

Universität Stuttgart
Fakultät 5

©

Prof. Baitinger, IPVS, Universität Stuttgart (2003)

Prof. Dr.-Ing. U. G. Baitinger

Technische Informatik I

Diplomstudiengang Softwaretechnik
2. Semester

ti-I

1 Der klassische Universalrechner

1.1 Das von Neumannsche Prinzip

1.2 Die Struktur des Universalrechners

Hauptspeicher, Befehlszähler,

Prozessor, Ein/Ausgabewerk

1.3 Digitale Prozessoren

Prozessorstrukturen

Befehlsformate

Ausführungsschritte

1.4 Digitale Steuerwerke

1.5 Digitale Rechenwerke

Digitale Funktionseinheiten

Wirkungsweise und Aufbau

1.6 Ein/Ausgabestrukturen

Kanal- und Buskonzept

ti-I

2 Schaltungsebene

2.1 Transistoren im Digitalbetrieb

Bipolare Transistoren als Schalter

MOS-Transistoren als Schalter

2.2 MOS-Technologie

Photolithographie

NMOS-Technologie

CMOS-Technologie

2.3 Chip-Layout

Full-Custom IC Layout

Semi-Custom IC Layout

2.4 MOS-Schaltungstechnik

Statische MOS-Logik

Statische CMOS-Logik

Dynamische Domino-Logik

2.5 MOS-Speicherschaltungen

Speichermatrizen (RAM)

Statische MOS-Speicherzelle

Dynamische MOS-Speicherzelle

ti-I

3 Logikebene

3.1 Die Darstellung von Schaltfunktionen

Indizierung, Funktionstabelle, KV-Diagramm

Strukturausdrücke, ausgewählte Schaltfunktionen

3.2 Kombinatorische Schaltungen („Schaltnetze“)

Darstellungsebenen und Entwurfsziele

Hauptsatz der Schaltalgebra

Minimierung nach Karnaugh-Veitch

Minimierung nach Quine-McCluskey

Lösung des Überdeckungsproblems

3.3 Sequentielle Schaltungen („Schaltwerke“)

Endliche diskrete Automaten

Elementare Schaltwerke

Entwurf von Schaltwerken

Kostenabschätzung

3.4 Programmierbare Digitalbausteine („PLD“)

Technologie und Schaltungstechnik

Logische Matrizen: ROM, PAL, PLA

Schaltwerksentwurf mit PLA

ti-I

4 Register-Transfer-Ebene

4.1 Begriffsbestimmungen

4.2 Verbindungsstrukturen

Decoder, Multiplexer und Demultiplexer

Sammelleitung („Bus“)

Registerspeicher und Speichermatrizen

4.3 Verarbeitungseinheiten

Arithmetisch/Logische Einheit (ALU)

4.4 Mikroarchitektur-Synthese

Verhaltensbeschreibung

Scheduling und Allocation

Zuordnung und Baustein-Auswahl

4.5 Pipelining

Befehlspipeline und Befehlsausführung

Mehrstufige Pipeline

4.6 Entwurf eines Datenpfades

ti-I

5 Algorithmische Ebene

5.1 Der Begriff des Algorithmus

5.2 Hardware-Beschreibungssprachen

HDL, VHDL, EDIF

5.3 Ein Entwurfsbeispiel

Verkehrsampelsteuerung

5.4 Der Entwurfsablauf

Deklaration der Systemtypen

Deklaration der Schnittstelle

Erstellen des Verhaltensmodells

Erstellen einer Testbeschreibung

Simulation des Verhaltensmodells

ti-I

6 Architekturebene

6.1 Systemspezifikation

6.2 Die DLX-Architektur

Ein hypothetischer RISC-Prozessor

Die Lade/Speicher-Maschine DLX

Daten- und Befehlsformate

Ausgewählte Maschinenbefehle

Vollständige Befehlsliste

ti-I

7 Hierarchie der Rechnersysteme

7.1 Die Entwicklung der Hardware

7.2 Der hierarchische Systementwurf

System- und Entwurfskomplexität

Zergliedernder Entwurfsstil („top-down design“)

Aufbauender Entwurfsstil („bottom-up design“)

7.3 Die Hierarchie der Entwurfsdaten

Rechnerarchitektur, Prozessor und Floorplan

Automat, Schaltwerk und Makrozellen

Zuordner, Schaltnetz und Zellen

Schaltglied, Schaltung und Polygone

7.4 Die Hierarchie der Entwurfsschritte

Spezifikation, logischer Entwurf

und physischer Entwurf

7.5 Der Entwurfsraum

Das „Y-Diagramm“ nach Gajski

Verhalten, Struktur und Geometrie

1 Der klassische Universalrechner

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.1 von 24

Stand: 13. Juni 2002

ti-I

1.1 Das von Neumannsche Prinzip

Arthur W. Burks, Hermann H. Goldstine, John von Neumann:
„Preliminary Discussion of the Logical Design of an Electronic Computing Instrument“,

Report to the U.S. Army Ordnance Department (1946).

Seit der Veröffentlichung dieses „vorläufigen“ Berichts durch John von Neumann umfaßt der klas-
sische Universalrechner („General Purpose Computer“) die folgenden Funktionseinheiten:

• Der

Hauptspeicher

 enthält sowohl Daten als auch Befehle, die einheitlich als „Informationen“
aufgefaßt werden. Der Speicherinhalt wird mit

bits

∈ {

0, 1}

 dargestellt, d.h. zweiwertig („binär“).
Der Hauptspeicher ist mit wahlfreiem Zugriff organisiert: Auf ein Datum oder einen Befehl kann
mittels einer Speicheradresse direkt zugegriffen werden („Random Access Memory“, RAM).

• Das

Steuerwerk

 nimmt Befehle aus dem Hauptspeicher entgegen, decodiert sie und erzeugt
daraus eine geeignete zeitliche Sequenz von Steuersignalen für das Rechenwerk (falls erforderlich
auch für andere Funktionseinheiten).

• Das

Rechenwerk

 nimmt Daten aus dem Hauptspeicher entgegen, verknüpft sie aufgrund der
genannten Steuersignale, d.h. nach Maßgabe der Befehle, und gibt das Ergebnis an den Haupt-
speicher zurück.

• Das

Ein/Ausgabewerk

 stellt die Kommunikation der oben genannten Funktionseinheiten mit den
angeschlossenen Peripheriegeräten her (Tastaturen, Bildschirme, Disketten, Magnetplatten und
dergl.).

Ferner hat der universell einsetzbare Digitalrechner nach John von Neumann et al. im wesentlichen
folgende Merkmale:

• Nicht nur die Daten, sondern auch die

Befehle sind veränderbar

 in einem Hauptspeicher vom
Schreib/Lese-Typ abgespeichert.

• Die Speicheradresse des Befehls, der als nächster ausgeführt werden soll, wird entweder implizit
durch einen

Befehlszähler

 oder explizit durch einen Sprungbefehl erzeugt.

• Zwischen Befehlen und Daten wird zeitlich unterschieden, indem abwechselnd zwei unterschied-
liche Phasen durchlaufen werden:

- Während der

Befehlsholphase

 wird der Hauptspeicher mit dem Inhalt des Befehlszählers oder
mit einer expliziten Sprungadresse adressiert. Die aus dem Speicher gelesene Information wird
an das Steuerwerk weitergegeben und als Befehl interpretiert.

- Während der

Befehlsausführungsphase

 wird der Hauptspeicher nacheinander mit zwei Oper-
andenadressen adressiert, die im Befehl enthalten sind. Die aus dem Speicher gelesenen Infor-
mationen werden als Daten behandelt, in das Rechenwerk eingegeben und dort entsprechend
dem Befehl verknüpft. Das Ergebnis wird in den Hauptspeicher geschrieben, meist an die Adres-
se des ersten der beiden Operanden.

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.2 von 24

Bild 1.1: Logische Struktur eines Universalrechners

Nach dem von Neumannschen Prinzip wird zwischen Befehlen und Daten

zeitlich

 unterschieden:

• Befehlsholphase:

Φ

A

 = 0

• Befehlsausführungsphase:

Φ

A

 = 1

Befehls-
zähler

Ein/Aus-
gabewerk

Programm-
speicher

Rechen-
werk

Steuer-
werk

Daten-
speicher

M
ux

D
ec

+1 Hauptspeicher

pe
rip

he
re

G
er

ät
e

D
em

ux

ΦA

Befehle

Befehle und Daten

Daten

Status Daten

Adressen

S
pr

un
g

0

1

0

1

1 Der klassische Universalrechner

Seite 1.3 von 24

Bild 1.2: Physische Struktur eines Universalrechners.
Dieser Ein-Chip-Mikrocomputer befindet sich auf einem Siliziumchip
von 25 mm

2

 Fläche.

Steuer-
werk

Rechen-
werk

Daten-
speicher

Programm-
speicher

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.4 von 24

1.2 Die Struktur des Universalrechners

Ob Materialbearbeitung mit Maschinen, Energieumwandlung mit Generatoren und Motoren oder
Informationsverarbeitung mit Computern - grundsätzlich gilt für jede Art von Verarbeitung: „Ein-
gabe

→

 Verarbeitung

→

 Ausgabe“. So betrachtet ist der Computer ein Spezialfall der Verarbei-
tungstechnik, indem er eine der drei genannten, naturwissenschaftlich relevanten Kategorien ver-
arbeitet.

Da ein komplizierter Verarbeitungsvorgang nicht in einem einzigen Schritt durchgeführt werden
kann, teilt man ihn auf in eine geeignete Folge einfacherer Schritte, d.h. in einen Steuerungsablauf,
der die zeitliche Abfolge der Verarbeitungsschritte steuert, und in die eigentliche Ausführung dieser
Verarbeitungsschritte.

Beim Computer erfolgt die Eingabe von Informationen in der Regel über eine Tastatur, ihre Ausgabe
am Bildschirm. Während der Verarbeitung kann ein Computer allerdings nicht ständig darauf war-
ten, daß alle Informationen über die Tastatur eingegeben werden. Deshalb werden zunächst alle
Daten und die damit durchzuführenden Verarbeitungsschritte, letztere in Form von Maschinenbe-
fehlen, in einen Speicher geladen. Die gespeicherten Befehle dienen zur Steuerung, die gespeicher-
ten Daten sind zur Ausführung bestimmt. Damit der Computer die Informationsverarbeitung selb-
ständig durchführen kann, wird die Steuerung als digitaler Automat implementiert. Ein nach diesem
Prinzip aufgebauter Computer ist als Universalrechner verwendbar („General Purpose Computer“).

Die Funktion des Universalrechners ergibt sich aus dem Zusammenspiel seiner funktionellen Ein-
heiten. Das

Steuerwerk

 holt aus dem

Programmspeicher

 den als nächsten auszuführenden Befehl
und teilt daraufhin dem

Rechenwerk

 mit, an welcher Stelle des

Datenspeichers

 die zugehörigen
Daten zu finden und wie diese miteinander zu verknüpfen sind. Das Rechenwerk führt die Verknüp-
fung aus, legt das Ergebnis im Datenspeicher ab und meldet dem Steuerwerk den Vollzug. Daraufhin
holt sich das Steuerwerk aus dem Programmspeicher den nächsten auszuführenden Befehl, und so
fort. Man pflegt den Daten- und den Programmspeicher des Universalrechners als einheitlichen

Hauptspeicher

 zusammenzufassen.

Da Steuerwerk und Rechenwerk eng gekoppelt sind, werden sie gemeinsam als

Prozessor

 bezeich-
net. Ein

Mikro-Prozessor

 ist demnach ein in höchstintegrierter, mikroelektronischer Technologie
(„Very Large Scale Intergration“, VLSI) hergestellter, in seinen Abmessungen extrem kleiner Pro-
zessor auf einem Siliziumchip von ca. 1,6 cm

2

 Fläche (1998), aber mit der Leistungsfähigkeit eines
Digitalrechners mittlerer Größenordnung.

Zusätzlich zu Bildschirm und Tastatur steht insbesondere zur Ein- und Ausgabe größerer Daten-
mengen eine Fülle externer Speichermedien zur Verfügung, wie Magnetbänder, -platten und -dis-
ketten, sowie Drucker aller Art. Den Ein-/Ausgabegeräten ist gemeinsam, daß sie als elektrome-
chanische Geräte im Vergleich zum Prozessor und zum Hauptspeicher, die beide in Siliziumtech-
nologie realisiert sind, relativ viel Energie benötigen und relativ langsam sind. Man braucht daher
zur Anpassung der Umgebung an den Rechnerkern, der wesentlich schneller arbeitet und einen weit
niedrigeren Energiebedarf aufweist, ein

Ein-/Ausgabewerk

, das seinerseits wie ein weiterer Pro-
zessor strukturiert ist.

1 Der klassische Universalrechner

Seite 1.5 von 24

Bild 1.3: Vom Prozess zum Universalrechner

Prozess

Eingabe Ausgabe

Automat (FSM)

Prozess

Rechenwerk Rechenwerk

Zustands-
speicher

Steuer-
speicher

Steuerwerk

Z

Automat (FSM)

Rechenwerk

Programmspeicher

Steuerwerk
Z
+1

Datenspeicher

Rechenwerk

Programmspeicher

Steuerwerk
Z
+1

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.6 von 24

1.3 Digitale Prozessoren

1.3.1 Prozessorstrukturen

In der technischen Informationsverarbeitung verwendet man die funktionelle Begriffskette:

Daten-Eingabe

→

Prozess

→

 Daten-Ausgabe

Der abstrakte Prozess muß zu seiner Ausführung auf einen konkreten

Prozessor

 abgebildet werden.
Tatsächlich ist es sogar so, daß der Prozess in eine

Programmstruktur

 abgebildet wird, die binär
codiert im Hauptspeicher des Universalrechners untergebracht ist. Die Begriffsklärungen sind je-
doch noch nicht abgeschlossen, was im übrigen für eine junge Wissenschaft wie die Informatik
charakteristisch ist:

• In der Steuerungstechnik faßt man den Hauptspeicher und das Steuerwerk „im engeren Sinn“ als

Steuerwerk

 „im weiteren Sinn“ zusammen.

• In der Rechnertechnik ist es üblich, das Steuerwerk „im engeren Sinn“ und das Rechenwerk als

Prozessor

 zusammenzufassen. Ferner faßt man Prozessor und Hauptspeicher als

Zentraleinheit

des informationsverarbeitenden Systems zusammen.

Prozessorstrukturen werden grundsätzlich aus zwei Anteilen gebildet:

•

Funktionseinheiten

 („Knoten“)

- zur Verarbeitung binär codierter Informationen durch ihre arithmetische oder logische Verknüp-
fung, z.B. im Rechenwerk („Arithmetic/Logic Unit“, ALU), und/oder

- zur Speicherung, wie Eingangs- und Ausgangsregister, Puffer- und Registerspeicher, FIFO-
Warteschlangen und LIFO-Stapelspeicher.

•

Strukturelemente

 („Datenpfade“)

- zur Kommunikation der Funktionseinheiten untereinander; ihre Topologie ist für die Prozessor-
struktur bestimmend.

- Als Strukturelemente werden entweder Punkt-zu-Punkt-Verbindungen verwendet, die indivi-
duell vermittelt und von der Informationsquelle zur -senke durchgeschaltet werden, oder

- gemeinsam genutzte Sammelschienen, die in einer Konferenzschaltung

für alle

 (lat.

omnibus

)
zur Verfügung stehen („Bus-Verbindungen“).

Bei nur einem Bus muß dessen Benutzung den einzelnen Funktionseinheiten zeitlich exklusiv
zugeteilt werden, bei mehreren Bussen sind zeitlich parallele Abläufe möglich, so daß Verarbei-
tungszeit eingespart werden kann. Ein elegantes Konzept zur Zeiteinsparung sieht vor, Informatio-
nen nacheinander auf einen Bus zu legen („Pipelining“); dazu sind zusätzliche Zwischenspeicher
zur Informationstrennung notwendig.

Heute haben sich Bus-Verbindungen auch innerhalb der Prozessoren durchgesetzt, so daß sie nach
ihrer internen

Bus-Struktur

 klassifiziert werden können.

1 Der klassische Universalrechner

Seite 1.7 von 24

1.3.2 Befehlsformate

Bild 1.4: Abstrakter Prozessor

Bild 1.5: Vier-Adress-Befehlsformat

Branch

Maschinenbefehle:
Operation, Operanden(-Adressen)Hauptspeicher

A.L.U.

ALU-Fkt.

Op-Code

Op-Code

Hauptspeicher

A.L.U.

Branch

ALU-Fkt.

Op-Code

Op-Code

Maschinenbefehle:
Operation, Operanden(-Adressen)

Op1. Ad Op2. Ad Res. Ad

Bef. Ad2

Op1. Ad Imm.Op Res. Ad

Verzw.
Beding. Bef. Ad1

Bef. Ad

Bef. Ad

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.8 von 24

Bild 1.6: Drei-Adress-Befehlsformat

Bild 1.7: Zwei-Adress-Befehlsformat

Hauptspeicher

A.L.U.

Branch

ALU-Fkt.

Op-Code

Op-Code

Maschinenbefehle:
Operation, Operanden(-Adressen)

Op1. Ad Op2. Ad Res. Ad

Op1. Ad Imm.Op Res. Ad

Verzw.
Beding. Bef. Ad

+1

+1

Hauptspeicher

A.L.U.

Branch

ALU-Fkt.

Op-Code

Op-Code

Maschinenbefehle:
Operation, Operanden(-Adressen)

Op1. Ad Op2. Ad

Op1. Ad Imm.Op

Verzw.
Beding. Bef. Ad

+1

+1

1 Der klassische Universalrechner

Seite 1.9 von 24

Bild 1.8: Ein-Adress-Befehlsformat

Bild 1.9: Zwei-Adress-Befehlsformat mit Registerspeicher

Hauptspeicher

A.L.U.

Branch

ALU-Fkt.

Op-Code

Op-Code

Maschinenbefehle:
Operation, Operanden(-Adressen)

Op. Ad

Imm.Op

Bef. Ad

Accu

+1

+1

Hauptspeicher

A.L.U.

Branch

ALU-Fkt.

Op-Code

Op-Code

Maschinenbefehle:
Operation, Operanden(-Adressen)

Op1. Ad Op2. Ad

Op1. Ad Imm.Op

Verzw.
Beding. Bef. Ad

+1

+1

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.10 von 24

1.3.3 Befehlsausführungsschritte

Ein digitaler Universalrechner verfüge über

• Zwei-Adress-Befehle und einen Registerspeicher („Lade/Speicher-Architektur“).

Nach dem von Neumannschen Prinzip durchläuft der Rechner während der Programmausführung
bei jedem Maschinenbefehl abwechselnd zwei unterschiedliche Phasen: die Befehlsholphase und
die Befehlsausführungsphase. Damit kann er jeden Maschinenbefehl seines Befehlssatzes in fol-
genden Schritten abarbeiten:

1. Befehl holen

(Instruction Fetch)

,

IF

d.h. Hauptspeicher mit Befehlszählerinhalt adressieren
und Befehlszähler erhöhen.

2. Befehl decodieren

(Instruction Decode)

ID

und Quellregisterinhalte in A- bzw. B-Register holen.

3. Befehl ausführen

(Execute)

EX

a) Lade-/Speicher-Befehl: effektive Hauptspeicheradresse berechnen
und Datenregister laden;

b)Verzweigungsbefehl: Zieladresse berechnen
und Verzweigungsbedingung setzen;

c) ALU-Befehl: Berechnung ausführen.

4. Speicherzugriff

(Memory Access)

MEM

a) Lade-Befehl: Daten vom Hauptspeicher ins Datenregister laden;
Speicher-Befehl: in umgekehrter Richtung speichern;

b)Verzweigungsbefehl: Zieladresse in Befehlszähler laden,
falls Verzweigungsbedingung erfüllt;

c) ALU-Befehl: (nichts)

5. Rückschreiben

(Write Back) WB

a) Lade-Befehl: Datenregisterinhalt ins Zielregister laden;
Speicher-Befehl: (nichts);

b)Verzweigungsbefehl: (nichts);

c) ALU-Befehl: Ergebnis ins Zielregister schreiben.

1 Der klassische Universalrechner

Seite 1.11 von 24

1.4 Digitale Steuerwerke

Ein digitales Steuerwerk kann als endlicher diskreter Automat betrachtet werden, wobei anzumer-
ken ist, daß hier ein Automat ein mathematisches Abstraktum und keine technische Vorrichtung ist.
Der Automat kann nur wohlunterschiedene („diskrete“) und abzählbare („digitale“) Zustände Zi
annehmen, deren Anzahl endlich ist („Finite State Machine“, FSM). Der Automatenzustand ist binär
codiert und in einem Register gespeichert. Mit n Bits lassen sich 2n verschiedene Automatenzu-
stände codieren, z.B. 28 = 256.

Die technische Implementierung eines Automaten wird Schaltwerk genannt. Es gibt unterschied-
liche elektronische Technologien, um Schaltwerke zu realisieren:

• In „maßgeschneiderter Logik“ werden die Automatenfunktionen durch individuelle, meist zwei-
stufige Schaltungen aus Und-Gattern gefolgt von Oder-Gattern realisiert.

• Bei regelmäßig strukturierten „Programmierbaren Logischen Anordnungen“ (PLA), die als elek-
tronische Digitalbausteine erhältlich sind, sind die Und-Gatter in einer sog. Und-Matrix, die Oder-
Gatter in einer Oder-Matrix zusammengefaßt.

• Bei Verwendung eines Festwertspeichers („Read Only Memory“, ROM) oder eines Schreib/Lese-
Speichers („Random Access Memory“, RAM) entspricht der Decoder der Und-Matrix, die Spei-
chermatrix der Oder-Matrix des PLA.

Vor allem bei der Alternative mit Speicherbausteinen wird die Verbindung zur Programmierung
deutlich: Die ROM/RAM-Anordnung kann prinzipiell als der Hauptspeicher eines Digitalrechners
betrachtet werden. Enthält die Speicheranordnung codierte Steuervektoren („Maschinenbefehle“),
so müssen sie durch ein nachgeschaltetes Steuerwerk decodiert und sequenziert werden, um daraus
eine geeignete Folge von Steuersignalen für das Rechenwerk zu erzeugen. Das Rechenwerk nimmt
Daten entgegen, verknüpft sie nach Maßgabe des aktuellen Maschinenbefehls und gibt das Ergebnis
aus. Da der Hauptspeicher ohnedies vorhanden ist, um das Programm zu speichern, wird er vergrö-
ßert und zusätzlich zur Datenspeicherung verwendet. Man beachte aber, daß die gespeicherten
Daten nicht zur Struktur und Funktion des Automaten gehören.

Eine digitale Steuerungsfunktion kann durch einen „Automatengraphen“ beschrieben werden, der
im Fall eines Prozessors eine charakteristische Topologie aufweist:

• die Decodierung des Operationscodes des aktuellen Maschinenbefehls während der Befehlshol-
phase wird durch eine mächtige Verzweigung dargestellt,

• die Befehlsausführungsphasen für die unterschiedlichen Befehlstypen durch weitgehend unver-
zweigte Ketten.

Wendet man das Prinzip des programmierten Automaten, der einen Befehlsspeicher enthält, rekursiv
auch auf das Steuerwerk an, so daß dieses ebenfalls einem Automaten in Form einer Speicherstruktur
entspricht, so bezeichnet man das darin enthaltene Steuerprogramm als Mikroprogramm, da es
hierarchisch unterhalb der Befehlsebene, d..h. des Hauptprogramms liegt und diese interpretiert.

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.12 von 24

Bild 1.10: Automatenstrukturen allgemeiner Steuerwerke (schematisch)

Bild 1.11: Automatengraph eines allgemeinen Steuerwerks (typisch vermascht)

fest
verdrahtetes
Schaltnetz

Zustands-
speicher

Zustands-
speicher

Folge-
zustände

Steuer-
vektoren

D
ec

od
er

X vom ge-
steuerten Werk

zum ge- Y
steuerten Werk

X vom ge-
steuerten Werk

zum ge- Y
steuerten Werk

Y7

X2

X3

Z1

Y5Y4

X3X2

Z2

Y6

X1

Z0

Y2Y1

X2X1

Y3

Z3

Y8

1 Der klassische Universalrechner

Seite 1.13 von 24

Bild 1.12: Programmspeicher und Prozessorsteuerwerk (schematisch, vereinfacht)

Bild 1.13: Automatengraph eines Prozessorsteuerwerks

fest
verdrahtetes
Schaltnetz

Zustands-
speicher

Programm-
Speicher:

Maschinen
befehleD

ec
od

er

X vom
Rechenwerk

zum Y
Rechenwerk

Befehls-
zähler

+1

Op-Code

Z1

Y1

Z0

Za

Ya

Zn

Yn

Zz

Yz

Z3

Y3

Zc

Yc

Z2

Y2

Zb

Yb

OpC3 OpCnOpC1

X3X2X1 Xn

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.14 von 24

1.5 Digitale Rechenwerke

1.5.1 Digitale Funktionseinheiten

Beim strukturellen Aufbau digitaler Rechenwerke unterscheidet man im wesentlichen drei Typen
von Funktionseinheiten:

• Datenquellen und Datensenken, z.B. Speicherregister oder kleine, schnelle Pufferspeicher;

• Datenpfade als Transportmedien, z.B. interne Busse oder Punkt-zu-Punkt-Verbindungen, die je
nach Bedarf durchgeschaltet oder blockiert werden;

• Verknüpfungsschaltungen, d.h. ein Vorrat an Verknüpfungsfunktionen:

- arithmetische Operationen, wie die Grundrechnungsarten Addition + , Subtraktion - , Multipli-
kation * und Division / ;

- logische Verknüpfungen, wie Konjunktion & („Und“), Disjunktion ∨ („Oder“) und Negation ¬
(„Nicht“), aber auch komplexere, wie z.B. die Antivalenz ⊕ („exklusives Oder“);

- einfache Transferoperationen ohne eine Veränderung der Daten;

- Schiebeoperationen (n bit nach links: Multiplikation mit 2n, n bit nach rechts: Division durch 2n).

Die Funktionseinheiten eines Rechenwerks werden mit Entwurfsmethoden der digitalen Schal-
tungstechnik implementiert. Beliebig komplizierte Funktionen können nach den Regeln der Schalt-
algebra in Schaltnetze mit elementaren logischen Gattern aufgelöst werden, die lokal wieder so zu
größeren Funktionszellen zusammengefaßt werden, daß sie den Digitalbausteinen entsprechen, die
die gewählte Technologie anbietet.

Struktur und Funktion digitaler Rechenwerke lassen sich im Prinzip auf eine einzige Schaltfunktion
zurückführen. Es läßt sich nämlich mathematisch beweisen, daß sich beliebig komplizierte Ver-
knüpfungsfunktionen in schaltalgebraische Ausdrücke umformen lassen, die nur einen Schaltfunk-
tionstyp enthalten, z.B. ausschließlich „negierte Und“ = NAND (&) oder ausschließlich „negierte
Oder“ = NOR (∨), was zur praktischen Konsequenz hat, daß nur ein Gattertyp notwendig ist, um
beliebige Schaltnetze zu realisieren. Das soll mit zwei einfachen Beispielen erläutert werden.

1.5.2 Wirkungsweise digitaler Rechenwerke

Es gibt zwei völlig unterschiedliche Vorgehensweisen, um eine digitale Funktion auszuführen:

• Eine Hardware-Lösung besteht aus einem festverdrahteten Schaltnetz, das eine ausreichende
Anzahl logischer Gatter enthält. Die Ausführung einer Funktion erfolgt zeitlich parallel.

• Eine Software-Lösung benötigt im Minimalfall ein einzelnes logisches Gatter, das aber mehrfach
nacheinander durchlaufen werden muß, wozu zusätzliche Zwischenspeicher erforderlich sind.
Die Ausführung einer Funktion erfolgt zeitlich sequentiell.

1 Der klassische Universalrechner

Seite 1.15 von 24

Beispiel 1.1: Hardware-Lösung

Nehmen wir als Beispiel die oben bereits erwähnte Schaltfunktion der Antivalenz ⊕ . Sie kann nach
den Regeln der Schaltalgebra in eine Disjunktion ∨ von Konjunktionen & aufgelöst werden:

(0.1)

(0.2)

Nach der de Morganschen Regel läßt sich dieser Ausdruck in einen anderen transformieren, der nur
noch NAND-Verknüpfungen (&) enthält:

(0.3)

Man kann Gl.(1.3) isomorph in eine Schaltnetzstruktur mit NAND-Gattern umsetzen (Bild 1.12).

Bild 1.14: NAND-Schaltnetzstruktur der Antivalenz (x2 ⊕ x1)

Beispiel 1.2: Software-Lösung

Für das gewählte Beispiel der Antivalenz ⊕ erfolgt die sequentielle Ausführung durch Mehrfach-
ausnutzung eines NAND-Gatters mit Speicherung der Zwischenergebnisse, d.h. in diesem einfa-
chen Beispiel wird die Antivalenz in fünf NAND-Schritten (&) ausgeführt:

1. Schritt: → Zwischenspeicherung y1

2. Schritt: → Zwischenspeicherung y2

3. Schritt: → Zwischenspeicherung y3

4. Schritt: → Zwischenspeicherung y4

5. Schritt: → Ergebnisspeicherung y

y x2 x1⊕()=

y x2 & x1() x2 & x1()∨=

y x2 & x1() & x2 & x1()=

&

&

& y

x2 x1

x2

x1
x2

x1

y1 x2 & 1() x2= =

y2 x1 & 1() x1= =

y3 y1 & x1()=

y4 x2 & y2()=

y y3 & y4()=

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.16 von 24

Die sequentielle Ausführung bringt eine längere Verarbeitungszeit mit sich, während die parallele
in einem Schritt erfolgt, d.h. Hardware-Lösungen sind starr, aber schneller und betriebssicherer,
Software-Lösungen flexibel, aber langsamer und weniger reproduzierbar. („Mit einer reinen Soft-
ware-Lösung kommt man in der Regel nicht durch den TÜV.“) Nach dem Stand der Technik kom-
men in der Informationstechnik beide Lösungsalternativen zum Einsatz.

Die sequentielle Abarbeitung zur Verringerung des Schaltungsaufwandes liegt der technischen In-
formationsverarbeitung historisch zugrunde: Bereits der erste Vorschlag durch John von Neumann
(1946) beruht auf dieser Überlegung. Der Ersatz „schnellerer“ Hardware durch „langsamere“ Soft-
ware lohnt sich, wenn erstere teuer und die Programmierung wenig aufwendig ist. Was jedoch die
weitere Entwicklung informationsverarbeitender Systeme betrifft, beginnt sich das Verhältnis zur
Zeit umzukehren: Der Preisverfall der Hardware durch die Fortschritte der Mikroelektronik und
die Existenz umfangreicher und komplexer Software-Systeme, deren Pflege und Wartung aufwen-
dig sind, machen es lohnend, anwendungsspezifische integrierte Schaltungen („Application Speci-
fic Integrated Circuits“, ASIC) einzusetzen, zu deren Entwurf sind leistungsfähige rechnergestützte
Entwurfssysteme zur Verfügung stehen („Computer Aided Design“, CAD), so daß sich derzeit die
Programmierung von Anwendungslösungen mit Mikroprozessoren verlagert zur Erstellung um-
fangreicher CAD-Systeme zum Entwurf von ASICs.

1.5.3 Aufbau digitaler Rechenwerke

Bild 1.13 zeigt die Struktur eines elementaren Rechenwerks, das 2 bit nach einer beliebigen Schalt-
funktion zu einem Ergebnis von 1 bit verknüpfen kann, das also auch die im Beispiel 1.2 vorgestellte
Verarbeitung der Antivalenz ⊕ durch eine Software-Lösung leistet.

In den beiden Speicherzellen A-FF und B-FF („Flipflops“, die jeweils 1 bit speichern können), die
sich an den Eingängen des zentralen NAND-Gatters (&) befinden, werden nach Bedarf die beiden
Operanden x1 und x2 sowie Zwischenergebnisse yi gespeichert, das jeweilige Verknüpfungsergebnis
in der Speicherzelle C-FF am Ausgang des NAND-Gatters. Beim Zuschalten der logischen Kon-
stante 1 bewirkt das NAND-Gatter eine Negation der Eingangsvariable.

Die Datenpfade werden von Multiplexern (Mux) und Demultiplexern (Demux) durchgeschaltet.
Die binären Ansteuervariablen für die (De-)Multiplexer werden vom Steuerwerk erzeugt. Man kann
die Aneinanderreihung aller Ansteuervariablen als „Steuervektor“ für die Datenpfade bezeichnen.
Synonym dazu sind die Begriffe „Maschinenbefehl“ und „Instruktion“, die hier in binärer, un-
codierter Form vorliegen.

Vereinfachend kann man die Mux/Demux-Paare durch Busverbindungen darstellen (Bild 1.14).

Erweitert man die nur 1 bit führenden Datenpfade und Busverbindungen auf n bit Breite (n = 8 . .
16 . . 32) und ersetzt man die Einzelflipflops durch n bit breite Register, das NAND-Gatter durch
eine Arithmetisch/logische Einheit („Arithmetic/Logic Unit“, ALU), die verschiedene arithmeti-
sche und/oder logische Operationen sowie ggf. auch Transfer- und Schiebeoperationen ausführen
kann, so erhält man die allgemeine Struktur eines digitalen Rechenwerks nach Bild 1.15. Obiger
Steuervektor ist bei m unterschiedlichen ALU-Funktionen durch Anfügen zusätzlicher ld m Steu-
erbits zu erweitern.

1 Der klassische Universalrechner

Seite 1.17 von 24

Bild 1.15: Darstellung eines elementaren Rechenwerks mit Multiplexer/Demultiplexer-Paaren.
Steuervektoren zur Ausführung der Antivalenz.

0

vom

A-FF

D
em

ux
M

ux

B-FF

C-FF

M
ux

D
em

ux

M
ux

zum

1

&

Hauptspeicher

1

0

1

0

1

0

1

0

1

0

1 1 0
1 0 0 0
0 0 1 0
- - 0 1
0 1 1 0
1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0
- - 0 1

Steuervektor

HS(x2) → B-FF; 1&x2 → x2

HS(x1) → B-FF; x2&x1 → y3
y3 → HS(y3)

x2 → A-FF

HS(x1) → B-FF; 1&x1 → x1
x1 → A-FF

y4 → A-FF
HS(y3) → B-FF; y4&y3 → y

HS(x2) → B-FF; x1&x2 → y4

y → HS(y)

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.18 von 24

Bild 1.16: Vereinfachte Darstellung eines elementaren Rechenwerks mit Bussen

Bild 1.17: Typisches Rechenwerk „Arithmetic/Logic Unit“, ALU

J

&

H
au

pt
sp

ei
ch

er

N

Bus_1 Bus_2

A-FF

B-FF

C-FF

& ↔ 0 0
∨ ↔ 0 1
⊕ ↔ 1 0
+ ↔ 1 1

J ↔ 0
N ↔ 1

J ALU
H

au
pt

sp
ei

ch
er

N

Bus_1 Bus_2

AND &

OR ∨

XOR ⊕

ADD +

A
-R

E
G

B
-R

E
G

C
-R

E
G

1 Der klassische Universalrechner

Seite 1.19 von 24

1.6 Ein/Ausgabestrukturen

In einem informationsverarbeitenden System lassen sich grundsätzlich zwei technologisch unter-
schiedlich realisierte Bereiche unterscheiden:

• Die Zentraleinheit (Hauptspeicher, Steuerwerk und Rechenwerk) wird in der Technologie der
Mikroelektronik realisiert, um möglichst hohe Verarbeitungsgeschwindigkeit, möglichst niedrigen
Energiebedarf, möglichst hohe Zuverlässigkeit (da verschleißfrei) und möglichst niedrige Her-
stellungskosten (dank automatisierter Massenfertigung) zu erreichen.

• Die Peripheriegeräte (Tastaturen, Drucker, Band-, Platten- und Diskettenleser) müssen elektro-
mechanisch realisiert werden und weisen daher, im Vergleich zur Zentraleinheit, eine niedrigere
Arbeitsgeschwindigkeit, höheren Energiebedarf, geringere Zuverlässigkeit (durch mechanisch
bewegte Teile) und höhere Herstellungskosten auf.

Zwischen beiden Technologien bedarf es einer Anpassung durch geeignete Ein/Ausgabestruktu-
ren, die ebenfalls mit Mitteln der Informationsverarbeitung erfolgen kann. Dabei haben sich zwei
unterschiedliche Konzepte herausgebildet:

• Das Kanalkonzept, bei dem der zentrale Prozessor alle Ein/Ausgabe-Operationen an einen spe-
ziellen Kanalprozessor delegiert, der über Steuereinheiten die Ein/Ausgabe-Geräte bedient, so
daß topologisch eine Sternstruktur mit Hauptspeicher und dedizierten Prozessoren entsteht.

• Das Buskonzept, bei dem alle Partner, z.B. die Prozessor- und Speicherbausteine, in einer Art
Konferenzschaltung ein gemeinsames Kommunikationsmedium benutzen, so daß sich topolo-
gisch eine Netzstruktur mit Prozessor- und Speicherbausteinen ergibt.

1.6.1 Das Kanalkonzept

Nach dem von Neumannschen Prinzip nimmt der zentrale Prozessor eine vom Befehlszähler be-
stimmte Sequenz von Maschinenbefehlen aus dem Programmbereich des Hauptspeichers entgegen:

• Entspricht der aktuelle Befehl einer arithmetischen oder logischen Verknüpfung, so wird er vom
Zentralprozessor selbst ausgeführt.

• Handelt es sich dagegen um einen Ein/Ausgabe-Befehl, so wird seine Ausführung an den Kanal-
prozessor delegiert.

Solange der Kanalprozessor die relativ langsame Peripherie bedient, kann der Zentralprozessor
weitere arithmetisch/logische Maschinenbefehle ausführen; beide Prozessoren arbeiten dann un-
abhängig voneinander. Der durch den Ein/Ausgabe-Befehl angestoßene Kanalprozessor ruft ein
geeignetes Kanalprogramm auf, das sich ebenfalls im Hauptspeicher befindet. Dazu bringt der
Ein/Ausgabe-Befehl die erforderlichen Informationen mit: Die Adresse des Ein/Ausgabe-Gerätes,
die Adresse eines Datenbereichs im Hauptspeicher und die Art der Operation, d.h. ob von der
Peripherie gelesen oder nach dorthin geschrieben werden soll. Da Ein/Ausgabe-Operationen mit
elektromechanischen Geräten in Echtzeit ablaufen müssen, wird ein eigener Kanalbefehlssatz de-
finiert, der vom Maschinenbefehlssatz des Zentralprozessors abweicht. Was den Entwicklungsauf-
wand betrifft, so entfallen nur etwa 15% auf die Mikroprogrammierung des Zentralprozessors; etwa
85% entfallen auf die Erstellung der Kanalprogramme.

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.20 von 24

Bild 1.18: Universalrechner (PC: Program Counter, Befehlszähler)

Bild 1.19: Das Kanalkonzept für Universalrechner

Haupt-
programm

Daten

PC

Rechen-
werk

Steuer-
werk

A/L Bef.Befehl

Zentralprozessor

Kanal-
prozessor

Haupt-
programm

Daten

PC

Kanal-
programm

Rechen-
werk

Steuer-
werk

A/L Bef.Befehl

Kanal-
Befehl

StE StEStEStE

Ein/Ausgabe-Geräte

E
/A

-B
ef

.

Zentralprozessor

1 Der klassische Universalrechner

Seite 1.21 von 24

1.6.2 Das Buskonzept

Das Buskonzept wurde erstmals für die Ein/Ausgabe binär codierter Meßdaten vorgeschlagen und
genormt („IEEE 488 Bus“). Der Bus als Medium zur digitalen Kommunikation kann als Sammel-
schiene aufgefaßt werden (lat. „omnibus“, d.h. für alle), die allen Teilnehmern in einer Konferenz-
schaltung gemeinsam zur Verfügung steht, aber abwechselnd und exklusiv genutzt wird. Um Kol-
lisionen von auf den Bus gebrachten Signalen zu vermeiden, sind unterschiedliche Techniken ent-
wickelt worden. Naheliegend ist eine selbsttätige Detektion von Kollisionen: Wie bei einer Diskus-
sionsrunde spricht immer nur ein Teilnehmer; die andern hören zu, bis er aufhört, wobei man eine
maximale Redezeit vereinbaren kann. Bei einer Gesprächspause beginnt ein Teilnehmer, der etwas
zu sagen oder zu fragen hat, zu sprechen; beginnt zufällig gleichzeitig ein zweiter, so sollten beide
verstummen und es nach einer Wartepause zufälliger Länge erneut versuchen. Dieses „Protokoll“
läßt sich auch für Bussysteme technisch nachbilden („Carrier Sense Multiple Access / Collision
Detection“, CSMA/CD). Selbstverständlich ist es auch üblich, einen Diskussionsleiter, hier einen
Buszuteiler einzusetzen.

Ein Bus umfaßt im wesentlichen drei Arten von Verbindungsleitungen:

• Datenleitungen zum Transport der Nutzinformation;

• Steuerleitungen zur Ansteuerung der angeschlossenen Peripheriegeräte;

• Bus-Management-Leitungen zum Betrieb des Bus selbst.

Die Steuerung eines Ein/Ausgabe-Bus und den Betrieb der angekoppelten Peripheriegeräte über-
nimmt ein (Mikro-)Prozessor. Bei den Peripheriegeräten unterscheidet man drei Betriebsarten:

• LISTEN: Geräte, die nur „hören“, z.B. Stromversorgungen;

• TALK: Geräte, die nur „sprechen“, z.B. Frequenzzähler;

• LISTEN/TALK: Geräte, die „hören und spechen“, z.B. einstellbare Meßgeräte.

Inzwischen hat sich das Buskonzept nicht nur für den Ein/Ausgabebereich bewährt, sondern auch
für die interne Kommunikation innnerhalb der Zentraleinheit. Falls sie das Busprotokoll erfüllen,
können an einen Hauptspeicher-Bus Speichereinheiten unterschiedlicher Technologien ange-
schlossen werden, wie z.B. Festwertspeicher („Read Only Memory“, ROM), die z.B. unveränder-
bare Rechnerprogramme enthalten, oder Schreib/Lesespeicher („Random Access Memory“, RAM)
für die Zwischenspeicherung von Daten, wobei auch wieder ein oder mehrere (Mikro-)Prozessoren
die Steuerung übernehmen. Für den Speicherbetrieb kommen noch Adressleitungen hinzu:

• n Adressleitungen zur Adressierung von 2n Bytes in einem der Speicher
(n = 16 . . 24 . . 32 bit; 2n = 64 k . . 16 M . . 4 GByte);

• 2m Datenleitungen zum Transport der Nutzinformation
(2m = 4 . . 8 . . 16 . . 32 bit; m = 2 . . 5);

• Steuerleitungen zum Betrieb der angeschlossenen Speicherbausteine;

• Bus-Management-Leitungen zum Betrieb des Speicherbus selbst.

Schließlich sind noch Bus-zu-Bus-Adapter zu erwähnen, die die Anpassung zwischen unterschied-
lichen Busprotokollen vornehmen.

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.22 von 24

Bild 1.20: Ein/Ausgabe-Bus

Mikro-
prozessor

8 Datenleitungen

3 Steuerleitungen

5 Bus-Management-Leitungen

Strom-
versorgung

Frequenz-
zähler

digitales
Messgerät

1 Der klassische Universalrechner

Seite 1.23 von 24

Bild 1.21: Hauptspeicher-Bus

R O M

Mikro-
prozessor

R A M

Daten-Bus

Steuerleitungen

Bus-Management-Leitungen

Adressen-Bus

Prof. Dr.-Ing. U.G. Baitinger

Seite 1.24 von 24

H
LL

-P
ro

gr
am

m
e

 -
 z

.B
. F

or
tr

an
 -

H
LL

-P
ro

gr
am

m
e

 -

 z
.B

. C
 -

A
ss

em
bl

er
-P

ro
gr

am
m

e

 -
 z

.B
. I

B
M

 /3
60

 -
F

or
tr

an
 -

 C
om

pi
le

r

A
ss

em
bl

er

M
ik

ro
pr

og
ra

m
m

M
ik

ro
pr

oz
es

so
r

(f
es

tv
er

dr
ah

te
t o

de
r

m
ik

ro
pr

og
ra

m
m

ie
rt

)

fe
st

ve
rd

ra
ht

et
er

P
ro

ze
ss

or
m

ik
ro

-
pr

og
ra

m
m

ie
rt

er
P

ro
ze

ss
or

R
IS

C
 -

 P
ro

ze
ss

or

C
 -

 C
om

pi
le

r

C
IS

C

R
IS

C

≈
19

54
 ff

.
≈

19
64

 ff
.

≈
19

84
 ff

.
≈

19
74

 ff
.

2 Schaltungsebene

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.1 von 26

ti-I

Stand: 5. D
ezem

ber 2002

2.1 Transistoren im Digitalbetrieb

Die technische Informationsverarbeitung beruht auf der logischen Verknüpfung und Speicherung
zweiwertig („binär“) codierter Informationen. Um sie mit elektrischen Signalen darzustellen, be-
nötigt man zwei wohlunterschiedene („diskrete“) und somit abzählbare („digitale“) Signalpegel:

Lo

↔

 niedriges Potential Hi

↔

 hohes Potential

Den beiden Signalpegeln kann man binäre Variablenwerte {0,1} auf zweierlei Weise zuordnen:

positive Logik negative Logik
Lo

↔

 0 ; Hi

↔

 1 Lo

↔

 1 ; Hi

↔

 0

2.1.1 Kontaktdarstellung von Transistoren

Bereits aus der Relaistechnik stammt die Unterscheidung von zwei Kontakttypen:

• Arbeitskontakt - im Ruhezustand geöffnet, im Arbeitszustand geschlossen (Bild 2.1 links)

• Ruhekontakt - im Ruhezustand geschlossen, im Arbeitszustand geöffnet (Bild 2.2 links)

Ein Schalter besitzt per definitionem genau zwei Stellungen:

• geöffnet = sperrend, hochohmig, niedriger Stromfluß, hoher Spannungsabfall

• geschlossen = leitend, niederohmig, hoher Stromfluß, niedriger Spannungsabfall

Man vergleiche dazu die Kennlinien der beiden Kontakttypen in Bild 2.1 und Bild 2.2 rechts.

Bild 2.1: Arbeitskontakt mit Kennlinien

Bild 2.2: Ruhekontakt mit Kennlinien

+ IK

+ UK
UK

IK

HiLo

+

+

- IK

- UK

- UK

- IK

Lo Hi

+

+

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.2 von 26

Bild 2.3: Bipolarer NPN-Transistor mit Ausgangskennlinien

Bild 2.4: N-Kanal MOS-Transistor mit Ausgangskennlinien

Bild 2.5: Bipolarer PNP-Transistor mit Ausgangskennlinien

Bild 2.6: P-Kanal MOS-Transistor mit Ausgangskennlinien

+ IC

B

+ UCE

EC

+ U
BE

UCE

IC

UBE - US

HiLo

+

+

+ ID

G

+ UDS

SD

+ U
GS

UDS

ID

UGS - Uth

HiLo

+

+

- IC

B

- UCE

EC

- U
BE

- UCE

- IC

- (UBE - US)

Lo Hi

+

+

- UDS

- ID

- (UGS - Uth)

Lo Hi

+

+

- ID

G

- UDS

SD

- U
GS

2 Schaltungsebene

Seite 2.3 von 26

Die Ausgangskennlinien sowohl von bipolaren als auch von MOS-Transistoren haben zwar keinen
linearen Verlauf (und sie haben verschiedene physikalische Ursachen, obwohl sie sehr ähnlich
verlaufen); man erhält jedoch ebenfalls zwei Betriebspunkte für den digitalen Betrieb, in Bild 2.3
bis Bild 2.6 mit (1) und (0) bezeichnet. Stark vereinfacht zeigen im Digitalbetrieb die Transistoren
und die mechanistischen Relaiskontakte eine prinzipiell vergleichbare Arbeitsweise:

• Arbeitskontakt

↔

 bipolarer Transistor vom NPN-Typ

↔

 MOS-Transistor mit N-Kanal

• Ruhekontakt

↔

 bipolarer Transistor vom PNP-Typ

↔

 MOS-Transistor mit P-Kanal

2.1.2 Lastwiderstand und Lasttransistor

Neben den aktiven Bauelementen, den Schalttransistoren, benötigt man in Digitalschaltungen noch
passive Bauelemente, um gegebenenfalls ein aktives Bauelement zu ersetzen, d.h. um einen Signal-
pegel zu erzeugen, der zwischen „Lo“ und „Hi“ liegt. In bipolarer Technologie lassen sich ohmsche
Widerstände mit vertretbarem Aufwand herstellen (Bild 2.7); in MOS-Technologie dagegen muß
als Kompromiß ein Transistor zum passiven Zweipol verdrahtet werden (Bild 2.8).

Bild 2.7: Ohmscher Lastwiderstand

Bild 2.8: MOS-Lasttransistor

IR

UR
UR

IR

HiLo

R +

ID

UDS = UGS

SD

UDS = UGS

ID

HiLo

G

Uth

+

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.4 von 26

2.2 MOS-Technologie

2.2.1 Photolithographie und Dotierung

Der Leitungstyp eines Siliziumkristalls - ob er als Ladungsträger überwiegend Elektronen oder
Defektelektronen enthält - wird durch Dotieren mit Donator- bzw. mit Akzeptoratomen beeinflußt.
Dabei kann die in den Kristall einzubringende Störstellendichte außerordentlich gering sein. Hoch-
reines Silizium enthält pro Kubikzentimeter 5

 •

10

22

 Siliziumatome und noch etwa 5

 •

10

12

 Boratome,
die P-Leitung bewirken, so dass auf 10

10

 Kristallatome nur 1 Fremdatom kommt. Eine Dotierung
muß diese Restverunreinigung um etwa eine Größenordnung übertreffen, um den Leitungstyp des
Siliziummaterials eindeutig festzulegen. Im genannten Beispiel genügt dazu ein einziges Dotie-
rungsatom auf eine Milliarde Siliziumatome, d.h. ein Dotierungsgrad von 10

-9

. Die gleichmäßige
Grunddotierung erfolgt in der Regel während des Einkristallziehens. Aus dem Einkristallstab von
derzeit 12

…

16 cm Durchmesser werden dünne Scheiben („Wafer“) abgesägt und deren Oberfläche
geschliffen, gereinigt und glatt poliert. Eine integrierte Schaltung hat auf einem Chip von wenigen
Millimetern Kantenlänge Platz. Man kann daher auf einem Wafer einige Hundert integrierte Schalt-
kreise unterbringen.

Durch energetische Steuerung der Dotierungsvorgänge werden die Eindringtiefen der Dotierungs-
stoffe bestimmt und damit die

vertikalen

 Abmessungen der entstehenden mikroelektronischen Bau-
elemente. Ihre

horizontale

 Geometrie wird durch geeignete Maskierung der zu dotierenden Silizi-
umscheibe definiert. Hier zeigt sich der große Vorteil, den Silizium gegenüber anderen Halbleiter-
materialien bietet: Seine Oberfläche kann mit Wasserdampf relativ einfach zu Quarzglas (SiO

2

)
oxidiert werden, das für die gebräuchlichen Dotierungsstoffe undurchlässig ist. Mittels photolitho-
graphischer Verfahren ätzt man dann Öffnungen in die Quarzglasschicht, so dass nur dort die Sili-
ziumoberfläche ungeschützt zutage tritt; dadurch wird die Kristalloberfläche nur an bestimmten
Stellen den Dotierungsstoffen ausgesetzt.

Das Bild zeigt die Verfahrensschritte. Die Oberfläche der Siliziumscheibe (Si) wird zunächst mit
einer Quarzglasschicht (SiO

2

) überzogen und dann mit Photolack beschichtet. Sodann wird eine
Maske auf die Scheibe aufgelegt, die ein Muster aus geschwärzten und durchsichtigen Stellen
enthält, entsprechend den herzustellenden integrierten Schaltungen. Die Maske, die auf die Silizi-
umscheibe aufgelegt wird („Wafer Mask“), besteht aus einer regelmäßigen Wiederholung von Ein-
zelmasken („Chip Masks“), die die Anordnung der Strukturen innerhalb der einzelnen integrierten
Schaltkreise definieren. Anschließend wird mit kurzwelligem Licht bestrahlt, wobei die belichteten
Stellen des Photolacks polymerisieren. Nach Entfernen der Maske können die unbelichteten, nicht
polymerisierten Stellen des Photolacks chemisch weggelöst werden. Dann taucht man die Scheibe
in eine spezielle Säure, die die Quarzglasschicht (SiO

2

) dort wegätzt, wo sie nicht durch Photolack
geschützt ist. Mit einem anderen Lösungsmittel wird sodann der restliche Photolack entfernt. Damit
wurde das Muster der Maske auf der Siliziumscheibe abgebildet. Während des anschließenden
Dotierungsvorgangs können Fremdatome nur durch die Öffnungen in der Oxidschicht ins Innere
des Siliziumkristalls eindringen. Die beim Ätzvorgang erzeugten Oxidöffnungen wachsen bei einer
neuerlichen Oxidation wieder zu, um die entstehenden Bauelemente zu „versiegeln“.

2 Schaltungsebene

Seite 2.5 von 26

Bild 2.9: Fertigungsschritte zur photolithographischen Abbildung einer „Maske“

Säure

Lösemittel

Siliziumscheibe
(Si)

„Maske“

Dotierung

Quarzglasschicht
(SiO2)

Photolackschicht

Siliziumscheibe
(Si)

Quarzglasschicht
(SiO2)

Photolackschicht

Siliziumscheibe
(Si)

Quarzglasschicht
(SiO2)

Photolackschicht

Transistorstruktur

Oxidation

Siliziumscheibe
(Si)

Quarzglasschicht
(SiO2)

L i c h t

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.6 von 26

2.2.2 NMOS-Technologie

Das folgende Bild zeigt die wichtigsten Fertigungsschritte der Siliziumtechnologie zur Herstellung
eines MOS-Transistors mit elektronenleitendem Kanal (NMOS). Dargestellt sind nur die Zwischen-
zustände nach der photolithographischen Abbildung der einzelnen „Masken“, hier insgesamt vier:

• Drain/Source-Gebiete dotieren

• Gate-Oxid aufwachsen

• Kontaktlöcher öffen

• Metallisierung aufbringen.

Vor jedem der gezeigten Zwischenzustände laufend photolithographische Fertigungsschritte, wie
im vorherigen Bild am Beispiel der Dotierung dargestellt, sinngemäß ab.

Bild 2.10: Wichtigste Fertigungsschritte eines MOS-Transistors (Querschnitt)

Source-KontaktlochDrain-Kontaktloch Gate-Oxid

n+ Sourcen+ Drain p- Substrat

Source-KontaktlochDrain-Kontaktloch

n+ Sourcen+ Drain n-Kanalbereich

Source-AnschlussDrain-Anschluss Gate

2 Schaltungsebene

Seite 2.7 von 26

Bild 2.11: Fertigungsmasken eines MOS-Transistors (Draufsicht)

Drain/Source-Maske

Gate-Oxid-Maske

Kontaktloch-Maske

Metallisierungsmaske

kompletter Maskensatz

G SD

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.8 von 26

2.2.3 CMOS-Technologie

Bild 2.12: CMOS-Inverter; a) Layout / Draufsicht, b) Querschnitt A - A, c) Schaltbild

Das obige Bild zeigt unterschiedliche Ansichten einer einfachen Inverterschaltung in CMOS-Tech-
nologie, d.h. mit komplementären MOS-Transistoren. Man beachte, dass der NMOS-Transistor N1
mit elektronenleitendem Kanal direkt in das p-leitende Silizium-Substrat eingebracht werden kann,
während für den PMOS-Transistor P1 mit defektelektronenleitendem Kanal zuvor eine n-leitende
„Wanne“ erzeugt werden muss, in die er dann eingebracht wird.

Wie im nachfolgenden Abschnitt über „MOS-Schaltungstechnik“ im Einzelnen erläutert wird, stellt
die Inverterschaltung die Grundlage für die komplexeren Verknüpfungs- und Speicherschaltungen
in CMOS-Technologie dar.

VDD VGG

A

N1

Ue Ua

P1

VDD

VGG

a) c)

b)

Ue

Ua

N1P1

VDD VGG

A

Source von N1Drain von P1 n-Wanne

2 Schaltungsebene

Seite 2.9 von 26

2.3 Chip-Layout

2.3.1 Full-Custom IC Layout

Es handelt sich um maßgeschneiderte Schaltungen höchsten Integrationsgrades (104 ... < 106 Gatter
pro Chip), die für eine bestimmte Anwendung speziell entwickelt werden, weil sie in großer Stück-
zahl benötigt werden („voll-kundenspezifische integrierte Schaltungen“).

Bild 2.1: Layout einer voll-kundenspezifischen integrierten Schaltung

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.10 von 26

2.3.2 Semi-Custom IC Layout

„Gate-Arrays“ sind personalisierbare integrierte Schaltungen. Dank ihrer vordefinierten Grund-
struktur können fast alle Fertigungsschritte (außer der Verdrahtung) vorab durchgeführt werden.
Dem Anwender wird vom Technologieanbieter eine technologiespezifische Zellbibliothek bereit-
gestellt, die wiederverwendbare Funktionszellen enthält, die auf die Basiszellen des Gate-Arrays
abzubilden sind. Nach Abschluß des Entwurfs sind nur noch die entsprechenden Verdrahtungsmu-
ster zu fertigen („semi-kundenspezifische integrierte Schaltungen“).

Bild 2.2: Grundstruktur („Master-Layout“) eines Gate-Arrays mit Säulenstruktur

Bild 2.3: Gate-Array mit Matrixstruktur, zell-orientierter Entwurf
a) Platzierung („Intrazell-Verdrahtung“) b) Verdrahtung („Interzell-Verdrahtung“)

Basiszelle

Padzelle

Strom-
versorgung

Verdrahtungs-
kanäle

NAND

NOR

AND

AND

NAND

NAND

NOR

OR

OR

NAND

F.F.

F.F.

F.F.

F.F.

F.F.

2 Schaltungsebene

Seite 2.11 von 26

2.4 MOS-Schaltungstechnik

MOS steht für “Metal-Oxide-Silicon“, d.h. für Transistoren mit MOS-Schichtstruktur und ihre
Verwendung in mikroelektronischen Schaltungen. Wir wollen uns hier auf den Anreicherungstyp
mit isolierter Gate-Elektrode beschränken. Beim Schaltungsentwurf mit MOS-Transistoren sind
drei charakteristische Eigenschaften besonders zu berücksichtigen:

• Für MOS-Schaltungen in integrierter Technologie ist typisch, daß nicht nur die aktiven Schalt-
transistoren sondern auch passive „Arbeitswiderstände“ durch MOS-Transistoren realisiert wer-
den müssen, da bei MOS-Fertigungsprozessen die Herstellung hochohmiger Widerstände proble-
matisch ist.

• Ferner ist zu berücksichtigen, daß ein MOS-Transistor erst leitet, wenn seine Gate-Source-Span-
nung den Wert einer Schwellspannung Uth (“threshold voltage“) überschreitet. Somit ist der Ein-
bau eines leitenden MOS-Transistors stets mit einer Pegelverschiebung um den Betrag dieser
Schwellspannung verbunden, was bei Bedarf durch entsprechende Erhöhung der Betriebsspan-
nung ausgeglichen werden muß.

• Schließlich sollte noch beachtet werden, daß jeder MOS-Transistor aufgrund seiner Bau- und
Wirkungsweise mit einem inhärenten MOS-Kondensator von nicht zu vernachlässigender Kapa-
zität behaftet ist, die bei Schaltvorgängen aufgeladen bzw. entladen werden muß.

Letztere Eigenart ist aber nicht nur störend. Vielmehr ist ein MOS-Transistor in der Lage, Ladung
zu speichern und damit seinen augenblicklichen Betriebszustand kurzzeitig beizubehalten, auch
wenn die ihn ansteuernden Schaltkreise bereits einen anderen Zustand angenommen haben. Dieser
Effekt kann ausgenützt werden, um neben statisch betriebenen Logik- und Speicherschaltungen,
die von Gleichspannungsquellen gespeist werden, auch dynamische zu entwickeln, die mit Taktge-
neratoren betrieben werden. Dadurch werden Gleichströme vermieden, was zu extrem niedrigen
Verlustleistungen führt. Nicht zuletzt deshalb ermöglicht die dynamische MOS-Schaltungstechnik
den Aufbau höchstintegrierter Schaltungen (“Very Large Scale Integration“, VLSI) mit mehreren
Millionen Transistoren pro Chip.

So beruhen statische MOS-Speicherzellen auf dem Prinzip des bistabilen Flipflops, die dynami-
schen auf der Ladungsspeicherung in Kondensatoren. Dynamische MOS-Speicher (“Dynamic Ran-
dom Access Memories“, DRAM) haben nicht nur eine niedrigere Verlustleistung, sondern auch
einen niedrigeren Flächenbedarf pro Speicherzelle, so daß sich größere Speicher auf einem Chip
integrieren lassen. Statische MOS-Speicher (“Static Random Access Memories“, SRAM) dagegen
haben eine niedrigere Zugriffszeit als die dynamischen, da sie keine Auffrischzyklen benötigen.

2.4.1 Statische MOS-Logik

Für den Digitalbetrieb von MOS-Transistoren vom N-Kanaltyp („NMOS-Transistoren“) gelten
zwei wohlunterschiedene Spannungspegel mit der Schwellspannung UthN des N-Kanals als Trenn-
wert sowie einer oberen Grenze, die u.a. von der Betriebsspannung von UB > 0, und einer unteren
Grenze Uu, deren Wert wie nachfolgend gezeigt von der Dimensionierung der Schaltung abhängt:

Uu ≤ Lo < UthN UthN < Hi ≤ (UB - UthN)

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.12 von 26

Es gelten folgende Zahlenwerte:

UB ≈ + 2,5 V UthN ≈ + 1,0 V (→ + 0,5 V)

Die im folgenden Bild gezeigte Inverterschaltung ist eine elementare Verknüpfungsschaltung mit
einer minimalen Anzahl von Bauelementen. Sie besteht aus einem Schalttransistor N1 und einem
zum Zweipol verdrahteten Lasttransistor NL, da in dieser Technologie bekanntlich keine hochoh-
migen Widerstände hergestellt werden können. Ferner darf die Eingangskapazität Ca der gleichar-
tigen MOS-Schaltkreise, die von der Inverterschaltung angesteuert werden, hier nicht vernachlässigt
werden.

Legt man an die Eingangsklemme des
NMOS-Inverters einen Potentialpegel „Lo“,
der niedriger ist als der Wert der Schwell-
spannung, so sperrt der Schalttransistor N1.
Die Lastkapazität Ca wird dann über den lei-
tenden Lasttransistor NL auf den Pegel „Hi“
aufgeladen:

Lo: Ue < UthN

Hi: Ua = (UB - UthN) > UthN

Bild 2.4: Inverterschaltung in statischer NMOS-Logik

Sobald die Ausgangsspannung auf den Pegel „Hi“ angestiegen ist, erreicht die Gate-Source-Span-
nung des bisher leitenden Lasttransistors NL den Wert seiner Schwellspannung, d.h. er sperrt, so
daß sein Sourcepotential Ua nicht weiter ansteigen kann. Der sich einstellende Ausgangspegel Ua
kann direkt als Eingangspegel für gleichartige Schaltungsstufen dienen.

Nimmt im andern Fall der Eingangspegel den Wert „Hi“ an, liegt er also höher als die Schwellspan-
nung, so leitet der Schalttransistor N1 und entlädt die Lastkapazität Ca bis auf den Pegel „Lo“, der
durch das Spannungsteilerverhältnis aus dem Schalttransistor N1 und dem Lasttransistor NL gege-
ben ist. Dabei muß N1 niederohmig sein, d.h. sein Kanalbereich muß breit und kurz ausgelegt
werden, NL dagegen hochohmig, d.h. lang und schmal, da für den Pegel „Lo“ gelten muß:

Hi: Ue = (UB - UthN) > UthN Lo: Ua = UDS1 < UthN

Verwendet man MOS-Transistoren vom P-Kanaltyp („PMOS-Transistoren“), so gelten für deren
Digitalbetrieb ebenfalls zwei wohlunterschiedene Spannungspegel, die aus physikalischen Gründen
zu denen der NMOS-Logik komplementär sind: mit der Schwellspannung UthP als Trennwert sowie
einer unteren Grenze, die u.a. von der Betriebsspannung UB’ < 0 und einer oberen Grenze Uo, deren
Wert wie im Fall der NMOS-Logik von der Dimensionierung der Schaltung abhängt:

(UB’ - UthP) ≤ Lo < UthP UthP < Hi ≤ Uo

Es gelten folgende Zahlenwerte:

UB’ ≈ - 2,5 V UthP ≈ - 1,0 V (→ - 0,5 V)

UB > 0

N1

Ue Ua

Ca

NL

2 Schaltungsebene

Seite 2.13 von 26

Das folgende Bild zeigt eine elementare Inverterschaltung mit PMOS-Transistoren. Sie besteht aus
einem Schalttransistor P1 und einem zum Zweipol verdrahteten Lasttransistor PL. Man erkennt die
Symmetrie zu der im vorherigen Bild gezeigten Inverterschaltung mit NMOS-Transistoren. Da die
NICHT-Funktion bekanntlich zu sich selbst komplementär ist, realisieren beide Inverterschaltungen
dieselbe Schaltfunktion.

Legt man an die Eingangsklemme des
PMOS-Inverters einen Potentialpegel „Hi“,
der höher liegt als der (negative) Wert der
Schwellspannung des P-Kanals, so sperrt der
Schalttransistor P1. Die Lastkapazität Ca
wird dann über den leitenden Lasttransistor
PL auf den Pegel „Lo“ geladen:

Hi: Ue > UthP

Lo: Ua = (UB’ - UthP) < UthP

Bild 2.5: Inverterschaltung in statischer PMOS-Logik

Sobald die Ausgangsspannung auf den Pegel „Lo“ abgesunken ist, erreicht die Gate-Source-Span-
nung des bisher leitenden Lasttransistors PL den Wert der Schwellspannung, d.h. er sperrt, so daß
sein Sourcepotential Ua nicht weiter absinken kann. Der sich einstellende Ausgangspegel Ua kann
direkt als Eingangspegel für gleichartige Schaltungsstufen dienen.

Nimmt im andern Fall der Eingangspegel den Wert „Lo“ an, liegt er also niedriger als der (negative)
Wert der Schwellspannung, so leitet der Schalttransistor P1 und entlädt (!) die Lastkapazität Ca bis
auf den Pegel „Hi“, der durch das Spannungsteilerverhältnis aus dem Schalttransistor P1 und dem
Lasttransistor PL gegeben ist. Dabei muß P1 niederohmig sein, d.h. sein Kanalbereich muß breit
und kurz ausgelegt werden, PL dagegen hochohmig, d.h. lang und schmal, da für den Pegel „Hi“
gelten muß:

Lo: Ue = (UB’ - UthP) < UthP Hi: Ua = UDS1 > UthP

2.4.2 Statische CMOS-Logik

CMOS steht für “Complementary Metal-Oxide-Silicon“, d.h. für die Verwendung von MOS-Tran-
sistoren beider, zueinander komplementärer N- bzw. P-Kanaltypen in einer gemeinsamen Schal-
tung. Auch hierbei handelt es sich um eine statische Logik, obwohl keine Gleichströme fließen, da
die zueinander komplementären MOS-Transistoren stets im Wechsel leiten bzw. sperren. Um den
Preis eines komplizierteren Fertigungsprozesses kombiniert man NMOS- und PMOS-Transistoren
und gewinnt dabei eine Schaltkreisfamilie mit extrem niedriger Verlustleistung.

Um auch kürzere Umschaltzeiten zu erreichen, kombiniert man die niederohmigen (!) Schalttran-
sistoren des NMOS-Inverters von Bild 2.4 mit denen des PMOS-Inverters von Bild 2.5 und erhält
so die in Bild 2.6 gezeigte elementare Inverterschaltung in CMOS-Technik.

UB’ < 0

P1

Ue Ua

Ca

PL

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.14 von 26

Für den Digitalbetrieb von CMOS-Schaltungen gelten zwei wohlunterschiedene Spannungspegel
mit den Schwellspannungen UthN des N-Kanals bzw. UthP des P-Kanals als Trennwerten sowie dem
Bezugspotential („Erdpotential“) als unterer und der Betriebsspannung UB als oberer Grenze, d.h.
die Grenzwerte hängen im Gegensatz zur NMOS- oder PMOS-Logik nicht von der Dimensionie-
rung der Schaltung ab:

0 ≤ Lo < [UthN = (UB + UthP)] [UthN = (UB + UthP)] < Hi ≤ UB

Es sei an die Zahlenwerte erinnert:

UthN ≈ + 1,0 V UthP ≈ - 1,0 V

UB ≈ + 2,5 V

Legt man an die Eingangsklemme des im ne-
benstehenden Bild gezeigten CMOS-Inver-
ters einen Potentialpegel „Lo“, der niedriger
liegt als der Wert der Schwellspannung UthN
> 0, so sperrt der Schalttransistor N1. Gleich-
zeitig wird der Schalttransistor P1 leitend, da
sein Gatepotential dann niedriger liegt als der
(negative) Wert der Schwellspannung UthP <
0. Da er niederohmig ausgelegt ist und N1
sperrt, lädt P1 die Lastkapazität Ca relativ
rasch und vollständig auf den Wert der Be-
triebsspannung UB auf:

Lo: Ue < [UthN = (UB + UthP)]

Hi: Ua = UB

Bild 2.6: Inverterschaltung in statischer CMOS-Logik

Der sich einstellende Ausgangspegel „Hi“ kann direkt als Eingangspegel für gleichartige Schal-
tungsstufen dienen. - Nimmt im andern Fall der Eingangspegel den Wert „Hi“ an, liegt er also höher
als die Schwellspannung des N-Kanals, so leitet der ebenfalls niederohmig ausgelegte Schalttran-
sistor N1 und entlädt die Lastkapazität Ca relativ rasch und vollständig („Lo“), da jetzt der Schalt-
transistor P1 sperrt:

Hi: Ue = UB > [UthN = (UB + UthP)] Lo: Ua = 0

Nach Bild 2.7 erhält man durch die Kombination der topologisch komplementären Reihen- bzw.
Parallelschaltungen von technologisch komplementären CMOS-Schalttransistoren die NOR- und
die NAND-Schaltung in statischer CMOS-Logik.

Die im folgenden Bild links gezeigte „NOR-Schaltung“ entspricht im einen Betriebszustand dem
obigen CMOS-Inverter mit leitendem NMOS-Transistor (bei gleichzeitig sperrendem PMOS-Tran-
sistor), wenn das Potential von mindestens einer der Eingangsklemmen über die Schwellspannung
UthN angehoben wird. Dadurch wird die Lastkapazität Ca über mindestens einen der parallel ge-

N1

Ue Ua

Ca

P1

UB > 0

2 Schaltungsebene

Seite 2.15 von 26

schalteten, niederohmig ausgelegten NMOS-Transistoren relativ rasch und vollständig entladen,
da mindestens einer der in Reihe geschalteten PMOS-Transistoren sperrt:

Hi: Ue1 oder Ue2 > UthN Lo: Ua1 = 0 < UthN (0.1)

Bild 2.7: Realisierung von Schaltfunktionen in statischer CMOS-Logik
a) NOR-Schaltung (positive Logik) b) NAND-Schaltung (positive Logik)

Im anderen Betriebszustand entspricht die Schaltung dem Inverter mit sperrendem NMOS-Transi-
stor (bei gleichzeitig leitendem PMOS-Transistor), wenn das Potential aller Eingangsklemmen
unter die Schwellspannung UthN abgesenkt wird. Dadurch wird die Reihenschaltung der niederoh-
mig ausgelegten PMOS-Transistoren leitend und lädt die Lastkapazität Ca relativ rasch und voll-
ständig auf den Wert der Betriebsspannung auf, da alle parallel geschalteten NMOS-Transistoren
sperren:

Lo: Ue1 und Ue2 < UthN Hi: Ua1 = UB > UthN (0.2)

Somit realisiert die im obigen Bild links gezeigte CMOS-Schaltung in positiver Logik eine NOR-,
in negativer eine NAND-Funktion.

Die im obigen Bild rechts gezeigte „NAND-Schaltung“ entspricht im einen Betriebszustand dem
CMOS-Inverter nach Bild 2.6 mit leitendem NMOS-Transistor (bei gleichzeitig sperrendem
PMOS-Transistor), wenn das Potential aller Eingangsklemmen über die Schwellspannung UthN
angehoben wird. Dadurch wird die Reihenschaltung der niederohmig ausgelegten NMOS-Transi-
storen leitend und entlädt die Lastkapazität Ca relativ rasch und vollständig, da alle parallel geschal-
teten PMOS-Transistoren sperren:

Hi: Ue1 und Ue2 > UthN Lo: Ua2 = 0 < UthN (0.3)

Im anderen Betriebszustand entspricht die Schaltung dem Inverter mit sperrendem NMOS-Transi-
stor (bei gleichzeitig leitendem PMOS-Transistor), wenn das Potential von mindestens einer der
Eingangsklemmen unter die Schwellspannung UthN abgesenkt wird. Dadurch wird die Lastkapa-
zität Ca über mindestens einen der parallel geschalteten, niederohmig ausgelegten PMOS-Transi-

UB > 0

P1

P2

Ca

Ue1

Ue2

Ua1

Ue1

Ue2

N2N1 N3

N4 Ca

Ua2

P4P3

UB > 0

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.16 von 26

storen relativ rasch und vollständig auf den Wert der Betriebsspannung aufgeladen, da mindestens
einer der in Reihe geschalteten NMOS-Transistoren sperrt:

Lo: Ue1 oder Ue2 < UthN Hi: Ua2 = UB > UthN (0.4)

Somit realisiert die im vorherigen Bild rechts gezeigte CMOS-Schaltung in positiver Logik eine
NAND-, in negativer eine NOR-Funktion.

Fassen wir die Vorteile der CMOS-Schaltkreisfamilie zusammen:

• Niedrige Verlustleistung, da über die zueinander komplementären, im Gegentakt leitenden bzw.
sperrenden MOS-Transistoren keine Gleichströme fließen. Beim Umschalten wird nur Wechsel-
stromverlustleistung umgesetzt.

• Hohe Schaltgeschwindigkeit durch die Kombination ausschließlich niederohmiger Schalttransi-
storen, d.h. dank der Vermeidung hochohmiger Lastwiderstände.

• Hoher Störabstand durch Aufladen der zu treibenden Lastkapazität auf den vollen Wert der Be-
triebsspannung bzw. deren vollständiges Entladen dank der Vermeidung eines Spannungsteilers.

2.4.3 Dynamische Domino-Logik

Wegen der inhärenten Gatekapazitäten von MOS-Transistoren können die damit aufgebauten Schal-
tungen auch dynamisch betrieben werden. Sie entwickeln dann keine statische Verlustleistung, da
im Betrieb keine Gleichströme fließen. Die hier vorgestellte Domino-Schaltungstechnik wird in
CMOS-Technologie realisiert, d.h. sie verwendet MOS-Transistoren vom N-Kanal- und vom P-
Kanaltyp. Deshalb können die Schaltungen mit einem einzigen Taktsignal betrieben werden.

Bild 2.8: Grundschaltung in Domino-Logik.
a) unbedingte Vorladephase; b) bedingte Evaluierungsphase

Den Aufbau einer Grundschaltung in Domino-Logik zeigt das obige Bild. Ein PMOS-Transistor
PV und ein NMOS-Transistor NE werden gemeinsam von einem Taktsignal Φ angesteuert; sie leiten/
sperren jeweils wechselseitig, so daß kein Gleichstrom fließt. Zu diesem, im Gegentakt arbeitenden
CMOS-Transistorpaar ist der von einem Eingangssignal Ue angesteuerte Schalttransistor N1 in

PV

Uv Ua

PV

Ue

NE

N1

Cp

UB > 0

N0

UB > 0

Takt Φ
< UthN

PV

Uv Ua

PV

Ue > UthN

NE

N1

Cp

UB > 0

N0

UB > 0

Takt Φ
> UthN

a) b)

2 Schaltungsebene

Seite 2.17 von 26

Reihe geschaltet. Die Ausgangsstufe ist ein CMOS-Inverter, dessen inhärente Gatekapazität Cp für
den dynamischen Betrieb der Schaltung verwendet wird. Dabei sind zwei Phasen zu unterscheiden:

• Während der ersten, der Vorladephase gilt:

Lo: Taktpegel Φ < [UthN = UB + UthP] (0.5)

Der Vorladetransistor PV leitet und lädt die Kapazität Cp, da der Evaluierungstransistor NE sperrt,
unabhängig vom Leitungszustand des Schalttransistors N1 auf den Wert der Betriebsspannung
UB ≈ + 2,5 V auf (Bild 2.8a). Deshalb leitet der Transistor N0 des Ausgangsinverters und senkt
den Ausgangsspannungspegel („unbedingt“) auf Erdpotential ab:

Ue beliebig Lo: Ua = 0 < UthN (0.6)

• Während der zweiten, der Evaluierungsphase gilt:

Hi: Taktpegel Φ > [UthN = UB + UthP] (0.7)

Der Evaluierungstransistor NE leitet und entlädt, falls abhängig vom Eingangssignal Ue der Schalt-
transistor N1 ebenfalls leitet, die Kapazität Cp, da der Vorladetransistor PV sperrt (Bild 2.8b).
Dann leitet der Transistor P0 des Ausgangsinverters und hebt den Ausgangsspannungspegel („be-
dingt“) auf den Wert der Betriebsspannung UB an:

Hi: Ue = UB > UthN Hi: Ua = UB > UthN (0.8)

Andernfalls, wenn der Schalttransistor N1 sperrt, kann der Evaluierungstransistor NE die Kapazität
Cp nicht entladen. Dann bleibt der Transistor N0 des Ausgangsinverters leitend und hält den
Ausgangsspannungspegel („bedingt“) auf Erdpotential:

Lo: Ue = 0 < UthN Lo: Ua = 0 < UthN (0.9)

Man erkennt, daß die Grundschaltung in Domino-Logik die Schaltfunktion der „Identität“ realisiert.
Sie ist, wie auch eine logische Verknüpfung mehrerer Eingangssignale, nur während der Evaluie-
rungsphase gültig.

Bild 2.9: Domino-Logik in CMOS-Technologie.
a) UND-Schaltung (positive Logik); b) ODER-Schaltung (positive Logik).

e1

v
a

PV

NE

Cp

UB > 0

Takt Φ

v
a

PV

e1

e2

N1

N2

NE

Cp

UB > 0

Takt Φ

N1N2

e2

a) b)

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.18 von 26

Schaltet man nämlich zwischen das vom Taktsignal Φ angesteuerte CMOS-Transistorpaar eine
Reihen- oder eine Parallelschaltung von NMOS-Schalttransistoren (oder bei komplizierteren
Schaltfunktionen auch direkt ein komplexeres Netzwerk aus NMOS-Transistoren), so erhält man
in positiver Logik eine UND-Schaltung (im obigen Bild links) bzw. eine ODER-Schaltung (im
obigen Bild rechts). Aufgrund des Ausgangsinverters, der die für den dynamischen Betrieb erfor-
derliche Kapazität beisteuert und außerdem eine Signalverstärkung liefert, sind die in Domino-
Logik realisierten Schaltfunktionen grundsätzlich bejaht. Schaltet man mehrere Domino-Stufen in
einer Kette hintereinander, so setzen sich die Verknüpfungen der Eingangssignale von Stufe zu
Stufe fort (daher der Name dieser Schaltungstechnik).

2 Schaltungsebene

Seite 2.19 von 26

2.5 MOS-Speicherschaltungen

2.5.1 Speichermatrizen (RAM)

Bild 2.10: Blockschaltbild eines Schreib/Lese-Speichers mit wahlfreiem Zugriff (RAM)

Die Technologie der Mikroelektronik erlaubt es, Speicherzellen in extrem großer Anzahl auf einem
gemeinsamen Silizium-Chip zu integrieren: Stand der Technik sind mehrere Millionen Bits pro
Chip. Die Speicherzellen sind geometrisch in Zeilen und Spalten angeordnet. Eine Zeile von Spei-
cherzellen kann z.B. ein Wort enthalten, dessen einzelne Bits sich in unterschiedlichen Spalten
befinden. Man bezeichnet daher die Zeilen der Speichermatrix auch als „Wortrichtung”, die Spalten
als „Bitrichtung”. Selektiert man gleichzeitig eine Zeile und eine Spalte der Speichermatrix, so
erhält man den direkten Zugriff auf die Speicherzelle am Schnittpunkt. Dies wird als wahlfreier
Zugriff bezeichnet („Random Access Memory”, RAM).

Die Selektion einer Speicherzelle auf einem höchstintegrierten Speicherchip kann nicht direkt er-
folgen. Eine Speichermatrix der Größe

2n Zeilen ⋅ 2m Spalten = 2n+m Beispiel: 210+10 = 220 = 1 MegaBit,

die also etwa einer Million Speicherzellen enthält, würde sonst

2n Zeilen + 2m Spalten = 2n + 2m 210 + 210 = 1.024 + 1.024 = 2.048 (!)

...

0...01 ← n Bit

2m : 1 Multiplexer

1-
au

s-
2n

D
ec

od
er

. . .

. . .

.

. . .

Lesen | Schreiben

0 | 1
Schreib/Lese-

Verstärker

2m

2n
...

0.
..0

1
←

 m
 B

it

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.20 von 26

äußere Anschlüsse benötigen, was technologisch nicht machbar ist. Codiert man jedoch die Zeilen-
und Spaltenadressen („Wort- bzw. Bitadresse”) im Dualcode, so gilt für die Anzahl der äußeren
Anschlüsse:

ld 2n + ld 2m = n + m 10 + 10 = 20 .

Zur Selektion genau einer Wort- bzw. einer Bitleitung müssen die dual codierten Wort- bzw. Bit-
adressen in einen „1-aus-n”-Code umgewandelt werden, bei dem definitionsgemäß immer nur ein
Bit aktiv ist. Daher enthalten höchstintegrierte Speicherchips am Rande der eigentlichen Speicher-
matrix stets auch Decoder- und Multiplexerschaltungen, um die Anzahl der äußeren Anschlüsse
des Chips in der geschilderten Weise niedrig zu halten, wie das vorhergehende Bild zeigt.

Das folgende Bild zeigt das Layout einer Speichermatrix mit wahlfreiem Zugriff (RAM).

Bild 2.11: Chip-Layout eines Schreib/Lese-Speichers mit wahlfreiem Zugriff (32∗ 64 bit RAM)

2.5.2 Statische MOS-Speicherzelle

Zur Einführung in die Schaltungstechnik zeigt das folgende Bild die Implementierung eines unge-
takteten Basis- und eines zustandsgetakteten Auffang-Flipflops mit logischen Gattern. Die Reali-
sierung kann grundsätzlich in allen bekannten Schaltkreistechnologien erfolgen; hier wird die Rea-
lisierung in statischer NMOS-Logik gezeigt.

1-
au

s-
25

D
ec

od
er

25 : 1 Multiplexer

32*32 Speicherzellen

32*32 Speicherzellen

1-
au

s-
25

D
ec

od
er

2 Schaltungsebene

Seite 2.21 von 26

Bild 2.12: Basis-Flipflop (links) und Auffang-Flipflop (rechts). a) b) Schaltsymbole; c) d) Imple-
mentierungen mit logischen Gattern; e) f) Realisierungen mit NMOS-Transistoren.

Das folgende Bild zeigt die Schaltung einer bistabilen Speicherzelle, die aus sechs MOS-Transi-
storen besteht (“Six-Device Cell”). Es handelt sich um MOS-Transistoren mit N-Kanal vom An-
reicherungstyp. Dieser Transistortyp wird nicht nur am meisten verwendet, sondern mit ihm läßt
sich auch die Wirkungsweise der Speicherzelle anhand positiver Spannungswerte in positiver Logik
erläutern, was das Verständnis erleichtert. Die Speicherzelle kann mit einer Betriebsspannung UB
≈ + 2,5 V betrieben werden.

S

Q

c

Q

R

c

N4

S

Q Q

R
V

a)

&
c

&

R

S
b)

V

S

Q Q

R

V V

& &

cc

N2N1

N5 N6

UB > 0

N8N7

N3

S

Q Q

R

N2N1

N5 N6

UB > 0

N8N7

c) d)

e) f)

R

S

Q

Q

R

S

Q

Q

R

S

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.22 von 26

Bild 2.13: Schaltbild der statischen „Sechs-Transistor-Speicherzelle“ mit Lasttransistoren N5, N6.
WL - Wortleitung; BL1, BL2 - Bitleitungspaar. - Literatur: J. S. Schmidt, “Integrated
MOS Random-access Memory”, Solid-State Design, 21-25 (1965).

Bild 2.14: Layout der statischen „Sechs-Transistor-Speicherzelle“.
Literatur: R. Remshardt, U.G. Baitinger: „A High Performance Low Power 2048-bit
Memory Chip in MOSFET Technology And Its Application”, IEEE J. Solid-State Cir-
cuits, Vol. SC-11, No.3 (June 1976), pp. 352-359

S RN8N7

N3

N2N1

N5 N6

UB

N4

BL2BL1

WL

D2D1

2 Schaltungsebene

Seite 2.23 von 26

a) Betriebsart „Speichern“

Wenn die Speicherzelle unselektiert ist, liegt das Wortleitungspotential WL unterhalb der Schwell-
spannung; dann sind die Ein/Ausgangstransistoren N3 und N4 gesperrt:

Lo: UWL ≈ 0 < UthN ≈ + 1,0 V

Leitet Schalttransistor N1, was dem gespeicherten Zustandsbit Q = 1 entsprechen möge, so liegen
der Drainknoten D1 und damit das Gate des Schalttransistors N2 auf dem Potential „Lo“, d.h.
unterhalb der Schwellspannung, da der Schalttransistor N1 niederohmig gegenüber dem Lasttran-
sistor N5 ausgelegt ist. Dadurch wird Schalttransistor N2 gesperrt. Das hat zur Folge, daß der
Drainknoten D2 über den Lasttransistor N6 auf das Potential „Hi“ angehoben wird.

Lo: UD1 < UthN2 Hi: UD2 = (UB - UthN6) > UthN1

Dadurch bleibt Schalttransistor N1 leitend, wie ursprünglich angenommen. - In gleicher Weise kann
sich das komplementäre Zustandsbit Q = 0 stabil halten, da die Schaltung symmetrisch ist.

b) Betriebsart „Lesen“

Die Speicherzelle wird selektiert, indem das Potential der Wortleitung WL auf den Wert der Be-
triebsspannung UB angehoben wird:

Hi: UWL = UB > UthN

Dadurch werden die Ein/Ausgabetransistoren N3 und N4 leitend und verbinden die Zellknoten D1
und D2 mit den Bitleitungen BL1 bzw. BL2, die beide auf mindestens den Wert der Betriebsspannung
aufgeladen sein mögen:

Hi: UBL1 ≥ UB Hi: UBL2 ≥ UB

Leitet Schalttransistor N1, während Schalttransistor N2 sperrt, was dem gespeicherten Zustandsbit
Q = 1 entsprechen möge, so fließt über den relativ hochohmigen Ein/Ausgabetransistor N3 in Reihe
mit dem niederohmigen Schalttransistor N1 ein Strom, so daß am Zellknoten D1 der Potentialpegel
„Lo“ erhalten bleibt, während der gesättigt leitende Ein/Ausgabetransistor N4 den Zellknoten D2
auf dem Potentialpegel „Hi“ zumindest hält.

Lo: UD1 < UthN2 Hi: UD2 = (UB - UthN4) > UthN1

Wesentlich ist, daß das Gatepotential UD2 des als leitend angenommenen Schalttransistors N1 sogar
ansteigt, so daß sich über den Ein/Ausgabetransistor N3 ein kräftiger Lesestrom ergibt, der aus
Bitleitung BL1 nachgeliefert wird. Er kann mit einem selektiv an das Bitleitungspaar angeschlos-
senen stromempfindlichen Differenzverstärker abgefühlt werden. - Ist in der Zelle das komplemen-
täre Zustandsbit Q = 0 gespeichert, fließt der Lesestrom in symmetrischer Weise aus Bitleitung BL2.

c) Betriebsart „Schreiben“

Soll in die Speicherzelle geschrieben, d.h. das Zustandsbit Q ∈ {0, 1} geändert werden, wird sie
wie beim Lesen durch Anheben des Potentials der Wortleitung WL selektiert, so daß die Ein/
Ausgabetransistoren N3 und N4 leiten:

Hi: UWL = UB > UthN

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.24 von 26

Soll der Schalttransistor N2 leitend werden, was wie oben angenommen dem gespeicherten Zu-
standsbit Q = 0 entspricht, so muß die Bitleitung BL2 auf Erdpotential, d.h. unter den Wert der
Schwellspannung abgesenkt werden, während die Bitleitung BL1 mindestens auf dem Wert der
Betriebsspannung bleibt:

Hi: UBL1 ≥ UB Lo: UBL2 = 0 < UthN

Der gesättigt leitende Ein/Ausgabetransistor N3 hebt das Potential des Zellknotens D1 und damit
das Gatepotential von Schalttransistor N2 über den Wert der Schwellspannung an, so daß dieser
leitet, während Schalttransistor N1 gesperrt wird, da der Zellknoten D2 über den linear leitenden
Ein/Ausgabetransistor N4 das niedrige Potential der angeschlossenen Bitleitung BL2 annimmt :

Hi: UD1 = (UB - UthN3) > UthN2 Lo: UD2 = UBL2 = 0 < UthN1

Man erkennt, daß die Geschwindigkeit, mit der die statische Speicherzelle beim Schreiben ihren
Zustand ändert, offenbar von der Aufladung der Gatekapazität des jeweils einzuschaltenden Schalt-
transistors über einen Ein/Ausgabetransistor abhängt. Das entspricht ganz der Wirkungsweise einer
Inverterschaltung. Mit anderen Worten: Diese Speicherzelle wird von zwei kreuzgekoppelten In-
vertern gebildet, die aus Schalttransistor N1 und Ein/Ausgabetransistor N3 bzw. Schalttransistor N2
und Ein/Ausgabetransistor N4 bestehen. - Die Aufgabe der Lasttransistoren N5 und N6 besteht
lediglich darin, während des Ruhezustands der Speicherzelle die Leckströme an den Drainknoten
D1 bzw. D2 nachzuliefern (die dort zum Substrat abfließen), damit das Gatepotential des jeweils
leitenden Schalttransistors nicht unter die Schwellspannung absinkt, so daß er leitend bleibt.

Die Verlustleistung dieser Speicherzelle wird hauptsächlich in dem Lasttransistor N5 oder N6 in
Wärme umgesetzt, der sich in Reihe zum jeweils leitenden Schalttransistor befindet, da an ihm fast
die gesamte Betriebsspannung (UB - UD1 ≈ UB) abfällt (leider nutzlos, da er keinen Leckstrom
nachzuliefern hat, weil er zur entladenen Gatekapazität führt). - Eine elegante Methode, dies zu
vermeiden, besteht darin, die Lasttransistoren mit dem komplementären P-Kanaltyp auszuführen.
Dadurch wird gewährleistet, daß Lasttransistor N5 sperrt, wenn Schalttransistor N1 leitet, so daß
praktisch keine Gleichstromverlustleistung verbraucht wird, während andererseits Lasttransistor
N6 leitet, um den Leckstrom an der aufgeladenen Gatekapazität des leitenden Schalttransistors N1
zu kompensieren. Man erkauft den Vorteil einer extrem niedrigen Verlustleistung der integrierten
Speichermatrizen durch den komplizierteren CMOS-Herstellungsprozeß.

2.5.3 Dynamische MOS-Speicherzelle

Eine besonders sparsame und daher extrem kleine, dynamische Speicherzelle zeigt das nachfolgen-
de Bild. Sie besteht aus einem Schalttransistor N1 und einem Speicherkondensator C, der techno-
logisch als MOS-Kapazität eines NMOS-Transistors ausgeführt wird (“One-Device Cell”).

Die Ein-Transistor-Speicherzelle wird selektiert durch Anheben des Potentials der Wortleitung WL
über den Wert der Schwellspannung UthN, so daß der Schalttransistor N1 leitet und den Speicher-
kondensator C mit der Bitleitung BL verbindet. Diese nimmt das Potential des Speicherkondensa-
tors C an und kann es an den Eingang eines an die Bitleitung BL angeschlossenen spannungsemp-
findlichen Leseverstärkers weitergeben, dessen Eingangskapazität in der Regel leider relativ groß

2 Schaltungsebene

Seite 2.25 von 26

ist im Vergleich zum Kapazitätswert des Speicherkondensators C. Es ist unbedingt erforderlich,
eine gelesene Zelle unmittelbar danach aufzufrischen.

Der Vorteil der dynamischen Ein-Transistor-Speicherzelle liegt in ihrer minimalen Zellfläche; er
muß jedoch durch entsprechend aufwendige Peripherieschaltkreise erkauft werden. Die niedrige
Verlustleistung erlaubt die Integration extrem großer Speichermatrizen auf gegebener Chipfläche.
Wegen des erforderlichen komplizierten Auffrischvorgangs ist die Zugriffszeit relativ hoch.

Man erkennt durch den Vergleich mit der statischen Sechs-Transistor-Speicherzelle nach Bild 2.17,
daß die dynamische Ein-Transistor-Speicherzelle darin enthalten ist.

Bild 2.15: Schaltbild der dynamischen „Ein-Transistor-Speicherzelle“ mit Ladungsspeicher (C).
WL - Wortleitung; BL - Bitleitung.
Literatur: L. Cohen et al., ”Single-transistor Cell Makes Room for More Memory on
an MOS Chip”, Electronics, 69-75 (1971).

Bild 2.16: Layout der dynamischen „Ein-Transistor-Speicherzelle“.

N1

C
BL

WL

Prof. Dr.-Ing. U.G. Baitinger

Seite 2.26 von 26

Bild 2.17: Statische „Sechs-Transistor-Speicherzelle“; hervorgehoben ist die darin enthaltene
dynamische „Ein-Transistor-Speicherzelle“.

D2D1N3

N2N1

N5 N6

UB > 0

N4

BL2BL1

WL

3 Logikebene

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.1.1 von 8

ti-I

S
tand: 21. F

ebruar 2001

3.1 Die Darstellung von Schaltfunktionen

Die Boolesche Algebra lehrt den Umgang mit diskreten („wohlunterschiedenen“), digitalen („ab-
zählbaren“) Werten. Die Schaltalgebra ist ein binärer („zweiwertiger“) Sonderfall der Booleschen
Algebra: Eine Variable

a

 kann nur zwei verschiedene Werte

a

∈

 {0,1} annehmen.

Schaltfunktionen

sind daher binäre Funktionen binärer Variabler; ihr Wertebereich ist dahingehend eingeschränkt.
Da auch die Aussagenlogik für eine logische Aussage nur zwei Werte

A

∈

 {falsch, wahr} zuläßt,
ist auch sie ein binärer Sonderfall der Booleschen Algebra. Deshalb wird bei schaltalgebraischen
Begriffen häufig das Adjektiv „logisch“ hinzugefügt. Folgende Begriffe sind deshalb äquivalent:

• Schaltfunktionen sind „logische Verknüpfungen“;

• Schaltglieder heißen auch „logische Gatter“;

• Funktionstabellen werden auch „Wahrheitstabellen“ genannt.

Schaltfunktionen können durch Listen, Tafeln, Tabellen oder Matrizen dargestellt werden; beson-
ders anschaulich ist ihre Darstellung als Graph. Im Folgenden sollen die drei

elementaren

 Schalt-
funktionen eingeführt und durch ihre Relationsgraphen dargestellt werden.

3.1.1 Der Funktionsgraph

Für die Schaltfunktion der

Negation

y

 =

x

0

gilt, daß der Funktionswert

y

 = 1 ist, wenn die Eingangs-
variable

x

0

 = 0 ist; sonst gilt

y

 = 0.

Bild 3.1: Relationsgraph der Negation

y

 = ƒ(

x

0

) =

x

0

Für die Schaltfunktion der

Konjunktion

y

 = (

x

1

&

 x

0

) gilt, daß der Funktionswert

y

 = 1 ist, wenn
die erste Eingangsvariable

x

1

= 1

und

 die zweite Eingangsvariable

x

0

 = 1 ist; sonst gilt

y

 = 0.

Bild 3.2: Relationsgraph der Konjunktion

y

 = (

x

1

&

 x

0

)

1

x0

X = {0,1}

y ∈ Y X ∈ X

Y = {0,1}

1

0

0

00

1

0

x1 & x0

01

10

11

X = {0,1}2

y ∈ Y X ∈ X

Y = {0,1}

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.1.2 von 8

Für die Schaltfunktion der

Disjunktion

y

 =

x

1

∨

 x

0

 gilt, daß der Funktionswert

y

 = 1 ist, wenn die
erste Eingangsvariable

x

1

= 1

oder

 die zweite Eingangsvariable

x

0

 = 1 ist

oder

 beide Eingangsva-
riablen

x

1

 = x

0

 = 1 sind; sonst gilt

y

 = 0.

Bild 3.3: Relationsgraph der Disjunktion

y

 = (

x

1

∨

 x

0

)

Die Graphen lassen erkennen, daß Schaltfunktionen

y

 = ƒ(

X

) eindeutige Abbildungen

ƒ

:

X

→

Y

 der
Elemente

X

∈

X

 einer Definitionsmenge

X

 auf die Elemente

y

∈

Y

 einer Zielmenge

Y

 sind. Zur
Unterstützung des Entwurfs digitaler Schaltungen auf der Logikebene wurde eine Fülle weiterer
Darstellungsformen entwickelt, von denen nachfolgend die wichtigsten vorgestellt werden sollen.

3.1.2 Belegung und Indizierung

Man faßt die

n

 Eingangsvariablen

x

i

 einer Schaltfunktion ƒ als Komponenten eines n-Tupels auf
und bezeichnet diesen als „Eingangsbelegung” X der Schaltfunktion, wie das folgende Bild zeigt.
Werden die Eingangsvariablen xi auf spezielle Werte xij ∈ {0,1} festgelegt, so erhält man eine
spezielle Eingangsbelegung Xj. Um den Index j zu ermitteln, liest man die Werte der Komponenten
xij wie die gewichteten Stellen einer Dualzahl (Grundzahl RB = 2), die man dann zur kompakteren
Darstellung in einen Index j in einem Zahlensystem mit einer höheren Grundzahl umwandelt, z.B.
im Oktalsystem (Grundzahl RO = 23) oder im Hexadezimalsystem (Grundzahl RX = 24).

allgemeine Belegung:

X = (xn, . . . , xi, . . . , x2, x1);

spezielle Werte:

Xj = (xnj, . . . , xij , . . . , x2j, x1j); xij ∈ {0,1}

Bild 3.4: Eingangsbelegung X einer Schaltfunktion y = ƒ(X)

Für die Menge X aller Belegungen und deren Mächtigkeit X  , d.h. die Anzahl aller Belegungen
Xj gilt bei n Eingangsvariablen:

X = { Xj  xi ∈ {0,1}, i = 1 . . n }; X  = 2n

Beispiel 3.1.1: Hextupel X = (x6, x5, x4, x3, x2, x1)

Es sei n = 6. Der obige Hextupel ist eine allgemeine Eingangsbelegung, gegeben sei die spezielle
Eingangsbelegung Xj = (0, 1, 1, 0, 1, 0). Gesucht ist der zugehörige Index j im Oktalsystem. Liest

x1 ∨ x0 X = {0,1}2

y ∈ Y X ∈ X

Y = {0,1}
00

1

0
01

10
11

ƒ yxi

x1

xn





X
. . .

. . .

3 Logikebene

Seite 3.1.3 von 8

man die spezielle Eingangsbelegung Xj als Dualzahl (011 010)B , so kann man diese in die Oktalzahl
32O umwandeln, d.h. es gilt j = 32 und Xj = X32. Aus der kompakten Darstellung j = 32 lassen sich
die binären Werte der Eingangsvariablen xij , d.h. die Komponenten des 6-Tupels im gegebenen Fall
leicht rekonstruieren: x6 = 0, x5 = 1, x4 = 1, x3 = 0, x2 = 1, x1 = 0.

3.1.3 Die Funktionstabelle („Wahrheitstabelle“)

Schaltfunktionen haben eine endliche Definitionsmenge, d.h. die Menge X aller Belegungen X ist
endlich: X  = 2n . Sie können daher in Tabellenform dargestellt werden. Man schreibt alle 2n

Eingangsbelegungen Xj in aufsteigender Reihenfolge des Index j untereinander und schreibt den
zugehörigen Funktionswert y ∈ {0,1} jeweils daneben, so daß sich die „Funktionsspalte“ der be-
treffenden Schaltfunktion yi = ƒ(X) ergibt. Bei n Eingangsvariablen hat die Wahrheitstabelle 2n

Zeilen und es sind 2m mit m = 2n verschiedene Funktionsspalten möglich. Das folgende Bild zeigt
die Struktur der Wahrheitstabelle für Schaltfunktionen mit n = 1 Eingangsvariablen: X = (x0). Sie
hat 2n = 21 = 2 Zeilen und es sind 22 = 4 unterschiedliche Funktionsspalten möglich, die wie folgt
bezeichnet werden:

y0 Konstante 0

y1 Identität x0

y2 Negation

y3 Konstante 1

Bild 3.5: Wahrheitstabelle aller Schaltfunktionen mit n = 1 Eingangsvariablen

Das nächste Bild zeigt die Struktur der Wahrheitstabelle für Schaltfunktionen mit n = 2 Eingangs-
variablen: X = (x1, x0). Sie hat 2n = 22 = 4 Zeilen und 24 = 16 mögliche Funktionsspalten. Die
meisten Funktionsspalten werden mit charakteristischen Namen bezeichnet. Man findet die boole-
schen Grundfunktionen der Negation , der Konjunktion und der Disjunktion , aber auch komplizier-
tere Schaltfunktionen, wie die Antivalenz („exklusives Oder“) und die negierten Schaltfunktionen
NOR und NAND:

y0 Konstante 0 yF Konstante 1

y1 Konjunktion x1 & x0 yE NAND-Funktion

y2 - yD Implikation x1 → x0

y3 bejahte Variable x1 yC negierte Variable

y4 - yB Implikation x1 ← x0

y5 bejahte Variable x0 yA negierte Variable

y6 Antivalenz x1 ⊕ x0 y9 Äquivalenz x1 ≡ x0

y7 Disjunktion x1 ∨ x0 y8 NOR-Funktion

x0

x0

0

1

0

0

j

0

1

0

1

1

0

1

1

y0 y1 y2 y3

x1 & x0

x1

x0

x1 ∨ x0

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.1.4 von 8

Bild 3.6: Wahrheitstabelle aller Schaltfunktionen mit n = 2 Eingangsvariablen

Bild 3.7: Erzeugung Karnaugh-Veitch-Diagramme („KV-Diagramme“)
für Schaltfunktionen mit n = 0 . . 5 Eingangsvariablen

x1 x0

0

0

1

1

0

1

0

1

0

0

0

0

j

0

1

2

3

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF

x1

x1 x1

x1

x1 x1

x1

x1

x1 x1

x2 x2

x2

x2

x2

x2

x3 x3

x3 x3

x3 x3 x3 x3

x4

x4

x4

x4

x5 x5 x5 x5

n = 0 n = 1

n = 2 n = 3

n = 4

n = 5

3 Logikebene

Seite 3.1.5 von 8

3.1.4 Das Karnaugh-Veitch-Diagramm

Eine Funktionstabelle enthält zwar die vollständige Funktionsbeschreibung einer Schaltfunktion,
doch läßt sie die Nachbarschaften zwischen zwei speziellen Eingangsbelegungen Xi und Xj, die die
Grundlage zur Minimierung von Schaltfunktionen sind, nicht sofort erkennen. Dazu wurde das
zweidimensionale Karnaugh-Veitch-Diagramm entwickelt („KV-Diagramm“). Das vorhergehende
Bild zeigt, wie KV-Diagramme für eine schrittweise Zunahme der Anzahl n ≥ 0 der Eingangsva-
riablen xi durch Spiegelung an einer abwechselnd vertikalen bzw. horizontalen Achse konstruiert
werden. Man stellt allerdings auch fest, daß sie für n > 5 Eingangsvariablen unhandlich groß und
unübersichtlich werden.

Im KV-Diagramm

• werden die Zeilen und Spalten abwechselnd mit den bejahten Variablen des n-Tupels X = (xn , .
. . , xi , . . . , x2 , x1) bezeichnet (negierte Variablen gelten für die jeweils benachbarten, unbe-
zeichneten Zeilen bzw. Spalten). Dadurch wird jeder speziellen Eingangsbelegung Xj ein Feld in
der quadratischen oder halbquadratischen Anordnung von Feldern zugeordnet..

• In das Feld, das einer speziellen Eingangsbelegung Xj entspricht, trägt man den zugehörigen
Funktionswert y = ƒ(Xj) ∈ {0,1} ein. (Die Felder können zusätzlich mit den Indizes j gekenn-
zeichnet werden, obwohl die Lage eines Feldes durch die zugehörige Eingangsbelegung Xj ein-
deutig bestimmt ist.)

3.1.5 Der Strukturausdruck

Jede Schaltfunktion kann durch eine Gleichung der Form

y = [(a ⊗ b) ⊗ (c ⊗ d)]

dargestellt werden. Die rechte Seite der Gleichung ist ein „Strukturausdruck” (auch „boolescher
Ausdruck” genannt). Dabei stehen die Symbole ⊗ für beliebige, in der Regel unterschiedliche
„boolesche” Operatoren, wie zum Beispiel:

• die elementaren Schaltfunktionen Konjunktion & und Disjunktion ∨

• oder die NOR-Funktion & und die NAND-Funktion ∨ ,

• aber auch für kompliziertere Schaltfunktionen, wie die Antivalenz ⊕ oder die Äquivalenz ≡ .

Die im Strukturausdruck enthaltenen Buchstaben sind Operanden, d.h. entweder binäre Variable
oder, rekursiv, wiederum Strukturausdrücke der obigen Form. Zwei durch einen Operator verknüpf-
te Operanden bilden einen Term. Man erhält die Funktionsspalte der Wahrheitstabelle oder den
Inhalt des KV-Diagramms für eine spezielle Schaltfunktion, indem man alle Eingangsbelegungen
Xj nacheinander in den Strukturausdruck der Schaltfunktion einsetzt und die zugehörigen Funkti-
onswerte y = ƒ(Xj) ∈ {0,1} ausrechnet.

Die Bezeichnung „Strukturausdruck” bedeutet, daß sie nach folgenden Regeln in eine jeweils ge-
staltgleiche („isomorphe”) Struktur mit logischen Gattern umgewandelt werden können:

• Jede Klammer entspricht einem logischen Gatter;

• jeder Operator entspricht der Schaltfunktion des betreffenden Gatters;

• jeder Operand entspricht einer Eingangsklemme des Gatters.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.1.6 von 8

Beispiel 3.1.2:

Gegeben sei der Strukturausdruck y = { [(x2) & x1] ∨ [x2 & (x1)] };
gesucht ist die isomorphe Schaltnetzstruktur. Das folgende Schaltbild zeigt das Ergebnis.

Bild 3.8: Zum gegebenen Strukturausdruck isomorphe Schaltnetzstruktur

Zur Schreibweise

Symbole & ∧ • ↔ „logisches Produkt” ↔ Konjunktion

Symbole ∨ + ↔ „logische Summe” ↔ Disjunktion

Konjunktion (&) und Disjunktion (∨) sind gleichberechtigte Operatoren, so daß Prioritäten explizit
in Klammern gesetzt werden müssen:

y = (x2 & x1) ∨ (x2 & x1)

Um die Isomorphie zwischen einem Strukturausdruck und der entsprechenden Schaltnetzstruktur
deutlich zu zeigen, kann eine Schreibweise mit besonders aufwendiger Klammersetzung verwendet
werden:

y = { [(x2) & x1] ∨ [x2 & (x1)] }

In der englischsprachigen Literatur findet man auch folgende Symbole für die betr. Operatoren:

y = (¬ x2 ∧ x1) ∨ (x2 ∧ ¬ x1) y = ¬ x2 • x1 + x2 • ¬ x1

Letztere erinnert an die Bezeichnung „logisches Produkt” für die Konjunktion (Symbole: &, ∧ , •)
und „logische Summe” für die Disjunktion (Symbole: ∨ , +). Außerdem wird mit dieser Schreibweise
das in der Arithmetik gültige Prinzip: „Punktrechnung geht vor Strichrechnung” eingeführt, so daß
die Konjunktion stillschweigend Priorität vor der Disjunktion erhält, was die Klammersetzung
vereinfacht. Damit kommt man zu der im folgenden meist gebrauchten Kurzschreibweise:

&

&

∨ y

x2 x1

x2

x1
x2

x1

y = x2 x1 ∨ x2 x1

3 Logikebene

Seite 3.1.7 von 8

3.1.6 Ausgewählte Schaltfunktionen

Es läßt sich zeigen, daß alle logischen Verknüpfungen der Schaltalgebra ausschließlich mit den drei
Schaltfunktionen Negation (¬), Konjunktion (&) und Disjunktion (∨) dargestellt werden können.
Diese Operatoren bezeichnen elementare Schaltfunktionen; sie stellen ein Basissystem der Schalt-
algebra dar. Sie sind im folgenden Bild zusammengestellt.

Bild 3.9: Funktionsbeschreibungen und Gattersymbole der drei elementaren Schaltfunktionen

Technisch wichtige Schaltfunktionen ergeben sich aus der Tatsache, daß ein elektronischer Verstär-
ker die Schwingungsphase zwischen sinusförmigen Eingangs- und Ausgangssignalen um eine halbe
Periode verschiebt, was im Impulsbetrieb bedeutet, daß aus einem hohen Eingangs- ein niedriger
Ausgangspegel wird und umgekehrt. Mit andern Worten:

• Mit einer elektronisch realisierten logischen Negation ist eine Verstärkung des Ausgangssignals
verbunden. Negierende Schaltfunktionen sind deshalb in größeren Netzwerken unverzichtbar.

Es läßt sich auch zeigen, daß alle logischen Verknüpfungen der Schaltalgebra entweder ausschließ-
lich mit NAND-Gattern oder ausschließlich mit NOR-Gattern implementiert werden können: Die
zugehörigen Operatoren (& bzw. ∨) stellen jeweils für sich allein ebenfalls Basissysteme der
Schaltalgebra dar, was technisch bedeutet, daß im Prinzip ein einziger negierender und damit ver-
stärkender Bausteintyp genügt, um auch komplexeste Schaltnetze damit aufzubauen. Sie sind im
nächsten Bild zusammengestellt.

&

∨

x0

x1

Konjunktion

Disjunktion

y x0

Negation

x0

x1

0

0

0

1

x0

x1

0

1

1

1

x0

1 0

x0

x1
y

y

y = (x1 ∨ x0)

0

x1 x0

00
110
101
111

y = (x1 & x0)

0

x1 x0

00
010
001
111

y = x0

1

x0

0
01

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.1.8 von 8

Bild 3.10: Funktionsbeschreibungen und Gattersymbole technisch wichtiger Schaltfunktionen

Im Hinblick auf technische Realisierungen, insbesondere durch elektronische Schaltkreise, ist des-
halb folgende Regel zur Transformation bejahter in negierte Schaltfunktionen besonders wichtig:

Bild 3.11: „DeMorgansche Regel“

Technisch sind nicht nur einfache NAND- und NOR-Gatter verfügbar, sondern auch solche, die
kompliziertere Schaltfunktionen realisieren, so daß sie zur Vereinfachung einer komplexen Schalt-
netzstruktur eingesetzt werden können, z.B. Antivalenz-, auch Exclusive-OR- oder kurz XOR-
Gatter genannt, sowie Äquivalenz-Gatter, die im folgenden Bild zusammengestellt sind. Man er-
kennt übrigens aus der Wahrheitstabelle der Antivalenzfunktion, daß sie eine binäre Addition er-
zeugt, allerdings ohne Übertrag.

Bild 3.12: Funktionsbeschreibungen und Gattersymbole komplizierter Schaltfunktionen

&

∨

x0

x1

NAND-Funktion

NOR-Funktion

x0

x1

1

1

1

0

x0

x1

1

0

0

0

x0

x1
y

y

y = (x1 ∨ x0)

1

x1 x0

00
010
001
011

y = (x1 & x0)

1

x1 x0

00
110
101
011

(a & b) = a ∨ b (a ∨ b) = a & b

x0

x1

Antivalenz

Äquivalenz

x0

x1

0

1

1

0

x0

x1

1

0

0

1

x0

x1
y

y

y = (x1 ≡ x0)

1

x1 x0

00
010
001
111

y = (x1 ⊕ x0)

0

x1 x0

00
110
101
011

⊕

≡

3 Logikebene

Seite 3.2.1 von 18

3.2 Kombinatorische Schaltungen („Schaltnetze“)

3.2.1 Darstellungsebenen und Entwurfsziele

Schaltnetze

 sind konkrete Implementierungen abstrakter Schaltfunktionen. Sie kombinieren die an
ihrem Eingang anliegenden binären Größen zu einer binären Ausgangsgröße; man nennt sie deshalb
auch

kombinatorische Schaltungen

. Schaltfunktionen können unterschiedlich dargestellt werden,
z.B. durch Wahrheitstabellen, KV-Diagramme oder Strukturausdrücke. Schaltnetze werden, iso-
morph zum zugehörigen Strukturausdruck, mit Gattersymbolen dargestellt. Zur Terminologie:

•

Implementierung

: Die Darstellung mit logischen Gattern („Logikebene”)

•

Realisierung

: Die Darstellung mit Transistoren und passiven Bauelementen („Schaltungsebene”)

Das nächste Bild zeigt eine Schaltung mit MOS-Transistoren, die in positiver Logik durch ein NOR-
Gatter symbolisiert werden kann, dessen Schaltfunktion hier durch eine Wahrheitstabelle wieder-
gegeben wird. Das übernächste Bild zeigt eine Schaltnetzstruktur mit NOR-Gattern, die durch ein
Symbol für eine allgemeine Schaltfunktion

ƒ

(

X

) abstrahiert werden kann, wobei die Funktion

ƒ

(

X

)
z.B. wieder durch eine Wahrheitstabelle spezifiziert sein kann.

Bild 3.13: Realisierung eines logischen Gatters auf der Schaltungsebene
a) Schaltungsstruktur, b) NOR-Gattersymbol, c) NOR-Schaltfunktion

Bild 3.14: Implementierung eines Schaltnetzes auf der Logikebene
a) Schaltnetzstruktur, b) allg. Gattersymbol, c) allg. Schaltfunktion

y

x0

x1

∨ y
x0

x1

y = x1 ∨ x0 x1 x0

0 0 1

0 1 0

1 0 0

1 1 0

 b) a)

 c)

 b)

x0

x1
∨

y

ƒ y
x0

x1

y = ƒ(x1, x0)x1 x0

0 0 y ∈ {0,1}

0 1 y ∈ {0,1}

1 0 y ∈ {0,1}

1 1 y ∈ {0,1}

 a)

 c)

∨
∨

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.2 von 18

Zur Senkung der Fertigungskosten ist man beim Schaltungsentwurf bestrebt, solche Schaltungen
zu entwerfen, die den geforderten Zweck mit möglichst wenig technischem Aufwand erreichen.
(Dabei läßt man die Entwurfskosten zunächst außer acht, obwohl sie für höchstintegrierte Schal-
tungen in hochkomplexen digitalen Systemen ein nicht unerheblicher Kostenfaktor sind). Die Fer-
tigungstechnologien lassen sich grob in zwei Klassen einteilen.

• Die konventionelle Technologie der

teuren Gatter

: Werden digitale Schaltungen mit diskreten
Bausteinen aufgebaut, so bestimmen diese die Größe, Geschwindigkeit und Zuverlässigkeit der
entworfenen Systeme, während der Einfluß der Verdrahtung demgegenüber vernachlässigt werden
kann.

• Die moderne Technologie der

teuren Verdrahtung

: Fläche, Geschwindigkeit und Zuverlässigkeit
integrierter Chips werden vor allem durch die Verdrahtung bestimmt, während (z. B. bei MOS-
Technologien) die Gatter unter der Verdrahtung liegen und ihre Schaltverzögerungen gegenüber
den Laufzeiten auf den Leitungen vernachlässigt werden können.

Bild 3.15: Die konventionelle Technologie der

teuren Gatter

Bild 3.16: Die moderne Technologie der

teuren Verdrahtung

3 Logikebene

Seite 3.2.3 von 18

Das bedeutet, daß das Entwurfsziel bei der konventionellen Technologie mit diskreten Bausteinen
zunächst darin besteht, die Anzahl der Gatter und Eingangsklemmen zu minimieren (jede Eingangs-
größe benötigt einen Transistor), während für die moderne Technologie der höchstintegrierten
Schaltungen die Gesamtverdrahtung auf den Chips möglichst kurz ausgelegt werden muß. Doch
bringt auch hier die Minimierung der Gatteranzahl in der Regel eine Verringerung des Verdrah-
tungsaufwandes mit sich. Deshalb sollen nachfolgend ausgewählte Minimierungsverfahren für lo-
gische Gatter vorgestellt werden, während Methoden der Verdrahtungsoptimierung, wie z.B. Floor-
planning, nicht Gegenstand dieses Kapitels sind.

3.2.2 Der Hauptsatz der Schaltalgebra

Der Hauptsatz der Schaltalgebra besagt: „Jede Schaltfunktion

y

 =

ƒ

(

X

) läßt sich durch zwei zuein-
ander duale Strukturausdrücke darstellen.“ Zur Konstruktion der Strukturausdrücke benötigt man
besondere Terme, die sogenannten Minterme

m

 bzw. Maxterme

M

. Sie „adressieren“ die zu spezi-
ellen Eingangsbelegungen

X

j

 gehörenden Funktionswerte

y

j

∈

 {0,1}, wie nachfolgend gezeigt
werden wird.

• Ein

Minterm

m

j

(X)

 ist eine

Konjunktion

 & aller

n

 Komponenten eines

n

-Tupels, d.h. einer Ein-
gangsbelegung

X

, die darin jeweils genau einmal - entweder bejaht oder verneint - vertreten sind.
Die Konjunktion hat ihre

Einsstelle

 bei

X

 =

X

j

, d.h.

m

j

(X

j

)

 = 1.

• Ein

Maxterm

M

j

(X)

 ist eine

Disjunktion

∨

 aller

n

 Komponenten eines

n

-Tupels, d.h. einer Ein-
gangsbelegung

X

, die darin jeweils genau einmal - entweder bejaht oder verneint - vertreten sind.
Die Disjunktion hat ihre

Nullstelle

 bei

X

 =

X

j

, d.h.

M

j

(X

j

)

 = 0.

Beispiel 3.5:

n

 = 2; zu adressieren ist die spezielle Eingangsbelegung

Xj

 = (0, 1) =

X

1

Minterme

m

 Maxterme

M

m0(X1) = x2 & x1 = 1 & 0 = 0 M0(X1) = x2 ∨ x1 = 0 ∨ 1 = 1

m1(X1) = x2 & x1 = 1 & 1 = 1 M1(X1) = x2 ∨ x1 = 0 ∨ 0 = 0

m2(X1) = x2 & x1 = 0 & 0 = 0 M2(X1) = x2 ∨ x1 = 1 ∨ 1 = 1

m3(X1) = x2 & x1 = 0 & 1 = 0 M3(X1) = x2 ∨ x1 = 1 ∨ 0 = 1

Die Konstruktion der nach dem Hauptsatz der Schaltalgebra existierenden beiden Strukturausdrük-
ke erfolgt

• entweder durch Konjunktion aller Minterme mj mit den jeweils zugehörigen Funktionswerten yj
und deren Verknüpfung durch eine Disjunktionskette (links)

• oder durch Disjunktion aller Maxterme Mj mit den jeweils zugehörigen Funktionswerten yj und
deren Verknüpfung durch eine Konjunktionskette (rechts).

Disjunktive Form Konjunktive Form

DF y = ∨ (mj & yj); j = 0 . . 2n-1 KF y = & (Mj ∨ yj); j = 0 . . 2n-1

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.4 von 18

Beispiel 3.2.4: n = 2; Liste der Antivalenz: y0 = 0 ⊕ 0 = 0; y1 = 0 ⊕ 1 = 1; y2 = 1 ⊕ 0 = 1; y3 = 1 ⊕ 1 = 0.

DF y = ∨ (mj & yj); j = 0 . . 3

y = (m0 & y0) ∨ (m1 & y1) ∨ (m2 & y2) ∨ (m3 & y3)

y = (m0 & 0) ∨ (m1 & 1) ∨ (m2 & 1) ∨ (m3 & 0)

y = (0) ∨ (m1) ∨ (m2) ∨ (0)

y = (m1) ∨ (m2)

y = (x2 & x1) ∨ (x2 & x1)

KF y = & (Mj ∨ yj); j = 0 . . 3

y = (M0 ∨ y0) & (M1 ∨ y1) & (M2 ∨ y2) & (M3 ∨ y3)

y = (M0 ∨ 0) & (M1 ∨ 1) & (M2 ∨ 1) & (M3 ∨ 0)

y = (M0) & (1) & (1) & (M3)

y = (M0) & (M3)

y = (x2 ∨ x1) & (x2 ∨ x1)

Es genügt, bei der Konstruktion der Strukturausdrücke mit Mintermen nur die Einsstellen yj = 1
der Schaltfunktion zu betrachten; entsprechend genügt bei Maxtermen die Betrachtung der Null-
stellen yj = 0. Man kommt so zu zwei einfacheren Formen des Hauptsatzes:

Disjunktive Normalform Konjunktive Normalform

DNF y = ∨ mj ; j = 0 . . 2n-1; yj = 1 KNF y = & Mj ; j = 0 . . 2n-1; yj = 0

Beispiel 3.2.5: n = 2; Liste der Antivalenz: y0 = 0 ⊕ 0 = 0; y1 = 0 ⊕ 1 = 1; y2 = 1 ⊕ 0 = 1; y3 = 1 ⊕ 1 = 0.

DNF y = ∨ mj ; j = 0 . . 3; yj = 1 KNF y = & Mj ; j = 0 . . 3; yj = 0

y = (m1) ∨ (m2) y = (M0) & (M3)

y = (x2 & x1) ∨ (x2 & x1) y = (x2 ∨ x1) & (x2 ∨ x1)

Werden disjunktive bzw. konjunktive Normalformen (DNF bzw. KNF) als Strukturausdrücke be-
trachtet, so erkennt man deren Isomorphie zu zweistufigen Schaltnetzen mit UND-Gattern zur
Implementierung der Konjunktionen (&) und ODER-Gattern für die Disjunktionen (∨). Die fol-
genden beiden Bilder zeigen die Schaltnetzstrukturen, die zu der im obigen Beispiel ermittelten
DNF der Antivalenz bzw. zu ihrer KNF isomorph ist.

Die Eigenschaften der Schaltalgebra sind in fünf Axiomen niedergelegt. Aus ihnen lassen sich alle
Regeln und Sätze der Schaltalgebra herleiten. Im Hinblick auf technische Realisierungen, insbe-
sondere durch elektronische Schaltkreise, ist die folgende Regel besonders wichtig:

DeMorgansche Regel

DNF (a ∨ b) = a & b KNF (a & b) = a ∨ b

Liegt ein Strukturausdruck in DNF vor, so läßt er sich durch Anwendung der DeMorganschen Regel
in eine einheitliche NAND-Form umwandeln, liegt er in KNF vor, in eine NOR-Form.

3 Logikebene

Seite 3.2.5 von 18

Bild 3.17: Schaltnetzstruktur der disjunktiven Normalform (DNF) der Antivalenz (x2 ⊕ x1)

Bild 3.18: Schaltnetzstruktur der konjunktiven Normalform (KNF) der Antivalenz (x2 ⊕ x1)

Bild 3.19: NAND-Schaltnetzstruktur aus der DNF der Antivalenz (x2 ⊕ x1)

Bild 3.20: NOR-Schaltnetzstruktur aus der KNF der Antivalenz (x2 ⊕ x1)

&

&

∨ y

x2 x1

m1

m2

x2

x1
x2

x1

∨

∨
& y

x2 x1

M0

M3

x2

x1
x2

x1

&

&

& y

x2 x1

m1

m2

x2

x1
x2

x1

∨

∨
∨ y

x2 x1

M0

M3

x2

x1
x2

x1

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.6 von 18

Beispiel 3.2.6: Antivalenz y = (x2 ⊕ x1); vgl. die Schaltnetzstrukturen in obigen beiden Bildern.

DNF y = (x2 & x1) ∨ (x2 & x1) KNF y = (x2 ∨ x1) & (x2 ∨ x1)

y = (x2 & x1) ∨ (x2 & x1) y = (x2 ∨ x1) & (x2 ∨ x1)

y = (x2 & x1) & (x2 & x1) y = (x2 ∨ x1) ∨ (x2 ∨ x1)

in Kurzschreibweise: in Kurzschreibweise:
y = (x2 & x1) & (x2 & x1) y = (x2 ∨ x1) ∨ (x2 ∨ x1)

3.2.3 Grundlagen der Minimierung von Schaltnetzen

Es soll zunächst der Zusammenhang zwischen Termen und den Feldern im KV-Diagramm geklärt
werden.

a) Mintermdarstellung

Gegeben sei ein n-Tupel X mit n Komponenten xi , wobei i = 1 . . n, für n = 3 mit der speziellen
Belegung:

Xj = (0, 1, 1) = X3

Der Minterm mit demselben Index j = 3 lautet:

m3(X) = x3 & x2 & x1

Er ist so definiert, daß er seine Einsstelle bei X3 hat:

m3(X3) = 0 & 1 & 1 = 1

Deshalb bezeichnet man auch die Belegung Xj selbst als die

Einsstelle E des Minterms mj :

E(mj) = { Xj | j = 3 }

E(m3) = { X3 } = {(0, 1, 1)}

Im nebenstehenden KV-Diagramm wird das markierte Feld
von dieser Einsstelle, d.h. vom Minterm m3 adressiert.

Bild 3.21: Feld im KV-Diagramm

Ein im Gegensatz zum Minterm willkürlich gewählter Term möge lauten:

w(X) = x3 & x2

Da hier der Wert der Komponente x1 unerheblich ist, besitzt der Term w nicht nur eine einzelne
Einsstelle E, sondern eine Einsstellenmenge E :

E(w)= { Xj | j = 2 . . 3 }

= { X2, X3 } = {(0, 1, 0), (0, 1, 1)}

x1 x1

x3 x3

x2

3 Logikebene

Seite 3.2.7 von 18

Man pflegt dann auch zu schreiben:

E(w) = { X2,3 } = {(0, 1, -)}

Im nebenstehenden KV-Diagramm wird der in markierte
Block von dieser Einsstellenmenge, d.h. vom gewählten
Term adressiert.

Bild 3.22: Block im KV-Diagramm

b) Maxtermdarstellung

Gegeben sei nach wie vor der 3-Tupel mit der speziellen Belegung:

Xj = (0, 1, 1) = X3

Der Maxterm mit demselben Index j = 3 lautet:

M3(X) = x3 ∨ x2 ∨ x1

Er ist so definiert, daß er seine Nullstelle bei X3 hat:

M3(X3) = 0 ∨ 1 ∨ 1 = 0

Deshalb bezeichnet man auch die Belegung Xj selbst als die Nullstelle N des Maxterms Mj :

N(Mj) = { Xj | j = 3 }

N(M3) = { X3 } = {(0, 1, 1)}

Im obigen KV-Diagramm wird das markierte Feld auch von dieser Nullstelle, d.h. vom Maxterm
M3 adressiert.

Ein im Gegensatz zum Maxterm willkürlich gewählter Term möge lauten:

W(X) = x3 ∨ x2

Da hier der Wert der Komponente x1 unerheblich ist, besitzt der Term nicht nur eine einzelne
Nullstelle N, sondern eine Nullstellenmenge N :

N(W)= { Xj | j = 2 . . 3 }

= { X2, X3 } = {(0, 1, 0), (0, 1, 1)} = {(0, 1, -)}

Im obigen KV-Diagramm wird der markierte Block auch von dieser Nullstellenmenge, d.h. vom
gewählten Term adressiert.

c) Freiheitsgrade

Ein Block B ist die Menge der n-Tupel X, die in den Werten bestimmter Komponenten xi überein-
stimmen, d.h. er ist eine Untermenge der Menge X aller Eingangsbelegungen X :

B ⊆ X = { 0, 1 } n

Für gebundene Komponenten ist einer der beiden Werte xi ∈ { 0, 1 } vorgeschrieben, dagegen muß
jede freie Komponente mit beiden Werten belegt werden.

x1 x1

x3 x3

x2

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.8 von 18

Beispiel 3.2.7:

X = (x5, x4, x3, x2, x1); gebunden seien x4, x2, x1; frei seien x5, x3

Der Block ist dann wie folgt zu schreiben: B = {(-, 1, -, 0, 1)}

Es sei hier ausdrücklich auf die „Blockschreibweise“ hingewiesen:

• Die Notation mit einem Strich (-) bedeutet, daß für eine Eingangsvariable xi beide Werte,
d.h. xi = 0 und xi = 1 betrachtet werden müssen.

Man stellt fest:

• Ein Block mit r freien Komponenten besteht aus 2r Belegungen.

Allerdings kann nicht jede Belegungsmenge ein Block von Belegungen sein. Wie in den folgenden
KV-Diagrammen gezeigt, umfaßt ein Block stets eine 2-er Potenz symmetrisch angeordneter Felder.
Zu jedem Block läßt sich genau eine Konjunktion w und genau eine Disjunktion W konstruieren.

Bild 3.23: Ausgewählte Blöcke und Terme in KV-Diagrammen

(1) m0; M0 (6) w = x2 & x1; W = x2 ∨ x1

(2) m3; M3 (7) w = x2 & x1; W = x2 ∨ x1

(3) m1; M1 (8) w = x5 & x2; W = x5 ∨ x2

(4) w = x3; W = x3 (9) w = x5 & x4 & x3 & x1;

(5) w = x2 & x1; W = x2 ∨ x1 W = x5 ∨ x4 ∨ x3 ∨ x1

x1n = 5 x1 x1 x1

x3 x3 x3 x3

x5 x5 x5 x5

x2

x2 x4

x4

x1 x1

x3 x3

x2

x2 x4

x4

x1 x1

x3 x3

x2

x1

x2

n = 4n = 3n = 2

1

9

8

8

7

3

7

6

6

6

6

5

4
2

3 Logikebene

Seite 3.2.9 von 18

Man vereinbart folgende Begriffe:

• Ein Block, der ausschließlich Einsstellen einer Schaltfunktion y = ƒ(X) umfaßt, heißt „Einsblock“;
der zugehörige Term heißt „Implikant“.

• Ein Block, der ausschließlich Nullstellen einer Schaltfunktion y = ƒ(X) umfaßt, heißt „Nullblock“;
der zugehörige Term heißt „Implikat“.

Beispiel 3.2.8:

Gegeben seien Eins- und Nullstellenmenge einer Schaltfunk-
tion wie im nebenstehenden KV-Diagramm dargestellt.
Umrahmt sind zwei Blöcke:

• Ein Einsblock BE = {(0, 1, 1, -)};
der zugehörige Implikant lautet wE = x4 & x3 & x2

• Ein Nullblock BN = {(0, 1, 0, -)};
das zugehörige Implikat lautet WN = x4 ∨ x3 ∨ x2

Bild 3.24: Null- und Einsblock

Je größer ein Block, desto kürzer der zugehörige Term.

• Die größtmöglichen Eins- bzw. Nullblöcke einer Schaltfunktion heißen „Primblöcke“;
die zugehörigen Terme heißen „Primterme“.

Man ist nicht nur bestrebt, die größtmöglichen Blöcke zu bilden, um die kürzestmöglichen Terme
zu erhalten, sondern auch die jeweils kleinere der Eins- bzw. Nullstellenmenge einer Schaltfunktion
mit möglichst wenigen Primblöcken vollständig zu überdecken, da sie wenigen Primtermen im
Strukturausdruck entsprechen, so daß der Implementierungsaufwand minimiert wird. Bei der Um-
setzung des ermittelten Strukturausdrucks in ein isomorphes Schaltnetz entspricht jeder Term einem
Gatter, jeder Operand im Term einer Eingangsklemme des Gatters, so daß kurze Terme kostengün-
stiger sind.

Der systematische Entwurf eines Schaltnetzes erfolgt grundsätzlich in drei Schritten:

• Ermittlung aller Primblöcke und damit aller Primterme der gegebenen Schaltfunktion;

• Ermittlung aller vollständigen irredundanten Überdeckungen der Schaltfunktion;

• Auswahl einer minimalen irredundanten Überdeckung.

3.2.4 Minimierung nach Karnaugh-Veitch

Die graphische Methode nach Karnaugh-Veitch eignet sich zum Handentwurf kleinerer Schaltnetze.
Gegeben sei die Einsstellenmenge einer Schaltfunktion durch Einträge in das folgende KV-Dia-
gramm. Mit Mintermen mj ergibt sich die im Bild links gezeigte Überdeckung. Die Schaltfunktion
sei vollständig definiert; daher erhält man ihre Nullstellenmenge durch Ergänzen der gegebenen
Einsstellenmenge. Mit Maxtermen Mj ergibt sich deren im Bild rechts gezeigte Überdeckung.

x1 x1

x2

x2

x3 x3

x4

x4

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

0

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.10 von 18

Bild 3.25: Vollständige Überdeckung der Eins- bzw. Nullstellenmenge einer Schaltfunktion;
links: mit Mintermen, rechts: mit Maxtermen

Man könnte nun mit den Mintermen eine disjunktive Normalform (DNF) bilden mit sechs UND-
Gattern zu deren Erzeugung (&) und einem ODER-Gatter zu deren Disjunktion (∨), mit den Max-
termen eine konjunktive Normalform (KNF) mit sogar zehnODER-Gattern zu deren Erzeugung
(∨) und einem UND-Gatter zu deren Konjunktion (&). Diesen Aufwand gilt es zu minimieren.

a) Ermittlung aller Primblöcke und Primterme

Für die gegebene Schaltfunktion wurden in folgenden KV-Diagrammen alle Primblöcke gebildet:

Prim-Einsblöcke: Prim-Nullblöcke:

BE = {(0, 0, 0, -), (-, 1, 1, -)} BN = {(-, 1, 0, -), (-, 0, 1, -),

(1, 0, -, -), (1, -, 0, -)}

Bild 3.26: Vollständige Überdeckung der Eins- bzw. Nullstellenmenge einer Schaltfunktion;
links: mit allen Prim-Einsblöcken, rechts: mit allen Prim-Nullblöcken.

Die Primeinsblöcke BE bzw. die Primnullblöcke BN entsprechen folgenden Primtermen:

Primimplikanten: Primimplikate:

pA = x4 x3 x2 ; pB = x3 x2 PA = x3 ∨ x2 ; PB = x3 ∨ x2 ;

PC = x4 ∨ x3 ; PD = x4 ∨ x2

x1 x1

x2

x2

x3 x3

x4

x4

x1 x1

x2

x2

x3 x3

x4

x4

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

x1 x1

x2

x2

x3 x3

x4

x4

1 1

1

1

1

1

x1 x1

x2

x2

x3 x3

x4

x4

3 Logikebene

Seite 3.2.11 von 18

b) Auswahl einer irredundanten Überdeckung

Es ist eine Auswahl aus den Primblöcken zu treffen, so daß sich mit möglichst wenigen Blöcken
eine vollständige Überdeckung der Eins- bzw. Nullstellenmenge der Schaltfunktion ergibt („irred-
undante Überdeckung”). Im Fall der Einsstellen ist die Auswahl trivial, im Fall der Nullstellen gibt
es zwei gleich aufwendige Möglichkeiten, wie das folgende Bild zeigt.

Bild 3.27: Irredundante Überdeckungen der Eins- bzw. Nullstellen der Schaltfunktion

Disjunktive Minimalform Konjunktive Minimalform

DMF y = pA ∨ pB KMF y = PA PB PC

= x4 x3 x2 ∨ x3 x2 = (x3 ∨ x2) (x3 ∨ x2) (x4 ∨ x3);

y = PA PB PD

= (x3 ∨ x2) (x3 ∨ x2) (x4 ∨ x2)

Die Überdeckung der Einsstellen, d.h. die disjunktive Minimalform (DMF) führt bei diesem Bei-
spiel zu minimalem Gatteraufwand. Die zur DMF isomorphe zweistufige Schaltung ist hier gezeigt.

Bild 3.28: Minimierte Gatterschaltung in zweistufiger disjunktiver Minimalform (DMF)

3.2.5 Minimierung nach Quine-McCluskey

Die Methode nach Quine-McCluskey erlaubt die Ermittlung aller Primblöcke und damit aller Prim-
terme einer Schaltfunktion. Es ist ein schaltalgebraisches Verfahren, das sich für den Handentwurf
eignet, aber auch schon in rechnergestützten Verfahren der Logiksynthese implementiert wurde.
Die Größe der synthetisierbaren Schaltungen wird jedoch durch den Speicherbedarf stark begrenzt,

0

0

0

0

0

0

0

0

0

0

x1 x1

x3 x3

x4

x4

1 1

1

1

1

1

x1 x1

x2

x2

x3 x3

0

0

0

0

0

0

0

0

0

0

x1 x1

x3 x3

&

&

∨ y

x4 x3

x4 x3

x2

x2

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.12 von 18

so daß ein Syntheselauf unter Umständen vorzeitig abbricht, da der Tabellenbedarf dieser Methode
zwischenzeitlich stark anwachsen kann, auch wenn er gegen Ende des Verfahrens wieder deutlich
abnimmt.

Die Auswahl einer vollständigen minimalen irredundanten Überdeckung, z.B. aller Einsstellen der
spezifizierten Schaltfunktion, aus den ermittelten Primblöcken ist nicht Bestandteil des Verfahrens
nach Quine-McCluskey und muß daran anschließend durchgeführt werden. Im nächsten Abschnitt
wird ein geeignetes Verfahren vorgestellt.

a) Verfahrensschritte

Gegeben sei die Einsstellenmenge einer Schaltfunktion, z.B. in disjunktiver Normalform (DNF).
Alternativ kann auch ihre Nullstellenmenge in konjunktiver Normalform (KNF) dargestellt sein.

• Man schreibt die binären Eingangsbelegungen Xj, die den Einsstellen y = 1 der Schaltfunktion
zugeordnet sind, mit wachsendem Gewicht, d.h. mit wachsender Anzahl von gebundenen Kom-
ponenten xi = 1 in einer Liste untereinander.

• Belegungen, die sich in einer Komponente unterscheiden, d.h. in benachbarten Gewichtsklassen
stehen, werden zu Einsblöcken zusammengefaßt und in eine neue Liste eingetragen.

• Einsblöcke, die die gleichen freien Komponenten haben und sich in nur einer gebundenen Kom-
ponente unterscheiden, werden zu größeren Einsblöcken zusammengefaßt und in eine neue Liste
eingetragen.

• Blöcke, die zusammengefaßt werden konnten, werden abgehakt. Sie sind nicht prim, nehmen aber
an weiteren Vergleichen teil.

• Blöcke, die nicht weiter zusammengefaßt werden konnten, sind die gesuchten Primblöcke.

Beispiel 3.2.9:

Gegeben sei ein 4-Tupel X = (x3, x2, x1, x0) als Eingangsbelegung einer Schaltfunktion y = ƒ(X)

sowie deren Einsstellenmenge E (w) durch die Menge der oktalen Indizes j derjenigen Eingangs-
belegungen Xj, für die y = ƒ(Xj) = 1 gilt: E (w) = { 0, 1, 3, 4, 6, 10, 14, 17}

b) Ermittlung aller Primterme

In der folgenden Liste werden die gegebenen oktalen Indizes j in Dualzahlen umgewandelt, die
nach Vereinbarung den binären 4-Tupeln, d.h. den Eingangsbelegungen Xj entsprechen:

j 0 1 3 4 6 10 14 17

Belegungen 0 000 0 001 0 011 0 100 0 110 1 000 1 100 1 111

3 Logikebene

Seite 3.2.13 von 18

Die binären Eingangsbelegungen werden mit wachsendem Gewicht in folgender Liste untereinan-
der geschrieben. Man verfährt weiter nach den oben angegebenen Verfahrensschritten:

Den ermittelten Primblöcken A . . E entsprechen die folgenden Primimplikanten:

pA = x3 x2 x1 x0 pD = x3 x2 x0

pB = x3 x2 x1 pE = x1 x0

pC = x3 x2 x0

3.2.6 Lösung des Überdeckungsproblems

Aus der Gesamtheit aller Primblöcke, die z.B. mit dem Verfahren nach Quine-McCluskey ermittelt
worden sind, ist eine Auswahl zur vollständigen minimalen irredundanten Überdeckung aller Eins-
oder aller Nullstellen der spezifizierten Schaltfunktion zu treffen. Dazu sind die Überdeckungsta-
belle und die Petrick-Funktion geeignet, wie hier an der Fortführung des obigen Beispiels gezeigt
werden soll.

Gewicht j Belegungen Gewicht j Belegungen

0 0 0 000 B 0 0, 1 0 00-

1 1 0 001 0, 4 0 -00

4 0 100 0, 10 - 000

10 1 000 C 1 1, 3 0 0-1

2 3 0 011 D 4, 6 0 1-0

6 0 110 4, 14 - 100

14 1 100 10, 14 1 -00

3 2

A 4 17 1 111 3

Gewicht j Belegungen überdeckte EinsstellenPrimblöcke

E 0 0, 4, - -00 A 17 1 111

10, 14 B 0, 1 0 00-

1 C 1, 3 0 0-1

2 D 4, 6 0 1-0

E 0, 4, 10, 14 - -00

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.14 von 18

a) mit der Überdeckungstabelle

• Es wird eine Überdeckungstabelle aufgestellt, deren Spalten mit den Indizes j der gegebenen
Einsstellen und deren Zeilen mit allen ermittelten Primblöcken (hier: A . . E) bezeichnet werden.
Die Markierungen (×) geben an, welche Einsstellen von den Primblöcken jeweils überdeckt wer-
den. Man kann sie z.B. anhand der Listen des Verfahrens nach Quine-McCluskey setzen.

• Man trifft eine Auswahl der Primblöcke, so daß alle Einsstellen der Schaltfunktion mindestens
einmal überdeckt werden. Man arbeitet die Tabelle von rechts nach links ab: Blöcke, die als einzige
eine Einsstelle überdecken, sind unverzichtbare „Kernblöcke“ (hier: A, E, D, C).

• Man bildet die Disjunktion der Primimplikanten, die den ausgewählten Primeinsblöcken entspre-
chen.

• Die so gewonnenene disjunktive Minimalform (DMF) der gegebenen Schaltfunktion kann in eine
isomorphe zweistufige Gatterstruktur umgesetzt werden.

Bild 3.29: Überdeckungstabelle der gegebenen Schaltfunktion mit Auswahl der unverzichtbaren
Kernblöcke. Überdeckt werden j = 17 von A, j = 14 und 10 von E, j = 6 von D, j = 3
von C. Redundant ist Block B: j = 0 wird von E, j = 1 von C überdeckt.

Den im obigen Bild ausgewählten Prim-Einsblöcken entsprechen die nachfolgenden Primimpli-
kanten; ihre Disjunktion ergibt die disjunktive Minimalform (DMF) der gegebenen Schaltfunktion:

DMF y = pA ∨ pC ∨ pD ∨ pE

y = (x3 x2 x1 x0) ∨ (x3 x2 x0) ∨ (x3 x2 x0) ∨ (x1 x0)

b) mit der Petrick-Funktion

Die Ermittlung von Primtermen ist beim Entwurf von Schaltnetzen eine universell und auf ver-
schiedenen Ebenen der Komplexität einsetzbare Methode:

• Aus den Primtermen einer Schaltfunktion werden deren Minimalformen gebildet.

• Die Primterme der Petrick-Funktion, der wiederum die Primterme einer Schaltfunktion zugrunde
liegen, sind die irredundanten Überdeckungen dieser Schaltfunktion.

Zur Ermittlung der Primterme der Petrick-Funktion kann selbstverständllich jedes bekannte Ver-
fahren dienen:

A

B

C

D

E

 6

×

×

10

×

14

×

17

×

×

 0

×

×

 1

×

 3

×

×

 4

Primblöcke

Einsstellen j :

3 Logikebene

Seite 3.2.15 von 18

• die graphische Methode nach Karnaugh-Veitch mit KV-Diagrammen;

• das oben vorgestellte Verfahren nach Quine-McCluskey;

• eine schaltalgebraische Umformung der Petrick-Funktion.

Die Petrick-Funktion sagt für das obige Beispiel aus, daß sich die Einsstelle j = 0 mit den Blöcken
B oder E überdecken läßt, die Einsstelle j = 1 mit den Blöcken B oder C usf. Von welchen Prim-
blöcken die Einsstellen jeweils überdeckt werden, läßt sich aus den Listen des Verfahrens nach
Quine-McCluskey entnehmen oder aus den Markierungen der Überdeckungstabelle. Für das obige
Beispiel ergibt sich die Petrick-Funktion zu:

PF = (B ∨ E) & (B ∨ C) & C & (D ∨ E) & D & E & E & A

Schaltalgebraisch erhält man nach dem Absorptionsgesetz:

PF = [(B ∨ E) & E & E] & [(B ∨ C) & C] & [(D ∨ E) & D] & A
= [E] & [C] & [D] & A
= E & C & D & A = A & C & D & E

Die Disjunktion der Primimplikanten, die den ausgewählten Primeinsblöcken entsprechen, ergibt
wieder die disjunktive Minimalform (DMF) der gegebenen Schaltfunktion:

DMF y = pA ∨ pC ∨ pD ∨ pE

y = (x3 x2 x1 x0) ∨ (x3 x2 x0) ∨ (x3 x2 x0) ∨ (x1 x0)

Für dieses einfache Beispiel existiert nur ein Primterm der Petrickfunktion, d.h. nur eine irredun-
dante Überdeckung. Aus der Überdeckungstabelle war dasselbe Ergebnis hervorgegangen: A, C, D
und E sind Kernblöcke, Block B ist redundant. In einem komplizierteren Fall, aber mit ebenfalls
fünf Primblöcken V, W, X, Y und Z könnte sich folgende Form der Petrick-Funktion ergeben:

PF = (V & X & Z) ∨ (V & W & Y & Z)

Diese wäre folgendermaßen zu interpretieren:

DMF y = pV ∨ pX ∨ pZ 1. Überdeckung

DMF y = pV ∨ pW ∨ pY ∨ pZ 2. Überdeckung

Beides sind gültige irredundante Überdeckungen der Einsstellenmenge der Schaltfunktion mit den
genannten Primblöcken bzw. den zugehörigen Primtermen. Die minimale Überdeckung ist die mit
den wenigsten Primtermen. Hier benötigt man zur Implementierung drei UND-Gatter für die drei
Primterme pV, pX und pZ sowie ein ODER-Gatter mit drei Eingängen zur Bildung der Disjunktion.

3.2.7 Entwurfsbeispiel eines Schaltnetzes

Die Funktion eines binären Volladdierers sei durch seine Wahrheitstabelle unten links beschrieben.
Er nimmt zwei binäre Variablen x0 und x1 sowie einen Übertrag x2 aus einer vorherigen Additions-
stufe entgegen und bildet daraus die binäre Summe S (”Sum”) sowie den neuen Übertrag C (”Car-
ry”). Die Funktionsspalten für S und C werden in die zugehörigen KV-Diagramme übernommen.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.16 von 18

Bild 3.30: Funktionsbeschreibung eines Volladdierers (Wahrheitstabelle bzw. KV-Diagramme)

Bild 3.31: Schaltnetze zur Bildung der Summe S und des Übertrags C, isomorph zur DMF

Als disjunktive Minimalformen (DMF) der beiden Schaltfunktionen für die Summe S bzw. den
Übertrag C erhält man durch Primblockbildung in den obigen beiden KV-Diagrammen:

S = (x2 x1 x0) ∨ (x2 x1 x0) ∨ (x2 x1 x0) ∨ (x2 x1 x0) C = (x2 x1) ∨ (x2 x0) ∨ (x1 x0)

Das dazu isomorphe Schaltnetz des Volladdierers zeigt das vorhergehende Schaltbild.

x2

0

0

0

0

1

1

1

1

j

0

1

2

3

4

5

6

7

x0

0

1

0

1

0

1

0

1

x1

0

0

1

1

0

0

1

1

S

0

1

1

0

1

0

0

1

C

0

0

0

1

0

1

1

1

x0 x0

x1

x2 x2

0

1

1

0

0

1

1

0

x0 x0

x1

x2 x2

0

0

0

1

1

1

0

1

S

C

∨
&

S

x2 x1 x0

&

&

&

&

&

∨& C

3 Logikebene

Seite 3.2.17 von 18

Man stellt bereits anhand obiger Strukturausdrücke fest, vor allem aber ist es aus dem Schaltbild
zu erkennen, daß der Bedarf an logischen Gattern erheblich ist, vor allem deshalb, weil sich die
Schaltfunktion für die Summe S nicht minimieren läßt. Auch eine Umformung nach der DeMor-
ganschen Regel in ein ausschließlich aus NAND-Gattern bestehendes Schaltnetz würde keine Ver-
ringerung des Aufwandes bringen. Stehen jedoch nicht nur Grundgatter zur Verfügung, wie UND-
, ODER-, NAND- bzw. NOR-Gatter, sondern komplexere Bausteine, wie Antivalenz- und Äquiva-
lenz-Gatter sowie Multiplexer, so läßt sich der Bedarf an Bausteinen verringern und der Entwurfs-
ablauf vereinfachen.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.2.18 von 18

3 Logikebene

Seite 3.3.1 von 16

3.3 Sequentielle Schaltungen („Schaltwerke“)

3.3.1 Rückkopplung und Betriebsarten

Ergänzt man eine kombinatorische Schaltung („Schaltnetz”) durch eine Rückkopplung, so entsteht
eine sequentielle Schaltung („Schaltwerk”), wie das folgende Bild zeigt. Schaltwerke sind konkrete
Implementierungen abstrakter Automaten. Der Automatenbegriff, wie er in diesem Zusammenhang
verstanden wird, soll im nächsten Abschnitt geklärt werden.

Bild 3.32: Allgemeine Betriebsart einer sequentiellen Schaltung („Schaltwerk”)

Bild 3.33: Ungetaktete („asynchrone”) Betriebsart eines Schaltwerks

Bild 3.34: Getaktete („synchrone”) Betriebsart eines Schaltwerks

X t

Z t

Y t

Z’ t

n

l

m

l

Verzögerung

Schaltnetz

X t

Z t

Y t

Z t +∆t

n

l

m

l

Schaltnetz
mit
Verzögerung ∆t

Z t + 1 ← Z’ t

X t

Z t

Y t

Z’ t

n

l

m

l

Speicher

Schaltnetz
ohne
Verzögerung

t , t + 1, usf.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.2 von 16

3.3.2 Ein/Ausgabe und Zustandsbegriff

Zunächst sollen die für Schaltwerke charakteristischen Begriffe geklärt werden, insbesondere der
Zustandsbegriff, der sich aus der Rückkopplung von Ausgangsgrößen auf den Eingang ergibt. Wir
wollen uns im Folgenden auf die getaktete („synchrone”) Betriebsart konzentrieren.

• Eine Eingangsbelegung ist ein

n

-Tupel mit

n

 binären Komponenten

x

i

 :

X

 = (

 x

1

,

 x

2

,

 . . x

i

. .

,

 x

n

);

x

i

∈

 {

0, 1

};

i

 = 1 . .

n

Für die Eingangsbelegung gilt

X

∈

E

, wobei

E

 das Eingabealphabet des Automaten ist. Eine
bestimmte Eingangsbelegung wird mit

X

j

 bezeichnet; dabei ist der oktale Index

j

 gleich den als

Dualzahl gelesenen binären Komponenten des

n

-Tupels, hier

n

 = 3:

X

0

 = (

0, 0, 0

)

X

1

 = (

0, 0, 1

)

. . .

. . .

X

6

 = (

1, 1, 0

)

X

7

 = (

1, 1, 1

)

Ein Belegungsblock

B

 umfaßt 2

r

 Belegungen, wobei

r

 die Anzahl der freien Komponenten

x

i

 =

- ist. Das Symbol (-) bezieht sich auf die Blockdarstellung der Eingangsbelegung; es entspricht
beiden Werten 0

und

 1:

B

 = (

 x

1

,

 x

2

,

 . . x

i

. .

,

 x

n

);

x

i

∈

 { 0, 1, -

};

i

 = 1 . .

n

• Eine Ausgangsbelegung ist ein

m

-Tupel mit

m

 binären Komponenten

y

j

 :

Y = (y1, y2, . . yj . . , ym); yj ∈ { 0, 1, ∗ }; j = 1 . . m

Für die Ausgangsbelegung gilt Y ∈ A, wobei A das Ausgabealphabet des Automaten ist. Das
Symbol (∗) bezieht sich auf die Ausgangsbelegung; es gilt kein bestimmter Wert, d.h. er kann zu
0 oder 1 gesetzt werden.

• Ein Automatenzustand ist zunächst ein symbolischer Zustand:

Z ∈ S

wobei S die endliche Zustandsmenge des Automaten ist (”Finite State Machine”, FSM). Der
symbolische Zustand muß also kein binärer Tupel sein, sondern nur von allen anderen Zuständen
desselben Automaten wohlunterschieden („diskret”).

• Ein binär codierter Zustand ist ein l-Tupel mit l binären Komponenten qk :

Q = (q1, q2, . . qk . . , ql); qk ∈ { 0, 1 }; k = 1 . . l | Q | = 2l ≥ | S |

Er implementiert einen symbolischen Zustand Z ∈ S. Die Zuordnung symbolischer Zustände zu
binären l-Tupeln, d.h. die „Zustandscodierung” ist frei wählbar, wenn die Zustände des Automaten
nach außen hin nicht in Erscheinung treten, wie es bei Automaten vom Moore- und vom Mealy-
Typ der Fall ist. Eine bestimmter codierter Zustand wird mit Qj bezeichnet; dabei ist der oktale

Index j gleich den als Dualzahl gelesenen binären Komponenten des l-Tupels. Eine frei gewählte
und damit gültige Zustandscodierung lautet zum Beispiel:

Z0 = Q2 = (1, 0) Z2 = Q1 = (0, 1)

Z1 = Q3 = (1, 1) Z3 = Q0 = (0, 0)

3 Logikebene

Seite 3.3.3 von 16

3.3.3 Endliche diskrete Automaten

Ein abstrakter Automat besteht aus einer Speicherfunktion, die den Zustand des Automaten enthält,
sowie zwei Schaltfunktionen, die seine Folgezustände bzw. seine Ausgabe erzeugen. Letztere ent-
sprechen seinem Verhalten. Seinen aktuellen Zustand - aus einer endlichen Anzahl wohlunterschie-
dener („diskreter”) Zustände - hat er aufgrund eines Anfangszustandes und der gesamten Vorge-
schichte aller bisher eingetroffenen Eingaben erreicht. Abstrakte Automaten erzeugen ihren Folge-
zustand mit einer

• Übergangsfunktion Z t + 1 = δ(Z t, X t)

Dabei ist Z t der aktuelle Zustand zu einem diskreten Zeitpunkt t und Z t + 1 der Folgezustand zum
nächsten diskreten Zeitpunkt t+1, wobei die Taktperiode auf 1 normiert ist. Anhand der Ausgabe-
funktion λ lassen sich drei Automatentypen unterscheiden.

3.3.4 Medvedev-Automat

Beim einfachsten Automatentyp ist die Ausgabe Y gleich dem Automatenzustand Z; seine

• Ausgabefunktion Y t = Z t

ist trivial. Das folgende Bild zeigt links die Struktur des Medvedev-Automaten. Seine Ausgabe-
funktion λ ist eine Identität. Zur Beschreibung seines Verhaltens muß ein zeitlicher Ablauf in dis-
kreten Schritten t, t+1, t+2 usf. dargestellt werden, wozu sich ein Graph bestens eignet:

• Man stellt die Zustände Z als Knoten dar und

• die Zustandsübergänge als gerichtete Kanten, die mit der Eingabe X gekennzeichnet werden.

Man erkennt am „Ablaufgraphen”, rechts im Bild dargestellt, daß die Eingabe entscheidet (hier X1
bzw. X2), welcher Folgezustand (hier Z1 oder Z2) vom Zustandsknoten Z0 aus erreicht wird, wie es
die obige, für alle drei Automatentypen geltende Übergangsfunktion δ vorschreibt.

Bild 3.35: Medvedev-Automat; links: Struktur, SN - Schaltnetz, Sp - Speicherglied;
rechts: Ablaufgraph. X: Eingabe, Y: Ausgabe, Z: Zustände, t: diskrete Zeit

Z0

Z1 Z2

t

t +1

X1 X2
δ

X t

Z t

Y t

SN

Sp

n

l

m

l
Z t + 1 ← Z’ t

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.4 von 16

3.3.5 Moore-Automat

Ist die Ausgabe Y eine Funktion des internen Automatenzustandes Z, so gilt die

• Ausgabefunktion Y t = λ(Z t)

Das folgende Bild zeigt links die Struktur des Moore-Automaten. Die Ausgabefunktion λ erzeugt
die Ausgabe Y t aufgrund des aktuellen Zustandes Z t. Im Ablaufgraphen, rechts im Bild, wird das
dadurch deutlich, daß man den Zustandsknoten Z die Ausgaben Y fest zuordnet. Die gerichteten
Kanten des Graphen werden wieder mit den Eingaben X gekennzeichnet und entscheiden so über
den Folgezustand.

Bild 3.36: Moore-Automat; links: Struktur, rechts: Ablaufgraph

3.3.6 Mealy-Automat

Bild 3.37: Mealy-Automat; links: Struktur, rechts: Ablaufgraph

Y2

Y0 Z0

Z1 Z2

t

t +1

X1 X2

Y1

δ

X t

Z t

Y tλn

l

m

l
Z t + 1 ← Z’ t

Z0

Z1 Z2

t

t +1

Y1 Y2

X1 X2

t

δ

X t

Z t

Y tλn

l

m

l
Z t + 1 ← Z’ t

3 Logikebene

Seite 3.3.5 von 16

Im kompliziertesten Fall ist die Ausgabe Y sowohl vom internen Automatenzustand Z, als auch von
der Eingabe X abhängig; dann gilt die

• Ausgabefunktion Y t = λ(Z t , X t).

Das vorhergehende Bild zeigt links die Struktur des Mealy-Automaten. Die Ausgabefunktion λ
erzeugt die Ausgabe Y t sowohl aus dem aktuellen Zustand Z t als auch anhand der Eingabe X t. Im
Ablaufgraphen im vorhergehenden Bild rechts wird das dadurch dargestellt, daß die Ausgaben Y in
die Kanten eingefügt werden, da die Eingaben X, mit denen die Kanten gekennzeichnet sind, hier
nicht nur - wie bei allen Automaten - über den Folgezustand, sondern auch über die Ausgabe
entscheiden.

Zusammenfassend kann man sagen, daß der betreffende Automatentyp nicht nur an seinem Struk-
turbild, sondern auch an seinem Ablaufgraphen sofort zu erkennen ist.

3.3.7 Elementare Schaltwerke

Im Folgenden sollen einige einfache, aber häufig verwendete Schaltwerke vorgestellt werden, die
beim Entwurf digitaler Schaltungen und Systeme unverzichtbar sind. Sie sind nur zweier Zustände
fähig und werden deshalb lautmalerisch als „Flip-Flop” bezeichnet. Ihr aktueller Zustand muß von
außen erkennbar sein, d.h. sie sind elementare Automaten vom Medvedev-Typ.

Bei den asynchron betriebenen Flipflops kommt die zeitliche Sequenz zwischen den Eingangs- und
Ausgangsvariablen durch die Verzögerungszeiten ∆t der internen Gatter zustande (linke Gleichung).
Man kann die Betrachtungsweise vereinfachen, indem man letztere als verzögerungsfrei annimmt
und nur zu regelmäßigen Zeitpunkten t, t+1, t+2, . . neue Werte der Eingangsvariablen in das Flipflop
übernimmt (rechte Gleichung):

Q ⇒ Q t ; y ⇒ Q t+∆t Q ⇒ Q t ; y ⇒ Q t+1

Für diesen synchron getakteten Betrieb unterscheidet man anhand des Takts c folgende Arten der
Ansteuerung:

• Taktzustandsgesteuert: Der Wert 1 (oder der Wert 0) einer binären Taktvariablen c ∈ {0, 1}
aktiviert die Flipflop-Eingänge („Auffang-Flipflop”).

• Taktflankengesteuert: Die ansteigende Vorderflanke (oder die abfallende Rückflanke) eines Takt-
signals c aktiviert die Flipflop-Eingänge („dynamisches Flipflop”).

Die Einführung eines neuen Schaltsymbols für Flipflops erscheint hier angebracht; denn die Angabe
eines internen Gatterschaltbildes auf der Logikebene ist nicht immer möglich, eine Darstellung auf
der Schaltkreisebene mit Transistoren hier zu detailliert.

a) SR-Flipflop

Wie beim asynchronen Beispiel erwähnt, hat ein SR-Flipflop drei Betriebsarten:

• Lesen/Speichern:
Der aktuelle Wert der binären Zustandsvariablen wird beibehalten: Q t → Q t+1

Er soll als Ausgangsvariable erkennbar sein: Q t → y t

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.6 von 16

• Setzen:
Der Wert der Zustandsvariablen wird gesetzt: 1 → Q t+1

• Rücksetzen:
Der Wert der Zustandsvariablen wird rückgesetzt: 0 → Q t+1

Diese Funktionsbeschreibung kann als Schaltfunktion in einer Wahrheitstabelle dargestellt werden,
wobei sich die spezifizierten Betriebsarten an den vier Wertekombinationen (R, S) der Eingangs-
variablen R und S orientieren, wie nachfolgend gezeigt. Aus der aktuellen Zustandsvariablen Qt

zum Zeitpunkt t ergibt sich nach einer normierten Verzögerung, d.h. zum Zeitpunkt t+1 die Folge-
zustandsvariable Qt+1, die am Ausgang des Schaltwerks erscheint und rückgekoppelt wird. Die
Eingangsbelegungen Xj = (R, S, Q) sind hier teilweise in Blockschreibweise (-) zusammengefaßt.
Das Bild zeigt auch das Schaltsymbol eines synchronen SR-Flipflop.

Bild 3.38: SR-Flipflop; Wahrheitstabelle und Schaltsymbol, vorderflankengetaktet

Die obige Wahrheitstabelle kann in eine „Ansteuertabelle” umgeformt werden, die sich an den vier
möglichen Übergängen von Qt nach Qt+1orientiert, wie das folgende Bild zeigt. Für die Eingangs-
belegungen Xj = (R, S, Q) ergeben sich hier andere Blöcke als in der obigen Wahrheitstabelle,
erkennbar am Symbol (-). Wie man der Ansteuertabelle entnehmen kann, verharrt das rückgekop-
pelte System für R ∨ S = 0 in einem stabilen Zustand Qt = Qt+1. Da die Schaltung dann ihren Zustand
beibehält, handelt es sich um eine Speicherschaltung. Man kann diesen Sachverhalt auch durch
einen Ablaufgraphen veranschaulichen:

• Die beiden Zustände Q ∈ {0, 1} werden durch zwei Knoten dargestellt,

• die Zustandsübergänge durch gerichtete Kanten, die mit den Eingangsvariablen R und S in Block-
schreibweise (-) gekennzeichnet sind.

Bild 3.39: SR-Flipflop; Ansteuertabelle und Ablaufgraph

R

c
S

Q

Q

R t

0

0

0

1

j

0

1

2, 3

4, 5

16, 7

S t

0

0

1

0

1

Q t

0

1

-

-

0

Q t+1

0

1

1

0

∗

Betriebsart

Lesen/Speichern

Lesen/Speichern

Setzen

Rücksetzen

(undefiniert)

0 1

(01)

(10)

(-0) (0-)

RSR t

-

0

1

0

j

0, 4

2

5

1, 3

S t

0

1

0

-

Q t

0

0

1

1

Q t+1

0

1

0

1

3 Logikebene

Seite 3.3.7 von 16

b) D-Flipflop

Ist man nur an der zeitlichen Verzögerung („Delay”) einer Eingangsvariablen durch ein SR-Flipflop
interessiert, d.h. sein aktueller Zustand Qt ist unerheblich, so müssen die Eingangsvariablen R und
S entsprechend der SR-Wahrheitstabelle im vorherigen Abschnitt ungleich sein. Mit einer neu be-
nannten Eingangsvariablen D gilt dann:

D = S = R D t → Q t+1

Entsprechend geschaltet wirkt ein SR-Flipflop als sogenanntes D-Flipflop. Aus der SR-Wahrheits-
tabelle übernimmt man nur die Zeilen, für die die Eingangsvariablen R und S ungleich sind. Nach
Umformen erhält man die Ansteuertabelle des D-Flipflop, die sich anschaulich als Ablaufgraph
darstellen läßt.

Bild 3.40: D-Flipflop; Wahrheitstabelle und Schaltung, vorderflankengetaktet

Bild 3.41: D-Flipflop; Ansteuertabelle und Ablaufgraph

c) JK-Flipflop

Wie beim asynchronen Beispiel erwähnt, hat ein JK-Flipflop eine vierte Betriebsart:

• Triggern:
Der aktuelle Wert der binären Zustandsvariablen wird invertiert: Q t → Q t +1

Bild 3.42: JK-Flipflop; Wahrheitstabelle und Schaltsymbol, vorderflankengetaktet

D t

1

0

Q t

-

-

Q t+1

1

0

Betriebsart

Setzen

Rücksetzen

j

2, 3

4, 5 R

c
S

Q

QD

R t = D t = S t

0 1

(1)

(0)

(0) (1)

D

j

4, 5

2, 3

0

1

Q t+1

0

1

K t

0

0

0

1

j

0

1

2, 3

4, 5

16

17

J t

0

0

1

0

1

1

Q t

0

1

-

-

0

1

Q t+1

0

1

1

0

1

0

Betriebsart

Lesen/Speichern

Lesen/Speichern

Setzen

Rücksetzen

Triggern

Triggern

K

c
J

Q

Q

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.8 von 16

Die Erweiterung der Funktionsbeschreibung zeigt die obige Wahrheitstabelle; das Schaltsymbol
eines synchronen JK-Flipflop ist ebenfalls angegeben. Das nächste Bild zeigt die Ansteuertabelle
und den Ablaufgraphen des JK-Flipflops, wobei die Zustandsübergänge mit den Eingangsvariablen
K und J in Blockschreibweise (-) gekennzeichnet sind.

Bild 3.43: JK-Flipflop; Ansteuertabelle und Ablaufgraph

d) T-Flipflop

Ist man nur an der Invertierung („Triggern”) des internen Zustands eines JK-Flipflop interessiert,
d.h. daß sein Folgezustand die Negation des aktuellen Zustands sein soll, so müssen die Eingangs-
variablen K und J entsprechend der JK-Wahrheitstabelle im vorherigen Abschnitt gleich sein. Mit
einer neu benannten Eingangsvariablen T gilt dann:

T = J = K Q t → Q t+1

Entsprechend geschaltet wirkt ein JK-Flipflop als sogenanntes T-Flipflop. Aus der JK-Wahrheits-
tabelle übernimmt man nur die Zeilen, für die die Eingangsvariablen K und J gleich sind. Nach
Umformen erhält man die Ansteuertabelle des T-Flipflop, die sich anschaulich als Ablaufgraph
darstellen läßt.

Bild 3.44: T-Flipflop; Wahrheitstabelle und Schaltung, vorderflankengetaktet

Bild 3.45: T-Flipflop; Ansteuertabelle und Ablaufgraph

0 1

(-1)

(1-)

(-0) (0-)

KJK t

-

-

1

0

j

0, 4

2, 6

5, 7

1, 3

J t

0

1

-

-

Q t

0

0

1

1

Q t+1

0

1

0

1

0

j

0

1

6

7

T t

0

0

1

1

Q t

0

1

0

1

Q t+1

0

1

1

Betriebsart

Lesen/Speichern

Lesen/Speichern

Triggern

Triggern

K

c
J

Q

QT

0 1

(1)

(1)

(0) (0)

T

j

0, 1

6, 7

0

1

Q t+1

Qt

Qt

K t = T t = J t

3 Logikebene

Seite 3.3.9 von 16

3.3.8 Der Entwurf von Schaltwerken

Schaltwerke implementieren endliche diskrete Automaten (”Finite State Machines”, FSM). Ange-
sichts ihrer Komplexität sollten sie in mehreren klar definierten Schritten, die aufeinander aufbauen,
systematisch entworfen werden:

• Informale Spezifikation der Gesamtfunktion des Automaten in natürlicher Sprache.

• Umsetzung in eine formale Spezifikation, z.B. einen Ablaufgraphen oder eine Ablauftabelle.

• Codierung der diskreten Zustände des Automaten.

• Entwurf des Schaltnetzes zur Implementierung der Ausgabefunktion.

• Wahl der Speicherglieder im Rückkopplungspfad.

• Entwurf des Schaltnetzes zur Implementierung der Übergangsfunktion.

• Darstellung der Schaltwerksstruktur mit logischen Gattern und Speichergliedern.

Beispiel 3.3.1: Automat vom Moore-Typ

Bild 3.46: Spezifikation eines durch ein Schaltwerk zu implementierenden Moore-Automaten;
links: Symbolische Ablauftabelle, rechts: Ablaufgraph.

a) Spezifikation

Soll ein digitales Schaltwerk implementiert werden, so ist zuerst die gewünschte Gesamtfunktion
als verbale Aufgabenstellung in natürlicher Sprache zu beschreiben. Um einen systematischen
Entwurf zu ermöglichen, muß diese „informale Spezifikation” durch die „formale Spezifikation”
eines abstrakten Automaten geeigneten Typs erfaßt werden, z.B. durch dessen Ablauftabelle oder
- anschaulicher - durch seinen Ablaufgraphen. Der zu implementierende Automat sei durch die

0

21

3

Z t

0

1

2

3

Z t+1

1

0

2

1

3

2

0

3

0

1

x1 x0

0 0

0 1

1 -

0 0

1 0

- 1

0 0

1 0

- 1

- -

y2 y1 y0

1 0 ∗

∗ 0 1

0 ∗ 1

1 1 0

X t Y t

∗ 0 1

1 0 ∗

1 1 0

0 ∗ 10 0

0 1

1 -

0 0

1 0

- 1

0 0

1 0

- 1

- -

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.10 von 16

obige Ablauftabelle formal spezifiziert. Man erkennt sofort, daß es sich um einen Moore-Automaten
handelt, da die Ausgabe Yt nur vom aktuellen Zustand Zt abhängt. Der Automat besitzt vier diskrete
Zustände Z, die symbolisch mit den Ziffern 0 bis 3 durchnumeriert sind. Dieser symbolischen
Ablauftabelle entspricht der Ablaufgraph im vorhergehenden Bild.

b) Zustandscodierung

Da ein Schaltwerk keine symbolischen Automatenzustände Z implementieren kann, sind diese in
einem ersten Entwurfsschritt durch binäre Zustandsvariablen Q = (qn, . . , q1, q0) zu codieren. Da
bei beiden üblicherweise zugrundegelegten Automaten vom Moore- bzw. Mealy-Typ der Automa-
tenzustand von außen nicht erkennbar ist, ist man bei der Wahl der Codierung völlig frei, wobei
auch die Zuordnung der einzelnen Codewörter zu den Symbolen frei gewählt werden kann. Nach-
folgend einige gängige Beispiele:

• Relativ aufwendig ist der 1-aus-n Code, wobei n die Anzahl der zu codierenden Zustände ist.

• Kompakter ist ein Binärcode mit ld n Bits, um bis zu n Zustände zu codieren.

Um den Einfluß des gewählten Zustandscodes auf die Struktur des zu entwerfenden Schaltwerks
und damit auf den Schaltungsaufwand an einem Beispiel aufzuzeigen, sollen zwei verschiedene
Zustandscodierungen untersucht werden:

• Eine „naive” Zustandscodierung, bei der die zufällig gewählten Zustandssymbole 0 bis 3 als
Dezimalzahlen aufgefaßt und in Dualzahlen umgewandelt werden, die als Codewörter dienen
(„Dualcode”), wie in der codierten Ablauftabelle im folgenden Bild links gezeigt.

• Eine Zustandscodierung, bei der sich beim Zählen jeweils nur 1 Bit ändert („Gray-Code”), wie
in der codierten Ablauftabelle im folgenden Bild rechts gezeigt.

Bild 3.47: Codierte Ablauftabellen des spezifizierten Moore-Automaten;
Zustandscodierung: links im Dualcode, rechts im Gray-Code.

Die Ablauftabellen im vorhergehenden Bild werden später noch ergänzt. Für einen Moore-Auto-
maten genügen sie zunächst, da bei diesem Typ die Ausgabe nur vom aktuellen Zustand abhängt:
Y t = λ(Z t).

q1 q0

0 0

1 0

Z t

0

1

1 1

2

0 1

3

y2 y1 y0

1 0 ∗

∗ 0 1

0 ∗ 1

1 1 0

Q t Y t

q1 q0

0 0

1 1

1 0

0 1

Q tZ t

0

1

2

3

y2 y1 y0

1 0 ∗

∗ 0 1

0 ∗ 1

1 1 0

Y t

3 Logikebene

Seite 3.3.11 von 16

c) Entwurf des Ausgabeschaltnetzes

Die Ausgangsvariablen Y = (y2, y1, y0) sollen durch eine Ausgabefunktion λ erzeugt werden, für
die ein Schaltnetz zu entwerfen ist. Zur Minimierung werden die Werte der genannten Ausgangs-
variablen aus den codierten Ablauftabellen des vorhergehenden Bildes entnommen und in KV-
Diagramme eingetragen, wie es im folgenden Bild für den Dualcode, im übernächsten für den Gray-
Code geschehen ist. Um die Unterschiede der beiden Zustandscodierungen und ihren Einfluß auf
die Anordnung der Variablenwerte (y2, y1, y0) ∈ {0, 1, ∗ } im KV-Diagramm zu verdeutlichen, wurde
der betreffende Codierraum für die Zustände Z jeweils mit dargestellt.

Bild 3.48: KV-Diagramme für die im Dualcode codierte Ablauftabelle nach Bild 3.16 links;
Z: Codierraum; y2, y1, y0: Ausgangsvariablen.

Bild 3.49: KV-Diagramme für die im Gray-Code codierte Ablauftabelle nach Bild 3.16 rechts;
Z: Codierraum; y2, y1, y0: Ausgangsvariablen.

Für dieses Beispiel bildet man in den KV-Diagrammen Überdeckungen der Nullstellen unter Ein-
beziehung von Freistellen (∗), die zusätzliche Freiheitsgrade für den Entwurf bieten. Für den Du-
alcode findet man im obigen Bild folgende, teils triviale Primterme in konjunktiver Minimalform:

KMF y2 = q1 ∨ q0 ; y1 = q1 ; y0 = q1 ∨ q0

Für den Gray-Code findet man im vorhergehenden Bild unter Einbeziehung von Freistellen (∗)
ausschließlich triviale, d.h. absolut aufwandsminimale Primterme in konjunktiver Minimalform:

KMF y2 = q0 ; y1 = q1 ; y0 = q0

Die zur KMF jeweils isomorphen Schaltnetze werden im folgenden Bild einander gegenüberge-
stellt.

0

2

1

3

q0

q1

Z

1

0

∗
1

q0

q1

y2

0

∗
0

1

∗
1

1

0

q0

q1

y1 q0

q1

y0

0

3

1

2

q0

q1

Z

1

1

∗
0

q0

q1

y2

0

1

0

∗
∗
0

1

1

q0

q1

y1 q0

q1

y0

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.12 von 16

Bild 3.50: Implementierung der Ausgabefunktion Y = (y2, y1, y0) = λ(q1, q0);
Zustandscodierung: links im Dualcode, rechts im Gray-Code.

d) Wahl der Speicherglieder

Bild 3.51: Codierte Ablauftabelle des hier spezifizierten Moore-Automaten;
Zustandscodierung im Gray-Code, Zustandsspeicherung in T-Flipflops.

∨

∨

q1 q0 q1 q0

y2

y1

y0

y2

y1

y0

λ λ

q1 q0

0 0

0 0

0 0

1 1

1 1

1 1

Zt

0

1

1 0

2

0 1

3

0 1

0 1

j

00

01

02

03

04

06

05

07

17

14

16

15

10

11

12

13

Zt+1

1

0

2

1

3

2

0

3

0

1

x1x0

0 0

0 1

1 -

0 0

1 0

- 1

0 0

1 0

- 1

- -

D1D0

0 1

0 0

1 1

0 1

1 0

1 1

0 0

1 0

0 0

0 1

y2 y1y0

1 0 *

* 0 1

0 * 1

1 1 0

Qt Xt Qt+1 Yt

T1T0

0 1

0 0

1 1

0 0

1 1

1 0

1 1

0 1

1 1

1 1

3 Logikebene

Seite 3.3.13 von 16

Zur Speicherung der vier Automatenzustände des hier spezifizierten Moore-Automaten benötigt
man bei beiden gewählten Codierungen mindestens zwei Flipflops. Als Speicherglieder stehen
grundsätzlich alle vier bereits vorgestellten Flipfloptypen zur Verfügung:

• Setz-Rücksetz-Flipflops, Delay-Flipflops, JK-Flipflops oder Trigger-Flipflops.

Als Beispiel seien willkürlich T-Flipflops gewählt; ferner soll die Zustandscodierung im Gray-Code
weiterverwendet werden. Das vorhergehende Bild zeigt die codierte Ablauftabelle für diese Zu-
standscodierung und den gewählten Flipflop-Typ. Zur Ermittlung der Ansteuervariablen T1 bzw.
T0 sind in der codierten Ablauftabelle die Spalten für den aktuellen und den Folgezustand zeilen-
weise miteinander zu vergleichen: Jeder Zustandsübergang von Q t nach Q t+1 ist bitweise, d.h. für
gleiche Indizes zu prüfen. Falls sich das Zustandsbit qi ändert, so gilt Ti = 1, sonst Ti = 0, wie der
Ansteuertabelle und/oder dem Ablaufgraphen des T-Flipflops in Bild 3.14 zu entnehmen ist.

e) Entwurf des Übergangsschaltnetzes

Die Ansteuervariablen T1 und T0 der T-Flipflops sollen durch eine Übergangsfunktion δ erzeugt
werden, für die ein Schaltnetz zu entwerfen ist. Die Funktionsbeschreibung der genannten Ansteu-
ervariablen kann aus den entsprechenden Spalten der codierten Ablauftabelle entnommen und, wie
nachfolgend gezeigt, zur Minimierung in KV-Diagrammen dargestellt werden. In den KV-Diagram-
men bildet man die jeweils aufwandsminimalen Überdeckungen mit Primblöcken, hier der Nullst-
ellen. Daraus erhält man die folgenden Primterme in konjunktiver Minimalform:

KMF T1 = (q1 ∨ q0 ∨ x1 ∨ x0) & (q1 ∨ q0 ∨ x1) & (q1 ∨ x1 ∨ x0)

T0 = (q1 ∨ x1 ∨ x0) & (q1 ∨ q0 ∨ x0) & (q1 ∨ q0 ∨ x1)

Bild 3.52: KV-Diagramme für die codierte Ablauftabelle nach Bild 3.20;
T1, T0: Ansteuervariablen der T-Flipflops.

f) Schaltwerksstruktur

Isomorph zu den ermittelten Strukturausdrücken (hier: KMF) ergeben sich für das Schaltwerk die
im folgenden Bild dargestellten Gatterstrukturen des Ausgabeschaltnetzes λ und des Übergangs-
schaltnetzes δ, zusammen mit den (hier willkürlich) gewählten T-Flipflops.

x0 x0

x1

x1

q0 q0

q1

q1

0

1

1

1

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

1

1

1

0

0

1

1

0

1

1

1

x0 x0

x1

x1

q0 q0

q1

q1

T1 T0

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.14 von 16

Bild 3.53: Schaltwerk zur Implementierung des hier spezifizierten Moore-Automaten;
Zustandscodierung im Gray-Code, Zustandsspeicherung in T-Flipflops.

3.3.9 Kostenabschätzung

Zur Abschätzung des Implementierungsaufwandes mag eine vereinfachte Kostenbetrachtung ge-
nügen. Beispielsweise benötigt man in statischer Transistorschaltungstechnik für jede Eingangsva-
riable eines logischen Gatters einen Transistor und für jedes Gatter zusätzlich einen Arbeitswider-
stand, wie das folgende Bild links zeigt. Nimmt man vereinfachend an, daß die Kosten für jedes
Bauelement gleich seien, und normiert man auf diese Bauelementkosten, so erhält man für die

x1

x1

q0

q0

q1

q1

T1

q1 q0

λ

q1 q0 x0

x0

δ

T0

y2

y1

y0

∨

∨ &

∨

∨

∨ &

∨

3 Logikebene

Seite 3.3.15 von 16

normierten Kosten der folgenden zweistufigen Schaltnetzstruktur (rechts), wobei im Trivialfall
eines einzelnen Eingangsgatters (n=1) das Ausgangsgatter entfällt:

K(n>1) = 1 + 2n + (e1 + e2 + . . + en); K(n=1) = 1 + e1

wobei n : Gatteranzahl in der Eingangsstufe, ei : Anzahl der Primäreingänge.

Bild 3.54: links: Realisierung eines logischen Gatters auf der Schaltungsebene;
rechts: Kenngrößen für Schaltnetzkosten; n: Gatteranzahl in der Eingangsstufe,
ei: Anzahl der Primäreingänge

Mit den oben ermittelten Strukturausdrücken in konjunktiver Minimalform (KMF) für die Aus-
gangsvariablen (y2, y1, y0) sowie die Ansteuervariablen (T1, T0) der Flipflops erhält man die nach-
folgenden normierten Schaltnetzkosten, wobei zur Ermittlung der Gesamtkosten des Schaltwerks
die Kosten der zwei Flipflops zusätzlich zu berücksichtigen sind.

• Gray-Code, T-Flipflops:

K(y2) = 0 K(T1) = 1 + 2 x 3 + (4 + 3 + 3) = 17;

K(y1) = 0 K(T0) = 1 + 2 x 3 + (3 + 3 + 3) = 16;

K(y0) = 0 K(δ) = K(T1) + K(T0) = 33;

K(λ) = K(y2) + K(y1) + K(y0) = 0 K(SN) = K(δ) + K(λ) = 33 + 0 = 33

y1

e1

e2

n

e1

e2

en

y2

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.3.16 von 16

3 Logikebene

Seite 3.4.1 von 18

3.4 Programmierbare Digitalbausteine („PLD“)

3.4.1 Technologie und Schaltungstechnik

a) Technologische Randbedingungen

Die

Mikroelektronik

 ermöglicht die Integration umfangreicher und komplexer elektronischer Schal-
tungen auf einem einzigen Halbleiterchip. Insbesondere die Siliziumtechnologie erlaubt es, dank
der Eigenschaften des Siliziumdioxids, kleinste Strukturen im Mikrometerbereich herzustellen.
Man ist bestrebt, ein mikroelektronisches System von gegebenem Umfang auf möglichst kleiner
Chipfläche unterzubringen; denn je größer das Chip, desto größer die Gefahr, dass es einen Kri-
stalldefekt enthält, und desto geringer ist die Ausbeute bei seiner Fertigung. Die Chipfläche wird
vor allem durch die Verdrahtung auf dem Chip bestimmt, da die Gatter im wesentlichen unter der
Verdrahtung im Kristallinnern liegen. Es gilt daher beim Chipentwurf, die Gesamtlänge der Ver-
drahtung zu minimieren, und zwar aus zwei Gründen: Nicht nur die Chipfläche, sondern auch die
Laufzeiten auf dem Chip werden dadurch verringert.

Die Weiterentwicklung der Mikroelektronik wurde stets von der Technologie der Halbleiterspeicher
angeführt, da Speicher

regelmäßig strukturiert

 sind: Die Speicherzellen sind matrixförmig ange-
ordnet, Speicherchips weisen ein regelmäßiges Verdrahtungsmuster auf. Die Dichte der Bauele-
mente ist auf einem Speicherchip in der Regel höher als auf einem Mikroprozessor, da dessen
Strukturen komplexer und damit unregelmäßiger sind. Regelmäßige Strukturen sind übersichtlicher
beim Entwurf, mit höherer Ausbeute zu fertigen und von längerer Lebensdauer im Betrieb. Man
sucht daher die Fortschritte der Speichertechnologie auch für Prozessor- und Logikschaltungen zu
nutzen, indem man sie z.B. matrixförmig und damit möglichst regelmäßig strukturiert.

Bild 3.55: Grundstrukturen der Mikroelektronik; a) Speichermatrix; b) Mikroprozessor.

Einerseits setzt die Mikroelektronik hohe Investitionen an Gebäuden und Geräten voraus, so dass
nur die automatisierte Herstellung großer Stückzahlen wirtschaftlich ist. Andererseits besteht ein
großer Bedarf an anwendungsspezifischen Schaltungen, die unter Umständen nur in niedrigen
Stückzahlen benötigt werden. Hier empfehlen sich

vordefinierte Strukturen

, die je nach Anwendung

personalisierbar

 sind. Auch hier waren die Speicher die Vorreiter der Entwicklung: Alle Schalt-
funktionen können durch Programmieren einer vorgefertigten Speichermatrix implementiert wer-
den. Programmierbare Strukturen haben zudem den Vorteil der Flexibilität und Änderbarkeit, um
Entwurfsfehler zu korrigieren und/oder neue Funktionen mit einzubeziehen.

a) b)

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.2 von 18

b) Schaltkreistechnologien

Elektronische Schaltungen und Systeme können mit zwei prinzipiell unterschiedlichen Schaltkreis-
technologien realisiert werden:

• Die bipolare Halbleitertechnik erlaubt die Herstellung von Transistoren mit NPN- oder PNP-
Schichtstruktur sowie von PN-Dioden. Erstere sind aktive, letztere passive Bauelemente. Schal-
tungen mit bipolaren Bauelementen werden in der Regel statisch betrieben.

• Die unipolare Halbleitertechnik erlaubt die Herstellung von MOS-Transistoren mit N-Kanal oder
P-Kanal. Beides sind aktive Bauelemente. Schaltungen mit MOS-Bauelementen können statisch
oder, dank inhärenter MOS-Kapazitäten, auch dynamisch betrieben werden.

Aus der Fülle der Varianten, die bisher auf dem Gebiet der Schaltkreistechnologien entwickelt
wurden, sollen hier nur zwei einfache Vertreter vorgestellt werden. Denn es geht hier nicht um
schaltungstechnische Einzelheiten, sondern um strukturell-topologische Zusammenhänge zwi-
schen Logik- und Schaltungsebene. Auch die schaltungstechnisch hochinteressante CMOS-Tech-
nologie - es sei nur an die dynamische Domino-Logik erinnert - ginge in diesem Zusammenhang
über die Zielsetzung des vorliegenden Abschnitts hinaus.

Bei der Realisierung logischer Gatter mit elektronischen Bauelementen muß zuerst die Zuordnung
der binären Variablenwerte (0, 1) zu zwei elektrischen Pegeln definiert werden, die sich durch einen
entsprechenden Störabstand deutlich voneinander unterscheiden. Trifft man für die Eingangs- und
die Ausgangsvariablen dieselbe Zuordnung, so gibt es zwei Möglichkeiten:

• Positive Logik: Der höhere Signalpegel wird dem Wert 1, der niedrigere dem Wert 0 zugeordnet.

• Negative Logik: Der höhere Signalpegel wird dem Wert 0, der niedrigere dem Wert 1 zugeordnet.

Die folgenden Ausführungen setzen die

positive

 Logik stillschweigend voraus. Als elementare
Schaltungsbeispiele zeigt Bild 10.2 a) ein UND-Gatter mit bipolaren Dioden, b) ein ODER-Gatter
in derselben Schaltungstechnik, c) ein NOR-Gatter mit NMOS-Transistoren, dazu die entsprechen-
den logischen Gattersymbole. Die Schaltalgebra lehrt, insbesondere ihr Hauptsatz, daß sich alle
Schaltfunktionen und damit beliebige Schaltnetze allein mit diesen Grundgattern implementieren
lassen.

Bild 3.56: Schaltungstechnik; a) UND-Gatter mit Dioden, b) ODER-Gatter mit Dioden,
c) NOR-Gatter mit NMOS-Transistoren.

& ∨ ∨

a) c)b)

3 Logikebene

Seite 3.4.3 von 18

Beispiel 3.12:

Gegeben sei folgender Strukturausdruck einer Schaltfunktion in disjunktiver Normalform:

DNF

y

 = (

x

2

 &

x

1

 &

x

0

)

∨

(

x

2

 &

x

1

 &

x

0

)

Das isomorphe zweistufige Schaltnetz zeigt das folgende Bild. Es besteht aus zwei UND-Gattern
mit je drei Eingängen zur Implementierung der beiden Konjunktionen (&) und einem ODER-Gatter
mit zwei Eingängen zur Implementierung der Disjunktion (

∨

).

Bild 3.57: Zweistufiges Schaltnetz in disjunktiver Normalform (DNF)

Wendet man die DeMorgansche Regel auf die beiden Teilterme der obigen DNF an, so erhält man:

y

 = (

x

2

&

x

1

&

x

0

)

∨

(

x

2

&

x

1

&

x

0

) = (

x

2

∨

x

1

∨

x

0

)

∨

(

x

2

∨

x

1

∨

x

0

)

y

 = (

x

2

∨

x

1

∨

x

0

)

∨

 (

x

2

∨

x

1

∨

x

0

)

Damit läßt sich der gegebene Strukturausdruck auch durch ein zweistufiges Schaltnetz implemen-
tieren, das ausschließlich aus NOR-Gattern (

∨

) besteht. Der verneinte Funktionswert

y

 ist dabei
durch einen einfachen Ausgangsinverter in den bejahten Funktionswert

y

 umzuwandeln.

Bild 3.58: Zweistufiges NOR-Schaltnetz aus der DNF

&

&

∨ y

x2 x0x1

∨

∨
∨ y

x2 x0x1

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.4 von 18

c) Bipolare Schaltungstechnik

Die disjunktive Normalform (DNF) des obigen Beispiels (Bild 10.3) läßt sich in bipolarer Schal-
tungstechnik unter Verwendung der in Bild 10.2 a) und b) gezeigten Diodengatter direkt realisieren,
wie Bild 10.5 zeigt. Die Schaltung besteht, soweit es die logischen Verknüpfungen betrifft, aus
passiven Bauelementen, und sie wird statisch betrieben.

Interessant ist, daß sich die Diodenschaltung topologisch so umgestalten läßt, daß zur Realisierung
der logischen Verknüpfungen zwei Matrizen entstehen (Bild 10.6):

• für die Konjunktionen (&) eine UND-Matrix, d.h. die Zeilen bilden logische Produkte

P

i

,

• für die Disjunktion (

∨

) eine ODER-Matrix, hier mit einer Spalte für den Funktionswert

y

.

Selbst dieses einfache Schaltbild zeigt, daß anwendungsspezifische Schaltfunktionen dadurch rea-
lisiert werden können, daß die Dioden in der UND-Matrix entsprechend der Spezifikation wahl-
weise an die bejahten oder die verneinten Eingangsvariablen

x

i

 angeschlossen werden. Durch diese
Maßnahme wird die vorstrukturierte Schaltung

personalisiert

.

d) MOS-Schaltungstechnik

Wird die disjunktive Normalform (DNF) desselben Beispiels wie oben gezeigt in eine zweistufige
NOR-NOR-Form umgewandelt, so läßt sich die gegebene Schaltfunktion auch in MOS-Schaltungs-
technik unter ausschließlicher Verwendung des in Bild 10.2 c) gezeigten NOR-Gatters realisieren.
Die Schaltung in Bild 10.7 besteht aus aktiven, d.h. verstärkenden NMOS-Transistoren; sie wird
hier statisch betrieben.

Auch die NMOS-Transistorschaltung läßt sich topologisch so umgestalten, daß zur Realisierung
der logischen Verknüpfungen zwei Matrizen entstehen (Bild 10.8):

• für die Konjunktionen (&) eine UND-Matrix

• und für die Disjunktion (

∨

) eine ODER-Matrix.

Die Namen der beiden Matrizen sind unabhängig davon, ob die logischen Verknüpfungen schal-
tungstechnisch durch eine echte UND-ODER-Schaltung oder, wie zumeist, durch eine zweistufige
NOR-NOR-Schaltung realisiert werden.

Auch hier erfolgt die Personalisierung der Schaltung je nach anwendungsspezifischer Spezifikation
dadurch, daß die Gatter der NMOS-Transistoren in der UND-Matrix wahlweise an die bejahten
oder die verneinten Eingangsvariablen

x

i

 angeschlossen werden.

3 Logikebene

Seite 3.4.5 von 18

Bild 3.59: Realisierung des Schaltnetzes nach Bild 10.3 mit Diodengattern

Bild 3.60: Topologische Umgestaltung der Diodenschaltung nach Bild 10.5
& = UND-Matrix,

∨

 = ODER-Matrix.

P1

P0

x2

y

x1 x0

& ∨

P1

P0

x2

y

x1 x0

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.6 von 18

Bild 3.61: Realisierung des Schaltnetzes nach Bild 10.4 mit NMOS-Transistorgattern

Bild 3.62: Topologische Umgestaltung der NMOS-Transistorschaltung nach Bild 10.7
& = UND-Matrix, ∨ = ODER-Matrix.

P1

P0

x2

y

x1 x0

& ∨

P1

P0

x2

y

x1 x0

3 Logikebene

Seite 3.4.7 von 18

e) Allgemeines Strukturschema

Matrixförmige Logikschaltungen nutzen das Potential der Mikroelektronik bei Entwurf, Herstel-
lung und Betrieb besser aus als unregelmäßige Strukturen. Da sie programmierbar sind, gehören
sie zur Klasse der anwendungsspezifischen integrierten Schaltungen („Application Specific Inte-
grated Circuits”, ASIC). Indem man von schaltungstechnischen Einzelheiten absieht, können beide
Schaltkreistechnologien, bipolar und MOS, durch das allgemeine Strukturschema im nachfolgen-
den Bild abstrahiert werden. Es besteht im wesentlichen aus einer UND-, gefolgt von einer ODER-
Matrix, die beliebige logische Verknüpfungen in zweistufiger disjunktiver Form leisten.

Eine spezielle, anwendungsspezifische Schaltfunktion wird durch die Personalisierung der beiden
Matrizen realisiert, wie es im Strukturschema durch die Anschlusspunkte angedeutet ist. Man kann
die Personalisierung weiter abstrahieren und sie als Programmierung der Matrizen mit einem ele-
mentaren Binärcode betrachten, wie er nachfolgend angegeben wird. Man bezeichnet deshalb die
in den folgenden Abschnitten zusammengestellten Varianten des allgemeinen Strukturschemas als
Programmierbare Logische Bausteine („Programmable Logic Devices”, PLD).

Bild 3.63: Allg. Strukturschema personalisierbarer Matrizen;
& = UND-Matrix; ∨ = ODER-Matrix.

• Die UND-Matrix erzeugt die Konjunktion („logisches Produkt”) Pj der angeschlossenen Ein-
gangsvariablen xi. In dieser Matrix bedeutet:

Binärcode
weißer Punkt: die verneinte Eingangsvariable xi ist angeschlossen 0

schwarzer Punkt: die bejahte Eingangsvariable xi ist angeschlossen 1

kein Punkt: die Eingangsvariable xi ist nicht angeschlossen -

• Die ODER-Matrix erzeugt die Disjunktion („logische Summe”) der angeschlossenen Konjunk-
tionen Pj. In dieser Matrix bedeutet:

Binärcode
schwarzer Punkt: die Konjunktion Pj ist angeschlossen 1
kein Punkt: die Konjunktion Pj ist nicht angeschlossen 0

Zur Realisierung von Bündelschaltfunktionen mit mehreren Funktionsspalten yj kann die Anzahl
der Spalten in der ODER-Matrix im obigen Bild entsprechend erhöht werden.

&

x2 x1 x0

P1

P0

y

∨

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.8 von 18

3.4.2 Festwertspeicher („ROM”)

Beispiel 3.4.4:

Ein binärer Volladdierer soll durch programmierbare
Digitalbausteine, d.h. personalisierbare Schaltungen
in Matrizenform realisiert werden. Er kann durch eine
Wahrheitstabelle wie im nebenstehenden Bild spezifi-
ziert werden. Dabei sind x1 und x0 die zusammen mit

dem Übertrag c0 aus der vorhergehenden Addition zu

addierenden binären Variablen. Gebildet werden die
Summe S und der neue Übertrag C1.

Bild 3.64: Funktionsbeschreibung eines binären Volladdierers

Bild 3.65: Festwertspeicher („Read Only Memory”, ROM);
& = vordefinierter 1-aus-8 Decoder, ∨ = programmierbare Speichermatrix.

c0

0

0

0

0

1

1

1

1

j

0

1

2

3

4

5

6

7

x0

0

1

0

1

0

1

0

1

x1

0

0

1

1

0

0

1

1

S

0

1

1

0

1

0

0

1

C1

0

0

0

1

0

1

1

1

c0 x1 x0
C1

m0

m1

m2

m3

m4

m5

m6

m7

S

S C1

& ∨

3 Logikebene

Seite 3.4.9 von 18

Personalisiert man die UND-Matrix wie im vorhergehenden Bild für n = 3 Eingangsvariable sche-
matisch gezeigt, so werden durch ihre 2n Zeilen sämtliche Minterme mj gebildet, wobei j = 0 . . n-
1. Diese UND-Matrix entspricht dem 1-aus-n Decoder eines Speichers mit wahlfreiem Zugriff
(„Random Access Memory”, RAM) mit Einebenenadressierung. Wie das vorhergehende Bild eben-
falls zeigt, wird die ODER-Matrix isomorph zu den beiden Funktionsspalten der Wahrheitstabelle
für die Summe S und den neuen Übertrag C1 personalisiert („programmiert”); sie ist die eigentliche
Speichermatrix.

Der 1-aus-n Decoder wird vom Hersteller vordefiniert, die Speichermatrix anwendungsspezifisch
programmiert. Wird der Inhalt der Speichermatrix vom Hersteller nach Anwenderangaben fest
personalisiert, so spricht man von einem Festwertspeicher („Read Only Memory”, ROM). Anmer-
kung: Die Bezeichnung RAM („Random Access Memory”) beschränkt sich in der Praxis auf vom
Anwender im laufenden Betrieb schreibbare Speicher mit wahlfreiem Zugriff, obwohl auch ein
sog. ROM, wie man seinem Strukturschema entnehmen kann, dank des 1-aus-n Decoders den
wahlfreien Zugriff auf den Inhalt der Speichermatrix erlaubt.

Man beachte ferner, dass der Festwertspeicher in diesem Zusammenhang als rein kombinatorisches
Schaltnetz wirkt. Ein sequentielles Schaltwerk entsteht daraus erst dann, wenn die beiden im obigen
Strukturschema des ROM angedeuteten Flipflops am Ausgang der Speichermatrix auf den Eingang
des Decoders rückgekoppelt werden.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.10 von 18

3.4.3 Programmierbare UND-Matrixlogik („PAL”)

Nun soll die gegebene Bündelschaltfunktion des Volladdierers minimiert werden, wobei das Funk-
tionsbündel hier aus der Summe S und dem negierten Übertrag C1 besteht. (Die Negation erfolgt
im Vorgriff auf die im nächsten Abschnitt vorgestellte Realisierung und kann durch Verwendung
des negierenden Ausgangs eines Ausgangsflipflops wieder aufgehoben werden.) Die folgenden KV-
Diagramme zeigen, dass sich nur die Schaltfunktion für c1 minimieren lässt.

Bild 3.66: KV-Diagramme des Volladdierers mit Überdeckung durch Primblöcke

Bild 3.67: Programmierbare UND-Matrixlogik („Programmable AND-Array Logic”, PAL);
& = programmierbare UND-Matrix, ∨ = vordefinierte ODER-Matrix.

c0 c0

0

1

1

0

0

1

1

0

x0 x0

x1

1

1

1

0

0

0

1

0

S x0 x0

c0 c0

x1

C1

c0 x1 x0
C1

P0

P1

P2

P3

P4

P5

P6

S

S C1

& ∨

3 Logikebene

Seite 3.4.11 von 18

Man erhält durch Überdecken der Einsstellen mit Primblöcken in disjunktiver Minimalform:

DMF S = (c0 x1 x0) ∨ (c0 x1 x0) ∨ (c0 x1 x0) ∨ (c0 x1 x0) = P0 ∨ P1 ∨ P2 ∨ P3

C1 = (c0 x0) ∨ (c0 x1) ∨ (x1 x0) = P4 ∨ P5 ∨ P6

Die zur DMF isomorphe Personalisierung zeigt das nächste Bild. In der UND-Matrix des Bausteins
werden die gewünschten Konjunktionen („Produktterme”) Pj zeilenweise erzeugt. In einer durch
den Hersteller des Bausteins vordefinierten ODER-Matrix ausreichender Größe werden sie dann
disjunktiv verknüpft. Da nur die UND-Matrix anwendungsspezifisch personalisiert wird, während
die ODER-Matrix vordefiniert ist, nennt man einen Baustein mit dieser Struktur Programmierbare
UND-Matrixlogik („Programmable And-Array Logic”, PAL).

Ein PAL benötigt weniger Zeilen als ein ROM, falls sich die zu realisierenden Schaltfunktionen
minimieren lassen. Dies zeigt auch ein Vergleich des PAL-Strukturschemas mit dem des ROM, die
für dieselbe Funktionsbeschreibung eines Volladdierers personalisiert wurden. Die Anzahl der Spal-
ten dagegen ist durch die Anzahl der Eingangs- und Ausgangsvariablen, d.h. durch die Funktions-
beschreibung vorgegeben und deshalb in beiden Fällen gleich.

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.12 von 18

3.4.4 Programmierbare Logische Matrix („PLA”)

Die Anzahl der Spalten matrixförmiger Logikschaltungen ist, wie erwähnt, durch die Funktions-
beschreibung („Spezifikation”) vorgegeben. Das Entwurfsziel besteht daher in der Minimierung
der Anzahl der Zeilen. Das Ergebnis konventioneller Minimierungsverfahren, z.B. mit KV-Dia-
grammen oder nach Quine-McCluskey, ist die Minimierung der Anzahl logischer Gatter. Sie wer-
den, wie gezeigt, beim Entwurf von PALs vorteilhaft eingesetzt. Falls es nun gelingt, logische
Produktterme Pj mehrfach auszunutzen, erhält man ein weiteres Minimierungspotential.

Man betrachte die folgenden KV-Diagramme: Überdeckt man die Einsstellen nicht notwendiger-
weise mit Primblöcken, sondern mit Blöcken, die in den KV-Diagrammen mehrerer Ausgangsva-
riabler vorkommen, hier S und C1, so kann man sie mehrfach ausnutzen, falls in der matrixförmig
ausgelegten Schaltung nicht nur die UND-, sondern auch die ODER-Matrix personalisiert werden
kann. Diese Überlegungen führen zur Programmierbaren Logischen Matrix („Programmable Logic
Array”, PLA).

Bild 3.68: KV-Diagramme des Volladdierers mit Mehrfachausnutzung von Blöcken

Bild 3.69: Programmierbare Logische Matrix („Programmable Logic Array”, PLA);
& = programmierbare UND-Matrix, ∨ = programmierbare ODER-Matrix.

0

1 0

0

1 0

1

1 0

0

0 0

1 11 1

c0 c0

x0 x0

x1

S x0 x0

c0 c0

x1

C1

c0 x1 x0
C1

S

S C1

P0

P1

P2

P3

P4

& ∨

3 Logikebene

Seite 3.4.13 von 18

Man erhält durch Überdecken der Einsstellen mit mehrfach ausgenutzten Blöcken in disjunktiver
Normalform:

DNF S =(c0 x1 x0) ∨ (c0 x1 x0) ∨ (c0 x1 x0) ∨ (c0 x1 x0) = P0 ∨ P1 ∨ P2 ∨ P3

C1 = (c0 x1 x0) ∨ (c0 x1 x0) ∨ (c0 x0) = P2 ∨ P3 ∨ P4

Das Beispiel des Volladdierers zeigt das vorhergehende Bild. Die UND-Matrix des PLA erzeugt
zeilenweise die gewünschten Produktterme Pj, in der ODER-Matrix wählt man die jeweils benö-
tigten Produktterme aus, d.h. beide Matrizen sind anwendungsspezifisch zu personalisieren. Im
Vergleich zum PAL ergibt sich beim PLA eine Einsparung von zwei weiteren Produkttermen durch
deren Mehrfachausnutzung.

3.4.5 Speicher mit wahlfreiem Zugriff („RAM”)

a) Ein-Ebenen-Adressierung

b) Zwei-Ebenen-Adressierung

c0 x1 x0

C1

S

1-
au

s-
8

D
ec

od
er

c0 x1 x0

C1

S

1-
au

s-
4

D
ec

MuxMux

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.14 von 18

3.4.6 Schaltwerksentwurf mit PLA

Implementiert man mit einem PLA nicht nur (Bündel-)Schaltfunktionen, sondern endliche diskrete
Automaten, so ergibt sich ein zusätzliches Minimierungspotential: Bei geeigneter binärer Codie-
rung der Automatenzustände können sowohl das Überführungsschaltnetz δ, das die Folgezustände
erzeugt, als auch das Ausgabeschaltnetz λ vereinfacht werden. Man findet in der Literatur eine Fülle
heuristischer Algorithmen zur Zustandscodierung, die hier jedoch nicht Gegenstand der Betrach-
tung sind. Nachfolgend soll das Entwurfsbeispiel eines Schaltwerks aus dem vorhergehenden Ka-
pitel speziell auf die PLA-Struktur abgestimmt werden.

a) Spezifikation

Das Schaltwerk wird im folgenden Bild durch seine symbolische Ablauftabelle und den zugehörigen
Ablaufgraphen formal spezifiziert.

Bild 3.70: Spezifikation eines durch ein PLA zu realisierenden Moore-Automaten;
links: Symbolische Ablauftabelle, rechts: Ablaufgraph.

b) Zustandscodierung

Willkürlich wurde der bekannte Gray-Code zur Zustandscodierung gewählt:

Z0 = 0 ↔ (0, 0) Z2 = 2 ↔ (1, 1)

Z1 = 1 ↔ (0, 1) Z3 = 3 ↔ (1, 0)

Die sich aus der gewählten Zustandscodierung ergebende codierte Ablauftabelle wurde bereits im
Entwurfsbeispiel des vorhergehenden Kapitels wiedergegeben. Sie weist zehn Zeilen auf, die durch
ebenso viele Zeilen („Produktleitungen”) des PLA realisiert werden müssten. Dieser Aufwand soll
minimiert werden.

0

21

3

Z t

00

01

11

10

Z t+1

01

00

11

01

10

11

00

10

00

01

x1 x0

0 0

0 1

1 -

0 0

1 0

- 1

0 0

1 0

- 1

- -

y2 y1 y0

1 0 ∗

∗ 0 1

0 ∗ 1

1 1 0

X t Y t

∗ 0 1

1 0 ∗

1 1 0

0 ∗ 10 0

0 1

1 -

0 0

1 0

- 1

0 0

1 0

- 1

- -

3 Logikebene

Seite 3.4.15 von 18

c) Wahl der Speicherglieder

Zur Zustandsspeicherung seien nun willkürlich D-Flipflops gewählt. Für ihre Ansteuervariablen
(D1, D0) wurde im Entwurfsbeispiel des vorhergehenden Kapitels eine Spalte angegeben; wegen
der trivialen, nur verzögernden Funktion des D-Flipflops ist ihre Belegung mit der Codierung Q t+1

der Folgezustände identisch.

d) Minimierung des Bündelschaltnetzes

Zunächst soll die Minimierung konventionell durch das Bilden von Primblöcken erfolgen. Die
Funktionsspalten für die Ansteuervariablen (D1, D0) der D-Flipflops werden aus der codierten
Ablauftabelle des Entwurfsbeispiels im vorhergehenden Kapitel in die folgenden KV-Diagramme
übernommen. Man findet bei der Minimierung durch Bilden von Primblöcken, daß sich die zur
Minimierung der Zeilenanzahl von PLAs wichtige Mehrfachverwendung von Blöcken nur für zwei
davon erreichen läßt (im folgenden Bild schraffiert hervorgehoben). Mit disjunktiven Minimalfor-
men wären für die Ansteuervariablen (D1, D0) zunächst sechs Produktterme, d.h. Zeilen für das
PLA erforderlich:

DMF D1 = (q1 x1) ∨ (q1 q0 x0) ∨ (q0 x1 x0)

D0 = (q1 x1 x0) ∨ (q1 q0 x0) ∨ (q0 x1) ∨ (q1 q0)

Bild 3.71: KV-Diagramme der Ansteuervariablen (D1, D0); Überdeckung mit Primblöcken;
Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

Die Funktionsspalten für die Ausgangsvariablen (y2, y1, y0) des PLA-Schaltwerks werden ebenfalls
aus der codierten Ablauftabelle des Entwurfsbeispiels im vorhergehenden Kapitel in die folgenden
drei KV-Diagramme übernommen. Man findet bei der Minimierung durch Bilden von Primblöcken
in den KV-Diagrammen der Ausgangsvariablen (y2, y1, y0) in disjunktiver Minimalform zunächst
drei Produktterme. Da keine Mehrfachverwendung der Primblöcke möglich ist, wären drei weitere
und damit insgesamt neun Zeilen für das PLA erforderlich:

DMF y2 = q0 y1 = q1 y0 = q0

x0 x0

x1

x1

q0 q0

q1

q1

0

1

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

3

1

2

q0

q1

1

1

1

1

0

1

1

1

1

1

0

0

1

0

0

0

x0 x0

x1

x1

q0 q0

q1

q1

D1 D0 Z

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.16 von 18

Bild 3.72: KV-Diagramme der Ausgangsvariablen (y2, y1, y0); Überdeckung mit Primblöcken;
Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

Bei der Minimierung von PLAs kommt es auf die Minimierung der Zeilenanzahl an, die wie erläutert
Konjunktionen („logische Produkte”) implementieren. Dies wird, wie ebenfalls bereits erwähnt,
durch Mehrfachverwendung von logischen Produkttermen erreicht. Zur Ermittlung der disjunktiven
Formen der betreffenden Variablen müssen die Einsstellen in den KV-Diagrammen zwar vollständig
mit Blöcken überdeckt werden, aber nicht notwendigerweise mit Primblöcken: Betrachtet man die
obigen fünf KV-Diagramme gemeinsam und verkleinert man ggf. die überdeckenden Blöcke, ohne
die vollständige Überdeckung der Einsstellen zu gefährden, so entdeckt man Möglichkeiten zur
Mehrfachverwendung von Blöcken, wie es in den folgenden sechs KV-Diagrammen dargestellt ist.
Wie der paarweise Vergleich dieser KV-Diagramme zeigt, benötigt man jetzt nur noch insgesamt
sieben Produktterme, die durch entsprechende Zeilen im PLA implementiert werden. Ihre Anzahl
konnte somit von ursprünglich zehn weiter verringert werden.

Bild 3.73: KV-Diagramme der Ausgangsvariablen; Überdeckung mit mehrfach verwendeten
Blöcken; Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

x0 x0

q0 q0

0

0

1

1

0

0

1

1

0

0

∗
∗

0

0

∗
∗

∗
∗
0

0

∗
∗
0

0

1

1

1

1

1

1

1

1

x0 x0

q0 q0

q1

q1

y1 y0x0 x0

x1

x1

q0 q0

1

1

1

1

1

1

1

1

∗
∗
0

0

∗
∗
0

0

y2

x0 x0

q0 q0

0

0

1

1

0

0

1

1

0

0

∗
∗

0

0

∗
∗

∗
∗
0

0

∗
∗
0

0

1

1

1

1

1

1

1

1

x0 x0

q0 q0

q1

q1

y1 y0x0 x0

x1

x1

q0 q0

1

1

1

1

1

1

1

1

∗
∗
0

0

∗
∗
0

0

y2

3 Logikebene

Seite 3.4.17 von 18

Bild 3.74: KV-Diagramme der Ansteuervariablen; Überdeckung mit mehrfach verwendeten Blök-
ken; Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

e) PLA-Schaltwerksstruktur

Zur Implementierung des Moore-Automaten, der im obigen Abschnitt 4.5.1 spezifiziert wurde,
werden die oben ermittelten Konjunktionen (&), d.h. die logischen Produktterme Pi in die UND-
Matrix, ihre disjunktive Verknüpfung (∨) in die ODER-Matrix der PLA-Struktur abgebildet. Das
Ergebnis des hier durchgeführten Entwurfsablaufs zeigt das folgende Gatterschaltbild.

Man erhält folgende Produktterme, d.h. Blöcke, die die Einsstellen vollständig überdecken:

P0 = q0 P1 = q1 & q0 P2 = q0

P3 = q1 & q0 & x1 P4 = q1 & q0 & x0 P5 = q0 & x1 & x0

P6 = q1 & x1 & x0

DNF y2 = P0 y1 = P1 y0 = P2

D1 = P3 ∨ P4 ∨ P5 D0 = P1 ∨ P3 ∨ P4 ∨ P6

x0 x0

x1

x1

q0 q0

q1

q1

0

1

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

3

1

2

q0

q1

1

1

1

1

0

1

1

1

1

1

0

0

1

0

0

0

x0 x0

x1

x1

q0 q0

q1

q1

D1 D0Z

Prof. Dr.-Ing. U.G. Baitinger

Seite 3.4.18 von 18

Bild 3.75: Realisierung des Moore-Automaten mit einem PLA;
& = personalisierte UND-Matrix, ∨ = personalisierte ODER-Matrix.

x1

& ∨

P0

P1

P2

P3

P4

P5

P6

x0

q1 q1 q0 q0

y1 y0y2

c

4 Register-Transfer-Ebene

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.1 von 20

ti-I

Stand: 13. Juni 2002

4.1 Begriffsbestimmungen

Die Registertransfer-Ebene abstrahiert von den Einzelheiten der konkreteren Logikebene und sie
unterstützt die noch abstraktere Algorithmische Ebene, die das Verhalten der Systemeinheiten und
ihr Zusammenwirken beschreibt. Sie verwendet als funktionelle Einheiten

• zur Informationsspeicherung: Register und Speichermatrizen („RAM“);

• zur Informationsverarbeitung: Digitale Rechenwerke („ALU“);

• zum Informationstransfer: Verbindungsleitungen („Busse“).

Die auf der Logikebene betrachteten Einheiten werden auf der RT-Ebene zu größeren Einheiten
zusammengefasst:

• Binäre Variablen zu Vektoren, d.h. die Busbreiten sind in der Regel größer als 1 bit;

• Logische Gatter zu kombinatorischen Schaltungen, die Decoder, Multiplexer, Addierer, aber auch
komplette Rechenwerke („ALU“) oder nur ein einzelnes logisches Gatter enthalten können;

• Flipflops zu Registern entsprechend den Bitbreiten der Vektoren und Busse; im einfachsten Fall
kann ein Register auch nur aus einem einzelnen Flipflop bestehen.

Jeder

interaktiv

, d.h. mit einem Text- oder Graphik-Editor ausgeführte Entwurfsschritt, sei es in
Hardware oder Software, muss durch Simulation auf Korrektheit überprüft werden („Validierung“),
bevor der nächste Entwurfsschritt ausgeführt werden kann.

Automatisierte

 Entwurfsschritte, die mit einem rechnergestützten Synthesewerkzeug („CAD Tool“)
ausgeführt werden, bedürfen dagegen grundsätzlich keiner Validierung, da sie in der Regel ein
korrektes Entwurfsergebnis erzeugen („correctness by construction“), doch ist auch hier eine an-
schließende Simulation möglich und ratsam.

Beim rechnergestützten Entwurf mikroelektronischer Digitalsysteme können die zu validierenden
Entwurfsdaten direkt als „Modellbeschreibung“ für den Simulator verwendet werden. Simulationen
auf der RT-Ebene bilden folgende Vorgänge nach:

• den Zugriff auf Variablenwerte in Speicherplätzen,

• ihre Ausbreitung auf Busleitungen

• und ihre Verknüpfung in Rechenwerken, die auch als arithmetisch/logische Einheiten
(„Arithmetic/Logic Unit“, ALU) bezeichnet werden.

Im folgenden sollen für die RT-Ebene - nach einer Vorstellung der zu betrachtenden Funktionsein-
heiten - Methoden der strukturellen Synthese aus funktionalen Spezifikationen vorgestellt werden.
Dabei geht es im wesentlichen um die zeitliche Ablaufplanung von Steuerungsfolgen, die Bereit-
stellung von Betriebsmitteln und die Zuweisung von Speicherplätzen.

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.2 von 20

4.2 Verbindungsstrukturen

4.2.1 Decoder

vs.

 Demultiplexer

Decodierer (

decoder

 - engl.) DIN 44 300

„Ein Code-Umsetzer mit mehreren (

n

) Eingängen und (2

n

) Ausgängen, bei dem für jede
spezifische Kombination von Eingangssignalen immer nur je ein bestimmter Ausgang
ein Signal abgibt.”

Eine Funktionseinheit mit dem folgenden Gatterschaltbild wirkt, je nach Ansteuerung, entweder
als

Decoder

 oder als

Demultiplexer

. Sie kann daher wahlweise durch eines der beiden Schaltsymbole
im übernächsten Bild abstrahiert werden.

Bild 4.1: Gatterschaltbild eines Decoders bzw. Demultiplexers auf der Logik-Ebene

Bild 4.2: Schaltsymbole für Decoder und Demultiplexer auf der Registertransfer-Ebene

&

&

&

&

x1 x0 F

x1 x0

F•m0

F•m1

F•m2

F•m3

F

0

1

2

3

x0

x1

x0x1

F

0

1

2

3

F•m0

F•m1

F•m2

F•m3

F•m0

F•m1

F•m2

F•m3

4 Registertransfer-Ebene

Seite 4.3 von 20

4.2.2 Multiplexer

vs.

 Demultiplexer

Multiplexer (

multiplexer

 - engl.) DIN 44 300

„Eine Funktionseinheit, die Nachrichten von Nachrichtenkanälen

einer

 Anzahl in Nach-
richtenkanäle

anderer

 Anzahl übergibt.”

Eine Funktionseinheit mit dem folgenden Gatterschaltbild wirkt, je nach Ansteuerung, entweder
als

Multiplexer

 oder als

Demultiplexer

. Sie kann daher wahlweise durch eines der beiden Schalt-
symbole im übernächsten Bild abstrahiert werden.

Bild 4.3: Gatterschaltbild eines Multiplexers bzw. Demultiplexers auf der Logik-Ebene

Bild 4.4: Schaltsymbole für Multiplexer und Demultiplexer auf der Registertransfer-Ebene

& & &&

x1

x0

&

&

&

&

DEC

x1 x0

y

0

1

2

3

e0

e1

e2

e3

x0x1

e

0

1

2

3

y0

y1

y2

y3

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.4 von 20

4.2.3 Sammelleitung („Bus“)

Die Bezeichnung „Bus” ist eine Abkürzung des Wortes

omnibus

 (lat.), das

für alle

 bedeutet. Ein
Bus ist eine Sammelleitung, die

für alle

 angeschlossenen Funktionseinheiten in einer Konferenz-
schaltung betrieben wird. Die „Breite“

n

 eines Bus, d.h. die Anzahl der übertragbaren Bits, bestimmt
den maximal möglichen Datenfluss. Für jedes über den Bus zu transferierende Bit wird ein Multi-
plexer/Demultiplexer-Paar benötigt, wie das folgende Bild zeigt.

Bild 4.5: Die vier Ansteuerzustände des Mux/Demux-Paares einer 1 bit breiten Busleitung

Bild 4.6: Vereinfachtes Schema eines

n

 bit breiten Bus mit Zu- und Abgängen.
(Die Mux/Demux-Paare und ihre Ansteuerung werden nicht dargestellt.)

0

0

1

0

0

1

MUX DEMUX

0

0

1

1

0

1

MUX DEMUX

1

0

1

0

0

1

MUX DEMUX

1

0

1

1

0

1

MUX DEMUX

n Bus-Breite

20 = 1 1 bit

23 = 8 1 Byte

24 = 16 1 Halbwort

25 = 32 1 Vollwort

≤ n ≤ n

≤ n ≤ n

n

4 Registertransfer-Ebene

Seite 4.5 von 20

4.3 Speichereinheiten

Man kann die unterschiedlichen Speicheranordnungen nach der Selektion, d.h. der Art der Auswahl
einer gespeicherten Einheit - wie Bit, Byte oder Wort - aus einer Menge gespeicherter Einheiten,
nach ihrer funktionalen Organisation in drei Gruppen einteilen:

• Zellen sind punktförmige („0-dimensionale”) Speicheranordnungen. Sie werden durch eine bista-
bile Speicherzelle realisiert und speichern 1 Bit. Für den Zugriff auf die Speicherzelle, um das
Bit zu selektieren, benötigt man keine Adresse.

• Register sind linienförmige („1-dimensionale”) Speicheranordnungen. Sie werden durch eine
Reihe bistabiler Speicherzellen realisiert und speichern b > 1 Bits. Für den direkten Zugriff auf
eine einzelne Speicherzelle, um ein Bit zu selektieren, benötigt man eine Adresse, die mit ld b
Bits dual codiert wird.

• Speicher sind flächenförmige („2-dimensionale”) Speicheranordnungen. Sie werden durch eine
Matrix bistabiler Speicherzellen realisiert und speichern w ⋅ b >> 1 Bits. Für den direkten Zugriff
auf eine einzelne Speicherzelle, um ein Bit zu selektieren, benötigt man zwei Adressen, die mit
ld w bzw. ld b Bits dual codiert werden.

4.3.1 Speicherzellen („Flipflops”)

Zur Speicherung binärer Größen Q ∈ {0, 1}, die einen von zwei diskreten Werten annehmen können,
benötigt man bistabile Speicherelemente, die zweier diskreter Zustände fähig sind („Flip-Flop”).
Der aktuelle Zustand eines Flipflop, d.h. die zum Zeitpunkt t gespeicherte Zustandsvariable Q, wird
abhängig von den Eingangsvariablen im nächsten Zeitpunkt t + 1 geändert oder beibehalten.

Man kann die Flipflops hinsichtlich ihrer Ansteuerung durch einen Takt c unterscheiden:

• Das Basis-Flipflop wird asynchron betrieben. Die Eingangsvariablen wirken unmittelbar auf den
internen Zustand des Flipflop, eine Verzögerung zwischen Eingangs- und Ausgangsvariablen
ergibt sich durch die internen Gatter („ungetaktetes Flipflop”).

• Das Auffang-Flipflop wird synchron betrieben. Die Eingangsvariablen werden über Gatterschal-
tungen angelegt, die durch einen der beiden Werte einer Taktvariablen c ∈ {0, 1} aktiviert werden
(„zustandsgetaktetes Flipflop”).

• Dynamische Flipflops werden ebenfalls synchron betrieben. Sie verfügen über eine Eingangs-
schaltung, die entweder durch die Vorderflanke c → 1 oder die Rückflanke c → 0 eines Taksignals
angesteuert wird („flankengetaktetes Flipflop”).

Anschließend sind Schaltsymbole für Flipflops zusammengestellt, die die genannten Möglichkeiten
zur Taktung berücksichtigen.

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.6 von 20

Bild 4.7: Basis-Flipflop, asynchron, ungetaktet

Bild 4.8: Auffang-Flipflop, synchron zustandsgetaktet

Bild 4.9: Dynamisches Flipflop, synchron vorderflankengetaktet

Bild 4.10: Dynamisches Flipflop, synchron rückflankengetaktet

Eine betriebssichere Anordnung zur Speicherung von 1 Bit ist das aus zwei synchronen Flipflops
bestehende „Master-Slave-Flipflop”, die mit den unterschiedlichen Flanken desselben Taktsignals
angesteuert werden; dadurch ergibt sich eine Schiebemöglichkeit um „1/2 Bit”.

Bild 4.11: Master-Slave Flipflop

R

S

Q

Q

R

S

Q

Q

&

&
c

c

R

S

Q

Q

c
c

R

S

Q

Q

c
c

R

S

Q

Q

c

R

S

Q

Q

c c

4 Registertransfer-Ebene

Seite 4.7 von 20

4.3.2 Registerspeicher

In umfangreicheren digitalen Schaltungen benötigt man zum schnellen Abspeichern und zur schnel-
len Rückgabe kleinerer Datenmengen einzelne Register, aber auch umfangreichere Registeran-
sammlungen. Ein Register besteht aus je einem Speicherelement für jedes zu speichernde Bit. Man
unterscheidet im wesentlichen:

• Schieberegister. In arithmetischen Operationen ist es des öfteren notwendig, eine gespeicherte
Einheit, z.B. 1 Wort = 4 Bytes oder 1 Byte = 8 Bit, auf ein Taktsignal hin um eine bestimmte
Anzahl Stellen nach links oder nach rechts zu verschieben.

• Zählerregister. In Digitalschaltungen müssen regelmäßig Vorgänge, Abläufe, Teiloperationen,
Speicheradressen u. dergleichen ab- oder durchgezählt werden. Der Zähler ist deshalb ein unver-
zichtbares digitales Bauelement. Man erreicht die Zählfunktion durch zusätzliche Verknüpfungs-
schaltungen, die dafür sorgen, dass die Änderungshäufigkeit der Flipflopzustände im Register von
Stufe zu Stufe halbiert wird.

• Speicherregister. Zur Synchronisation arithmetischer und/oder logischer Operationen ist es
zweckmäßig, Zwischenergebnisse kurzzeitig abzuspeichern, bevor sie weiterverarbeitet werden.

Bild 4.12: Schieberegister mit SR-Flipflops. c - Takteingang, vorderflankengetaktet

QA QB QC QD

QE

c

R Q R QR Q

Q

R

S

Q

S S SQ QQ

c

t
E

QA

QB

QC

t

t

t

t

t

QD

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.8 von 20

Bild 4.13: Zählerregister mit JK-Flipflops. c - Takteingang, rückflankengetaktet

Bild 4.14: Speicherregister mit JK-Flipflops. c - Takteingang, vorderflankengetaktet; F - Freigabe

4.3.3 Speichermatrizen („RAM“)

Die Technologie der Mikroelektronik erlaubt es, Speicherzellen in extrem großer Anzahl auf einem
gemeinsamen Silizium-Chip zu integrieren: Stand der Technik sind mehrere Millionen Bits pro
Chip. Die Speicherzellen sind geometrisch in Zeilen und Spalten angeordnet. Eine Zeile von Spei-
cherzellen kann z.B. ein Wort enthalten, dessen einzelne Bits sich in unterschiedlichen Spalten
befinden. Man bezeichnet daher die Zeilen der Speichermatrix auch als „Wortrichtung”, die Spalten
als „Bitrichtung”. Selektiert man gleichzeitig eine Zeile und eine Spalte der Speichermatrix, so
erhält man den direkten Zugriff auf die Speicherzelle am Schnittpunkt. Dies wird als wahlfreier
Zugriff bezeichnet („Random Access Memory”, RAM).

QA QB QC QD

c

K Q K QK Q

Q

K

J

Q

J J JQ QQ

&& &

1

QA

QB

QC

t

t

t

t

t

QD

c

F

c

J K

Q Q

J K

Q Q

J K

Q Q

J K

Q Q

& && && &

QA QB QC QD

E0 E1 E2 E3

& &

4 Registertransfer-Ebene

Seite 4.9 von 20

Die Selektion einer Speicherzelle auf einem höchstintegrierten Speicherchip kann nicht direkt er-
folgen. Eine Speichermatrix der Größe

2n Zeilen ⋅ 2m Spalten = 2n+m Beispiel: 210+10 = 220 = 1 MegaBit,

die also etwa einer Million Speicherzellen enthält, würde sonst

2n Zeilen + 2m Spalten = 2n + 2m 210 + 210 = 1.024 + 1.024 = 2.048 (!)

äußere Anschlüsse benötigen, was technologisch nicht machbar ist. Codiert man jedoch die Zeilen-
und Spaltenadressen („Wort- bzw. Bitadresse”) im Dualcode, so gilt für die Anzahl der äußeren
Anschlüsse:

ld 2n + ld 2m = n + m 10 + 10 = 20 .

Zur Selektion genau einer Wort- bzw. einer Bitleitung müssen die dual codierten Wort- bzw. Bit-
adressen in einen „1-aus-n”-Code umgewandelt werden, bei dem definitionsgemäß immer nur ein
Bit aktiv ist. Daher enthalten höchstintegrierte Speicherchips am Rande der eigentlichen Speicher-
matrix stets auch Decoderschaltungen, um die Anzahl der äußeren Anschlüsse des Chips in der
geschilderten Weise niedrig zu halten, wie das nächste Bild zeigt.

Bild 4.15: Organisation eines integrierten Speicherchips („Random Access Memory”, RAM)

...

0...01 ← n Bit

2m : 1 Multiplexer

1-
au

s-
2n

D
ec

od
er

. . .

. . .

.

. . .

Lesen | Schreiben

0 | 1
Schreib/Lese-

Verstärker

2m

2n
...

0.
..0

1
←

 m
 B

it

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.10 von 20

4.4 Verarbeitungseinheiten

4.4.1 Arithmetisch/Logische Einheit („ALU“)

Rechenwerke werden aufgrund ihrer Verknüpfungsfunktionen präziser als arithmetisch/logische
Einheiten bezeichnet, engl. „Arithmetic/Logic Unit“, und daher im folgenden kurz „ALU“ genannt.

Vorgänge der technischen Informationsverarbeitung können durch informationsverarbeitende Sy-
steme ausgeführt werden. Programmieren bedeutet so betrachtet die Abbildung von „Prozessen“
auf „Prozessoren“. Dazu muss man den strukturellen Aufbau eines konkreten Prozessors nicht in
allen Einzelheiten kennen; es genügt, wenn man die funktionellen Zusammenhänge durch ein ab-
straktes Prozessormodell darstellt. Folgende Möglichkeiten können zur Modelldarstellung dienen:

• problem-orientierte Programmiersprachen

• maschinen-orientierte Programmiersprachen

• binäre Maschinenbefehle („Maschinen-Code“)

Bild 4.16: Strukturelle Darstellung eines Prozessormodells;
ALU - Arithmetic/Logic Unit (Rechenwerk); weitere Erläuterungen im folgenden Text.

Das obige Bild stellt ein strukturelles Prozessormodell dar. Aus dem Programmspeicher wird ein
Maschinenbefehl ausgelesen:

• Das Feld OPC gibt die auszuführende arithmetische oder logische Operation in binär codierter
Form an („Operationscode“).

Programmspeicher
D

ec

OPC OP1 OP2 RES NXT

M U X

D E C

Datenspeicher

ALU

<OP1> <OP2><RES>

4 Registertransfer-Ebene

Seite 4.11 von 20

• Die ebenfalls binär codierten Adressen OP1 und OP2 der beiden Operanden sowie die Adresse
RES für das Resultat werden über einen Multiplexer nacheinander an den Decoder des Daten-
speichers angelegt.

• Dadurch gelangen die aktuellen Werte <OP1> und <OP2> der Operanden zum Rechenwerk ALU,
werden dort nach Maßgabe des Operationscodes OPC miteinander verknüpft und der Wert <RES>

des Resultats wird an der Adresse RES im Datenspeicher abgespeichert.

• Das Adressfeld NXT bestimmt den als nächsten auszuführenden Befehl und wird deshalb an den
Adressdecoder des Programmspeichers angelegt.

Es ist wichtig, zwischen dem aktuellen „Wert“ eines Operanden und seiner „Adresse“ im Speicher
zu unterscheiden. Ein Operand wird durch seinen Namen eindeutig identifiziert und er hat einen
ganz bestimmten Wert. Der Name des Operanden ist äquivalent zur Adresse einer im Hauptspeicher
konkret vorhandenen Speicherstelle, sein Wert ist gleichbedeutend mit deren Inhalt:

Wert := < Name >; programmtechnische Betrachtung

Inhalt := < Adresse >; speichertechnische Betrachtung

Da der Name eines Operanden innerhalb eines Programms derselbe bleibt, sein Wert aber laufend
geändert werden kann, spricht man auch von einer „Variablen“.

Die strukturell geprägte Darstellung lässt sich funktionell sehr viel kürzer und formaler fassen;
insbesondere auf der Register-Transfer-Ebene genügt ein funktionelles Prozessormodell. Da jedem
Maschinenbefehl eine Operation der ALU entspricht, lässt sich der Prozessor durch seinen Maschi-
nenbefehlssatz vollständig beschreiben.

a) Vier-Adress-Befehlsformat

Wie im obigen Bild gezeigt enthält das aufwendigste Befehlsformat vier Speicheradressen:

Derselbe Sachverhalt kann in einer „Programmiersprache“ wie folgt notiert werden:

RES := (OP1 # OP2);

Das Feld OPC ↔ # gibt eine beliebige arithmetisch/logische Operation an („Operationscode“).

b) Drei-Adress-Befehlsformat

Da die Maschinenbefehle, aus denen ein Algorithmus besteht, aus Gründen der Übersichtlichkeit
meist direkt nacheinander im Programmspeicher untergebracht werden, können die aufeinander-
folgenden Befehlsadressen nach dem „von Neumannsches Prinzip“ durch einen Befehlszähler er-
zeugt werden. (Soll die Sequenz unterbrochen werden, so ist ein Sprungbefehl einzufügen, der den
Inhalt des Befehlszählers explizit setzt.) Das Feld NXT kann dann eingespart werden und man
erhält ein Drei-Adress-Befehlsformat:

OPC OP1 OP2 RES NXT

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.12 von 20

c) Zwei-Adress-Befehlsformat

Wird einer der Operanden nach seiner Verknüpfung nicht mehr benötigt, so kann man seine Spei-
cherstelle für das Resultat verwenden. Meist wird der 1. Operand überschrieben, so dass man die
Resultatadresse weglassen kann; man erhält das Zwei-Adress-Befehlsformat:

d) Ein-Adress-Befehlsformat

Schließlich ist es auch gebräuchlich, ein zusätzliches Register einzuführen, das das Resultat auf-
nimmt („Accumulator“); es dient gleichzeitig als 1. Operand für die nachfolgende Verknüpfung.
Da dessen Adresse nicht angegeben zu werden braucht, da er sich eindeutig im Accumulator befin-
det, erhält man das Ein-Adress-Befehlsformat:

e) Zwei-Adress-Befehlsformat mit Registerspeicher

Stand der Technik ist, dass man nicht nur ein einzelnes Accumulatorregister einführt, sondern einen
größeren Registerspeicher, was zur Folge hat, dass man eine zusätzliche Registeradresse benötigt.
Man erhält wieder ein Zwei-Adress-Befehlsformat, das besonders häufig verwendet wird. Die bei-
den Operandenadressen adressieren wahlweise entweder den Datenbereich im Hauptspeicher oder
einzelne Register im Registerspeicher.

<OP1>

<OP2>

<RES>#

OPC OP1 OP2 RES

RES : = (OP1 # OP2);

NXT : = NXT + 1;

<OP1>

<OP2>

#

OPC OP1 OP2

OP1 : = (OP1 # OP2);

NXT : = NXT + 1;

<OP>

<ACCU>#

OPC OP

ACCU : = (ACCU # OP);

NXT : = NXT + 1;

4 Registertransfer-Ebene

Seite 4.13 von 20

4.5 Mikroarchitektur-Synthese

a) Verhaltensbeschreibung (“Specification”)

Synchrone Digitalsysteme werden mit einem einfachen Modell beschrieben, das „Steuerschritte“
als kleinste Zeiteinheit verwendet, die den „Zustandsübergängen“ eines Automaten mit einer end-
lichen Anzahl diskreter Zustände entsprechen. Die Verhaltensbeschreibung wird in eine äquivalente,
unter Randbedingungen optimierte Verhaltensbeschreibung transformiert. Randbedingungen sind
z.B. die Chip-Fläche, der Energieverbrauch und die Schaltgeschwindigkeit.

b) Ablaufplanung (“Scheduling”)

Die Ablaufplanung von Steuerungsfolgen(“Scheduling”) optimiert die Anzahl der benötigten Steu-
erschritte, d.h. die Anzahl der Zustände des steuernden Automaten, unter Berücksichtigung der
verfügbaren Hardware und der Zykluszeit:

• Zuweisung von Operationen in der Verhaltensbeschreibung zu Steuerschritten

• Mehrfachausnutzung von Betriebsmitteln durch zeitlich gestaffelte Zuweisung

c) Bereitstellung (“Allocation”)

Die Bereitstellung von Betriebsmitteln (“Allocation of Resources“) optimiert den Aufwand der
benötigten Hardware unter Berücksichtigung der gegebenen Zeiteinteilung:

• Verarbeitungseinheiten: Prozessoren, Addierer

• Speicherelemente: Register, Speicherplatz

• Verbindungen: Multiplexer, Busse, Demultiplexer

d) Zuweisung (“Assignment”)

Zuweisung von Funktionen zu Funktionseinheiten:

• Prozessorzuweisung zu Operationen

• Registerzuweisung zu Variablen

• Verbindungszuweisung zu Prozessor-Register-Paaren

e) Baustein-Auswahl (“Component Selection”)

zum Beispiel:

• in einem zeitkritischen Pfad: Carry-look-ahead Adder

• in zeitunkritischen Pfaden: Ripple-carry Adder

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.14 von 20

Bild 4.17: Ablauf der Synthese eines Digitalsystems aus seiner Verhaltensbeschreibung

Scheduling Allocation

Transformation

Verhaltens-
beschreibung

optimierte
Verhaltens-

beschreibung

FSM
Steuerflußstruktur

ALU
Datenflußstruktur

Logik-Synthese

Prozessor-
Struktur

Baustein-
Bibliothek

4 Registertransfer-Ebene

Seite 4.15 von 20

4.6 Pipelining

4.6.1 Befehlspipeline

• Eine Kette von Verarbeitungsstufen, die wie ein Fließband arbeiten, nennt man eine Pipeline.
Die auszuführenden Befehle werden entlang der Stufen verarbeitet.

• Zwischen den Pipelinestufen werden Pufferspeicher benötigt.

• Pipelining ist eine Implementierungsmethode, bei der mehrere Befehle überlappt abgearbeitet
werden. Es nutzt die Parallelität zwischen den Befehlen in einem sequentiellen Befehlsstrom.

• RISC-Maschinen (Reduced Instruction Set Computer) benötigen zum Transport eines Befehls
um einen Schritt in der Pipeline einen Taktzyklus; in jedem Zyklus wird ein neuer Befehl geholt.

• Pipelining reduziert die mittlere Ausführungszeit pro Befehl, d.h. es erhöht die pro Zeiteinheit
beendete Anzahl der Befehle, den Durchsatz, aber nicht die Ausführungszeiten der einzelnen
Befehle.

• Ziel des Pipeline-Entwurfs ist, eine Balance der Länge der Pipelinestufen zu erreichen. Dann gilt
für die mittlere Ausführungszeit pro Befehl für eine mit Pipeline implementierte Maschine:
„Befehlsausführungszeit der Maschine ohne Pipeline : Anzahl der Pipelinestufen“.

4.6.2 Befehlsausführung

Ein digitaler Universalrechner verfüge über eine Lade/Speicher-Architektur und einen Register-
speicher; er bearbeite die Maschinenbefehle seines Befehlssatzes in folgenden Schritten:

1. Befehl holen (Instruction Fetch), IF
d.h. Hauptspeicher mit Befehlszählerinhalt adressieren und Befehlszähler erhöhen.

2. Befehl decodieren (Instruction Decode) ID
und Quellregisterinhalte in A- bzw. B-Register holen.

3. Befehl ausführen (Execute) EX

a) Lade-/Speicher-Befehl: effektive Hauptspeicheradresse berechnen und Datenregister laden;

b)Verzweigungsbefehl: Zieladresse berechnen und Verzweigungsbedingung setzen;

c) ALU-Befehl: Berechnung ausführen.

4. Speicherzugriff (Memory Access) MEM

a) Lade-Befehl: Daten vom Hauptspeicher ins Datenregister laden; Speicher-Befehl: in umge-
kehrter Richtung speichern;

b)Verzweigungsbefehl: Zieladresse in Befehlszähler laden, falls Verzweigungsbedingung er-
füllt;

c) ALU-Befehl: (nichts)

5. Rückschreiben (Write Back) WB

a) Lade-Befehl: Datenregisterinhalt ins Zielregister laden; Speicher-Befehl: (nichts);

b)Verzweigungsbefehl: (nichts);

c) ALU-Befehl: Ergebnis ins Zielregister schreiben.

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.16 von 20

4.6.3 Mehrstufige Pipeline

sequentielle Ausführung ohne Pipeline

überlappte Ausführung mit Pipeline

Nr. des Takt Nr.

Befehls 1 2 3 4 5 6 7 8 9

Befehl i IF ID EX MEM WB

Befehl i + 1 IF ID EX MEM WB

Befehl i + 2 IF ID EX MEM WB

Befehl i + 3 IF ID EX MEM WB

Befehl i + 4 IF ID EX MEM WB

50 50 60 50 50 50 50 60 50 50 50 50 60 50 50

Befehl Nr. 1 Befehl Nr. 2 Befehl Nr. 3

260 ns 260 ns 260 ns

60 60 60 60 60

60 60 60 60 60

60 60 60 60 60

Befehl Nr. 1

Befehl Nr. 2

Befehl Nr. . 3

65 65 65 65 65

4 Registertransfer-Ebene

Seite 4.17 von 20

4.7 Entwurf eines Datenpfades

a) Entwurfsziele

Erhöhung der Verarbeitungsleistung

• durch Pipelining

Senkung der Kosten

• durch Mehrfachausnutzung von Betriebsmitteln

• durch Baustein-Auswahl

b) Datenflussgraph (DFG)

c) Ablaufplanung unter zeitlichen Randbedingungen

Bild 4.18: Ablaufplanung (“Scheduling”) Ablaufplanung (“Scheduling”) einer Pipeline

+

∗

+

∗ ∗

a

b

c d

e

Takt 1

Takt 2

Takt 3

Takt 4

+
∗
∗
+

a

b

c

e

∗ d

Takt 1

Takt 2

+
∗

a

b

∗ d ∗
+

c

e

Stufe 1 Stufe 2

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.18 von 20

Bild 4.19: Baustein-Bibliothek (“Component Library”)

Bild 4.20: Ablaufplanung einer Pipeline mit Baustein-Auswahl aus obiger Bibliothek;
zeitliche Randbedingung: maximal 5 Takte zu je 10 ns.

Funktion Name Gatter Verzög.

∗ Mpy1 100 50 ns

∗ Mpy2 150 30 ns

∗ Mpy4 200 20 ns

+ Add1 30 40 ns

+ Add2 50 20 ns

+ Add3 100 10 ns

+

+∗

∗

∗

+

∗ +

∗
a

b

c

e

∗
d

Takt 1

Takt 2

Takt 3

Takt 4

Takt 5

4 Registertransfer-Ebene

Seite 4.19 von 20

d) Ursprüngliche und endgültige Zuteilung

Addierer: Addierer:

Multiplizierer: Multiplizierer:

Kosten: 500 Gatter Kosten: 400 Gatter

Addierer: Addierer:

Multiplizierer: Multiplizierer:

Kosten: 230 Gatter Kosten: 350 Gatter

Takt 1

Takt 2

Takt 3

Takt 4

Takt 1

Takt 2

Takt 3

Takt 4

Takt 5

+

∗

+

++

∗∗

∗

∗

∗

Takt 1

Takt 2

Takt 3

Takt 4

Takt 5

Takt 6

Takt 7

Takt 8

Takt 9

Takt 10

Takt 1

Takt 2

Takt 3

Takt 4

Takt 5

+

+

∗ ∗

∗

+

+∗

∗

∗

Prof. Dr.-Ing. U.G. Baitinger

Seite 4.20 von 20

e) Modifikation der Pipeline

Pipeline 1

Pipeline 2

+

∗

+

e

a

g

∗
b

∗
c

∗
d

+
f

Takt 1

Takt 2 +
+∗

+
∗ ∗∗

+

∗

+

e

a

g

∗
b

∗
c

∗
d

+
f

Takt 1

Takt 2 +
+

∗ +∗
∗∗

5 Algorithmische Ebene

Prof. Dr.-Ing. U.G. Baitinger

Seite 5.1 von 8

ti-I

Stand: 9. D
ezem

ber 2002

5.1. Der Begriff des Algorithmus

Ein „Algorithmus“ ist eine formale Vorschrift für einen Vorgang zur Verarbeitung von Informatio-
nen nach

Al-Khorezmi

. Ein „Algorithmus im engeren Sinn“ ist eine Rechenvorschrift, zum Beispiel
die Verknüpfung von Zahlenwerten nach

Adam Riese

. Ein „Algorithmus im weiteren Sinn“ ist eine
formale Vorschrift für einen Handlungsablauf, zum Beispiel ein Kochrezept nach

Art des Hauses

.

5.2. Hardware-Beschreibungssprachen

HDL

: „

H

ardware

D

escription

L

anguages“ dienen zur formalen Beschreibung des

Verhaltens

 digi-
taler Schaltungen, zunächst unabhängig von deren Struktur. Sie werden in frühen Phasen des zer-
gliedernden Entwurfs verwendet. Anwendungsgebiete sind Simulation, Synthese und Verifikation.

VHDL

: Die „

V

ery High-Speed Integrated Circuit

HDL

“ ist eine Hardware-Beschreibungssprache
für höchstintegrierte Digitalsysteme hoher Geschwindigkeit mit ADA ähnlicher Syntax. VHDL
unterstützt vor allem die Architektur-, die Algorithmische und die Registertransfer-Ebene.

EDIF

: Das „

E

lectronic

D

esign

I

nterchange

F

ormat“ ist ein Datenaustauschformat mit LISP ähn-
licher Syntax. EDIF unterstützt vor allem die Registertransfer-, die Logik- und die Schaltkreisebene.

5.3. Ein Entwurfsbeispiel

Die Verkehrsampeln an der Kreuzung zwischen einer Hauptstraße und einer Querstraße sind ver-
kehrsabhängig zu steuern. Die Steuerung der Verkehrsampeln soll durch einen Automaten mit einer
endlichen Anzahl diskreter Zustände erfolgen. Sensoren an beiden Einmündungen der Querstraße
stellen die Anwesenheit von Fahrzeugen auf der Querstraße fest.

• Das Ampelpaar an der Hauptstraße soll nur dann auf ROT schalten, wenn auf der Querstraße ein
Fahrzeug festgestellt wird.

• Das Ampelpaar für die Querstraße soll so lange GRÜN zeigen wie sich Fahrzeuge auf der Quer-
straße befinden, aber nicht länger als eine vorgegebene Zeitspanne.

• Wenn das Ampelpaar an der Hauptstraße wieder auf GRÜN schaltet, dann soll es mindestens
während einer vorgegebenen Zeitspanne so bleiben.

Bild 5.1: Verkehrsampeln an einer Straßenkreuzung

Querstraße

Hauptstraße

Prof. Dr.-Ing. U.G. Baitinger

Seite 5.2 von 8

5.4. Der Entwurfsablauf

1. Deklaration der Datentypen:
- diskrete Zustände des Systems festlegen;
- Ausgabewerte festlegen, hier: Farben einer Verkehrsampel aufzählen.

2. Deklaration der Schnittstelle:
- Eingabevariablen des Systems festlegen,
 hier: Sensoren stellen ein Fahrzeug auf der Querstraße fest;
- Ausgabevariablen des Systems festlegen,
 hier: Ansteuerung der Ampelpaare an Hauptstraße und Querstraße.

3. Erstellung des Verhaltensmodells:
- Ablaufgraph und Ablauftabelle des Systems;
- Verhaltensbeschreibung des Systems in einer Hardware-Beschreibungssprache.

4. Festlegung eines Testverfahrens.

5. Simulation des Verhaltensmodells.

5.4.1 Deklaration der Datentypen

a) Verbale Spezifikation

Die Steuerung der Verkehrsampeln soll durch einen Automaten erfolgen, der eine endliche Anzahl
diskreter Zustände besitzt, die das System einnehmen kann:

1. Im Ruhezustand zeigt das Ampelpaar an der Hauptstraße GRÜN, das für die Querstraße ROT.

2. Im nächsten Zustand zeigt das Ampelpaar an der Hauptstraße GELB, das für die Querstraße
weiterhin ROT.

3. Im anschließenden Zustand zeigt das Ampelpaar an der Querstraße GRÜN, das für die Haupt-
straße ROT.

4. Im letzten Zustand zeigt das Ampelpaar für die Querstraße GELB, das für die Hauptstraße
weiterhin ROT.

Dann kehrt das System in den Ruhezustand zurück, d.h. die Systemzustände können als geschlos-
sene Zählkette definiert werden.

b) Formale Spezifikation

Im ersten Abschnitt der formalen Spezifikation sind die Datentypen festzulegen, d.h. zu „deklarie-
ren“. Hier sind es einfache Aufzählungen der Ampelfarben und Systemzustände.

-- Verkehrsampelsteuerung: Deklaration der Datenypen

package

System_Typen

is

type

 Farbe

is

 (Gruen, Gelb, Rot, Unbekannt);

type

 Zustand

is

 (Hauptstr_Ampel_Gruen, Hauptstr_Ampel_Gelb,

 Querstr_Ampel_Gruen, Querstr_Ampel_Gelb);

end

 System_Typen;

5 Algorithmische Ebene

Seite 5.3 von 8

5.4.2 Deklaration der Schnittstelle

a) Verbale Spezifikation

Dann ist die Schnittstelle des Systems zu seiner Umgebung zu definieren, d.h. die Eingabevariablen,
auf die es reagieren, und die Ausgabevariablen, die es erzeugen soll. Das System verlässt seinen
Ruhezustand, sobald die Sensoren ein Fahrzeug auf der Querstraße feststellen, d.h. es wird nur eine
binäre Eingabevariable benötigt:

•

Wagen_auf_Querstr

 ist entweder

wahr

 oder

falsch

.

Das System steuert zwei Ampelpaare, d.h. es werden zwei Ausgabevariablen benötigt, deren aktu-
elle Werte den jeweils anzuzeigenden Ampelfarben entsprechen:

•

Hauptstr_Ampel

 zur Ansteuerung des Ampelpaares an der Hauptstraße;

•

Querstr_Ampel

 zur Ansteuerung des Ampelpaares für die Querstraße.

Ferner werden zwei Konstanten benötigt, die dem System vorgegeben werden:

•

Gn_Phase

 als

minimale

 Zeitspanne, während der das Ampelpaar an der Hauptstraße auf GRÜN
bleiben muss, bzw. die

maximale

 Zeitspanne, während der das Ampelpaar für die Querstraße auf
GRÜN bleiben darf.

•

Gb_Phase

 als Zeitspanne, während der ein Ampelpaar GELB zeigt.

b) Formale Spezifikation

--Verkehrsampelsteuerung: Deklaration der Ein/Ausgabeschnittstelle

use

 work.System_Typen.

all

;

entity

 Ampel_Steuerung

is

 generic

 (-- von aussen vorgegeben

 Gn_Phase

: Time -- Gruenphase;

 Gb_Phase

: Time -- Gelbphase);

port

 (-- Eingabe- und Ausgabevariablen

 Wagen_auf_Querstr

in

 Boolean;

 Hauptstr_Ampel

out

 Farbe;

 Querstr_Ampel

out

 Farbe);

end

 Ampel_Steuerung;

5.4.3 Erstellung des Verhaltensmodells

Als nächstes ist das Verhalten des zu entwerfenden Systems zu beschreiben. Kann das System wie
hier als endlicher, diskreter Automat modelliert werden, so umfaßt sein Verhalten im wesentlichen
die systeminternen Vorgänge, die zu Zustandsübergängen führen, wobei nach jedem Zustandsüber-
gang ein Zeitgeber für das Verweilen des Systems im neuen Zustand gestartet wird. Zur Modellie-
rung des Systemverhaltens stehen unterschiedliche Darstellungsmittel zur Verfügung: der Ablauf-
graph des Automaten und die dazu isomorphe Ablauftabelle, ferner die Hardware-Beschreibungs-
sprachen, hier VHDL.

Prof. Dr.-Ing. U.G. Baitinger

Seite 5.4 von 8

Beim vorliegenden Beispiel ist zu beachten, dass die Hauptstraße gegenüber der Querstraße bevor-
rechtigt ist, d.h. unter welchen Bedingungen das Ampelpaar an der Hauptstraße von GRÜN auf
GELB umschaltet und wann das Ampelpaar für die Querstraße dies tun soll. Im ersten Fall müssen
zwei Bedingungen erfüllt sein: auf der Querstraße muss ein Fahrzeug erscheinen und die Grünphase
an der Hauptstraße muss bereits lange genug gedauert haben. Im zweiten Fall genügt eine Bedin-
gung: entweder sind auf der Querstraße keine Fahrzeuge mehr vorhanden oder die Grünphase für
die Querstraße hat bereits lange genug gedauert, obwohl sich noch Fahrzeuge auf ihr befinden.

a) Ablaufgraph

Bild 5.2: Ablaufgraph der Verkehrsampelsteuerung

b) Ablauftabelle

Bild 5.3: Ablauftabelle der Verkehrsampelsteuerung

aktueller
Zustand Eingabe

Folge-
zustand

Ausgabe
Hauptstr Querstr
_Ampel _Ampel

Hauptstr_
Ampel_Gruen

Wagen_auf_Querstr = wahr
und Gn_Phase_aus = wahr

Hauptstr_
Ampel_Gelb

 Gruen Rot

Hauptstr_
Ampel_Gelb

Gb_Phase_aus = wahr Querstr_
Ampel_Gruen

 Gelb Rot

Querstr_
Ampel_Gruen

Wagen_auf_Querstr = falsch
oder Gn_Phase_aus = wahr

Querstr_
Ampel_Gelb

 Rot Gruen

Querstr_
Ampel_Gelb

Gb_Phase_aus = wahr Hauptstr_
Ampel_Gruen

 Rot Gelb

Gb_Phase_aus = wahr

Gb_Phase_aus = wahr

Hauptstr_
Ampel_Gruen

Hauptstr_
Ampel_Gelb

Querstr_
Ampel_Gruen

Querstr_
Ampel_Gelb

Gelb, Rot Rot, Gelb

Rot, Gruen

Gruen, Rot
Wa
ge
n_
au
f_
Qu
er
st
r
=
wa
hr

un
d

Gn
_P
ha
se
_a
us
 =
 w
ah
r

Wa
ge
n_
au
f_
Qu
er
st
r
=
fa
ls
ch

od
er

Gn
_P
ha
se
_a
us
 =
 w
ah
r

5 Algorithmische Ebene

Seite 5.5 von 8

c) Hardware-Beschreibungssprache VHDL

-- Verkehrsampelsteuerung: Verhaltensmodell

architecture Verhalten of Ampel_Steuerung is

-- Initialisierung

signal Ist_Zustand : Zustand := Hauptstr_Ampel_Gruen;

signal Zeitgeber : Boolean := falsch;

signal Gn_Phase_aus : Boolean := falsch;

signal Gb_Phase_aus : Boolean := falsch;

begin -- nebenlaeufige Prozesse

process begin -- Automatenverhalten

case Ist_Zustand is

when Hauptstr_Ampel_Gruen => -- 1. Zustand

if Wagen_auf_Querstr and Gn_Phase_aus

then -- Zustandsuebergang

Ist_Zustand <= Hauptstr_Ampel_Gelb;

Zeitgeber <= not Zeitgeber;

end if;

when Hauptstr_Ampel_Gelb => -- 2. Zustand

if Gb_Phase_aus

then -- Zustandsuebergang

Ist_Zustand <= Querstr_Ampel_Gruen;

Zeitgeber <= not Zeitgeber;

end if;

when Querstr_Ampel_Gruen => -- 3. Zustand

if not Wagen_auf_Querstr or Gn_Phase_aus

then -- Zustandsuebergang

Ist_Zustand <= Querstr_Ampel_Gelb;

Zeitgeber <= not Zeitgeber;

end if;

when Querstr_Ampel_Gelb => -- 4. Zustand

if Gb_Phase_aus

then -- Zustandsuebergang

Ist_Zustand <= Hauptstr_Ampel_Gruen;

Zeitgeber <= not Zeitgeber;

end if;

end case;

wait on Wagen_auf_Querstr, Gn_Phase_aus, Gb_Phase_aus;

end process; -- Automatenverhalten

Prof. Dr.-Ing. U.G. Baitinger

Seite 5.6 von 8

process begin -- Zeitgeber

Gn_Phase_aus <= falsch, wahr after Gn_Phase; -- Gruenphase

Gb_Phase_aus <= falsch, wahr after Gb_Phase; -- Gelbphase

wait on Zeitgeber;

end process; -- Zeitgeber

-- Zuordnung von Zustand und Ampelfarbe

-- fuer Hauptstr:

with Ist_Zustand select

Hauptstr_Ampel <=

Gruen when Hauptstr_Ampel_Gruen,

Gelb when Hauptstr_Ampel_Gelb,

Rot when Querstr_Ampel_Gruen or Querstr_Ampel_Gelb;

-- Zuordnung von Zustand und Ampelfarbe

-- fuer Querstr:

with Ist_Zustand select

Querstr_Ampel <=

Gruen when Querstr_Ampel_Gruen,

Gelb when Querstr_Ampel_Gelb,

Rot when Hauptstr_Ampel_Gruen or Hauptstr_Ampel_Gelb;

end Verhalten;

5 Algorithmische Ebene

Seite 5.7 von 8

5.4.4 Festlegung eines Testverfahrens

Um das Verhalten eines manuell entworfenen Systemmodells zu validieren, wird ein Testverfahren
benötigt, das zur Simulation des Modells verwendet wird. Das Testverfahren enthält „Stimuli“ zur
Ansteuerung des zu testenden Systems durch eine ausgewählte Folge von Eingabewerten, ferner
„Rezeptoren“ zur Aufnahme der Ein- und Ausgabewerte des Systems während der Simulation.

-- Verkehrsampelsteuerung: Deklaration des Testverfahrens

entity Tester is end Tester;

-- Modell des Testverfahrens

use work.System_Typen.all;

architecture Test_Verfahren of Tester is

 -- Eingabevariable fuer die Ampelsteuerung:

 signal Wagen_erkannt : Boolean := falsch;

 -- Ausgabe-Erfassung der Ampelsteuerung:

 signal Hauptstr : Farbe := Gruen;

 signal Querstr : Farbe := Rot;

 -- Schablone fuer den Systemtest

 component Sockel

 generic (-- vorgegebene Konstanten

 Gn_Phase : Time -- Gruenphase;
 Gb_Phase : Time -- Gelbphase);

 port (-- Eingabe- und Ausgabevariablen

 Wagen_auf_Querstr in Boolean;

 Hauptstr_Ampel out Farbe;

 Querstr_Ampel out Farbe);

 end component;

 -- Instanziierung des Systemtests

 Test_Steuerung : Sockel

 generic map (50 s, 20 s); -- Gruenphase, Gelbphase

 port map (Wagen_erkannt, Hauptstr, Querstr);

 -- Eingabe-Stimuli für die Simulation:

 Wagen_erkannt <= falsch,

 wahr after 10 s, falsch after 30 s,

 wahr after 100 s, falsch after 200 s;

end Test_Verfahren;

Prof. Dr.-Ing. U.G. Baitinger

Seite 5.8 von 8

5.4.5 Simulation des Verhaltensmodells

Schließlich ist das Testverfahren zur Simulation des modellierten Systems zu konfigurieren. Die
Konfiguration verbindet die Instanz mit dem Namen

• Test_Steuerung vom Typ Sockel

mit dem Verhaltensmodell, das simuliert werden soll:

• Ampel_Steuerung(Verhalten).

-- Simulation der Verkehrsampelsteuerung

use work.all;

configuration Simulator of Tester is

 for Test_Verfahren

 for Test_Steuerung : Sockel use

 entity work.Ampel_Steuerung(Verhalten);

 end for;

 end for;

end Simulator;

Die folgende Tabelle zeigt die Simulationsergebnisse, die auch im weiteren Verlauf des Entwurfs-
prozesses bis zur Realisierung der Hardware als Referenz verwendet werden können: Falls nach
einem der folgenden Entwurfsschritte, die die Systemstruktur verfeinern, die Ergebnisse einer de-
taillierteren Simulation denjenigen eines vorhergehenden Entwurfsschritts widersprechen, liegt ein
Entwurfsfehler bei der Verfeinerung vor.

Bild 5.4: Simulationsergebnisse der Verkehrsampelsteuerung

Zeit (s) Wagen_erkannt Hauptstr Querstr

0 falsch Gruen Rot

10 wahr " "

30 falsch " "

100 wahr Gelb "

120 " Rot Gruen

170 " " Gelb

190 " Gruen Rot

200 falsch " "

6 Architekturebene

Prof. Dr.-Ing. U.G. Baitinger

Seite 6.1 von 2

ti-I

Stand: 6. D
ezem

ber 2002

6.1 Systemspezifikation

Beim Entwurf digitaler Systeme der Mikroelektronik ist deren globale Funktionsbeschreibung in
eine detaillierte Transistorstruktur abzubilden. Bei komplexen Systemen ist das nicht in einem
einzigen Entwurfsschritt möglich; deshalb besteht der Entwurf aus einer Folge von Entwurfsschrit-
ten, die die Entwurfsdaten zunehmend verfeinern. Die umfassendste Spezifikation, nämlich die des
Gesamtsystems, wird auf der Architekturebene erstellt, doch werden detailliertere Spezifikationen
auch auf allen weiteren Entwurfsebenen benötigt: von der algorithmischen über die Registertrans-
fer- und die Logik- bis zur Schaltungsebene.

Ein System

• besteht aus einer Anzahl unterschiedlich komplizierter Funktionseinheiten, die in einer mehr oder
weniger komplexen Kommunikationsstruktur zusammenarbeiten. In einem Graphen können er-
stere als „Knoten“, letztere als „Kanten“ dargestellt werden.

Das Systemverhalten

• ergibt sich aus der Gesamtheit aller Teilfunktionen in Verbindung mit deren wechselseitiger Kom-
munikation. („Das Ganze ist mehr als die Summe seiner Teile.“)

Die Systemspezifikation

• ist die verbale Beschreibung oder die formale Darstellung des Systemverhaltens. Sie ist Aus-
gangspunkt des Entwurfs und Vergleichsgrundlage für die Entwurfsergebnisse, die grundsätzlich
nur im Rahmen der Spezifikation gültig sind. Eine Systemspezifikation umfaßt:

- ein „Verhaltensmodell“ des zu entwerfenden Systems;

- seine „Schnittstellendefinition“ zur Umgebung;

- zusätzliche „Randbedingungen“ zur Lösungsfindung
wie Größe, Schaltgeschwindigkeit und Energiebedarf.

Der Systementwurf

• ist die schrittweise Umwandlung der abstrakten Systemspezifikation in konkrete Strukturen, wo-
bei die Strukturen immer komplexer, die Funktionseinheiten immer zahlreicher und immer we-
niger kompliziert werden. Der Entwurfsablauf leistet somit die Abbildung einer abstrakten Spe-
zifikation in eine konkrete Technologie.

Ein Rechnersystem

• kann durch eine „Sprache“ (z.B. seinen Maschinenbefehlssatz) dargestellt werden, sowie einen
„Interpretierer“, der diese Sprache versteht.

Prof. Dr.-Ing. U.G. Baitinger

Seite 6.2 von 2

6.2 Die DLX-Architektur

(siehe folgende Seiten)

ti-I

Seite 3.1 von 16

Die DLX-Architektur

Die DLX ist ein hypothetischer Universalrechner
mit Lade/Speicher-Architektur

Die DLX ist ein „Reduced Instruction Set Computer“:

• RISC-Architekturen werden einfachen, in Programmen
statistisch am häufigsten genutzten Befehlen angepaßt;

• Kompliziertere Funktionen werden mit mehreren ein-
fachen Befehlen simuliert, d.h. in Software nachgebildet.

Die DLX-Architektur berücksichtigt Messungen folgender
Befehlssätze:

• DEC VAX-Architektur

• IBM /370-Architektur

• Intel 8086-Architektur

Kennzeichen der DLX-Maschine:

• einfacher Lade/Speicher-Befehlssatz

• Universalregistersatz

• Pipeline hoher Effizienz

• einfach zu decodierender Befehlssatz

• eine hoch effiziente Compiler-Technik

nach D.A.Patterson, J.L. Hennessy: “Computer Architecture,
a Quantitative Approach”, Morgan Kaufmann Publ., Inc. (1996)

ti-I

Seite 3.2 von 16

Rechenwerk der DLX

Q
uell-B

us_2

Q
uell-B

us_1

Z
iel-B

us

interne
Register

P. C.

M A R

M D R

A
 L U

m
ux

C
-R

eg

A
-R

eg
B

-R
eg

Haupt-
Speicher

I R

demux

ti-I

Seite 3.3 von 16

Die Lade/Speicher-Maschine DLX

X’0000 0000’
0

R0
R1

R30
R31

31. . . .

. . . .

(General Purpose Register)
Universalregister

0
F0
F1

F30
F31

31. . . .

. . . .

(Floating Point Register)
Gleitkommaregister

0
FP StR

31. . . .
(Status Information)
spezielle Register

0
x0xx
x1xx

31. . . .

. . . .

(Main Memory)
Hauptspeicher

0 31. . . .
(Memory Address Register)
Speicher-Adressregister

xx00 xx10xx01 xx11

MAR

ti-I

Seite 3.4 von 16

Datenformate der DLX

Der Speicher ist byte-adressiert im „big endian“ Modus

Datenformate, auf die jeweilige Typgrenze ausgerichtet:

• 8 bit Byte

•

32 bit Wort

• 16 bit Halbwort

•

64 bit Doppelwort

Speicherzugriffe erfolgen mit Lade/Speicher-Befehlen

• zwischen Speicher und Universalregister
byte-, halbwort- oder wortweise

- beim Speichern auf Byte- bzw. Halbwortgrenze ausgerichtet

- beim Laden in den niederwertigen Teil des Registers,
höherwertiger Teil vorzeichenerweitert oder mit Null aufgefüllt

• zwischen Speicher und Gleitkommaregister
mit einfacher oder doppelter Genauigkeit

16 230 7 8 15 24 31

xx00 xx01 xx10 xx11

x0xx

x1xx

16 230 7 8 15 24 31

Rx

16 230 7 8 15 24 31

48 5532 39 40 47 56 63

F0

F1

ti-I

Seite 3.5 von 16

Befehlsformate der DLX

1

Befehlsformat mit drei Operanden-Adressen

• alle Befehle sind 32 bit lang,
im Speicher auf Wortgrenze ausgerichtet,
Fortschaltung des Befehlszählers

PC

←

PC

 + 4

• 6 bit primärer Operationscode (OPCode)

→

 2

6

 = 64 verschiedene Befehle

Befehlsklassen

• Lade/Speicher-Operationen

• Arithmetisch/logische Operationen (ALU)

• Verzweigungen (bedingt)

• Sprünge (unbedingt)

• Gleitkomma-Operationen

0 5 6 10 11. . . .15 16 31

OPCode OP1 OP3 or Immediate DataOP2

ti-I

Seite 3.6 von 16

Befehlsformate der DLX

2

I

mmediate-Befehlsformat

• Laden bzw. Speichern von Registerinhalten

• ALU-Operationen mit Immediate Data

• Verzweigungen (bedingt):
Branch on Zero, Branch on not Zero

• Sprünge (unbedingt):
Jump Register, Jump and Link Register

R

egister-Register-Befehlsformat

• ALU-Operationen mit Registerinhalten

• Transporte zwischen Spezial- und Universalregistern

J

ump-Befehlsformat

• Sprünge (unbedingt): Jump, Jump and Link

• Übergang zum Betriebssystem: Trap

• Rückkehr zum Anwenderprogramm: RFE

160 5 6 10 11. . . .15 31

OPCode Rd Immediate Data/OffsetRs1 S

0 5 6 10 11. . . .15 31

OPCode
16. . . .20 21

Rs1 Rs2 Rd OPC Erweiterung

0 5 6 31

OPCode
.

Offset addiert zu PC + 4S

ti-I

Seite 3.7 von 16

Lade/Speicher-Befehle

1

I

mmediate-Befehlsformat

Eine einzige Adressierungsart:

32 bit Basisregister (Rb)

+ 16 bit

Offset (Displacement)

 mit Vorzeichenerweiterung

= 32 bit Speicheradresse (MAR)

Byte-adressierter Speicher, 2

32

 = 4 GigaByte Adressraum

Laden bzw. Speichern eines Datenregisters (Rd)

• byte-, halbwort- oder wortweise

160 5 6 10 11. . . .15 31

OPCode Rd Offset (Displacement)Rb S

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

xx00 xx01 xx10 xx11

16 230 7 8 15 24 31

ti-I

Seite 3.8 von 16

Lade/Speicher-Befehle

2

• alle nutzen eine einzige Adressierungsart

• für alle Datentypen verfügbar

• Werte im Speicher müssen ausgerichtet sein („aligned“)

Befehlsformate Operationen

LW R1,30(R2) R1

←

32

 M[30+R2]

LW R1,90(R0) R1

←

32

 M[90+0]

LB R1,40(R3) R1

←

32

 (M[40+R3]

0

)

24

##M[40+R3]

LBU R1,40(R3) R1

←

32

 0

24

##M[40+R3]

LH R1,40(R3) R1

←

32

(M[40+R3]

0

)

16

##M[40+R3]##M[41+R3]

LHU R1,40(R3) R1

←

32

 0

16

##M[40+R3]##M[41+R3]

LF F0,50(R3) F0

←

32

 M[50+R3]

LD F0,50(R2) F0##F1

←

64

 M[50+R2]

SW 50(R4),R3 M[50+R4]

←

32

 R3

SF 40(R3),F0 M[40+R3]

←

32

 F0

SD 40(R3),F0 M[40+R3]

←

32

 F0;

M[44+R3]

←

32

 F1

SH 52(R2),R3 M[52+R2]

←

16

 R3

16..31

SB 41(R3),R2 M[41+R3]

←

8

 R2

24..31

ti-I

Seite 3.9 von 16

ALU-Befehle

1

R

egister-Register-Befehlsformat

ALU-Operation durch OPCode und Erweiterung definiert:

•

ADD, SUB

•

AND, OR, XOR

•

SLL, SRL, SRA

•

Sxx

(vergl. & setze Register)
(schiebe links bzw. rechts)

(LT,GT,LE,GE,EQ,NE)

32 bit Quellregister (

source

 Rs1)

32 bit Quellregister (

source

 Rs2)

32 bit Zielregister (

destination

 Rd)

0 5 6 10 11. . . .15 31

OPCode
16. . . .20 21

Rs1 Rs2 Rd OPC Erweiterung

Rd ← Rs1 ALU Rs2

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

ti-I

Seite 3.10 von 16

ALU-Befehle

2

I

mmediate-Befehlsformat

ALU-Operation durch OPCode definiert:

•

ADDI, SUBI

•

ANDI, ORI, XORI

•

SLLI, SRLI, SRAI

•

SxxI

(vergl. & setze Register)
(schiebe links bzw. rechts) (LT,GT,LE,GE,EQ,NE)

32 bit Quellregister (source Rs1)

16 bit Immediate Data mit Vorzeichenerweiterung

32 bit Zielregister (destination Rd)

160 5 6 10 11. . . .15 31

OPCode Rd Immediate DataRs1 S

Rd ← Rs1 ALU Immediate

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

ti-I

Seite 3.11 von 16

ALU-Befehle 3

• mit Immediate Data (Befehlsbits 16 . . 31) oder

• nur mit Registerinhalten (RES-, OP1-, OP2-Adresse)

Befehle Befehlsformate Operationen

Add ADD R1,R2,R3 R1 ← R2+R3

Add immediate ADDI R1,R2,#3 R1 ← R2+3

Load high
immediate

LHI R1,#42 R1 ← 42##016

Shift left logical
immediate

SLLI R1,R2,#5 R1 ← R2<<5

Set less than SLT R1,R2,R3 if (R2<R3)
R1← 1 else
R1← 0

ti-I

Seite 3.12 von 16

Steuerflussbefehle

Die DLX-Architektur enthält

• zwei Verzweigungsbefehle (bedingt): BEQZ, BNEZ

• Übergang zum Betriebssystem: TRAP

• Rückkehr zum Anwenderprogramm: RFE

• vier Sprungbefehle (unbedingt):

Link: Speicherung des Inhalts des Befehlszählers (Rückkehradresse)
nach R31 vor dem Sprung zum Unterprogramm (Prozeduraufruf)

Befehlsformate Operationen

J name PC ← name;

(PC+4)-225≤ name < (PC+4)+225

JR R3 PC ← R3

JAL name R31 ← PC+4; PC ← name;

(PC+4)-225≤ name < (PC+4)+225

JALR R2 R31 ← PC+4; PC ← R2

BEQZ
R4,name

if (R4==0) PC ← name;

(PC+4)-215≤ name < (PC+4)+215

BNEZ
R4,name

if (R4!=0) PC ← name;

(PC+4)-215≤ name < (PC+4)+215

Zieladresse:

PC-relativ

Registerinhalt

Linknot Link

J JAL

JR JALR

ti-I

Seite 3.13 von 16

Sprungbefehle 1

Jump-Befehlsformat

• Sprungbefehle (unbedingt):
Jump (J), Jump and Link (JAL)

• Sprung erfolgt relativ zum Befehlszähler (PC-relativ):

32 bit Befehlszähler (Program Counter)

Fortschaltung des Befehlszählers PC ← PC + 4;
Link (nur bei JAL): R31 ← PC

 + 26 bit Offset (Displacement) mit Vorzeichenerweiterung

= Zieladresse im Befehlszähler PC ← PC + Offset

0 5 6 31

OPCode
.

Offset addiert zu PC + 4S

16 230 7 8 15 24 31

16 230 7 8 15 24 31

0 5 6 31.

16 230 7 8 15 24 31

ti-I

Seite 3.14 von 16

Sprungbefehle 2

Immediate-Befehlsformat

• Sprungbefehle (unbedingt):
Jump Register (JR), Jump and Link Register (JALR)

• Inhalt von R0 = X’0000 0000’; Immediate = X’0000’

• Die Zieladresse befindet sich im Quellregister Rs1:

32 bit Befehlszähler (Program Counter, PC)

Fortschaltung des Befehlszählers PC ← PC + 4;
Link (nur bei JALR): R31 ← PC

32 bit Universalregister (Rs1)

= Zieladresse im Befehlszähler PC ← Rs1

0 5 6 10 11. . . .15 16 31

OPCode R0 X’0000’Rs1

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

ti-I

Seite 3.15 von 16

Verzweigungsbefehle

Immediate-Befehlsformat

• Verzweigungsbefehle (bedingt):
Branch on Zero (BEQZ); Branch on Not Zero (BNEZ)

• Das Quellregister (Rs1) wird getestet:
bei BEQZ auf gleich Null; bei BNEZ auf ungleich Null

• Bedingung erfüllt: Zieladresse PC-relativ;
Bedingung nicht erfüllt: Fortsetzung mit nächstem Befehl

32 bit Befehlszähler (Program Counter, PC)

Fortschaltung des Befehlszählers PC ← PC + 4

 + 16 bit Offset (Displacement) mit Vorzeichenerweiterung

= Zieladresse im Befehlszähler PC ← PC + Offset

160 5 6 10 11. . . .15 31

OPCode R0 Offset (Displacement)Rs1 S

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

16 230 7 8 15 24 31

ti-I

Seite 3.16 von 16

7 Hierarchie der Rechnersysteme

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.1 von 12

ti-I

Stand: 6. D
ezem

ber 2002

7.1 Die Entwicklung der Hardware

Logikmodul (1964) Speicherchip (1972)

Mikroprozessor (1974) Mikrocomputer (1984)

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.2 von 12

7.2 „Systemkomplexität“

Üblicherweise gilt die (relativ einfach zu ermittelnde) Anzahl der Transistoren pro Chip als die
„Systemkomplexität“. Die zu jedem Zeitpunkt grundsätzlich höheren Werte für Speicherchips im
Vergleich zu Mikroprozessoren und Logikchips zeigen aber, dass die regelmäßige Speicherstruktur
höhere Transistordichten zulässt. Deshalb sollte zur Ermittlung einer „Systemkomplexität“ nicht
nur die Anzahl der Transistoren auf einem Chip, sondern auch dessen Verdrahtungsstruktur mitbe-
rücksichtigt werden.

80386

IBM

101

102

1970 1975 1980 1985 1990 1995 2000

103

104

105

106

107

108

Hitachi

Fujitsu

Hitachi

IBM Hitachi

Fujitsu
Hitachi

NEC

4004
8008

6800

8080
8085

8088

8086

68010

68020

80286 68030

68040

80486
Alpha

68000

2k

4k
16k

64k

256k

1M

4M

16M

1k

Transistoren/Chip

Logikchips

Speicherchips

Mikroprozessoren

7 Hierarchie der Rechnersysteme

Seite 7.3 von 12

7.3 Hierarchischer Systementwurf

Systemkomplexität

Zur Beherrschung der Systemkomplexität ist das zu entwerfende Digitalsystem grundsätzlich auf-
teilbar:

• in ein

Rechenwerk

, das Datenpfade und einen Vorrat arithmetischer und logischer Funktionen
bereitstellt, durch deren Kombination sich kompliziertere Funktionsabläufe ergeben,

• und ein digitales

Steuerwerk

, das als Automat mit einer endlichen Anzahl diskreter Zustände
beschrieben werden kann, das solche Funktionsabläufe zeitlich steuert.

Entwurfskomplexität

Zur Beherrschung der Entwurfskomplexität digitaler elektronischer Systeme unterscheidet man
grob zwei Bereiche:

• den

logischen Entwurf

, der die Funktionen des Systems als schematische Schaltungsstruktur
ohne Berücksichtigung geometrisch-physikalischer Randbedingungen implementiert,

• und den

physischen Entwurf

, der die logische Schaltungsstruktur in Form geometrischer Struk-
turen realisiert.

Zergliedernder Entwurfsstil (“top-down design“): Man beginnt auf einer Darstellungsebene hohen
Abstraktionsgrades, d.h. mit einer globalen Funktionsbeschreibung des Gesamtsystems und ver-
feinert die Strukturen schrittweise bis auf die Ebene der Technologie.

Aufbauender Entwurfsstil (“bottom-up design“): Man beginnt auf einer Darstellungsebene niedri-
gen Abstraktionsgrades, d.h. mit detaillierten Strukturen, und faßt sie schrittweise zu größeren
Funktionsblöcken zusammen, bis sich das Gesamtsystem ergibt.

7.4 Rekursive Verfeinerung

globale
Funktion

Teil-
funktion

FB

Teil-
funktion

FA

Funktion Struktur

f1 f2

f3

f4 f5

f6

Infrastruktur

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.4 von 12

7.5 Hierarchie der Packungsebenen

Grundkarte mit aufgesteckten Schaltkarten

7.6 Hierarchischer Chip-Entwurf

Bild: IBM

H
ie

ra
rc

hi
sc

h
ge

gl
ie

de
rt

er
 M

ik
ro

pr
oz

es
so

r-
C

hi
p

7 Hierarchie der Rechnersysteme

Seite 7.5 von 12

7.7 Zellbibliothek

Schaltkreis-Entwurf Layout-Entwurf

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.6 von 12

7.8 Platzierung & Verdrahtung

7 Hierarchie der Rechnersysteme

Seite 7.7 von 12

7.9 Hierarchie der Entwurfsdaten

logischer physischer

Verhalten

Entwurf

→

Struktur

Entwurf

→

Geometrie

Rechner-Architektur Prozessor Floorplan

Automat Schaltwerk Makrozelle

Zuordner Schaltnetz Zelle

Schaltglied Schaltung „Maske“

Steuerwerk

Rechenwerk

Beschreibung des
Befehlssatzes und
der Datenformate

λ
δ

Beschreibung
der Zustände und
Zustandsübergänge
- durch Ablaufgraph
- Ablauftabelle
- (V)HDL-Text

V

V

V

Beschreibung
der Schaltfunktion
- durch KV-Diagramm
- boolesche Gleichung
- Wahrheitstabelle
- (V)HDL-Text

Beschreibung
der elementaren
Schaltfunktion durch
- Wahrheitstabelle
- (V)HDL-Text

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.8 von 12

7.10 Hierarchie der Entwurfsschritte

Floorplan
Entwurf

Plazierung,
Verdrahtg.

Zellen-
Layout

Schaltkreis
Entwurf

Logikgatter
Entwurf

RT-Block
 Entwurf

Subsystem
Entwurf

Zell-
Bibl.

Masken-
Daten

System-
Spezifikation

Macro
Bibl.

Physischer
Entwurf

Logischer
Entwurf

System-
Entwurf

7 Hierarchie der Rechnersysteme

Seite 7.9 von 12

7.11 Der Entwurfsraum

„Y-Diagramm“

7.12 Entwurfsmethodik

Der Entwurf schlägt die Brücke von einer abstrakten Spezifikation zum konkreten Produkt.

Entwurfsraum

• Die Koordinaten des „Y-Diagramms“ sind die drei unterschiedlichen

Sichten

 eines zu entwer-
fenden elektronischen Systems.

• Die Kreise sind

Hierarchie-Ebenen

; nach außen nimmt die Abstraktion, nach innen die Detail-
lierung des Entwurfs zu.

• Die Schnittpunkte („Knoten“) symbolisieren

Entwurfsdaten

 in unterschiedlichen Sichten und
Abstraktionen.

• Die Verbindungslinien („Kanten“) symbolisieren

Entwurfsschritte

, d.h. Transformationen der
Entwurfsdaten.

StrukturVerhalten

Geometrie

Steuer-/Rechenwerke

Schaltnetze, Register

Logikgatter, Flipflops

Transistoren, pass. Komponenten

Systemspezifikation

Algorithmen

Boolesche Ausdrücke

Differentialgleichungen

Maskendaten

Zellen

Makrozellen

Floorplanning

Partitionierung

Schaltungsebene

Logikebene

Registertransfer-Ebene

Algorithmische Ebene

Architekturebene

Operationsfolgen

CPUs, Speicher, Busse

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.10 von 12

Entwurfsablauf

• Ein zergliedernder Entwurf beginnt mit der globalen

Systemspezifikation

, dem „Verhalten“ auf
der abstraktesten Ebene.

Entwurfsziel

 ist das Zentrum des Diagramms.

• Ein Entwurfsablauf ist ein

Pfad

 durch den Entwurfsraum; denn die Komplexität des zu entwer-
fenden Systems ist nur in mehreren Entwurfsschritten zu bewältigen.

Entwurfsschritte

• Entwurfsschritte transformieren Entwurfsdaten: Sie ändern die Sicht auf das zu entwerfende
System und/oder verfeinern seine Darstellung.

7.13 Entwurfswerkzeuge

Interaktive Graphik-Editoren

- Alle Entwurfsentscheidungen trifft der Entwerfer.
- Graphische Editoren für Schaltplaneingabe und Layout.
- Simulatoren und Entwurfsregelprüfer.
- Datenbank für die Entwurfsdaten.
- Die Ergebnisse aller Entwurfsschritte müssen durch Simulation validiert werden.

Synthese-Werkzeuge

- Grobe Granularität des Wissens: Das Entwurfswissen wird durch wenige komplexe
Algorithmen erfaßt.

- Aus einer höheren Hardware-Beschreibungssprache wird automatisch eine spezielle
Struktur synthetisiert.

- Algorithmen erzeugen regelmäßige Strukturen.
- Entwurfsstil gut angepaßt an PLA, PAL und Gate-Arrays.

Experten-Systeme

- Feine Granularität des Wissens: Die Entwurfserfahrung wird durch hunderte einfacher
Entwurfsregeln erfaßt und in einer Wissensbasis gespeichert.

- Die Entwürfe sind unregelmäßig strukturiert, ähnlich zu Handentwürfen.
- Die Entwurfsregeln können an Änderungen der Technologie relativ einfach angepaßt werden.

7.14 Simulationsebenen

System-Simulation

• Elemente der Simulation sind größere Funktionseinheiten, wie Mikroprozessoren, Hauptspei-
cherbereiche und Ein/Ausgabesteuerungen, deren Zusammenwirken über Sammelleitungen
(„Bus“)

funktionell

 modelliert wird.

Register-Transfer-Simulation

• Elemente der Simulation sind digitale Funktionseinheiten, d.h. Register und kombinatorische
Blöcke, z.B. Addierer, deren Kommunikation über Busleitungen

funktionell

 modelliert wird.

• Digitalsimulation mit binär codierten Worten („Bit Strings“), d.h. mit Vektoren aus binären
Variablen und deren

diskreten

 zeitlichen Veränderungen.

7 Hierarchie der Rechnersysteme

Seite 7.11 von 12

Logik-Simulation

• Elemente der Simulation sind logische Gatter und Flipflops; damit aufgebaute Netzwerke werden

strukturell

 modelliert.

• Digitalsimulation mit zwei Signalpegeln bzw. binären Variablen („Bits“) mit den

diskreten

 Wer-
ten 0, 1 und X = unbekannt.

Schaltkreis-Simulation

• Elemente der Simulation sind elektronische Komponenten (Transistoren, Dioden, Widerstände,
Kondensatoren, Spulen); damit aufgebaute Netzwerke werden

strukturell

 modelliert.

• Analogsimulation physikalischer Größen und Signale (Spannungen, Ströme, elektrische Lei-
stung), die sich

kontinuierlich

 veränderndern.

7.15 Simulation

Simulationsmodell

Informatorische Nachbildung des Verhaltens des entworfenen Systems auf einem Digitalrechner,
um es mit den Entwurfsvorgaben („Spezifikation“) zu vergleichen.

• Digitale Elektronik: Das Simulationsmodell wird direkt aus dem Stromlaufplan bzw. der Netz-
liste abgeleitet.

• Mechanik, analoge Elektronik: Das Simulationsmodell wird als System physikalischer Glei-
chungen erstellt, die das Verhalten der entworfenen Vorrichtung beschreiben.

Stimuli

Ansteuerung des Simulationsmodells während des Simulationslaufs mit Eingabevariablen bzw. -
signalen.

• Digitale Elektronik: Binäre Eingabe

variable

 zur digitalen Simulation auf der Ebene logischer
Gatter.

• Mechanik, analoge Elektronik: Zeitlich veränderliche Eingabe

signale

 zur analogen Simulation,
z.B. auf der Ebene elektronischer Schaltkreise.

Visualisierung
Graphische Darstellung der Ausgabevariablen bzw. -signale.

digitale Simulation analoge Simulation

0

1

Prof. Dr.-Ing. U.G. Baitinger

Seite 7.12 von 12

7.16 Interaktiver Entwurfsschritt

mit Simulation

SystemSpez.

Graphik-Editor
(“CAD”) Zell-

Bibl.

Netz-
Liste

Simulator
(CAD)

Zell-
Bibl.

Simulations-
Protokoll

