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1 Der klassische Universalrechner  prof. Dr-Ing. U.G. Baitinger

1.1 Das von Neumannsche Prinzip

Arthur W. Burks, Hermann H. Goldstine, John von Neumann:
» Preliminary Discussion of the Logical Design of an Electronic Computing I nstrument*,
Report to the U.S. Army Ordnance Department (1946).

Seit der Veroffentlichung dieses ,, vorlaufigen® Berichts durch John von Neumann umfalét der klas-
sische Universalrechner (,, General Purpose Computer”) die folgenden Funktionseinheiten:

» Der Hauptspeicher enthélt sowohl Daten als auch Befehle, die einheitlich als ,, Informationen”
aufgefald werden. Der Speicherinhat wird mit bits [{ 0, 1} dargestellt, d.h. zweiwertig (, binéar*).
Der Hauptspeicher ist mit wahlfreiem Zugriff organisiert: Auf ein Datum oder einen Befehl kann
mittels einer Speicheradresse direkt zugegriffen werden (, Random Access Memory“, RAM).

» Das Steuerwerk nimmt Befehle aus dem Hauptspeicher entgegen, decodiert sie und erzeugt
darauseine geeignete zeitliche Sequenz von Steuersignal en fir das Rechenwerk (fallserforderlich
auch fur andere Funktionseinheiten).

» Das Rechenwerk nimmt Daten aus dem Hauptspeicher entgegen, verknipft sie aufgrund der
genannten Steuersignale, d.h. nach Mal3gabe der Befehle, und gibt das Ergebnis an den Haupt-
speicher zurlck.

» DasEin/Ausgabewer k stellt die Kommunikation der oben genannten Funktionseinheiten mit den
angeschlossenen Peripheriegerédten her (Tastaturen, Bildschirme, Disketten, Magnetplatten und
dergl.).

Ferner hat der universell einsetzbare Digitalrechner nach John von Neumann et al. im wesentlichen
folgende Merkmale:

* Nicht nur die Daten, sondern auch die Befehle sind ver ander bar in einem Hauptspeicher vom
Schreib/L ese-Typ abgespeichert.

* Die Speicheradresse des Befehls, der als nachster ausgefuhrt werden soll, wird entweder implizit
durch einen Befehlszahler oder explizit durch einen Sprungbefehl erzeugt.

» Zwischen Befehlen und Daten wird zeitlich unterschieden, indem abwechselnd zwei unterschied-
liche Phasen durchlaufen werden:

- Wéhrend der Befehlsholphase wird der Hauptspeicher mit dem Inhalt des Befehlszahlers oder
mit einer expliziten Sprungadresse adressiert. Die aus dem Speicher gel esene Information wird
an das Steuerwerk weitergegeben und als Befehl interpretiert.

- Wahrend der Befehlsausfiihrungsphase wird der Hauptspei cher nacheinander mit zwei Oper-
andenadressen adressiert, die im Befehl enthalten sind. Die aus dem Speicher gelesenen Infor-
mationen werden als Daten behandelt, in das Rechenwerk eingegeben und dort entsprechend
dem Befehl verknlpft. Das Ergebniswird in den Hauptspei cher geschrieben, meist andieAdres-
se des ersten der beiden Operanden.
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Bild 1.1:  Logische Struktur eines Universalrechners

Nach dem von Neumannschen Prinzip wird zwischen Befehlen und Daten zeitlich unterschieden:
« Befehlsholphase: P, =0
* Befehlsausfihrungsphase: Pp=1

Seite 1.2 von 24
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Physische Struktur eines Universalrechners.

Bild 1.2:

Dieser Ein-Chip-Mikrocomputer befindet sich auf einem Siliziumchip

von 25 mm? Flache.
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1.2 Die Struktur des Universalrechners

Ob Materia bearbeitung mit Maschinen, Energieumwandlung mit Generatoren und Motoren oder
Informationsverarbeitung mit Computern - grundsétzlich gilt fur jede Art von Verarbeitung: ,, Ein-
gabe — Verarbeitung — Ausgabe“. So betrachtet ist der Computer ein Spezialfall der Verarbei-
tungstechnik, indem er eine der drel genannten, naturwissenschaftlich relevanten Kategorien ver-
arbeitet.

Da ein komplizierter Verarbeitungsvorgang nicht in einem einzigen Schritt durchgefihrt werden
kann, teilt man ihn auf in eine geeignete Folge einfacherer Schritte, d.h. in einen Steuerungsabl auf,
der die zeitliche Abfolge der Verarbeitungsschritte steuert, und in die eigentliche Ausf iihrung dieser
Verarbeitungsschritte.

Beim Computer erfolgt die Eingabevon Informationeninder Regel Uiber eine Tastatur, ihreAusgabe
am Bildschirm. Wahrend der Verarbeitung kann ein Computer allerdings nicht sténdig darauf war-
ten, daid alle Informationen Uber die Tastatur eingegeben werden. Deshalb werden zunéchst alle
Daten und die damit durchzufihrenden Verarbeitungsschritte, letztere in Form von Maschinenbe-
fehlen, in einen Speicher geladen. Die gespei cherten Befehle dienen zur Steuerung, die gespeicher-
ten Daten sind zur Ausfiihrung bestimmt. Damit der Computer die Informationsverarbeitung selb-
sténdig durchfihren kann, wird die Steuerung alsdigitaler Automat implementiert. Ein nach diesem
Prinzip aufgebauter Computer ist alsUniversalrechner verwendbar (,, General Purpose Computer”).

Die Funktion des Universalrechners ergibt sich aus dem Zusammenspiel seiner funktionellen Ein-
heiten. Das Steuer wer k holt ausdem Programmspeicher den asnéchsten auszuf ihrenden Befehl
und teilt daraufhin dem Rechenwer k mit, an welcher Stelle des Datenspeicher s die zugehdrigen
Daten zu finden und wi e diese miteinander zu verknipfen sind. Das Rechenwerk fihrt die Verknip-
fung aus, legt das Ergebnisim Datenspei cher ab und mel det dem Steuerwerk denVollzug. Daraufhin
holt sich das Steuerwerk aus dem Programmspei cher den néchsten auszufihrenden Befehl, und so
fort. Man pflegt den Daten- und den Programmspeicher des Universalrechners als einheitlichen
Hauptspeicher zusammenzufassen.

Da Steuerwerk und Rechenwerk eng gekoppelt sind, werden sie gemeinsam als Prozessor bezeich-
net. Ein Mikro-Prozessor ist demnach ein in hdchstintegrierter, mikroel ektronischer Technologie
(» Very Large Scale Intergration”, VL SI) hergestellter, in seinen Abmessungen extrem kleiner Pro-
zessor auf einem Siliziumchip von ca. 1,6 cm? Flache (1998), aber mit der Leistungsfahigkeit eines
Digitalrechners mittlerer Grél3enordnung.

Zusétzlich zu Bildschirm und Tastatur steht insbesondere zur Ein- und Ausgabe grof3erer Daten-
mengen eine Fille externer Speichermedien zur Verfligung, wie Magnetbénder, -platten und -dis-
ketten, sowie Drucker aler Art. Den Ein-/Ausgabegeréten ist gemeinsam, dal sie als elektrome-
chanische Geréte im Vergleich zum Prozessor und zum Hauptspeicher, die beide in Siliziumtech-
nologie realisiert sind, relativ viel Energie bendtigen und relativ langsam sind. Man braucht daher
zur Anpassung der Umgebung an den Rechnerkern, der wesentlich schneller arbeitet und einen weit
niedrigeren Energiebedarf aufweist, ein Ein-/Ausgabewerk, das seinerseits wie ein weiterer Pro-
zessor strukturiert ist.

Seite 1.4 von 24



1 Der klassische Universalrechner

Eingabe Ausgabe
C——— > Prozess F——>
Prozess
r— - - - - - - — al

Automat (FSM)

I v

Rechenwerk

Programmspeicher

Z
+1 Steuerwerk
|:l'> Rechenwerk

— >

Bild 1.3:

Vom Prozess zum Universalrechner

Automat (FSM)

L

Zustands-
speicher

Steuer-
speicher

v

Steuerwerk

Rechenwerk

Datenspeicher

Programmspeicher

Z

+1 Steuerwerk
| {}
Rechenwerk

Seite 1.5 von 24



Prof. Dr.-Ing. U.G. Baitinger

1.3 Digitale Prozessoren

1.3.1 Prozessorstrukturen

In der technischen Informationsverarbeitung verwendet man die funktionelle Begriffskette:
Daten-Eingabe — Prozess — Daten-Ausgabe

Der abstrakte Prozess muf3 zu seiner Ausfiihrung auf einen konkreten Pr ozessor abgebildet werden.
Tatséchlich ist es sogar so, dald der Prozessin eine Programmstruktur abgebildet wird, die binér
codiert im Hauptspeicher des Universalrechners untergebracht ist. Die Begriffsklérungen sind je-
doch noch nicht abgeschlossen, was im tbrigen fur eine junge Wissenschaft wie die Informatik
charakteristisch ist:

* In der Steuerungstechnik fal3t man den Hauptspeicher und das Steuerwerk ,,im engeren Sinn* als
Steuerwerk ,,im weiteren Sinn“ zusammen.

* In der Rechnertechnik ist es tblich, das Steuerwerk ,,im engeren Sinn* und das Rechenwerk als
Prozessor zusammenzufassen. Ferner fal3t man Prozessor und Hauptspeicher alsZentraleinheit
des informationsverarbeitenden Systems zusammen.

Prozessorstrukturen werden grundsétzlich aus zwei Anteilen gebildet:
« Funktionseinheiten (, Knoten“)

- zur Verarbeitung binér codierter Informationen durch ihre arithmetische oder |ogische Verkniip-
fung, z.B. im Rechenwerk (, Arithmetic/Logic Unit*, ALU), und/oder

- zur Speicherung, wie Eingangs- und Ausgangsregister, Puffer- und Registerspeicher, FIFO-
Warteschlangen und L1FO-Stapel speicher.
 Strukturelemente (,, Datenpfade”)

- zur Kommunikation der Funktionseinheiten untereinander; ihre Topologieist fir die Prozessor-
struktur bestimmend.

- Als Strukturelemente werden entweder Punkt-zu-Punkt-Verbindungen verwendet, die indivi-
duell vermittelt und von der Informationsquelle zur -senke durchgeschaltet werden, oder

- gemeinsam genutzte Sammelschienen, die in einer Konferenzschaltung fur alle (lat. omnibus)
zur Verfiigung stehen (,, Bus-Verbindungen®).

Bel nur einem Bus muf3 dessen Benutzung den einzelnen Funktionseinheiten zeitlich exklusiv
zugeteilt werden, bei mehreren Bussen sind zeitlich parallele Ablaufe moglich, so dal3 Verarbei-
tungszeit eingespart werden kann. Ein elegantes Konzept zur Zeiteinsparung sieht vor, Informatio-
nen nacheinander auf einen Bus zu legen (,, Pipelining*); dazu sind zusétzliche Zwischenspeicher
zur Informationstrennung notwendig.

Heute haben sich Bus-Verbindungen auch innerhalb der Prozessoren durchgesetzt, so dal’ sie nach
ihrer internen Bus-Struktur klassifiziert werden konnen.
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1 Der klassische Universalrechner

1.3.2 Befehlsformate

Maschinenbefehle:
Hauptspeicher Operation, Operanden(-Adressen)

Branch

ALU-Fkt.

Op-Code

Bild 1.4: Abstrakter Prozessor

Maschinenbefehle:

Hauptspeicher Operation, Operanden(-Adressen)
Verzw. i
j Branch Boding, | Bef-AdL | Bef. Ad2

[
(I
L |- |

ALU-Fkt. | Opl. Ad [ Op2. Ad | Res. Ad | Bef. Ad _ -
Op-Code :
v Op-Code| Opl. Ad | Imm.Op | Res. Ad | Bef. Ad ~

Bild 1.5: Vier-Adress-Befehlsformat
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Hauptspeicher

Maschinenbefehle:
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Bild 1.6:

Hauptspeicher
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|
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Res. Ad_
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A A0

Drei-Adress-Befehlsformat

Maschinenbefehle:
Operation, Operanden(-Adressen)

Branch

Verzw.
Beding.

Bef. Ad —

Ely

Bild 1.7:
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1 Der klassische Universalrechner

Maschinenbefehle:
Hauptspeicher Operation, Operanden(-Adressen)

Branch Bef. Ad —

ALU-Fkt. [ Op.Ad

—|+1

Op-Code Imm.Op_

a +1
Op-Code ~

Bild 1.8: Ein-Adress-Befehlsformat

Maschinenbefehle:
Hauptspeicher Operation, Operanden(-Adressen)

Verzw. ]
Branch Beding. Bef. Ad

-
-

ALU-Fkt. | Op1. Ad | Op2. Ad.

L +1
Op-Code| Opl. Ad [ Imm.Op_

| %
L 1
T4
v Op-Code ~
Y

Bild1.9: Zwei-Adress-Befehlsformat mit Registerspeicher
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1.3.3 Befehlsausfihrungsschritte

Ein digitaler Universarechner verfiige Gber
» Zwei-Adress-Befehle und einen Registerspeicher (,, Lade/Speicher-Architektur”).

Nach dem von Neumannschen Prinzip durchléuft der Rechner wahrend der Programmausfiihrung
bei jedem Maschinenbefehl abwechselnd zwei unterschiedliche Phasen: die Befehlshol phase und
die Befehlsausfiihrungsphase. Damit kann er jeden Maschinenbefehl seines Befehlssatzes in fol-
genden Schritten abarbeiten:

1. Befehl holen (Instruction Fetch), IF
d.h. Hauptspeicher mit Befehlszahlerinhalt adressieren
und Befehlszahler erhdhen.

2. Befehl decodieren (Instruction Decode) ID

und Quellregisterinhalte in A- bzw. B-Register holen.

3. Befehl ausfiihren (Execute) EX

a) Lade-/Speicher-Befehl: effektive Hauptspei cheradresse berechnen
und Datenregister laden;

b) Verzweigungsbefehl: Zieladresse berechnen
und Verzwei gungsbedingung setzen;

c) ALU-Befehl: Berechnung ausfihren.

4. Speicherzugriff (Memory Access) MEM

a) Lade-Befehl: Daten vom Hauptspeicher ins Datenregister laden;
Speicher-Befehl: in umgekehrter Richtung speichern;

b) Verzweigungsbefehl: Zieladresse in Befehlszéhler 1aden,
falls Verzweigungsbedingung erfillt;

c) ALU-Befehl: (nichts)

5. Ruckschreiben (Write Back) WB

a) Lade-Befehl: Datenregisterinhalt ins Zielregister laden;
Speicher-Befehl: (nichts);

b) Verzweigungsbefehl: (nichts);

c) ALU-Befehl: Ergebnisins Zielregister schreiben.
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1.4 Digitale Steuerwerke

Ein digitales Steuerwerk kann als endlicher diskreter Automat betrachtet werden, wobei anzumer-
kenist, dald hier ein Automat ein mathemati sches Abstraktum und keine technische Vorrichtung ist.
Der Automat kann nur wohlunterschiedene (,, diskrete") und abzahlbare (, digitale*) Zustdnde Z;
annehmen, derenAnzahl endlichist (,, Finite State Machine*, FSM). Der Automatenzustand i st binar
codiert und in einem Register gespeichert. Mit n Bits lassen sich 2" verschiedene Automatenzu-
stande codieren, z.B. 28 = 256,

Die technische Implementierung eines Automaten wird Schaltwer k genannt. Es gibt unterschied-
liche el ektronische Technologien, um Schaltwerke zu realisieren:

* In, mal3geschneiderter Logik® werden die Automatenfunktionen durch individuelle, meist zwei-
stufige Schaltungen aus Und-Gattern gefol gt von Oder-Gattern realisiert.

* Bei regelmafdig strukturierten ,, Programmierbaren Logischen Anordnungen” (PLA), die alselek-
tronische Digital bausteine erhdltlich sind, sind die Und-Gatter in einer sog. Und-Matrix, die Oder-
Gatter in einer Oder-Matrix zusammengefal3t.

 Bei Verwendung eines Festwertspeichers(,, Read Only Memory*, ROM) oder eines Schreib/L ese-
Speichers (, Random Access Memory“, RAM) entspricht der Decoder der Und-Matrix, die Spei-
chermatrix der Oder-Matrix des PLA.

Vor alem bel der Alternative mit Speicherbausteinen wird die Verbindung zur Programmierung
deutlich: Die ROM/RAM-Anordnung kann prinzipiell als der Hauptspeicher eines Digitalrechners
betrachtet werden. Enthalt die Speicheranordnung codierte Steuervektoren (,, Maschinenbefehle"),
so muissen sie durch ein nachgeschaltetes Steuerwerk decodiert und sequenziert werden, um daraus
eine geeignete Folge von Steuersignalen fir das Rechenwerk zu erzeugen. Das Rechenwerk nimmt
Daten entgegen, verkniipft sie nach M al3gabe des aktuel len M aschinenbefehlsund gibt das Ergebnis
aus. Dader Hauptspeicher ohnedies vorhanden ist, um das Programm zu speichern, wird er vergro-
Bert und zusétzlich zur Datenspeicherung verwendet. Man beachte aber, dal3 die gespeicherten
Daten nicht zur Struktur und Funktion des Automaten gehdren.

Eine digitale Steuerungsfunktion kann durch einen ,, Automatengraphen® beschrieben werden, der
im Fall eines Prozessors eine charakteristische Topologie aufweist:

» die Decodierung des Operationscodes des aktuellen Maschinenbefehls wahrend der Befehlshol -
phase wird durch eine méchtige Verzweigung dargestelIt,

» die Befehlsausfuhrungsphasen fur die unterschiedlichen Befehlstypen durch weitgehend unver-
zweigte Ketten.

Wendet man dasPrinzip desprogrammierten Automaten, der einen Befehl sspeicher enthdlt, rekursiv
auch auf das Steuerwerk an, so dal3 diesesebenfallseinem Automatenin Form einer Spei cherstruktur
entspricht, so bezeichnet man das darin enthaltene Steuerprogramm als Mikroprogramm, da es
hierarchisch unterhalb der Befehlsebene, d..h. des Hauptprogrammsliegt und dieseinterpretiert.
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Bild 1.11: Automatengraph eines allgemeinen Steuerwerks (typisch vermascht)

Seite 1.12 von 24



1 Der klassische Universalrechner

— | +1
Befehls-—<—|

zahler
Programm-
. Speicher:
>
——= 3 Maschinen
A befehle

Op-Code

=

F>

X

Zustands-
speicher

fest
verdrahtetes
Schaltnetz

vom

Rechenwerk

Zum Y
Rechenwerk

Bild 1.12: Programmspeicher und Prozessorsteuerwerk (schematisch, vereinfacht)

| Xy

Y1 Yo
| |
|

I X5 |

BUBN
(&) &

Y

L]

Y3
@ﬂ
|

| X3 1

y

OpC,

| X,

n
YZ

y

\

Bild 1.13: Automatengraph eines Prozessorsteuerwerks

Seite 1.13 von 24



Prof. Dr.-Ing. U.G. Baitinger

1.5 Digitale Rechenwerke

1.5.1 Digitale Funktionseinheiten

Beim strukturellen Aufbau digitaler Rechenwerke unterscheidet man im wesentlichen drei Typen
von Funktionseinheiten:

» Datenquellen und Datensenken, z.B. Speicherregister oder kleine, schnelle Pufferspeicher;

» Datenpfade a's Transportmedien, z.B. interne Busse oder Punkt-zu-Punkt-Verbindungen, die je
nach Bedarf durchgeschaltet oder blockiert werden;

 Verknupfungsschaltungen, d.h. ein Vorrat an Verkntipfungsfunktionen:

- arithmetische Operationen, wie die Grundrechnungsarten Addition + , Subtraktion - , Multipli-
kation * und Division/ ;

- logische Verknupfungen, wie Konjunktion & (, Und*), Disjunktion [I (, Oder*) und Negation —
(, Nicht*), aber auch komplexere, wie z.B. die Antivalenz [ (,,exklusives Oder*);

- einfache Transferoperationen ohne eine Verénderung der Daten;
- Schiebeoperationen (nbit nachlinks: Multiplikation mit 2", nbit nachrechts: Divisiondurch 2").

Die Funktionseinheiten eines Rechenwerks werden mit Entwurfsmethoden der digitalen Schal-
tungstechnik implementiert. Beliebig komplizierte Funktionen kénnen nach den Regeln der Schalt-
algebrain Schaltnetze mit elementaren logischen Gattern aufgel 6st werden, die lokal wieder so zu
grofReren Funktionszellen zusammengefaldt werden, dal’ sie den Digital bausteinen entsprechen, die
die gewahlte Technologie anbietet.

Struktur und Funktion digitaler Rechenwerkelassen sichim Prinzip auf eine einzige Schaltfunktion
zurtckfuhren. Es &3t sich namlich mathematisch beweisen, dal3 sich beliebig komplizierte Ver-
knupfungsfunktionen in schaltal gebrai sche Ausdriicke umformen lassen, die nur einen Schaltfunk-
tionstyp enthalten, z.B. ausschliefflich , negierte Und“ = NAND ( & ) oder ausschliefflich , negierte
Oder“ = NOR ( 00), was zur praktischen Konsequenz hat, dal3 nur ein Gattertyp notwendig ist, um
beliebige Schaltnetze zu realisieren. Das soll mit zwei einfachen Beispielen erléautert werden.

1.5.2 Wirkungsweise digitaler Rechenwerke

Es gibt zwei vollig unterschiedliche Vorgehenswei sen, um eine digitale Funktion auszuf Uhren:

 Eine Hardware-L 6sung besteht aus einem festverdrahteten Schaltnetz, das eine ausreichende
Anzahl logischer Gatter enthélt. Die Ausfihrung einer Funktion erfolgt zeitlich parallel.

* Eine Softwar e-L 6sung benétigtim Minimalfall ein einzelneslogisches Gatter, das aber mehrfach
nacheinander durchlaufen werden muf3, wozu zusétzliche Zwischenspeicher erforderlich sind.
Die Ausfuhrung einer Funktion erfolgt zeitlich sequentiell.
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Beispiel 1.1: Hardware-L6sung

Nehmen wir als Beispiel die oben bereits erwdhnte Schaltfunktion der Antivalenz [J. Sie kann nach
den Regeln der Schaltalgebrain eine Disjunktion [ von Konjunktionen & aufgel 6st werden:

y = (X, U xy) (0.1)
y = (X2 & xq) O(X, & X1) (0.2

Nach der de Morganschen Regel 1803t sich dieser Ausdruck in einen anderen transformieren, der nur
noch NAND-Verkntipfungen ( & ) enthalt:

y = (X2 & X)) & (X, & X1) (0.3)
Man kann GI.(1.3) isomorph in eine Schaltnetzstruktur mit NAND-Gattern umsetzen (Bild 1.12).

X2 X1

&
‘Til

Bild 1.14: NAND-Schaltnetzstruktur der Antivalenz (x, O X4)

Beispiel 1.2: Software-Ldsung

Fur das gewdahlte Beispiel der Antivalenz [J erfolgt die sequentielle Ausfihrung durch Mehrfach-
ausnutzung eines NAND-Gatters mit Speicherung der Zwischenergebnisse, d.h. in diesem einfa-
chen Beispiel wird die Antivalenz in finf NAND-Schritten ( & ) ausgefihrt:

1. Schritt:  y; = (X, & 1) = X2 — Zwischenspeicherung  y;
2. Schritt:  y, = (X, & 1) = X1 — Zwischenspeicherung y,
3. Schritt: ys = (v, & X1) - Zwischenspeicherung Y3
4. Schritt:  y, = (X, & Y,) ~ Zwischenspeicherung  y,
5. Schritt: y = (Y3 & Ya) — Ergebnisspeicherung vy
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Die sequentielle Ausfihrung bringt eine langere Verarbeitungszeit mit sich, wahrend die paralele
in einem Schritt erfolgt, d.h. Har dware-L 6sungen sind starr, aber schneller und betriebssicherer,
Softwar e-L 6sungen flexibel, aber langsamer und weniger reproduzierbar. (, Mit einer reinen Soft-
ware-L 6sung kommt man in der Regel nicht durch den TUV.*) Nach dem Stand der Technik kom-
men in der Informationstechnik beide L 6sungsalternativen zum Einsatz.

Die sequentielle Abarbeitung zur Verringerung des Schaltungsaufwandes liegt der technischen In-
formationsverarbeitung historisch zugrunde: Bereits der erste Vorschlag durch John von Neumann
(1946) beruht auf dieser Uberlegung. Der Ersatz , schnellerer* Hardware durch ,, langsamere* Soft-
ware lohnt sich, wenn erstere teuer und die Programmierung wenig aufwendig ist. Was jedoch die
weitere Entwicklung informationsverarbeitender Systeme betrifft, beginnt sich das Verhaltnis zur
Zeit umzukehren: Der Preisverfall der Hardware durch die Fortschritte der Mikroelektronik und
die Existenz umfangreicher und komplexer Software-Systeme, deren Pflege und Wartung aufwen-
dig sind, machen es|ohnend, anwendungsspezifische integrierte Schaltungen (,, Application Speci-
fic Integrated Circuits*, ASIC) einzusetzen, zu deren Entwurf sind lei stungsfahige rechnergesttitzte
Entwurfssysteme zur Verfigung stehen (,, Computer Aided Design®, CAD), so dal3 sich derzeit die
Programmierung von Anwendungsl dsungen mit Mikroprozessoren verlagert zur Erstellung um-
fangreicher CAD-Systeme zum Entwurf von ASICs.

1.5.3 Aufbau digitaler Rechenwerke

Bild 1.13 zeigt die Struktur eines elementaren Rechenwerks, das 2 bit nach einer beliebigen Schalt-
funktion zu einem Ergebnisvon 1 bit verkniipfen kann, dasalso auch dieim Beispiel 1.2 vorgestellte
Verarbeitung der Antivalenz [ durch eine Software-L.6sung leistet.

In den beiden Speicherzellen A-FF und B-FF (, Flipflops®, die jeweils 1 bit speichern kdnnen), die
sich an den Eingangen des zentralen NAND-Gatters ( & ) befinden, werden nach Bedarf die beiden
Operanden x; und X, sowie Zwischenergebnissey; gespeichert, dasjeweilige Verknlipfungsergebnis
in der Speicherzelle C-FF am Ausgang des NAND-Gatters. Beim Zuschalten der logischen Kon-
stante 1 bewirkt das NAND-Gatter eine Negation der Eingangsvariable.

Die Datenpfade werden von Multiplexern (Mux) und Demultiplexern (Demux) durchgeschaltet.
Diebinaren Ansteuervariablenfir die (De-)Multiplexer werden vom Steuerwerk erzeugt. Man kann
die Aneinanderreihung aller Ansteuervariablen als ,, Steuervektor” fur die Datenpfade bezeichnen.
Synonym dazu sind die Begriffe ,, Maschinenbefehl* und ,, I nstruktion“, die hier in binérer, un-
codierter Form vorliegen.

Vereinfachend kann man die Mux/Demux-Paare durch Busver bindungen darstellen (Bild 1.14).

Erweitert man die nur 1 bit fihrenden Datenpfade und Busverbindungen auf n bit Breite(n=8. .
16 . . 32) und ersetzt man die Einzelflipflops durch n bit breite Register, das NAND-Gatter durch
eine Arithmetisch/logische Einheit (,, Arithmetic/Logic Unit“, ALU), die verschiedene arithmeti-
sche und/oder 1ogische Operationen sowie ggf. auch Transfer- und Schiebeoperationen ausfihren
kann, so erhdlt man die allgemeine Struktur eines digitalen Rechenwerks nach Bild 1.15. Obiger
Steuervektor ist bel m unterschiedlichen ALU-Funktionen durch Anfligen zusétzlicher |d m Steu-
erbits zu erweitern.
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vom zum
Hauptspeicher
1
A-FF %i
1 il L ET
M =

g é
8 | & O = 8

: - — — L | -

T O - - | > O T T 0
| | | |
> 1 B-FF | : :
” : L
| | 5 | ]
S| ™ | | !
I I I
~ 0 I I [
| | | |
0 o Steuervektor b o
| | | |
0 1 HSx) ~BFREBx-% 1 0
1 0 Xo - A-FF 0 0
0 0 HS(xq) - B-FF; x&%X; - y3 1 0
- - y3 - HS(y3) 0 1
0 1 HS(xq) - B-FF,1&x; -» x; 1 0
1 0 Xy — A-FF. 0 O
0 0 HS(Xy) - B-FF; x1&%, - y4 1 0
1 0 Y4 - A-FF_ 0O O
0 0 HSyj3) - B-FF;y&y3 -y 1 0
- - y - H3(y) 0 1

Bild 1.15: Darstellung eines elementaren Rechenwerks mit Multiplexer/Demulti plexer-Paaren.
Steuervektoren zur Ausfihrung der Antivalenz.
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Bus 1 Bus 2
A-FF
J =
I I ) C-FF %
N @
Ol | — — &
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- — — > =)
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Bild 1.16: Vereinfachte Darstellung eines elementaren Rechenwerks mit Bussen
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Bild 1.17: Typisches Rechenwerk ,, Arithmetic/Logic Unit*, ALU
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1.6 Ein/Ausgabestrukturen

In einem informationsverarbeitenden System lassen sich grundsétzlich zwei technol ogisch unter-
schiedlich realisierte Bereiche unterscheiden:

» Die Zentraleinheit (Hauptspeicher, Steuerwerk und Rechenwerk) wird in der Technologie der
Mikroel ektronik realisiert, um mdglichst hoheVerarbeitungsgeschwindigkeit, moglichst niedrigen
Energiebedarf, mdglichst hohe Zuverlassigkeit (da verschleil¥freil) und méglichst niedrige Her-
stellungskosten (dank automatisierter Massenfertigung) zu erreichen.

 Die Peripherieger ate (Tastaturen, Drucker, Band-, Platten- und Diskettenleser) missen elektro-
mechanisch realisiert werden und weisen daher, im Vergleich zur Zentraleinheit, eine niedrigere
Arbeitsgeschwindigkeit, hoheren Energiebedarf, geringere Zuverlassigkeit (durch mechanisch
bewegte Teile) und hdhere Herstellungskosten auf.

Zwischen beiden Technologien bedarf es einer Anpassung durch geeignete Ein/Ausgabestr uktu-
ren, die ebenfalls mit Mitteln der Informationsverarbeitung erfolgen kann. Dabei haben sich zwei
unterschiedliche Konzepte herausgebil det:

» DasKanalkonzept, bei dem der zentrale Prozessor alle Ein/Ausgabe-Operationen an einen spe-
ziellen Kanalprozessor delegiert, der Uber Steuereinheiten die Ein/Ausgabe-Geréte bedient, so
dal3 topologisch eine Sternstruktur mit Hauptspeicher und dedizierten Prozessoren entsteht.

» Das Buskonzept, bei dem alle Partner, z.B. die Prozessor- und Speicherbausteine, in einer Art
Konferenzschaltung ein gemeinsames Kommunikationsmedium benutzen, so dal3 sich topolo-
gisch eine Netzstruktur mit Prozessor- und Speicherbausteinen ergibt.

1.6.1 Das Kanalkonzept

Nach dem von Neumannschen Prinzip nimmt der zentrale Prozessor eine vom Befehlszahler be-
stimmte Sequenz von M aschinenbefehl en aus dem Programmberei ch desHauptspei chersentgegen:

* Entspricht der aktuelle Befehl einer arithmetischen oder logischen Verkniipfung, so wird er vom
Zentralprozessor selbst ausgefihrt.

» Handelt es sich dagegen um einen Ein/Ausgabe-Befehl, so wird seine Ausfiihrung an den Kanal-
prozessor delegiert.

Solange der Kanalprozessor die relativ langsame Peripherie bedient, kann der Zentral prozessor
weitere arithmetisch/logische M aschinenbefehle ausfihren; beide Prozessoren arbeiten dann un-
abhangig voneinander. Der durch den Ein/Ausgabe-Befehl angestol3ene Kanal prozessor ruft ein
geeignetes Kanalprogramm auf, das sich ebenfalls im Hauptspeicher befindet. Dazu bringt der
Ein/Ausgabe-Befehl die erforderlichen Informationen mit: Die Adresse des Ein/Ausgabe-Gerétes,
die Adresse eines Datenbereichs im Hauptspeicher und die Art der Operation, d.h. ob von der
Peripherie gelesen oder nach dorthin geschrieben werden soll. Da Ein/Ausgabe-Operationen mit
elektromechanischen Geréten in Echtzeit ablaufen miissen, wird ein eigener Kanal befehlssatz de-
finiert, der vom Maschinenbefehlssatz des Zentral prozessors abwei cht. Was den Entwicklungsauf-
wand betrifft, so entfallen nur etwa 15% auf die Mikroprogrammierung des Zentral prozessors; etwa
85% entfallen auf die Erstellung der Kanal programme.
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Bild 1.18: Universalrechner (PC: Program Counter, Befehlszahler)
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Bild 1.19: Das Kanalkonzept fir Universalrechner
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1 Der klassische Universalrechner

1.6.2 Das Buskonzept

Das Buskonzept wurde erstmals fr die Ein/Ausgabe binér codierter Mef3daten vorgeschlagen und
genormt (,,|EEE 488 Bus*). Der Bus als Medium zur digitalen Kommunikation kann als Sammel -
schiene aufgefaldt werden (lat. ,,omnibus®, d.h. fUr alle), die allen Teilnehmern in einer Konferenz-
schaltung gemeinsam zur Verfligung steht, aber abwechselnd und exklusiv genutzt wird. Um Kol-
lisionen von auf den Bus gebrachten Signalen zu vermeiden, sind unterschiedliche Techniken ent-
wickelt worden. Naheliegend ist eine sel bsttétige Detektion von Kollisionen: Wie bei einer Diskus-
sionsrunde spricht immer nur ein Teilnehmer; die andern héren zu, bis er aufhort, wobei man eine
maximale Redezeit vereinbaren kann. Bel einer Gesprachspause beginnt ein Teilnehmer, der etwas
zu sagen oder zu fragen hat, zu sprechen; beginnt zufallig gleichzeitig ein zweiter, so sollten beide
verstummen und es nach einer Wartepause zufélliger Lange erneut versuchen. Dieses ,, Protokoll*
lat sich auch fir Bussysteme technisch nachbilden (, Carrier Sense Multiple Access / Collision
Detection®, CSMA/CD). Selbstverstandlich ist es auch blich, einen Diskussiongleiter, hier einen
Buszuteiler einzusetzen.

Ein Bus umfalét im wesentlichen drel Arten von Verbindungsleitungen:
 Datenleitungen zum Transport der Nutzinformation;

* Steuerleitungen zur Ansteuerung der angeschlossenen Peripheriegeréte;
» Bus-Management-L eitungen zum Betrieb des Bus selbst.

Die Steuerung eines Ein/Ausgabe-Bus und den Betrieb der angekoppelten Peripheriegeréte Uber-
nimmt ein (Mikro-)Prozessor. Bei den Peripheriegeréten unterscheidet man drel Betriebsarten:

» LISTEN: Geréte, die nur ,,héren”, z.B. Stromversorgungen;
» TALK: Geréte, die nur ,, sprechen*, z.B. Frequenzzéhler;
* LISTEN/TALK: Geréte, die, horen und spechen”, z.B. einstellbare Mef3geréte.

Inzwischen hat sich das Buskonzept nicht nur fir den Ein/Ausgabebereich bewdahrt, sondern auch
fUr die interne Kommunikation innnerhalb der Zentraleinheit. Falls sie das Busprotokoll erfillen,
kénnen an einen Hauptspeicher-Bus Speichereinheiten unterschiedlicher Technologien ange-
schlossen werden, wie z.B. Festwertspeicher (, Read Only Memory*“, ROM), die z.B. unverénder-
bare Rechnerprogramme enthalten, oder Schreib/L esespeicher (,, RandomAccessMemory“, RAM)
fur die Zwischenspei cherung von Daten, wobei auch wieder ein oder mehrere (Mikro-)Prozessoren
die Steuerung Ubernehmen. Fir den Speicherbetrieb kommen noch Adressleitungen hinzu:

« nAdressleitungen zur Adressierung von 2" Bytesin einem der Speicher
(N=16..24..32hit;2"=64k..16 M .. 4 GByte);

« 2™ Datenleitungen zum Transport der Nutzinformation
(2M=4..8..16..32bit;m=2..5);

* Steuerleitungen zum Betrieb der angeschlossenen Speicherbausteine;
* Bus-M anagement-L eitungen zum Betrieb des Speicherbus selbst.

Schliefdlich sind noch Bus-zu-Bus-Adapter zu erwéhnen, die die Anpassung zwischen unterschied-
lichen Busprotokollen vornehmen.
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Bild 1.20: Ein/Ausgabe-Bus
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2 Schaltungsebene Prof. Dr.-Ing. U.G. Baitinger

2.1 Transistoren im Digitalbetrieb

Die technische Informationsverarbeitung beruht auf der logischen Verknipfung und Speicherung
zweiwertig (,binar*) codierter Informationen. Um sie mit elektrischen Signalen darzustellen, be-
notigt man zwei wohlunterschiedene (,, diskrete") und somit abzahlbare (,, digitale*) Signal pegel:

Lo - niedriges Potential Hi « hohes Potential

Den beiden Signal pegeln kann man binére Variablenwerte { 0,1} auf zweierlei Weise zuordnen:
positive L ogik negative L ogik
Loo O;Hi 1 Loo 1;Hi -« 0

2.1.1 Kontaktdarstellung von Transistoren

Bereits aus der Relaistechnik stammt die Unterscheidung von zwei Kontakttypen:
 Arbeitskontakt - im Ruhezustand gedffnet, im Arbeitszustand geschlossen (Bild 2.1 links)
* Ruhekontakt - im Ruhezustand geschlossen, im Arbeitszustand gedffnet (Bild 2.2 links)
Ein Schalter besitzt per definitionem genau zwei Stellungen:

» gedffnet = sperrend, hochohmig, niedriger Stromfluf3, hoher Spannungsabfall

» geschlossen = leitend, niederohmig, hoher Stromfluf3, niedriger Spannungsabfall

Man vergleiche dazu die Kennlinien der beiden Kontakttypen in Bild 2.1 und Bild 2.2 rechts.

Ik

A
+
+ Iy
s
+ Uk ¥
: ; > Uy
Lo Hi
Bild2.1: Arbeitskontakt mit Kennlinien
Lo Hi
= UK 4 : Il
+
7
- |K
- +
- UK
- |K

Bild 2.2: Ruhekontakt mit Kennlinien
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Bild 2.4: N-Kana MOS-Transistor mit Ausgangskennlinien
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Bild2.6: P-Kanal MOS-Transistor mit Ausgangskennlinien
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Die Ausgangskennlinien sowohl von bipolaren als auch von MOS-Transistoren haben zwar keinen
linearen Verlauf (und sie haben verschiedene physikalische Ursachen, obwohl sie sehr dhnlich
verlaufen); man erhdlt jedoch ebenfalls zwei Betriebspunkte fir den digitalen Betrieb, in Bild 2.3
bisBild 2.6 mit (1) und (0) bezeichnet. Stark vereinfacht zeigen im Digitalbetrieb die Transistoren
und die mechanistischen Relaiskontakte eine prinzipiell vergleichbare Arbeitsweise:

* Arbeitskontakt — bipolarer Transistor vom NPN-Typ « MOS-Transistor mit N-Kanal
* Ruhekontakt ~ bipolarer Transistor vom PNP-Typ - MOS-Transistor mit P-Kanal

2.1.2 Lastwiderstand und Lasttransistor

Neben den aktiven Bauelementen, den Schalttransi storen, bendtigt man in Digital schaltungen noch
passive Bauelemente, um gegebenenfalls ein aktives Bauel ement zu ersetzen, d.h. um elnen Signal -
pegel zu erzeugen, der zwischen,, Lo" und,,Hi* liegt. In bipolarer Technol ogie lassen sich ohmsche
Widerstéande mit vertretbarem Aufwand herstellen (Bild 2.7); in MOS-Technol ogie dagegen muf
als Kompromil3 ein Transistor zum passiven Zweipol verdrahtet werden (Bild 2.8).
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Bild 2.7: Ohmscher Lastwiderstand
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Bild2.8: MOS-Lasttransistor
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2.2 MOS-Technologie

2.2.1 Photolithographie und Dotierung

Der Leitungstyp eines Siliziumkristalls - ob er als Ladungstréger Uberwiegend Elektronen oder
Defektel ektronen enthdlt - wird durch Dotieren mit Donator- bzw. mit Akzeptoratomen beeinflufit.
Dabei kann diein den Kristall einzubringende Storstellendichte auf3erordentlich gering sein. Hoch-
reines Silizium enthalt pro Kubikzentimeter 5.10%2 Siliziumatome und noch etwa5. 1012 Boratome,
die P-Leitung bewirken, so dass auf 10 Kristallatome nur 1 Fremdatom kommt. Eine Dotierung
muf3 diese Restverunreinigung um etwa eine Grofdenordnung tbertreffen, um den Leitungstyp des
Siliziummaterials eindeutig festzulegen. Im genannten Beispiel gentigt dazu ein einziges Dotie-
rungsatom auf eine Milliarde Siliziumatome, d.h. ein Dotierungsgrad von 10°°. Die gleichméidige
Grunddotierung erfolgt in der Regel wahrend des Einkristallziehens. Aus dem Einkristallstab von
derzeit 12...16 cm Durchmesser werden diinne Scheiben (,, Wafer*) abgeségt und deren Oberfléche
geschliffen, gereinigt und glatt poliert. Eine integrierte Schaltung hat auf einem Chip von wenigen
Millimetern Kantenlange Platz. Man kann daher auf einem Wafer einige Hundert integrierte Schalt-
kreise unterbringen.

Durch energetische Steuerung der Dotierungsvorgéange werden die Eindringtiefen der Dotierungs-
stoffe bestimmt und damit die vertikalen Abmessungen der entstehenden mikroel ektronischen Bau-
elemente. I hre horizontale Geometrie wird durch geeignete Maskierung der zu dotierenden Silizi-
umscheibe definiert. Hier zeigt sich der grof3e Vortell, den Silizium gegentiber anderen Halbleiter-
materialien bietet: Seine Oberflache kann mit Wasserdampf relativ einfach zu Quarzglas (SiO,)
oxidiert werden, dasfir die gebréuchlichen Dotierungsstoffe undurchldssig ist. Mittels photolitho-
graphischer Verfahren &zt man dann Offnungen in die Quarzglasschicht, so dass nur dort die Sili-
ziumoberflache ungeschiitzt zutage tritt; dadurch wird die Kristalloberflache nur an bestimmten
Stellen den Dotierungsstoffen ausgesetzt.

Das Bild zeigt die Verfahrensschritte. Die Oberflache der Siliziumscheibe (Si) wird zunéachst mit
einer Quarzglasschicht (SiO,) uberzogen und dann mit Photolack beschichtet. Sodann wird eine
Maske auf die Scheibe aufgelegt, die ein Muster aus geschwérzten und durchsichtigen Stellen
enthalt, entsprechend den herzustellenden integrierten Schaltungen. Die Maske, die auf die Silizi-
umscheibe aufgelegt wird (, Wafer Mask*), besteht aus einer regel maliigen Wiederholung von Ein-
zelmasken (,, Chip Masks"), die die Anordnung der Strukturen innerhalb der einzelnen integrierten
Schaltkrei se definieren. Anschlief3end wird mit kurzwelligem Licht bestrahlt, wobei die belichteten
Stellen des Photol acks polymerisieren. Nach Entfernen der Maske konnen die unbelichteten, nicht
polymerisierten Stellen des Photolacks chemisch weggel 6st werden. Dann taucht man die Scheibe
in eine spezielle Saure, die die Quarzglasschicht (SiO,) dort wegétzt, wo sie nicht durch Photolack
geschiitzt ist. Mit einem anderen L 6sungsmittel wird sodann der restliche Photolack entfernt. Damit
wurde das Muster der Maske auf der Siliziumscheibe abgebildet. Wahrend des anschliefzenden
Dotierungsvorgangs kénnen Fremdatome nur durch die Offnungen in der Oxidschicht ins Innere
des Siliziumkristallseindringen. Die beim Atzvorgang erzeugten Oxidoffnungen wachsen bei einer
neuerlichen Oxidation wieder zu, um die entstehenden Bauelemente zu ,, versiegeln“.
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Bild 2.9:  Fertigungsschritte zur photolithographischen Abbildung einer ,, Maske®

Seite 2.5 von 26



Prof. Dr.-Ing. U.G. Baitinger

2.2.2 NMOS-Technologie

Dasfolgende Bild zeigt die wichtigsten Fertigungsschritte der Siliziumtechnol ogie zur Herstellung
einesM OS-Transistorsmit el ektronenl eitendem Kanal (NMOS). Dargestel It sind nur die Zwischen-
zustande nach der photolithographischen Abbildung der einzelnen , Masken®, hier insgesamt vier:

* Drain/Source-Gebiete dotieren
» Gate-Oxid aufwachsen

» KontaktlGcher 6ffen

» Metallisierung aufbringen.

Vor jedem der gezeigten Zwischenzustande laufend photolithographische Fertigungsschritte, wie
im vorherigen Bild am Beispiel der Dotierung dargestellt, sinngemal ab.

n* Drain p” Substrat n* Source

Drain-Kontaktloch Gate-Oxid Source-Kontaktloch

Drain-Kontaktloch Source-Kontaktloch

Source-Anschluss

VL L

Drain-Anschluss

’//////////////

' /%/ ’///
|

n* Drain n-Kanalbereich n* Source

Bild 2.10: Wichtigste Fertigungsschritte eines MOS-Transi stors (Querschnitt)
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Drain/Source-M aske

Gate-Oxid-Maske
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L o d

Metallisierungsmaske
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%? ﬁ///

kompletter Maskensatz
V]
ZI G sy
/)

Bild 2.11: Fertigungsmasken eines MOS-Transistors (Draufsicht)
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2.2.3 CMOS-Technologie

a) 7//// YA/, 0)
& éVGG o Vpp
. A
Z —n
Z/{/////// o e Ve = e
77 5% |
“ 2
72
b) Vbb
i

Bild 2.12: CMOS-Inverter; @) Layout / Draufsicht, b) Querschnitt A - A, ¢) Schaltbild

Dasobige Bild zeigt unterschiedliche Ansichten einer einfachen I nverter schaltung in CMOS-Tech-
nologie, d.h. mit komplementéren MOS-Transistoren. Man beachte, dass der NMOS-Transistor N¢
mit elektronenleitendem Kanal direkt in das p-leitende Silizium-Substrat eingebracht werden kann,
wahrend fur den PMOS-Transistor P; mit defektel ektronenleitendem Kanal zuvor eine n-leitende
»Wanne" erzeugt werden muss, in die er dann eingebracht wird.

Wieim nachfolgenden Abschnitt Uber ,, MOS-Schaltungstechnik” im Einzelnen erlautert wird, stellt
die Inverterschaltung die Grundlage fur die komplexeren Verknipfungs- und Speicherschaltungen
in CMOS-Technologie dar.
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2.3 Chip-Layout

2.3.1 Full-Custom IC Layout

Eshandelt sich um ma3geschneiderte Schal tungen hichsten I ntegrationsgrades (10% ... < 108 Gatter
pro Chip), die fir eine bestimmte Anwendung speziell entwickelt werden, weil siein grofer Stiick-
zahl ben6tigt werden (,, voll-kundenspezifische integrierte Schaltungen®).

Bild 2.1:  Layout einer voll-kundenspezifischen integrierten Schaltung

Seite 2.9 von 26



Prof. Dr.-Ing. U.G. Baitinger

2.3.2 Semi-Custom IC Layout

»Gate-Arrays* sind personalisierbare integrierte Schaltungen. Dank ihrer vordefinierten Grund-
struktur konnen fast alle Fertigungsschritte (aul3er der Verdrahtung) vorab durchgeftihrt werden.
Dem Anwender wird vom Technologieanbieter eine technol ogiespezifische Zellbibliothek bereit-
gestellt, die wiederverwendbare Funktionszellen enthélt, die auf die Basiszellen des Gate-Arrays
abzubilden sind. Nach Abschluf3 des Entwurfs sind nur noch die entsprechenden Verdrahtungsmu-
ster zu fertigen (,, semi-kundenspezifische integrierte Schaltungen).

O 0O000o0gg g Basiszelle
] 41 O
] [-H Padzelle
] ]
] Y strom-
] | versorgung
O N

| Verdrahtungs-

] — ]| kanale
] ]

O 00000400 d

Bild 2.2.  Grundstruktur (, Master-Layout") eines Gate-Arrays mit Saulenstruktur

OO0 O0O0o00CoOQ0 00 00000
O NAND INAND [EE U [EH it ik H
D D D : }' T ‘i’ 1 T : 1 T D
.1 NOR  NOR FE - ol | it it o
|:| |:| DJ +—o : * E : * I—D

AND OR EE 1l 1l
D D D —¢ : ? ]I. — I_D
[0 AND OR FE O H 1l [ |-D
0 O |0—= —r— —r— [
- NAND NAND  FE | I |_D

OoooooooOo oo ooodo0do

Bild2.3: Gate-Array mit Matrixstruktur, zell-orientierter Entwurf
a) Platzierung (, Intrazell-Verdrahtung*) b) Verdrahtung (,, Interzell-Verdrahtung*)
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2.4 MOS-Schaltungstechnik

MOS steht fur “Metal-Oxide-Silicon®, d.h. fir Transistoren mit MOS-Schichtstruktur und ihre
Verwendung in mikroelektronischen Schaltungen. Wir wollen uns hier auf den Anreicherungstyp
mit isolierter Gate-Elektrode beschranken. Beim Schaltungsentwurf mit MOS-Transistoren sind
drei charakteristische Eigenschaften besonders zu berticksichtigen:

» Fir MOS-Schaltungen in integrierter Technologie ist typisch, dal3 nicht nur die aktiven Schalt-
transistoren sondern auch passive,, Arbeitswiderstande® durch MOS-Transistoren realisiert wer-
den mussen, dabei MOS-Fertigungsprozessen die Herstellung hochohmiger Widersténde proble-
matisch ist.

* Ferner ist zu berticksichtigen, dal3 ein MOS-Transistor erst leitet, wenn seine Gate-Source-Span-
nung den Wert einer Schwellspannung Uy, (“threshold voltage®) Gberschreitet. Somit ist der Ein-
bau eines leitenden MOS-Transistors stets mit einer Pegelverschiebung um den Betrag dieser
Schwellspannung verbunden, was bei Bedarf durch entsprechende Erhdhung der Betriebsspan-
nung ausgeglichen werden muf3.

« Schliefdlich sollte noch beachtet werden, dal3 jeder MOS-Transistor aufgrund seiner Bau- und
Wirkungswei se mit einem inhdrenten MOS-Kondensator von nicht zu vernachléssigender Kapa-
zitét behaftet ist, die bel Schaltvorgangen aufgeladen bzw. entladen werden mulf3.

Letztere Eigenart ist aber nicht nur stérend. Vielmehr ist ein MOS-Transistor in der Lage, Ladung
zu speichern und damit seinen augenblicklichen Betriebszustand kurzzeitig beizubehalten, auch
wenn dieihn ansteuernden Schaltkreise bereits einen anderen Zustand angenommen haben. Dieser
Effekt kann ausgeniitzt werden, um neben statisch betriebenen Logik- und Speicherschaltungen,
die von Gleichspannungsguellen gespei st werden, auch dynamische zu entwickeln, die mit Taktge-
neratoren betrieben werden. Dadurch werden Gleichstréome vermieden, was zu extrem niedrigen
Verlustleistungen fuhrt. Nicht zuletzt deshalb ermdglicht die dynamische M OS-Schaltungstechnik
den Aufbau héchstintegrierter Schaltungen (“Very Large Scale Integration®, VLSI) mit mehreren
Millionen Transistoren pro Chip.

So beruhen statische MOS-Speicherzellen auf dem Prinzip des bistabilen Flipflops, die dynami-
schen auf der Ladungsspei cherung in Kondensatoren. Dynamische M OS-Spei cher (* Dynamic Ran-
dom Access Memories', DRAM) haben nicht nur eine niedrigere Verlustleistung, sondern auch
einen niedrigeren Flachenbedarf pro Speicherzelle, so dal sich grél3ere Speicher auf einem Chip
integrieren lassen. Statische MOS-Speicher (“ Static Random Access Memories®, SRAM) dagegen
haben eine niedrigere Zugriffszeit als die dynamischen, da sie keine Auffrischzyklen bendtigen.

2.4.1 Statische MOS-Logik

Fur den Digitalbetrieb von MOS-Transistoren vom N-Kanaltyp (,NMOS-Transistoren®) gelten
zwei wohlunterschiedene Spannungspegel mit der Schwellspannung Uy, des N-Kanalsals Trenn-
wert sowie einer oberen Grenze, die u.a. von der Betriebsspannung von Ug > O, und einer unteren
Grenze U,,, deren Wert wie nachfolgend gezeigt von der Dimensionierung der Schaltung abhangt:

UysLo<Uyy Uiy < Hi < (Ug - Uyn)
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Es gelten folgende Zahlenwerte:
Ug=+25V Upn=1+10V (- +05V)

Die im folgenden Bild gezeigte Inverterschaltung ist eine elementare Verknipfungsschaltung mit
einer minimalen Anzahl von Bauelementen. Sie besteht aus einem Schalttransistor N, und einem
zum Zweipol verdrahteten Lasttransistor N , dain dieser Technologie bekanntlich keine hochoh-
migen Widerstande hergestelIt werden konnen. Ferner darf die Eingangskapazitét C, der gleichar-
tigen M OS-Schaltkreise, dievon der I nverterschal tung angesteuert werden, hier nicht vernachlassigt
werden.

Legt man an die Eingangsklemme des o Ug>0
NMOS-Inverters einen Potentialpegel , Lo, i

der niedriger ist as der Wert der Schwell- ,j“:
Spannung, so sperrt der Schalttransistor N;.
Die Lastkapazitét C, wird dann Uber den lei-
tenden Lasttransistor N, auf den Pegel ,Hi"
aufgel aden: N Ca

N

Lo: Ug<Upn l
. U
Hi: U= (Ug - Un) > Ui ©

Bild 2.4: Inverterschaltung in statischer NMOS-Logik

Sobald die Ausgangsspannung auf den Pegel ,Hi* angestiegen ist, erreicht die Gate-Source-Span-
nung des bisher leitenden Lasttransistors N; den Wert seiner Schwellspannung, d.h. er sperrt, so
dal? sein Sourcepotential U, nicht weiter ansteigen kann. Der sich einstellende Ausgangspegel U,
kann direkt als Eingangspegel fr gleichartige Schaltungsstufen dienen.

Nimmt im andern Fall der Eingangspegel den Wert ,,Hi* an, liegt er also hoher alsdie Schwellspan-
nung, so leitet der Schalttransistor N, und entl&dt die Lastkapazitét C, bis auf den Pegel , Lo, der
durch das Spannungsteilerverhaltnis aus dem Schalttransistor N, und dem Lasttransistor N, gege-
ben ist. Dabei mul3 N; niederohmig sein, d.h. sein Kanalbereich muf3 breit und kurz ausgelegt
werden, N, dagegen hochohmig, d.h. lang und schmal, da fur den Pegel ,Lo" gelten mul3:

Hi: Ue=(Ug - Uinn) > Uty Lo: Ua=Upgy < U

Verwendet man MOS-Transistoren vom P-Kanaltyp (, PMOS-Transistoren*), so gelten flr deren
Digital betrieb ebenfal|szwei wohlunterschi edene Spannungspegel, die aus physikalischen Griinden
zu denen der NMOS-L ogik komplementar sind: mit der Schwellspannung Uy,p als Trennwert sowie
einer unteren Grenze, die u.a. von der Betriebsspannung Ug’ < 0 und einer oberen Grenze U, deren
Wert wieim Fall der NMOS-Logik von der Dimensionierung der Schaltung abhangt:

(Ug' - Upp) sLO<Ugp Uthp <Hi < Ug
Es gelten folgende Zahlenwerte:
Ug'=-25V Ugpp=-10V (- -05V)
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Dasfolgende Bild zeigt eine elementare | nverterschaltung mit PMOS-Transistoren. Sie besteht aus
einem Schalttransistor P; und einem zum Zweipol verdrahteten Lasttransistor P, . Man erkennt die
Symmetrie zu der im vorherigen Bild gezeigten Inverterschaltung mit NMOS-Transistoren. Dadie
NICHT-Funktion bekanntlich zu sich selbst komplementér i<t, realisieren beide I nverterschaltungen
dieselbe Schaltfunktion.

Legt man an die Eingangsklemme des T 0
PMOS-Inverters einen Potentialpegel , Hi*, Ue T U,
der hoher liegt als der (negative) Wert der

Schwellspannung des P-Kanals, so sperrt der —c[ =
Schalttransistor P;. Die Lastkapazitét C, P;

wird dann Uber den leitenden Lasttransistor
P auf den Pegel ,,Lo" geladen:

Hi: Ug> Uyp ﬂ P
Lo: Ua=(Ug'- Ump) <Ugp '
a t t luy <o

Bild 2.5: Inverterschaltung in statischer PMOS-Logik

Sobald die Ausgangsspannung auf den Pegel ,,Lo" abgesunkenist, erreicht die Gate-Source-Span-
nung des bisher leitenden Lasttransistors P, den Wert der Schwellspannung, d.h. er sperrt, so daf?
sein Sourcepotential U, nicht weiter absinken kann. Der sich einstellende Ausgangspegel U, kann
direkt als Eingangspegel fur gleichartige Schaltungsstufen dienen.

Nimmt im andern Fall der Eingangspegel den Wert ,Lo" an, liegt er also niedriger alsder (negative)
Wert der Schwellspannung, so leitet der Schalttransistor P, und entlédt (!) die Lastkapazitat C, bis
auf den Pegel ,, Hi*, der durch das Spannungsteilerverhaltnis aus dem Schalttransistor P; und dem
Lasttransistor P, gegeben ist. Dabei muf3 P; niederohmig sein, d.h. sein Kanalbereich muf3 breit
und kurz ausgelegt werden, P dagegen hochohmig, d.h. lang und schmal, da fir den Pegel , Hi*
gelten muf3:

Lo: Ue=(Ug’ - Ump) <Ump Hi:  Ua=Ups; > Upp

2.4.2 Statische CMOS-Logik

CMOS stent fur “ Complementary Metal-Oxide-Silicon*, d.h. fir die Verwendung von MOS-Tran-
sistoren beider, zueinander komplementarer N- bzw. P-Kanaltypen in einer gemeinsamen Schal-
tung. Auch hierbei handelt es sich um eine statische L ogik, obwohl keine Gleichstrome flief3en, da
die zueinander komplementadren MOS-Transistoren stets im Wechsel leiten bzw. sperren. Um den
Preis eines komplizierteren Fertigungsprozesses kombiniert man NMOS- und PMOS-Transistoren
und gewinnt dabei eine Schaltkreisfamilie mit extrem niedriger Verlustleistung.

Um auch kirzere Umschaltzeiten zu erreichen, kombiniert man die niederonmigen (!) Schalttran-
sistoren des NMOS-Inverters von Bild 2.4 mit denen des PMOS-Inverters von Bild 2.5 und erhélt
so diein Bild 2.6 gezeigte elementare Inverterschaltung in CMOS-Technik.
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Fir den Digitalbetrieb von CMOS-Schaltungen gelten zwei wohlunterschiedene Spannungspegel
mit den Schwellspannungen Uy, des N-Kanal sbzw. Uy,p des P-Kanalsals Trennwerten sowie dem
Bezugspotential (, Erdpotential“) als unterer und der Betriebsspannung Ug als oberer Grenze, d.h.
die Grenzwerte hangen im Gegensatz zur NMOS- oder PMOS-L ogik nicht von der Dimensionie-
rung der Schaltung ab:

O<Lo<[Upn=(Ug + Upp)] [Uihn = (Ug + Ugpp)] <Hi < Ug
Es sei an die Zahlenwerte erinnert:

Ugn =+ 1,0V Upp=- 10V

Ug=+25V

Legt man an die Eingangsklemme desim ne-
benstehenden Bild gezeigten CMOS-Inver-
ters einen Potentialpegel ,Lo", der niedriger

liegt als der Wert der Schwellspannung Uy o Ug>0
>0, so sperrt der Schalttransistor N4. Gleich-
zeitig wird der Schalttransistor P leitend, da _OI [ P,

sein Gatepotential dann niedriger liegt alsder
(negative) Wert der Schwellspannung Uyp <
0. Da er niederohmig ausgelegt ist und N;
sperrt, 1adt P; die Lastkapazitét C, relativ
rasch und vollsténdig auf den Wert der Be- _”:Nl _
triebsspannung Ug auf:

Lo: Ue<[Ugn = (U + Up)] Ue Ua

Hi: U,=Ug = =

Bild 2.6: Inverterschaltung in statischer CMOS-L ogik

Der sich einstellende Ausgangspegel ,Hi“ kann direkt als Eingangspegel fur gleichartige Schal-
tungsstufen dienen. - Nimmt im andern Fall der Eingangspegel denWert ,,Hi* an, liegt er al so hoher
als die Schwellspannung des N-Kanals, so leitet der ebenfalls niederohmig ausgel egte Schalttran-
sistor N, und entl&dt die Lastkapazitat C, relativ rasch und vollstandig (,Lo*), dajetzt der Schalt-
transistor Py sperrt:

Hi: Ue=Ug > [Un = (Ug + Unp)] Lo: Up=0

Nach Bild 2.7 erhdt man durch die Kombination der topologisch komplementaren Reihen- bzw.
Parallel schaltungen von technologisch komplementaren CMOS-Schalttransistoren die NOR- und
die NAND-Schaltung in statischer CMOS-L ogik.

Dieim folgenden Bild links gezeigte , NOR-Schaltung“ entspricht im einen Betriebszustand dem
obigen CMOS-Inverter mit leitendem NMOS-Transistor (bei gleichzeitig sperrendem PMOS-Tran-
sistor), wenn das Potential von mindestens einer der Eingangsklemmen Uber die Schwellspannung
Uinn @ngehoben wird. Dadurch wird die Lastkapazitét C, Gber mindestens einen der parallel ge-
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schalteten, niederohmig ausgelegten NMOS-Transistoren relativ rasch und vollstandig entladen,
da mindestens einer der in Reihe geschalteten PMOS-Transi storen sperrt:

Hi: Ug oder Ugp > Uy Lo: Uy =0<Uyn (0.1)
Ug>0 ? Ug>0
Uel ol P i
' Uer P3 Fa

Uez °| o, O[ Ol[

e+ é

Ny N2
U U
vy . a -y a
T L L
Bild 2.7: Realisierung von Schaltfunktionen in statischer CMOS-L ogik
a) NOR-Schaltung (positive L ogik) b) NAND-Schaltung (positive Logik)

Im anderen Betriebszustand entspricht die Schaltung dem Inverter mit sperrendem NMOS-Transi-
stor (bel gleichzeitig leitendem PMOS-Transistor), wenn das Potential aller Eingangsklemmen
unter die Schwellspannung Uy, abgesenkt wird. Dadurch wird die Reihenschaltung der niederoh-
mig ausgelegten PMOS-Transistoren leitend und 1&dt die Lastkapazitét C, relativ rasch und voll-
sténdig auf den Wert der Betriebsspannung auf, da alle parallel geschalteten NMOS-Transistoren
sperren:

Lo: Ug und Ug < Uy Hi: Ug =Ug > Uyn (0.2)

Somit realisiert dieim obigen Bild links gezeigte CMOS-Schaltung in positiver Logik eine NOR-,
in negativer eine NAND-Funktion.

Die im obigen Bild rechts gezeigte ,, NAND-Schaltung” entspricht im einen Betriebszustand dem
CMOS-Inverter nach Bild 2.6 mit leitendem NMOS-Transistor (bel gleichzeitig sperrendem
PMOS-Transistor), wenn das Potential aller Eingangsklemmen tber die Schwellspannung Uy
angehoben wird. Dadurch wird die Reihenschaltung der niederohmig ausgel egten NMOS-Transi-
storen |leitend und entl&dt die L astkapazitét C, relativ rasch und vollstandig, daalle parallel geschal -
teten PMOS-Transistoren sperren:

Hi: Uel und Uez > UthN Lo: Ua2 =0< UthN (03)
Im anderen Betriebszustand entspricht die Schaltung dem Inverter mit sperrendem NMOS-Transi-
stor (bei gleichzeitig leitendem PMOS-Transistor), wenn das Potential von mindestens einer der

Eingangsklemmen unter die Schwellspannung Uy, abgesenkt wird. Dadurch wird die Lastkapa-
zitdt C, Uber mindestens einen der parallel geschalteten, niederohmig ausgelegten PMOS-Transi-
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storen relativ rasch und vollstéandig auf den Wert der Betriebsspannung aufgeladen, da mindestens
einer der in Reihe geschalteten NMOS-Transistoren sperrt:

Lo: Ug oder Ugp < Uy Hi: Ugp=Ug > Uy (0.4)
Somit realisiert die im vorherigen Bild rechts gezeigte CMOS-Schaltung in positiver Logik eine
NAND-, in negativer eine NOR-Funktion.

Fassen wir die Vorteile der CMOS-Schaltkrei sfamilie zusammen:

* Niedrige Verlustleistung, da tber die zueinander komplementaren, im Gegentakt leitenden bzw.
sperrenden MOS-Transistoren keine Gleichstrome flief3en. Beim Umschalten wird nur Wechsel -
stromverlustlei stung umgesetzt.

» Hohe Schaltgeschwindigkeit durch die Kombination ausschliefdlich niederohnmiger Schalttransi-
storen, d.h. dank der Vermeidung hochohmiger L astwiderstande.

» Hoher Storabstand durch Aufladen der zu treibenden Lastkapazitét auf den vollen Wert der Be-
triebsspannung bzw. deren vollsténdiges Entladen dank der Vermeidung eines Spannungsteilers.

2.4.3 Dynamische Domino-Logik

Wegen der inhérenten Gatekapazitaten von M OS-Transi storen konnen die damit aufgebauten Schal -
tungen auch dynamisch betrieben werden. Sie entwickeln dann keine statische Verlustleistung, da
im Betrieb keine Gleichstrome flief3en. Die hier vorgestellte Domino-Schaltungstechnik wird in
CMOS-Technologie redisiert, d.h. sie verwendet MOS-Transistoren vom N-Kanal- und vom P-
Kanaltyp. Deshalb kénnen die Schaltungen mit einem einzigen Taktsignal betrieben werden.

a) Ug>0 Ug>0 b) Ug>0 Ug>0
Takt d [T [T Takt d [T [T
— P P —_— P. P
< Uy _OI Y U _OI Y U > UthN _OI Y U _OI Y U
\' a \' a
Ue Ue > UthN
| Hw v | H
C C
p p
e | F e | £
Bild 2.8:  Grundschaltung in Domino-Logik.
a) unbedingte Vorladephase; b) bedingte Eval uierungsphase

Den Aufbau einer Grundschaltung in Domino-Logik zeigt das obige Bild. Ein PMOS-Transistor
Py undeinNMOS-Transistor Ng werden gemeinsam von einem Taktsignal ® angesteuert; sieleiten/
sperren jeweilswechsel seitig, so dal3 kein Gleichstrom flief3t. Zu diesem, im Gegentakt arbeitenden
CMOS-Transistorpaar ist der von einem Eingangssignal U, angesteuerte Schalttransistor N4 in
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Reihe geschaltet. DieAusgangsstufe ist ein CMOS-Inverter, dessen inharente Gatekapazitat Cy, fur
den dynamischen Betrieb der Schaltung verwendet wird. Dabei sind zwei Phasen zu unterscheiden:

» Wéhrend der ersten, der Vorladephase gilt:
Lo: Taktpegel (ORS [UthN = UB + UthP] (05)

Der Vorladetransistor P, leitet und | &dt die Kapazitét C,, dader Evaluierungstransistor Ng sperrt,
unabhéangig vom Leitungszustand des Schalttransistors N, auf den Wert der Betriebsspannung
Ug =+ 2,5V auf (Bild 2.8a). Desnalb leitet der Transistor Ny des Ausgangsinverters und senkt
den Ausgangsspannungspegel (,, unbedingt”) auf Erdpotential ab:

U, beliebig Lo: Uy=0<Uyy (0.6)
» Wahrend der zweiten, der Evaluierungsphase gilt:
Hi: Taktpegel ® > [Uyn = Ug + Uypl (0.7)

Der Evaluierungstransistor Ng | eitet und entladt, fall sabhéngig vom Eingangssignal U der Schalt-
transistor N, ebenfalls leitet, die Kapazitat C,, da der Vorladetransistor Py, sperrt (Bild 2.8b).
Dann leitet der Transistor Py des Ausgangsinverters und hebt den Ausgangsspannungspegel (,, be-
dingt*) auf den Wert der Betriebsspannung Ug an:

Hi: Ug=Ug > Uy Hi: Uz=Ug > Uy (0.8)
Andernfalls, wenn der Schalttransistor N4 sperrt, kann der Eval uierungstransi stor Ng die K apazitét
Cp nicht entladen. Dann bleibt der Transistor Ng des Ausgangsinverters leitend und halt den
Ausgangsspannungspegel (,, bedingt*) auf Erdpotential:

Lo: Ug=0< Uy Lo: Uy=0<Uyy (0.9

Man erkennt, dal3 die Grundschaltung in Domino-L ogik die Schaltfunktion der ,, Identitét” realisiert.

Sieist, wie auch eine logische Verkniipfung mehrerer Eingangssignale, nur wahrend der Evaluie-
rungsphase gultig.

a) Ug>0 b) Ug>0

Taktq)—ol[TPV 'I;aktql | P,
. b—— a Y b— a

€ - N2|  Nj

Bl

. i

Bild2.9: Domino-Logik in CMOS-Technologie.
a) UND-Schaltung (positive Logik); b) ODER-Schaltung (positive Logik).
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Schaltet man némlich zwischen das vom Taktsignal @ angesteuerte CMOS-Transistorpaar eine
Reihen- oder eine Parallelschaltung von NMOS-Schalttransistoren (oder bel komplizierteren
Schaltfunktionen auch direkt ein komplexeres Netzwerk aus NMOS-Transistoren), so erhélt man
in positiver Logik eine UND-Schaltung (im obigen Bild links) bzw. eine ODER-Schaltung (im
obigen Bild rechts). Aufgrund des Ausgangsinverters, der die fir den dynamischen Betrieb erfor-
derliche Kapazitéat beisteuert und auf3erdem eine Signalverstarkung liefert, sind die in Domino-
Logik realisierten Schaltfunktionen grundsétzlich beaht. Schaltet man mehrere Domino-Stufen in
einer Kette hintereinander, so setzen sich die Verknipfungen der Eingangssignale von Stufe zu
Stufe fort (daher der Name dieser Schaltungstechnik).
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2.5 MOS-Speicherschaltungen

2.5.1 Speichermatrizen (RAM)

0..01 « nBit
H ‘ - 2™ >
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| | |
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2™ : 1 Multiplexer /

Lesen | Schreiben —»Shreib/Lese-
0|1 —m| Verstarker

o

Bild 2.10: Blockschaltbild eines Schreib/L ese-Speichers mit wahlfreiem Zugriff (RAM)

DieTechnologie der Mikroelektronik erlaubt es, Speicherzellenin extrem grof3er Anzahl auf einem
gemeinsamen Silizium-Chip zu integrieren: Stand der Technik sind mehrere Millionen Bits pro
Chip. Die Speicherzellen sind geometrisch in Zeilen und Spalten angeordnet. Eine Zeile von Spei-
cherzellen kann z.B. ein Wort enthalten, dessen einzelne Bits sich in unterschiedlichen Spalten
befinden. Man bezeichnet daher die Zeilen der Speichermatrix auch a's,, Wortrichtung”, die Spalten
als , Bitrichtung”. Selektiert man gleichzeitig eine Zeile und eine Spalte der Speichermatrix, so
erhdlt man den direkten Zugriff auf die Speicherzelle am Schnittpunkt. Dies wird als wahlfreier
Zugriff bezeichnet (,, Random Access Memory”, RAM).

Die Selektion einer Speicherzelle auf einem hochstintegrierten Speicherchip kann nicht direkt er-
folgen. Eine Speichermatrix der Grofie

2" Zeilen (2™ Spalten = 2MM Beispiel: 210410 = 220 = 1 MegaBit,
die also etwa einer Million Speicherzellen enthélt, wiirde sonst
2" Zeilen + 2™ Spalten = 2" + 2™ 2104210 =1 024 + 1.024 = 2.048 (!)
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auldere Anschl tisse bendtigen, was technol ogisch nicht machbar ist. Codiert man jedoch die Zeilen-
und Spaltenadressen (,, Wort- bzw. Bitadresse”) im Dualcode, so gilt fur die Anzahl der &uleren
AnschlUsse:

Id2" +d2m =n+m 10+ 10=20.

Zur Selektion genau einer Wort- bzw. einer Bitleitung missen die dual codierten Wort- bzw. Bit-
adressen in einen ,, 1-aus-n”-Code umgewandelt werden, bei dem definitionsgemald immer nur ein
Bit aktiv ist. Daher enthalten héchstintegrierte Speicherchips am Rande der eigentlichen Speicher-
matrix stets auch Decoder- und Multiplexerschaltungen, um die Anzahl der auf3eren Anschliisse
des Chips in der geschilderten Weise niedrig zu halten, wie das vorhergehende Bild zeigt.

Dasfolgende Bild zeigt das Layout einer Speichermatrix mit wahlfreiem Zugriff (RAM).

i

-Jrf.'.nTi’ m

: :!ﬂﬂ L] |

\El mifp

Bild 2.11: Chi p—Layout eines Schrei b/L ese-Speichers mit wahlfreiem Zugriff (32[64 bit RAM)

2.5.2 Statische MOS-Speicherzelle

Zur EinfUhrung in die Schaltungstechnik zeigt das folgende Bild die Implementierung eines unge-
takteten Basis- und eines zustandsgetakteten Auffang-Flipflops mit logischen Gattern. Die Reali-
sierung kann grundsétzlich in allen bekannten Schaltkrei stechnol ogien erfolgen; hier wird die Rea-
lisierung in statischer NMOS-Logik gezeigt.
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Bild 2.12: Basis-Flipflop (links) und Auffang-Flipflop (rechts). a) b) Schaltsymbole; c) d) Imple-
mentierungen mit logischen Gattern; €) f) Realisierungen mit NMOS-Transistoren.

Das folgende Bild zeigt die Schaltung einer bistabilen Speicherzelle, die aus sechs MOS-Transi-
storen besteht (* Six-Device Cell”). Es handelt sich um MOS-Transistoren mit N-Kanal vom An-
reicherungstyp. Dieser Transistortyp wird nicht nur am meisten verwendet, sondern mit ihm &6t
sich auch dieWirkungsweise der Speicherzelle anhand positiver Spannungswertein positiver Logik
erlautern, was das Verstandnis erleichtert. Die Speicherzelle kann mit einer Betriebsspannung Ug
=+ 2,5V betrieben werden.
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WL e N = S R
1

N3 Dj >< D,
BL, Ny | — N, BL,

.||| T T _____

S 4|iN7 Ng |f R

Bild 2.13: Schaltbild der statischen,, Sechs-Transistor-Speicherzelle” mit Lasttransistoren Ng, Ng.
WL - Wortleitung; BL 4, BL, - Bitleitungspaar. - Literatur: J. S. Schmidt, “Integrated
MOS Random-access Memory”, Solid-State Design, 21-25 (1965).

Bild 2.14: Layout der statischen , Sechs-Transistor-Speicherzelle”.
Literatur: R. Remshardt, U.G. Baitinger: ,A High Performance Low Power 2048-bit
Memory Chipin MOSFET Technology And ItsApplication”, |EEE J. Solid-State Cir-
cuits, Vol. SC-11, No.3 (June 1976), pp. 352-359
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a) Betriebsart ,, Speichern®

Wenn die Speicherzelle unselektiert ist, liegt das Wortleitungspotential WL unterhalb der Schwell-
spannung; dann sind die Ein/Ausgangstransistoren N3 und N4 gesperrt:

Lo: UWL =0< UthN =+10V

Leitet Schalttransistor N4, was dem gespeicherten Zustandsbit Q = 1 entsprechen mége, so liegen
der Drainknoten D, und damit das Gate des Schalttransistors N, auf dem Potential ,,Lo“, d.h.
unterhalb der Schwellspannung, da der Schalttransistor N, niederohmig gegentiber dem L asttran-
sistor Ng ausgelegt ist. Dadurch wird Schalttransistor N, gesperrt. Das hat zur Folge, dal? der
Drainknoten D, Uber den Lasttransistor Ng auf das Potentia ,,Hi“ angehoben wird.

Lo: Upg <Upng Hi:  Upy = (Ug - Une) > Uina

Dadurch bleibt Schalttransistor N leitend, wie urspriinglich angenommen. - In gleicher Weise kann
sich das komplementére Zustandsbit Q = 0 stabil halten, da die Schaltung symmetrisch ist.

b) Betriebsart ,Lesen”

Die Speicherzelle wird selektiert, indem das Potential der Wortleitung WL auf den Wert der Be-
triebsspannung Ug angehoben wird:

Hi: Uy =Ug > Uy

Dadurch werden die Ein/Ausgabetransistoren Nz und N4 leitend und verbinden die Zellknoten D4
und D, mit den Bitleitungen BL ; bzw. BL ,, diebeide auf mindestens denWert der Betriebsspannung
aufgeladen sein mogen:

Hi: UBL].ZUB Hi: UBLZZ UB

Leitet Schalttransistor N, wahrend Schalttransistor N, sperrt, was dem gespeicherten Zustandsbit
Q = 1 entsprechen moge, so flief3t tber den relativ hochohmigen Ein/Ausgabetransistor N3 in Rethe
mit dem niederohmigen Schalttransistor N4 ein Strom, so daf3am Zellknoten D, der Potential pegel
,L0" erhalten bleibt, wahrend der geséttigt leitende Ein/Ausgabetransistor N, den Zellknoten D,
auf dem Potentialpegel ,Hi* zumindest hélt.

Lo: Upz <Uin2 Hi:  Up, = (Ug - Uthng) > Umnng
Wesentlichist, daf3 das Gatepotential U, desalsleitend angenommenen Schalttransistors N4 sogar
ansteigt, so dal? sich Uber den Ein/Ausgabetransistor N3 ein kréftiger Lesestrom ergibt, der aus
Bitleitung BL 1 nachgeliefert wird. Er kann mit einem selektiv an das Bitleitungspaar angeschlos-

senen stromempfindlichen Differenzverstarker abgefihlt werden. - Istin der Zelle das komplemen-
tare Zustandsbit Q = 0 gespeichert, flief3t der L esestromin symmetrischer Weise aus Bitleitung BL .

c) Betriebsart , Schreiben*

Sall in die Speicherzelle geschrieben, d.h. das Zustandsbit Q [ {0, 1} geandert werden, wird sie
wie beim Lesen durch Anheben des Potentials der Wortleitung WL selektiert, so dal3 die Ein/
Ausgabetransistoren N3 und Ny leiten:

Hi: UWL = UB > UthN
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Soll der Schalttransistor N, leitend werden, was wie oben angenommen dem gespeicherten Zu-
standsbit Q = 0 entspricht, so mul3 die Bitleitung BL, auf Erdpotential, d.h. unter den Wert der
Schwellspannung abgesenkt werden, wahrend die Bitleitung BL,; mindestens auf dem Wert der
Betriebsspannung bleibt:

Hi: UBL].Z UB Lo: UBL2:0< UthN

Der gesdttigt leitende Ein/Ausgabetransistor N5 hebt das Potential des Zellknotens D4 und damit
das Gatepotential von Schalttransistor N, Gber den Wert der Schwellspannung an, so dal3 dieser
leitet, wahrend Schalttransistor N, gesperrt wird, da der Zellknoten D, Uber den linear leitenden
Ein/Ausgabetransistor N4 das niedrige Potential der angeschlossenen Bitleitung BL, annimmt :

Hi:  Upg = (Ug - Upng) > Uiz Lo: Upp=Ug 2=0<Uyn1

Man erkennt, dal3 die Geschwindigkeit, mit der die statische Speicherzelle beim Schreiben ihren
Zustand éndert, offenbar von der Aufladung der Gatekapazitét desjeweils einzuschaltenden Schalt-
transistors Uber einen Ein/Ausgabetransi stor abhangt. Das entspricht ganz der Wirkungswei se einer
Inverterschaltung. Mit anderen Worten: Diese Speicherzelle wird von zwei kreuzgekoppelten In-
vertern gebildet, die aus Schalttransistor N1 und Ein/Ausgabetransistor N3 bzw. Schalttransistor N,
und Ein/Ausgabetransistor N4 bestehen. - Die Aufgabe der Lasttransistoren N und Ng besteht
lediglich darin, wahrend des Ruhezustands der Speicherzelle die Leckstrome an den Drainknoten
D, bzw. D, nachzuliefern (die dort zum Substrat abflief3en), damit das Gatepotential des jeweils
leitenden Schalttransistors nicht unter die Schwellspannung absinkt, so dal3 er leitend bleibt.

Die Verlustleistung dieser Speicherzelle wird hauptséchlich in dem Lasttransistor N5 oder Ng in
Warme umgesetzt, der sichin Reihe zum jeweils leitenden Schalttransistor befindet, daan ihm fast
die gesamte Betriebsspannung (Ug - Up; = Up) abfélt (leider nutzlos, da er keinen Leckstrom
nachzuliefern hat, weil er zur entladenen Gatekapazitét fuhrt). - Eine elegante Methode, dies zu
vermeiden, besteht darin, die Lasttransistoren mit dem komplementéren P-Kanaltyp auszufihren.
Dadurch wird gewahrleistet, dald Lasttransistor Ng sperrt, wenn Schalttransistor N, leitet, so dal
praktisch keine Gleichstromverlustleistung verbraucht wird, wéhrend andererseits Lasttransistor
Ng leitet, um den Leckstrom an der aufgeladenen Gatekapazitét des leitenden Schalttransistors N4
zu kompensieren. Man erkauft den Vorteil einer extrem niedrigen Verlustleistung der integrierten
Speichermatrizen durch den komplizierteren CM OS-Herstellungsprozefs.

2.5.3 Dynamische MOS-Speicherzelle

Eine besonders sparsame und daher extrem kleine, dynamische Speicherzelle zeigt das nachfol gen-
de Bild. Sie besteht aus einem Schalttransistor N; und einem Speicherkondensator C, der techno-
logisch als MOS-K apazitdt eines NMOS-Transistors ausgef iihrt wird (“One-Device Cell”).

Die Ein-Transistor-Speicherzelle wird selektiert durch Anheben des Potential s der Wortleitung WL
Uber den Wert der Schwellspannung Uy, SO dal3 der Schalttransistor N4 leitet und den Speicher-
kondensator C mit der Bitleitung BL verbindet. Diese nimmt das Potential des Speicherkondensa-
tors C an und kann es an den Eingang eines an die Bitleitung BL angeschl ossenen spannungsemp-
findlichen Leseverstérkers weitergeben, dessen Eingangskapazitét in der Regel leider relativ grol3
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ist im Vergleich zum Kapazitdtswert des Speicherkondensators C. Es ist unbedingt erforderlich,
eine gelesene Zelle unmittelbar danach aufzufrischen.

Der Vorteil der dynamischen Ein-Transistor-Speicherzelle liegt in ihrer minimalen Zellflache; er
muf3 jedoch durch entsprechend aufwendige Peripherieschaltkreise erkauft werden. Die niedrige
Verlustleistung erlaubt die Integration extrem grof3er Speichermatrizen auf gegebener Chipflache.
Wegen des erforderlichen komplizierten Auffrischvorgangsist die Zugriffszeit relativ hoch.

Man erkennt durch den Vergleich mit der statischen Sechs-Transistor-Speicherzellenach Bild 2.17,
dal? die dynamische Ein-Transi stor-Speicherzelle darin enthalten ist.

WL '

BL

Bild 2.15: Schaltbild der dynamischen , Ein-Transistor-Speicherzelle® mit Ladungsspeicher (C).
WL - Wortleitung; BL - Bitleitung.
Literatur: L. Cohen et al., ” Single-transistor Cell Makes Room for More Memory on
an MOS Chip”, Electronics, 69-75 (1971).

Bild 2.16: Layout der dynamischen , Ein-Transistor-Speicherzelle”.
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WL

DS

BL, 1 BL,

=

Bild 2.17. Statische ,, Sechs-Transistor-Speicherzelle€”; hervorgehoben ist die darin enthaltene
dynamische , Ein-Transistor-Speicherzelle”.
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3 Logikebene Prof. Dr.-Ing. U.G. Baitinger

3.1 Die Darstellung von Schaltfunktionen

Die Boolesche Algebra lehrt den Umgang mit diskreten (,wohlunterschiedenen®), digitalen (,ab-
zéhlbaren®*) Werten. Die Schaltalgebra ist ein binarer (,zweiwertiger*) Sonderfall der Booleschen
Algebra: Eine Variabla kann nur zwei verschiedene Weatel {0,1} annehmenSchaltfunktionen

sind daher bindre Funktionen binarer Variabler; ihr Wertebereich ist dahingehend eingeschrankt.
Da auch die Aussagenlogik fir eine logische Aussage nur zwei Vertgalsch, wahr} zulaft,

ist auch sie ein binarer Sonderfall der Booleschen Algebra. Deshalb wird bei schaltalgebraischen
Begriffen haufig das Adjektiv ,logisch* hinzugefligt. Folgende Begriffe sind deshalb aquivalent:

 Schaltfunktionen sind ,logische Verknlipfungen®;
 Schaltglieder heil3en auch ,logische Gatter*;
» Funktionstabellen werden auch ,Wahrheitstabellen“ genannt.

Schaltfunktionen kénnen durch Listen, Tafeln, Tabellen oder Matrizen dargestellt werden; beson-
ders anschaulich ist ihre Darstellung als Graph. Im Folgenden sollen détednentarerSchalt-
funktionen eingefiihrt und durch ihre Relationsgraphen dargestellt werden.

3.1.1 Der Funktionsgraph

Fur die Schaltfunktion dédegationy = x gilt, daB der Funktionsweyt= 1 ist, wenn die Eingangs-
variablexy = 0 ist; sonst gily = 0.

X=1{0.1} - Y
~ © =
[

X O X \

Bild 3.1: Relationsgraph der Negatigr f(Xg) = Xg

Far die Schaltfunktion ddfonjunktiony = (x; & Xg) gilt, dafl3 der Funktionsweyt= 1 ist, wenn
die erste Eingangsvariabtg= 1 unddie zweite Eingangsvarialig = 1 ist; sonst gily = 0.

X ={0,1}?

XOX

Bild 3.2:  Relationsgraph der Konjunktigrn= (X; & Xo)
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Far die Schaltfunktion dddisjunktiony = x; U Xg gilt, daf3 der Funktionsweyt= 1 ist, wenn die
erste Eingangsvariablg = 1 oderdie zweite Eingangsvariabkg = 1 istoder beide Eingangsva-
riablenx; = X = 1 sind; sonst gily = 0.

Y {0,1}

Bild 3.3:  Relationsgraph der Disjunktign= (x; [ Xg)

Die Graphen lassen erkennen, dal3 SchaltfunktiprefiX) eindeutige Abbildungeft X - Y der
ElementeX O X einer Definitionsmeng& auf die Elementg 1Y einer Zielmengg' sind. Zur
Unterstitzung des Entwurfs digitaler Schaltungen auf der Logikebene wurde eine Flle weiterer
Darstellungsformen entwickelt, von denen nachfolgend die wichtigsten vorgestellt werden sollen.

3.1.2 Belegung und Indizierung

Man fal3t dien Eingangsvariabler; einer Schaltfunktiorf als Komponenten einesTupels auf

und bezeichnet diesen als ,Eingangsbeleguqdér Schaltfunktion, wie das folgende Bild zeigt.
Werden die Eingangsvariablenauf spezielle Werte; U {0,1} festgelegt, so erhalt man eine
spezielle EingangsbeleguXg Um den Index zu ermitteln, liest man die Werte der Komponenten
X;j wie die gewichteten Stellen einer Dualzahl (GrundBgh# 2), die man dann zur kompakteren
Darstellung in einen Indgxn einem Zahlensystem mit einer héheren Grundzahl umwandelt, z.B.
im Oktalsystem (GrundzaRg = 2%) oder im Hexadezimalsystem (GrundzBRyl= 2.

allgemeine Belegung:

X = (Xpy - oXjy « - X0y X1 )5 Xy
spezielle Werte: « %X' f y
|
X = (Xnj - - - Xy - - - X5 X5 )5 % 0 {0,1} Dx
n

Bild 3.4: Eingangsbelegung einer Schaltfunktioy = f( X)

Fur die MengeX aller Belegungen und deren Machtigk&{tl] d.h. die Anzahl aller Belegungen
X gilt bein Eingangsvariablen:

X ={XDU{01}i=1..n} XO=2"
Beispiel 3.1.1:  HextupelX = (Xg, X5, X4, X3, X2, X1)
Es sein = 6. Der obige Hextupel ist eine allgemeine Eingangsbelegung, gegeben sei die spezielle

Eingangsbelegung; = (0, 1, 1, 0, 1, 0). Gesucht ist der zugehdrige IndexOktalsystem. Liest
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man die spezielle Eingangsbelegihgls Dualzahl (011 01@) so kann man diese in die Oktalzahl
32 umwandeln, d.h. es gjlt= 32 undX; = X3,. Aus der kompakten Darstellupg 32 lassen sich

die binaren Werte der Eingangsvariabtgnd.h. die Komponenten des 6-Tupels im gegebenen Fall
leicht rekonstruierenxg = 0,X5 = 1,X4 = 1,Xx3=0,% = 1,%x; = 0.

3.1.3 Die Funktionstabelle (,Wahrheitstabelle)

Schaltfunktionen haben eine endliche Definitionsmenge, d.h. die Nieallgr BelegungeiX ist
endlich: (X O= 2" . Sie kénnen daher in Tabellenform dargestellt werden. Man schreibf'alle 2
EingangsbelegungeX in aufsteigender Reihenfolge des Indlemtereinander und schreibt den
zugehdorigen Funktionsweyt[] {0,1} jeweils daneben, so dal} sich die ,Funktionsspalte” der be-
treffenden Schaltfunktiog; = f(X) ergibt. Bein Eingangsvariablen hat die Wahrheitstabelle 2
Zeilen und es sind™mit m = 2" verschiedene Funktionsspalten moglich. Das folgende Bild zeigt
die Struktur der Wahrheitstabelle fur Schaltfunktionenmsitl EingangsvariableiX = (xg). Sie

hat 2' = 2L = 2 Zeilen und es sind?2 4 unterschiedliche Funktionsspalten mdglich, die wie folgt
bezeichnet werden:

Yo Konstante 0 .

- J X0 Yo Y1 Y2 V3
y; ldentitat X0
y> Negation X0 0 0 o o 1 1
y3 Konstante 1 1 1 0 1 0 1

Bild 3.5: Wahrheitstabelle aller Schaltfunktionen mit 1 Eingangsvariablen

Das nachste Bild zeigt die Struktur der Wahrheitstabelle flr Schaltfunktionen=riEingangs-
variablen:X = (x;, Xp). Sie hat 2 = 22 = 4 Zeilen und 2= 16 mégliche Funktionsspalten. Die
meisten Funktionsspalten werden mit charakteristischen Namen bezeichnet. Man findet die boole-
schen Grundfunktionen dilegation, derKonjunktionund demDisjunktion, aber auch komplizier-

tere Schaltfunktionen, wie die Antivalenz (,exklusives Oder“) und die negierten Schaltfunktionen
NOR und NAND:

Yo Konstante 0 Ye Konstante 1
y; Konjunktion % & Xo ye NAND-Funktion X1 & Xg
Yo - yp Implikation X1 - Xg
y3 bejahte Variable X1 Yc nhegierte Variable X1
Ya - yg Implikation X1 « Xg
ys bejahte Variable X0 ya negierte Variable Xo
Yg Antivalenz X1 O Xg Yo Aquivalenz X1=Xg
y; Disjunktion % 0% yg NOR-Funktion X1 O%g
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] X1 Xp Yo Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Yo YA ¥YB ¥Yc YD YE YF

0 0 0 0O 0 0O 0O O OO O 11 1 1 1 1 1 1

1 0 1 0O 0 001 1 1 1 0O 0 0 01 1 1 1

2 1 0 0O 01 1 0 0 1 1 0O 01 1 0 0 1 1

3 1 1 0 1 01 0 1 0 1 0 1 01 0 1 O0 1
Bild 3.6: Wahrheitstabelle aller Schaltfunktionen mit 2 Eingangsvariablen

X4

n=0 n=1 x,
n=2 X1 n=3 X1 Xp
X2 X2
X3 X3
n=4 X1 Xp
X2
X2 X4
X4
X3 X3
N=5 x; x X1 X1
X2
X2
X3 X3 X3 X3
X5 X5 X5 Xg
Bild 3.7: Erzeugung Karnaugh-Veitch-Diagramme (,KV-Diagramme®)

fur Schaltfunktionen mibh = 0 . . 5 Eingangsvariablen
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3 Logikebene

3.1.4 Das Karnaugh-Veitch-Diagramm

Eine Funktionstabelle enthalt zwar die vollstandige Funktionsbeschreibung einer Schaltfunktion,
doch laf3t sie die Nachbarschaften zwischen zwei speziellen EingangsbelegungeX), die die
Grundlage zur Minimierung von Schaltfunktionen sind, nicht sofort erkennen. Dazu wurde das
zweidimensional&arnaugh-Veitch-Diagramrantwickelt (,KV-Diagramm®). Das vorhergehende

Bild zeigt, wie KV-Diagramme fur eine schrittweise Zunahme der Anzah0 der Eingangsva-
riablenx; durch Spiegelung an einer abwechselnd vertikalen bzw. horizontalen Achse konstruiert
werden. Man stellt allerdings auch fest, dal? sief&i5 Eingangsvariablen unhandlich grof3 und
unubersichtlich werden.

Im KV-Diagramm

 werden die Zeilen und Spalten abwechselnd mit den bejahten Variable desIsX = (X, , .
.., %, ..., X, X, ) bezeichnet (negierte Variablen gelten fir die jeweils benachbarten, unbe-
zeichneten Zeilen bzw. Spalten). Dadurch wird jeder speziellen Eingangsbelegimigeld in
der quadratischen oder halbquadratischen Anordnung von Feldern zugeordnet..

* In das Feld, das einer speziellen Eingangsbelegumtspricht, tragt man den zugehdrigen
Funktionswerty = f(X;) [l {0,1} ein. (Die Felder kdnnen zusatzlich mit den Indizegkenn-
zeichnet werden, obwohl die Lage eines Feldes durch die zugehdrige Eingangsbélegung
deutig bestimmt ist.)

3.1.5 Der Strukturausdruck

Jede Schaltfunktion kann durch eine Gleichung der Form
y=[(abOb)d(cOd)]

dargestellt werden. Die rechte Seite der Gleichung ist ein ,Strukturausdruck” (auch ,boolescher
Ausdruck” genannt). Dabei stehen die Symbdléir beliebige, in der Regel unterschiedliche
.pboolesche’Operatoren wie zum Beispiel:

« die elementaren Schaltfunktionen Konjunktion & und Disjunkiion
« oder die NOR-Funktion &nd die NAND-Funktiord,
« aber auch fir kompliziertere Schaltfunktionen, wie die Antivalémer die Aquivalenz .

Die im Strukturausdruck enthaltenen Buchstaben Gpdrandend.h. entweder bindre Variable

oder, rekursiv, wiederum Strukturausdrticke der obigen Form. Zwei durch einen Operator verknipf-
te Operanden bilden eindierm Man erhalt die Funktionsspalte der Wahrheitstabelle oder den
Inhalt des KV-Diagramms fir eine spezielle Schaltfunktion, indem man alle Eingangsbelegungen
X; nacheinander in den Strukturausdruck der Schaltfunktion einsetzt und die zugehérigen Funkti-
onswertey = f(X;) [ {0,1} ausrechnet.

Die Bezeichnung ,Strukturausdruck” bedeutet, dal3 sie nach folgenden Regeln in eine jeweils ge-
staltgleiche (,isomorphe”) Struktur mit logischen Gattern umgewandelt werden kénnen:

» JedeKlammerentspricht einem logischeépatter,
« jederOperatorentspricht deBSchaltfunktiordes betreffenden Gatters;
* jederOperandentspricht eineEingangsklemmdes Gatters.
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Beispiel 3.1.2:

Gegeben sei der Strukturausdryck { [ (%) & X1 ] O[ % & (x1) 1}
gesucht ist die isomorphe Schaltnetzstruktur. Das folgende Schaltbild zeigt das Ergebnis.

=i

X

X2 X1

[ X1

% ] I

&
! X

Bild 3.8: Zum gegebenen Strukturausdruck isomorphe Schaltnetzstruktur

Zur Schreibweise
Symbole &1+ o .logisches Produkt” o Konjunktion
Symboleld + o .logische Summe” o Disjunktion
Konjunktion (&) und Disjunktion[()) sindgleichberechtigt®peratoren, so dal3 Prioritaten explizit
in Klammern gesetzt werden mussen:
Y= (X & %) O(% & Xq)

Um die Isomorphie zwischen einem Strukturausdruck und der entsprechenden Schaltnetzstruktur
deutlich zu zeigen, kann eine Schreibweise mit besonders aufwendiger Klammersetzung verwendet
werden:

y={[(%)&x]0[*&(%)]}
In der englischsprachigen Literatur findet man auch folgende Symbole fir die betr. Operatoren:

y=(=%0Ox ) O(X02X%) Yy="X: Xy + Xo- X

Letztere erinnert an die Bezeichnung ,logisches Produkt” fir die Konjunktion (Symbdle:)&,

und ,logische Summe” flir die Disjunktion (Symbadle#). Aulerdem wird mit dieser Schreibweise
das in der Arithmetik gultige Prinzip: ,Punktrechnung geht vor Strichrechnung” eingefiihrt, so daf3
die Konjunktion stillschweigend Prioritat vor der Disjunktion erhalt, was die Klammersetzung
vereinfacht. Damit kommt man zu der im folgenden meist gebrauchten Kurzschreibweise:

y= )_(2X1 DXZ)_(]_
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3 Logikebene

3.1.6 Ausgewahlte Schaltfunktionen

Es laRt sich zeigen, dal alle logischen Verknupfungen der Schaltalgebra ausschlief3lich mit den drei
Schaltfunktionen Negatiom({, Konjunktion (&) und Disjunktion[() dargestellt werden kénnen.

Diese Operatoren bezeichnglementare Schaltfunktionesie stellen eilBasissysterder Schalt-

algebra dar. Sie sind im folgenden Bild zusammengestellt.

Xo |y=%q X0 Negation
0 1 —_— o——
0 ! 110 X0 y
X =(x1 & XO
1 X |Y=(X1&Xg) Konjunktion
0 O 0 0 0
0o 1 0 0 & —VY
10| o xx |01 &
1 1 1
X =(x U X0
1 X |Y=(x0x9) Disjunktion
0O O 0 0 1
0 1 1 0 v
1 0 1 X1 1 (1 &
1 1 1

Bild 3.9:  Funktionsbeschreibungen und Gattersymbole der drei elementaren Schaltfunktionen

Technisch wichtige Schaltfunktionergeben sich aus der Tatsache, dal3 ein elektronischer Verstar-
ker die Schwingungsphase zwischen sinusformigen Eingangs- und Ausgangssignalen um eine halbe
Periode verschiebt, was im Impulsbetrieb bedeutet, dal3 aus einem hohen Eingangs- ein niedriger
Ausgangspegel wird und umgekehrt. Mit andern Worten:

 Mit einer elektronisch realisierten logischen Negation ist eine Verstarkung des Ausgangssignals
verbunden. Negierende Schaltfunktionen sind deshalb in grol3eren Netzwerken unverzichtbar.

Es laRt sich auch zeigen, dald alle logischen Verknipfungen der Schaltalgebra entweder ausschliel3-
lich mit NAND-Gattern oder ausschlie3lich mit NOR-Gattern implementiert werden kénnen: Die
zugehorigen Operatoren ( Bzw. 0 ) stellen jeweils fur sich allein ebenfaBasissystemder
Schaltalgebra dar, was technisch bedeutet, dal3 im Prinzip ein einziger negierender und damit ver-
starkender Bausteintyp genugt, um auch komplexeste Schaltnetze damit aufzubauen. Sie sind im
nachsten Bild zusammengestellt.
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X = (% & %0
1 X |Y=(x1&Xg) NAND-Funktion
0 0 1 1|1
0 1 1 P & p—
1 0 1 x [ 1]0 S
1 1 0
o X
X1 X |y=(x1Uxg) NOR-Funktion
0 0 1 11]o0
0 1 0 2 1 0b—v
1 0 | 0 xx [ 0|0 S
1 1 0

Bild 3.10: Funktionsbeschreibungen und Gattersymbole technisch wichtiger Schaltfunktionen

Im Hinblick auf technische Realisierungen, insbesondere durch elektronische Schaltkreise, ist des-
halb folgende Regel zur Transformation bejahter in negierte Schaltfunktionen besonders wichtig:

(a&b)=alb (alb)=a&hb

Bild 3.11: ,DeMorgansche Regel*

Technisch sind nicht nur einfache NAND- und NOR-Gatter verfligbar, sondern auch solche, die
kompliziertere Schaltfunktionegalisieren, so daf3 sie zur Vereinfachung einer komplexen Schalt-
netzstruktur eingesetzt werden konnen, z.B. Antivalenz-, auch Exclusive-OR- oder kurz XOR-
Gatter genannt, sowie Aquivalenz-Gatter, die im folgenden Bild zusammengestellt sind. Man er-
kennt lbrigens aus der Wahrheitstabelle der Antivalenzfunktion, dal3 sie eine binare Addition er-
zeugt, allerdings ohne Ubertrag.

Xg X |Y=(x¢0Xg) %0 Antivalenz
0O O 0 0 1
0 1 1 0
X N Y
1 0 1 X1 110 !
1 1 0
Xg X |Y=(X1=Xg) 0 Aquivalenz
0 O 1 1 0
0 1 0 70 =Y
1 0 0 xx |01 s
1 1 1

Bild 3.12: Funktionsbeschreibungen und Gattersymbole komplizierter Schaltfunktionen
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3.2 Kombinatorische Schaltungen (,Schaltnetze*)

3.2.1 Darstellungsebenen und Entwurfsziele

Schaltnetzsind konkrete Implementierungen abstrakter Schaltfunktionen. Sie kombinieren die an
ihrem Eingang anliegenden binaren Grof3en zu einer bindren Ausgangsgréf3e; man nennt sie deshalb
auchkombinatorische Schaltunge8chaltfunktionen kdnnen unterschiedlich dargestellt werden,

z.B. durch Wahrheitstabellen, KV-Diagramme oder Strukturausdrticke. Schaltnetze werden, iso-
morph zum zugehdrigen Strukturausdruck, mit Gattersymbolen dargestellt. Zur Terminologie:

 ImplementierungDie Darstellung mit logischen Gattern (,Logikebene”)
 RealisierungDie Darstellung mit Transistoren und passiven Bauelementen (,Schaltungsebene”)

Das néachste Bild zeigt eine Schaltung mit MOS-Transistoren, die in positiver Logik durch ein NOR-
Gatter symbolisiert werden kann, dessen Schaltfunktion hier durch eine Wahrheitstabelle wieder-
gegeben wird. Das Ubernéchste Bild zeigt eine Schaltnetzstruktur mit NOR-Gattern, die durch ein
Symbol fir eine allgemeine SchaltfunktipfX) abstrahiert werden kann, wobei die Funkf¢x)

z.B. wieder durch eine Wahrheitstabelle spezifiziert sein kann.

a) r—————- b)
| |
| | 70 Op— v
| | X1
| l | y C)
| | X1 X% | Y=xO%
| |
Xo || | | 0 O 1
| | 0 1 0
Xl | | 1 0 0
| 1 | 1 1 0
Lo |

Bild 3.13: Realisierung eines logischen Gatters auf der Schaltungsebene
a) Schaltungsstruktur, b) NOR-Gattersymbol, c) NOR-Schaltfunktion

a) b)
. : T =
X0 — | '
o L I P | )
L — c
: ] 3:— y Xy Xo y = ke, Xo)
| | 0 O y 0{0,1}
| [ p— | 0 1 y 0 {0,1}
L - = — — — - - - - 1 0 y 0{0,1}
1 1 y 0{0,1}

Bild 3.14: Implementierung eines Schaltnetzes auf der Logikebene
a) Schaltnetzstruktur, b) allg. Gattersymbol, c) allg. Schaltfunktion
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Zur Senkung der Fertigungskosten ist man beim Schaltungsentwurf bestrebt, solche Schaltungen
zu entwerfen, die den geforderten Zweck mit moglichst wenig technischem Aufwand erreichen.
(Dabei lal3t man die Entwurfskosten zuné&chst aul3er acht, obwohl sie fur hochstintegrierte Schal-
tungen in hochkomplexen digitalen Systemen ein nicht unerheblicher Kostenfaktor sind). Die Fer-
tigungstechnologien lassen sich grob in zwei Klassen einteilen.

 Die konventionelle Technologie dezuren Gatter Werden digitale Schaltungen mit diskreten
Bausteinen aufgebaut, so bestimmen diese die Grof3e, Geschwindigkeit und Zuverlassigkeit der
entworfenen Systeme, wahrend der Einfluf3 der Verdrahtung demgegentber vernachlassigt werden
kann.

» Die moderne Technologie diuren VerdrahtungFlache, Geschwindigkeit und Zuverlassigkeit
integrierter Chips werden vor allem durch die Verdrahtung bestimmt, wahrend (z. B. bei MOS-
Technologien) die Gatter unter der Verdrahtung liegen und ihre Schaltverzogerungen gegenuber
den Laufzeiten auf den Leitungen vernachléassigt werden kdnnen.

TR RREEEER R

|
E
|
1
=

Bild 3.15: Die konventionelle Technologie deuren Gatter

Bild 3.16: Die moderne Technologie deuren Verdrahtung
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Das bedeutet, dal3 das Entwurfsziel bei der konventionellen Technologie mit diskreten Bausteinen
zunachst darin besteht, die Anzahl der Gatter und Eingangsklemmen zu minimieren (jede Eingangs-
grofl3e bendtigt einen Transistor), wahrend fur die moderne Technologie der héchstintegrierten
Schaltungen die Gesamtverdrahtung auf den Chips mdglichst kurz ausgelegt werden muf3. Doch
bringt auch hier die Minimierung der Gatteranzahl in der Regel eine Verringerung des Verdrah-
tungsaufwandes mit sich. Deshalb sollen nachfolgend ausgewéhlte Minimierungsverfahren fir lo-
gische Gatter vorgestellt werden, wahrend Methoden der Verdrahtungsoptimierung, wie z.B. Floor-
planning, nicht Gegenstand dieses Kapitels sind.

3.2.2 Der Hauptsatz der Schaltalgebra

Der Hauptsatz der Schaltalgebra besagt: ,Jede Schaltfunktig(X) la3t sich durch zwei zuein-
ander duale Strukturausdrticke darstellen.” Zur Konstruktion der Strukturausdriicke bendétigt man
besondere Terme, die sogenannten Mintermbew. MaxtermeM. Sie ,adressieren” die zu spezi-

ellen Eingangsbelegungefy gehdrenden Funktionswerye I {0,1}, wie nachfolgend gezeigt
werden wird.

* Ein Minterm my(X) ist eineKonjunktion& aller n Komponenten eines-Tupels, d.h. einer Ein-
gangsbeleguny, die darin jeweils genau einmal - entweder bejaht oder verneint - vertreten sind.
Die Konjunktion hat ihréEinsstellebeiX = X;, d.h.m(X;) = 1.

* Ein MaxtermM;(X) ist eineDisjunktion allern Komponenten eines-Tupels, d.h. einer Ein-
gangsbeleguny, die darin jeweils genau einmal - entweder bejaht oder verneint - vertreten sind.
Die Disjunktion hat ihréNullstellebei X =X, d.h.M;(X;) = 0.

Beispiel 3.5:  n = 2; zu adressieren ist die spezielle Eingangsbele¥iund 0, 1) =X;

Mintermem MaxtermeM

My(X) =% & X1 =1&0=0 Mo(X)) =% Ox; =001 =1
ml(xl):)_(z&xl:].&].:l Ml(Xl):XZD)_(1:ODO=O
My(X)) =% & X, =08&0=0 Mo(Xy) =%, Ox; =101 =1
My(Xp) =% & X, =0&1=0 Mg(X)) =% 0%, =100=1

Die Konstruktion der nach dem Hauptsatz der Schaltalgebra existierenden beiden Strukturausdrik-
ke erfolgt

* entweder durch Konjunktion aller Minterme mit den jeweils zugehdrigen Funktionsweryen
und deren Verknipfung durch eine Disjunktionskette (links)

« oder durch Disjunktion aller MaxternM; mit den jeweils zugehorigen Funktionsweryennd
deren Verknupfung durch eine Konjunktionskette (rechts).

Disjunktive Form Konjunktive Form

DF y=[|(n]&y,-);j=0-.?-1 KF  y=&(MOy); j=0..21
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Beispiel 3.2.4: n=2; Liste der Antivalenz;p=000=0;y, =001=1;y,=100=1;y3=101=0.

DF y:[qu&yj);j=0..3
y=(mp&yo)O(m &y ) O(mpy&y,) O(mg&ys)
y=(mp& 0)0(m& 1)0(m& 1) O0(mz& 0)
y=(0) O (m) O(my) 0(o)
y= (mg) O(mp)
y= (X% &x1) O(%&Xx)

KF y=&(MDOy); j=0..3
y=(MoUyp) & (M1 0y1) & (Ma 0y, ) & (M3 0y3)
y=(MgO 0)&(M;01)&(My0 1) & (Mg 0)

y=(Mp) & (1) &(1) & (M3)
y=(Mp) & (M3)
y=(x0Uxq) & (X Oxq)

Es genugt, bei der Konstruktion der Strukturausdriicke mit Mintermen néirdistelleny; = 1
der Schaltfunktion zu betrachten; entsprechend genigt bei Maxtermen die Betrachtlaby der
stelleny; = 0. Man kommt so zu zwei einfacheren Formen des Hauptsatzes:

Disjunktive Normalform Konjunktive Normalform

DNF y:Dn};j:O..Z‘-l;yjzl KNF y:&Mj;jzo..Z‘-l;yj:O

Beispiel 3.2.5: n=2; Liste der Antivalenz;=000=0;y; =001=1y,=100=1y3=101=0.

DNF y=|:|n};j=0..3;yj=1 KNF y=& M;; j=0..3;y,=0
y=(m) O(my) y=(Mp) & (Mg)
y=(X%&x) O(x&X) y=(%0x) &(x0Xx))

Werden disjunktive bzw. konjunktive Normalformen (DNF bzw. KNF) als Strukturausdricke be-
trachtet, so erkennt man deren Isomorphie zu zweistufigen Schaltnetzen mit UND-Gattern zur
Implementierung der Konjunktionen (&) und ODER-Gattern fur die DisjunktionpnXie fol-

genden beiden Bilder zeigen die Schaltnetzstrukturen, die zu der im obigen Beispiel ermittelten
DNF der Antivalenz bzw. zu ihrer KNF isomorph ist.

Die Eigenschaften der Schaltalgebra sind in finf Axiomen niedergelegt. Aus ihnen lassen sich alle
Regeln und Satze der Schaltalgebra herleiten. Im Hinblick auf technische Realisierungen, insbe-
sondere durch elektronische Schaltkreise, ist die folgende Regel besonders wichtig:

DeMorgansche Regel
DNF (alb)=a&b KNF (a&b)=alb

Liegt ein Strukturausdruck in DNF vor, so laf3t er sich durch Anwendung der DeMorganschen Regel
in eine einheitliche NAND-Form umwandeln, liegt er in KNF vor, in eine NOR-Form.
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X2 X1
)_(2 ml
[ 4 X]_ & |
X2 |:| y
. 2 [
‘ = me

I X
Bild 3.18: Schaltnetzstruktur der konjunktiven Normalform (KNF) der Antivalegnzl(x;)

X2 X1
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X2 X1
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Bild 3.20: NOR-Schaltnetzstruktur aus der KNF der Antivale®Zx;)
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Beispiel 3.2.6:  Antivalenzy = (x, O X; ); vgl. die Schaltnetzstrukturen in obigen beiden Bildern.

DNF y:()_(z&Xl)D(Xz&)_(l) KNF y:(X2|:|Xl)&()_(2|:|)_(1)
Y (% &%) 0 (X & X ) Y= (% 0x1)& (X Oxq)
Y = (X & X ) & (X & %) Y= (X Ox1) 0 (% 0xp)
in Kurzschreibweise: in Kurzschreibweise:
Y (X & X1) & (X & Xp ) y= (xOx )0 (% 0xq)

3.2.3 Grundlagen der Minimierung von Schaltnetzen

Es soll zunachst der Zusammenhang zwischen Termen und den Feldern im KV-Diagramm geklart
werden.

a) Mintermdarstellung

Gegeben sei ein-Tupel X mit n Komponenterx; , wobeii = 1 . .n, firn = 3 mit der speziellen
Belegunag:

X;=(0,1,1)=X3
Der Minterm mit demselben Index= 3 lautet:
Ma(X) =X3 & X & Xq
Er ist so definiert, daf3 er seine EinsstelleXadat:
mg(Xg) =0&1&1=1
Deshalb bezeichnet man auch die Belegjreplbst als die

EinsstelleE des Mintermsn : x| Xq
E(m)={X []=3}
E(mg) ={X3}={(0,1,1)}

Im nebenstehenden KV-Diagramm wird das markieete %2

von dieser Einsstelle, d.h. vadintermmg adressiert. X3 X3

Bild 3.21: Feld im KV-Diagramm

Ein im Gegensatz zum Minterm willkirlich gewahli@rmmaoge lauten:
W(X) =X3 & X9
Da hier der Wert der Komponemntg unerheblich ist, besitzt der Tenmnicht nur eine einzelne
EinsstelleE, sondern eine Einsstellenmerige
EwW={X [j=2..3}
={X2%X3}={(0,1,0),(0,1,1)}
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Man pflegt dann auch zu schreiben:

X1 X1
EW) ={X33}={(0,1,-)}
Im nebenstehenden KV-Diagramm wird der in markierte
Block von dieser Einsstellenmenge, d.h. vom gewahlten x,
Termadressiert.
X3 X3

Bild 3.22: Block im KV-Diagramm

b) Maxtermdarstellung
Gegeben sei nach wie vor der 3-Tupel mit der speziellen Belegung:
X =(0,1,1)=X3
Der Maxtermmit demselben Index= 3 lautet:
M3(X ) =xg 0%, 0%,
Er ist so definiert, daf3 er seine Nullstelle ¥ghat:
M3(X3) =00101=0
Deshalb bezeichnet man auch die Beleggrgelbst als die Nullstelld des Maxterms/; :
N(M)) ={X []j=3}
N(M3) ={X3}={(0,1,1)}

Im obigen KV-Diagramm wird das markierfteld auch von dieser Nullstelle, d.h. vdvtaxterm
M3 adressiert.

Ein im Gegensatz zum Maxterm willkirrlich gewahltermmadge lauten:
W(X) =X3 D)_(Z

Da hier der Wert der Komponentg unerheblich ist, besitzt der Term nicht nur eine einzelne
NullstelleN, sondern eine Nullstellenmenbe

NW={X [j=2..3)
= { X5, %3} ={(0,1,0),(0,1,1)} ={(0, 1,-)}

Im obigen KV-Diagramm wird der markier®&ock auch von dieser Nullstellenmenge, d.h. vom
gewdahltenTermadressiert.

c) Freiheitsgrade

Ein Block Bist die Menge demn-TupelX, die in den Werten bestimmter Komponemtgiiberein-
stimmen, d.h. er ist eine Untermenge der MeX@d#ler Eingangsbelegunget:

BOX={01}"

Furgebunden&omponenten ist einer der beiden Wegte { O, 1 } vorgeschrieben, dagegen muf3
jedefreie Komponente mit beiden Werten belegt werden.
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Beispiel 3.2.7:
X = (Xs, X4, X3, X2, X1 ); g€bunden seiexy, Xo, X1; frei seiernxs, X3
Der Block ist dann wie folgt zu schreibé®={( -, 1, -, 0, 1)}
Es sei hier ausdrucklich auf die ,Blockschreibweise* hingewiesen:

* Die Notation mit einenstrich( - ) bedeutet, dald fur eifigngangsvariable; beide Werte,
d.h.x; = Oundx; = 1 betrachtet werden mussen.

Man stellt fest:
« Ein Block mitr freien Komponenten besteht alisB2legungen.

Allerdings kann nicht jede Belegungsmenge ein Block von Belegungen sein. Wie in den folgenden
KV-Diagrammen gezeigt, umfalit ein Block stets eine 2-er Potenz symmetrisch angeordneter Felder.
Zu jedem Block laf3t sich genau eine Konjunktionnd genau eine Disjunktidff konstruieren.

n=2 X1 n=3 X1 X n=4 X1 X
® o] ©® ©®
(4)
e @ 5
f5\
X3 X3 X N X4
(® ©®| ™
X3 X3
n=>5 X1 X X1 X
®
5O,
X2
N N
7 7
%o 7 7 Xa
X
® | |*
X3 X3 X3 X3
X5 X5 X5  Xg

Bild 3.23: Ausgewahlte Blocke und Terme in KV-Diagrammen

(1) my Mg (6) W=Xy& Xy; W=x5 xg
(2) mg Ms (7)  W=Xp & Xg; W=X, (Xq
)  my; My (8) W=x58& Xp; W=X50x,
(4) w=xgW=X3 Q) W=Xx5& X4 & X3 & Xg;
(5) W=Xy& X, W=Xy Xq W =xg x4 Oxg3 OXq

Seite 3.8 von 18



3 Logikebene

Man vereinbart folgende Begriffe:

* Ein Block, der ausschliel3lich Einsstellen einer Schaltfunktofi(X) umfalit, heildt , Einsblock®;
der zugehorige Term heifl3t ,Implikant.

* Ein Block, der ausschlief3lich Nullstellen einer Schaltfunkgiorf(X) umfal3t, heil3t ,Nullblock®;
der zugehorige Term heil3t ,Implikat®.

Beispiel 3.2.8: X1 X1
Gegeben seien Eins- und Nullstellenmenge einer Schaltfunk- 1 1 0 0
tion wie im nebenstehenden KV-Diagramm dargestellt.
Umrahmt sind zwei Blécke: X001 |1
* Ein EinsblockBg = {(0, 1, 1, -)};

der zugehdrige Implikant lautei = X4 & X3 & %o
 Ein NullblockBy = {(0, 1, 0, - )} 010 0| O | %

das zugehorige Implikat lautéty = x4 Ox3 O X3 X3

X21 0 0 1 1 | X4

Bild 3.24: Null- und Einsblock

Je groler ein Block, desto kirzer der zugehdrige Term.

* Die groRtmoglichen Eins- bzw. Nullblécke einer Schaltfunktion heil3en ,Primblocke”;
die zugehorigen Terme heil3en ,Primterme*.

Man ist nicht nur bestrebt, dggd3tmoglicherBlocke zu bilden, um dikirzestmoéglicheierme

zu erhalten, sondern auch die jeweils kleinere der Eins- bzw. Nullstellenmenge einer Schaltfunktion
mit moglichstwenigenPrimblocken vollstandig zu tUberdecken, davgenigenPrimtermen im
Strukturausdruck entsprechen, so dal? der Implementierungsaufwand minimiert wird. Bei der Um-
setzung des ermittelten Strukturausdrucks in ein isomorphes Schaltnetz entspricht jeder Term einem
Gatter, jeder Operand im Term einer Eingangsklemme des Gatters, so dal3 kurze Terme kostengun-
stiger sind.

Der systematische Entwurf eines Schaltnetzes erfolgt grundsétzlich in drei Schritten:
 Ermittlungaller Primblocke und damit aller Primterme der gegebenen Schaltfunktion;
« Ermittlungaller vollstandigen irredundanten Uberdeckungen der Schaltfunktion;

« Auswahleiner minimalen irredundanten Uberdeckung.

3.2.4 Minimierung nach Karnaugh-Veitch

Die graphische Methode nach Karnaugh-Veitch eignet sich zum Handentwurf kleinerer Schaltnetze.
Gegeben sei die Einsstellenmenge einer Schaltfunktion durch Eintrage in das folgende KV-Dia-
gramm. Mit Mintermemn, ergibt sich die im Bild links gezeigte Uberdeckung. Die Schaltfunktion

sei vollstandig definiert; daher erhalt man ihre Nullstellenmenge durch Ergdnzen der gegebenen
Einsstellenmenge. Mit Maxtermés ergibt sich deren im Bild rechts gezeigte Uberdeckung.
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X1 X1 X1 X
11 0] O 1 (2 O0]fO
X210 10 ||2]2 XIO0floy 2 | 2
X2 0 | O 1 1|l % X2 O] O 1 1 | %
0|00 ]| O0 |Xa ONlOYII Ol O |
X3 X3 X3 X3

Bild 3.25: Vollstandige Uberdeckung der Eins- bzw. Nullstellenmenge einer Schaltfunktion;
links: mit Mintermen, rechts: mit Maxtermen

Man kdnnte nun mit den Mintermen eine disjunktive Normalform (DNF) bilden mit sechs UND-
Gattern zu deren Erzeugung (&) und einem ODER-Gatter zu deren DisjurRtjonitden Max-
termen eine konjunktive Normalform (KNF) mit sogar zehnODER-Gattern zu deren Erzeugung
(D) und einem UND-Gatter zu deren Konjunktion (&). Diesen Aufwand gilt es zu minimieren.

a) Ermittlung aller Primblécke und Primterme

Fur die gegebene Schaltfunktion wurden in folgenden KV-Diagrammen alle Primblécke gebildet:

Prim-Einsblocle: Prim-Nullblocke:
BE={(O1O!O1_)1(-11111-)} BN={(-11101_)1(-10111-)1
(1a01-!-)!(1a-10!-)}
X1 X X1 1 X1
1 1 0 0
X2 1 1 X2l O 0
X2 1 11| Xa X211l O 0 X4
X4 0 0 0 Ol || X4
X3 X3 X3 X3

Bild 3.26: Vollstandige Uberdeckung der Eins- bzw. Nullstellenmenge einer Schaltfunktion;
links: mit allen Prim-Einsblocken, rechts: mit allen Prim-Nullblécken.

Die Primeinsblockd&g bzw. die Primnullblock&y, entsprechen folgenden Primtermen:

Primimplikanten: Primimplikate:

PA = X4 X3 Xp; Pg =X3 Xo Pa=X30Xy; Pg=x30Xy;
PC:)_(4 DX3;PD:)_(4 DXz
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b) Auswahl einer irredundanten Uberdeckung

Es ist eine Auswahl aus den Primblécken zu treffen, so daf’ sich mit mdglichst wenigen Blocken
eine vollstandige Uberdeckung der Eins- bzw. Nullstellenmenge der Schaltfunktion ergibt (,irred-
undante Uberdeckung”). Im Fall der Einsstellen ist die Auswabhl trivial, im Fall der Nullstellen gibt
es zwei gleich aufwendige Mdglichkeiten, wie das folgende Bild zeigt.

X1 Xp X1 1 X1 X1 1 X1
1 1 0 0 0 0
X2 1 1 0 0 0 0
X2 1 1 0 0 0 0 X4
0 0 0 0 0 0 0 Ol || X4
X3 X3 X3 X3 X3 X3

Bild 3.27: Irredundante Uberdeckungen der Eins- bzw. Nullstellen der Schaltfunktion

Disjunktive Minimalform Konjunktive Minimalform
DMF Yy = pA DpB KMF Yy = PA PB PC
=Xg X3 Xp X3 %o = (x3 Uxg) (X3 LXg) (%4 OXg);
y =Pa Pg Pp

= (X3 Oxp) (x3 OX2) (X4 O%o)
Die Uberdeckung der Einsstellen, d.h. die disjunktive Minimalform (DMF) fiihrt bei diesem Bei-
spiel zu minimalem Gatteraufwand. Die zur DMF isomorphe zweistufige Schaltung ist hier gezeigt.

U
[eR =R

[ 3 T & |_
¢ | &J

Bild 3.28: Minimierte Gatterschaltung in zweistufiger disjunktiver Minimalform (DMF)

3.2.5 Minimierung nach Quine-McCluskey

Die Methode nach Quine-McCluskey erlaubt die Ermittlung aller Primblocke und damit aller Prim-

terme einer Schaltfunktion. Es ist ein schaltalgebraisches Verfahren, das sich fur den Handentwurf
eignet, aber auch schon in rechnergestutzten Verfahren der Logiksynthese implementiert wurde.
Die GroRRe der synthetisierbaren Schaltungen wird jedoch durch den Speicherbedarf stark begrenzt,

Seite 3.211von 18



Prof. Dr.-Ing. U.G. Baitinger

so dal3 ein Syntheselauf unter Umstanden vorzeitig abbricht, da der Tabellenbedarf dieser Methode
zwischenzeitlich stark anwachsen kann, auch wenn er gegen Ende des Verfahrens wieder deutlich
abnimmt.

Die Auswahl einer vollstandigen minimalen irredundanten Uberdeckung, z.B. aller Einsstellen der

spezifizierten Schaltfunktion, aus den ermittelten Primbldocken ist nicht Bestandteil des Verfahrens
nach Quine-McCluskey und muf3 daran anschlie3end durchgefuhrt werden. Im nachsten Abschnitt
wird ein geeignetes Verfahren vorgestellt.

a) Verfahrensschritte

Gegeben sei die Einsstellenmenge einer Schaltfunktion, z.B. in disjunktiver Normalform (DNF).
Alternativ kann auch ihre Nullstellenmenge in konjunktiver Normalform (KNF) dargestellt sein.

* Man schreibt die binaren Eingangsbelegungernlie den Einsstellep = 1 der Schaltfunktion
zugeordnet sindnit wachsendem Gewigld.h. mit wachsender Anzahl von gebundenen Kom-
ponenterx; = 1 in einer Liste untereinander.

» Belegungen, die sich in einer Komponente unterscheiden, d.h. in benachbarten Gewichtsklassen
stehen, werden Zinsblockereusammengefaldt und in eine neue Liste eingetragen.

 Einsblocke, die die gleichen freien Komponenten haben und sich in nur einer gebundenen Kom-
ponente unterscheiden, werdergedlReren Einsbléckerusammengefal’t und in eine neue Liste
eingetragen.

* Blocke, die zusammengefaldt werden konnten, werden abgehakt. Sie sind nicht prim, nehmen aber
an weiteren Vergleichen teil.

* Blocke, die nicht weiter zusammengefal3t werden konnten, sind die gesdhiblicke

Beispiel 3.2.9:
Gegeben sei ein 4-TupXl= (X3, X9, X1, Xg) als Eingangsbelegung einer Schaltfunkgonf(X)
sowie deren Einsstellenmengéw) durch die Menge der oktalen Indizeferjenigen Eingangs-
belegungerX;, fur diey = f(X;) = 1 gil: E (W) = {0, 1, 3, 4, 6, 10, 14, 17}

b) Ermittlung aller Primterme

In der folgenden Liste werden die gegebenen oktalen IngireBualzahlen umgewandelt, die
nach Vereinbarung den binaren 4-Tupeln, d.h. den Eingangsbeleg(regesprechen:

] 0 1 3 4 6 10 14 17
Belegungenq 0000 | 0001 | 0011 | 0100 | 0110 | 1000 | 1100 | 1111
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Die binaren Eingangsbelegungen werden mit wachsendem Gewicht in folgender Liste untereinan-
der geschrieben. Man verfahrt weiter nach den oben angegebenen Verfahrensschritten:

Gewicht j Belegungen Gewicht ] Belegungen
0 0 0 000 B 0 0,1 0 00-
1 1 0001 0,4 0-00
4 0 100 0, 10 - 000
10 1 000 C 1 1,3 00-1
2 3 0011 D 4,6 01-0
6 0110 4,14 - 100
14 1100 10, 14 1-00
3 2
A 4 17 1111 3
Gewicht j Belegungen Uberdeckte Einsstelle Primblécke
E 0 0, 4, --00 Al l7 1111
10, 14 B|O,1 0 00-
1 C|1,3 00-1
2 D[4,6 01-0
E|O, 4,10, 14 --00

Den ermittelten Primblécken A . . E entsprechen die folgenden Primimplikanten:

Pa = X3 X3 X1 Xg Pb = X3 X2 Xp
P = X3Xp X1 Pe = X1 Xo
Pc = X3X2 Xp

3.2.6 Losung des Uberdeckungsproblems

Aus der Gesamtheit aller Primblécke, die z.B. mit dem Verfahren nach Quine-McCluskey ermittelt

worden sind, ist eine Auswabhl zur vollstandigen minimalen irredundanten Uberdeckung aller Eins-
oder aller Nullstellen der spezifizierten Schaltfunktion zu treffen. Dazu sind die Uberdeckungsta-

belle und die Petrick-Funktion geeignet, wie hier an der Fortflihrung des obigen Beispiels gezeigt
werden soll.
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a) mit der Uberdeckungstabelle

« Es wird eine Uberdeckungstabelle aufgestellt, deren Spalten mit den Indieegegebenen
Einsstellen und deren Zeilen mit allen ermittelten Primblocken (hier: A . . E) bezeichnet werden.
Die Markierungen(x) geben an, welche Einsstellen von den Primblécken jeweils Uberdeckt wer-
den. Man kann sie z.B. anhand der Listen des Verfahrens nach Quine-McCluskey setzen.

* Man trifft eine Auswahlder Primbldcke, so daR alle Einsstellen der Schaltfunktion mindestens
einmal Uberdeckt werden. Man arbeitet die Tabelle von rechts nach links ab: Blécke, die als einzige
eine Einsstelle Uberdecken, sind unverzichtbare ,Kernblocke* (hier: A, E, D, C).

» Man bildet dieDisjunktionder Primimplikanten, die den ausgewéhlten Primeinsblécken entspre-
chen.

* Die so gewonnenene disjunktive Minimalform (DMF) der gegebenen Schaltfunktion kann in eine
isomorphe zweistufigéatterstrukturumgesetzt werden.

Einsstellen J: o 1 3 4 6 10 1w 17
Primblocke —A

B X X

c %

D %

E X X X

Bild 3.29: Uberdeckungstabelle der gegebenen Schaltfunktion mit Auswahl der unverzichtbaren
Kernblocke. Uberdeckt werdgrs 17 von Aj = 14 und 10 von Ej =6 von D,j = 3
von C. Redundant ist Block B= 0 wird von Ej = 1 von C Uberdeckt.

Den im obigen Bild ausgewéhlten Prim-Einsblocken entsprechen die nachfolgenden Primimpli-
kanten; ihre Disjunktion ergibt die disjunktive Minimalform (DMF) der gegebenen Schaltfunktion:

DMF 'y =pa Opc Upp Upe
Y= (XgX2 X1 %) O (X3 X2 %0 ) O (X3 %2 X9 ) O (Xq Xp)

b) mit der Petrick-Funktion

Die Ermittlung von Primtermen ist beim Entwurf von Schaltnetzen @iversellund auf ver-
schiedenen Ebenen der Komplexitat einsetzbare Methode:

» Aus den Primtermen einer Schaltfunktion werden deren Minimalformen gebildet.

 Die Primterme der Petrick-Funktion, der wiederum die Primterme einer Schaltfunktion zugrunde
liegen, sind die irredundanten Uberdeckungen dieser Schaltfunktion.

Zur Ermittlung der Primterme der Petrick-Funktion kann selbstverstandllich jedes bekannte Ver-
fahren dienen:
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* die graphische Methode nach Karnaugh-Veitch mit KV-Diagrammen;
« das oben vorgestellte Verfahren nach Quine-McCluskey;
* eine schaltalgebraische Umformung der Petrick-Funktion.

Die Petrick-Funktion sagt fiir das obige Beispiel aus, dal3 sich die Eingstélimit den Blocken

B oder E Uberdecken laRt, die Einsstglle 1 mit den Blécken Bder C usf. Von welchen Prim-
blocken die Einsstellen jeweils Gberdeckt werden, a3t sich aus den Listen des Verfahrens nach
Quine-McCluskey entnehmen oder aus den Markierungen der Uberdeckungstabelle. Fiir das obige
Beispiel ergibt sich die Petrick-Funktion zu:

PF = (BOE)&(BOC)& C &(DOE)& D & E & E & A
Schaltalgebraisch erhalt man nach dem Absorptionsgesetz:
PF =[(BOE)& E & E] &[(BOC)& C]&[(DUE)& D]& A
= [E] & [C] & [D] & A
= E&C&D&A=A&C&D&E
Die Disjunktion der Primimplikanten, die den ausgewé&hlten Primeinsblocken entsprechen, ergibt
wieder die disjunktive Minimalform (DMF) der gegebenen Schaltfunktion:
DMF 'y =pa Upc Upp Upg
Y= (XaXo X1 X0) O (X3 %2 %) O (X3 X2 X9 ) O (X1 Xo)
Fur dieses einfache Beispiel existiert nur ein Primterm der Petrickfunktion, d.h. nur eine irredun-
dante Uberdeckung. Aus der Uberdeckungstabelle war dasselbe Ergebnis hervorgegangen: A, C, D

und E sind Kernblécke, Block B ist redundant. In einem komplizierteren Fall, aber mit ebenfalls
funf Primblocken V, W, X, Y und Z kdnnte sich folgende Form der Petrick-Funktion ergeben:

PF =(V&X&zZ)O(V&W&Y&Z)
Diese ware folgendermalien zu interpretieren:
DMF y=py Opx Opy 1. Uberdeckung

DMF y=py Opyw Opy Opz 2. Uberdeckung

Beides sind giiltige irredundante Uberdeckungen der Einsstellenmenge der Schaltfunktion mit den
genannten Primblocken bzw. den zugehdrigen Primtermen. Die minimale Uberdeckung ist die mit
den wenigsten Primtermen. Hier benoétigt man zur Implementierung drei UND-Gatter fur die drei
Primtermep,,, px undp; sowie ein ODER-Gatter mit drei Eingangen zur Bildung der Disjunktion.

3.2.7 Entwurfsbeispiel eines Schaltnetzes

Die Funktion eines binaren Volladdierers sei durch seine Wahrheitstabelle unten links beschrieben.
Er nimmt zwei binare Variabler, undx; sowie einen Ubertrag, aus einer vorherigen Additions-

stufe entgegen und bildet daraus die binare Sug{igum”) sowie den neuen Ubertr&y"Car-

ry”). Die Funktionsspalten fi undC werden in die zugehérigen KV-Diagramme Ubernommen.
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I | X X X | S C
X0 Xo S
0O [ 0O O O 0 O O (11 O ||1
1 | 0 0 1 1 0 w[1] o [T] o
2 | 0 1 o0 1 O
Xp X
3 | 0o 1 1 0 1
X0 Xo C
4 | 1 0 O 1 0 o lo Tzl o
5 | 1 0 1 0 1
x| O |1 |[1] 2
6 | 1 1 0 0 1
Xo X
7 |1 1 1 1 1 2 7

Bild 3.30: Funktionsbeschreibung eines Volladdierers (Wahrheitstabelle bzw. KV-Diagramme)

X2 X1 X0

ik

& [] C

&

Bild 3.31: Schaltnetze zur Bildung der SumBiend des Ubertradgs, isomorph zur DMF

Als disjunktive Minimalformen (DMF) der beiden Schaltfunktionen fur die Surrbew. den
UbertragC erhalt man durch Primblockbildung in den obigen beiden KV-Diagrammen:

S = (X X1 X0) 0 (%2 X1 X0) [ (%2 X1 X0) [ (%2 X1 X0) C = (x2Xp) U (X2 %) U (X1 %)
Das dazu isomorphe Schaltnetz des Volladdierers zeigt das vorhergehende Schaltbild.
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Man stellt bereits anhand obiger Strukturausdriicke fest, vor allem aber ist es aus dem Schaltbild
zu erkennen, dalR der Bedarf an logischen Gattern erheblich ist, vor allem deshalb, weil sich die
Schaltfunktion fur die Summ® nicht minimieren l&a3t. Auch eine Umformung nach der DeMor-
ganschen Regel in ein ausschliel3lich aus NAND-Gattern bestehendes Schaltnetz wirde keine Ver-
ringerung des Aufwandes bringen. Stehen jedoch nicht nur Grundgatter zur Verfligung, wie UND-

, ODER-, NAND- bzw. NOR-Gatter, sondern komplexere Bausteine, wie Antivalenz- und Aquiva-
lenz-Gatter sowie Multiplexer, so laf3t sich der Bedarf an Bausteinen verringern und der Entwurfs-
ablauf vereinfachen.
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3.3 Sequentielle Schaltungen (,Schaltwerke®)

3.3.1 Rickkopplung und Betriebsarten

Ergéanzt man eine kombinatorische Schaltung (,Schaltnetz”) durch eine Ruckkopplung, so entsteht
eine sequentielle Schaltung (,Schaltwerk”), wie das folgende Bild zeigt. Schaltwerke sind konkrete
Implementierungen abstrakter Automaten. Der Automatenbegriff, wie er in diesem Zusammenhang
verstanden wird, soll im néachsten Abschnitt geklart werden.

t : : t
. n m v
Schaltnetz

Verzdgerung —

Bild 3.32: Allgemeine Betriebsart einer sequentiellen Schaltung (,Schaltwerk”)

Xt +> +> Yt
n Schaltnetz m
mit
7t Verzogerunght AR
| I

Bild 3.33: Ungetaktete (,asynchrone”) Betriebsart eines Schaltwerks

n Schaltnetz m
ohne
Verzdgerung

Speicher_ )\
-

yARE Y AL L t,t+1,usf.

Bild 3.34: Getaktete (,synchrone”) Betriebsart eines Schaltwerks
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3.3.2 Ein/Ausgabe und Zustandsbegriff

Zunachst sollen die fur Schaltwerke charakteristischen Begriffe geklart werden, insbesondere der
Zustandsbegriff, der sich aus der Ruckkopplung von Ausgangsgrof3en auf den Eingang ergibt. Wir
wollen uns im Folgenden auf die getaktete (,synchrone”) Betriebsart konzentrieren.

 Eine Ein@ngsbelgungist einn-Tupel mitn binaren Komponentex :
X=(Xg, X0, - . %0 oy Xn )5 xJ{0,1};i=1..n

Fur die Eingangsbelegung gt [1 E, wobei E das Eingabealphabet des Automaten ist. Eine
bestimmte Eingangsbelegung wird idjtbezeichnet; dabei ist der oktale Indegteich den als

Dualzahl gelesenen bindren Komponentennd&gpels, hiem = 3:
Xo=(0,0,0) X;=(0,0,1)
Xs=(1,1,0) X;=(1,1,1)

Ein BelegungsblocB umfalt 2 Belegungen, wobeidie Anzahl der freien Komponentg=

- ist. Das Symbol (-) bezieht sich auf die Blockdarstellung der Eingangsbelegung; es entspricht
beiden Werten @Qnd 1:

B=(Xy, X - - %y X )s x0{0,1,-}i=21..n

« EineAusgangsbelgungist einm-Tupel mitm binaren Komponentey) :
Y=(Yu Y2 Y- Ym)i yy0{0,1,04j=1..m
Fur die Ausgangsbelegung giit[] A, wobeiA das Ausgabealphabet des Automaten ist. Das
Symbol () bezieht sich auf die Ausgangsbelegung; es gilt kein bestimmter Wert, d.h. er kann zu
0 oder1 gesetzt werden.

» Ein Automatenzustant zun&chst eisymbolischeZustand:
Z0OS
wobei S die endliche Zustandsmenge des Automaten ist ("Finite State Machine”, FSM). Der

symbolische Zustand muf3 also kein binarer Tupel sein, sondern nur von allen anderen Zustanden
desselben Automaten wohlunterschieden (,diskret”).

* Ein binér codierter Zustant einl-Tupel mitl bindren Komponenteq, :

Q=(0 2 - -Gk -+ G ); q0{0, 1} k=1l 1QI=22]8|

Er implementiert einen symbolischen Zust&nd S. Die Zuordnung symbolischer Zusténde zu
binaren-Tupeln, d.h. die ,Zustandscodierung fig wahlbar, wenn die Zustande des Automaten
nach auf3en hin nicht in Erscheinung treten, wie es bei Automaten vom Moore- und vom Mealy-
Typ der Fall ist. Eine bestimmteodierter Zustand wird miQ; bezeichnet; dabei ist der oktale
Indexj gleich den als Dualzahl gelesenen binaren Komponentdaldegls. Eine frei gewéhlte

und damit gultige Zustandscodierung lautet zum Beispiel:

Zy= Q2=(1,0) Z;= Q=(0,1)
Z;= Q3=(1,1) Z3= Qy=(0,0)
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3.3.3 Endliche diskrete Automaten

Ein abstrakter Automat besteht aus einer Speicherfunktion, déudéamddes Automaten enthalt,

sowie zwei Schaltfunktionen, die seine Folgezustande bzw. seine Ausgabe erzeugen. Letztere ent-
sprechen seinelerhalten Seinen aktuellen Zustand - aus einer endlichen Anzahl wohlunterschie-
dener (,diskreter”) Zustande - hat er aufgrund eines Anfangszustandes und der gesamten Vorge-
schichte aller bisher eingetroffenen Eingaben erreicht. Abstrakte Automaten erzeugen ihren Folge-
zustand mit einer

« UbergangsfunktioZ t*1=5(z*, x 1)
Dabei istZ ! der aktuelle Zustand zu einem diskreten Zeitptinkid Z ' * 1 der Folgezustand zum

nachsten diskreten Zeitpurtktl, wobei die Taktperiode auf 1 normiert ist. Anhand der Ausgabe-
funktion A lassen sich drei Automatentypen unterscheiden.

3.3.4 Medvedev-Automat

Beim einfachsten Automatentyp ist die Ausg#lggeich dem Automatenzusta#égseine
« Ausgabefunktioryt=2z1

ist trivial. Das folgende Bild zeigt links dfetrukturdes Medvedev-Automaten. Seine Ausgabe-
funktion A ist eine Identitat. Zur Beschreibung seikfeghaltensamul} ein zeitlicher Ablauf in dis-
kreten Schrittem, t+1, t+2 usf. dargestellt werden, wozu sich ein Graph bestens eignet:

* Man stellt die Zustéandg als Knoten dar und
* die Zustandstibergange als gerichtete Kanten, die mit der Eikggddennzeichnet werden.

Man erkennt am ,Ablaufgraphen”, rechts im Bild dargestellt, daf3 die Eingabe entscheid¢t (hier
bzw.X,), welcher Folgezustand (hi&f oderZ,) vom Zustandsknotefy, aus erreicht wird, wie es
die obige, fiir alle drei Automatentypen geltende Ubergangsfunktionschreibt.

Bild 3.35: Medvedev-Automat; links: Struktur, SN - Schaltnetz, Sp - Speicherglied;
rechts: AblaufgraphX: Eingabey: AusgabeZ: Zusténdet: diskrete Zeit
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3.3.5 Moore-Automat

Ist die Ausgab¥® eine Funktion des internen Automatenzustaies gilt die

« Ausgabefunktioty t=A(Z1)

Das folgende Bild zeigt links die Struktur des Moore-Automaten. Die Ausgabefunkéiaeugt
die Ausgabe’ t aufgrund des aktuellen Zustande's Im Ablaufgraphen, rechts im Bild, wird das
dadurch deutlich, daf man den Zustandskndtdie Ausgabely fest zuordnet. Die gerichteten

Kanten des Graphen werden wieder mit den Eingxbgekennzeichnet und entscheiden so tber
den Folgezustand.

Xt

Bild 3.36: Moore-Automat; links: Struktur, rechts: Ablaufgraph

3.3.6 Mealy-Automat

r— - - - - - - = T

X! | | (
| |
I [ — t
|

_ ez NS

z - i

T T - Y, Y, | —t
— t+1

Bild 3.37: Mealy-Automat; links: Struktur, rechts: Ablaufgraph
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Im kompliziertesten Fall ist die AusgaBsowohl vom internen Automatenzustafjdils auch von

der EingabeX abhangig; dann gilt die

« Ausgabefunktioty t=A(Zt, X1).

Das vorhergehende Bild zeigt links die Struktur des Mealy-Automaten. Die Ausgabefunktion
erzeugt die Ausgabé' sowohl aus dem aktuellen Zustahbials auch anhand der Eingabk Im
Ablaufgraphen im vorhergehenden Bild rechts wird das dadurch dargestellt, daf3 die A¥sgaben

die Kanten eingeflgt werden, da die Eingaemit denen die Kanten gekennzeichnet sind, hier
nicht nur - wie bei allen Automaten - Uber den Folgezustand, sondern auch Uber die Ausgabe
entscheiden.

Zusammenfassend kann man sagen, daf’ der betreffende Automatentyp nicht nur an seinem Struk-
turbild, sondern auch an seinem Ablaufgraphen sofort zu erkennen ist.

3.3.7 Elementare Schaltwerke

Im Folgenden sollen einige einfache, aber haufig verwendete Schaltwerke vorgestellt werden, die
beim Entwurf digitaler Schaltungen und Systeme unverzichtbar sind. Sie sind nur zweier Zustande
fahig und werden deshalb lautmalerisch als ,,Flip-Flop” bezeichnet. Ihr aktueller Zustand muf3 von
aul3en erkennbar sein, d.h. sie sind elementare Automaten vom Medvedev-Typ.

Bei denasynchrorbetriebenen Flipflops kommt die zeitliche Sequenz zwischen den Eingangs- und
Ausgangsvariablen durch die Verzégerungszdteler internen Gatter zustande (linke Gleichung).

Man kann die Betrachtungsweise vereinfachen, indem man letztere als verzdgerungsfrei annimmt
und nur zu regelmafgdigen Zeitpunkter1,t+2, . . neue Werte der Eingangsvariablen in das Flipflop
Ubernimmt (rechte Gleichung):

QO QY;yn Qf# QO Q'yD Q™
Fur diesersynchrongetakteten Betrieb unterscheidet man anhand des déitgende Arten der
Ansteuerung:

 Taktzustandsgesteueier Wert 1 (oder der Wert 0) einer bindren Taktvarialslén {0, 1}
aktiviert die Flipflop-Eingéange (,Auffang-Flipflop”).

« TaktflankengesteuerDie ansteigende Vorderflanke (oder die abfallende Ruckflanke) eines Takt-
signalsc aktiviert die Flipflop-Eingange (,dynamisches Flipflop”).

Die Einfihrung eines neuen Schaltsymbols fir Flipflops erscheint hier angebracht; denn die Angabe
eines internen Gatterschaltbildes auf der Logikebene ist nicht immer maoglich, eine Darstellung auf
der Schaltkreisebene mit Transistoren hier zu detailliert.

a) SR-Flipflop
Wie beim asynchronen Beispiel erwahnt, hat ein SR-Flipflop drei Betriebsarten:

» Lesen/Speichern:
Der aktuelle Wert der bindren Zustandsvariablen wird beibehalten: Qt. oQtl
Er soll als Ausgangsvariable erkennbar sein: Ql_ yt
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» Setzen:
Der Wert der Zustandsvariablen wird gesetzt: _nptl

* Rilcksetzen:
Der Wert der Zustandsvariablen wird rlickgesetzt: ottt

Diese Funktionsbeschreibung kann als Schaltfunktion in einer Wahrheitstabelle dargestellt werden,
wobei sich die spezifizierten Betriebsarten an den vier WertekombinatieBngnder Eingangs-
variablenR und S orientieren, wie nachfolgend gezeigt. Aus der aktuellen Zustandsvari@gblen

zum Zeitpunkt ergibt sich nach einer normierten Verzégerung, d.h. zum Zeitptihklie Folge-
zustandsvariabl®*1, die am Ausgang des Schaltwerks erscheint und riickgekoppelt wird. Die
EingangsbelegungeX) = (R, S Q) sind hier teilweise in Blockschreibweise (-) zusammengefaft.
Das Bild zeigt auch das Schaltsymbol eines synchronen SR-Flipflop.

j Rt st Qt | ot*t Betriebsart

0 0O 0 O 0 Lesen/Speichern S 0
1 0O 0 1 1 Lesen/Speichern C ~f o]

2,3 0 1 - 1 Setzen R ol
4,5 1 0 - 0 Ricksetzen

6,7 1 1 0 O (undefiniert)

Bild 3.38: SR-Flipflop; Wahrheitstabelle und Schaltsymbol, vorderflankengetaktet

Die obige Wahrheitstabelle kann in eine ,Ansteuertabelle” umgeformt werden, die sich an den vier
moglichen Ubergangen vaf nachQ™lorientiert, wie das folgende Bild zeigt. Firr die Eingangs-
belegungerX; = (R, S Q) ergeben sich hier andere Blocke als in der obigen Wahrheitstabelle,
erkennbar am Symbol (-). Wie man der Ansteuertabelle entnehmen kann, verharrt das riickgekop-
pelte System fiR S= 0 in einem stabilen Zusta@i= Q. Da die Schaltung dann ihren Zustand
beibehélt, handelt es sich um efBpeicherschaltungMan kann diesen Sachverhalt auch durch
einen Ablaufgraphen veranschaulichen:

* Die beiden Zustand® [J {0, 1} werden durch zwei Knoten dargestellt,

« die Zustandstubergange durch gerichtete Kanten, die mit den Eingangsvariabtksin Block-
schreibweise (-) gekennzeichnet sind.

j Rt st Q t Q t+1 RS
0,4 - 0 0 0 (-0) (01) (0-)
2 0 1 0 1
5 1 0 1 0 ° e
1,3 o - 1 1
(10)

Bild 3.39: SR-Flipflop; Ansteuertabelle und Ablaufgraph
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b) D-Flipflop

Ist man nur an der zeitlichen Verzogerunélay’) einer Eingangsvariablen durch ein SR-Flipflop
interessiert, d.h. sein aktueller Zust&ldst unerheblich, so miissen die EingangsvariaRlend
Sentsprechend der SR-Wahrheitstabelle im vorherigen Abscimgitichsein. Mit einer neu be-
nannten Eingangsvariabl&ngilt dann:

D=S=R D' Q™!
Entsprechend geschaltet wirkt ein SR-Flipflop als sogenabDrfdipflop. Aus der SR-Wahrheits-
tabelle Gbernimmt man nur die Zeilen, fir die die Eingangsvari&blerd S ungleich sind. Nach

Umformen erhélt man die Ansteuertabelle des D-Flipflop, die sich anschaulich als Ablaufgraph
darstellen laft.

j | Dt Qt | Q1 Betriebsart D S Q
2,3 1 - 1 Setzen c >t - —— === — -
4,5 0o - 0 Rucksetzen R Q |—

Bild 3.40: D-Flipflop; Wahrheitstabelle und Schaltung, vorderflankengetaktet

D
i | Rl=bpt=s!| Q! 0) (1) (1)
4,5 0 0

O T () ()

(0)
Bild 3.41: D-Flipflop; Ansteuertabelle und Ablaufgraph

c) JK-Flipflop

Wie beim asynchronen Beispiel erwahnt, hat ein JK-Flipflop eine vierte Betriebsart:

« Triggern:
Der aktuelle Wert der binaren Zustandsvariablen wird invertiert: Qt. ottt
j Kt Jt Qt | Qi+l Betriebsart
0 0O 0 O 0 Lesen/Speichern
1 0 0 1 1 Lesen/Speichern — QI—
2,3 o 1 - 1 Setzen C — - ———-
45 |1 0 - 0  Ricksetzen —K Ql—
6 1 1 0 1 Triggern
7 1 1 1 0 Triggern

Bild 3.42: JK-Flipflop; Wahrheitstabelle und Schaltsymbol, vorderflankengetaktet
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Die Erweiterung der Funktionsbeschreibung zeigt die obige Wahrheitstabelle; das Schaltsymbol
eines synchronen JK-Flipflop ist ebenfalls angegeben. Das néchste Bild zeigt die Ansteuertabelle
und den Ablaufgraphen des JK-Flipflops, wobei die Zustandstibergange mit den Eingangsvariablen
K undJ in Blockschreibweise (-) gekennzeichnet sind.

j K t J t Qt Qt+l KJ

04 |- 0o o | o0 (-0) (-1) (0)
26 | - 1 0 |1

57 |1 - 1 | o0 ° e

1,3 o - 1 |1

Bild 3.43: JK-Flipflop; Ansteuertabelle und Ablaufgraph

d) T-Flipflop

Ist man nur an der InvertierungTg¢iggern’) des internen Zustands eines JK-Flipflop interessiert,

d.h. dal3 sein Folgezustand die Negation des aktuellen Zustands sein soll, so missen die Eingangs-
variablenK undJ entsprechend der JK-Wahrheitstabelle im vorherigen Absdeith sein. Mit

einer neu benannten Eingangsvarialdlelt dann:

T= J =K Gt N Qt+1
Entsprechend geschaltet wirkt ein JK-Flipflop als sogenairiipflop. Aus der JK-Wahrheits-
tabelle Ubernimmt man nur die Zeilen, fur die die EingangsvaridblendJ gleich sind. Nach

Umformen erhalt man die Ansteuertabelle des T-Flipflop, die sich anschaulich als Ablaufgraph
darstellen laf3t.

j Tt Qt | Qt*! Betriebsart

0 0 0 0 Lesen/Speichern T J Q |—
1 0 1 1 Lesen/Speichern T c [t -]

6 1 0 1 Triggern K Q |—
7 1 1 0 Triggern

Bild 3.44: T-Flipflop; Wahrheitstabelle und Schaltung, vorderflankengetaktet

T
j | Kt:Tt:Jt | Qt+l (0) (1) (0)
0,1 0 Qt

S oo

1)
Bild 3.45: T-Flipflop; Ansteuertabelle und Ablaufgraph
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3.3.8 Der Entwurf von Schaltwerken

Schaltwerke implementieren endliche diskrete Automaten ("Finite State Machines”, FSM). Ange-
sichts ihrer Komplexitat sollten sie in mehreren klar definierten Schritten, die aufeinander aufbauen,
systematisch entworfen werden:

* Informale Spezifikation der Gesamtfunktion des Automaten in natirlicher Sprache.

* Umsetzung in eine formale Spezifikation, z.B. einen Ablaufgraphen oder eine Ablauftabelle.
» Codierung der diskreten Zustdnde des Automaten.

» Entwurf des Schaltnetzes zur Implementierung der Ausgabefunktion.

» Wahl der Speicherglieder im Rickkopplungspfad.

« Entwurf des Schaltnetzes zur Implementierung der Ubergangsfunktion.

» Darstellung der Schaltwerksstruktur mit logischen Gattern und Speichergliedern.

Beispiel 3.3.1:  Automat vom Moore-Typ

zt] oxt || z¥t] Yt
X1 X0 Y2Y1 Yo

0 00 1 100
01
1 - 2

1 00 1 001
10
-1 2

2 00 0 001
10 3
-1 0

3 - - 1 110

Bild 3.46: Spezifikation eines durch ein Schaltwerk zu implementierdvidere-Automaten;
links: Symbolische Ablauftabelle, rechts: Ablaufgraph.

a) Spezifikation

Soll ein digitales Schaltwerk implementiert werden, so ist zuerst die gewlinschte Gesamtfunktion
als verbale Aufgabenstellung in natirlicher Sprache zu beschreiben. Um einen systematischen
Entwurf zu ermdéglichen, mul3 diese ,informale Spezifikation” durch die ,formale Spezifikation”
eines abstrakten Automaten geeigneten Typs erfal3t werden, z.B. durch dessen Ablauftabelle oder
- anschaulicher - durch seinen Ablaufgraphen. Der zu implementierende Automat sei durch die
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obige Ablauftabelle formal spezifiziert. Man erkennt sofort, daf3 es sich um einen Moore-Automaten
handelt, da die Ausgabnur vom aktuellen Zustarfi abhangt. Der Automat besitzt vier diskrete
ZustandeZ, die symbolisch mit den Ziffern 0 bis 3 durchnumeriert sind. Dieser symbolischen
Ablauftabelle entspricht der Ablaufgraph im vorhergehenden Bild.

b) Zustandscodierung

Da ein Schaltwerk keine symbolischen AutomatenzustZridglementieren kann, sind diese in
einem ersten Entwurfsschritt durch binare Zustandsvari&pteqq,, . . ,q;, dg ) zu codieren. Da

bei beiden ublicherweise zugrundegelegten Automaten vom Moore- bzw. Mealy-Typ der Automa-
tenzustand von auf3en nicht erkennbar ist, ist man bei der Wahl der Codierung voéllig frei, wobei
auch die Zuordnung der einzelnen Codewdrter zu den Symbolen frei gewahlt werden kann. Nach-
folgend einige gangige Beispiele:

* Relativ aufwendig ist der 1-aus€ode, woben die Anzahl der zu codierenden Zustande ist.
« Kompakter ist ein Bindrcode mit lBits, um bis zun Zustdnde zu codieren.

Um den Einflu3 des gewdahlten Zustandscodes auf die Struktur des zu entwerfenden Schaltwerks
und damit auf den Schaltungsaufwand an einem Beispiel aufzuzeigen, sollen zwei verschiedene
Zustandscodierungen untersucht werden:

» Eine ,naive” Zustandscodierung, bei der die zufallig gewahlten Zustandssymbole 0 bis 3 als
Dezimalzahlen aufgefal3t und in Dualzahlen umgewandelt werden, die als Codewoérter dienen
(,Dualcode”), wie in der codierten Ablauftabelle im folgenden Bild links gezeigt.

 Eine Zustandscodierung, bei der sich beim Zahlen jeweils nur 1 Bit andert (,Gray-Code”), wie
in der codierten Ablauftabelle im folgenden Bild rechts gezeigt.

7t Qt yt 7t Qt yt

41 do Y2Y1 Yo 41 do Y2 Y1 Yo
0 00 100 0 00 100
1 01 0o 1 1 01 0o 1
2 10 001 2 11 001
3 11 110 3 10 110

Bild 3.47: Codierte Ablauftabellen des spezifizierten Moore-Automaten;
Zustandscodierung: links iDualcode rechts imGray-Code

Die Ablauftabellen im vorhergehenden Bild werden spater noch erganzt. Fur einen Moore-Auto-
maten gentgen sie zunachst, da bei diesem Typ die Ausgabe nur vom aktuellen Zustand abhangt:
Yi=a(zh).
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c) Entwurf des Ausgabeschaltnetzes

Die Ausgangsvariablevi = (y,, ¥, Yo) sollen durch eine Ausgabefunktiarerzeugt werden, fur

die ein Schaltnetz zu entwerfen ist. Zur Minimierung werden die Werte der genannten Ausgangs-
variablen aus den codierten Ablauftabellen des vorhergehenden Bildes enthommen und in KV-
Diagramme eingetragen, wie es im folgenden Bild fiir den Dualcode, im Gbernachsten fir den Gray-
Code geschehen ist. Um die Unterschiede der beiden Zustandscodierungen und ihren Einflu3 auf
die Anordnung der Variablenwertg(y;, o) U {0, 1,3 im KV-Diagramm zu verdeutlichen, wurde

der betreffende Codierraum fiir die Zustaddeweils mit dargestellt.

Z o Yo Jo Y1 Yo Yo do
01 1| U 010 ] 1
Q|23 Qo 1 a (] 1 Q|1 (0

Bild 3.48: KV-Diagramme fur die inbualcodecodierte Ablauftabelle nach Bild 3.16 links;
Z: Codierraumys,, yq, Yo: Ausgangsvariablen.

Z Jo Yo Jdo Y1 do Yo Yo
01 1O | 00 | L) 1
Q@1 3|2 Q10 a1 |0 wWio] 1

Bild 3.49: KV-Diagramme fir die inGray-Codecodierte Ablauftabelle nach Bild 3.16 rechts;
Z: Codierraumys,, y, Yo: Ausgangsvariablen.

Fur dieses Beispiel bildet man in den KV-Diagrammen Uberdeckungen der Nullstellen unter Ein-
beziehung von Freistellen)( die zusatzliche Freiheitsgrade fur den Entwurf bieten. Fur den Du-
alcode findet man im obigen Bild folgende, teils triviale Primterme in konjunktiver Minimalform:

KMF y,=0; Odg;y1 =01 Yo =01 00g

Fir den Gray-Code findet man im vorhergehenden Bild unter Einbeziehung von Freigjellen (
ausschlief3lich triviale, d.h. absolut aufwandsminimale Primterme in konjunktiver Minimalform:

KMF y,=00;Y1=01;Y0=0p

Die zur KMF jeweils isomorphen Schaltnetze werden im folgenden Bild einander gegeniberge-
stellt.
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01 Jo

r— - 77
¢ ' |

¢ : _'_|
[ } t
— |

I I
I |
I

Yo
Y1

Yo

di Y

L - — — 1

Bild 3.50: Implementierung der Ausgabefunktor (y,, Y1, Yo) = A0y, do);
Zustandscodierung: links iDualcode rechts imGray-Code

d) Wahl der Speicherglieder

Zt qt Xt 2+ | g vt
Q1% | XXo j DiDo | T1To Y2 Y1Yo
0 00 00 00 1 01 01 10*
00 01 01 0 00 00
00 1 - 02 2 11 11
03
1 01 00 04 1 1 0 *01
01 10 06 3 0 1
01 -1 05 2 1 0
07
2 11 00 14 0 0 1 0*1
10 16 3 10 0
-1 15 0 0 1
17
3 10 - - 10 || 12 01 11 110
11
12
13

Bild 3.51: Codierte Ablauftabelle des hier spezifizierten Moore-Automaten;
Zustandscodierung ii@ray-Code Zustandsspeicherung TaFlipflops
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Zur Speicherung der vier Automatenzustande des hier spezifizierten Moore-Automaten bendtigt
man bei beiden gewéhlten Codierungen mindestens zwei Flipflops. Als Speicherglieder stehen
grundsatzlich alle vier bereits vorgestellten Flipfloptypen zur Verfiigung:

» Setz-Rucksetz-Flipflops, Delay-Flipflops, JK-Flipflops oder Trigger-Flipflops.

Als Beispiel seien willkurlicA-Flipflopsgewahlt; ferner soll die Zustandscodierungdnay-Code
weiterverwendet werden. Das vorhergehende Bild zeigt die codierte Ablauftabelle fur diese Zu-
standscodierung und den gewahlten Flipflop-Typ. Zur Ermittlung der Ansteuervarialdew.

To sind in der codierten Ablauftabelle die Spalten fir den aktuellen und den Folgezustand zeilen-
weise miteinander zu vergleichen: Jeder Zustandstibergar@eachQ ™1 ist bitweise, d.h. fur
gleiche Indizes zu prufen. Falls sich das Zustandghindert, so gilf; = 1, sonst; = 0, wie der
Ansteuertabelle und/oder dem Ablaufgraphen des T-Flipflops in Bild 3.14 zu entnehmen ist.

e) Entwurf des Ubergangsschaltnetzes

Die Ansteuervariablefi; und T, der T-Flipflops sollen durch eine Ubergangsfunkogrzeugt

werden, flr die ein Schaltnetz zu entwerfen ist. Die Funktionsbeschreibung der genannten Ansteu-
ervariablen kann aus den entsprechenden Spalten der codierten Ablauftabelle enthommen und, wie
nachfolgend gezeigt, zur Minimierung in KV-Diagrammen dargestellt werden. In den KV-Diagram-
men bildet man die jeweils aufwandsminimalen Uberdeckungen mit Primblocken, hier der Nullst-
ellen. Daraus erhélt man die folgenden Primterme in konjunktiver Minimalform:

KMF Ty = (000 0% O%) & (03 Oag Oxg ) & (a1 Oxg Oxg)
To= (0 Ox Oxg) & (03 OgoOXg) & (a1 00p Oxq )

Xo Xo T Xo Xo To

ool 1[0 1 |[o [[[o]f 0

x| 11|11 x| 1(1]fof 1
x| 1(1]|1][o]x w1111 |
1111 |n 1(1]1]1]|n

Qo Yo Qo Y

Bild 3.52: KV-Diagramme fir die codierte Ablauftabelle nach Bild 3.20;
T4, To: Ansteuervariablen dérFlipflops

f) Schaltwerksstruktur

Isomorph zu den ermittelten Strukturausdricken (hier: KMF) ergeben sich fur das Schaltwerk die
im folgenden Bild dargestellten Gatterstrukturen des Ausgabeschalthainesdes Ubergangs-
schaltnetzes, zusammen mit den (hier willkirlich) gewahlten T-Flipflops.
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d1 do X1 X0

d1 do X,l—I XO,—I
O O )\
[ I — I Y2
® : | Y1
. r.—-—- - — — — — | I_ - - - _I yo
[ Y f - |
¢ *—H I] I
I I
? ® : O & I
¢ — I
I I
® | I
? p - U |
I I 0
I I
¢ Py 0 Ol |
® i I
I I
? ® ! O & |
¢ ] — I
I I
@ Py } |:| L |
¢ ' |
- - Jdo —®
_ To
Jdo
a1 ®
— Tq
01

Bild 3.53: Schaltwerk zur Implementierung des hier spezifiziéieore- Automaten;
Zustandscodierung ii@ray-Code Zustandsspeicherung TaFlipflops

3.3.9 Kostenabschatzung

Zur Abschatzung des Implementierungsaufwandes mag eine vereinfachte Kostenbetrachtung ge-
nigen. Beispielsweise bendtigt man in statischer Transistorschaltungstechnik fur jede Eingangsva-
riable eines logischen Gatters einen Transistor und fur jedes Gatter zusatzlich einen Arbeitswider-
stand, wie das folgende Bild links zeigt. Nimmt man vereinfachend an, daf} die Kosten fir jedes

Bauelement gleich seien, und normiert man auf diese Bauelementkosten, so erhalt man fir die
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normierten Kosten der folgenden zweistufigen Schaltnetzstruktur (rechts), wobei im Trivialfall
eines einzelnen Eingangsgattersl) das Ausgangsgatter entfallt:

Kincl)=1+2+(g+e+..+8§); K(n=1)=1+g¢g

wobein : Gatteranzahl in der Eingangsstufe, £&nzahl der Priméareingénge.

o) n
I I
| | e
" |
I |
I I
| . ™ Y1 |
€ Y2
& || [[ | —
| L | ;
| I '
«— 1 |  «F
Lo

Bild 3.54: links: Realisierung eines logischen Gatters auf der Schaltungsebene;
rechts: Kenngrol3en fur SchaltnetzkosterGatteranzahl in der Eingangsstufe,
g: Anzahl der Priméareingénge

Mit den oben ermittelten Strukturausdriicken in konjunktiver Minimalform (KMF) fur die Aus-
gangsvariablenyf, y;, Yo) sowie die Ansteuervariablefiy( Tp) der Flipflops erhalt man die nach-
folgenden normierten Schaltnetzkosten, wobei zur Ermittlung der Gesamtkosten des Schaltwerks
die Kosten der zwei Flipflops zusétzlich zu beriicksichtigen sind.

» Gray-Code, T-Flipflops:

K(y,) =0 KT)=1+2x3+(4+3+3)=17,
K(y) =0 KTp)=1+2x3+(3+3+3)=16;
K(Yo) = 0 K@) = K(Tp) + K(Tg) = 33;

K(A) = K(yo) + K(y7) + K(yg) =0 K(SN) = K@) + K(A) =33 + 0 =33
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3.4 Programmierbare Digitalbausteine (, PLD")

3.4.1 Technologie und Schaltungstechnik

a) Technologische Randbedingungen

Die Mikroel ektronik ermoglicht diel ntegration umfangrei cher und komplexer el ektronischer Schal -
tungen auf einem einzigen Halbleiterchip. Insbesondere die Siliziumtechnologie erlaubt es, dank
der Eigenschaften des Siliziumdioxids, kleinste Strukturen im Mikrometerbereich herzustellen.
Man ist bestrebt, ein mikroel ektronisches System von gegebenem Umfang auf méglichst kleiner
Chipflache unterzubringen; denn je grél3er das Chip, desto groR3er die Gefahr, dass es einen Kri-
stalldefekt enthalt, und desto geringer ist die Ausbeute bel seiner Fertigung. Die Chipfléache wird
vor allem durch die Verdrahtung auf dem Chip bestimmt, da die Gatter im wesentlichen unter der
Verdrahtung im Kristallinnern liegen. Es gilt daher beim Chipentwurf, die Gesamtlange der Ver-
drahtung zu minimieren, und zwar aus zwei Griinden: Nicht nur die Chipflache, sondern auch die
Laufzeiten auf dem Chip werden dadurch verringert.

DieWeiterentwicklung der Mikroel ektronik wurde stetsvon der Technol ogie der Hal bl eiterspeicher
angefuhrt, da Speicher regelméldig strukturiert sind: Die Speicherzellen sind matrixférmig ange-
ordnet, Speicherchips weisen ein regelmaidiges Verdrahtungsmuster auf. Die Dichte der Bauele-
mente ist auf einem Speicherchip in der Regel hoher as auf einem Mikroprozessor, da dessen
Strukturen komplexer und damit unregel maldiger sind. Regel méfdige Strukturen sind tUbersichtlicher
beim Entwurf, mit héherer Ausbeute zu fertigen und von langerer Lebensdauer im Betrieb. Man
sucht daher die Fortschritte der Speichertechnologie auch fir Prozessor- und Logikschaltungen zu
nutzen, indem man sie z.B. matrixformig und damit moéglichst regelmaldig strukturiert.

a) - aks alksa b) :_

-
-
-
-

-

-4 ¢

S

-
-
-
-

11 o

1

| | | | I - I

| 1

T T

Bild 3.55: Grundstrukturen der Mikroelektronik; a) Speichermatrix; b) Mikroprozessor.

Einersaits setzt die Mikroelektronik hohe Investitionen an Gebauden und Geréten voraus, so dass
nur die automatisierte Herstellung grof3er Stlickzahlen wirtschaftlich ist. Andererseits besteht ein
grof3er Bedarf an anwendungsspezifischen Schaltungen, die unter Umstanden nur in niedrigen
Stiickzahlen benttigt werden. Hier empfehlen sich vordefinierte Srukturen, dieje nach Anwendung
personalisierbar sind. Auch hier waren die Speicher die Vorreiter der Entwicklung: Alle Schalt-
funktionen kdénnen durch Programmieren einer vorgefertigten Speichermatrix implementiert wer-
den. Programmierbare Strukturen haben zudem den Vorteil der Flexibilitat und Anderbarkeit, um
Entwurfsfehler zu korrigieren und/oder neue Funktionen mit einzubeziehen.
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b) Schaltkreistechnologien

Elektroni sche Schaltungen und Systeme kdnnen mit zwei prinzipiell unterschiedlichen Schaltkreis-
technologien realisiert werden:

* Die bipolare Halbleitertechnik erlaubt die Herstellung von Transistoren mit NPN- oder PNP-
Schichtstruktur sowie von PN-Dioden. Erstere sind aktive, |etztere passive Bauelemente. Schal-
tungen mit bipolaren Bauelementen werden in der Regel statisch betrieben.

« Dieunipolare Halbleitertechnik erlaubt die Herstellung von MOS-Transi storen mit N-Kanal oder
P-Kanal. Beides sind aktive Bauelemente. Schaltungen mit MOS-Bauel ementen kénnen statisch
oder, dank inhérenter MOS-K apazitéten, auch dynamisch betrieben werden.

Aus der Fille der Varianten, die bisher auf dem Gebiet der Schaltkreistechnologien entwickelt
wurden, sollen hier nur zwei einfache Vertreter vorgestellt werden. Denn es geht hier nicht um
schaltungstechnische Einzelheiten, sondern um strukturell-topologische Zusammenhange zwi-
schen Logik- und Schaltungsebene. Auch die schaltungstechnisch hochinteressante CMOS-Tech-
nologie - es sei nur an die dynamische Domino-Logik erinnert - ginge in diesem Zusammenhang
Uber die Zielsetzung des vorliegenden Abschnitts hinaus.

Bel der Realisierung logischer Gatter mit el ektronischen Bauelementen mul3 zuerst die Zuordnung
der bindren Variablenwerte (0, 1) zu zwei el ektrischen Pegeln definiert werden, diesich durch einen
entsprechenden Stérabstand deutlich voneinander unterscheiden. Trifft man fur die Eingangs- und
die Ausgangsvariablen dieselbe Zuordnung, so gibt es zwei Mdglichkeiten:

* Positive Logik: Der hdhere Signal pegel wird dem Wert 1, der niedrigere dem Wert 0 zugeordnet.
* Negative Logik: Der hohere Signal pegel wird dem Wert O, der niedrigere dem Wert 1 zugeordnet.

Die folgenden Ausfiihrungen setzen die positive Logik stillschweigend voraus. Als elementare
Schaltungsbeispiele zeigt Bild 10.2 @) ein UND-Gatter mit bipolaren Dioden, b) ein ODER-Gatter
in derselben Schaltungstechnik, c) ein NOR-Gatter mit NM OS-Transi storen, dazu die entsprechen-
den logischen Gattersymbole. Die Schaltalgebra lehrt, insbesondere ihr Hauptsatz, daf3 sich ale
Schaltfunktionen und damit beliebige Schaltnetze allein mit diesen Grundgattern implementieren
lassen.

a) > b)
Pt
¢
K ! (o

= e ] =

Bild 3.56: Schaltungstechnik; a) UND-Gatter mit Dioden, b) ODER-Gatter mit Dioden,
c) NOR-Gatter mit NMOS-Transistoren.
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Beispiel 3.12:

Gegeben sai folgender Strukturausdruck einer Schaltfunktion in digunktiver Normalform:

DNF  y=(X & X1 & X)X & X; & Xg)

Das isomorphe zweistufige Schaltnetz zeigt das folgende Bild. Es besteht aus zwel UND-Gattern

mit jedrei Eingangen zur |mplementierung der beiden Konjunktionen (&) und einem ODER-Gatter
mit zwei Eingangen zur Implementierung der Digunktion (LJ).

X2 X1 X0

—1_
OpF——-YV
; 1

1

Bild 3.57: Zweistufiges Schaltnetz in digunktiver Normalform (DNF)

Wendet man die DeMorgansche Regel auf die beiden Teilterme der obigen DNF an, so erhadt man:

Y= (X%& x3& X9) O (% & X3 & Xg) = (X 0% OXg) O (X Oxq OXg)
Y= (X% Ox; Ox9) O( X% Ox Oxg)

Damit &1t sich der gegebene Strukturausdruck auch durch ein zwei stufiges Schaltnetz implemen-
tieren, das ausschliefflich aus NOR-Gattern ( ) besteht. Der verneinte Funktionswert y ist dabei
durch einen einfachen Ausgangsinverter in den beahten Funktionswert y umzuwandeln.

X X1 X0

—
[
Wi =GR e

1

Bild 3.58: Zweistufiges NOR-Schaltnetz aus der DNF
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c) Bipolare Schaltungstechnik

Die digunktive Normalform (DNF) des obigen Beispiels (Bild 10.3) 183 sich in bipolarer Schal-
tungstechnik unter Verwendung der in Bild 10.2 &) und b) gezeigten Diodengatter direkt realisieren,
wie Bild 10.5 zeigt. Die Schaltung besteht, soweit es die logischen Verknlpfungen betrifft, aus
passiven Bauelementen, und sie wird statisch betrieben.

Interessant ist, daf? sich die Diodenschaltung topol ogisch so umgestalten 183, dal3 zur Realisierung
der logischen Verknipfungen zwei Matrizen entstehen (Bild 10.6):

« fur die Konjunktionen (&) eine UND-Matrix, d.h. die Zeilen bilden logische Produkte P;,
» fUr die Digunktion ([)) eine ODER-Matrix, hier mit einer Spalte fur den Funktionswert y.

Selbst dieses einfache Schaltbild zeigt, dal3 anwendungsspezifische Schaltfunktionen dadurch rea
lisiert werden konnen, dal3 die Dioden in der UND-Matrix entsprechend der Spezifikation wahl-
wel se an die bejahten oder die verneinten Eingangsvariablen x; angeschl ossen werden. Durch diese
Mal3nahme wird die vorstrukturierte Schaltung personalisiert.

d) MOS-Schaltungstechnik

Wird die digunktive Normalform (DNF) desselben Beispiels wie oben gezeigt in eine zweistufige
NOR-NOR-Formumgewandelt, so 1813t sich die gegebene Schaltfunktion auchin MOS-Schaltungs-
technik unter ausschliefdlicher Verwendung desin Bild 10.2 ¢) gezeigten NOR-Gatters realisieren.
Die Schaltung in Bild 10.7 besteht aus aktiven, d.h. verstérkenden NMOS-Transistoren; sie wird
hier statisch betrieben.

Auch die NMOS-Transistorschaltung 1803t sich topologisch so umgestalten, dal? zur Realisierung
der logischen Verknipfungen zwei Matrizen entstehen (Bild 10.8):

» fUr die Konjunktionen (&) eine UND-Matrix

o und fur die Digunktion ([)) eine ODER-Matrix.

Die Namen der beiden Matrizen sind unabhéangig davon, ob die logischen Verkniipfungen schal-

tungstechnisch durch eine echte UND-ODER-Schaltung oder, wie zumeist, durch eine zweistufige
NOR-NOR-Schaltung realisiert werden.

Auch hier erfolgt die Personalisierung der Schaltung je nach anwendungsspezifischer Spezifikation
dadurch, dal3 die Gatter der NMOS-Transistoren in der UND-Matrix wahlweise an die begjahten
oder die verneinten Eingangsvariablen x; angeschlossen werden.
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X2 X1 X0
Po
¢
4 ¢
¢ - i
i g y
[ ¢ —
Py
® ¢
T ¢
Bild 3.59: Realisierung des Schaltnetzes nach Bild 10.3 mit Diodengattern
X2 X1 X0 =
0
\4\ 0\4\'\4\ Po
\4\'\ & Py

Bild 3.60: Topologische Umgestaltung der Diodenschaltung nach Bild 10.5
& = UND-Matrix, [1= ODER-Matrix.

.
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X X1 X0

Bild 3.61: Realisierung des Schaltnetzes nach Bild 10.4 mit NMOS-Transi storgattern

X X
o = 2 L %o =

Bild 3.62: Topologische Umgestaltung der NM OS-Transi storschaltung nach Bild 10.7
& = UND-Matrix, (0= ODER-Matrix.
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e) Allgemeines Strukturschema

Matrixformige Logikschaltungen nutzen das Potential der Mikroelektronik bei Entwurf, Herstel-
lung und Betrieb besser aus a's unregelmafiige Strukturen. Da sie programmierbar sind, gehéren
sie zur Klasse der anwendungsspezifischen integrierten Schaltungen (, Application Specific Inte-
grated Circuits’, ASIC). Indem man von schaltungstechnischen Einzel heiten absieht, kdnnen beide
Schaltkreistechnologien, bipolar und MOS, durch das allgemeine Strukturschemaim nachfolgen-
den Bild abstrahiert werden. Es besteht im wesentlichen aus einer UND-, gefolgt von einer ODER-
Matrix, die beliebige logische Verknipfungen in zweistufiger digunktiver Form leisten.

Eine spezielle, anwendungsspezifische Schaltfunktion wird durch die Personalisierung der beiden
Matrizen realisiert, wie esim Strukturschema durch die Anschlusspunkte angedeutet ist. Man kann
die Personalisierung weiter abstrahieren und sie als Programmierung der Matrizen mit einem ele-
mentaren Binarcode betrachten, wie er nachfolgend angegeben wird. Man bezeichnet deshalb die
in den folgenden Abschnitten zusammengestellten Varianten des allgemeinen Strukturschemas al's
Programmierbare L ogische Bausteine (,, Programmable Logic Devices’, PLD).

SRR
SR

Bild 3.63: Allg. Strukturschema personalisierbarer Matrizen;
& = UND-Matrix; 0= ODER-Matrix.

» Die UND-Matrix erzeugt die Konjunktion (,,logisches Produkt”) Pj der angeschlossenen Ein-
gangsvariablen x;. In dieser Matrix bedeutet:

Binédrcode
weil3er Punkt: die verneinte Eingangsvariable ; ist angeschlossen 0
schwarzer Punkt: die bejahte Eingangsvariable x; ist angeschlossen 1

kein Punkt: die Eingangsvariable x; ist nicht angeschl ossen -

» Die ODER-Maitrix erzeugt die Disjunktion (,|ogische Summe”) der angeschlossenen Konjunk-
tionen Pj. In dieser Matrix bedeutet:

Bindrcode
schwarzer Punkt: die Konjunktion Pj ist angeschlossen 1
kein Punkt: die Konjunktion Pj ist nicht angeschlossen 0

Zur Realisierung von Buindel schaltfunktionen mit mehreren Funktionsspalten y; kann die Anzahl
der Spalten in der ODER-Matrix im obigen Bild entsprechend erhdht werden.

Seite 3.4.7 von 18



Prof. Dr.-Ing. U.G. Baitinger

3.4.2 Festwertspeicher (,ROM”)

&
x
'—\
&
0p]
@)
'—\

Beispiel 3.4.4:

Ein binérer Volladdierer soll durch programmierbare
Digitalbausteine, d.h. personalisierbare Schaltungen
in Matrizenform realisiert werden. Er kann durch eine
Wahrheitstabelle wie im nebenstehenden Bild spezifi-
ziert werden. Dabel sind x; und X die zusammen mit
dem Ubertrag ¢ aus der vorhergehenden Addition zu

addierenden binaren Variablen. Gebildet werden die
Summe Sund der neue Ubertrag C;.

~N o o b~ w N - O
[ e R ) o O O O
= =, O O R B O O
= O = O = O +» O
= O O Bk O+ - O
= = = O O O O

Bild 3.64: Funktionsbeschreibung eines binéren Volladdierers

S
<
Co X1 X0 | ; | ; |
& 0
r—i——i—— — 1 r— T — — 1 — 1
i @ i i i Mo
| | | |
— O——O0—@—+— — m
| | | |
—O— ——O—+— — m,
| | | |
—0O ® o— : ®o— m
| | | |
— —O0—O0—+—+—9 — m,
| | | |
—@ O o— : o— ms
| | | |
— ——O—+—— *—— m
| | | |
i L @ @ i i @ @ i my
L 4+ 4 1 _ 4 [ I
S C,

Bild 3.65. Festwertspeicher (, Read Only Memory”, ROM);
& = vordefinierter 1-aus-8 Decoder, [1= programmierbare Speichermatrix.
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Personalisiert man die UND-Matrix wieim vorhergehenden Bild fUr n = 3 Eingangsvariable sche-
matisch gezeigt, so werden durch ihre 2" Zeilen samtliche Minterme m; gebildet, wobei j =0. . n-
1. Diese UND-Matrix entspricht dem 1-aus-n Decoder eines Speichers mit wahlfreiem Zugriff
(, RandomAccessMemory”, RAM) mit Einebenenadressierung. Wiedasvorhergehende Bild eben-
falls zeigt, wird die ODER-Matrix isomorph zu den beiden Funktionsspalten der Wahrheitstabelle
fr die Summe Sund den neuen Ubertrag C, personalisiert (, programmiert”); sieist dieeigentliche
Speichermatrix.

Der 1-aus-n Decoder wird vom Hersteller vordefiniert, die Speichermatrix anwendungsspezifisch
programmiert. Wird der Inhalt der Speichermatrix vom Hersteller nach Anwenderangaben fest
personalisiert, so spricht man von einem Festwertspeicher (, Read Only Memory”, ROM). Anmer-
kung: Die Bezeichnung RAM (,, Random Access Memory”) beschrénkt sich in der Praxis auf vom
Anwender im laufenden Betrieb schreibbare Speicher mit wahlfreiem Zugriff, obwohl auch ein
sog. ROM, wie man seinem Strukturschema entnehmen kann, dank des 1-aus-n Decoders den
wahlfreien Zugriff auf den Inhalt der Speichermatrix erlaubt.

Man beachte ferner, dass der Festwertspei cher in diesem Zusammenhang alsrein kombinatorisches
Schaltnetz wirkt. Ein sequentielles Schaltwerk entsteht daraus erst dann, wenn die beiden im obigen
Strukturschema des ROM angedeuteten Flipflops am Ausgang der Speichermatrix auf den Eingang
des Decoders riickgekoppelt werden.
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3.4.3 Programmierbare UND-Matrixlogik (, PAL")

Nun soll die gegebene Biindel schaltfunktion desVolladdierers minimiert werden, wobel das Funk-
tionsbiindel hier aus der Summe Sund dem negierten Ubertrag C; besteht. (Die Negation erfolgt
im Vorgriff auf die im nachsten Abschnitt vorgestellte Realisierung und kann durch Verwendung
des negierenden A usgangs ei nesAusgangsfli pflops wieder aufgehoben werden.) Diefolgenden KV-
Diagramme zeigen, dass sich nur die Schaltfunktion fir c; minimieren lasst.

X0 Xo S X0 Xo C;
e ——— =
0 1 0 1 1 1 0 1
xx 2] ofls] o x |1]fo|[o]o
Co G Co G

S
I_C
Co X1 X0 | I | I | !
& [
riliﬂ r— 1T — — 1 — 1
I \ \ I I @ I PO
I I I I
—® o ¢ — P,
I I I I
—O0——O0——¢—+—+—@ — P,
I I I I
——O0—O—+——@ — P
I I I I
—0 O—F+— *—— P,
I I I I
—0——0 — o—— P;
I I I I
: O——O—+—— *—— P
e O o L — 41— — 1 _ 4
s c,

Bild 3.67: Programmierbare UND-Matrixlogik (,, Programmable AND-Array Logic”, PAL);
& = programmierbare UND-Matrix, [1= vordefinierte ODER-Matrix.
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Man erhélt durch Uberdecken der Einsstellen mit Primblcken in disjunktiver Minimalform:
DMF S =(Cox1 %) O(CoXy %) O(CoXy %) O(CoXyXg)=Po Py OP,OP3

Cy =(CoXp) O(Coxq) O(X %) =P, OP5OPg
Die zur DMF isomorphe Personalisierung zeigt das néachste Bild. In der UND-Matrix des Bausteins
werden die gewtnschten Konjunktionen (, Produktterme”) P; zeilenweise erzeugt. In einer durch
den Hersteller des Bausteins vordefinierten ODER-Matrix ausreichender Grof3e werden sie dann
digunktiv verkntipft. Da nur die UND-Matrix anwendungsspezifisch personalisiert wird, wahrend

die ODER-Matrix vordefiniert ist, nennt man einen Baustein mit dieser Struktur Programmierbare
UND-Matrixlogik (,, Programmable And-Array Logic”, PAL).

Ein PAL benttigt weniger Zeilen als ein ROM, falls sich die zu realisierenden Schaltfunktionen
minimieren lassen. Dies zeigt auch ein Vergleich des PAL-Strukturschemas mit dem des ROM, die
fUr diesel be Funktionsbeschreibung el nesVol laddierers personalisiert wurden. DieAnzahl der Spal -
ten dagegen ist durch die Anzahl der Eingangs- und Ausgangsvariablen, d.h. durch die Funktions-
beschreibung vorgegeben und deshalb in beiden Fallen gleich.
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3.4.4 Programmierbare Logische Matrix (,PLA")

Die Anzahl der Spalten matrixférmiger Logikschaltungen ist, wie erwéhnt, durch die Funktions-
beschreibung (,, Spezifikation™) vorgegeben. Das Entwurfsziel besteht daher in der Minimierung
der Anzahl der Zeilen. Das Ergebnis konventioneller Minimierungsverfahren, z.B. mit KV-Dia-
grammen oder nach Quine-McCluskey, ist die Minimierung der Anzahl logischer Gatter. Sie wer-
den, wie gezeigt, beim Entwurf von PALSs vorteilhaft eingesetzt. Falls es nun gelingt, logische
Produktterme P; mehrfach auszunutzen, erhalt man ein weiteres Minimierungspotential .

Man betrachte die folgenden KV-Diagramme: Uberdeckt man die Einsstellen nicht notwendiger-
weise mit Primbl6cken, sondern mit Blocken, die in den KV-Diagrammen mehrerer Ausgangsva-
riabler vorkommen, hier Sund C4, so kann man sie mehrfach ausnutzen, fallsin der matrixférmig
ausgelegten Schaltung nicht nur die UND-, sondern auch die ODER-Matrix personalisiert werden
kann. Diese Uberlegungen fiihren zur Programmier baren Logischen Matrix (, Programmable Logic
Array”, PLA).

X0 % s X %o (o
0 E 0 E 1 [2]l o [z
x, 2] o[z] o 3 2] o]olo
© C C Co

Bild 3.68: KV-Diagramme des Volladdierers mit Mehrfachausnutzung von Bldcken

S
&
Co X1 X0 | i | i |
& O
| — - - | r— 71T — — 1 — "1
i @, 9, i i @ : I:)O
| | | |
—@ ® o — —@ — P
| | | |
—O0—O0—@—+——+—0—@—— P,
| | | |
—&—O0—O—+—+—0—@—— P;
| | | |
| O O i i @— Py
L 4+ 4 1 _ 4 [ R
S c,

Bild 3.69: Programmierbare Logische Matrix (,, Programmable Logic Array”, PLA);
& = programmierbare UND-Matrix, [1= programmierbare ODER-Matrix.
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Man erhalt durch Uberdecken der Einsstellen mit mehrfach ausgenutzten Blocken in disjunktiver
Normalform:
DNF S =(Cox1 %) O(CoxXy %) O(CoxXy %) O(CoXy %) =Po P OP,0P3

C1 =(CoX %) O(Cox1 %) O(CoXp) =P 0Pz 0Py
Das Beispiel des Volladdierers zeigt das vorhergehende Bild. Die UND-Matrix des PLA erzeugt
zeilenweise die gewtinschten Produktterme P;, in der ODER-Matrix wahit man die jeweils benc-
tigten Produktterme aus, d.h. beide Matrizen sind anwendungsspezifisch zu personalisieren. Im
Vergleich zum PAL ergibt sich beim PLA eine Einsparung von zwei weiteren Produkttermen durch
deren Mehrfachausnutzung.

3.4.5 Speicher mit wahlfreiem Zugriff (, RAM")

a) Ein-Ebenen-Adressierung

1-aus-8 Decoder

b) Zwei-Ebenen-Adressierung

C X X \TI_HTI_[

1-aus-4 Dec
7T 1 I 71T 7
*—o¢
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3.4.6 Schaltwerksentwurf mit PLA

Implementiert man mit einem PLA nicht nur (Bindel-)Schaltfunktionen, sondern endliche diskrete
Automaten, so ergibt sich ein zusétzliches Minimierungspotential: Bei geeigneter bindrer Codie-
rung der Automatenzustande konnen sowohl das Uberfiihrungsschaltnetz 8, das die Folgezustande
erzeugt, al'sauch dasAusgabeschaltnetz A vereinfacht werden. Man findet inder Literatur eine Fille
heuristischer Algorithmen zur Zustandscodierung, die hier jedoch nicht Gegenstand der Betrach-
tung sind. Nachfolgend soll das Entwurfsbeispiel eines Schaltwerks aus dem vorhergehenden Ka-
pitel speziell auf die PLA-Struktur abgestimmt werden.

a) Spezifikation

Das Schaltwerk wirdimfolgenden Bild durch seine symbolischeAbl auftabel e und den zugehdrigen
Ablaufgraphen formal spezifiziert.

Z'[ Xt Zt+l Yt
X1 X0 Y2¥1Yo

00 00 01 100
01 00
1 - 11

01 00 01 0o 1
10 10
-1 11

11 00 00 o001
10 10
-1 00

10 - - 01 110

Bild 3.70: Spezifikation eines durch ein PLA zu realisierenden Moore-Automaten;
links: Symbolische Ablauftabelle, rechts: Ablaufgraph.

b) Zustandscodierung

Willkirlich wurde der bekannte Gray-Code zur Zustandscodierung gewahlt:

Z,=0« (0,0) =2 (1,1)

Z1=1-(0,1) Z3=3 - (1,0)
Die sich aus der gewahlten Zustandscodierung ergebende codierte Ablauftabelle wurde bereitsim
Entwurfsbeispiel desvorhergehenden K apitelswiedergegeben. Sieweist zehn Zeilen auf, diedurch

ebenso viele Zeilen (,, Produktleitungen”) des PLA realisiert werden missten. Dieser Aufwand soll
minimiert werden.
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c) Wahl der Speicherglieder

Zur Zustandsspeicherung seien nun willkurlich D-Flipflops gewahlt. Fir ihre Ansteuervariablen
(D4, Dg) wurde im Entwurfsbeispiel des vorhergehenden Kapitels eine Spalte angegeben; wegen
der trivialen, nur verzogernden Funktion des D-Flipflopsist ihre Belegung mit der Codierung Q1
der Folgezustande identisch.

d) Minimierung des Bindelschaltnetzes

Zunéchst soll die Minimierung konventionell durch das Bilden von Primblcken erfolgen. Die
Funktionsspalten fur die Ansteuervariablen (D4, D) der D-Flipflops werden aus der codierten
Ablauftabelle des Entwurfsbei spielsim vorhergehenden Kapitel in die folgenden KV-Diagramme
Ubernommen. Man findet bei der Minimierung durch Bilden von Primblocken, dal3 sich die zur
Minimierung der Zeilenanzahl von PL Aswichtige Mehrfachverwendung von Bldcken nur fr zwei
davon erreichen 183t (im folgenden Bild schraffiert hervorgehoben). Mit digunktiven Minimalfor-
men waren fur die Ansteuervariablen (D4, Dg) zunéchst sechs Produktterme, d.h. Zeilen fir das
PLA erforderlich:

DMF Dj=(0y%) 0(a30%) O(dpXyXo)
Do= (01X %) 0(a1d0%e) O(Goxy) O(0ay )

z %o X0 %o Dy X0 %o Do
0|1 O]0|2)0 110 (|1]12
@ 3|2 101011 | I | A IO
10|00 ||2f|% X2 |1 0|0 |%
O/0[|0|0 % 1[1)0|0 %
G Go Qo

Bild 3.71: KV-Diagramme der Ansteuervariablen (D4, Dg); Uberdeckung mit Primbldcken;
Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

Die Funktionsspalten flr die Ausgangsvariablen (ys, Y1, Yg) des PLA-Schaltwerks werden ebenfalls
aus der codierten Ablauftabelle des Entwurfsbei spielsim vorhergehenden Kapitel in die folgenden
drei KV-Diagramme tibernommen. Man findet bei der Minimierung durch Bilden von PrimblGcken
in den KV-Diagrammen der Ausgangsvariablen (Y,, Y1, Yo) in digunktiver Minimalform zunachst
drei Produktterme. Dakeine Mehrfachverwendung der Primbldcke moglichist, waren drei weitere
und damit insgesamt neun Zeilen fir das PLA erforderlich:

DMF y,=0q Yy1=01 Yo=0o
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X0 Xo Y2 X X Y1 X0 X0 Yo

101 00 0[{0|0]0 1)1

11 Of O 0[{0|0]0 O Ojf1]1
111010 11| 00 O[O |2 |2f%
111)0]|0 11|00 O|O0Ofl1|2(%

o Yo do Yo Go ‘o

Bild 3.72: KV-Diagramme der Ausgangsvariablen (y,, y1, Yo); Uberdeckung mit Primblocken;
Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.

Bei der Minimierung von PLAskommt esauf die Minimierung der Zeilenanzahl an, diewieerldutert
Konjunktionen (,,logische Produkte”) implementieren. Dies wird, wie ebenfalls bereits erwahnt,
durch Mehrfachverwendung von logischen Produkttermen erreicht. Zur Ermittlung der digunktiven
Formen der betreffenden Variablen missen die Einsstellenin den KV-Diagrammen zwar vollsténdig
mit Blocken Uberdeckt werden, aber nicht notwendigerwei se mit Primbldcken: Betrachtet man die
obigen finf KV-Diagramme gemeinsam und verkleinert man ggf. die Uberdeckenden Bl6cke, ohne
die vollstandige Uberdeckung der Einsstellen zu gefahrden, so entdeckt man Maoglichkeiten zur
M ehrfachverwendung von Bldcken, wie esin den folgenden sechs KV-Diagrammen dargestellt ist.
Wie der paarweise Vergleich dieser KV-Diagramme zeigt, benétigt man jetzt nur noch insgesamt
sieben Produktterme, die durch entsprechende Zeilen im PLA implementiert werden. Ihre Anzahl
konnte somit von urspriinglich zehn weiter verringert werden.

Xo o 2 Xo o Y1 X0 Xo Yo

11 0O O 0O(0|0|0O O dj1|1

11 O] O 0(0|0|0O O dj1]1
x|l111/0]0 g, AV Z oloff1|1]|m
11]lo|o| ¥ 0O 0011

G G Qo Y

Bild 3.73: KV-Diagramme der Ausgangsvariablen; Uberdeckung mit mehrfach verwendeten
Blocken; Zustandscodierung im Gray-Code, Zustandsspeicherung in D-Flipflops.
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Z do X0
0|1 00|10
Q| 3|2 Xy \Y@ 1)1
101001
00|00
Go Yo

Q1

01

X0 Xo Do

10 1([1]l1

NN
Xy (WA q
1 7/?% OO0 1
975 O/ 0 |%

Qo o

Bild 3.74: KV-Diagrammeder Ansteuervariablen; Uberdeckung mit mehrfach verwendeten Bl ok-
ken; Zustandscodierung im Gray-Code, Zustandsspei cherung in D-Flipflops.

e) PLA-Schaltwerksstruktur

Zur Implementierung des Moore-Automaten, der im obigen Abschnitt 4.5.1 spezifiziert wurde,
werden die oben ermittelten Konjunktionen (&), d.h. die logischen Produktterme P; in die UND-
Matrix, ihre disunktive Verknipfung (L)) in die ODER-Matrix der PLA-Struktur abgebildet. Das
Ergebnis des hier durchgefiihrten Entwurfsablaufs zeigt das folgende Gatterschaltbild.

Man erhélt folgende Produktterme, d.h. Blocke, die die Einsstellen vollstandig Uberdecken:

Po=0o P1=01& Qo
P3=01 & Q& Xq Py=01& qp & %o
Pe=01& X1 & Xg

DNF  y, =Py y1=P1

D1:P3DP4DP5

P>=0qp B
Ps =00 & X1 & Xg

Yo=P>

Do=P; OP3 0P, 0P
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X1 Xo Y2 Y1 Yo
i R W O
|Q1 10y |CI0 10 |

c
& []
T 1 7T U 1 1T 71T rr— — — 1T — — ] - 1
i T i ® T
I | | I
f | f i L ® I
I | I I
! @ . | @+
I | | I
+@ @ i H@ L i
I I | I
| @ o*—0 : . | I
I | I I
—:—o ® ® ! :o !
I I
| | | |
AR S S s s

Bild 3.75: Realisierung des Moore-Automaten mit einem PLA;

& = personaisierte UND-Matrix, [1= personalisierte ODER-Matrix.
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4 Register-Transfer-Ebene Prof. Dr.-Ing. U.G. Baitinger

4.1 Begriffsbestimmungen

Die Registertransfer-Ebene abstrahiert von den Einzelheiten der konkreteren Logikebene und sie
unterstiitzt die noch abstraktere Algorithmische Ebene, die das Verhalten der Systemeinheiten und
ihr Zusammenwirken beschreibt. Sie verwendet als funktionelle Einheiten

* zur Informationsspeicherung: Register und Speichermatrizen (, RAM®);
* zur Informationsverarbeitung: Digitale Rechenwerke (, ALU");
« zum Informationstransfer: Verbindungsleitungen (,, Busse").

Die auf der Logikebene betrachteten Einheiten werden auf der RT-Ebene zu grof3eren Einheiten
zusammengefasst:

* Binédre Variablen zu Vektoren, d.h. die Busbreiten sind in der Regel grof3er als 1 bit;

» Logische Gatter zu kombinatorischen Schaltungen, die Decoder, Multiplexer, Addierer, aber auch
komplette Rechenwerke (, ALU*) oder nur ein einzelnes |ogisches Gatter enthalten kdnnen,

* Flipflops zu Registern entsprechend den Bitbreiten der Vektoren und Busse; im einfachsten Fall
kann ein Register auch nur aus einem einzelnen Flipflop bestehen.

Jeder interaktiv, d.h. mit einem Text- oder Graphik-Editor ausgefihrte Entwurfsschritt, sei esin
Hardware oder Software, mussdurch Simulation auf Korrektheit Gberprift werden (,, Validierung*),
bevor der néchste Entwurfsschritt ausgefiihrt werden kann.

Automatisierte Entwurfsschritte, diemit einem rechnergestiitzten Synthesewerkzeug (, CAD Tool“)
ausgefuhrt werden, bedirfen dagegen grundsétzlich keiner Validierung, da sie in der Regel ein
korrektes Entwurfsergebnis erzeugen (,, correctness by construction®), doch ist auch hier eine an-
schlieffende Simulation méglich und ratsam.

Beim rechnergestitzten Entwurf mikroel ektronischer Digital systeme konnen die zu validierenden
Entwurfsdaten direkt al's,, M odellbeschreibung” fir den Simulator verwendet werden. Simulationen
auf der RT-Ebene bilden folgende Vorgange nach:

* den Zugriff auf Variablenwerte in Speicherplatzen,
* ihre Ausbreitung auf Busleitungen

« und ihre Verknupfung in Rechenwerken, die auch al's arithmetisch/logische Einheiten
(,Arithmetic/Logic Unit“, ALU) bezeichnet werden.

Im folgenden sollen fir die RT-Ebene - nach einer Vorstellung der zu betrachtenden Funktionsein-
heiten - Methoden der strukturellen Synthese aus funktional en Spezifikationen vorgestellt werden.
Dabel geht esim wesentlichen um die zeitliche Ablaufplanung von Steuerungsfolgen, die Bereit-
stellung von Betriebsmitteln und die Zuweisung von Speicherplétzen.
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4.2 Verbindungsstrukturen

4.2.1 Decoder vs. Demultiplexer

Decodierer (decoder - engl.) DIN 44 300

, Ein Code-Umsetzer mit mehreren (n) Eingangen und (2") Ausgangen, bei dem fur jede

spezifische Kombination von Eingangssignalen immer nur je ein bestimmter Ausgang

ein Signal abgibt.”
Eine Funktionseinheit mit dem folgenden Gatterschaltbild wirkt, je nach Ansteuerung, entweder
alsDecoder oder alsDemultiplexer. Siekann daher wahlwei sedurch einesder beiden Schaltsymbole
im Ubernachsten Bild abstrahiert werden.

X1 X0 F
)i ® & Femg
[ 4
. ¢ & F'm]_
[ 4
)i ¢ & Femy
I & =
o e
X1 X0

Bild4.1: Gatterschaltbild eines Decoders bzw. Demultiplexers auf der Logik-Ebene

F X1 Xp
opb—— Fny /o—Fmo
X0 11— Fm 1b—— Fmy
F
X1 2—— Fmy 22— Fmp
3p—— Fmg 3p—— Fmg

Bild4.2:  Schaltsymbole fur Decoder und Demultiplexer auf der Registertransfer-Ebene
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4.2.2 Multiplexer vs. Demultiplexer

Multiplexer (multiplexer - engl.) DIN 44 300

., EineFunktionsei nheit, die Nachrichten von Nachrichtenkanél en einer Anzahl in Nach-
richtenkandle anderer Anzahl Gbergibt.”

Eine Funktionseinheit mit dem folgenden Gatterschaltbild wirkt, je nach Ansteuerung, entweder
als Multiplexer oder als Demultiplexer. Sie kann daher wahlweise durch eines der beiden Schalt-
symbole im Ubernéchsten Bild abstrahiert werden.

&
&
&
&
DEC MM
| & & & & |
I I
oP
X0 ® o |
J—D)—‘ ® I
X1 L o ' |

Bild4.3: Gatterschaltbild eines Multiplexers bzw. Demultiplexers auf der Logik-Ebene

X1 X0 X1 X0
\ /
€ —0 OoF— Yo
e —1 11— "
y e
€& —2 2 Y2
€3 —3 3/ ¥3

Bild 4.4: Schaltsymbole fir Multiplexer und Demultiplexer auf der Registertransfer-Ebene
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4.2.3 Sammelleitung (,Bus")

Die Bezeichnung ,,Bus’ ist eine Abkirzung des Wortes omnibus (lat.), das fur alle bedeutet. Ein
Busist eine Sammelleitung, die fir alle angeschlossenen Funktionseinheiten in einer Konferenz-
schaltung betriebenwird. Die,, Breite” neinesBus, d.h. dieAnzahl der Ubertragbaren Bits, bestimmt
den maximal moglichen Datenfluss. FUr jedes Uber den Bus zu transferierende Bit wird ein Multi-
plexer/Demultiplexer-Paar benttigt, wie das folgende Bild zeigt.

ofo 01
|| ||
| | | |
=10 0 =10 ofb—
MUX DEMUX MUX  freed DEMUX
—1 1 —1 1 fre
10 11
|| ||
| | | |
—o 0 —o ofb—
MUX DEMUX MUX  freed DEMUX

_\1 1 _\1 1\_

Bild4.5: Die vier Ansteuerzustande des Mux/Demux-Paares einer 1 bit breiten Busleitung

/ n
<n <n
' > ' > n Bus-Breite
20=1 1 bit
23=8 1 Byte
<n <n 24 =16 | 1 Halbwort
| > [ > 25=32 | 1 Vollwort

Bild4.6: Vereinfachtes Schema eines n bit breiten Bus mit Zu- und Abgangen.
(Die Mux/Demux-Paare und ihre Ansteuerung werden nicht dargestellt.)
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4.3 Speichereinheiten

Man kann die unterschiedlichen Speicheranordnungen nach der Selektion, d.h. der Art der Auswahl
einer gespeicherten Einheit - wie Bit, Byte oder Wort - aus einer Menge gespeicherter Einheiten,
nach ihrer funktionalen Organisation in drei Gruppen einteilen:

« Zellen sind punktférmige (,, 0-dimensional€”) Speicheranordnungen. Siewerden durch einebista-
bile Speicherzelle realisiert und speichern 1 Bit. Fur den Zugriff auf die Speicherzelle, um das
Bit zu selektieren, benétigt man keine Adresse.

 Reqgister sind linienférmige (, 1-dimensionale’) Speicheranordnungen. Sie werden durch eine
Reihe bistabiler Speicherzellen realisiert und speichern b > 1 Bits. Fur den direkten Zugriff auf
eine einzelne Speicherzelle, um ein Bit zu selektieren, bendtigt man eine Adresse, die mit Id b
Bits dual codiert wird.

* Speicher sind flachenférmige (,, 2-dimensionale”) Speicheranordnungen. Sie werden durch eine
Matrix bistabiler Speicherzellen realisiert und speichern w [b >> 1 Bits. Fur den direkten Zugriff
auf eine einzelne Speicherzelle, um ein Bit zu selektieren, bendtigt man zwei Adressen, die mit
Id w bzw. Id b Bits dual codiert werden.

4.3.1 Speicherzellen (,Flipflops”)

Zur Speicherungbinarer GroRen Q [1{0, 1}, dieeinenvon zwei diskreten Werten annehmen konnen,
bendtigt man bistabile Speicherelemente, die zweier diskreter Zustande fahig sind (, Flip-Flop™).
Der aktuelle Zustand eines Flipflop, d.h. die zum Zeitpunkt t gespeicherte Zustandsvariable Q, wird
abhéngig von den Eingangsvariablen im néchsten Zeitpunkt t + 1 gedndert oder beibehalten.

Man kann die Flipflops hinsichtlich ihrer Ansteuerung durch einen Takt ¢ unterscheiden:

» Das Basis-Flipflop wird asynchron betrieben. Die Eingangsvariablen wirken unmittelbar auf den
internen Zustand des Flipflop, eine Verzogerung zwischen Eingangs- und Ausgangsvariablen
ergibt sich durch die internen Gatter (,, ungetaktetes Flipflop™).

» DasAuffang-Flipflop wird synchron betrieben. Die Eingangsvariablen werden Uber Gatterschal-
tungen angelegt, die durch einen der beiden Werte einer Taktvariablenc [0 {0, 1} aktiviert werden
(, zustandsgetaktetes Flipflop”).

» Dynamische Flipflops werden ebenfalls synchron betrieben. Sie verfiigen Uber eine Eingangs-
schaltung, die entweder durch dieVorderflankec — 1 oder die Ruckflankec — O einesTaksignals
angesteuert wird (,, flankengetaktetes Flipflop”).

Anschlief3end sind Schaltsymbol e fur Flipflops zusammengestel It, die die genannten M dglichkeiten
zur Taktung berticksichtigen.
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Y ol —

Bild4.7: Basis-Flipflop, asynchron, ungetaktet

& S Ql—

&—R Ql— ¢

Bild 4.8: Auffang-Flipflop, synchron zustandsgetaktet

—1S Q |—

Hed

Bild 4.9: Dynamisches Flipflop, synchron vorderflankengetaktet

—1S Q| —

= IS

Bild 4.10: Dynamisches Flipflop, synchron riickflankengetaktet

Eine betriebssichere Anordnung zur Speicherung von 1 Bit ist das aus zwei synchronen Flipflops
bestehende ,, Master-Slave-Flipflop”, die mit den unterschiedlichen Flanken desselben Taktsignals
angesteuert werden; dadurch ergibt sich eine Schiebeméglichkeit um ,,1/2 Bit”.

S Q S Q|——
B -1 —-- -1
IR Q R Q |—

Bild 4.11: Master-Slave Flipflop
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4.3.2 Registerspeicher

In umfangrei cheren digitalen Schaltungen benétigt man zum schnellen Abspei chern und zur schnel -
len Ruckgabe kleinerer Datenmengen einzelne Register, aber auch umfangreichere Registeran-
sammlungen. Ein Register besteht aus je einem Speicherelement fur jedes zu speichernde Bit. Man
unterscheidet im wesentlichen:

 Schieberegister. In arithmetischen Operationen ist es des 6fteren notwendig, eine gespeicherte
Einheit, z.B. 1 Wort = 4 Bytes oder 1 Byte = 8 Bit, auf ein Taktsignal hin um eine bestimmte
Anzahl Stellen nach links oder nach rechts zu verschieben.

» Zdhlerregister. In Digitalschaltungen missen regelméldig Vorgange, Ablaufe, Teiloperationen,
Speicheradressen u. dergleichen ab- oder durchgezahlt werden. Der Zahler ist deshalb ein unver-
zZichtbares digitales Bauelement. Man erreicht die Zahlfunktion durch zusétzliche Verknipfungs-
schaltungen, diedafur sorgen, dass die Anderungshaufigkeit der Flipflopzustéandeim Register von
Stufe zu Stufe halbiert wird.

 Speicherregister. Zur Synchronisation arithmetischer und/oder logischer Operationen ist es
zweckmaldig, Zwischenergebnisse kurzzeitig abzuspeichern, bevor sie weiterverarbeitet werden.

Qa Qg Qc Qp

1.

E S Q S Q S Q S Q
i | >t — — — - >t — — — - >t — — — - >t — — — -
R Q R Q R Q R

Qp
4 1 ..

Bild 4.12: Schieberegister mit SR-Flipflops. ¢ - Takteingang, vorderflankengetaktet
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1 Qa QB Qc Qp
‘g lg z
3 o) J 3 0 J J o) J K o)
>_ - = :_ >_ - = :_ >_ - = :_ >_ - = :_
K o) K o) K o) K Q

QBM|||||||,t
QC+ [ I —
i | |,

Bild 4.13: Zahlerregister mit JK-Flipflops. ¢ - Takteingang, rickflankengetaktet

Eo E; E; =
BE 2 EBE 2 @@ e
c
I
| | | |
olo olo olo olo
T

Bild 4.14: Speicherregister mit JK-Flipflops. ¢ - Takteingang, vorderflankengetaktet; F - Freigabe

4.3.3 Speichermatrizen (,RAM*)

Die Technologie der Mikroel ektronik erlaubt es, Speicherzellen in extrem grof3er Anzahl auf einem
gemeinsamen Silizium-Chip zu integrieren: Stand der Technik sind mehrere Millionen Bits pro
Chip. Die Speicherzellen sind geometrisch in Zeilen und Spalten angeordnet. Eine Zeile von Spei-
cherzellen kann z.B. ein Wort enthalten, dessen einzelne Bits sich in unterschiedlichen Spalten
befinden. Man bezeichnet daher die Zeilen der Speichermatrix auch a's,, Wortrichtung”, die Spalten
als , Bitrichtung”. Selektiert man gleichzeitig eine Zeile und eine Spalte der Speichermatrix, so
erhalt man den direkten Zugriff auf die Speicherzelle am Schnittpunkt. Dies wird als wahlfreier
Zugriff bezeichnet (, Random Access Memory”, RAM).
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Die Selektion einer Speicherzelle auf einem hdchstintegrierten Speicherchip kann nicht direkt er-
folgen. Eine Speichermatrix der Grof3e

2" Zeilen (2™ Spalten = 2™M Beispiel: 219410 = 220 = 1 MegaBit,
die also etwa einer Million Speicherzellen enthalt, wirde sonst
2" Zeilen + 2™ Spalten = 2" + 2™ 21042101 024 + 1.024 = 2.048 (!)

auiere Anschltisse benétigen, was technol ogisch nicht machbar ist. Codiert man jedoch die Zeilen-
und Spaltenadressen (,, Wort- bzw. Bitadresse”) im Dualcode, so gilt fir die Anzahl der &ulReren
AnschlUsse:

d2" +d2m =n+m 10+ 10=20.

Zur Selektion genau einer Wort- bzw. einer Bitleitung missen die dua codierten Wort- bzw. Bit-
adressen in einen ,, 1-aus-n"-Code umgewandelt werden, bel dem definitionsgemald immer nur ein
Bit aktiv ist. Daher enthalten héchstintegrierte Speicherchips am Rande der eigentlichen Speicher-
matrix stets auch Decoderschaltungen, um die Anzahl der auf3eren Anschltsse des Chips in der
geschilderten Weise niedrig zu halten, wie das néchste Bild zeigt.

0...01 « nBit
‘ ‘ ‘ - 2M >
L ? ? ?
T T T
| | |
= I I I
% | L ¢ b—' |—0 o Lo
8 ? ? ?
[} T T T
a | | |
%\J ! ! !
) | L oo L ¢ —1 L o c
a N
®
—
? ? ?
T T T h—4
| | | @
| | ! e
| L ¢ b—' |—0 o Lo l
I
— @
- o©

2™ : 1 Multiplexer /

Lesen | Schreiben —®»I5nreib/Lese-
0|1 —m| Verstarker

o

Bild 4.15: Organisation eines integrierten Speicherchips (, Random Access Memory”, RAM)
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4.4 Verarbeitungseinheiten

4.4.1 Arithmetisch/Logische Einheit (, ALU*)

Rechenwerke werden aufgrund ihrer Verknipfungsfunktionen préziser a's arithmetisch/logische
Einheiten bezeichnet, engl. ,, Arithmetic/Logic Unit*, und daher im folgenden kurz,, ALU* genannt.

Vorgange der technischen Informationsverarbeitung kénnen durch informationsverarbeitende Sy-
steme ausgefihrt werden. Programmieren bedeutet so betrachtet die Abbildung von ,, Prozessen®
auf ,, Prozessoren”. Dazu muss man den strukturellen Aufbau eines konkreten Prozessors nicht in
allen Einzelheiten kennen; es geniigt, wenn man die funktionellen Zusammenhange durch ein ab-
straktes Prozessormodel | darstellt. Folgende M dglichkeiten kénnen zur M odelldarstellung dienen:

* problem-orientierte Programmiersprachen
» maschinen-orientierte Programmiersprachen
* bindre Maschinenbefehle (,, Maschinen-Code")

Programmspeicher

@\/\/\/@

OPC | OP1 | OP2 | RES | NXT

@ VARV
‘\ M U X

[
<RES> <OP1> <OP2> @
\ \

| | DpEC
¢ | ¢ |

S Datenspeicher

Dec

Bild 4.16: Strukturelle Darstellung eines Prozessormodells;
ALU - Arithmetic/Logic Unit (Rechenwerk); weitere Erlauterungen im folgenden Text.

Das obige Bild stellt ein strukturelles Prozessormodell dar. Aus dem Programmspeicher wird ein
Maschinenbefehl ausgel esen:

» Das Feld OPC gibt die auszufiihrende arithmetische oder logische Operation in binédr codierter
Form an (,, Operationscode").
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* Die ebenfalls binédr codierten Adressen OP1 und OP2 der beiden Operanden sowie die Adresse
RES fir das Resultat werden Uber einen Multiplexer nacheinander an den Decoder des Daten-
speichers angel egt.

 Dadurch gelangen die aktuellen Werte <OP1> und <OP2> der Operanden zum Rechenwerk ALU,
werden dort nach M al3gabe des Operationscodes OPC miteinander verkntipft und der Wert <RES>
des Resultats wird an der Adresse RES im Datenspeicher abgespeichert.

» DasAdressfeld NXT bestimmt den als nachsten auszufiihrenden Befehl und wird deshalb an den
Adressdecoder des Programmspei chers angel egt.

Esist wichtig, zwischen dem aktuellen , Wert* eines Operanden und seiner ,, Adresse” im Speicher
zu unterscheiden. Ein Operand wird durch seinen Namen eindeutig identifiziert und er hat einen
ganz bestimmten Wert. Der Name des Operanden ist aquivalent zur Adresse einer im Hauptspei cher
konkret vorhandenen Speicherstelle, sein Wert ist gleichbedeutend mit deren Inhalt:

Wert := < Name >; programmtechnische Betrachtung
Inhalt := < Adresse >; spei chertechnische Betrachtung

Dader Name eines Operanden innerhalb eines Programms derselbe bleibt, sein Wert aber laufend
geandert werden kann, spricht man auch von einer , Variablen®.

Die strukturell geprégte Darstellung l&sst sich funktionell sehr viel kirzer und formaler fassen;
insbesondere auf der Register-Transfer-Ebene gentigt eln funktionelles Prozessormodell. Dajedem
M aschinenbefehl eine Operation der ALU entspricht, |&sst sich der Prozessor durch seinen Maschi-
nenbefehlssatz vollstandig beschreiben.

a) Vier-Adress-Befehlsformat

Wieim obigen Bild gezeigt enthalt das aufwendigste Befehlsformat vier Speicheradressen:

OPC OP1 OoP2 RES NXT

Derselbe Sachverhalt kann in einer , Programmiersprache* wie folgt notiert werden:
RES := (OP1 # OP2);

Das Feld OPC - # gibt eine beliebige arithmetisch/logische Operation an (,, Operationscode®).

b) Drei-Adress-Befehlsformat

Da die Maschinenbefehle, aus denen ein Algorithmus besteht, aus Griinden der Ubersichtlichkeit
meist direkt nacheinander im Programmspeicher untergebracht werden, kdnnen die aufeinander-
folgenden Befehlsadressen nach dem ,,von Neumannsches Prinzip” durch einen Befehlszéhler er-
zeugt werden. (Soll die Sequenz unterbrochen werden, so ist ein Sprungbefehl einzufiigen, der den
Inhalt des Befehlszahlers explizit setzt.) Das Feld NXT kann dann eingespart werden und man
erhdt ein Drei-Adress-Befehlsformat:
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OPC OP1 OP2 RES <OP1>
\

RES : = (OP1 # OP2); @—» <RES>
P 4

NXT : = NXT + 1; <OP2>

c) Zwei-Adress-Befehlsformat

Wird einer der Operanden nach seiner Verkniipfung nicht mehr benétigt, so kann man seine Spei-
cherstelle fur das Resultat verwenden. Meist wird der 1. Operand Uberschrieben, so dass man die
Resultatadresse weglassen kann; man erhalt das Zwei-Adress-Befehlsformat:

OPC OP1 OP2 <OP1> |-
\
OP1: = (OP1 # OP2);
B
NXT : = NXT + 1; <OP2>

d) Ein-Adress-Befehlsformat

Schliefdlich ist es auch gebréuchlich, ein zusétzliches Register einzufiihren, das das Resultat auf-
nimmt (, Accumulator*); es dient gleichzeitig als 1. Operand fir die nachfolgende Verkniipfung.
Da dessen Adresse nicht angegeben zu werden braucht, da er sich eindeutig im Accumul ator befin-
det, erhdt man das Ein-Adress-Befehlsformat:

oPC | OP \\A |
ACCU : = (ACCU # OP); /@_> SAccU>

NXT : = NXT + 1; <OP>

e) Zwei-Adress-Befehlsformat mit Registerspeicher

Stand der Technik ist, dass man nicht nur ein einzelnesAccumul atorregister einfiihrt, sondern einen
grolderen Registerspeicher, was zur Folge hat, dass man eine zusétzliche Registeradresse bendtigt.
Man erhalt wieder ein Zwei-Adress-Befehlsformat, das besonders haufig verwendet wird. Die bei-
den Operandenadressen adressieren wahlwei se entweder den Datenbereich im Hauptspeicher oder
einzelne Register im Registerspeicher.
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4.5 Mikroarchitektur-Synthese

a) Verhaltensbeschreibung (* Specification”)

Synchrone Digital systeme werden mit einem einfachen Modell beschrieben, das ,, Steuerschritte”
alskleinste Zeiteinheit verwendet, die den ,, Zustandsiibergdngen* eines Automaten mit einer end-
lichen Anzahl diskreter Zustande entsprechen. DieVerhaltensbeschreibung wirdin eineéquivalente,
unter Randbedingungen optimierte Verhaltensbeschreibung transformiert. Randbedingungen sind
z.B. die Chip-Fl&che, der Energieverbrauch und die Schaltgeschwindigkeit.

b) Ablaufplanung (“Scheduling”)

DieAblaufplanung von Steuerungsfolgen(* Scheduling”) optimiert die Anzahl der benétigten Steu-
erschritte, d.h. die Anzahl der Zustdnde des steuernden Automaten, unter Berticksichtigung der
verflgbaren Hardware und der Zykluszeit:

 Zuweisung von Operationen in der Verhaltensbeschreibung zu Steuerschritten
» Mehrfachausnutzung von Betriebsmitteln durch zeitlich gestaffelte Zuweisung

c) Bereitstellung (*Allocation”)

Die Bereitstellung von Betriebsmitteln (“Allocation of Resources’) optimiert den Aufwand der
bendtigten Hardware unter Berlicksichtigung der gegebenen Zeiteinteilung:

» Verarbeitungseinheiten: Prozessoren, Addierer
» Speicherelemente: Register, Speicherplatz
* Verbindungen: Multiplexer, Busse, Demultiplexer

d) Zuweisung (“Assignment”)

Zuweisung von Funktionen zu Funktionseinheiten:

* Prozessorzuweisung zu Operationen

* Registerzuweisung zu Variablen

* Verbindungszuwei sung zu Prozessor-Register-Paaren

e) Baustein-Auswahl (“Component Selection™)
zum Beispidl:

* in einem zeitkritischen Pfad: Carry-look-ahead Adder
* in zeitunkritischen Pfaden: Ripple-carry Adder
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Verhaltens-

beschreibung

v

Transformation

optimierte
Verhaltens-
beschreibung

Allocation
i
FSM ALU
SteuerfluRstruktur DatenfluRstruktur

Logik-Synthese Baustein-

{} Bibliothek

Prozessor-

Struktur

Bild4.17: Ablauf der Synthese eines Digital systems aus seiner Verhaltensbeschreibung
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4.6 Pipelining

4.6.1 Befehlspipeline

* Eine Kette von Verarbeitungsstufen, die wie ein Flief3band arbeiten, nennt man eine Pipeline.
Die auszuftihrenden Befehle werden entlang der Stufen verarbeitet.

 Zwischen den Pipelinestufen werden Pufferspeicher benttigt.

* Pipelining ist eine Implementierungsmethode, bei der mehrere Befehle Uberlappt abgearbeitet
werden. Es nutzt die Parallelitét zwischen den Befehlen in einem sequentiellen Befehlsstrom.

* RISC-Maschinen (Reduced Instruction Set Computer) bendtigen zum Transport eines Befehls
um einen Schritt in der Pipeline einen Taktzyklus; in jedem Zyklus wird ein neuer Befehl geholt.

* Pipelining reduziert die mittlere Ausfiihrungszeit pro Befehl, d.h. es erhdht die pro Zeiteinheit
beendete Anzahl der Befehle, den Durchsatz, aber nicht die Ausfiihrungszeiten der einzelnen
Befehle.

« Ziel desPipeline-Entwurfsist, eine Balance der Lange der Pipelinestufen zu erreichen. Dann gilt
fur die mittlere Ausfuhrungszeit pro Befehl fur eine mit Pipeline implementierte Maschine:
» Befehlsausfhrungszeit der Maschine ohne Pipeline : Anzahl der Pipelinestufen®.

4.6.2 Befehlsausfihrung

Ein digitaler Universalrechner verfiige Uber eine Lade/Speicher-Architektur und einen Register-
speicher; er bearbeite die Maschinenbefehle seines Befehl ssatzes in folgenden Schritten:

1. Befehl holen (Instruction Fetch), IF
d.h. Hauptspeicher mit Befehlszahlerinhalt adressieren und Befehlszéhler erhéhen.

2. Befehl decodieren (Instruction Decode) ID
und Quellregisterinhalte in A- bzw. B-Register holen.

3. Befehl ausfiihren (Execute) EX

a) Lade-/Speicher-Befehl: effektive Hauptspei cheradresse berechnen und Datenregister laden;
b) Verzweigungsbefehl: Zieladresse berechnen und Verzwei gungsbedingung setzen;
c) ALU-Befehl: Berechnung ausfihren.
4. Speicherzugriff (Memory Access) MEM
a) Lade-Befehl: Daten vom Hauptspeicher ins Datenregister laden; Speicher-Befehl: in umge-
kehrter Richtung speichern;

b) Verzweigungsbefehl: Zieladresse in Befehlszéhler laden, falls Verzweigungsbedingung er-
fallt;

c) ALU-Befehl: (nichts)
5. Ruckschreiben (Write Back) wB
a) Lade-Befehl: Datenregisterinhalt ins Zielregister laden; Speicher-Befehl: (nichts);
b) Verzweigungsbefehl: (nichts);
c) ALU-Befehl: Ergebnisins Zielregister schreiben.
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4.6.3 Mehrstufige Pipeline

Nr. des Takt Nr.
Befehls 1 2 3 4 5 6 7 8
Befehl i IF ID EX MEM WB
Befehl i + 1 IF ID EX MEM WB
Befehl i + 2 IF ID EX MEM WB
Befehl i + 3 IF ID EX MEM WB
Befehl i + 4 IF ID EX MEM WB
sequentielle Ausfihrung ohne Pipeline
: 260 ns | 260 ns 260 ns
| | | |
50 50 60 50 50 50 50 60 50 50 50 50 60
Befehl Nr. 1 Befehl Nr. 2 Befehl Nr. 3
uberlappte Ausfiihrung mit Pipeline
I65|65|65|65|65I
| | | | | |
Befehl Nr. 1 60 || 60 || 60 || 60|| 60
Befehl Nr. 2 60 [[ 60 || 60| 60| 60
Befehl Nr. . 3 60 [[ 60 || 60| 60| 60

Seite 4.16 von 20




4 Registertransfer-Ebene

4.7 Entwurf eines Datenpfades

a) Entwurfsziele
Erhohung der Verarbeitungsl eistung
e durch Pipelining
Senkung der Kosten

e durch Mehrfachausnutzung von Betriebsmitteln
* durch Baustein-Auswahl

b) Datenflussgraph (DFG)

c) Ablaufplanung unter zeitlichen Randbedingungen

Takt 1 @ a

Stufe 1 Stufe 2

Takt 2 b
Takt 3 d
Takt 4 e
Bild 4.18: Ablaufplanung (“ Scheduling™) Ablaufplanung (“ Scheduling™) einer Pipeline
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Funktion Name Gatter  Verzog.

[] Mpy1l 100 50 ns
[] Mpy?2 150 30 ns
[] Mpy4 200 20 ns
+ Addl 30 40 ns
+ Add2 50 20 ns
+ Add3 100 10 ns

Bild 4.19: Baustein-Bibliothek (“Component Library”)

Takt 1

Takt 2

Takt 3

Takt 4

Takt 5

Bild 4.20: Ablaufplanung einer Pipeline mit Baustein-Auswahl aus obiger Bibliothek;
zeitliche Randbedingung: maximal 5 Takte zu je 10 ns.
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d) Urspringliche und endgultige Zuteilung

Takt 1 °’ﬁ ﬁ Takt 1
Takt 2 ' ' Takt 2
Takt 3 |:| ° Takt 3
Takt 4 U Takt 4

Takt 5 U

B
e

Addierer: Addierer:
Multiplizierer: Multiplizierer:
Kosten: 500 Gatter Kosten: 400 Gatter

Takt 1 /\ /\ Takt 1 m /\ [D\
Takt 2 + ! \ ! \ Takt 2 U ! \ U
Takt 3 Ol O Takt 3 /D\ (] ﬁ_\
Takt 4 i Takt 4 U | U
Takt 5 U U Takt 5 U

Takt 6 /\

Takt 7 ! \ +

Takt 8 [] |

Tato | |

Takt 10 U

Addierer: Addierer:

Multiplizierer: Multiplizierer:

Kosten: 230 Gatter Kosten: 350 Gatter
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e) Modifikation der Pipeline

Pipeline 1

(o}

Takt 2

Pipeline 2

Takt 1

Takt 2
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5 Algorithmische Ebene Prof. Dr.-Ing. U.G. Baitinger

5.1. Der Begriff des Algorithmus

Ein ,,Algorithmus” ist eine formale Vorschrift flir einen Vorgang zur Verarbeitung von Informatio-
nen nach Al-Khorezmi. Ein ,,Algorithmus im engeren Sinn* ist eine Rechenvorschrift, zum Beispiel
die Verknupfung von Zahlenwerten nach Adam Riese. Ein ,,Algorithmus im weiteren Sinn“ ist eine
formale Vorschrift fur einen Handlungsablauf, zum Beispiel ein Kochrezept nach Art des Hauses.

5.2. Hardware-Beschreibungssprachen

HDL.: ,,Hardware Description Languages* dienen zur formalen Beschreibung des Verhaltens digi-
taler Schaltungen, zunachst unabhéngig von deren Struktur. Sie werden in frihen Phasen des zer-
gliedernden Entwurfs verwendet. Anwendungsgebiete sind Simulation, Synthese und Verifikation.

VHDL: Die ,,Very High-Speed Integrated Circuit HDL" ist eine Hardware-Beschreibungssprache
flr hochstintegrierte Digitalsysteme hoher Geschwindigkeit mit ADA &hnlicher Syntax. VHDL
unterstutzt vor allem die Architektur-, die Algorithmische und die Registertransfer-Ebene.

EDIF: Das ,,Electronic Design Interchange Format™ ist ein Datenaustauschformat mit LISP &hn-
licher Syntax. EDIF unterstiitzt vor allem die Registertransfer-, die Logik- und die Schaltkreisebene.

5.3. Ein Entwurfsbeispiel

Die Verkehrsampeln an der Kreuzung zwischen einer Hauptstral3e und einer Querstra3e sind ver-
kehrsabhéngig zu steuern. Die Steuerung der Verkehrsampeln soll durch einen Automaten mit einer
endlichen Anzahl diskreter Zustande erfolgen. Sensoren an beiden Einmiindungen der Querstral3e
stellen die Anwesenheit von Fahrzeugen auf der Querstral3e fest.

» Das Ampelpaar an der HauptstralRe soll nur dann auf ROT schalten, wenn auf der Querstral3e ein
Fahrzeug festgestellt wird.

« Das Ampelpaar fiir die QuerstraBe soll so lange GRUN zeigen wie sich Fahrzeuge auf der Quer-
straBe befinden, aber nicht langer als eine vorgegebene Zeitspanne.

« Wenn das Ampelpaar an der Hauptstrae wieder auf GRUN schaltet, dann soll es mindestens
wéhrend einer vorgegebenen Zeitspanne so bleiben.

Querstralde
Hauptstral3e

(ele]e)

Bild 5.1: Verkehrsampeln an einer Strallenkreuzung
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5.4. Der Entwurfsablauf

1. Deklaration der Datentypen:
- diskrete Zustande des Systems festlegen;
- Ausgabewerte festlegen, hier: Farben einer Verkehrsampel aufzéhlen.

2. Deklaration der Schnittstelle:
- Eingabevariablen des Systems festlegen,
hier: Sensoren stellen ein Fahrzeug auf der Querstralie fest;
- Ausgabevariablen des Systems festlegen,
hier: Ansteuerung der Ampelpaare an Hauptstrale und Querstralie.

3. Erstellung des Verhaltensmodells:
- Ablaufgraph und Ablauftabelle des Systems;
- Verhaltensbeschreibung des Systems in einer Hardware-Beschreibungssprache.

4. Festlegung eines Testverfahrens.
5. Simulation des Verhaltensmodells.

5.4.1 Deklaration der Datentypen

a) Verbale Spezifikation

Die Steuerung der Verkehrsampeln soll durch einen Automaten erfolgen, der eine endliche Anzahl
diskreter Zusténde besitzt, die das System einnehmen kann:

1. Im Ruhezustand zeigt das Ampelpaar an der HauptstraRe GRUN, das fiir die Querstrae ROT.

2. Im ndchsten Zustand zeigt das Ampelpaar an der HauptstraRe GELB, das fur die Querstrale
weiterhin ROT.

3. Im anschlieBenden Zustand zeigt das Ampelpaar an der Querstrae GRUN, das fiir die Haupt-
stralle ROT.

4. Im letzten Zustand zeigt das Ampelpaar fur die QuerstraBe GELB, das fiir die HauptstralRe
weiterhin ROT.

Dann kehrt das System in den Ruhezustand zurtick, d.h. die Systemzustande kénnen als geschlos-
sene Zahlkette definiert werden.
b) Formale Spezifikation

Im ersten Abschnitt der formalen Spezifikation sind die Datentypen festzulegen, d.h. zu ,,deklarie-
ren. Hier sind es einfache Aufzahlungen der Ampelfarben und Systemzusténde.

-- Verkehrsanpel st euerung: Dekl aration der Datenypen
package System Typen is

type Farbe is (Guen, Gelb, Rot, Unbekannt);

type Zustand is (Hauptstr_ Anpel Gruen, Hauptstr_ Anpel Gel b,
Querstr_Ampel _Gruen, Querstr_Anmpel Gel b);

end System Typen;
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5.4.2 Deklaration der Schnittstelle

a) Verbale Spezifikation

Dannist die Schnittstelle des Systems zu seiner Umgebung zu definieren, d.h. die Eingabevariablen,
auf die es reagieren, und die Ausgabevariablen, die es erzeugen soll. Das System verlasst seinen
Ruhezustand, sobald die Sensoren ein Fahrzeug auf der Querstrae feststellen, d.h. es wird nur eine
bindre Eingabevariable bendtigt:

* Wagen_auf _Quer st r ist entweder wahr oder f al sch.

Das System steuert zwei Ampelpaare, d.h. es werden zwei Ausgabevariablen benétigt, deren aktu-
elle Werte den jeweils anzuzeigenden Ampelfarben entsprechen:

e Haupt st r _Anpel zur Ansteuerung des Ampelpaares an der Hauptstralie;
» Quer str_Ampel zur Ansteuerung des Ampelpaares fiur die Querstrale.
Ferner werden zwei Konstanten benétigt, die dem System vorgegeben werden:

« Gh_Phase als minimale Zeitspanne, wihrend der das Ampelpaar an der Hauptstrae auf GRUN
bleiben muss, bzw. die maximale Zeitspanne, wéhrend der das Ampelpaar fur die Querstralie auf
GRUN bleiben darf.

» Gb_Phase als Zeitspanne, wéhrend der ein Ampelpaar GELB zeigt.

b) Formale Spezifikation
- - Ver kehr sanpel st euerung: Dekl arati on der Ei n/ Ausgabeschnittstelle
use wor k. System Typen. al | ;

entity Anpel Steuerung is

generic ( -- von aussen vorgegeben
Gn_Phase: Tinme -- Guenphase;
Go_Phase: Tinme -- Cel bphase);

port ( -- Eingabe- und Ausgabevari abl en
Wagen_auf _Querstr in Bool ean;
Haupt st r _Anpel out Far be;
Quer st r_Anpel out Farbe);

end Anpel _St euer ung;

5.4.3 Erstellung des Verhaltensmodells

Als néchstes ist das Verhalten des zu entwerfenden Systems zu beschreiben. Kann das System wie
hier als endlicher, diskreter Automat modelliert werden, so umfaft sein Verhalten im wesentlichen
die systeminternen Vorgénge, die zu Zustandstibergéngen fiihren, wobei nach jedem Zustandstiber-
gang ein Zeitgeber fur das Verweilen des Systems im neuen Zustand gestartet wird. Zur Modellie-
rung des Systemverhaltens stehen unterschiedliche Darstellungsmittel zur Verfiigung: der Ablauf-
graph des Automaten und die dazu isomorphe Ablauftabelle, ferner die Hardware-Beschreibungs-
sprachen, hier VHDL.
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Beim vorliegenden Beispiel ist zu beachten, dass die HauptstralRe gegentiber der Querstrale bevor-
rechtigt ist, d.h. unter welchen Bedingungen das Ampelpaar an der HauptstraBe von GRUN auf
GELB umschaltet und wann das Ampelpaar fiir die Querstral3e dies tun soll. Im ersten Fall missen
zwei Bedingungen erfullt sein: auf der Querstralie muss ein Fahrzeug erscheinen und die Griinphase
an der Hauptstral’e muss bereits lange genug gedauert haben. Im zweiten Fall geniigt eine Bedin-
gung: entweder sind auf der Querstralle keine Fahrzeuge mehr vorhanden oder die Griinphase fir

die Querstrae hat bereits lange genug gedauert, obwohl sich noch Fahrzeuge auf ihr befinden.

a) Ablaufgraph

\}
7z &\(\
7
‘5\‘ “\@‘(\‘ Haupt str _ Q5\,0
SN . Ampel _Gruen bese
| g -
G uen, Rot A
"oy,
Haupt str _ Querstr
Anpel _Gel b Gel b, Rot Rot, Celb Anpel _Gel b
Q@ RN
~% Rot, Gruen (
We : z
S s Querstr_ et W
% e @66‘ -
o Anpe uen & -0 a\fo
W oc®
G\/
Bild 5.2: Ablaufgraph der Verkehrsampelsteuerung
b) Ablauftabelle
aktueller Folge- Ausgabe
Zustand Eingabe zustand Haupt str Querstr
_Anpel _Anpel
Haupt str_ Wagen_auf _Querstr = wahr Haupt str_ Gruen Rot
Ampel _Gruen und Gn_Phase_aus = wahr Ampel _CGel b
Haupt str _ Gb_Phase_aus = wahr Querstr _ Gel b Rot
Ampel _CGel b Anmpel _Gruen
Querstr _ Wagen_auf _Querstr = fal sch Querstr Rot G uen
Ampel _Gruen oder Gn_Phase_aus = wahr Ampel _Cel b
Querstr _ Gb_Phase_aus = wahr Haupt str_ Rot Gel b
Ampel _Cel b Ampel _Gruen

Bild 5.3: Ablauftabelle der Verkehrsampelsteuerung
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c) Hardware-Beschreibungssprache VHDL

-- Verkehr sanpel steuerung: Ver hal t ensnodel |
architecture Verhalten of Anpel Steuerung is

-- Initialisierung

signal Ist_Zustand : Zustand := Hauptstr_Anpel G uen;
si gnal Zeitgeber : Bool ean : = fal sch
si gnal Gn_Phase_aus : Bool ean : = fal sch;
si gnal Gb_Phase_aus : Bool ean : = fal sch;
begi n -- nebenl aeufi ge Prozesse
process begin -- Aut omat enver hal t en

case Ist _Zustand is

when Hauptstr_Anpel _Guen => -- 1. Zustand
i f Wagen_auf Querstr and Gn_Phase_aus
t hen -- Zustandsueber gang
| st _Zustand <= Hauptstr_Anpel _Gelb
Zei t geber <= not Zeitgeber;

end if;
when Hauptstr_ Anpel Gelb => -- 2. Zustand
i f CGb_Phase_aus

t hen -- Zust andsueber gang

| st _Zustand <= Querstr_Anpel G uen;
Zei t geber <= not Zeitgeber;

end if;
when Querstr_ Ampel Guen => -- 3. Zustand
i f not Wagen_auf_Querstr or Gn_Phase_aus

t hen -- Zustandsueber gang

| st _Zustand <= Querstr_Anpel Cel b;
Zei t geber <= not Zeitgeber;

end if;
when Querstr_Ampel Gelb => -- 4. Zustand
i f CGb_Phase_aus

then -- Zustandsueber gang

| st _Zustand <= Hauptstr_Anpel G uen;
Zei t geber <= not Zeitgeber;
end if;
end case;

wait on WAgen auf Querstr, Gn_Phase_aus, Gb_Phase_ aus;

end process; -- Aut omat enver hal t en
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process begin -- Zeitgeber
Gn_Phase_aus <= fal sch, wahr after Gnh_Phase; -- G uenphase
Gb_Phase_aus <= fal sch, wahr after Gb_Phase; -- Cel bphase

wait on Zeitgeber;

end process; -- Zei tgeber

-- Zuordnung von Zustand und Anpel f ar be
-- fuer Hauptstr:

wWith I st Zustand sel ect
Haupt str_Ampel <=
Gruen when Haupt str_Anpel _Gruen,
Gel b when Hauptstr_Anpel Cel b,
Rot when Querstr_Anmpel G uen or Querstr_Anpel _Cel b;

-- Zuordnung von Zustand und Anpel f ar be
-- fuer Querstr:

with Ist_Zustand sel ect

Querstr_Ampel <=
Gruen when Querstr_Anpel Gruen,

Gel b when Querstr_Anpel Gel b,
Rot when Hauptstr_Anpel G uen or Hauptstr_Anpel _Cel b;

end Ver hal ten;
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5.4.4 Festlegung eines Testverfahrens

Um das Verhalten eines manuell entworfenen Systemmodells zu validieren, wird ein Testverfahren
bendtigt, das zur Simulation des Modells verwendet wird. Das Testverfahren enthélt ,,Stimuli zur
Ansteuerung des zu testenden Systems durch eine ausgewahlte Folge von Eingabewerten, ferner
»Rezeptoren zur Aufnahme der Ein- und Ausgabewerte des Systems wahrend der Simulation.

-- Verkehr sanpel steuerung: Dekl arati on des Testverfahrens

entity Tester is end Tester;

-- Model | des Testverfahrens
use wor k. System Typen. al | ;
architecture Test Verfahren of Tester is

-- Ei ngabevari abl e fuer die Anmpel st euerung:
si gnal Wagen_erkannt : Bool ean : = fal sch;

-- Ausgabe- Erfassung der Anpel st euer ung:
signal Hauptstr : Farbe := Guen;
signal Querstr : Farbe := Rot;

-- Schabl one fuer den Systentest
conmponent Sockel

generic ( -- vorgegebene Konstanten
Gn_Phase: Tinme -- G uenphase;
Go_Phase: Tinme -- Cel bphase);

port ( -- Eingabe- und Ausgabevari abl en
Wagen_auf _Querstr in Bool ean;
Haupt st r _Anpel out Far be;
Quer str_Anpel out Farbe);

end conponent;

-- Instanziierung des Systentests

Test _Steuerung : Sockel

generic map (50 s, 20 s); -- Guenphase, Cel bphase
port map (Wagen_er kannt, Hauptstr, Querstr);

-- Eingabe-Stinmuli fdr die Sinulation:
Wagen_er kannt <= fal sch,

wahr after 10 s, falsch after 30 s,
wahr after 100 s, falsch after 200 s;

end Test Verfahren,;
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5.4.5 Simulation des Verhaltensmodells

Schlieflich ist das Testverfahren zur Simulation des modellierten Systems zu konfigurieren. Die
Konfiguration verbindet die Instanz mit dem Namen

» Test _St euerung vom Typ Sockel
mit dem Verhaltensmodell, das simuliert werden soll:
» Anpel _St euer ung( Ver hal ten).

-- Sinul ation der Verkehrsanpel st euerung
use work. all;

configuration Sinulator of Tester is
for Test Verfahren
for Test Steuerung : Sockel use
entity work. Anmpel _St euerung(Ver hal ten);
end for;
end for;
end Si nul at or

Die folgende Tabelle zeigt die Simulationsergebnisse, die auch im weiteren \erlauf des Entwurfs-
prozesses bis zur Realisierung der Hardware als Referenz verwendet werden kdnnen: Falls nach
einem der folgenden Entwurfsschritte, die die Systemstruktur verfeinern, die Ergebnisse einer de-
taillierteren Simulation denjenigen eines vorhergehenden Entwurfsschritts widersprechen, liegt ein
Entwurfsfehler bei der \erfeinerung vor.

Zeit (S) Wagen_er kannt Haupt str Querstr
0 fal sch G uen Rot
10 wahr
30 fal sch

100 wahr CGel b

120 " Rot Gruen
170 " " Cel b
190 " G uen Rot
200 fal sch

Bild 5.4: Simulationsergebnisse der Verkehrsampelsteuerung
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6 Architekturebene Prof. Dr.-Ing. U.G. Baitinger

6.1 Systemspezifikation

Beim Entwurf digitaler Systeme der Mikroelektronik ist deren globale Funktionsbeschreibung in
eine detaillierte Transistorstruktur abzubilden. Bei komplexen Systemen ist das nicht in einem
einzigen Entwurfsschritt moglich; deshalb besteht der Entwurf aus einer Folge von Entwurfsschrit-
ten, diedie Entwurfsdaten zunehmend verfeinern. Die umfassendste Spezifikation, ndmlich diedes
Gesamtsystems, wird auf der Architekturebene erstellt, doch werden detailliertere Spezifikationen
auch auf alen weiteren Entwurfsebenen bendtigt: von der algorithmischen Uber die Registertrans-
fer- und die Logik- bis zur Schaltungsebene.

Ein System

* besteht aus einer Anzahl unterschiedlich komplizierter Funktionseinheiten, diein einer mehr oder
weniger komplexen Kommunikationsstruktur zusammenarbeiten. In einem Graphen kénnen er-
stere als,, Knoten“, letztere als , Kanten dargestellt werden.

Das Systemverhalten

* ergibt sich ausder Gesamtheit aller Teilfunktionen inVerbindung mit deren wechsel seitiger Kom-
munikation. (,, Das Ganze ist mehr als die Summe seiner Teile.")

Die Systemspezifikation

* ist die verbale Beschreibung oder die formale Darstellung des Systemverhaltens. Sie ist Aus-
gangspunkt des Entwurfs und Vergleichsgrundlage fir die Entwurfsergebnisse, die grundsétzlich
nur im Rahmen der Spezifikation glltig sind. Eine Systemspezifikation umfalt:

- ein ,Verhaltensmodell* des zu entwerfenden Systems;
- seine ,,Schnittstellendefinition* zur Umgebung;

- zusétzliche ,,Randbedingungen* zur Lésungsfindung
wie GroRe, Schaltgeschwindigkeit und Energiebedarf.

Der Systementwurf

* ist die schrittweise Umwandlung der abstrakten Systemspezifikation in konkrete Strukturen, wo-
bei die Strukturen immer komplexer, die Funktionseinheiten immer zahlreicher und immer we-
niger kompliziert werden. Der Entwurfsablauf leistet somit die Abbildung einer abstrakten Spe-
zifikation in eine konkrete Technologie.

Ein Rechnersystem

 kann durch eine , Sprache" (z.B. seinen Maschinenbefehlssatz) dargestellt werden, sowie einen
»lnterpretierer”, der diese Sprache versteht.
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6.2 Die DLX-Architektur
(siehe folgende Seiten)
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Die DLX-Architektur

-

Die DLX ist ein hypothetischer Universalrechner
mit Lade/Speicher-Architektur

Die DLX ist ein ,,Reduced Instruction Set Computer:

» RISC-Architekturen werden einfachen, in Programmen
statistisch am hdufigsten genutzten Befehlen angepalt;

» Kompliziertere Funktionen werden mit mehreren ein-

fachen Befehlen simuliert, d.h. in Software nachgebildet.

Die DLX-Architektur bertcksichtigt Messungen folgender
Befehlssatze:

* DEC VAX-Architektur
* IBM /370-Architektur
 Intel 8086-Architektur

Kennzeichen der DLX-Maschine:

* einfacher Lade/Speicher-Befehlssatz

* Universalregistersatz

* Pipeline hoher Effizienz

» einfach zu decodierender Befehlssatz
* eine hoch effiziente Compiler-Technik

nach D.A.Patterson, J.L. Hennessy: “Computer Architecture,
a Quantitative Approach”, Morgan Kaufmann Publ., Inc. (1996)
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Rechenwerk der DLX
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Die Lade/Speicher-Maschine DLX

Gleitkommaregister
(Floating Point Register)

Universalregister
(General Purpose Register)

0 cee 31 0 R 31
RO X'0000 0000’ FO
R1 F1
i i i i
I I . I I
I I I I
I I I I
R30 F30
R31 F31

Hauptspeicher spezielle Register
(Main Memory) (Status Information)

0 31 0 31

XOXX FP StR

XXX

xX00 xx01 xx10 xx11

Speicher-Adressregister
(Memory Address Register)

-
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Datenformate der DLX

Der Speicher ist byte-adressiert im ,big endian“ Modus

Datenformate, auf die jeweilige Typgrenze ausgerichtet:

* 8 bit Byte « 32 bit Wort

* 16 bit Halbwort + 64 bit Doppelwort

Speicherzugriffe erfolgen mit Lade/Speicher-Befehlen

« zwischen Speicher und Universalregister
byte-, halbwort- oder wortweise
- beim Speichern auf Byte- bzw. Halbwortgrenze ausgerichtet

- beim Laden in den niederwertigen Teil des Registers,
hoherwertiger Teil vorzeichenerweitert oder mit Null aufgefullt

0 ... 8 15 16 2324 .... 31
Rx

» zwischen Speicher und Gleitkommaregister

mit einfacher oder doppelter Genauigkeit

0 ... 1 8 15 16 23 24 .... 31
FO
F1

32 .... 39 40 47 48 55 56 .... 63
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Befehlsformate der DLX

Befehlsformat mit drei Operanden-Adressen

0....56....1011....15 16 .. 31

OPCode| OP1 OP2 | OP3 or Immediate Data

* alle Befehle sind 32 bit lang,
im Speicher auf Wortgrenze ausgerichtet,
Fortschaltung des Befehlszahlers PC —~ PC + 4

* 6 bit priméarer Operationscode (OPCode)
-, 25 =64 verschiedene Befehle

Befehlsklassen

* Lade/Speicher-Operationen

* Arithmetisch/logische Operationen (ALU)
 Verzweigungen (bedingt)

* Spriinge (unbedingt)

* Gleitkomma-Operationen

-
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Befehlsformate der DLX

Immediate-Befehlsformat
0....56....1011....15 16 .. 31

OPCode Rs1 Rd Si Immediate Data/Offset

 Laden bzw. Speichern von Registerinhalten
» ALU-Operationen mit Immediate Data

 Verzweigungen (bedingt):
Branch on Zero, Branch on not Zero

* Spriinge (unbedingt):
Jump Register, Jump and Link Register

Register-Register-Befehlsformat
0....56....1011....1516....20 21 31

OPCode| Rsl Rs2 Rd OPC Erweiterung

» ALU-Operationen mit Registerinhalten
 Transporte zwischen Spezial- und Universalregistern

Jump-Befehlsformat
0....56 ce 31

OPCode Si Offset addiert zu PC + 4

* Spriinge (unbedingt): Jump, Jump and Link
« Ubergang zum Betriebssystem: Trap

 Ruckkehr zum Anwenderprogramm: RFE
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Lade/Speicher-Befehle

-

Immediate-Befehlsformat
0....56....1011....15 16

31

OPCode| Rb Rd Si Offset (Displacement)

Eine einzige Adressierungsart:

32 bit Basisregister (Rb)

0 ... 18 ... 1516 .... 23 24 31
+ 16 bit Offset (Displacement) mit Vorzeichenerweiterung

0 ... 8 ... 1516 .... 23 24 31

|

= 32 bit Speicheradresse (MAR)

0 ... [ 8 ... 1516 .... 23 24 31
Byte-adressierter Speicher, 232 = 4 GigaByte Adressraum

0 .. 18 ... 1516 .... 23 24 31

xx00 xx01 xx10 xx11

Laden bzw. Speichern eines Datenregisters (Rd)
* byte-, halbwort- oder wortweise

0 ... 18 ... 1516 .... 23 24 31

9T UOA 8'€ 31BS

Lade/Speicher-Befehle

* alle nutzen eine einzige Adressierungsart
« flr alle Datentypen verfiigbar

» Werte im Speicher missen ausgerichtet sein (,,aligned*)

Befehlsformate |Operationen

LW RL, 30(R2)|[RL — 3, M 30+R2]

LW R1, 90(RO)|[RL — 3, M 90+0]

LB R1,40(R3) Rl 5, (M 40+R3] ) 2*##M 40+R3]

LBU RL,40(R3) |RL . 4, 024##M 40+R3]

LH RL,40(R3) Rl — o
(M 40+R3] () 10##M 40+R3] ##M 41+R3]

LHU RL, 40(R3) |R1 — 5, 06##M 40+R3] ##M 41+R3]

LF FO,50(R3)|FO < 4, M 50+R3]

LD FO, 50( R2) |[FO##FL — g4 M 50+R2]

SW 50(R4), R3|M50+R4] — 3, R3

SF 40(R3), FO|M 40+R3] ~ 3, FO

SD 40(R3), FOIM 40+R3] « 3, FO;
M 44+R3] ~ 5, F1

SH 52(R2),R3M52+R2] «~ 15 R314. .31

SB 41( R3) , R2 M 41+R3] - 8 R224. .31
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-

ALU-Befehle 1
Register-Register-Befehlsformat
0....56....1011....1516....20 21 31

OPCode| Rsl1 Rs2 Rd

OPC Erweiterung

ALU-Operation durch OPCode und Erweiterung definiert:
- ADD, SUB « AND, OR, XOR

« SLL, SRL, SRA
(schiebe links bzw. rechts)

Rd « Rsl1 ALURs2

32 bit Quellregister (source Rsl)

« Sxx (vergl. & setze Register)
(LT, GT, LE, GE, EQ NE)

0 ... 18 15 16 23 24 31
32 bit Quellregister (source Rs2)

0 ... 18 15 16 23 24 31
32 bit Zielregister (destination Rd)

0 ... 18 15 16 23 24 31

9T UOA QT "€ 91BS

ALU-Befehle 2

Immediate-Befehlsformat
0....56....1011....15 16 31

OPCode Rs1 Rd Si Immediate Data

ALU-Operation durch OPCode definiert:
- ADDI, SuUBI « ANDI, ORI, XORI

« SLLI, SRLI, SRAI « SxxI| (vergl. & setze Register)
(schiebe links bzw. rechts) (LT, GT, LE, GE, EQ NE)

Rd « Rsl ALUImmediate

32 bit Quellregister (source Rsl)

0 oo, 18 15 16 2324 .... 31

16 bit Immediate Data mit Vorzeichenerweiterung

0 .. 18 15 16 23 24 .... 31
|

32 bit Zielregister (destination Rd)

0 .. 18 15 16 23 24 .... 31
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ALU-Befehle

-

» mit Immediate Data (Befehlsbits 16 . . 31) oder

* nur mit Registerinhalten (RES-, OP1-, OP2-Adresse)

Befehle Befehlsformate Operationen

Add ADD Rl,R2,R3|Rl - R2+R3

Add immediate ADDI R1,R2,#3 Rl ~ R2+3

Load high LH  R1,#42 |R1 _ 42##016

immediate

Shift left logical SLLI R1,R2,#5 Rl -~ R2<<5

immediate

Set less than SLT R1,R2,R3|if (R2<R3)
Rl- 1 else
RL— O

9T UOA ZT"E 81BS

Steuerflussbefehle

Die DLX-Architektur enthalt

 zwei Verzweigungsbefehle (bedingt): BEQZ, BNEZ
« Ubergang zum Betriebssystem: TRAP
 Rickkehr zum Anwenderprogramm: RFE
o vier Sprungbefehle (unbedingt):
Zieladresse: not Link Link
PC-relativ J JAL
Registerinhalt JR JALR

Link: Speicherung des Inhalts des Befehlszéhlers (Riickkehradresse)
nach R31 vor dem Sprung zum Unterprogramm (Prozeduraufruf)

Befehlsformate Operationen
J name PC — nane;
( PC+4) - 22°< nanme < (PC+4) +22°
JR R3 PC « R3
JAL nane R31 ~ PC+4; PC ~ nane;
(PC+4) - 22°< nanme < (PG+4) +22°
JALR R2 R31 -« PC+4; PC « R2
BEQZ If (R4==0) PC ~ nane;
R4, nane (PC+4) - 215%< name < (PC+4) +21°
BNEZ I f (R4I=0) PC ~ nane;
R4, name (PC+4) - 21%< nane < (PC+4) +21°
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Sprungbefehle

Jump-Befehlsformat
0....5686 : 31

OPCode S| Offset addiert zu PC + 4

» Sprungbefehle (unbedingt):
Jump (J), Jump and Link (JAL)

 Sprung erfolgt relativ zum Befehlszéhler (PC-relativ):

32 bit Befehlsz&hler (Program Counter)

o .... 78 15 16 2324 .... 31
Fortschaltung des Befehlszahlers PC ~ PC+4;
Link (nur bei JAL): R31 ~ PC

0O .... 78 15 16 2324 .... 31

+ 26 bit Offset (Displacement) mit Vorzeichenerweiterung

0....56 e e e 31

|
= Zieladresse im Befehlszéahler PC ~ PC + Offset
0 ... [ 8 15 16 23 24 .... 31

-
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Sprungbefehle

Immediate-Befehlsformat
0....56....1011....15 16 31

OPCode Rs1 RO X’'0000’

 Sprungbefehle (unbedingt):
Jump Register (JR), Jump and Link Register (JALR)

* Inhalt von RO = X”0000 0000’; Immediate = X’0000’

* Die Zieladresse befindet sich im Quellregister Rs1:

32 bit Befehlszahler (Program Counter, PC)

0O .... 78 1516 .... 2324 .... 31
Fortschaltung des Befehlszahlers PC ~ PC+4;
Link (nur bei JALR): R31 ~ PC

O .... 78 1516 .... 2324 .... 31

32 bit Universalregister (Rs1)

0 ... [ 8 1516 .... 23 24 .... 31
= Zieladresse im Befehlszahler PC <~ Rsl
0 ... 1 8 1516 .... 23 24 .... 31
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Verzweigungsbefehle

Immediate-Befehlsformat
0....56....1011....15 16 .. 31

OPCode| Rsl RO Si Offset (Displacement)

» Verzweigungsbefehle (bedingt):
Branch on Zero (BEQZ); Branch on Not Zero (BNEZ)

 Das Quellregister (Rs1) wird getestet:
bei BEQZ auf gleich Null; bei BNEZ auf ungleich Null

 Bedingung erfillt: Zieladresse PC-relativ;
Bedingung nicht erftllt: Fortsetzung mit ndchstem Befehl

32 bit Befehlszahler (Program Counter, PC)

0 .. 18 ... 1516 .... 2324 .... 31
Fortschaltung des Befehlszahlers PC -~ PC+4
0 ... 18 ... 1516 .... 2324 .... 31

+ 16 bit Offset (Displacement) mit Vorzeichenerweiterung
0 ... 18 ... 1516 .... 2324 .... 31

= Zieladresse im Befehlszahler PC ~ PC + Offset
0 ... [ 8 1516 .... 23 24 .... 31

-
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7.2

» Systemkomplexitat*

Ublicherweise gilt die (relativ einfach zu ermittelnde) Anzahl der Transistoren pro Chip als die
»Systemkomplexitat”. Die zu jedem Zeitpunkt grundsatzlich héheren Werte fur Speicherchips im
Vergleich zu Mikroprozessoren und Logikchips zeigen aber, dass die regelmaliige Speicherstruktur
héhere Transistordichten zuldsst. Deshalb sollte zur Ermittlung einer ,,Systemkomplexitat* nicht
nur die Anzahl der Transistoren auf einem Chip, sondern auch dessen Verdrahtungsstruktur mitbe-
riicksichtigt werden.

Transistoren/Chip

A
108
16M
@
- L IM
10 @
1M
@) 80486 I Alpha
106 + mm P
256K _ 90386 68040
64k _ 80286 E% [ 68030
€ O
10° 68000 68020 V NEC
16k O [ 68010 \V4
4k [ 8086 Hitach
@ @& Hitachi
6800 \V4
0 8008 v
108 | 4004 Hitachi
Y
Fujitsu
10%
) Speicherchips
IBM  Hitachi [0 Mikroprozessoren
\4 \Y4 I
10t T \Y4 Logikchips
T T T T T A T N T M N M N T A Y N B
| | | | | |
1970 1975 1980 1985 1990 1995 2000

Seite 7.2 von 12



7 Hierarchie der Rechnersysteme

7.3 Hierarchischer Systementwurf

Systemkomplexitat

Zur Beherrschung der Systemkomplexitat ist das zu entwerfende Digitalsystem grundséatzlich auf-
teilbar:

* inein Rechenwerk, das Datenpfade und einen Vorrat arithmetischer und logischer Funktionen
bereitstellt, durch deren Kombination sich kompliziertere Funktionsablaufe ergeben,

« und ein digitales Steuerwerk, das als Automat mit einer endlichen Anzahl diskreter Zustédnde
beschrieben werden kann, das solche Funktionsabldufe zeitlich steuert.

Entwurfskomplexitat

Zur Beherrschung der Entwurfskomplexitat digitaler elektronischer Systeme unterscheidet man
grob zwei Bereiche:

 den logischen Entwurf, der die Funktionen des Systems als schematische Schaltungsstruktur
ohne Berticksichtigung geometrisch-physikalischer Randbedingungen implementiert,

 undden physischen Entwurf, der die logische Schaltungsstruktur in Form geometrischer Struk-
turen realisiert.

Zergliedernder Entwurfsstil (“top-down design®): Man beginnt auf einer Darstellungsebene hohen
Abstraktionsgrades, d.h. mit einer globalen Funktionsbeschreibung des Gesamtsystems und ver-
feinert die Strukturen schrittweise bis auf die Ebene der Technologie.

Aufbauender Entwurfsstil (“bottom-up design‘): Man beginnt auf einer Darstellungsebene niedri-
gen Abstraktionsgrades, d.h. mit detaillierten Strukturen, und fal3t sie schrittweise zu grolieren
Funktionsblocken zusammen, bis sich das Gesamtsystem ergibt.

7.4 Rekursive Verfeinerung

Funktion Struktur -
Teil-

funktion
Fa

globale

:> Funktion :> :> {} {} :>

Teil-

= funktion |=>
Fg

Infrastruktur
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7.5 Hierarchie der Packungsebenen

Grundkarte mit aufgesteckten Schaltkarten

7.6  Hierarchischer Chip-Entwurf

(2]
-]
X @
«]
-

ADDRESS HIGH
EXECUTION UNIT
Hierarchisch gegliederter Mikroprozessor-Chip
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7 Hierarchie der Rechnersysteme

7.7  Zellbibliothek

Schaltkreis-Entwurf Layout-Entwurf
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7.8 Platzierung & Verdrahtung
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7 Hierarchie der Rechnersysteme

7.9 Hierarchie der Entwurfsdaten

logischer physischer
Verhalten Entwurf — Struktur Entwurf — Geometrie
Rechner-Architektur Prozessor Floorplan
[ ——————— A
Steuerwerk

Beschreibung des
Befehl ssatzes und
der Datenformate

|
|
| i u
|

. Rechenwerk L
L — === |
Automat Schaltwerk Makrozelle
Beschreibung N v !
der Zustande und | A |
Zustandsiibergénge E o) |
- durch Ablaufgraph | |
- Ablauftabelle | B ,
- (V)HDL-Text A S | b
Zuordner Schaltnetz Zelle
Beschreibung N e T K
der Schaltfunktion v | O O |
- durch KV-Diagramm | v B =ERE
- boolesche Gleichung ! | —
- Wahrheitstabelle V O O (O d
- (V)HDL-Text —1 1 |
Schaltglied Schaltung
r— T T Toeo— T — — A
Beschreibung | |
der elementaren | |
Schaltfunktion durch | |
- Wahrheitstabelle ,4|[|L—| |
- (V)HDL-Text | |
L - - = - - -
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7.10 Hierarchie der Entwurfsschritte

System- Logischer Physischer
Spezifikation Entwurf Entwurf
System-
Entwurf
Subsystem
Entwurf
RT-Block Floorplan
Entwurf | ——>1  Entwurf |
Logikgatter Plazierung,
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7 Hierarchie der Rechnersysteme

7.11 Der Entwurfsraum

,Y-Diagramm?®

Verhalten Struktur

Systemspezifikation /\CPUS Speicher Busse
\/(Algorlthmen Steuer-/Rechenwerke
Operationsfolgen K Schaltnetze Register
éooleschéAusdrUcke »Loglkgatter Fllpflops \
leferentlalglelchungen Transistoren, pass. Komponenten

Schaltunqsebene

A\ ~¢—Maskendaten
Logikebene
AN
Registertransfer-Eben
egistertransfer-Ebene Zellon

) N\ N\
Algorithmische Ebene

\
Architekturebene \o- Makrozellen

Floorplanning

Partitionierung

Geometrie

7.12 Entwurfsmethodik

Der Entwurf schlégt die Briicke von einer abstrakten Spezifikation zum konkreten Produkt.

Entwurfsraum

» Die Koordinaten des ,,Y-Diagramms* sind die drei unterschiedlichen Sichten eines zu entwer-
fenden elektronischen Systems.

* Die Kreise sind Hierarchie-Ebenen; nach auflen nimmt die Abstraktion, nach innen die Detail-
lierung des Entwurfs zu.

 Die Schnittpunkte (,,Knoten*) symbolisieren Entwurfsdaten in unterschiedlichen Sichten und
Abstraktionen.

 Die Verbindungslinien (,,Kanten*) symbolisieren Entwurfsschritte, d.h. Transformationen der
Entwurfsdaten.
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Entwurfsablauf
 Ein zergliedernder Entwurf beginnt mit der globalen Systemspezifikation, dem ,,Verhalten* auf
der abstraktesten Ebene. Entwurfsziel ist das Zentrum des Diagramms.

 Ein Entwurfsablauf ist ein Pfad durch den Entwurfsraum; denn die Komplexitat des zu entwer-
fenden Systems ist nur in mehreren Entwurfsschritten zu bewaltigen.

Entwurfsschritte

» Entwurfsschritte transformieren Entwurfsdaten: Sie dndern die Sicht auf das zu entwerfende
System und/oder verfeinern seine Darstellung.

7.13 Entwurfswerkzeuge

Interaktive Graphik-Editoren
- Alle Entwurfsentscheidungen trifft der Entwerfer.
- Graphische Editoren flr Schaltplaneingabe und Layout.
- Simulatoren und Entwurfsregelpriifer.
- Datenbank flr die Entwurfsdaten.
- Die Ergebnisse aller Entwurfsschritte mussen durch Simulation validiert werden.

Synthese-Werkzeuge
- Grobe Granularitat des Wissens: Das Entwurfswissen wird durch wenige komplexe
Algorithmen erfafit.
- Aus einer h6heren Hardware-Beschreibungssprache wird automatisch eine spezielle
Struktur synthetisiert.
- Algorithmen erzeugen regelmaRige Strukturen.
- Entwurfsstil gut angepalt an PLA, PAL und Gate-Arrays.

Experten-Systeme

- Feine Granularitat des Wissens: Die Entwurfserfahrung wird durch hunderte einfacher
Entwurfsregeln erfalit und in einer Wissensbasis gespeichert.

- Die Entwirfe sind unregelmalig strukturiert, ahnlich zu Handentwdirfen.
- Die Entwurfsregeln kdnnen an Anderungen der Technologie relativ einfach angepafit werden.

7.14 Simulationsebenen

System-Simulation

» Elemente der Simulation sind gréfRere Funktionseinheiten, wie Mikroprozessoren, Hauptspei-
cherbereiche und Ein/Ausgabesteuerungen, deren Zusammenwirken tber Sammelleitungen
(.,Bus“) funktionell modelliert wird.

Register-Transfer-Simulation

» Elemente der Simulation sind digitale Funktionseinheiten, d.h. Register und kombinatorische
Blocke, z.B. Addierer, deren Kommunikation tiber Busleitungen funktionell modelliert wird.

« Digitalsimulation mit bindr codierten Worten (,,Bit Strings®), d.h. mit Vektoren aus binaren
Variablen und deren diskreten zeitlichen Verdnderungen.
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7 Hierarchie der Rechnersysteme

Logik-Simulation
» Elemente der Simulation sind logische Gatter und Flipflops; damit aufgebaute Netzwerke werden
strukturell modelliert.

« Digitalsimulation mit zwei Signalpegeln bzw. bindren Variablen (,,Bits*) mit den diskreten Wer-
ten 0, 1 und X = unbekannt.

Schaltkreis-Simulation
» Elemente der Simulation sind elektronische Komponenten (Transistoren, Dioden, Widerstande,
Kondensatoren, Spulen); damit aufgebaute Netzwerke werden strukturell modelliert.

» Analogsimulation physikalischer GroRen und Signale (Spannungen, Strome, elektrische Lei-
stung), die sich kontinuierlich veranderndern.

7.15 Simulation

Simulationsmodell
Informatorische Nachbildung des Verhaltens des entworfenen Systems auf einem Digitalrechner,
um es mit den Entwurfsvorgaben (,,Spezifikation®) zu vergleichen.

» Digitale Elektronik: Das Simulationsmodell wird direkt aus dem Stromlaufplan bzw. der Netz-
liste abgeleitet.

» Mechanik, analoge Elektronik: Das Simulationsmodell wird als System physikalischer Glei-
chungen erstellt, die das Verhalten der entworfenen Vorrichtung beschreiben.

Stimuli
Ansteuerung des Simulationsmodells wéahrend des Simulationslaufs mit Eingabevariablen bzw. -
signalen.

» Digitale Elektronik: Bindre Eingabevariable zur digitalen Simulation auf der Ebene logischer
Gatter.

» Mechanik, analoge Elektronik: Zeitlich verédnderliche Eingabesignale zur analogen Simulation,
z.B. auf der Ebene elektronischer Schaltkreise.

Visualisierung
Graphische Darstellung der Ausgabevariablen bzw. -signale.

A A

digitale Simulation analoge Simulation
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7.16 Interaktiver Entwurfsschritt

mit Simulation

SystemSpez.
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