
Code Problems on Traces

Volker Diekert Anca Muscholl⋆

Universität Stuttgart, Institut für Informatik
Breitwiesenstr. 20-22, D-70565 Stuttgart

Abstract. The topic of codes in the framework of trace monoids leads
to interesting and challenging decision problems of combinatorial flavour.
We give an overview of the current state of some basic questions in this
field. Among these, we consider the existence problem for strong cod-
ings, clique-preserving morphisms and the unique decipherability prob-
lem (code problem).

1 Introduction

Free partially commutative monoids [7] offer a mathematically sound framework
for modelling and analyzing concurrent systems. This was made popular by the
work of Mazurkiewicz. He investigated originally the behaviour of safe 1-labelled
Petri nets [17] and the computer science community quickly recognized the im-
portance of this work. The basic concept is to consider a system as a finite set of
actions Σ, together with a fixed symmetric independence relation I ⊆ Σ×Σ, de-
noting pairs of actions which can be scheduled in parallel. In the setting defined
by a pair (Σ, I) we identify sequential observations (i.e., strings over Σ) modulo
identities ab = ba for (a, b) ∈ I. This yields the partial commutation and the
resulting monoid has been called trace monoid by Mazurkiewicz. Trace monoids
have been successfully considered in classical theories like formal languages, au-
tomata and logic. Some challenging decision problems for trace monoids are still
open. One of the fundamental open problems is whether or not there is an al-
gorithm to decide the solvability of equations involving constants. For the word
case of free monoids the positive answer is known to due a famous result of
Makanin [15]. The solution of an equation is a homomorphism. We think that a
better understanding of homomorphisms will help to attack a possible extension
of Makanin’s result, and our contribution is restricted to some questions about
homomorphisms. The surprising fact is that even basic questions on codings (in-
jective homomorphisms) between trace monoids are still open. We focus on two
problems. First, given two trace monoids M1,M2, does an injective homomor-
phism h : M1 → M2 exist? Second, given a homomorphism h : M1 → M2, is h
injective, i.e., a coding? For both questions only partial answers are known. The
first question has a positive answer for strong codings, see Sect. 3 below.

⋆ This research has been supported in part by the French-German research programme
PROCOPE.

The second question is known to be undecidable, even if the first monoid is free,
as soon as (Σ2, I2) contains a cycle on four vertices as induced subgraph [14, 8].
It is known to be decidable when the independence relation (Σ2, I2) does not
contain any induced subgraph isomorphic to the path P4 or the cycle C4 on
four vertices, [1]. Recently it has been shown that for (Σ2, I2) being equal to the
P4, the code problem is decidable. However, the question of the precise border-
line for decidability is still open. We present in Sect. 4 the solution to the code
problem for P4, which has been exhibited independently in [13, 16]. Another
natural instance of the question whether a given homomorphism h : M1 → M2

is a coding or not is given when h is described by morphisms between indepen-
dence alphabets. This special case arises when actions in a system are refined in
such a way that the refined action is a product of independent elements which
therefore can be performed in parallel. However even for such a restricted class
of homomorphisms the injectivity problem turns out again to be undecidable,
see Sect. 5.

2 Notations and Preliminaries

A dependence alphabet is a pair (Σ,D), where Σ is a finite alphabet and D ⊆
Σ × Σ is a reflexive and symmetric relation, called dependence relation. The
complement I = (Σ × Σ) \ D is called independence relation; it is irreflexive
and symmetric. The pair (Σ, I) is denoted independence alphabet. We view
both (Σ,D) and (Σ, I) as undirected graphs. The difference is that (Σ,D) has
self-loops.
Given an independence alphabet (Σ, I) (or a dependence alphabet (Σ,D) resp.)
we associate the trace monoid M(Σ, I). This is the quotient monoid Σ∗/ ≡I ,
where ≡I denotes the congruence generated by the set {uabv = ubav | (a, b) ∈
I, u, v ∈ Σ∗}; an element t ∈ M(Σ, I) is called a trace, the length |t| of a trace t is
given by the length of any representing word. By alph(t) we denote the alphabet
of a trace t, which is the set of letters occurring in t. The initial alphabet of t
is the set in(t) = {x ∈ Σ | ∃t′ ∈ M(Σ, I) : t = xt′}. By 1 we denote both the
empty word and the empty trace. Traces s, t ∈ M(Σ, I) are called independent,
if alph(s)× alph(t) ⊆ I. We simply write (s, t) ∈ I in this case. A trace t 6= 1 is
called a root, if t = un implies n = 1, for every u ∈ M(Σ, I). A trace t is called
connected, if alph(t) induces a connected subgraph of the dependence alphabet
(Σ,D).

3 Existence problem for codings

A homomorphism h : M(Σ, I) → M(Σ′, I ′) is given by a mapping h : Σ →
M(Σ′, I ′) such that h(a)h(b) = h(b)h(a) for all (a, b) ∈ I. The homomorphism
is called a coding, if it is injective. Representing each trace h(a) by a word

ĥ(a) ∈ Σ′∗ we obtain a homomorphism between free monoids ĥ : Σ∗ → Σ′∗.

It may happen that the lifting ĥ is injective, but h is not. (A trivial exam-

ple is ĥ = idΣ′ with I ′ 6= ∅.) But if we know that ĥ is not injective, then h

cannot be injective. This surprising fact has been recently announced in [5]: If

h : M(Σ, I) → M(Σ′, I ′) is a coding, then every lifting ĥ : Σ∗ → Σ′∗ is a word
coding. The result is far from being trivial and gives some flavour about the un-
expected behaviour of homomorphisms between trace monoids. It is completely
open whether the existence problem for codings between trace monoids is de-
cidable. Only some few results and conjectures have been established [4, 12].
The situation changes if we restrict our attention to a naturally arising subclass
of homomorphisms. The existence problem of strong codings has a nice graph
characterization being discussed in this section.

Definition 1. [6] A homomorphism h : M(Σ, I) → M(Σ′, I ′) is called a strong
homomorphism, if (h(a), h(b)) ∈ I ′ holds for all (a, b) ∈ I. A strong coding is a
strong homomorphism being injective.

Hence, strong homomorphisms map independent letters to independent traces.
The perhaps most prominent example of a strong coding is given by the Projec-
tion Lemma [9, 10]. It can be rephrased as follows.

Example 1. Let Σ′ ⊆ Σ be a subalphabet such that Σ′ × Σ′ ⊆ D. The canon-
ical projection πΣ′ : M(Σ, I) → Σ′∗ is the homomorphism induced by setting
πΣ′(a) = a for a ∈ Σ′ and πΣ′(a) = 1 for a ∈ Σ \ Σ′. Consider (Σ,D) written

as a union of cliques, i.e., (Σ,D) = (
⋃k

i=1Σi,
⋃k

i=1Σi×Σi). Then the canonical
homomorphism

π : M(Σ, I) →
k
∏

i=1

Σ∗
i , t 7→ (πΣi

(t))1≤i≤k

is a strong coding.

The Projection Lemma leads to the upper bound in the next proposition. To
derive the lower bound is left as an exercise to the reader.

Proposition 2. Let (Σ,D) be a dependence alphabet and |Σi| ≥ 2 for i =

1, . . . , k. Then there exists a strong coding h : M(Σ, I) →
∏k

i=1Σ
∗
i if and only

if (Σ,D) allows a covering by k cliques. In particular, deciding the existence of
strong codings into a k-fold direct product of free monoids is NP-complete.

The following example suggests some of the differences between the existence
problem for codings resp. strong codings.

Example 2. Let (Σ,D) = Cn denote the cycle on n > 3 vertices, i.e., Σ =
{a1, . . . , an} and D is defined by the edges {amam+1 | 1 ≤ m ≤ n} (with
addition modulo n). By the proposition above there exists a strong coding from

M(Σ, I) into
∏k

i=1Σ
∗
i (where |Σi| ≥ 2 for all i) if and only if k ≥ n.

If we consider codings instead of strong codings we obtain k = n − 1 as an
upper bound. Let h : M(Σ, I) →

∏n−1
i=1 Σ

∗
i be given by h(am) = xm−1ymxm+1

form < n and h(an) = xn−1x1 (where by convention x0 = xn−1 and xn = x1). It

is straightforward to check that h is a homomorphism. Suppose now h(u) = h(v)
for some u, v and let |u|+|v| be minimal. The minimality implies in(u)∩in(v) = ∅.
Since u 6= 1 6= v we may assume by symmetry that for some 1 ≤ m < n we have
am ∈ in(u) \ in(v). Then ym ∈ in(h(u)). This implies am ∈ alph(v) and even
am ∈ in(v) (otherwise xm ∈ in(h(v))). Hence a contradiction.
It can be shown that k ≥ n− 1 is also necessary for the existence of a coding for
n > 4. On the other hand, M(Σ, I) with (Σ,D) = C4 can be already embedded
in the direct product of two free monoids, [4, 12].

No difference between the existence of codings and strong codings occurs however
if the left-hand side monoid is free commutative (see also [18]). It also yields a
lower bound for the complexity in Cor. 4 and Cor. 7 below.

Proposition 3. Let (Σ,D) be a dependence alphabet and k ≥ 1. The following
assertions are equivalent:

i) The dependence alphabet (Σ,D) contains an independent set of size k.
ii) There exists a strong coding h : Nk → M(Σ, I).
iii) There exists a coding h : Nk → M(Σ, I).

Corollary 4. Given (Σ,D) and k, it is NP-complete to decide whether there
exists a (strong) coding of Nk into M(Σ, I). Therefore, the problem whether there
exists a (strong) coding between two given trace monoids is (at least) NP-hard.

Strong homomorphisms are tightly connected to morphisms of dependence and
independence alphabets, which we now define.

Definition 5. Let (V ′, E′), (V,E) be undirected graphs (possibly with self-
loops), H ⊆ V ′ × V be a relation between vertices, and for a′ ∈ V ′ let H(a′)
denote the set {a ∈ V | (a′, a) ∈ H}. The relation H is called a relational
morphism, if (a′, b′) ∈ E′ implies H(a′)×H(b′) ⊆ E for all a′, b′ ∈ V ′.

Theorem6 [12]. Let (Σ,D) and (Σ′, D′) be dependence alphabets. The follow-
ing assertions are equivalent:

i) There exists a strong coding h : M(Σ, I) → M(Σ′, I ′).
ii) There exists a relational morphism H : (Σ′, D′) → (Σ,D) of dependence

alphabets such that for all a ∈ Σ there exists a′ ∈ Σ′ with a ∈ H(a′), and
for all (a, b) ∈ D, a 6= b there exists (a′, b′) ∈ D′, a′ 6= b′, with (a, b) ∈
H(a′)×H(b′).

Furthermore there are effective constructions between h and H such that H =
{(a′, a) ∈ Σ′ ×Σ | a′ ∈ alph(h(a))}.

Corollary 7. The following problem is NP-complete:
Instance: Independence alphabets (Σ, I), (Σ′, I ′).
Question: Does there exist a strong coding from M(Σ, I) into M(Σ′, I ′)?

4 Code problem

Rational languages in trace monoids (built over finite sets using concatenation,
union and Kleene star) strictly contain the family of recognizable languages and
do not form a Boolean algebra, in general. More precisely, the family of rational
trace languages over M(Σ, I) is a Boolean algebra if and only if the independence
relation I is transitive [20]. This fact leads to nontrivial decision problems for
rational trace languages, see [3, 1, 20]. It is known e.g. that the question whether
the intersection of two rational trace languages is empty or not is undecidable,
in general. More precisely, the intersection problem is undecidable if and only if
the graph associated to the independence relation contains as induced subgraph
either a cycle or a path on four vertices [1]. It is therefore decidable exactly for
transitive forests [22].
We ask in this section a closely related question, namely whether a finite set X
is a code, i.e., whether X freely generates X+. More generally, we will consider
the notion of trace code.

Definition 8. For a set X ⊆ M(Σ, I) let ΣX be an alphabet being in bijection
ψ with the set X. Define IX ⊆ ΣX ×ΣX by (x, y) ∈ IX if x 6= y and ψ(x)ψ(y) =
ψ(y)ψ(x).
Then X is called a trace code, if the induced homomorphism ψ : M(ΣX , IX) →
M(Σ, I) is a coding.

Definition 9. The (trace) code problem for (Σ, I) is to decide on the instance
of a finite set X ⊆ M(Σ, I) whether or not it is a (trace) code.

The trace code problem can be reduced to the intersection problem of rational
trace languages. To see this, assume that X is not a trace code, then we find two
traces u, v ∈ M(ΣX , IX), u 6= v such that ψ(u) = ψ(v). For u, v with |u| + |v|
minimal we obtain some x ∈ ΣX with x ∈ in(u) and either alph(v) ⊆ IX(x) or
v = v1yv2, for some y 6= x, (x, y) /∈ IX and alph(v1) ⊆ IX(x) (IX(x) denoting
the set of letters from ΣX independent of x). Hence, X is not a trace code if
and only if for some x ∈ ΣX the following holds:

ψ(x)X∗ ∩
(

ψ(IX(x)∗) ∪ ψ(IX(x)∗)ψ(DX(x) \ x)X∗
)

6= ∅ .

Since rational sets are closed under homomorphisms, the claim immediately
follows. Hence, we obtain the following

Proposition 10. i) If the trace code problem is decidable for (Σ, I), then the
code problem is decidable for (Σ, I).

ii) Both problems are decidable if the independence relation is a transitive forest
[1].

iii) Both problems are undecidable as soon as the independence relation I con-
tains C4 as induced subgraph [14, 8] (equivalently, M(Σ, I) contains a sub-
monoid isomorphic to {a, b}∗ × {c, d}∗).

The precise borderline for the decidability of the (trace) code problem is cur-
rently open. A temptive idea would consist in conjecturing undecidability for
independence alphabets containing P4 as induced subgraph, since this would
settle the problem. However, the decidability of the (trace) code problem for
P4 has been recently established, [13, 16]. Furthermore, not every independence
alphabet which does not contain C4 as induced subgraph has a decidable code
problem, see [13, 16] for examples.
The code problem between free monoids is equivalent to the emptiness problem
for finite automata. Given X ⊆ A∗, the states of the associated automaton AX

are suffixes of words in X. A transition u
1
→ v exists if v ∈ X−1u ∪ u−1X.

With X−1X \{1} as initial states and 1 as unique final state one can verify that
1 ∈ L(AX) is equivalent to L(AX) 6= ∅, which holds if and only if X is not a
code.
For the special case of free monoids, well-known techniques (see [2]) solve the
code problem in polynomial time. More precisely, the code problem is complete
for NL, the class of languages which can be recognized by nondeterministic
Turing machines in logarithmic space (for the hardness see [19]). For the trace
monoid M = M(Σ, I), where the independence (or equivalently, the dependence)
alphabet is P4, the same complexity result holds, c.f. Thm. 13 below. However,
we need a more complex device than finite automata.
We assume for the rest of this section that M = M(Σ, I), where (Σ, I) is equal
to P4:

Σ = {a, b, c, d} and I = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c)}.

We will use a one-counter automaton. Thus, the automaton can increment, decre-
ment, and test the counter for zero. The value of the counter is an integer. By
storing the sign in the finite control, we may also use a pushdown automaton
where the pushdown alphabet contains besides the bottom symbol only one sin-
gle symbol.
We consider below mainly the code problem, i.e., the question whether a finite
set X ⊆ M freely generates X+. The basic idea will be to guess two different
factorizations of an element of X+ by storing in the counter a certain number
of b’s resp. c’s, while keeping a (finite) synchronization information in the finite
control.
The technical lemma below explains how information can be stored in this
way. We need some more notations. For traces w1, w2, . . . in M let w[i] denote
w1 · · ·wi. If u is a factor of v we also write u ⊆ v. (This means that v ∈ MuM.)
For u1, . . . , ui, v1, . . . , vj ∈ X we call the pair (u[i], v[j]) a partial solution, if
u[i]s = v[j]s′ holds for some s, s′ ∈ M. Using Levi’s Lemma [10] we can represent
u[i], v[j] as follows.

Fact 11 Let (u[i], v[j]) be a partial solution. Then unique traces r, α0, α, β0, β ∈
M exist such that

• u[i] = rα0α, v[j] = rβ0β
• (α0α, β0β) ∈ I

• α0 ⊆ u[i− 1], α ⊆ ui, β0 ⊆ v[j − 1], β ⊆ vj.

Lemma12. Let X ⊆ M be given and let w = u1 · · ·un = v1 · · · vm be such
that ui, vj ∈ X with (u1, . . . , un) 6= (v1, . . . , vm). Let (u[i], v[j]) be a partial
solution with r, α0, α, β0, β defined as above, (i, j) 6= (n,m). Moreover, suppose
|alph(α0β0)| ≤ 1.
Then there exist s, t ≥ 0 with s+ t > 0 satisfying the following properties:

i) Either s = 0 or t = 0. Moreover, if s = 0 then alph(vj+1 · · · vj+t−1) is
a clique in (Σ, I). Symmetrically, if t = 0 then alph(ui+1 · · ·ui+s−1) is a
clique in (Σ, I).

ii) u[i + s] = r′α′
0α

′ and v[j + t] = r′β′
0β

′ hold for uniquely determined traces
r′, α′

0, α
′, β′

0, β
′ satisfying α′

0 ⊆ u[i+ s− 1], α′ ⊆ ui+s, β
′
0 ⊆ v[j + t− 1] and

β′ ⊆ vj+t. Moreover, we have |alph(α′
0β

′
0)| ≤ 1.

Proof. First observe that |alph(α0β0)| ≤ 1 together with (α0, β0) ∈ I implies
that either α0 = 1 or β0 = 1. Suppose therefore without loss of generality
β0 = 1. We distinguish the following cases:

i) Let α0 = 1:
Choose (s, t) = (1, 0) and let p, α′

0, α
′, β′ be such that αui+1 = pα′

0α
′, β =

pβ′, (α′, β′) ∈ I and α′
0 ⊆ α, α′ ⊆ ui+1. Symmetrically we can choose

(s, t) = (0, 1) and define p, α′, β′
0, β

′ accordingly.
ii) Let β = 1:

Choose (s, t) = (0, 1). Then we have α0α = pα′
0α

′, vj+1 = pβ′ for uniquely
determined p, α′

0, α,
′ β′ with (α′

0α
′, β′) ∈ I, where α′

0 ⊆ α0, α
′ ⊆ α. Note

that p, α′, β′ depend on α, vj+1 and on the comparison between |α0| and a
value bounded by α, vj+1 (thus bounded by X).

iii) Let α0, β 6= 1 and |alph(α0α)| = 1:
Choose (s, t) = (1, 0). Then we have α0αui+1 = pα′

0α
′ and β = pβ′ for

uniquely determined p, α′
0, α

′, β′ with (α′
0α

′, β′) ∈ I, where α′
0 ⊆ α0α and

α′ ⊆ ui+1. Due to (α0α, β) ∈ I we have p ⊆ ui+1, hence α
′
0 = α0α. Moreover,

α′ and β′ can be directly computed from ui+1, β.
iv) Finally let |alph(α0α)| > 1 and α0, β 6= 1:

We know in this case that alph(α0α) is a clique of the dependence relation
D. In fact, either alph(α0α) ⊆ {a, c} or alph(α0α) ⊆ {b, d}. Let e.g. α0α ∈
b+d{b, d}∗ and consider the least t > 0 such that alph(vj+t)∩(D(b)\{b}) 6= ∅,
i.e., d ∈ alph(vj+t). Clearly, every e ∈ alph(βvj+1 · · · vj+t−1) satisfies (e, b) ∈
I or e = b. Moreover, if e 6= b then (e, d) ∈ I. Otherwise, there would exist
an edge from an e-labelled vertex x in vj+1 · · · vj+t−1 to a d-labelled vertex y
in vj+t · · · vm, whereas y precedes x in α0αui+1 · · ·un. Therefore, e = c and
alph(βvj+1 · · · vj+t−1) ⊆ {b, c}.
Let p, α′

0, α
′, β′

0, β
′ be the unique traces satisfying (α′

0α
′, β′

0β
′) ∈ I and

α0α = pα′
0α

′ and βvj+1 · · · vj+t = pβ′
0β

′. Moreover, α′
0 ⊆ α0, α

′ ⊆ α,
β′
0 ⊆ βvj+1 · · · vj+t−1 and β′ ⊆ vj+t. Since both alph(α) ∩ D(b) 6= ∅ and

alph(vj+t) ∩ D(b) 6= ∅ hold, we obtain α0 ⊆ p and πb(vj+1 · · · vj+t−1) ⊆ p.
Hence, α′

0 = 1 and β′
0 ⊆ βπc(vj+1 · · · vj+t−1). Clearly we have β ∈ c+ due

to (α0α, β) ∈ I, and the claim is satisfied.

Remark. 1. Note that Lem. 12 still holds if (Σ, I) contains no triangle and no
induced C4. Moreover, for (Σ, I) = P4 we note that the additional assumption
α0β0 ∈ b∗ ∪ c∗ yields in Lem. 12 α′

0β
′
0 ∈ b∗ ∪ c∗, too. It suffices to choose in

the case α0 = 1: (s, t) = (1, 0), if α ∈ b∗∪c∗, resp. (s, t) = (0, 1), if β ∈ b∗∪c∗.
2. In order to be a code, X may contain at most one element of the form bkcl,

since any two such traces commute.
3. Let us take a closer look at the last case in the previous proof. Assume α0 = bq

and β = cr for some q ≥ 0, r > 0.
Supposing that X ∩ b∗c∗ = {bkcl} the following equations hold:

bqα = pα′ , (1)

cr
(

bk

cl

)t−1

vj+t = pβ′
0β

′. (2)

Note that q and k(t − 1) differ by a value depending on α and vj+t, only.
Hence, k(t − 1) is determined by q and a value depending on α and vj+t,
only (thus bounded by X). Moreover, due to |α|c = 0 we have β′

0 = cr+l(t−1).
Finally, with p = bqp′ for some p′ we have α = p′α′, bk(t−1)vj+t = bqp′β′ and
we see that p′, α′, β′ can be computed using α and vj+t, only.

Let (u[i], v[j]) be a partial solution with u[i] = rα0α, v[j] = rβ0β as in Lem. 12.
A counter automaton can store the integer value |α0| − |β0| in the counter,
whereas α, β are part of the finite control. The initial configurations (α, β), α0,
β0 will be given by partial solutions (u[i], v[j]) of minimal length satisfying x ∈
alph(u1) ∩ alph(v[j]) for some x ∈ {a, d} (thus, α0β0 ∈ b∗ ∪ c∗). The automaton
will accept if α = β = 1 and the counter is empty. It remains to describe the
transition relation corresponding to the one-step transition described in Lem. 12,
i.e., from (u[i], v[j]) to (u[i+ s], v[j + t]).
Updating α′, β′ according to the situations considered in Lem. 12 is not difficult.
The only problem arises in the last case considered in Lem. 12, when bkcl ∈ X
with kl 6= 0 and the counter has to switch from b’s to c’s (or conversely). Roughly,
the value of the counter has to be divided by k and multiplied by l (we may
also have to increment/decrement the counter by a bounded value, i.e., a value
depending on the finite state). Obviously, we cannot perform this combined
operation using a single counter. The solution is to store instead of |α0| − |β0|
the value (|α0| − |β0|) div k, if α0β0 ∈ b∗. Of course, we keep (|α0| − |β0|) mod k
in the finite control. (Analogously, we store (|α0| − |β0|) div l in the counter, if
α0β0 ∈ c∗.)

Remark. In order to be a trace code, X may contain at most two elements x1, x2
with alph(x1), alph(x2) ⊆ {b, c}. More precisely, if xi = bkicli then k1l2 6= k2l1
should hold. The second equation in the previous remark has to be replaced then
by

cr
(

bk1

cl1

)t1(
bk2

cl2

)t2

vj+t = pβ′
0β

′, (2)

for t1, t2 with t1+ t2 = t−1. It can be shown in this case that if X is not a trace
code, then we may suppose in the equation above that the difference |t1 − t2|
is bounded by X (i.e., there exists a suitable solution u1 · · ·un = v1 · · · vm with
this property). In this case, we use the same method as for the code problem,
with k1 + k2 (resp. l1 + l2) replacing k (resp. l) and keeping |t1 − t2| in the finite
control.

Theorem13 [13, 16]. Let Σ = {a, b, c, d} and M(Σ, I) be defined by three
equations ab = ba, bc = cb, and cd = dc. Then the (trace) code problem for
the independence alphabet (Σ, I) is decidable in polynomial time, actually it is
NL-complete.

Proof sketch. For the complexity result in the theorem above recall that the
hardness is already provided by the case of free monoids (over two letters al-
phabets) [19]. The code problem is shown to belong to NL by noting e.g. that
one can test the existence of two different factorizations over a given X ⊆ M by
using a 2-way multi-head nondeterministic counter automaton. With the nota-
tions of Lem. 12 this automaton keeps track of α and β using two heads, which
point at the corresponding elements of X in the input; the counter is used as
in the proof of Thm. 13, whereas the modulo k, l values are handled by further
heads on the input. Since the class of languages accepted by 2-way multi-head
nondeterministic counter automata is known to coincide with NL [21], the result
follows.

5 Clique-preserving morphisms

From the viewpoint of semantics codings may arise by refinement of actions.
Assume we want to refine an action in such a way that it can be distributed to
different parallel components. Then we may think of this as a homomorphism
where a letter is mapped to a product of independent letters. This idea leads to
the following definition, where (throughout this section) the notion of clique is
meant w.r.t. independence alphabets.

Definition 14. A clique-preserving morphism of independence alphabets H,
H : (Σ, I) → (Σ′, I ′) is a relation H ⊆ Σ × Σ′ such that H(A) = {α ∈ Σ′ |
(a, α) ∈ H, a ∈ A} is a clique of (Σ′, I ′) whenever A ⊆ Σ is a clique of (Σ, I).

A clique-preserving morphism H ⊆ Σ ×Σ′ yields in a natural way a homomor-
phism h : M(Σ, I) → M(Σ′, I ′) by letting h(a) =

∏

α∈H(a) α for a ∈ Σ. Note

that the product is well-defined since H(a) is (by definition) a clique, i.e., a set
of commuting elements. Moreover, for (a, b) ∈ I we have

h(ab) = h(ba) =
∏

α∈H(a)∪H(b)

α ·
∏

α∈H(a)∩H(b)

α

Remark. A clique-preserving morphism is not necessarily a morphism of undi-
rected graphs as defined in Sect. 3. The reason is that for (a, b) ∈ I we may
have H(a)∩H(b) 6= ∅. Therefore the induced homomorphisms of trace monoids
are not strong, in general. On the other hand, the strong coding defined in the
Projection Lemma (Ex. 1) is clique-preserving, too.

Due to the next proposition we have a decidability result in the case where the
left-hand side is free. This positive situation is in major contrast to Thm. 16
below.

Proposition 15. Let H ⊆ Σ × Σ′ be a relation such that H(a) is a clique of
(Σ′, I ′) for all a ∈ Σ. Then the induced homomorphism h : Σ∗ → M(Σ′, I ′) with
h(a) =

∏

α∈H(a) α is injective if and only if for all a, b ∈ Σ, a 6= b there exists

some (α, β) ∈ D′, α 6= β with α ∈ H(a), β ∈ H(b).

The following result has been stated in [12] without proof:

Theorem16. Given a clique-preserving morphism of independence alphabets
H : (Σ, I) → (Σ′, I ′), it is undecidable whether the associated homomorphism
h : M(Σ, I) → M(Σ′, I ′), h(a) =

∏

α∈H(a) α for a ∈ Σ, is a coding.

The following proof uses the undecidability of Post’s correspondence problem
(PCP), stated as follows: given two homomorphisms f, g : Γ ∗ → Γ ′∗, does some
u ∈ Γ+ exist with f(u) = g(u)? For simplifying our reduction we impose follow-
ing restrictions on the given PCP instances:

• 1 ≤ |f(a)|, |g(a)| ≤ 2 for every a ∈ Γ
• There exist x, y ∈ Γ , x 6= y, such that f(u) = g(u) with u ∈ Γ+ implies
u ∈ xΓ+y; moreover, if the instance (f, g) has a solution, then also one in
x(Γ0Γ0)

∗Γ0y, where Γ0 = Γ \{x, y}. Finally, for some α, β ∈ Γ ′: f(x), g(x) ∈
αΓ ′∗, f(y), g(y) ∈ Γ ′∗β and α, β occur in no f(a), g(a), for a /∈ {x, y}.

One can show that PCP with these additional restrictions remains undecidable.
This can be performed e.g. by slightly modifying the PCP pairs obtained in the
reduction from the word problem for semi-Thue systems [11] (resp. imposing
suitable restrictions on the semi-Thue systems).
For the alphabet Σ0 defined below we will denote by Σ′

0 the alphabet {a′ | a ∈
Σ0}. Let

Σ0 = {ab, ab | a, b ∈ Γ0} ∪ {a, a | a ∈ Γ0} ∪ {x1, x2, y1, y2} ∪ {ax, yb | a, b ∈ Γ0} ,

and Σ1 = Σ0 ∪Σ
′

0. On Σ1 we have the independence relation I1 ⊆ Σ1 ×Σ1:

I1 = {(x1, x
′
1), (y2, y

′
2), (x

′
1, x1), (y

′
2, y2)}.

For the second independence alphabet (Σ2, I2) let

Σ2 = {Ai, Ai | a ∈ Γ0, 1 ≤ i ≤ 6} ∪ {Xi, Yi | 1 ≤ i ≤ 6} ∪ {F,G, |c, $} ∪ Γ ′ ,

where we associate to every letter a ∈ Γ0 the capital letters Ai, Ai (resp.Xi for x,
resp. Yi for y) for all 1 ≤ i ≤ 6. On Σ2 we define the dependence (independence,
resp.) relation D2 ⊆ Σ2 × Σ2 (I2 ⊆ Σ2 × Σ2, resp.) as symmetric relations
satisfying:

(1) For all a ∈ Γ let D2 ∩ {Ai | 1 ≤ i ≤ 6}2 be (with self-loops omitted)

D2: A5 A2

A3

A1

A6

A4

��

❅❅

❅❅

��

respectively, for a ∈ Γ0 and 1 ≤ i, j ≤ 6:

(Ai, Aj) ∈ D2 iff (Ai, Aj) ∈ D2 .

(2) For a 6= b and i, j let (Ai, Bj) ∈ D2 and (Ai, Bj) ∈ D2.
(3) For all a, b, i, j we define (Ai, Bj) ∈ I2 if and only if

{(i, j), (j, i)} ∩ ({5, 6} × {1, 2} ∪ {4, 6} × {1, 3}) 6= ∅ .

(4) Let D2(γ) = Γ ′ for all γ ∈ Γ ′. Define further D2(F) = D2(G) = {F,G},
I2(|c) = {X1, X2, X3, F,G} ∪ Γ

′ and I2($) = {Y4, Y5, Y6, F,G} ∪ Γ
′.

We define now a clique-preserving morphism H : (Σ1, I1) → (Σ2, I2) based
on the given PCP instance f, g : Γ ∗ → Γ ′∗. The associated homomorphism h
will simulate the given (word) homomorphisms f, g using the control alphabet
Ai, Ai, F,G, More precisely, the control alphabet enforces by synchroniza-
tion the presence of f - resp. g-images (since f(a) or g(a) may have length 2,
we cannot generate them directly by a homomorphism associated to a clique-
preserving morphism.) We denote in the following by h(a)i, i = 1, 2, a ∈ Γ , the
ith letter of h(a) (resp. 1, if |h(a)| < i), with h ∈ {f, g}.
In the definition below we have by convention k(a)i ∈ H(c) only if k(a)i 6= 1,
where c ∈ Σ1, a ∈ Γ , and k ∈ {f, g}. However, for simplifying notations we
write f(a)i, g(a)i throughout.

(1) For all a, b ∈ Γ0 let

H(ab) = {B5, B6, A1, A2, f(a)1, F} H(a) = {A3, A4, f(a)2, G} ,

H(a′b) = {B4, B6, A1, A3, g(a)1, F} H(a′) = {A2, A5, g(a)2, G} ,

and analogously

H(ab) = {B5, B6, A1, A2, f(a)1, F} H(a) = {A3, A4, f(a)2, G} ,

H(a′b) = {B4, B6, A1, A3, g(a)1, F} H(a′) = {A2, A5, g(a)2, G} .

(2) Let for xi, x
′
i and a ∈ Γ0:

H(x1) = { |c, X1, X2, f(x)1, F} H(x2) = {X3, X4, f(x)2, G} ,

H(x′1) = { |c, X1, X3, g(x)1} H(x′2) = {X2, X5, g(x)2} ,

H(ax) = {X5, X6, A1, A2, f(a)1, F}

H(a′x) = {X4, X6, A1, A3, g(a)1, F}.

(3) For b ∈ Γ0 let:

H(yb) = {B5, B6, Y1, Y2, f(y)1, F} and

H(y′b) = {B4, B6, Y1, Y3, g(y)1, F} ,

together with

H(y1) = {Y3, Y4, f(y)2} H(y2) = {Y5, Y6, $} ,

H(y′1) = {Y2, Y5, g(y)2, G} H(y′2) = {Y4, Y6, F, $} .

With I1 = {(x1, x
′
1), (y2, y

′
2), (x

′
1, x1), (y

′
2, y2)} it is easily seen that H is a clique-

preserving morphism of independence alphabets. Let h : M(Σ1, I1) → M(Σ2, I2)
denote the associated homomorphism of trace monoids, h(a) =

∏

A∈H(a)A, a ∈

Σ1. We defined H in such a way that every pair (u, v) ∈ M(Σ1, I1)
2 of minimal

length |u| + |v| with h(u) = h(v) and u 6= v satisfies alph(u) × alph(v) ⊆ Σ0 ×
Σ′

0 ∪Σ
′
0 ×Σ0.

Proposition 17. The homomorphism h : M(Σ1, I1) → M(Σ2, I2) associated to
the clique-preserving morphism H is not injective if and only if the PCP instance
(f, g) has a solution.

Proof. First, let us consider a solution u ∈ xΓn
0 y for (f, g) with n odd. We have

f(u) = g(u) with u = x a(1) · · · a(n) y, a(i) ∈ Γ0. For a trace t = [a1 · · · an],
ai ∈ Σ0, we will denote by t′ the trace [a′1 · · · a

′
n]. It is easy to see that with

z = [x1x2 a(1)xa(1) a(2)a(1)a(2) · · · a(n)a(n−1)a(n) ya(n) y1y2]

we obtain

F (GF)n+1

f(u)

[|cX1 · · ·X6A(1)1 · · ·A(1)6 A(n)1 · · ·A(n)6 Y1 · · ·Y6 $]

h(z) = h(z′) =

(For the vector-like representation above we use the fact that f(u), F (GF)n+1

commute pairwise, resp. with the first component.)
For the converse, let us notice two properties of the clique-preserving morphism
H used throughout the proof.

Fact 18 1. Zh(c) = h(c)Z for c ∈ Σ1 and Z ∈ {Ai, Ai | 1 ≤ i ≤ 6, a ∈
Γ} \ {X2, X3, Y4, Y5} is equivalent with (c, Z) ∈ H, i.e., Z ∈ alph(h(c)).
For Z ∈ {X2, X3, Y4, Y5} we have Zh(c) = h(c)Z if and only if (c, Z) ∈ H or
(c, Z) ∈ {(x′1, X2), (x1, X3), (y2, Y4), (y

′
2, Y5)}.

2. For all Z ∈ {Ai, Ai | 2 ≤ i ≤ 5, a ∈ Γ0} ∪ {X4, Y2} we have two distinct
letters c1, c2 ∈ Σ1 satisfying (ci, Z) ∈ H. Additionally, either F ∈ H(c1) and
G ∈ H(c2), or F ∈ H(c2) and G ∈ H(c1) holds. This property will allow to
determine c1 resp. c2 in a unique way, using (F,G) ∈ D2.

We denote in the following for u ∈ M(Σ1, I1) by h
∗(u) the projection of h(u) on

Σ2 \ Γ
′, i.e., we consider the control letters, only.

Assume now that h : M(Σ1, I1) → M(Σ2, I2) is not injective, and let u, v ∈
M(Σ1, I1), u 6= v, be of minimal length |u|+ |v| with h(u) = h(v). Note that for
every (a, b) ∈ D1\idΣ1

one has (H(a)×H(b))∩(D2\idΣ2
) 6= ∅. Moreover, by the

minimality of |u|+ |v| the initial alphabets of u resp. v are pairwise independent,
i.e., in(u) × in(v) ⊆ I1. Hence, two cases are possible: either in(u) = {x1} and
in(v) = {x′1}, or in(u) = {y2} and in(v) = {y′2}.

We first consider the case where in(u) = {x1}, in(v) = {x′1} and suppose u =
xn1u1, v = x′1

m
v1 for some u1, v1 ∈ M(Σ1, I1) \ 1 with in(u1) 6= {x1}, in(v1) 6=

{x′1}, and n,m ≥ 1. Hence, we have

h∗(u) = |cn
Xn

1

Xn
2

Fnh∗(u1) = |cm
Xm

1

Xm
3

h∗(v1) = h∗(v) .

Due to the condition imposed on the initial alphabets of u1, v1 we immediately
follow n = m. Moreover, recalling Fact 18(1) and the minimality of |u| + |v|,
we obtain in(u1) = {x2} and in(v1) = {x′2}. Actually, since {X4, X5} ⊆ D2(|c)
we may observe that u1 = xn2u2 and v1 = x′2

n
v2 holds for some u2, v2 (neither

u1 ∈ xi2x
′
1M(Σ1, I1) nor v1 ∈ x′2

i
x1M(Σ1, I1) can lead to a solution, if i < n).

Therefore, we obtain the following situation (we omit in the representations
below dependence edges from |c):

h∗(u) = |cn
Xn

1X
n
2X

n
3X

n
4

FnGn
h∗(u2) = |cnXn

1X
n
3X

n
2X

n
5 h

∗(v2) = h∗(v) .

Fact 18(2) applied to X4 yields now directly v2 = a′x
n
v3, for some v3 and a ∈ Γ0.

Since X5 ∈ in(h(u2)) we have {āx, x
′
2} ∩ in(u2) 6= ∅. Due to (a′x, A1) ∈ H and

(A1, X2) ∈ D2, we obtain u2 = anxu3, for some u3. This yields the partial solution:

|cn Xn
1 · · ·Xn

6 A
n

1A
n

2

h(u) = FnGn Fn h(u3) =

(f(x)1)
n (f(x)2)

n (f(a)1)
n

|cn Xn
1 · · ·Xn

6 A
n

1A
n

3

h(v) = Fn h(v3) .

(g(x)1)
n (g(x)2)

n (g(a)1)
n

More generally, let us assume

h∗(u) = W
A

n

1

Gn

A
n

2

Fn
h∗(u1) = W

A
n

1 A
n

3 h∗(v1) = h∗(v) ,

for a /∈ {x, y}, W ∈ M(Σ2, I2), u1, v1 ∈ M(Σ1, I1).
Due to A2 ∈ in(h(v1)), together with Fact 18(2), we immediately obtain v1 =

a′
n
v2 for some v2, hence h

∗(v) = W A
n

1
A

n

3
A

n

2
A

n

5

Gn h∗(v2). With A3 ∈ in(h(u1)) we

need a letter c ∈ Σ satisfying (c, A3) ∈ H and alph(h(c))∩D(A5) ⊆ {A3}; hence,

c = a and u1 = anu2, for some u2. This yields h∗(u) = W A
n

1
A

n

2
A

n

3
A

n

4

GnFnGn h∗(u2).

Finally, A4 ∈ in(h(v2)), together with Fact 18(2) yields v2 = b′a
n
v3 and

h∗(v) =W
A

n

1 · · ·A
n

6

GnFn

Bn
1B

n
3 h∗(v3) ,

for some b 6= x and v3 ∈ M(Σ1, I1); on the other hand, the condition A5 ∈
in(h(u2)) requires a letter c ∈ Σ1 with (c, A5) ∈ H and B1h(c) = h(c)B1,

hence c = ba and u2 = bnau3, with h
∗(u) = W A

n

1
···A

n

6

GnFnGnFn

Bn

1
Bn

2 h∗(u3), for some
u3 ∈ M(Σ1, I1).

The case h∗(u) = W An

1

Gn

An

2

Fnh
∗(u1) = h∗(v) = W An

1A
n
3h

∗(v1), a 6= y, is symmet-
ric. Therefore, we suppose now a = y. We observe that the same arguments used
above for A2, A3 hold (dually) for Y2, Y3 (in particular, by Fact 18(2)). Hence,

h∗(u) =W
Y n
1 Y

n
2 Y

n
3 Y

n
4

GnFn
h∗(u2) =W

Y n
1 Y

n
3 Y

n
2 Y

n
5

Gn
h∗(v2) = h∗(v) .

Thus we obtained w = [xn1x
n
2 a1

n
xa1

n a2
n
a1
an2 · · · am

n
am−1

am
n ynam

yn1], ai ∈ Γ0,
n,m ≥ 1, such that u = wu2 and v = w′v2 for some u2, v2 (recall that w′

denotes the Σ′
0-copy of w ∈ Σ∗

0). Recall that f(y), g(y) ∈ Γ ′∗β and β occurs in
no f(a), g(a), for a /∈ {x, y}. Hence, we obtained

(f(x)1)
n(f(x)2)

n(f(a1)1)
n(f(a1)2)

n · · · (f(am)1)
n(f(am)2)

n(f(y)1)
n(f(y)2)

n =

(g(x)1)
n(g(x)2)

n(g(a1)1)
n(g(a1)2)

n · · · (g(am)1)
n(g(am)2)

n(g(y)1)
n(g(y)2)

n .

It is now easy to check that z = x a1 · · · am y satisfies f(z) = g(z), hence z is a
solution for the PCP instance (f, g).

It remains to consider a pair (u, v) ∈ M(Σ, I)2, u 6= v, of minimal length |u|+|v|,
with h(u) = h(v), which satisfies in(u) = {y′2}, in(v) = {y2}. Assume u = y′2

n
u1

and v = ym2 v1 with u1, v1 such that in(u1) 6= {y′2}, in(v1) 6= {y2}. Again, m = n
follows immediately. Hence, we obtain

h∗(u) = $n
Y n
6 Y

n
4

Fn
h∗(u1) = $n

Y n
6 Y

n
5 h∗(v1) = h∗(v) .

This case can now be handled as the first one, replacing A1, A2, A3, A4, A5, A6 by
A6, A4, A5, A2, A3, A1 (Ai analogously) and interchanging x, y. This concludes
the proof.

References

1. IJ. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of
some problems for regular trace languages. Mathematical Systems Theory, 22:1–19,
1989.

2. J. Berstel and D. Perrin. Theory of Codes. Pure and Applied Mathematics; 117.
Academic Press, Orlando, Florida, 1985.

3. A. Bertoni, G. Mauri, and N. Sabadini. Equivalence and membership problems
for regular trace languages. In Proceedings of the 9th International Colloquium on
Automata, Languages and Programming (ICALP’82), number 140 in Lecture Notes
in Computer Science, pages 61–71, Berlin-Heidelberg-New York, 1982. Springer.

4. V. Bruyère and C. De Felice. Trace codings. In E. Mayr and C. Puech, editors,
Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), 1995, number 900 in Lecture Notes in Computer Science,
pages 373–384, Berlin-Heidelberg-New York, 1995. Springer.

5. V. Bruyère and C. De Felice. Any lifting of a trace coding is a word coding.
Submitted for publication, 1996.

6. V. Bruyère, C. De Felice, and G. Guaiana. Coding with traces. In P. Enjalbert,
E. Mayr, and K. W. Wagner, editors, Proceedings of the 11th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’94), 1994, number 775 in
Lecture Notes in Computer Science, pages 353–364, Berlin-Heidelberg-New York,
1994. Springer.

7. P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrange-
ments. Number 85 in Lecture Notes in Mathematics. Springer, Berlin-Heidelberg-
New York, 1969.

8. M. Chrobak and W. Rytter. Unique decipherability for partially commutative
alphabets. Fundamenta Informaticae, X:323–336, 1987.

9. M. Clerbout and M. Latteux. Partial commutations and faithful rational trans-
ductions. Theoretical Computer Science, 34:241–254, 1984.

10. R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O. —
Informatique Théorique et Applications, 19:21–32, 1985.

11. M. D. Davis and E. J. Weyuker. Computability, complexity and languages. Acad-
emic Press, New York, 1983.

12. V. Diekert, A. Muscholl, and K. Reinhardt. On codings of traces. In E. Mayr
and C. Puech, editors, Proceedings of the 12th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’95), 1995, number 900 in Lecture Notes in
Computer Science, pages 385–396, Berlin-Heidelberg-New York, 1995. Springer.

13. H. J. Hoogeboom and A. Muscholl. The code problem for traces – improving the
boundaries. Submitted for publication.

14. G. Hotz and V. Claus. Automatentheorie und Formale Sprachen, Band III. Bibli-
ographisches Institut, Mannheim, 1972.

15. G. S. Makanin. The problem of solvability of equations in free semigroups. Math.
USSR Izvestiya, 21:483–546, 1983.

16. Yu. Matyiasevich. Cas décidables et indécidables du problème du codage pour les
monöides partialement commutatifs. To appear in Quadrature.

17. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus, 1977.

18. E. Ochmański. On morphisms of trace monoids. In R. Cori and M. Wirsing,
editors, Proceedings of the 5th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS’88), number 294 in Lecture Notes in Computer Science,
pages 346–355, Berlin-Heidelberg-New York, 1988. Springer.

19. W. Rytter. The space complexity of the unique decipherability problem. Informa-
tion Processing Letters, 23:1–3, 1986.

20. J. Sakarovitch. The “last” decision problem for rational trace languages. In I. Si-
mon, editor, Proceedings of the 1st Latin American Symposium on Theoretical In-
formatics (LATIN’92), number 583 in Lecture Notes in Computer Science, pages
460–473, Berlin-Heidelberg-New York, 1992. Springer.

21. K. Wagner and G. Wechsung. Computational complexity. VEB Deutscher Verlag
der Wissenschaften, Berlin, 1986.

22. E. S. Wolk. A note on the comparability graph of a tree. Proc. of the Amer. Math.
Soc., (16):17–20, 1965.

This article was processed using the LATEX macro package with LLNCS style

