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Abstract. Very recently, the second author showed that the question
whether an equation over a trace monoid has a solution or not is decid-
able [11,12]. In the original proof this question is reduced to the solv-
ability of word equations with constraints, by induction on the size of
the commutation relation. In the present paper we give another proof of
this result using lexicographical normal forms. Our method is a direct
reduction of a trace equation system to a word equation system with
regular constraints, using a new result on lexicographical normal forms.

1 Introduction

Solving equations is a central topic in various fields of computer science, es-
pecially concerning unification, as required by automated theorem proving or
logic programming. A celebrated result of Makanin [10] states that the question
whether an equation over words has a solution or not is decidable: There ex-
ists an algorithm deciding for a given equation L = R, where L,R ∈ (Ω ∪ Σ)∗

contain both unknowns from Ω and constants from Σ, whether an assignment
σ:Ω → Σ∗ exists, satisfying σ(L) = σ(R). Slightly more general, the existen-
tial theory of equations over free monoids is decidable, i.e., given an existentially
quantified, closed first-order formula S over atomic predicates of the form L = R
and L 6= R, it is decidable whether S is valid over a given free monoid. Moreover,
adding regular constraints, i.e., atomic predicates of the form x ∈ C, where C is
a regular language, preserves decidability [14].
In this paper we prove the generalization of Makanin’s result to trace monoids,
which were originally studied in combinatorics [4]. They became meaningful
for computer science in concurrency theory, where they were introduced by
Mazurkiewicz [13] in connection with the semantics of labelled Petri nets. For
an overview of trace theory and related topics see “The Book of Traces” [7].
Most results obtained so far in the area of equations on traces were restricted
to equations without constants, see [8,5]. The decidability of the solvability of
equations with constants was stated as an important open question.

⋆ This work was done during a stay at the University of Stuttgart.



2 Notations, Preliminaries and Lexicographical Normal

Forms

An independence alphabet is a pair (Σ, I), where Σ is a finite alphabet and
I ⊆ Σ×Σ is an irreflexive and symmetric relation, called independence relation.
With a given independence alphabet (Σ, I) we associate the trace monoidM(Σ, I).
This is the quotient monoid Σ∗/≡I , where ≡I denotes the congruence being the
equivalence relation generated by the set {uabv = ubav | (a, b) ∈ I, u, v ∈ Σ∗};
an element t ∈ M(Σ, I) is called a trace, the length |t| of a trace t is given by the
length of any representing word. By alph(t) we denote the alphabet of a trace t,
being the set of letters occurring in t.
By 1 we denote both the empty word and the empty trace. Words v, w ∈ Σ∗

are called independent (w.r.t. I), if alph(v) × alph(w) ⊆ I. In this case we
simply write (v, w) ∈ I or v ∈ I(w) where I(w) for w ∈ Σ∗ is a shorthand for
{a ∈ Σ | {a} × alph(w) ⊆ I}.
The initial alphabet of w ∈ Σ∗ is the set init(w) = {a ∈ Σ | ∃w′, w′′ ∈
Σ∗ with w ≡I w′ and w′ = aw′′}.
A word language L ⊆ Σ∗ is called I-closed if whenever v ∈ L and w ≡I v then
we have w ∈ L.

Throughout the paper we will suppose that (Σ, I) denotes an independence
alphabet, where Σ has the cardinality n ≥ 1. We suppose that Σ is totally
ordered by < and we identify Σ with the set {1, . . . , n}. The order on Σ is
extended to the lexicographical order on Σ∗.
A word v ∈ Σ∗ is in lexicographical normal form (w.r.t. I and <) if v ≤ w holds
for all w such that v ≡I w. Let LNF denote the set of lexicographical normal
forms, i.e., LNF ⊆ Σ∗ is the set of minimal representatives for M(Σ, I). For
v ∈ Σ∗ we denote by lex(v) the unique word w ∈ LNF such that w ≡I v. We
view lex as a mapping lex : Σ∗ → LNF.
There is a simple characterization of lexicographical normal forms due to Anisi-
mov and Knuth:

Proposition 1 ([3]). Let Σ be totally ordered by <. Then a word v ∈ Σ∗ is in
lexicographical normal form (w.r.t. I, <) if and only for every factor aub of v
with a, b ∈ Σ, u ∈ Σ∗ and (au, b) ∈ I we have a < b.

Definition 2. Let Σ be totally ordered by <. For ∅ 6= A ⊆ Σ let the height
h(A) be h(A) = max{a | a ∈ A}. Let also h(∅) = 0. (Thus, h(A) ∈ {0, . . . , n}.)
The height h(v) of a word v ∈ Σ∗ is defined as h(v) = h(alph(v)).

Remark 3. Let m ≥ 1 and s, t, v, s1, . . . , sm, t1, . . . , tm ∈ Σ∗ be words satisfying
the following conditions:

s = s1 · · · sm ,
t ≡I t1 · · · tm ,
v = s1t1 · · · smtm ,
tj ∈ I(sj+1 · · · sm) for all 1 ≤ j < m .

Then we have st ≡I v.
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The previous remark is clear and its converse will be stated for lexicographical
normal forms in the Main Lemma below. It is the crucial correctness argument
for our reduction from trace equations to word equations. The important point
is that the value of m (given below) can be bounded as a function in the size of
the alphabet, and that the height decreases.

Lemma 4 (Main Lemma). Let s, t, v ∈ LNF be words in lexicographical nor-
mal form such that st ≡I v.
Let h = h(s) denote the height of s and suppose h > 0.

Then there exist an integer m, 1 ≤ m ≤ (n−1)(h−1)
2 + 1, and words s1, . . . , sm,

t1, . . . , tm ∈ LNF in lexicographical normal form such that the following condi-
tions hold:

s = s1 · · · sm ,
t ≡I t1 · · · tm ,
v = s1t1 · · · smtm ,
si 6= 1, for all 1 < i ≤ m,
tj 6= 1 for all 1 ≤ j < m ,
tj ∈ I(sj+1 · · · sm) for all 1 ≤ j < m ,
h(tj) < h for all 1 ≤ j < m .

Remark 5. Before giving the proof of the Main Lemma, let us note that the
trace equality st ≡I v above cannot be replaced by word equalities of type
s = s1 · · · sm, t = t1 · · · tm, v = s1t1 · · · smtm. For example, consider M(Σ, I) =
{a, b, c}∗/{ab = ba, bc = cb} and s = c, t = ab. Then the lexicographical normal
form of st is v = bca.

Proof of the Main Lemma. We have st ≡I v with s, t, v ∈ LNF and h = h(s) > 0.
Consider the decomposition of v, v = s1t1 · · · smtm, wherem ≥ 1 is minimal such
that s ≡I s1 · · · sm, t ≡I t1 · · · tm, and tj ∈ I(sj+1 · · · sm) for all j, 1 ≤ j < m.
Clearly, since m is minimal, we have si 6= 1 and tj 6= 1 for all 1 < i ≤ m,
1 ≤ j < m. Moreover, the words si, tj are in lexicographical normal form.
Let us first show that s = s1 · · · sm. Assume aub is a factor of s1 · · · sm with
a, b ∈ Σ, u ∈ Σ∗ and b ∈ I(au). If aub is a factor of some si, then a < b follows
by Prop. 1 and we are done. Otherwise let i < j be such that si ∈ Σ∗au′,
sj ∈ u′′bΣ∗ and u = u′si+1 · · · sj−1u

′′. Since tk ∈ I(sj) for k < j we obtain
b ∈ I(au′si+1ti+1 · · · sj−1tj−1u

′′), hence a < b due to v being in lexicographical
normal form. Thus s1 · · · sm is in lexicographical normal form, again by Prop. 1,
and it follows that s = s1 · · · sm.
Suppose that 1 ≤ j < m and let b denote the first letter of sj+1. Let a ∈ alph(tj),
i.e. tj = uau′ for some words u, u′. Then au′b is a factor of v ∈ LNF satisfying
b ∈ I(au′), thus we have a < b. Therefore h(tj) < h(b) ≤ h for every 1 ≤ j < m.
Finally, assume by contradiction that m > (n − 1)(h − 1)/2 + 1. Let bi, aj
denote the first letter of si, tj respectively, 1 < i ≤ m, 1 ≤ j < m. Consider
the chain of alphabets I(s2 · · · sm) ⊆ I(s3 · · · sm) ⊆ · · · ⊆ I(sm). Note that
we have I(s2 · · · sm) 6= ∅ due to t1 6= 1, and also I(sm) 6= Σ due to sm 6= 1.
Therefore by the pigeon-hole principle there exist some indices 1 ≤ i, j < m with
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j − i ≥ (h − 1)/2 satisfying I(si+1 · · · sm) = I(sj+1 · · · sm). Consider the factor
tisi+1ti+1 · · · tjsj+1 of v. Note that (tk, sl) ∈ I holds for every k, l such that
i ≤ k, l − 1 ≤ j, since tk ∈ I(sk+1 · · · sm) = I(si+1 · · · sm). Therefore, v ∈ LNF
implies ai < bi+1 < ai+1 < · · · < aj < bj+1 and we obtain h(s) ≥ h(bj+1) ≥
2(j − i+ 1) > h, a contradiction.

3 Trace Equation Systems

Definition 6. Let Ω denote a finite set of unknowns with Σ ∩Ω = ∅.

i) A word equation over Σ and Ω has the form L = R, with L,R ∈ (Σ ∪Ω)∗.
ii) An assignment for an equation over Σ and Ω is a mapping σ:Ω → Σ∗

being extended in a natural way to a homomorphism σ: (Σ ∪Ω)∗ → Σ∗, by
σ|Σ = idΣ .
A solution for the equation L = R is an assignment σ satisfying the equality
σ(L) = σ(R) in Σ∗.

Makanin [10] showed in 1977 that the question whether a word equation has
a solution or not is decidable. Moreover, the solvability of a system of word
equations can be reduced by well-known techniques to the solvability of a single
equation. The problem can also be generalized by introducing regular constraints
for the unknowns, i.e. regular sets Cx ⊆ Σ∗ for x ∈ Ω. Here, a solution σ
for an equation is required to satisfy σ(x) ∈ Cx for all x. It has been shown
by Schulz [14] that the solvability of word equations with regular constraints
remains decidable. We are going to show that this more general result generalizes
to traces.

Definition 7. Let (Σ, I) denote an independence alphabet and Ω a finite set
of unknowns, Σ ∩Ω = ∅.

i) A trace equation over (Σ, I) and Ω has the form L ≡ R, with L,R ∈
(Σ ∪Ω)∗.
A solution for the equation L ≡ R is an assignment σ:Ω → Σ∗ satisfying
σ(L) ≡I σ(R).

ii) A system of trace equations is a formula built with the connectives and (&),
or (∨), not (¬) over atomic predicates of the form L ≡ R (trace equation)
and x ∈ C (constraint), where C ⊆ Σ∗ denotes an I-closed regular language.
A solution for a system S over (Σ, I), Ω is an assignment σ:Ω → Σ∗ such
that S evaluates to true when the atomic predicates L ≡ R, x ∈ C are
replaced by the truth value of σ(L) ≡I σ(R), σ(x) ∈ C, respectively.

Remark 8. Later we will deal simultaneously with trace and word equations, so
we distinguish notationally between L = R for a word equation, whereas L ≡ R
denotes a trace equation. The difference is that equality under an assignment is
interpreted in the free monoid Σ∗, resp. in the trace monoid M(Σ, I).
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Remark 9. A system of word equations (with regular constraints) is just a special
case of Def. 7 where one takes I = ∅. Since negations can be eliminated (see also
3.1), we note that the question whether a system of word equations has a solution
or not is decidable.

Remark 10. Adding arbitrary (i.e., not I-closed) regular constraints to a system
of trace equations makes the question of solvability undecidable. This is due to
the fact that the solvability of the equation x ≡ y with x ∈ C, y ∈ C ′ is equivalent
to the non-emptiness of the intersection {w ∈ Σ∗ | w ≡I v for some v ∈ C} ∩
{w ∈ Σ∗ | w ≡I v for some v ∈ C ′}. For regular languages C,C ′ this last
question is known to be undecidable, see [1].

Remark 11. Similar to the word case, the solvability of a trace equations system
could be reduced to the solvability of a single trace equation (with additional
constraints). However, this would be of no use here.

The aim of this section is to reduce the solvability problem for trace equations
to word equations with regular constraints. We will give a direct proof using
lexicographical normal forms to show the following

Theorem 12 ([11,12]). Let S be a trace equation system over (Σ, I) and Ω.
Then a set Ω′ ⊇ Ω of unknowns and a system of word equations S′ over Σ,Ω′

can be effectively constructed, such that S is solvable if and only if S′ is solvable.

Corollary 13. It is decidable whether a system of trace equations has a solution.

3.1 Basic Reductions

For a given trace equation system S we first eliminate constants by introducing
new unknowns xa and constraints xa ∈ {a}, for a ∈ Σ. Then we replace a by xa

in each equation L ≡ R of S. Hence, without loss of generality atomic predicates
are of the form L ≡ R, where L,R ∈ Ω∗.
Furthermore, we may assume that the given system is written in disjunctive
normal form. Then we replace every negation not(L ≡ R) by the disjunction of
formulas of the type

L ≡ xy & R ≡ xz & init(y) = A & init(z) = A′ (1)

where x, y, z denote new unknowns and the disjunction is taken over all alphabets
A,A′ ⊆ Σ such that A∩A′ = ∅ and A∪A′ 6= ∅. Clearly, constraints of the form
init(x) = A or alph(x) = A, A ⊆ Σ, can be expressed by I-closed regular
languages.
Since the set of I-closed regular languages forms an effective boolean algebra (as
the family of recognizable subsets of a monoid [9]) we may also suppose that the
formula contains no negated constraints, i.e. no formula of type not(x ∈ C).
Moreover, it suffices to consider trace equations of the form x1 · · ·xk ≡ y1 · · · yl
with k ≥ l > 0, xi, yj ∈ Ω. (The equation x1 · · ·xk ≡ 1 and the occurrences of
each xi can be deleted from all equations, adding the constraints alph(xi) = ∅.)
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3.2 From Traces to Words

The main idea for reducing trace equations to word equations will consist in
replacing a trace equation L ≡ R by some word equations L1 = R1, . . . , Lk = Rk

with additional constraints and unknowns. Moreover, for every solution σ for
L ≡ R the mapping lex ◦ σ:Ω → Σ∗ → LNF can be extended to a solution
for the equations L1 = R1, . . . , Lk = Rk. Vice versa, each solution for the new
equations will also be a solution for L ≡ R when restricted to its unknowns.
This reduction actually goes by a chain of intermediate trace equations. By
choosing an appropriate ordering we will show that the reduction process termi-
nates yielding a system of word equations (with constraints).
We will consider in the following formulas S(T,W,C) in disjunctive normal form
with atomic predicates from some finite sets T,W,C, containing no negations.
T will denote a set of trace equations, W a set of word equations and C = {x ∈
Cx | x ∈ Ω} a set of constraints, where each Cx is an I-closed regular language.
Moreover, every L ≡ R in T has the form x1 · · ·xk ≡ y1 · · · yl with k ≥ l ≥ 1,
xi, yj ∈ Ω. A solution for S(T,W,C) is an assignment σ:Ω → Σ∗ which makes
the formula evaluate to true when (L ≡ R) from T , (L = R) from W and
x ∈ Cx from C are replaced by the truth value of σ(L) ≡I σ(R), σ(L) = σ(R),
and σ(x) ∈ Cx, respectively.

Definition 14. A formula S(T,W,C) as above is called normalized if for every
solution σ for S the mapping lex ◦ σ is a solution for S, too.

Remark 15. Note that a formula S(T, ∅, C) with I-closed constraints C is always
normalized.

Remark 16. Suppose S = S(T,W,C) is normalized and let x ≡ y belong to T ,
where x, y ∈ Ω. Consider the new formula S′ = S′(T ′,W ′, C) obtained from S
by replacing every occurrence of x ≡ y by x = y and letting T ′ = T \ {x ≡ y},
W ′ = W ∪ {x = y}. Then S is solvable if and only if S′ is solvable. Note that
a solution for S′ is a solution for S, too. However, the converse is true only
because S is a normalized system. Without this assumption about S it cannot
be guaranteed that every solution for S also solves S′, see the example below.
Moreover, S′ is a normalized system, too.

Example 17. Consider the trace equation system S = ({x ≡ y}, {x = ab, y =
ba}, ∅) given as the conjunction (x ≡ y) & (x = ab) & (y = ba), where (a, b) ∈ I.
Then S is not normalized, but of course it has a solution. However, replacing
x ≡ y by the word equation x = y yields a system with no solution.

Proof of Thm. 12. Recall that an equation system with I-closed constraints
S = S(T, ∅, {x ∈ Cx}x∈Ω) over (Σ, I), Ω is a normalized system. As previously
noted it suffices to consider a formula S with trace equations of the form

x1 · · ·xk ≡ y1 · · · yl, k ≥ l ≥ 1, (k, l) 6= (1, 1) . (2)

We suppose without loss of generality that for all unknowns x ∈ Ω some Ax ⊆ Σ
exists such that h(Ax) > 0, and x ∈ Cx implies alph(x) ⊆ Ax, for all x. Moreover,
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let S be a conjunction of trace equations as in (2), of word equations and of I-
closed regular constraints x ∈ Cx.
We define the weight of a trace equation x1 · · ·xk ≡ y1 · · · yl as in (2) as the
triple of natural numbers (l, h(∪k−1

i=1 Axi
), k) and we consider the lexicographical

ordering on N × N × N. We will show in the following that every such trace
equation can be replaced by a formula over word equations and trace equations
of lower weight, together with some additional constraints. Concretely, we apply
the following rules.

Rule 1: Suppose l > 1 and let z denote a new unknown. Then we replace the
equation x1 · · ·xk ≡ y1 · · · yl by

x1 · · ·xk ≡ z & y1 · · · yl ≡ z & alph(z) ⊆ ∪k
i=1Axi

.

Rule 2: Suppose l = 1 and k > 2, and let z denote a new unknown. Then we
replace the equation x1 · · ·xk ≡ y1 by

x1z ≡ y1 & x2 · · ·xk ≡ z & alph(z) ⊆ ∪k
i=2Axi

.

Rule 3: Suppose l = 1 and k = 2 and, in order to simplify notation, consider the
equation xy ≡ z (rather than uniformly x1x2 = y1). Moreover, let h = h(Ax)
denote the height of Ax (where alph(x) ⊆ Ax follows from the constraint x ∈ Cx).
We replace xy ≡ z by the disjunction of the word equation

xy = z (3)

and of formulas of the type

x = x1 · · ·xm & y ≡ y1 · · · ym & z = x1y1 · · ·xmym &

alph(x1) ⊆ A1 & · · · & alph(xm) ⊆ Am &

alph(y1) ⊆ B1 & · · · & alph(ym) ⊆ Bm , (4)

where xi, yj are new unknowns and the disjunction is taken over all values of
m such that 1 < m ≤ (n − 1)(h − 1)/2 + 1 and over all alphabets A1, . . . , Am,
B1, . . . , Bm ⊆ Σ such that1

Ai 6= ∅ for all 1 < i ≤ m, and

1 ≤ h(Bj) < h for all 1 ≤ j < m, and

Bj ×Ai ⊆ I for all 1 ≤ j < i ≤ m, and

A1 ∪ · · · ∪Am ⊆ Ax, and B1 ∪ · · · ∪Bm ⊆ Ay . (5)

The word equation xy = z in (3) corresponds to the case m = 1 in (4) (this is
in particular the case when h = 1 in (5)). It is actually the main case where the
number of trace equations in S decreases.
Let S′ denote the formula obtained from S by applying one of the three rules
described above. Note that none of the rules adds negations.

1 Obviously some equations become redundant and they can be actually omitted in
the disjunction.
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Lemma 18. Let S be a normalized equation system. Then the new system S′ is
normalized, too. Moreover, S′ is solvable if and only if S is solvable.

Proof. The claim is easily seen for the first two rules above, since there is a
natural bijection between the set of solutions of S and of S′, respectively.
Clearly, if S′ has been obtained from S by the third rule, then every solution
for S′ is a solution for S, too, see Rem. 3. Therefore, let us consider an equation
xy ≡ z in S and a solution σ:Ω → Σ∗ for S. Then σ′ = lex ◦ σ is also solution
for S, since S is normalized. We show that σ′ can be extended to a solution for
S′. Let s = σ′(x), t = σ′(y) and v = σ′(z). Hence, st ≡I v with s, t, v ∈ LNF. If
h(s) = 1, then in the Main Lemma we have m = 1, hence v = st. Therefore σ′

is a solution of the new system S′.
Suppose that st ≡I v with s, t, v ∈ LNF, h(s) = h > 1. Then some m, 1 ≤
m ≤ (n − 1)(h − 1)/2 + 1, and words s1, . . . , sm, t1, . . . , tm exist, satisfying the
conditions of the Main Lemma. With σ′(xi) = si, σ

′(yj) = tj it is easily verified
that σ′ is a solution for S′.
The relation between the solution set of S and the solution set of S′, together
with the fact that S is normalized, imply that S′ is normalized, too. This shows
the lemma.

Finally, note that the new trace equation y1 · · · ym ≡ y in (4) has lower weight
than xy ≡ z due to h(∪m−1

j=1 Bj) < h = h(Ax). Hence the reduction rules establish
a noetherian rewriting system on trace equation systems. Applying the rules as
long as possible we end with a system of word equations S′ = (∅,W ′, C ′). This
concludes our proof.

4 Computing Lexicographical Normal Forms

The aim of this section is to give a formula for computing the product of lexi-
cographical normal forms. This yields an alternative proof of Thm. 12 and the
so far best known upper bound on the number of new unknowns needed for the
reduction. We conclude the section with two remarks concerning the parallel
complexity of computing lexicographical normal forms.

Definition 19. Let ∼I be a relation on (Σ∗)∗ defined as

(x1, . . . , xm) ∼I (x′
1, . . . , x

′
m′)

if m = m′ and there exists some i, 1 ≤ i < m such that

xj = x′
j for all 1 ≤ j ≤ m, j /∈ {i, i+ 1}, and

(xi, xi+1) = (x′
i+1, x

′
i) and (xi, xi+1) ∈ I .

By ≈I we denote the equivalence relation generated on (Σ∗)∗ by ∼I .

Let x ∈ Σ∗, by abuse of language we write (x1, . . . , xm) ≈I x if some words
x′
1, . . . , x

′
m exist such that

(x1, . . . , xm) ≈I (x′
1, . . . , x

′
m) and x = x′

1 · · ·x
′
m .
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Theorem 20. Let s, t, v ∈ LNF be words in lexicographical normal form such
that st ≡I v.

Then there exist positive integers m, p with m ≤ (n−1)2

2 + 1, p ≤ nnn! such that

s = s1 · · · sm ,
t = t1 · · · tp ,
(s1, . . . , sm, t1, . . . , tp) ≈I v ,

for some words s1, . . . , sm, t1, . . . , tp ∈ Σ∗.

Proof. Let h = h(s) denote the height of s. Let m(h), p(h) denote the minimal
integers such that

s = s1 · · · sm(h) ,
t = t1 · · · tp(h) ,
(s1, . . . , sm(h), t1, . . . , tp(h)) ≈I v ,

for some words si, tj . Note that m(h), p(h) ≤ |v|. For h = 0 we have s = 1, thus
m(0) = p(0) = 1, which satisfies the theorem.
For h ≥ 1 we will show by induction on h that m(h) ≤ (n− 1)(h− 1)/2 + 1 and
p(h) ≤ nhh!, thereby proving the theorem.
Let h ≥ 1. By the Main Lemma there exist an integer m ≤ (n− 1)(h− 1)/2 + 1
and words s1, . . . , sm, t1, . . . , tm in lexicographical normal form satisfying

s = s1 · · · sm ,

t ≡I t1 · · · tm ,

v = s1t1 · · · smtm ,

si 6= 1, tj 6= 1 for 1 < i ≤ m, 1 ≤ j < m ,

tj ∈ I(sj+1 · · · sm) and h(tj) < h for 1 ≤ j < m . (6)

If h = 1, then m = 1 in (6), so we can take m(h) = p(h) = 1, since t = t1 ∈ LNF,
which satisfies the claim. Hence let h,m ≥ 2.
Let t̄1 = t1 and t̄i = lex(t̄i−1ti) for i = 2, . . . ,m. Clearly, t̄m = t, h(t̄i) < h for
1 ≤ i < m and

t̄i−1ti ≡I t̄i, for 1 < i ≤ m. (7)

Now we can apply the induction hypothesis to each of the (m− 1) equivalences
(7) obtaining

t ≈I (t′1, . . . , t
′
p) , (8)

for some p ≤ (m−1)[m(h−1)+p(h−1)], some words t′1, . . . , t
′
p and some integers

1 = l0 < l1 < · · · < lm = p+ 1 such that

ti = t′li−1
· · · t′li−1 for every 1 ≤ i ≤ m. (9)

The above claim can be verified by noting that

t ≈I (t′1, . . . , t
′
i, . . . , t

′
j , . . . , t

′
q) and t′i · · · t

′
j ≈I (v1, . . . , vk)
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implies that
t ≈I (t′1, . . . , t

′
i−1, v

′
1, . . . , v

′
l, t

′
j+1, . . . , t

′
q) ,

for some l ≤ j − i + k and v′1, . . . , v
′
l ∈ Σ∗, such that v′1 · · · v

′
l = v1 · · · vk and

each v′q is a factor of some vr. Hence, we obtain from (8), (9) for suitable words
t′′1 , . . . , t

′′
p :

t = t′′1 · · · t
′′
p ,

v ≈I (s1, . . . , sm, t1, . . . , tm) ≈I (s1, . . . , sm, t′1, . . . , t
′
p)

≈I (s1, . . . , sm, t′′1 , . . . , t
′′
p) .

Hence by the induction hypothesis we get

p(h) ≤ (m− 1)[m(h− 1) + p(h− 1)]

≤ (n− 1)(h− 1)/2 [(n− 1)(h− 2)/2 + 1 + nh−1(h− 1)!] ≤ nhh! ,

which concludes the proof.

Remark 21. We can also use Thm. 20 in order to prove the main result, Thm. 12.
Recall that the main difficulty consists in replacing a trace equation of the form
xy ≡ z, where x, y, z ∈ Ω. By Thm. 20 we simply replace such an equation
xy ≡ z by a disjunction over clauses of the form

x = x1 · · ·xm & y = y1 · · · yp &
z = zπ(1) · · · zπ(m+p) & alph(zi) ⊆ Ai ,

for all 1 ≤ m ≤ (n−1)2

2 + 1, 1 ≤ p ≤ nnn!, π ∈ SI
m+p and Ai ⊆ Σ. Here xi, yj

denote new variables and zi = xi for 1 ≤ i ≤ m, resp. zm+j = yj for 1 ≤ j ≤ p.
SI
m+p denotes the set of permutations over {1, . . . ,m + p} such that for i < j

the inequality π(i) > π(j) implies Ai × Aj ⊆ I. This reduction of a single trace
equation to word equations roughly yields an increase in the number of word
equations by (N +2)!2n(N+1), where N = nnn!+(n−1)2/2+1. Hereby we need
N additional unknowns.

We conclude this section with two remarks concerning the parallel complexity
of computing lexicographical normal forms. We consider uniform circuit com-
plexity classes like AC0 and TC0. Let f :Σ∗ → Σ∗ be a function such that
|f(w)| = p(|w|) for some polynomial p and every w ∈ Σ∗. Let k ≥ 0. Then
f is ACk-computable if there is a family (Cn)n≥0 of polynomial-size circuits of

depth O(logk(n)) with AND and OR gates of unbounded fan-in/out and unary
NOT gates, such that C|w| computes f(w) for all w ∈ Σ∗. A function f is TCk-
computable if there is a family of circuits as above which in addition to AND,
OR and NOT gates contain MAJORITY gates of unbounded fan-in/out. A MA-
JORITY gate yields 1 if and only if more than half of its inputs are 1. In order to
be able to deal with arbitrary alphabets Σ one usually assumes that the circuits
have special input/output gates testing x = a for each input position x and
letter a ∈ Σ (analogously for the outputs). Uniformity means that given n ≥ 0
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(a fixed coding of) the circuit Cn can be easily computed (e.g. in logarithmic
space). It is not very hard to verify that ACk ⊆ TCk ⊆ ACk+1, k ≥ 0. For more
details about circuit complexity see e.g. [15]. We state the results below without
proofs (being sketched in [6]). With Thm. 20 we obtain

Corollary 22. Let (Σ, I) denote an independence alphabet.
Then we can compute lex(st) on input s, t ∈ LNF in uniform AC0.

Remark 23. We could apply Cor. 22 in order to compute the function lex in
AC1. However, we can do better: the mapping lex:Σ∗ → LNF is computable in
uniform TC0. This result can be compared with the fact that the equivalence
s ≡I t can be verified in uniform TC0, too (see [2]).
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