamad, and O. Ait Mohamed, “Routing and Scheduling of Time-Triggered
Traffic in Time Sensitive Networks,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2019.

[14] J. Falk, F. Dürr, and K. Rothermel, “Exploring Practical Limitations of Joint Routing and
Scheduling for TSN with ILP,” in 2018 IEEE 24th International Conference on Embedded and
Real-Time Computing Systems and Applications, 2018, pp. 136–146.

[15] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive Software-defined Network (TSSDN)
for Real-time Applications,” in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, ser. RTNS ’16. ACM, 2016, pp. 193–202. [Online]. Available:
http://doi.acm.org/10.1145/2997465.2997487

[16] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing Message Routing and Scheduling
in Automotive Mixed-Criticality Time-Triggered Networks,” in Proceedings of the 54th Annual
Design Automation Conference 2017, ser. DAC ’17. ACM, 2017, pp. 48:1–48:6. [Online].
Available: http://doi.acm.org/10.1145/3061639.3062298

[17] S. S. Craciunas and R. S. Oliver, “Combined task- and network-level scheduling for distributed
time-triggered systems,” Real-Time Systems, vol. 52, no. 2, pp. 161–200, 2016. [Online].
Available: http://link.springer.com/10.1007/s11241-015-9244-x

22

http://doi.acm.org/10.1145/3139258.3139289
https://dl.acm.org/doi/10.1145/3314206.3314208
http://doi.acm.org/10.1145/2619239.2626309
http://doi.acm.org/10.1145/2997465.2997487
http://doi.acm.org/10.1145/3061639.3062298
http://link.springer.com/10.1007/s11241-015-9244-x

Falk, Geppert et. al. References

[18] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv Gate Control List Synthesis
Using Array Theory Encoding,” in 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2018, pp. 13–24.

[19] F. Pozo, G. Rodriguez-Navas, W. Steiner, and H. Hansson, “Period-Aware Segmented Synthesis
of Schedules for Multi-hop Time-Triggered Networks,” in 2016 IEEE 22nd International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016,
pp. 170–175.

[20] W. Steiner, “An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered Multi-hop
Networks,” in 2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 375–384.

[21] A. Syed and G. Fohler, “Efficient offline scheduling of task-sets with complex constraints on
large distributed time-triggered systems,” Real-Time Systems, vol. 55, no. 2, pp. 209–247, 2019.
[Online]. Available: https://doi.org/10.1007/s11241-018-9320-0

[22] R. S. Oliver, S. S. Craciunas, and G. Stöger, “Analysis of Deterministic Ethernet scheduling for
the Industrial Internet of Things,” in 2014 IEEE 19th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD), 2014, pp.
320–324.

[23] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,” Management Science, vol. 17,
no. 11, pp. 712–716, 1971.

[24] ISO, IEC, and IEEE, “ISO/IEC/IEEE International Standard – Information technology –
Telecommunications and information exchange between systems – Local and metropolitan area
networks – Specific requirements – Part 1Q: Bridges and bridged networks AMENDMENT 1:
Path control and reservation,” pp. 1–122, 2017.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability, ser. A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[26] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017. [Online]. Available:
https://doi.org/10.1137/141000671

[27] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathematical
optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[28] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020. [Online]. Available:
http://www.gurobi.com

[29] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and
function using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux,
T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[30] T. P. Peixoto, “The graph-tool python library,” figshare, 2014. [Online]. Available:
http://figshare.com/articles/graph tool/1164194

23

https://doi.org/10.1007/s11241-018-9320-0
https://doi.org/10.1137/141000671
http://www.gurobi.com
http://figshare.com/articles/graph_tool/1164194

	Introduction
	Related Work
	System Model
	Flow Dynamics
	Time-Triggered Traffic Flow
	Flow Configuration

	Node Capabilities
	Zero-Queuing

	Concepts and Problem Statement
	Configuration Conflict
	Conflict Graph
	Global Traffic Plan
	Transition Interference
	Problem Statement

	Constructing the Conflict Graph
	Adding Candidate Configurations
	Locking Configurations
	(Permanently) Pinning Flows

	Computing the New Traffic Plan
	Greedy Flow Heap Heuristic
	Configuration Selection Strategy
	Rating Configurations
	Re-run Mechanism

	Rejecting and Removing Flows
	Optimization: Progressive Strategy for Offensive Planning

	Installing the Plan
	QoS Considerations
	Computing QoS Degradation
	Restricting QoS Degradation

	Evaluation
	Runtime
	Comparison
	Network Topology

	Conclusion and Outlook

