
Logical Definability on Infinite Traces ∗

Werner Ebinger and Anca Muscholl
Universität Stuttgart
Institut für Informatik
Breitwiesenstr. 20–22
D 70565 Stuttgart

Abstract

The main results of the present paper are the equivalence of definability

by monadic second-order logic and recognizability for real trace languages,

and that first-order definable, star-free, and aperiodic real trace languages

form the same class of languages. This generalizes results on infinite words

and on finite traces to infinite traces. It closes an important gap in the

different characterizations of recognizable languages of infinite traces.

1 Introduction

In the late 70’s, A. Mazurkiewicz introduced the notion of trace as a suitable
mathematical model for concurrent systems [16] (for surveys on this topic see also
[1, 6, 10, 17]). In this framework, a concurrent system is seen as a set Σ of atomic
actions together with a fixed irreflexive and symmetric independence relation
I ⊆ Σ × Σ. The relation I specifies pairs of actions which can be carried out in
parallel. It generates an equivalence relation on the set of sequential observations
of the system. As this relation is actually a congruence relation, it defines a
quotient monoid of Σ∗, called trace monoid. These monoids are also called free
partially commutative monoids and have been first studied in combinatorics by
Cartier and Foata [5].

Actions in a sequential system are linearly ordered, whereas a concurrent run
(trace) corresponds to a restricted Σ-labelled partial order. Traces can also be
viewed as dependence graphs, i. e. as labelled, acyclic graphs, where vertices are
labelled with actions and edges exist precisely between vertices with dependent
labels.

A natural framework for studying non-terminating concurrent systems (e. g.
operating systems, transaction systems) is provided by extending Mazurkiewicz

∗This research has been supported by the EBRA working group No. 6317 ASMICS II.

1

traces to infinite traces. Infinite traces are given immediately by considering the
extension to infinite dependence graphs. In this paper we are concerned only
with dependence graphs where every vertex has a finite past, i. e. every action
can be performed within a finite delay. Infinite traces corresponding to this kind
of dependence graphs are called real traces. Alternatively, real traces can be
viewed as the ideal completion (with respect to the prefix order) of the monoid
of finite traces [17].

The family of recognizable real trace languages has been first investigated by
P. Gastin [12] from the viewpoint of recognition by saturating homomorphisms.
Consequently, the extension of Ochmański’s theorem from finitary trace languages
to infinitary trace languages provided a characterization by concurrent-rational
expressions [14]. Concerning recognition by means of finite state automata, a
suitable model for trace languages is given by automata with distributed control,
namely asynchronous (cellular) automata [26, 27]. With appropriate extensions of
classical acceptance conditions (Büchi, Muller), it has been shown that the class of
recognizable real trace languages corresponds to the family of languages accepted
by non-deterministic Büchi [13], respectively deterministic Muller asynchronous
(cellular) automata [9]. Solely the logical characterization of recognizability in
terms of monadic second-order formulae remained open so far and is provided by
this paper.

Motivated by applications in the field of verification and specification of dis-
tributed systems (e. g. model checking), the question of determining the expres-
sive power of logic in the context of infinite traces is of particular interest. In
the present paper we provide answers to some of the remaining open problems
in the theory of real traces [8, for some recent open problems]. We show for ex-
ample that monadic second-order logic corresponds to recognizability, thus being
decidable. Our approach is independent of any model of trace automata.

In the weaker first-order logic framework, we give again a proper generalization
from the theory of (ω-) words and finite traces and show that the family of
star-free (aperiodic, respectively) sets of real traces coincides with the family of
first-order definable languages.

The paper is organized as follows: In Section 2 we recall some basic notions
of trace theory, together with some properties of recognizable sets. In Section 3
we show the equivalence of monadic second-order logic and recognizability for
real trace languages, extending the characterization for languages of finite traces
[25]. Together with a result obtained in Section 4 this provides a new proof
for Métivier’s [18, Theorem 2.3] and Ochmański’s [19, Lemma 8.2] result on
the recognizability of the Kleene-iteration of connected recognizable languages of
finite traces. In Section 4, we consider first-order logic on real traces. First we
provide direct transformations between formulae interpreted on finite words and
formulae interpreted on finite traces. Then we show that first-order definable
languages are exactly the star-free languages. Finally, we show the equivalence of
star-freeness and aperiodicity extending characterizations obtained for languages

2

of finite traces [15]. Some of our ideas have been proposed independently by
H. J. Hoogeboom, W. Thomas, and W. Zielonka (personal communication).

2 Preliminaries

2.1 Basic Notions

We denote by (Σ, D) a finite dependence alphabet, with Σ being a finite alphabet
and D ⊆ Σ × Σ a reflexive and symmetric relation called dependence relation.
The complementary relation I = (Σ×Σ)\D is called independence relation. The
notations D(a) = { b ∈ Σ | (a, b) ∈ D } and D(Σ′) =

⋃

a∈Σ′ D(a), Σ′ ⊆ Σ, will be
used throughout the paper.

The monoid of finite traces, IM(Σ, D), is defined as a quotient monoid with
respect to the congruence relation generated by the independence relation I, i. e.
IM(Σ, D) = Σ∗/{ ab ≡ ba | (a, b) ∈ I }. The empty trace (and the empty word as
well) will be denoted by 1. A trace can be identified with its dependence graph,
i. e. with (an isomorphism class of) a labelled, acyclic, directed graph [V,E, ℓ],
where V is a set of vertices labelled by ℓ : V → Σ and E is a set of edges between
vertices with dependent labels. More precisely, we have for every x, y ∈ V ,
(ℓ(x), ℓ(y)) ∈ D if and only if x = y or (x, y) ∈ E or (y, x) ∈ E. Thus, we
associate to every word a1 · · · an, ai ∈ Σ, the vertex set V = {1, . . . , n} labelled
as ℓ(i) = ai, together with the edge set E = {(i, j) | 1 ≤ i < j ≤ n, (ai, aj) ∈ D}.
This notion provides a natural definition of infinite traces by means of infinite
dependence graphs. We denote by G(Σ, D) the set of dependence graphs with a
countable set of vertices V , such that ℓ−1(a) is well-ordered for every a ∈ Σ.

G(Σ, D) is a monoid with respect to the concatenation [V1, E1, ℓ1][V2, E2, ℓ2] =
[V,E, ℓ], where [V,E, ℓ] is the disjoint union of [V1, E1, ℓ1] and [V2, E2, ℓ2], together
with additional edges (v1, v2) ∈ V1×V2, whenever (ℓ1(v1), ℓ2(v2)) ∈ D holds. The
identity is the empty graph 1 = [∅, ∅, ∅]. The concatenation is immediately
extendable to finite and infinite products. Let (gn)n≥0 ⊆ G(Σ, D). The infinite
product g = g0g1 . . . ∈ G(Σ, D) is the disjoint union of the gn, together with
additional edges from gn to gm for n < m between vertices with dependent
labels. Thus, we define the ω-iteration of A ⊆G(Σ, D) as Aω = { g0g1 . . . | gn ∈
A, ∀n ≥ 0 } (note that for 1 ∈ A we have Aω = A∗ ∪ (A \ 1)ω).

We denote by Σω the set of infinite words over the alphabet Σ (i. e. mappings
from IN to Σ), and by Σ∞ the set of finite and infinite words Σ∗∪Σω. The canonical
mapping ϕ : Σ∗ → IM(Σ, D) associating to a sequence its trace (dependence
graph) can be naturally extended to Σ∞, i. e. ϕ : Σ∞ → G(Σ, D). The image
ϕ(Σ∞) ⊆ G(Σ, D) is called the set of real traces and is denoted by IR(Σ, D).
Real traces correspond to (in)finite graphs, where every vertex has finitely many
predecessors. A word w ∈ Σ∞ is called a representative of t ∈ IR(Σ, D) if ϕ(w) =
t. Throughout this paper we abbreviate IR(Σ, D) (IM(Σ, D), respectively) by IR

3

(IM, respectively).
Observe that IR is not a submonoid of G(Σ, D), as e.g. aωa is not a real trace

anymore. A semantically satisfactory definition of the concatenation operation
is given by extending the theory to complex traces [7]. Since we consider real
traces only, we have chosen here the approach of viewing the concatenation as
a partially defined operation on IR, i. e., t = t1t2 for t1, t2 ∈ IR is defined only if
t ∈ IR. Note that this condition is always satisfied if t1 is a finite trace.

A word language L ⊆ Σ∞ is said to be closed (with respect to (Σ, D)) if
L = ϕ−1ϕ(L) for the canonical mapping ϕ : Σ∞ → IR.

We denote by alph(t) the set of letters occurring in a trace t. We also use the
abbreviation (t, u) ∈ I for alph(t)× alph(u) ⊆ I.

A trace is called connected if its dependence graph is connected. A language
is called connected if all its elements are connected. Every trace t ∈ IR can
be decomposed into connected components t = t1 ∪̇ . . . ∪̇ tn, i. e. every ti is a
connected factor of t = t1 · · · tn and (ti, tj) ∈ I, for 1 ≤ i 6= j ≤ n. Let A ⊆ IM,
then the language of its connected components is defined as CC(A) = {u ∈ IM | u
is a connected component of some t ∈ A }.

The set of letters occurring infinitely often in a real trace t is denoted alphinf(t).
We conclude this section with an example. Consider two concurrent processes

P1, P2, given by the instruction sequences

Pi : while true do xi := fi(xi, y); y := i endwhile .

We have four (atomic) instructions a = (x1 := f1(x1, y)), b = (y := 1), c = (x2 :=
f2(x2, y)) and d = (y := 2), with the independence relation I = {(a, c), (c, a)}.
Sequences of instructions satisfying that no process is idle forever are given e.g.
by the real trace language {t ∈ {ab, cd}ω | {b, d} ⊆ alphinf(t)}.

2.2 Recognizable Infinitary Word and Trace Languages

In this section we recall some properties of the family of recognizable subsets
of Σ∞ and IR, denoted by Rec(Σ∞) and Rec(IR), respectively. Recognizable
infinitary word languages can be characterized in several ways. The most familiar
one involves finite-state automata, equipped with suitable acceptance conditions.
These conditions specify (possibly partially) the set of states which have to occur
infinitely often on an accepting path. A further characterization is given by
ω-rational expressions, which are formed over finite languages of finite words by
using the operations union, concatenation, Kleene-star and ω-iteration. Following
the definition of the infinite product for dependence graphs, we have for A ⊆ Σ∗,
Aω = {w ∈ Σ∞ | w = w0w1 . . . , with wn ∈ A for n ≥ 0 }. In particular, if the
empty word belongs to A, then Aω = A∗ ∪ (A \ {1})ω.

Finally, from the logical viewpoint, recognizability of (infinitary) word lan-
guages corresponds to definability in the monadic second-order logic framework
studied by Büchi [4].

4

One possible way to define recognizable real trace languages is by saturating
homomorphisms [12]. Let η : IM → S be a homomorphism to a finite monoid S.
A real trace language A ⊆ IR is recognized by η if for any sequence (tn)n≥0 ⊆ IM
the following saturation property holds:

t0t1t2 . . . ∈ A =⇒ η−1η(t0) η
−1η(t1) η

−1η(t2) . . . ⊆ A .

The saturation property leads, together with a standard Ramsey argument, to a
representation of A as A =

⋃

(s,e)∈PA
η−1(s) η−1(e)ω with PA = { (s, e) ∈ S2 | se =

s, e2 = e and η−1(s) η−1(e)ω ∩ A 6= ∅ }. An equivalent definition uses Arnold’s
syntactic congruence [3]. For A ⊆ IR, two finite traces u, v ∈ IM are congruent if
and only if :

∀x, y ∈ IM : x(uy)ω ∈ A ⇔ x(vy)ω ∈ A ,

∀x, y, z ∈ IM : xuyzω ∈ A ⇔ xvyzω ∈ A .

We denote the syntactic congruence by ≡A and consider the canonical homo-
morphism η : IM → Synt(A), where Synt(A) = IM/≡A is the syntactic monoid
of A. Then A ∈ Rec(IR) if and only if the syntactic congruence ≡A has finite
index and η : IM → Synt(A) recognizes A. Furthermore, for A ⊆ IR we have
Synt(A) = Synt(ϕ−1(A)) [12].

Due to the partial commutativity there can be no equivalence between recog-
nizability and rational expressions with the Kleene-star as iteration operator.
The solution to this problem was given by E. Ochmański [19], who introduced
the concept of concurrent iteration. With this notion the family of recogniz-
able finitary trace languages shows to coincide with the family of c-rational (or
co-rational) languages. In the infinitary case, ω-rational expressions (formed by
using in addition the ω-iteration) precisely characterize recognizable ω-word lan-
guages. Again, the result has its counterpart for real trace languages, by using the
concurrent ω-iteration instead of the usual ω-iteration [14]. For further details
on c-rational real trace languages, we refer to Section 3.1.

3 Monadic Second-Order Logic over Real Traces

In order to specify properties of real trace languages by logical formulae, a real
trace t ∈ IR will be identified with its dependence graph. Logical formulae are
defined over structures of the form (V,<, (Pa)a∈Σ), corresponding to dependence
graphs [V,E, ℓ], where < is the partial order induced by E and Pa = {v ∈ V |
ℓ(v) = a}, a ∈ Σ (recall that the restriction of < to Pa is a well-founded total
order). We allow the empty structure (V = ∅) in order to include the empty
trace. We use first-order variables x, y, z, . . . ranging over the vertex set V and
set variables X, Y , Z, . . . ranging over sets of vertices. Formulae are defined
inductively as follows.

5

• Atomic formulae are given by the first-order predicates x < y, Pa(x) and the
(monadic) second-order predicate x ∈ X, with x, y,X denoting variables
(X is a set variable) and a ∈ Σ.

• Logical connectives: If ψ1 and ψ2 are formulae, then (ψ1 ∨ ψ2) and (¬ψ1)
are formulae, too.

• Quantifiers: If ψ is a formula, x is a first-order variable, and X is a monadic
second-order variable, then ∃xψ and ∃Xψ are formulae, too.

We refer to the monadic second-order logic system introduced above as MSO. We
freely use also ∧, →, ∀ and abbreviations like X ⊆ Y for ∀x (x ∈ X → x ∈ Y)
and x = y for ¬(x < y) ∧ ¬(y < x) ∧ (

∨

a∈Σ(Pa(x) ∧ Pa(y))). A real trace t is a
model for a sentence ψ (i. e. a formula without free variables), if ψ is satisfied by t
under the canonical interpretation (in symbols t |= ψ). This means that variables
are interpreted by vertices, respectively sets of vertices of the dependence graph
G(t) of t, the predicate Pa(x) is “x is labelled with a ∈ Σ”, the predicate < is
interpreted as the partial order of G(t), and y ∈ X is “y belongs to X”. The
real trace language defined by a MSO sentence ψ is given by {t ∈ IR | t |= ψ}.
The logical framework introduced above will also be used for defining languages
of finite and infinite words. The difference consists in the interpretation of < as
a total order in models corresponding to words.

Example 1 The property “ab is a (trace) factor” can be expressed by the sen-
tence

∃x ∃y (Pa(x) ∧ Pb(y) ∧ ¬(y < x) ∧ ¬∃z (x < z ∧ z < y)) .

Note that the expressive power of monadic second-order logic with respect to
trace properties does not depend on whether the partial order relation < or the
edge relation EH of the Hasse diagram of a trace (or the edge relation of the
dependence graph) are chosen to be part of the logical framework, since one
can be expressed into the other. The edge relation EH generalizes the successor
relation on words and is expressible by the partial order (even in first-order logic):

x EH y iff x < y ∧ ¬∃z (x < z ∧ z < y) ,

and conversely (in second-order logic):

x < y iff ∃x′
(

x EH x′ ∧

∀X(x′ ∈ X ∧ ∀z∀z′(z ∈ X ∧ z EH z′ → z′ ∈ X)

→ y ∈ X)
)

.

Therefore we are free to use both, the partial order < and the Hasse diagram
edge relation, in monadic second-order formulae.

6

3.1 Equivalence of Recognizability and Monadic Second-

Order Logic

The aim of this section is to show the equivalence of recognizability and definabil-
ity in monadic second-order logic for real trace languages. One possible way to
obtain this result is by using automata-theoretic characterizations. We use here
a different approach, which turns out to be more elegant. Our proof is based on
the characterization of recognizability by c-rational languages [19, 14], which we
describe in the following. First, let us define for A ⊆ IM the concurrent iteration
Ac∗ ⊆ IM, respectively concurrent ω-iteration Acω ⊆ IR by Ac∗ := (CC(A))∗,
respectively Acω := (CC(A))ω (recall the notation CC(A) for the connected com-
ponents of elements of A).

Now, c-rational trace languages form the least family cRat(IR) of subsets of
IR satisfying

• ∅ and the singletons {t}, t ∈ IM, belong to cRat(IR).

• If A ⊆ IM and B,C ⊆ IR are in cRat(IR), then also the product AB and
the union B ∪ C belong to cRat(IR).

• If A ⊆ IM is in cRat(IR), then also the concurrent iteration Ac∗ and the
concurrent ω-iteration Acω belong to cRat(IR).

Actually we shall use in the following a slight modification of the above definition,
which is easily shown to be equivalent [14]: we replace the closure by the two
concurrent iteration operators by the following closure property:

• If A ⊆ IM is connected and belongs to cRat(IR), then also the Kleene-
iteration A∗ and the ω-iteration Aω belong to cRat(IR).

In the proof of the theorem below we use the equivalence between recognizability
and MSO definability for ω-word languages [4]. Furthermore, the proof is based
on the equivalence between Rec(IR) and cRat(IR) [14].

Theorem 2 Let A ⊆ IR be a real trace language. Then A is recognizable if and
only if it is definable in monadic second-order logic.

Proof: The figure below sketches the situation considered. Recall that ϕ denotes
the canonical mapping ϕ : Σ∞ →→ IR.

ϕ−1(A) is ϕ−1(A) is
definable

(Büchi)
⇐⇒ recog-

(1)
=⇒ in MSO nizable

[12]
⇐⇒

A is A is
definable recog-
in MSO nizable(2)

⇐= A is
[14]
⇐⇒

c-rational

7

(1): Clearly, we can not use the same formula for both models, traces and words,
as the underlying interpretation of the predicate < is different. For example the
formula

∃x ∃y ∃z
(

Pa(x) ∧ Pc(y) ∧ Pb(z) ∧ x < z ∧ y < z ∧ (x < y ∨ y < x)
)

over the dependence alphabet (Σ, D) = a — b — c is not true for the trace
acb, but it is true for both representatives acb and cab of this trace. However, it
suffices to express the partial order on traces by the linear order on words.

Given a MSO formula ψ defining A ⊆ IR, we replace every subformula x < y
in ψ by a subformula x <lin y given below, obtaining a MSO formula ψ′ satisfying
for all t ∈ IR: t |= ψ if and only if w |= ψ′, for all w ∈ Σ∞ with t = ϕ(w).

Note that in any dependence graph [V,E, ℓ], we have for vertices x, y ∈ V :
x < y, if and only if there is a sequence x = x1 < · · · < xk < xk+1 = y, k ≥ 1,
xi ∈ V , such that (ℓ(xi), ℓ(xi+1)) ∈ D, for every 1 ≤ i ≤ k. Moreover, due to
the reflexivity of D, we may clearly restrict to the case k ≤ |Σ|. This yields the
following definition of x <lin y:

∨

1≤k≤|Σ|

∨

a1,...,ak+1∈Σ

with (ai, ai+1) ∈ D

for 1 ≤ i ≤ k

∃x2 . . . ∃xk
(

Pa1(x) ∧ Pa2(x2) ∧ . . . ∧ Pak(xk) ∧ Pak+1
(y) ∧

x < x2 < · · · < xk < y
)

.

(2): This implication is shown by induction over c-rational expressions. Note
that we consider both finite and infinite traces as models. Every formula ψA

given below which defines a real trace language A ⊆ IR can be expressed as the
disjunction of subformulae satisfied either only by finite or only by non-finite
traces.

• For A = ∅ let ψ∅ = ∃x(x < x) define A; for A = {t}, t ∈ IM, let ψ{t} be a
formula satisfied by the trace t ∈ IM, only.

• A∪B for c-rational sets A and B: Combine the formulae ψA and ψB for A
and B to ψA∪B = ψA ∨ ψB.

• A ·B for c-rational sets A ⊆ IM and B ⊆ IR, defined by ψA, respectively ψB:
For a formula ψ we use in the following relativizations ψ|R of ψ with respect
to a unary predicate R. Recall the inductive definition of ψ|R: ψ|R = ψ for
atomic formulae ψ; (¬ψ)|R = ¬ψ|R, (ψ1 ∨ψ2)|R = ψ1|R ∨ψ2|R, respectively
(∃xψ)|R = ∃x(R(x) ∧ ψ|R) and (∃X ψ)|R = ∃X(X ⊆ R ∧ ψ|R), where
X ⊆ R abbreviates x ∈ X → R(x). The unary predicate R used below is
given as a set property. Let ψA·B be defined as

∨

0≤k≤|Σ|

∃x1 . . . ∃xk
(

ψA|{x| ∨
1≤i≤k

x≤xi} ∧ ψB|{x| ∧
1≤i≤k

¬x≤xi}

)

.

8

It is easy to see that ψA·B defines exactly the product A ·B. The meaning of
the variables x1, . . . , xk is to include the maximal vertices of the left factor,
which is supposed to belong to A.

• A∗, Aω for a connected c-rational set A ⊆ IM: Let ψA denote a sentence
defining the connected language A ⊆ IM and assume for sake of simplicity
1 /∈ A .

The idea for a formula defining the (finite or ω-) iteration of a language A
is to colour the vertices of the dependence graph of the considered trace t,
such that the colouring corresponds to a factorization in connected factors
t = t1 t2 . . ., where every factor ti ∈ IM belongs to A. The identification
of (A-) factors will be provided by the property of being one-coloured and
by the restriction that for any two different factors having the same colour
there is no edge of the Hasse diagram connecting them. Two factors ti, tj
will have the same colour only if alph(ti) = alph(tj). For every Σ′ ⊆ Σ we
take two colours and colour alternatingly the factors ti with the colours of
alph(ti).

We define ψA∗ and ψAω as

∃X1 . . . ∃Xk (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) ,

where X1, . . . , Xk are supposed to represent the vertex colouring, with k =
2 · 2|Σ|.

The formula ψ1 states that V is the disjoint union of allXi. For the next two
subformulae we define below the abbreviation mocs(X), which expresses
that X is a “maximal one-coloured connected subgraph” of the Hasse dia-
gram. Formally, let mocs(X) be

∨

1≤i≤k

(

X ⊆ Xi ∧ “X is connected”

∧ ∀y∀z
(

(y ∈ X ∧ z ∈ Xi ∧ (z EH y ∨ y EH z)) → z ∈ X
)

)

,

where EH is the edge relation of the Hasse diagram. The (first-order)
subformula “X is connected” simply requires that the set of labels occurring
in X is a connected subalphabet Γ ⊆ Σ.

The formula ψ2 ensures that every mocs-component is an element of A and
is defined as

∀X (mocs(X) → ψA|X) ,

where ψA|X denotes the relativization of the sentence defining A with re-
spect to the predicate x ∈ X. Note that since A is a language of finite
traces, the mocs-components satisfying ψ2 will be finite.

The underlying interpretation of the mocs-components is that they are
factors of the given trace belonging to A. It remains to provide that the

9

mocs-components can be ordered, thus corresponding to a factorization.
Let us define the relation X ≺ Y as

∃x∃y (x ∈ X ∧ y ∈ Y ∧ x < y) .

Due to the reflexivity of the dependence relation D it suffices to forbid
cycles of mocs-components Y1 ≺ Y2 ≺ · · · ≺ Yk ≺ Yk+1 = Y1 with k ≤ |Σ|.
Consider otherwise a cycle as above, with Yi 6= Yj for i 6= j, and vertices
xi, yi ∈ Yi with xi < yi+1, for 1 ≤ i ≤ k. For k > |Σ| we obtain by
considering equal labels in {x1, . . . xk} indices 1 ≤ i 6= j ≤ k with Yi ≺ Yj
and Yi ≺ Yj+1. It is easy to see that these relations yield a smaller cycle.
The formula ψ3 ensures that the relation ≺ restricted on mocs-components
is acyclic:

¬
∨

2≤k≤|Σ|

∃Y1 . . . ∃Yk
(

∧

1≤i≤k

mocs(Yi) ∧

Y1 ≺ Y2 ∧ . . . ∧ Yk−1 ≺ Yk ∧ Yk ≺ Y1
)

.

Finally ψ4 determines whether its trace models are finite or not, depending
on the type of iteration (Kleene-star or ω). For the ω-iteration e.g., we have

ψ4 =
∨

a∈Σ

(

∀x(Pa(x) → ∃y(x < y ∧ Pa(y)))
)

.

✷

The proof of Theorem 2 can also be provided using the classical automaton-
based approach given by Büchi [24]. Using the characterization of recognizability
by nondeterministic asynchronous (cellular) automata with local Büchi accep-
tance [13], one can view a run of an asynchronous automaton as a labelling of a
dependence graph with local states. This allows to show that a trace language
A ⊆ IR is accepted by some Büchi asynchronous cellular automaton if and only
if A is definable in MSO [11] (respectively [25] for finite traces).

4 First-Order Logic on Real Traces

For (ω-) word languages the restriction of the logical framework to quantify-
ing only over first-order variables turns out to yield a subclass of recognizable
languages with various interesting properties. First-order definable (ω-) word
languages are closely related to temporal logic of linear time and show to coin-
cide with the star-free languages. Moreover, they can be captured by an algebraic
property (aperiodicity) [24, for an overview]. For languages of finite traces we
have the equivalence between aperiodicity and star-freeness [15], respectively be-
tween star-freeness and first-order definability, as shown by Thomas and Zielonka
[personal communication].

10

The first-order logical framework we consider (denoted by FO) restricts for the
present signature the quantification of formulae to variables x, y, . . ., only. In the
following we first exhibit a direct transformation between formulae interpreted
on finite trace models and formulae interpreted on finite word models (the result
also holds for higher order logic). For the general case of real trace languages
we obtain the equivalence stated in Proposition 3 below by the characterizations
of Sections 4.1, 4.2. A direct construction as presented below is of independent
interest.

In the proof of the following proposition we use the same approach for both
formulae transformations. In particular, we replace every subformula x < y of a
sentence ψ, which is interpreted on words, by a formula suitable for the partial
order interpretation. However, it is not possible to unify different interpretations
of a formula on the representatives of a trace to one interpretation for the trace
model itself. Consider e.g. the formula ∀x ∀y (x ≤ y ∨ y ≤ x), which is false on
any dependence graph containing two incomparable vertices, but is always true
on word models.

The idea is to fix a representative of each trace and to express the total order
of the fixed representative by the partial order of the dependence graph. As
representative of a trace we choose the lexicographic normal form. (The use of
the lexicographic normal form here was observed independently by W. Zielonka.)
Given a linear ordering <Σ of Σ, the lexicographic normal form of a trace t ∈
IM (in symbols lnf(t)) is lexicographically the first representative w ∈ ϕ−1(t).
Equivalently, a word w ∈ Σ∗ is the lexicographic normal form of its trace ϕ(w)
if and only if for each factor aub of w with a, b ∈ Σ, u ∈ Σ∗, and (au, b) ∈ I, we
have a <Σ b [2].

Proposition 3 A trace language A ⊆ IM is definable in first-order logic if and
only if ϕ−1(A) ⊆ Σ∗ is definable in first-order logic.

Proof: Given a first-order sentence defining A ⊆ IM we obtain directly from the
proof of Theorem 2 a first-order sentence defining ϕ−1(A).

Suppose now we are given a first-order sentence ψ defining a closed word
language A = ϕ−1ϕ(A) ⊆ Σ∗.

As outlined above, we replace every subformula x < y occurring in the sen-
tence ψ defining A ⊆ Σ∗ by the subformula lex(x, y) given below. The new
sentence ψ′ will satisfy t |= ψ′ if and only if lnf(t) |= ψ. Due to A being a closed
word language, this will yield the result.

Let x, y be vertices in the dependence graph of t and let lex(x, y) denote
the predicate expressing that x precedes y in the lexicographic normal form of
t, lnf(t). Assume that lex(x, y) holds and let x0 · · · xn correspond to the factor
in lnf(t) satisfying x0 = x and xn = y. Let i be minimal, 0 ≤ i ≤ n, such
that xi ≤ y holds in the partial order of the dependence graph. Then we have
(x0 · · · xi−1, xi) ∈ I and hence ℓ(x0) ≤Σ ℓ(xi). It is easy to see now that lex(x, y)

11

is equivalent to ∃z (ℓ(x) ≤Σ ℓ(z) ∧ z ≤ y ∧ lex(x, z)). This observation leads
to defining lex(x, y) as

∨

a,b∈Σ (Pa(x) ∧ Pb(y) ∧ lexa,b(x, y)), where lexa,b(x, y) is
defined recursively as

lexa,b(x, y) =















x < y for a = b ,
¬ lexb,a(y, x) for a <Σ b ,

∃z
(

∨

c≥Σa (Pc(z) ∧ z ≤ y ∧ lexa,c(x, z))
)

for a >Σ b .

Note that the recursion depth is at most 2 · |Σ|, yielding a first-order formula of
exponential size in |Σ|. The quantifier depth is bounded by |Σ|. ✷

Remark 4 The result stated in Proposition 3 clearly also holds if we replace
first-order by second-order logic. This, together with Theorem 2, provides a new
proof for Métivier’s [18, Theorem 2.3] and Ochmański’s [19, Lemma 8.2] theorem
on the recognizability of the Kleene-iteration of connected recognizable finitary
trace languages.

Remark 5 Since the lexicographic normal form is in general undefined for real
traces, the above proof can be extended directly to real traces only for the special
case where the considered language contains only traces t where the set of letters
occurring infinitely often in t is a connected subalphabet.

4.1 Equivalence of Star-Free Expressions and First-Order

Logic

In this section we show the equivalence of star-freeness and definability in first-
order logic. We generalize the approach of Perrin and Pin [21] from words to real
traces.

The family of star-free finitary trace languages SF(IM) is the closure of the
sets {t}, t ∈ IM, by Boolean operations and concatenation [15].

Definition 6 The family SF(IR) of star-free real trace languages is the smallest
family F of subsets of IR with
1. SF(IM) ⊆ F ,
2. AB ∈ F for any A,B ∈ F with A ⊆ IM, B ⊆ IR, and
3. F is closed under Boolean operations (where the complementation is meant

with respect to IR).

Note that since IM ∈ SF(IR) holds, the complementation of a finitary language
A ∈ SF(IM) with respect to IM can be obtained by complementing with respect
to IR and intersecting with IM.

We will consider formulae with free variables and interpret them on extended
trace models. For a finite setW of variables we add to a structure (V,<, (Pa)a∈Σ)

12

a mapping of variables σ : W → V , associating every variable with one ver-
tex in the dependence graph of the trace. Thus we obtain a new structure
(V,<, (Pa)a∈Σ, σ) of a trace with a set W of variables, denoted W -trace. Let a
set of W -traces be denoted as a W -trace language. If W is empty, then the new
structure (V,<, (Pa)a∈Σ, ∅) can be identified with the former one, (V,<, (Pa)a∈Σ).
We denote by IMW (resp. IRW) the set of finite W -traces (resp. real W -traces).

The concatenation of aW -trace t and aW ′-trace t′ is defined only ifW∩W ′ =
∅; in this case, in addition to the usual concatenation of dependence graphs, the
mapping of variables of tt′ is the disjoint union of the mapping of variables of
t and t′. The complement of a real W -trace language A ⊆ IRW is meant with
respect to IRW . The definition of star-free languages can now be immediately
extended to star-free real trace languages over extended structures. Let SFe(IM)
denote the family of W -trace languages (for finite sets W) obtained from the sets
{t} (t ∈ IMW for finite W) by concatenation and Boolean operations, where the
complement of a W -trace language is meant with respect to IMW . Further, let
SFe(IR) denote the smallest family of subsets of IRW (for finite setsW) containing
SFe(IM) and closed under concatenation and Boolean operations.

For the rest of the section, sets W of (first-order) variables are supposed
to be finite. The following lemma states some useful properties of star-free trace
languages over the extended structures defined above. The left and right quotients
t−1A and At−1 for t ∈ IRU , A ⊆ IRW are defined as usual, by t−1A = { v | tv ∈ A }
and At−1 = { v | vt ∈ A }. Note that the partial monoid of real traces IR is
left-, but not right-cancellative: If uv, uv′, vu, and v′u are defined, we have
uv = uv′ ⇒ v = v′, but vu = v′u does not imply v = v′. In particular it does not
hold that {t}t−1 = {1}, for example {aω}(aω)−1 = a∗ 6= {1}.

Lemma 7 1. For any Σ′ ⊆ Σ and any set W , the languages {t ∈ IMW |
alph(t) ⊆ Σ′} respectively {t ∈ IRW | alph(t) ⊆ Σ′} are star-free.

2. Taking left and right quotients commutes with ∪ and ∩. Moreover, let t ∈ IRU

and A ⊆ IRW with U ⊆ W . Then we have t−1A = t−1A ∪ {u ∈ IRW\U | tu /∈
IRW}, respectively At−1 = At−1 ∪ {u ∈ IRW\U | ut /∈ IRW}.

3. Let A ∈ SFe(IR). Then the set of left (right) quotients { t−1A | t ∈ IRU , U }
({At−1 | t ∈ IRU , U }) is a finite subset of SFe(IR).

Proof: 1: Obvious.
2: Note that for u ∈ IRW\U we have u /∈ t−1A if and only if either tu ∈ A or tu is
not a real trace.
3: Assume A ∈ SFe(IR) ∩ IRW . The proof is given by induction on the star-free
expression for A. We denote the number of different languages t−1A by n(A).
If A = {u} for some u ∈ IMW , then n(A) ≤ 2|u|.
If A = B∪C, then t−1A = t−1B∪t−1C, hence n(A) ≤ n(B)·n(C) (∩ analogously).
If A = B, then with t−1B = t−1B \ {v ∈ IRW\U | alph(v)∩D(alphinf(t)) 6= ∅} we
obtain n(A) ≤ n(B) · 2|Σ|.

13

If A = BC, then t−1(BC) =
⋃

rs=t(r
−1B ∩ Fs)(s

−1C), where Fs = {p ∈ IRW ′ |
(p, s) ∈ I} ∈ SFe(IR) (for some W ′ ⊆ W), thus

{ t−1(BC) | t ∈ IRU } = {
⋃

rs=t

(r−1B ∩ Fs)(s
−1C) | t ∈ IRU } ,

with n(r−1B ∩ Fs) ≤ n(B) · 2|Σ| and n(A) ≤ 2n(B) 2|Σ| n(C).
Right quotients At−1 for A ∈ SFe(IR) are handled symmetrically. ✷

Theorem 8 A trace language A ⊆ IR is definable in first-order logic if and only
if it is star-free.

Proof: “⇐”: Set operations are replaced by the corresponding logical operations.
For the concatenation we use the first-order formula from Section 3.

“⇒”: We give a proof by induction on formulae.
Predicates: The set of realW -traces satisfying x < y for some variables x, y ∈

W , is a star-free trace language of the following form (we omit the subscripts for
IM, IR and a ∈ ΣX denotes that the set of variables X is assigned to vertex a):

⋃

finite

⋃

a1∈ΣX ,al∈ΣY , x∈X, y∈Y

with (ai, ai+1) ∈ D for 1 ≤ i ≤ l − 1

IMa1IMa2 · · · al−1IMalIR .

Note that the sets of variables assigned to the factors in the expression above
form a partition of W and l ≤ |Σ|.

A real W -trace language satisfying Pa(x) is of the form
⋃

finite IMaIR with
a ∈ ΣX and x ∈ X. For x = y we have the representation

⋃

finite

⋃

a∈ΣX

x,y∈X

IMaIR.

Formulae: For ∧, ∨, ¬ we use the corresponding set operations. Finally, for
quantified formulae, if A ∈ SFe(IR) ∩ IRW is the language defined by a formula
ψ with free variables W and x ∈ W , then we first express A using left and right
quotients [21] (we omit again the subscript for IR)

A =
⋃

a∈ΣX , ua∈IR,
x∈X⊆W

B(u) aC(u)

with
C(u) = (ua)−1A, B(u) =

⋂

v∈C(u)

A(av)−1 .

By Lemma 7 the union above is finite. Finally, the real W \ {x}-trace language
A′ defined by the formula ∃x ψ is

A′ =
⋃

a∈ΣX\{x}, ua∈IR

B(u) aC(u)

✷

14

4.2 Aperiodic and Star-Free Real Trace Languages

A monoid is called aperiodic if it satisfies the equation xn = xn+1 for some
n > 0. Let A ⊆ IR be a real trace language. A is called aperiodic if there exists
a homomorphism η : IM → S to an aperiodic, finite monoid S recognizing A
(Equivalently, the syntactic monoid of A is finite and aperiodic, and the syntactic
morphism recognizes A.).

We denote the family of aperiodic real (finitary, respectively) trace languages
by AP(IR) (AP(IM), respectively). We use analogous notations for word lan-
guages. We recall Schützenberger’s result stating the equivalence between ape-
riodicity and star-freeness for finitary word languages [23]. The result has been
extended to ω-word languages by Perrin [20] and for languages of finite traces by
Guaiana et. al. [15].

Let us begin with some notations concerning recognizability by homomor-
phisms and consider η : IM → S to a finite monoid S. For s ∈ S we denote

Ms = η−1(s)
Ps =Ms \MsIM+, with IM+ = IM \ {1} .

Thus, IMs is the set of all finite traces which are mapped to s by η and Ps is
the subset of IMs, consisting of traces having no proper prefix in IMs. Finally, if
we consider a homomorphism η : Σ∗ → S, then we use the notation Xs = η−1(s),
for s ∈ S.

Moreover, we may assume that alph(t) = alph(t′) for all t, t′ ∈ IM with
η(t) = η(t′), since we may replace S with a submonoid of S × P(Σ), with the
multiplication defined by (s,Γ)(s′,Γ′) = (ss′,Γ∪Γ′) and (1, ∅) as identity. More-
over we replace η(a) with (η(a), {a}) for a ∈ Σ. Hence, alph(s) for s ∈ S can
be defined as alph(t) for some t ∈ η−1(s). Note that any aperiodic monoid S
remains aperiodic if we replace it with (a submonoid of) S × P(Σ).

For Σ′ ⊆ Σ, let IRΣ′ = { t ∈ IR | D(alphinf(t)) = D(Σ′) }. Note that in
the word case (i. e. D = Σ × Σ) we have IRΣ′ = Σω, for every ∅ 6= Σ′ ⊆ Σ and
IR∅ = Σ∗. In particular, we denote by IRs for s ∈ S the set IRΣ′ with Σ′ = alph(s).

Let A ⊆ IM. We define
−→
A = { t ∈ IR | t = ⊔B with B directed and B ⊆ A }.

A non-empty set B ⊆ IM is called directed if for every t, t′ ∈ B, there exists a
z ∈ B such that t and t′ are both prefixes of z.

The following lemma generalizes a lemma used in Schützenberger’s proof of
McNaughton’s theorem for ω-word languages [22]. For real traces, the proof of
the lemma becomes more involved and the reader is referred directly to [9].

Lemma 9 [9] Let S be a finite monoid, η : IM → S a homomorphism and e ∈ S

such that e2 = e. Then we have IMω
e =

−−−→
IMePe ∩ IRe.

Before stating the result of this section, let us define the I-shuffle K1 I K2

of two (ω-) word languages Ki ⊆ Σ∞ by K1 I K2 = {u0v0u1v1 . . . | un, vn ∈
Σ∗, u0u1 . . . ∈ K1, v0v1 . . . ∈ K2 and (vn, um) ∈ I, for n < m }.

15

Theorem 10 The family of star-free real trace languages coincides with the fam-
ily of aperiodic real trace languages.

Proof: “⇐”: Let us first show that every aperiodic language A ⊆ IR is star-free.
To this purpose, consider η : IM → S a homomorphism to a finite, aperiodic
monoid S recognizing A. Then we have A =

⋃

(s,e)∈P IMsIM
ω
e , with P = { (s, e) ∈

S2 | se = s, e2 = e, IMsIM
ω
e ∩A 6= ∅ }. Since IMs ∈ SF(IM) [15], it suffices to show

that IMω
e ∈ SF(IR). By Lemma 9, IMω

e =
−−−→
IMePe ∩ IRe. Furthermore, IRe ∈ SF(IR).

More precisely, IRe (with e 6= 1) is a finite union of sets IMIMω
Σ′ with Σ′ ⊆ Σ,

IMΣ′ = {t ∈ IM | alph(t) = Σ′} and IMω
Σ′ =

(

⋂

b/∈Σ′ IMbIR ∩
⋂

a∈Σ′ IMIMaIR
)

\ IM,
hence the result.

It remains to show
−−−→
IMePe ∈ SF(IR). More generally, if B ⊆ IM is recognized

by a homomorphism η : IM → S to a finite monoid S, then we may write the
complement of

−→
B as follows (analogously to [20]):

−→
B =

⋃

p∈S

(IMp

⋃

q with pq∈η(B)

IMq IR) .

The above expression simply states that t /∈
−→
B if and only if there exists a finite

prefix u ≤ t such that for every v ∈ IM with uv ≤ t, uv /∈ B. Moreover, with S
aperiodic we obtained

−→
B ∈ SF(IR) by [15].

“⇒”: For this inclusion, it suffices to show that A ∈ SF(IR) implies ϕ−1(A) ∈
SF(Σ∞), since SF(Σ∞) = AP(Σ∞) [20] and Synt(A) = Synt(ϕ−1(A)). We
proceed by induction on the star-free expression denoting A ∈ SF(IR). For
A ∈ SF(IM) we have A ∈ AP(IM) by [15], hence ϕ−1(A) ∈ AP(Σ∗) = SF(Σ∗)
[23]. Furthermore, let A = A1 ∪ A2 (A = A1 ∩ A2, A = A1 respectively) with
ϕ−1(A1), ϕ

−1(A2) ∈ SF(Σ∞). Then ϕ−1(A) ∈ SF(Σ∞) holds, since ϕ−1 commutes
with the Boolean operations.

Finally, let A = A1A2 with A′
1 = ϕ−1(A1) ∈ SF(Σ∗), A′

2 = ϕ−1(A2) ∈
SF(Σ∞). Then, ϕ−1(A) = A′

1 I A
′
2, with I denoting the I-shuffle operation.

In particular, we have

A′
1 I A

′
2 = {u0v0 . . . unvnw | uk, vk ∈ Σ∗, w ∈ Σ∞, u0u1 . . . un ∈ A′

1,

v0v1 . . . vnw ∈ A′
2 and (vi, uk) ∈ I, for i < k ≤ n } .

Since A′
1 ∈ SF(Σ∗) = AP(Σ∗) and A′

2 ∈ SF(Σ∞) = AP(Σ∞), let η : Σ∗ → S
denote a homomorphism recognizing both A′

1 and A
′
2, with S an aperiodic, finite

monoid (for A′
2 this means that η recognizes A′

2∩Σω and A′
2∩Σ∗). Furthermore,

we consider the set P = { (s, e) ∈ S2 | se = s, e2 = e, XsX
ω
e ∩ A′

2 6= ∅ }.
Noting that X1 = {1} = Xω

1 , with 1 denoting the identity in S, we have A′
2 =

⋃

(s,e)∈P XsX
ω
e . Moreover, A′

1 = η−1η(A′
1). It is not hard to see that we may

express A′
1 I A

′
2 by

A′
1 I A

′
2 =

⋃

r∈η(A′
1
)

⋃

(s,e)∈P

(Xr I Xs)X
ω
e .

16

Since both Xr and Xs are aperiodic, closed finitary word languages (due to A′
i

being closed), we have Xr I Xs ∈ SF(Σ∗) [15]. Moreover, since e is an idem-
potent element of S, with S aperiodic, we also have Xω

e ∈ SF(Σ∞) [20]. Hence,
A′

1 I A
′
2 = ϕ−1(A) ∈ SF(Σ∞). ✷

Let us summarize: Since for every A ∈ Rec(IR), Synt(A) = Synt(ϕ−1(A)) holds,
we obtained by the results of Section 4 the following equivalent characterizations:

i) A is first-order definable.

ii) ϕ−1(A) is first-order definable.

iii) A is star-free.

iv) Synt(A) is aperiodic and the syntactic homomorphism η : IM → Synt(A)
recognizes A.

5 Conclusion

In this paper we have generalized the most important results concerning logic,
recognizability, star-freeness and aperiodicity from word languages and finitary
trace languages to the case of infinitary trace languages.

For star-free languages an extension to the quantifier alternation hierarchy of
first-order formulae and dot-depth hierarchies of languages has been considered
[11, contains also a temporal logic which is expressively equivalent to first-order
logic for finite traces].

Acknowledgements

We want to thank V. Diekert, P. Gastin, H. J. Hoogeboom, D. Kuske, and
W. Thomas for many interesting comments. We also thank the anonymous ref-
erees from ICALP and especially from Theoretical Computer Science for the
valuable comments which helped improving the presentation of this paper.

References

[1] IJ. J. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Computer
Science, 60:1–82, 1988.

[2] A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. International
Journal of Computer and Information Sciences, 8:255–260, 1979.

[3] A. Arnold. A syntactic congruence for rational ω-languages. Theoretical
Computer Science, 39:333–335, 1985.

17

[4] J. R. Büchi. On a decision method in restricted second order arithmetic.
In E. Nagel et al., editors, Proc. Internat. Congress on Logic, Methodology
and Philosophy of Science, pages 1–11. Stanford Univ. Press, Stanford, CA,
1960.

[5] P. Cartier and D. Foata. Problèmes combinatoires de commutation et réar-
rangements. Number 85 in Lecture Notes in Mathematics. Springer, Berlin-
Heidelberg-New York, 1969.

[6] V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in
Computer Science. Springer, Berlin-Heidelberg-New York, 1990.

[7] V. Diekert. On the concatenation of infinite traces. Theoretical Computer
Science, 113:35–54, 1993. Special issue STACS‘91.

[8] V. Diekert and W. Ebinger, editors. Infinite Traces. Proceedings of a work-
shop of the ESPRIT Basic Research Action No 3166: Algebraic and Syn-
tactic Methods in Computer Science (ASMICS), Tübingen, Germany, 1992,
Bericht 4/92. Universität Stuttgart, Fakultät Informatik, 1992.

[9] V. Diekert and A. Muscholl. Deterministic asynchronous automata for infi-
nite traces. Acta Informatica, 31:379–397, 1994. A preliminary version was
presented at STACS’93, Lecture Notes in Computer Science 665 (1993).

[10] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[11] W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch
Logiken. Dissertation, Institut für Informatik, Universität Stuttgart, 1994.

[12] P. Gastin. Recognizable and rational trace languages of finite and infinite
traces. In C. Choffrut et al., editors, Proceedings of the 8th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’91), Hamburg
1991, number 480 in Lecture Notes in Computer Science, pages 89–104,
Berlin-Heidelberg-New York, 1991. Springer.

[13] P. Gastin and A. Petit. Asynchronous automata for infinite traces. In
W. Kuich, editor, Proceedings of the 19th International Colloquium on Au-
tomata, Languages and Programming (ICALP’92), Vienna (Austria) 1992,
number 623 in Lecture Notes in Computer Science, pages 583–594, Berlin-
Heidelberg-New York, 1992. Springer.

[14] P. Gastin, A. Petit, and W. Zielonka. An extension of Kleene’s and
Ochmański’s theorems to infinite traces. Theoretical Computer Science,
125:167–204, 1994. A preliminary version was presented at ICALP’91, Lec-
ture Notes in Computer Science 510 (1991).

18

[15] G. Guaiana, A. Restivo, and S. Salemi. Star-free trace languages. Theoretical
Computer Science, 97:301–311, 1992. A preliminary version was presented
at STACS’91, Lecture Notes in Computer Science 480 (1991).

[16] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[17] A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri Nets,
Applications and Relationship to other Models of Concurrency, number 255
in Lecture Notes in Computer Science, pages 279–324, Berlin-Heidelberg-
New York, 1987. Springer.

[18] Y. Métivier. Une condition suffisante de reconnaissabilité dans un monöıde
partiellement commutatif. R.A.I.R.O. — Informatique Théorique et Appli-
cations, 20:121–127, 1986.

[19] E. Ochmański. Regular behaviour of concurrent systems. Bulletin of the
European Association for Theoretical Computer Science (EATCS), 27:56–
67, Oct 1985.

[20] D. Perrin. Recent results on automata and infinite words. In M. P. Chytil
and V. Koubek, editors, Proceedings of the 11th Symposium on Mathematical
Foundations of Computer Science (MFCS’84), Praha (CSFR) 1984, number
176 in Lecture Notes in Computer Science, pages 134–148. Springer, Berlin-
Heidelberg-New York, 1984.

[21] D. Perrin and J.-E. Pin. First-order logic and star-free sets. Journal of
Computer and System Sciences, 32:393–406, 1986.

[22] D. Perrin and J. E. Pin. Mots Infinis. Tech. Rep. LITP 93.40, Université
Paris 7 (France), 1993. Book to appear.

[23] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[24] W. Thomas. Automata on infinite objects. In J. v. Leeuwen, editor, Hand-
book of Theoretical Computer Science, chapter 4, pages 133–191. Elsevier
Science Publishers B. V., 1990.

[25] W. Thomas. On logical definability of trace languages. In V. Diekert, editor,
Proceedings of a workshop of the ESPRIT Basic Research Action No 3166:
Algebraic and Syntactic Methods in Computer Science (ASMICS), Kochel
am See, Bavaria, FRG (1989), Report TUM-I9002, Technical University of
Munich, pages 172–182, 1990.

[26] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Infor-
matique Théorique et Applications, 21:99–135, 1987.

19

[27] W. Zielonka. Safe executions of recognizable trace languages by asynchro-
nous automata. In A. R. Mayer et al., editors, Proceedings of the Symposium
on Logical Foundations of Computer Science, Logic at Botik ’89, Pereslavl-
Zalessky (USSR) 1989, number 363 in Lecture Notes in Computer Science,
pages 278–289, Berlin-Heidelberg-New York, 1989. Springer.

20

